15.11.2014 Views

2008: Das Jahr der Mathematik - Junge Wissenschaft

2008: Das Jahr der Mathematik - Junge Wissenschaft

2008: Das Jahr der Mathematik - Junge Wissenschaft

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Junge</strong><br />

Ausgabe Nr. 79 23. <strong>Jahr</strong>gang 01/<strong>2008</strong><br />

<strong>Wissenschaft</strong><br />

Young Researcher<br />

Jugend forscht in Natur und Technik<br />

The European Journal of Science and Technology<br />

<strong>2008</strong>:<br />

<strong>Das</strong> <strong>Jahr</strong><br />

<strong>der</strong> <strong>Mathematik</strong><br />

Im „Jugend forscht“-Teil:<br />

Frische Luft für Schüler Lösbarkeit von Sudokus<br />

Automatische Interaktion zwischen Computern<br />

Quantenpunkte in Pflanzen Short-term Adaption of<br />

Visual Areas Biologische Schädlingsbekämpfung mit Nematoden<br />

<strong>Das</strong> Magazin<br />

für Nachwuchsforscher<br />

spannende Ergebinsse:<br />

Innovative Experimente, wissenschaftlicheBeiträge und<br />

Außerdem im Heft: Alle Infos zum „<strong>Jahr</strong> <strong>der</strong> <strong>Mathematik</strong>“, Porträt <strong>der</strong> TU-Berlin, Neues aus <strong>der</strong> Welt<br />

<strong>der</strong> <strong>Wissenschaft</strong>, wichtige Termine für junge Forscher u. v. m.


Magazin<br />

Inhalt<br />

Vorwort/Impressum 3<br />

Inhalt 5<br />

Neues 6-10<br />

Kollektiver Schutz vor<br />

Parasiten im Ameisenstaat 6<br />

Schüler als Teilchenphysiker 7<br />

Fontänen-Atomuhren werden<br />

noch genauer 7<br />

Tauben schlafen ähnlich<br />

wie Menschen 8<br />

Coole Algorithmen und<br />

clevere Verfahren 9<br />

Drei rechnergesteuerten<br />

Hubschraubern gelingt<br />

gemeinsamer Lastentransport 9<br />

Sandburgen und ihr<br />

feuchtes Geheimnis 10<br />

<strong>Wissenschaft</strong>liche<br />

Veröffentlichungen finden 10<br />

Magazin - Teil I 11-16<br />

Termine 11<br />

<strong>Das</strong> <strong>Jahr</strong> <strong>der</strong> <strong>Mathematik</strong> 12<br />

Die Mathemacher 13<br />

Wie aus Zahlen Bil<strong>der</strong> werden 13<br />

MS <strong>Wissenschaft</strong>: Die<br />

schwimmende Ausstellung 14<br />

Porträt: Max Planck 16<br />

Jugend forscht 17-60<br />

Richtlinien für Beiträge 17<br />

Und sie verstehen sich doch! 18<br />

Transportvorgänge von<br />

Quantenpunkten in Pflanzen 24<br />

Short-term Adaption of Primary<br />

and High-or<strong>der</strong> Visual Areas 32<br />

Frische Luft für Schüler 38<br />

Wie viele Zahlen müssen<br />

es sein? 46<br />

Des einen Freund –<br />

des an<strong>der</strong>en Feind 52<br />

Magazin - Teil II 62-74<br />

Interview mit<br />

Prof. Günter M. Ziegler 62<br />

Der Ideenpark <strong>2008</strong> 65<br />

Wir haben die Ideen für<br />

die Zukunft: Die TU Berlin 68<br />

RoboKing 71<br />

Literaturtipps 73<br />

S. 11<br />

S. 18<br />

S. 24<br />

S. 32<br />

S. 38<br />

S. 46<br />

S. 52<br />

<strong>2008</strong>: <strong>Das</strong> <strong>Jahr</strong> <strong>der</strong> <strong>Mathematik</strong><br />

