A Bravais lattice

A Bravais lattice A Bravais lattice

web.hallym.ac.kr
from web.hallym.ac.kr More from this publisher
15.11.2014 Views

Chap. 1 CRYSTAL STRUCTURE 1.1 Basic Concepts • Materials: Large quantity of particular atoms or molecules. Atoms : electrons + nucleus Schrodinger equation describes the behavior of the electrons

Chap. 1 CRYSTAL STRUCTURE<br />

1.1 Basic Concepts<br />

• Materials: Large quantity of particular atoms or molecules.<br />

Atoms : electrons + nucleus<br />

Schrodinger equation describes the behavior of the electrons


• Hydrogen like atom : nucleus + single electron<br />

The absolute square of the wave function is interpreted as the probability density for<br />

finding the associated particle.


Small Corrections :<br />

Spin –orbit effect<br />

Relativistic effect<br />

Hyperfine structure : (nuclear spin)<br />

Lamb shift : (electrodynamics)


• Differences in energy of some particular pairs of states in the hydrogen atom. The state of lower energy is listed first.<br />

The hydrogen atom is one of the most important dynamical systems in all of physics, for several reasons:<br />

1.Hydrogen is the most abundant stuff in the known universe. About 92% by number of the nuclei<br />

in the universe are hydrogen, 75% by mass.<br />

2.Even though it is a relatively simple system, the physics of the hydrogen atom contains many<br />

important quantum mechanical concepts that extend to more complex atoms and other systems.<br />

3.Because of its relative simplicity, the hydrogen atom can be solved theoretically to very high<br />

precision. Experimental measurements involving hydrogen thus offer very sensitive tests of<br />

modern physical theories, like quantum electrodynamics.<br />

Ref : http://www.pha.jhu.edu/~rt19/hydro/node5.html<br />

To see the wave functions, refer to<br />

http://www.webelements.com


• Atoms with many electrons<br />

Electron – electron interaction<br />

V<br />

int<br />

2<br />

e<br />

= ∑<br />

r i − r<br />

i,<br />

j<br />

j<br />

Hatree approximation<br />

Pauli exclusion principle<br />

No two electrons in an atom can be in the same quantum state<br />

Total electronic wave function must be antisymmetric<br />

Exchange interaction<br />

Hatree –Fock approximation<br />

1s<br />

2s 2p<br />

3s 3p 3d<br />

4s 4p 4d 4f<br />

5s 5p 5d 5f 5g<br />

Not exact<br />

Ex : Co<br />

Atomic number : 27<br />

1s(2) 2s(2) 2p(6) 3s(2) 3p(6) 4s(2) 3d(7)


* Atomic orbitals<br />

http://www.shef.ac.uk/chemistry/orbitron/AOs/1s/index.html<br />

1s<br />

2s<br />

2p<br />

3s<br />

3p<br />

3d


• What is Solid ?<br />

Crystal: Periodic array of atoms, Translational symmetry<br />

• Solid state Physics :<br />

- Study of what may be called the material properties of solid bodies.<br />

- Physics relevant to crystals and electrons in crystals.<br />

Ex: · dielectric constant of a crystal versus electrostatic field distribution<br />

of a specimen of particular shape.<br />

· Electronic band structure of a semiconductor crystal<br />

Electron’s spin<br />

Crystal binding<br />

Electronic energy<br />

Crystal structure (real, reciprocal)<br />

Lattice vibration<br />

• Why Crystals ?<br />

Minimum energy configuration of the interaction between atoms<br />

=> Equilibrium structure at zero temperature.<br />

Non crystalline solid : glass, amorphous


1.2 Concepts of Lattice<br />

Crystal: Periodic array of atoms.<br />

Lattice: Mathematical (Geometrical) structure of crystal<br />

(Constructed by the equilibrium position of atoms)<br />

Physical Crystal Structure = <strong>lattice</strong> + basis<br />

basis : atoms or molecules attached to every <strong>lattice</strong> point identically<br />

