15.11.2014 Views

Reliability Simulation in Integrated Circuit Design - Cadence ...

Reliability Simulation in Integrated Circuit Design - Cadence ...

Reliability Simulation in Integrated Circuit Design - Cadence ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

WHITE PAPER<br />

RELIABILITY SIMULATION IN INTEGRATED CIRCUIT DESIGN


TABLE OF CONTENTS<br />

1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br />

2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br />

3 HCI and NBTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br />

4 Stress measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br />

5 Extraction and model<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

6 New flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

7 <strong>Reliability</strong> circuit simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

8 <strong>Design</strong> challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

TABLE OF FIGURES<br />

Figure 1 HCI on NMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br />

Figure 2 NBTI on PMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br />

Figure 3 BSIMProPlus/RelProPlus and its measurement environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br />

Figure 4 Stress conditions setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

Figure 5 Measurement setup conditions dur<strong>in</strong>g the stress<strong>in</strong>g time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

Figure 6 Device degradation monitor Idl<strong>in</strong>, Idsat, Vt, and Gmmax parameters vs. the stress time . . . . 3<br />

Figure 7 NMOS extraction steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

Figure 8 PMOS extraction steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

Figure 9 Lifetime model<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

Figure 10 <strong>Reliability</strong> model iterations for improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

Figure 11 R<strong>in</strong>g oscillator schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

Figure 12 <strong>Reliability</strong> simulation with Virtuoso UltraSim or RelXpert . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

Figure 13 Virtuoso UltraSim Full-chip Simulator GUI <strong>in</strong>side the Virtuoso Analog <strong>Design</strong> Environment . . 7<br />

Figure 14 Backannotation of the lifetime and degradation <strong>in</strong>to the schematic. . . . . . . . . . . . . . . . . . . . 7<br />

Figure 15<br />

Result of fresh and aged simulation us<strong>in</strong>g Virtuoso UltraSim Full-chip Simulator<br />

and displayed <strong>in</strong> AWD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8


1 ABSTRACT<br />

As gate oxide thickness and dimensions of scale shr<strong>in</strong>k <strong>in</strong> <strong>in</strong>tegrated circuit design, reliability problems<br />

occur and need to be considered early <strong>in</strong> the design process. Some of the more problematic issues <strong>in</strong>clude<br />

negative bias temperature <strong>in</strong>stability (NBTI) and hot carrier <strong>in</strong>jection (HCI). NBTI is a critical factor <strong>in</strong> PMOS<br />

devices and leads to current degradation, yield loss, and functional failure of <strong>in</strong>tegrated circuits. HCI has<br />

primarily effected NMOS devices, but today it is also a concern for PMOS devices. HCI is caused by hot<br />

carriers <strong>in</strong> the gate oxide that lead to oxide damages, which manifest themselves as current degradation,<br />

Vt shift, leakage current <strong>in</strong>crease, etc.<br />

Over time, both NBTI and HCI degrade device currents and will cause failures <strong>in</strong> <strong>in</strong>tegrated circuits. <strong>Circuit</strong><br />

designers need to consider these reliability effects <strong>in</strong> the early stages of design to make sure there are<br />

enough marg<strong>in</strong>s for circuits to function correctly over their entire lifetime. <strong>Cadence</strong> ® provides a complete<br />

solution, <strong>in</strong>clud<strong>in</strong>g reliability model extraction and calibration to silicon, with Virtuoso Device Model<strong>in</strong>g<br />

(BSIMProPlus) and full-chip reliability simulation and analysis with Virtuoso ® UltraSim Full-chip Simulator.<br />

2 INTRODUCTION<br />

CMOS technologies are constantly scaled down. For example, before the end of 2003, microprocessors will<br />

be produced on 90 nm processes, and production on 65 nm is planned for 2005. With the reduction <strong>in</strong><br />

geometries, the devices become more vulnerable to HCI and NBTI. With its recent acquisition of Celestry,<br />

<strong>Cadence</strong> offers the benefit of more than 8 years of experience <strong>in</strong> reliability model<strong>in</strong>g and circuit<br />

simulations <strong>in</strong> its flows. This paper presents an overview of this new reliability flow and offers suggestions<br />

to enhance HCI/NBTI circuit robustness.<br />

3 HCI AND NBTI<br />

With the geometric scale down, HCI and NBTI problems become worse. In the channel of the MOS, a high<br />

electrical field is created close to the dra<strong>in</strong>. The gate oxide thickness is also reduced to allow low<br />

threshold voltages. When the channel is conduct<strong>in</strong>g (Figure 1), the high electrical field close to the dra<strong>in</strong><br />

generates an <strong>in</strong>jection of hot carriers <strong>in</strong>to the (SiO2) gate oxide layer. This <strong>in</strong>serts charges <strong>in</strong> the oxide by<br />

trapp<strong>in</strong>g carriers (electrons and holes). These carriers can cause permanent changes <strong>in</strong> the oxide-<strong>in</strong>terface<br />

charge distribution.<br />

S<br />

G<br />

I<br />

g<br />

D<br />

n+<br />

n+<br />

P-well<br />

I sub<br />

impact<br />

ionization<br />

oxide<br />

damage<br />

Figure 1: HCI on NMOS<br />

1


This can also degrade the device’s dra<strong>in</strong> current capability. The accumulation of trapped charge will lower<br />

saturation current Idsat, cause Vt drift, lower the l<strong>in</strong>ear region transconductance, and degrade the<br />

subthreshold slope. As the geometry scales down, these problems become worse. Some IC manufacturers<br />

have already reported HCI problems for 0.5 um processes.<br />

NBTI is a critical effect <strong>in</strong> PMOS (see Figure 2). Some carriers damage the oxide, especially <strong>in</strong> processes<br />

where the oxide thickness is less than 50 angstroms. This is usually the case for 0.13 µ CMOS.<br />