Auf unseren Son<strong>der</strong>seiten im Heft erwarten euch spannende<br />

Berichte und Informationen zum „<strong>Jahr</strong> <strong>der</strong> <strong>Mathematik</strong>“, denn<br />

die „<strong>Junge</strong> <strong>Wissenschaft</strong>“ begleitet das <strong>Jahr</strong> <strong>der</strong> <strong>Mathematik</strong><br />

als Medienpartner und berichtet somit über Ausstellungen, Aktionen,<br />

Wettbewerbe und Festivals des <strong>Wissenschaft</strong>sjahres.<br />

Und sie verstehen sich doch!<br />

Haben Computer unterschiedliche Betriebssysteme, brauchen<br />

sie einen Dolmetscher zur Verständigung. Ist dieser leistungsfähig,<br />

steht <strong>der</strong> gemeinsamen Bearbeitung von Rechenaufgaben<br />

nichts mehr im Wege.<br />

Autor: Wilhelm Blumberg<br />

Transportvorgänge von Quantenpunkten in Pflanzen<br />

Quantenpunkte sind Halbleiterteilchen mit einer Ausdehnung<br />

von etwa 2 bis 20 nm. Im Hinblick auf spätere medizinische Anwendungen<br />

wurde untersucht, wie sie sich in Pflanzen verhalten.<br />

Autor: Philip Kaib<br />

Short-term Adaption of Primary and High-or<strong>der</strong><br />

Visual Areas<br />

Optische Adaption tritt ein, wenn über lange Zeit <strong>der</strong> gleiche<br />

optische Reiz geboten wird. Entfällt <strong>der</strong> Reiz, ist die<br />

Wahrnehmung kurzzeitig gestört. Die Kurzzeitadaption primärer<br />

und höherer optischer Bereiche wurde untersucht.<br />

Autoren: Ilana Malekan, Yoni Smolin, Eszter Turi<br />

Frische Luft für Schüler<br />

Messungen des CO 2<br />

- und des O 2<br />

-Gehaltes sowie <strong>der</strong> Temperatur<br />

belegen, wie wichtig die Raumklimabedingungen für<br />

Schüler sind, um gute Leistungen zu erbringen.<br />

Autoren: Tobias Lutz, Daniel Szymchack<br />

Wie viele Zahlen müssen es sein?<br />

Je weniger Anfangszahlen ein Sudoku hat, umso schwieriger<br />

ist es. Aber wie viele müssen es mindestens sein?<br />

Autorin: Ariane Papke<br />

Des einen Freund – des an<strong>der</strong>en Feind<br />

Fadenwürmer (Nematoden) werden zur biologischen Schädlingsbekämpfung<br />

einsetzt. Um dies zu optimieren, wird die<br />

Reaktion auf Mehlwürmer und Wachsmottenlarven untersucht.<br />

Autorin: Vivien Miriam Rohwed<strong>der</strong><br />

4<br />

<strong>Junge</strong> <strong>Wissenschaft</strong> 79 // 1/<strong>2008</strong> // Inhalt


Magazin<br />

S. 62<br />

S. 65<br />

S. 68<br />

Interview mit Günter M. Ziegler,<br />

Professor am Institut für <strong>Mathematik</strong> <strong>der</strong> TU Berlin<br />

Günter M. Ziegler, <strong>Jahr</strong>gang 1963, ist Professor am Institut für<br />

<strong>Mathematik</strong> <strong>der</strong> Technischen Universität Berlin. Als Koordinator<br />

des <strong>Mathematik</strong>jahres <strong>2008</strong> setzt er sich dafür ein, seine<br />

Begeisterung für die Welt <strong>der</strong> Zahlen und Formeln jungen Menschen<br />

näher zu bringen...<br />

Mehr Lust auf Technik: <strong>der</strong> Ideenpark <strong>2008</strong><br />

Der IdeenPark ist <strong>der</strong> Höhepunkt <strong>der</strong> Initiative „Zukunft Technik<br />

entdecken“. Vor dem Hintergrund des zunehmenden Nachwuchsmangels<br />

in technischen Berufen versucht Initiator<br />

ThyssenKrupp bereits seit 2004, junge Menschen für Technik<br />

zu begeistern und sie zu einem ingeneurwissenschaftlichen<br />

Studium o<strong>der</strong> einer technischen Berufsausbildung zu motivieren.<br />

Die TU Berlin stellt sich vor<br />

Die Technische Universität Berlin ist eine <strong>der</strong> größten technischen<br />