• Fundamental Translational vector, Basic vectors a 1 , a 2 , a 3<br />

atomic structure remains invariant under translation through any vector<br />

which is the sum of integral multiples of these vectors.<br />

• Primitive Translational Vectors : R lmn<br />

= r o<br />

+ la 1<br />

+ ma 2<br />

+ na 3<br />

• Primitive Cell: constitute building block (cell) with the smallest volume


• Unit Vectors : Obvious, convenient choice of translational vectors. – show crystal symmetry<br />

• Unit Cell : parallelepiped constructed with unit vectors<br />

Basis vectors:<br />

Volume of the unit cell<br />

• Wigner-Seitz Cell :<br />

A primitive cell that shows the crystal symmetry related to a crystal clearly.<br />

Parallelepiped constructed by perpendicular bisector planes of the translation<br />

vectors from the chosen center to the nearest equivalent <strong>lattice</strong> sites.<br />

1. Draw lines to connect all nearby <strong>lattice</strong> points.<br />

2. At the mid point and normal to these lines, draw new lines<br />

perpendicular to the lines.<br />

3. The smallest volume enclosed is Wigner-Seitz Cell.<br />

Wigner-Seitz Cell of BCC


1.3 Classification of <strong>Bravais</strong> Lattice<br />

• A <strong>Bravais</strong> <strong>lattice</strong><br />

An infinite array of discrete points with an arrangement and orientation<br />

that appears exactly same from whichever of the points the array is viewed.<br />

Primitive cell<br />

Honey comb <strong>lattice</strong> is not a <strong>Bravais</strong> Lattice<br />

FCC is a <strong>Bravais</strong> Lattice


• Symmetry Operations : (Space Group)<br />

A <strong>Bravais</strong> <strong>lattice</strong> is characterized by the specifications of all rigid operations<br />

that takes the <strong>lattice</strong> into itself.<br />

=> needs group theory (we would not go into the details)<br />

•Crystal structures are classified by their symmetry operations :<br />

- translation by fundamental <strong>lattice</strong> vectors<br />

- rotation about an axis<br />

- reflection in a plane<br />

- inversion<br />

v v<br />

r r<br />

→ −<br />

Understanding Crystals would be much easier if we group similar crystals together<br />

according to their symmetry property.<br />

Ex : cubic<br />

: rotation through 90 about a line of <strong>lattice</strong> points in a direction<br />

: rotation through 120 about a line of <strong>lattice</strong> point in a direction<br />

: reflection of all points in a {100} <strong>lattice</strong> plane<br />

2π/4<br />

2π/3


• Point operations : (Point Group)<br />

Symmetry operations that leave at least one <strong>lattice</strong> point fixed.<br />

Theorem : Any symmetry operation of a <strong>Bravais</strong> <strong>lattice</strong> can be compounded out of a<br />

translation T and a point operation.<br />

Proof : If a symmetry operation S takes O ⌫ R, Consider operation T -R<br />

T -R<br />

S is also symmetry operation that leaves origin fixed => point operation<br />

<br />

p<br />

<br />

90º rotation<br />

S = (T -R<br />

S)T R<br />

<br />

p <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

p <br />

<br />

Rotation around<br />

<br />

translation by a<br />

<br />

(Point operation)


• 5 <strong>Bravais</strong> Lattice in Two-Dimensions<br />

a) square <strong>lattice</strong> a = b α = 90<br />

b α<br />

a<br />

b) rectangular <strong>lattice</strong> a b α = 90<br />

c) hexagonal <strong>lattice</strong> a = b α = 60<br />

<strong>Bravais</strong> <strong>lattice</strong> can contain only 2-,<br />

3-, 4-, 6-fold axes.<br />

d) Centered rectangular <strong>lattice</strong> a ≠ b α = 90<br />

e) Oblique <strong>lattice</strong> a b α = arbitrary


• <strong>Bravais</strong> Lattice in Three Dimensions<br />

Number of Point Group : the 7 crystal systems<br />

Number of Space Group : the 14 <strong>Bravais</strong> <strong>lattice</strong>s<br />

- Basis of spherical symmetry<br />

* Crystal Structure including non <strong>Bravais</strong> <strong>lattice</strong>s<br />