Universitäten Deutschlands. Mehr als 28.000 Studierende<br />

bildet die Hochschule in rund 70 Studienfächern<br />

aus. Der Schwerpunkt liegt dabei klar auf den technologisch<br />

orientierten Studienfächern wie <strong>Mathematik</strong>-, Natur- und<br />

Ingenieurwissenschaften.<br />

<strong>Junge</strong> <strong>Wissenschaft</strong>-<br />

Jugend forscht in Natur und Technik<br />

<strong>Junge</strong> <strong>Wissenschaft</strong> veröffentlicht<br />

Originalbeiträge junger Autoren bis zum<br />

Alter von 23 <strong>Jahr</strong>en mit anspruchsvollen<br />

Themen aus allen Bereichen <strong>der</strong> Naturwissenschaften<br />

und Technik.<br />

Gründungsherausgeber:<br />

Prof. Dr. rer. nat. Paul Dobrinski<br />

Beirat:<br />

Dr. J. Georg Bednorz<br />

Nobelpreisträger<br />

IBM Research Division<br />

Forschungslaboratorium Zürich<br />

Prof. Dr. rer. nat. Dr. h. c.<br />

Manfred Eigen<br />

Nobelpreisträger, Max-Planck-<br />

Institut für Biophysikalische Chemie,<br />

Göttingen<br />

Wie aus Jungforschern junge <strong>Wissenschaft</strong>ler werden<br />

Prof. Dr. Ernst O. Göbel<br />

Präsident <strong>der</strong> Physikalisch-<br />

Technischen Bundesanstalt,<br />

Braunschweig und Bonn<br />

Sie sind nicht älter als 23 <strong>Jahr</strong>e und haben<br />

gerade in <strong>der</strong> Schule, z. B. im Rahmen von<br />

Jugend forscht, o<strong>der</strong> im Studium eine eigene<br />

Forschungsarbeit durchgeführt? Haben<br />

Sie schon einmal darüber nachgedacht,<br />

was mit Ihren Ergebnissen jetzt passiert<br />

– wie aus einem jungen Forscher ein junger<br />

<strong>Wissenschaft</strong>ler werden kann? Denn es gilt:<br />

„Forschen ohne Veröffentlichen ist keine<br />

<strong>Wissenschaft</strong>“.<br />

Die Zeitschrift <strong>Junge</strong> <strong>Wissenschaft</strong> ist für<br />

Sie das geeignete Forum, um Ihre Ergebnisse<br />

wissenschaftlich zu veröffentlichen.<br />

Und das geht wie folgt:<br />

Auf Seite 23 im „Jugend forscht“-Teil<br />

sind die Kriterien aufgeführt, die das reibungslose<br />

Veröffentlichen Ihrer wissenschaftlichen<br />

Beiträge ermöglichen. Hier<br />

finden Sie wichtige Hinweise, wie die Arbeit<br />

aufgebaut sein soll, wie lang die Arbeit<br />

sein darf, wie die Bil<strong>der</strong> einzureichen<br />

sind und welche weiteren Informationen<br />

wir benötigen. Dann schicken Sie die Arbeit<br />

an die Redaktion. Von dort wird die<br />

Arbeit an Fachgutachter weitergeleitet,<br />

welche die inhaltliche Richtigkeit <strong>der</strong> Aussagen<br />

begutachten. Gelegentlich ergeben sich<br />

daraus Hinweise, wo noch etwas verbessert<br />

werden kann, was dann an den Autor weitergeleitet<br />

wird. Schließlich kommt die Arbeit in<br />

die Redaktion, wird für das Layout vorbereitet<br />

und veröffentlicht.<br />

Was haben Sie davon?<br />

Ihre Forschungsarbeiten sind nun in einer<br />

Gutachterzeitschrift (peer reviewed journal)<br />

veröffentlicht worden, d. h. Sie können die<br />

Veröffentlichung in Ihre wissenschaftliche<br />

Literaturliste aufnehmen.<br />

Die <strong>Junge</strong> <strong>Wissenschaft</strong> wird in wissenschaftlichen<br />

Datenbanken gelistet, d. h.<br />

Ihre Arbeit kann von Experten gefunden<br />

und beachtet werden.<br />

Sie selbst haben durch den Gesamtprozess<br />

eine ganze Menge gelernt: <strong>Das</strong> Erstellen<br />

einer wissenschaftlichen Arbeit. Dies<br />

werden Sie spätestens im Studium wie<strong>der</strong><br />

benötigen.<br />

Und schließlich erhalten alle jungen Autoren<br />

<strong>der</strong> <strong>Junge</strong>n <strong>Wissenschaft</strong> als Dankeschön<br />

ein <strong>Jahr</strong> lang ein Freiabonnement<br />

<strong>der</strong> Zeitschrift.<br />

Wir freuen uns auf Ihre Zuschriften:<br />

<strong>Junge</strong> <strong>Wissenschaft</strong><br />

Dr.-Ing. Sabine Walter<br />

Schacht-Albert-Ring 52,<br />

30952 Ronnenberg<br />

s.walter@verlag-jungewissenschaft.de<br />

Dr. Uwe Groth<br />

Dr. Groth und Partner<br />

Unternehmensberatung<br />

VDI Projektleitung<br />

„Jugend entdeckt Technik“<br />

Prof. Dr. Elke Hartmann<br />

Universität Halle<br />

VDI Bereichsvorstand<br />

„Technik und Bildung“<br />

Dr. Uta Krautkrämer-Wagner<br />

Geschäftsführerin <strong>der</strong> Stiftung<br />

„Jugend forscht“ e.V.,<br />

Hamburg<br />

Prof. Dr. Bernd Ralle<br />

Schriftführer <strong>der</strong> Zeitschrift MNU,<br />

Fachbereich Chemie,<br />

Universität Dortmund<br />

Wolfgang Scheunemann<br />

Geschäftsführer <strong>der</strong> dokeo GmbH,<br />

Stuttgart<br />

Young Researcher 5


Jugend forscht<br />

Jugend forscht<br />

Short-term Adaption of Primary<br />

and High-or<strong>der</strong> Visual Areas<br />

A Psychophysical Experiment<br />

Visual adaptation is a known phenomena induced when the visual system is exposed to the same stimulus for a<br />

prolonged time. When the stimulus is turned off one of the systems’ calibration mechanisms are caught off-guard and<br />

visual perception is briefly perturbed. In our study, we conducted for the first time a psychophysical experiment on<br />

short-term adaptation of primary and high-or<strong>der</strong> visual areas.<br />

1 Introduction<br />

Vision is the most dominant sensory modality<br />

of primates. When light enters the eye,<br />

photoreceptors in the retina transform the<br />

energy into electrical signals. These signals<br />

are then sent by interneurons to ganglion<br />

cells. The fibers of the ganglion cells cross at<br />

the optic chiasm and terminate in the lateral<br />

geniculate nucleus (LGN). Visual information<br />

is then transferred to the primary<br />

visual cortex (V1). V1 is one of the most<br />

studied cortical areas, it is also called<br />

the striate cortex or area 17, located in the<br />

occipital lobe at the back of the brain, two<br />

millimeters thick and densely packed with 6<br />

layers of cells.<br />

From V1, information is sent to other areas<br />

of the visual cortex for further, higher analysis.<br />

Visual information is then divided into<br />

two paths known as the ventral and dorsal<br />

stream. The ventral “what” stream controls<br />

recognition, object representation and memory<br />

while the dorsal “where” stream runs<br />

motion and object locations.<br />

A variety of experimental procedures has<br />

been developed for demonstrating the<br />

cortical architecture and the unique pattern<br />

of activation for each group of cells.<br />

In their pioneering electrophysiological<br />

studies of monkeys and cats, Hubel and<br />

Wiesel worked out the appropriate light<br />

stimuli for various cortical cells [5]. It was<br />

found that V1 has neurons with elongated<br />

receptive fields which respond best to simple<br />

stimuli such as bars, lines and edges. V1<br />

neurons also have spatial-frequency<br />

seletivity and respond to luminance changes.<br />

Visual cortical neurons are highly tuned and<br />

specialized for processing a certain aspect of<br />

Autoren<br />

Ilana Malekan, *1989<br />

Muttontown, NY, USA<br />

Yoni Smolin,*1988<br />

Nazareth Illit., Israel<br />

Eszter Turi, *1987<br />

Csorna, Ungarn<br />

Teilnehmer am Scitech 2005 des<br />

Technion, Haifa, Israel<br />

Eingang <strong>der</strong> Arbeit: März 2007<br />

Zur Veröffentlichung empfohlen:<br />

April 2007<br />

32<br />

<strong>Junge</strong> <strong>Wissenschaft</strong> 79 // 1/<strong>2008</strong> //<br />