Number of Point Group : the 32 crystallographic point groups<br />

Number of Space Group : the 230 space groups<br />

- Basis of arbitrary symmetry<br />

a<br />

β<br />

c<br />

γ<br />

α<br />

b


• Cubic <strong>lattice</strong> : a=b=c α=β=γ=90<br />

simple cubic (SC) face centered cubic (FCC) body centered cubic (BCC)<br />

- Simple Cubic<br />

* Primitive <strong>lattice</strong> vectors :<br />

ax$ ) )<br />

, ay,<br />

az<br />

* Millar Indices<br />

(100) (110) (111)<br />

* Crystal Planes : (100) (010) (001) (-100) (0-10) (00-1)<br />

Planes of equivalent symmetry {100}<br />

Crystalline axis directions : [100] [010] [001] [-100] [0-10] [00-1]<br />

Directions of equivalent symmetry


Body Centered Cubic (BCC)<br />

Wigner-Zeits Cell<br />

- BCC : Li, Na, K, Rb, CS, Fe , Mo, W<br />

* basis : (000) (1/2 1/2 1/2), primitive <strong>lattice</strong> vector : a/2 (x+y-z), a/2(x-y+z), a/2(-x+y+z)<br />

* Unit cell : Simple Cubic # of atoms in a unit cell : 2<br />

- Face Centered Cubic (FCC)<br />

Rhombohedral Primitive cell<br />

Wigner-Zeit Primitive Cell<br />

FCC : Ne, Ar, Kr, Xe, Ag, Cu, Au, Pt<br />

basis : (000) (0 1/2 1/2) (1/2 0 1/2) (1/2 1/2 0) primitive <strong>lattice</strong> vector : a/2 (x+y), a/2(x+z), a/2(y+z)<br />

# of atoms in a unit cell : 4


ABCABC stacking<br />

First layer<br />

Second layer<br />

Third layer<br />

b) Tetragonal <strong>lattice</strong> a = b ≠ c α=β=γ=90<br />

simple tetragonal<br />

centered tetragonal<br />

In, Sn<br />

* face centered tetragonal is identical to body centered tetragonal<br />

* FCC and BCC is a special case of the centered tetragonal


c) Orthorhombic a ≠ b ≠ c α=β=γ=90<br />

simple orthorhombic<br />

base centered orthorhombic<br />

body centered orthorhombic<br />

face centered orthorhombic<br />

d) monoclinic a ≠ b ≠ c α=β=γ≠90<br />

simple monoclinic<br />

centered monoclinic<br />

e) triclinic a ≠ b ≠ c α≠β≠γ<br />

f) trigonal a=b=c α=β=γ


1.4 Important Crystal Structure<br />

• Diamond Structure<br />

- <strong>Bravais</strong> Lattice : FCC<br />

- 2 Basis at (000), (1/4 1/4 1/4)<br />

- Group IV elements, semiconductors : C, Si, Ge, Sn<br />

- Relatively empty, Directional covalent bonding , Tetrahedral<br />

• ZincBlend Structure<br />

Diamond Structure with two different atoms in each FCC <strong>lattice</strong><br />

Compount Semiconductors<br />

GaAs, ZnS, SiC, InAs


• Hexagonal Close-packed Structure<br />

<strong>Bravais</strong> Lattice : Hexagonal Lattice<br />

He, Be, Mg, Hf, Re (Group II elements)<br />

ABABAB Type of Stacking<br />

a=b a=120, c=1.633a,<br />

basis : (0,0,0) (2/3a ,1/3a,1/2c)


•Sodium Chloride Structure<br />

<strong>Bravais</strong> Lattice : Face Centered Cubic<br />

Basis : (000) (1/2 1/2 1/2)<br />

NaCl, MgO, KCL, MnO (Ionic bonding materials: Rock Salts)<br />

• Cesium Chloride Structure<br />

<strong>Bravais</strong> Lattice : Simple Cubic<br />

Basis : (000) (1/2 1/2 1/2)<br />

BeCu, CsCl, CuZn

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!