Short-term Adaption of Primary and High-or<strong>der</strong> Visual Areas


Jugend forscht<br />

Jugend forscht<br />

visual information such that any given<br />

neuron only responds to a subset of stimuli<br />

in its receptive field.<br />

Recognizing an object in the human brain<br />

takes only a fraction of a second. The neural<br />

mechanisms un<strong>der</strong>lying this remarkable<br />

ability are not well un<strong>der</strong>stood. Until the<br />

mid-1990s, little was known about the functional<br />

organization of human visual cortex.<br />

This landscape has changed dramatically with<br />

the invention of functional magnetic resonance<br />

imaging (fMRI), a powerful tool for<br />

the noninvasive mapping of the normal human<br />

brain.<br />

Recent studies have shown that there are<br />

regions in the cortex which specialize in specific<br />

visual stimuli recognition. Using fMRI<br />

techniques, Malach and colleagues delineated<br />

an area that showed a preferential activation<br />

to images of objects, compared to a wide range<br />

of texture patterns [9]. This area was termed<br />

the lateral occipital cortex (LOC).<br />

Kanwisher and co-workers have suggested<br />

that this area and some other regions located<br />

at the ventral temporal cortex, contain a limited<br />

number of modules specialized in specific<br />

category recognition such as faces (fusiform<br />

face area; FFA), places (parahippocampal<br />

area; PPA), and body parts (extrastriate body<br />

part area; EBA). ([6]; [10], [11].<br />

Vision is the most dominant sensory modality<br />

of primates. The visual system is almost<br />

constantly exposed to new images and thus<br />

it is forced to adjust the visual coding to the<br />

characteristics of the image currently presented.<br />

Visual adaptation is a known phenomenon<br />

induced when the visual system is<br />

exposed to the same stimulus for a prolonged<br />

time. Processes of visual adaptation manipulate<br />

the sensitivity of the cells in the visual<br />

cortex. Exposure to an adapting pattern for<br />

several seconds causes a decrease in the sensitivity<br />

of neurons tuned to the pattern’s specific<br />

properties. This phenomenon lasts a few<br />

more seconds after the stimulus is turned off,<br />

and thus defines the adaptation effect. In that<br />

period the exposed subject recalls striking<br />

changes in the perception of shape, color<br />

and motion. Adaptation involves a variety of<br />

visual attributes and stages of visual processing.<br />

why our perception is briefly perturbed.<br />

Very little is known though about short-term<br />

adaptation.<br />

Our project is divided in two parts: we intend<br />

to contribute to a better un<strong>der</strong>standing of<br />

short-term adaptation mechanisms in – on the<br />

one side – primary visual areas and – on the<br />

other side – in high or<strong>der</strong> face-related visual<br />

areas. As we can see clearly, there is a hot debate<br />

on the neural mechanisms that are fundamental<br />

to face perception and yet, a major<br />

consensus regarding cortical areas that are<br />

most activated by viewing faces.<br />

We, therefore, used 2D geometrical shapes<br />

with grayscale grating pattern and 2D<br />

grayscale face images as the most captivating<br />

and tuned stimuli. Our main assumption was<br />

that short-term adaptation affects the ability<br />

to receive and analyze new coming stimuli. In<br />

or<strong>der</strong> to prove it, we conducted a psychophysical<br />

experiment testing the impact of<br />

short-term adaptation on subjects' ability to<br />

distinguish changes in contrast and figural<br />

properties of a stimulus.<br />

2 Methods<br />

Two psychophysical experiments were conducted<br />

which were aimed to find out the influence<br />

of short-term adaptation on the ability<br />

to note minor changes in the presented<br />

stimuli. It is important to note that without<br />

adaptation those modifications could be easily<br />

detected. The experiments were conducted<br />

serially as the or<strong>der</strong> was controlled.<br />

2.1 Participants<br />

Twenty subjects (eight males and twelve<br />

females) participated in the experiment, five<br />

of them were eliminated (two males and three<br />

females) due to some environmental factors<br />

while conducting the experiment. All of them<br />

were students at the age of 16 - 33 years. All<br />

were regular users of computers and had normal<br />

or corrected-to-normal vision. Except for<br />

one, all the subjects were right-handed. The<br />

amount of sleeping hours during the night<br />

before the experiment varied between 4 - 9<br />

hours. Three of them have participated in psychophysical<br />

experiments before.<br />

2.2 Stimuli of the experiment on primary<br />

visual areas<br />

To examine the effect of short-term adaptation<br />

in primary visual areas, stimuli were chosen<br />

which most activate the primary visual cortex<br />

(Experiment A). While constructing our<br />

experiment we used motives resembling to<br />

those found in previous research dealing with<br />

long-term adaptation. These kinds of stimuli<br />

are proved to activate mainly primary areas in<br />

visual cortex. We used four different 2D geometrical<br />

shapes with grayscale grating pattern;<br />

each had four different types of modification<br />

(Fig. 1): the original image, same image with<br />

modified spatial frequency (figural modification),<br />

both with original and different level of<br />

contrast (contrast modification). All modified<br />

parameters were controlled such that in each<br />

image the modification level is comparable to<br />

the other.<br />

2.3 Stimuli of the experiment on highor<strong>der</strong><br />

visual areas<br />

As our second aim was to examine the effect of<br />

Long-term visual adaptation and its effects<br />

have been extensively studied for many years.<br />

It is known that due to adaptation, our brain<br />

is forced to bias any new information to<br />

alternative non-adapted neurons which is<br />

Figure 1: Experiment A: Bottom row-original images, upper row-different modifications a) no modifications,<br />

presenting the same image again. b) spatial frequency modification. c) contrast modification.<br />

d) a combined modification of both contrast and spatial frequency<br />

Young Researcher 33


Jugend forscht<br />

Jugend forscht<br />

For every stimulus four block types were created<br />

presenting only one kind of stimuli (with<br />

the needed modifications in the needed or<strong>der</strong><br />

according to the block type) in it. In the first<br />

block (type 1) adaptation was acquired by<br />

exposing the subject to the same image eight<br />

times. The second block (type 2) was composed<br />

of images with only minor changes. The<br />

third one (type 3) contained pictures with<br />

different aspects of modifications; original (nonmodified),<br />

spatial frequency modifications,<br />

contrast modifications and with modifications<br />

both in contrast level and in spatial frequency.<br />

The purpose behind this approach was that<br />

these changes interrupted the adaptation so we<br />

could use the fourth block (type 4) (which was<br />

quite similar to the second one concerning the<br />

types and numbers of different events) as a control.<br />

As the most important point was to have<br />

the first two and second two blocks to follow<br />

each other, we shuffled the blocks a bit so that<br />

our subject will not get bored and find any rules<br />

about the procedure of the experiment.<br />

Figure 2: Experiment B: Bottom row-original images, upper row-different modifications a) no modifications<br />

(presenting the same image again), b) face properties modification c) contrast modification d) a combined modification<br />

of both contrast and face-properties.<br />

short-term adaptation in high or<strong>der</strong> visual areas,<br />

we chose stimuli which most activate high<br />

or<strong>der</strong> visual cortex (Experiment B). As social<br />

primates, faces are the most common stimuli<br />

which we are exposed to in our life span.<br />

These kinds of stimuli are proved to activate<br />

mainly secondary areas in visual cortex. We<br />

decided to use unfamiliar faces to avoid any<br />

other effect. Four different images were used;<br />

each had four different types of modification<br />

(Fig. 2): the original image, a modified face,<br />

both with original and different level of contrast.<br />

Face modification was performed using<br />

‘Morphases’ program (www.morphases.com).<br />

All modified parameters were controlled such<br />

that in each image the modification level is<br />

comparable to the other.<br />

2.4 Presentation<br />

The experiments were conducted using ‘Presentation<br />

© ' program package.<br />

2.5 Procedure<br />

We were interested in the viewer's performances<br />

both in accuracy and speed aspects.<br />

Since there is a trade-off between the two, our<br />

instructions were to pay attention to both of<br />

them but accuracy should be more important<br />

than speed. Eight images were presented in a<br />

pseudo-random block sequence. Image presentation<br />

within each block was controlled in<br />

a way that preserves a constant ratio between<br />

different "events" (Fig. 3).<br />

Subjects were asked to perform ‘one-backmatch’<br />

task. The question to answer was to decide<br />

whether they consi<strong>der</strong> the presented image<br />

the same (pressing button ‘yes’), or they note<br />

any changes in the picture’s figural properties<br />

comparing to the previously presented image<br />

(pressing button ‘no’). We directed them to<br />

consi<strong>der</strong> only figural modification as remarkable<br />

change. As subjects were not informed<br />

about the aims of the block types, they were<br />

instructed to perform the task during the whole<br />

experiment.<br />

A fixation point was shown during the whole<br />

experiment. Visual epochs were alternated with<br />

5-s blanks. Four cycles of the stimulus were<br />

shown (one for each image). As we had altogether<br />

16 blocks the total time was 336s.<br />

3 Results<br />

Data analyses included several different aspects;<br />

all refer to the accuracy of performances regardless<br />

of subjects' response time.<br />

Figure 3: Experimental paradigm for experiment A (left) and B (right): (A) Four types of blocks (left to right): adaptation, control_1, adaptation interruption, control_2. (B) A segment from<br />

the time axis of the experimental run of an overall duration of 336s.<br />

34<br />

<strong>Junge</strong> <strong>Wissenschaft</strong> 79 // 1/<strong>2008</strong> // Short-term Adaption of Primary and High-or<strong>der</strong> Visual Areas


Jugend forscht<br />

Jugend forscht<br />

3.4 'Training' effect<br />

Half of the subjects participated first in the<br />

high-or<strong>der</strong> adaptation experiment and half of<br />

the subject participated first in the primaryvisual-areas<br />

adaptation experiment. For each<br />

subject the total accuracy level was calculated<br />

for both experiments and a total average was<br />

calculated. A minor improvement trend was demonstrated<br />

in the second experiment, regardless<br />

of experiment-type. This might be due to<br />

some 'training' effect, in which the subjects are<br />

more familiar with the task and thus achieve<br />

better performances.<br />

Figure 4: The percentage of change in accuracy between the second and the fourth blocks. A significant improvement<br />

in performances was indicated after interrupting adaptation.<br />

3.1 The influence of adaptation /<br />

interruption (of adaptation) on response<br />

accuracy<br />

The first block in both experiments was supposed<br />

to generate adaptation and the third one<br />

was supposed to interrupt adaptation. The second<br />

and fourth blocks were similar which enabled<br />

us to use them as internal controls. We,<br />

therefore, focused on the responses given in the<br />

second and fourth block, assuming that significant<br />

differences in performances between these<br />

two homologue blocks result from the primer<br />

block.<br />

Experiment A: As we can see in figure 4, in<br />

73 % of the events, the subjects’ ability to note<br />

minor changes in the displayed picture is increasing<br />

after the interrupting block. In 18 % of<br />

the events, the value of accuracy remained the<br />

same and in 9 % of the events accuracy level<br />

decreased.<br />

The properties of the first error after adaptation<br />

effect were investigated. It was found that in<br />

both experiments errors due to changes in contrast<br />

level were the most dominant (see Fig. 6).<br />

3.3 Comparison of the two experiments<br />

First of all, we compared the number of errors<br />

in the two experiment types. The average percentages<br />

of total errors did not show any significant<br />

differences.<br />

We also compared the average percentages of<br />

errors due to different contrast levels. As it can<br />

be seen, the errors due to contrast levels in both<br />

the primary and high-or<strong>der</strong> experiment had no<br />

significant difference (see fig 7).<br />

4 Discussion<br />

There have been many studies on adaptation<br />

effects using fMRI but hardly any psychophysical<br />

experiments on short-term adaptation.<br />

The study of short-term adaptation is important<br />

because it can aid in un<strong>der</strong>standing neuronal<br />

mechanisms better and can also help scientists<br />

in mapping the functional properties of<br />

cortical neurons. The behavioral analyses performed<br />

in this experiment, which successfully<br />

showed adaptation, can be carried out through<br />

fMRI for a more detailed description of un<strong>der</strong>lying<br />

neuronal activity. The experiment proved<br />

adaptation occurred when the subject responded<br />

to the second block of images less accurately<br />

after looking at a repeated image than<br />

after looking at a block with altered images.<br />

This adaptation, indicated by other scientists,<br />

was due to fatiguing neurons responding less<br />

than normal.<br />

We assumed that the response time of a subject<br />

after acquiring adaptation would grow due to<br />

the conflict between the adapting stimulus and<br />

Experiment B: The same analysis was done on<br />

the data <strong>der</strong>ived from Experiment B, where we<br />

found that in 65 % of the events the subjects’<br />

ability to note minor changes in the displayed<br />

picture is increasing after the interrupting<br />

block. In 22 % of the events, the value of accuracy<br />

remained the same and in 13 % of the<br />

events accuracy level decreased.<br />

3.2 Error analysis<br />

Tracing the most confusing event, we examined<br />

the distribution of error types in experiment A<br />

and B. From these results (see Fig. 5) it can be<br />

clearly seen that in both experiments most of<br />

the errors were due to contrast modifications.<br />

Figure 5: Distribution of error types. The total number of errors was analyzed according to its "event" type. The percentage<br />

of each group was calculated for each subject separately and was averaged across subjects.<br />

Young Researcher 35


Jugend forscht<br />

Jugend forscht<br />

short-term adaptation effect are similar in both<br />

types of visual areas.<br />

References<br />

[1] Avidan, G., Hason, U., Hendler, T.,<br />

Zohary, A. and Malach, R., 2002: Analysis<br />

of the Neuronal Selectivity Un<strong>der</strong>lying<br />

Low fMRI Signals. Current Biology. 12:<br />

964-972.<br />

Figure 6: Percentage of the errors in first exposure to modified image after acquiring adaptation (block 2). Two different<br />

optional error types: caused due to an image modification or a contrast modifications.<br />

[2] Barrett, B. T., McGraw P. V. and<br />

Morril, P., 2002: Perceived Contrast Following<br />

Adaptation: The Role of Adapting<br />

Stimulus Visibility. Spatial Vision. 16:<br />

5–19.<br />

[3] Carandini, M., 2000: Visual Cortex:<br />

Fatigue and Adaptation. Current Biology.<br />

10. No 16.<br />

[4] Grill-Spector, K., 2003: The Neural<br />

Basis of Object Perception. Current Opinion<br />

in Neurobiology. 13. 1–8.<br />

[5] Hubel, D. H. and Wiesel, T. N, 1968:<br />

Receptive fields and functional architecture<br />

of monkey striate cortex. J. Physiol.<br />

195: 215-243.<br />

Figure 7: Percentage of the errors in first exposure to modified image after acquiring adaptation (block 2). Two different<br />

optional error types: caused due to an image modification or a contrast modifications.<br />

the changed ones. We collected information<br />

about response times during the experiment<br />

but did not analyze it in or<strong>der</strong> to face this question,<br />

which remains open for further research.<br />

5 Conclusion<br />

We showed for the first time that short-term<br />

adaptation behavior achieved by the psychophysical<br />

experiment is correlated with the results<br />

achieved by long term adaptation experiments,<br />

and also consistent with results achieved<br />

in fMRI-adaptation experiments.<br />

Due to time limitations, only the accuracy aspect<br />

of our results was analyzed. This aspect<br />

of the results is compatible with our basic assumption:<br />

Short-term adaptation causes a decrease<br />

in the accuracy of reaction to changes<br />

in stimuli. The most ambiguous behavior was<br />

demonstrated after contrast modifications. It<br />

was found that errors due to changes in contrast<br />

level were most dominant, and thus imply<br />

that the system is aware of some change but<br />

fails to specify it.<br />

Conducting two parallel researches, one dealing<br />

with "complex" stimuli, activating<br />

high or<strong>der</strong> cortical areas, and the other with<br />

"simple" stimuli, stimulating primary visual<br />

areas, we correlate the results of the studies. This<br />

unique comparison revealed a vast resemblance<br />

in the results of the two. We therefore suggest<br />

that the behavioral mechanisms un<strong>der</strong>lying<br />

Acknowledgement<br />

We would like to extend our most humble<br />

gratitude to our helpful, friendly, and<br />

inspiring mentor Anat Herbet-Grinfeld.<br />

We would also like to acknowledge the<br />

department of Biomedical Engineering<br />

for hosting us and SciTech staff for their<br />

hard work to provide us with this great<br />

summer camp. Eszter would like to thank<br />

the Hungarian Research Student Association<br />

(Kutató Diákok Országos Szervezete)<br />

and Mr. Russel Stern. Yoni would like to<br />

thank Simcha Stern. We would all like to<br />

thank our parents for granting us the opportunity<br />

to take part in this meaningful<br />

experience.<br />

[6] Kanwisher N., McDermott J., Chun<br />

M. M. – The fusiform face area: a module<br />

in human extrastriate cortex specialized<br />

for face perception. J. Neurosci 1997,<br />

17:4302-4311.<br />

[7] Luo, J., Crandall, D., Singhal, A.,<br />

Boutell, M. and Gray, R., 2003: Psychophysical<br />

Study of Image Orientation Perception.<br />

Spatial Vision. 16: 429-457.<br />

[8] Webster, M. A., 2001: Visual Adaptation<br />

and the Relative Nature of Perception.<br />

[9] Malach R., Reppas J. B., Benson R.<br />

R., Kwong K. K., Jiang H., Kennedy W.<br />

A., Ledden P. J., Brady T. J., Rosen R.,<br />

Tootell R. B. H. – Object-related activity<br />

revealed by functional magnetic resonance<br />

imaging in human occipital cortex. Proc.<br />

Natl. Acad. Sci. USA, Vol. 92 pp. 8135-<br />

8139, August 1995. Neurobiology -3.).<br />

[10] Epstein R., Kanwisher N. – A cortical<br />

representation of the local visual region.<br />

Nature 1998 Apr 9; 392 (6676): 598–601.<br />

[11] Downing PE., Jiang Y., Schuman M.,<br />

Kanwisher N. – A cortical area selective<br />

for visual processing of the human body.<br />

Science 2001 Sep 28;293(5539):2470.<br />

36<br />

<strong>Junge</strong> <strong>Wissenschaft</strong> 79 // 1/<strong>2008</strong> // Short-term Adaption of Primary and High-or<strong>der</strong> Visual Areas

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!