S<br />

G<br />

D<br />

p+<br />

p+<br />

N-sub<br />

Figure 2: NBTI on PMOS<br />

4 STRESS MEASUREMENTS<br />

Virtuoso Device Model<strong>in</strong>g (BSIMProPlus/RelProPlus) automates HCI and NBTI stress and data collection<br />

through simultaneous control of various measurement hardware (see Figure 3). We can stress multiple<br />

devices at the same time.<br />

BSIMProPlus<br />

RelProPlus<br />

DC Source 1<br />

Probe station<br />

DC Source 2<br />

DC Source n<br />

I-V Meter<br />

Figure 3: BSIMProPlus/RelProPlus and its measurement environment<br />

2


We configure the devices we want to stress and we specify the bias stress conditions and the total<br />

stress time (see Figure 4).<br />

Figure 4: Stress conditions setup<br />

Dur<strong>in</strong>g stress, BSIMProPlus/RelProPlus can conduct the follow<strong>in</strong>g measurements, as shown <strong>in</strong> Figure 5:<br />

• Device IV curves, to observe how the device operation characteristics change over time.<br />

These collected curves will be used for the AgeMos model<strong>in</strong>g stage.<br />

• Degradation monitors. We observe the degradation of important circuit variables.<br />

Figure 5: Measurement setup conditions dur<strong>in</strong>g the stress<strong>in</strong>g time<br />

We see <strong>in</strong> Figure 6 that transistor degradation is a function of stress time. For these devices, we have four<br />

figures. For each of them the X axis is the stress time. Idl<strong>in</strong> and Idsat are decreas<strong>in</strong>g, Vt is <strong>in</strong>creas<strong>in</strong>g, and<br />

Gmmax is decreas<strong>in</strong>g.<br />

Figure 6: Device degradation monitor Idl<strong>in</strong>, Idsat, Vt, and Gmmax parameters vs. the stress time<br />

3


5 EXTRACTION AND MODELING<br />

For the NMOS, the extraction starts from the fresh model card (see Figure 7). We can start, for example,<br />

from exist<strong>in</strong>g BSIM3 or BSIM4 model cards. To these NMOS parameters we add some parameters for<br />

accurate Isub model<strong>in</strong>g. Us<strong>in</strong>g one of the monitor<strong>in</strong>g data measurements — Idsat or Idl<strong>in</strong> or Vt or<br />

Gmmax — we perform the lifetime extraction. The last step is AgeMos extraction. The AgeMos allows<br />

degradation models, which can run <strong>in</strong>to any SPICE-like simulators, for the aged simulation.<br />

Fresh model card<br />

Isub model<br />

Lifetime model<br />

HCI AgeMos model<br />

Figure 7: NMOS extraction steps<br />

For PMOS extraction, the difference is the addition of NBTI parameters extraction <strong>in</strong> the flow (see<br />

Figure 8). Gate current, <strong>in</strong>stead of substrate current, model<strong>in</strong>g may be used for age prediction.<br />

Fresh model card<br />

Isub/Igate model<br />

Lifetime model<br />

NBTI AgeMos model<br />

I-CI AgeMos model<br />

Figure 8: PMOS extraction steps<br />

The extraction of the lifetime parameters is easily performed. In Figure 9, we selected Idsat for lifetime<br />

monitor<strong>in</strong>g. The Idsat measurement shows that we have a current degradation versus the stress time.<br />

Idsat is a classical degradation monitor for digital applications. For analog application we usually prefer<br />

the threshold voltage Vt.<br />

4


Figure 9: Lifetime model<strong>in</strong>g<br />

The AgeMos model makes it possible to have degradation models based on the age calculated after the<br />

fresh simulation. The Virtuoso UltraSim Full-chip Simulator can use these models directly. To run aged<br />

simulation with other commercial simulators, such as the the Virtuoso Spectre ® <strong>Circuit</strong> Simulator, we will<br />

use a <strong>Cadence</strong> technology called RelXpert.<br />

<strong>Reliability</strong> model<strong>in</strong>g is an iterative process. Sometimes you need several iterations to get an accurate model,<br />

as shown <strong>in</strong> Figure 10.<br />

Fresh model card<br />

Isub/Igate model<br />

Lifetime model<br />

AgeMos model<br />

Yes<br />

Improvement<br />

End<br />

No<br />

Figure 10: <strong>Reliability</strong> model iterations for improvements<br />

6 NEW FLOW<br />

For many companies, the exist<strong>in</strong>g reliability flow is def<strong>in</strong>ed by rules: The reliability department def<strong>in</strong>ed<br />

reliability constra<strong>in</strong>ts that must not be violated by designers. Check<strong>in</strong>g the reliability of HCI/NBTI simulation<br />

is performed on the f<strong>in</strong>ished chip after burn<strong>in</strong>g the first prototypes. When failure occurs, a complete<br />

redesign must be done. The time-to-market of the circuits is delayed by six months or more…<br />

The new flow <strong>in</strong>troduces reliability circuit simulation <strong>in</strong> the circuit design phase, prior to layout.<br />

5


7 RELIABILITY CIRCUIT SIMULATION<br />

The traditional method to verify reliability models is to use a r<strong>in</strong>g oscillator. We have selected a r<strong>in</strong>g<br />

oscillator with n<strong>in</strong>e <strong>in</strong>verters. The schematic has been entered <strong>in</strong> the Virtuoso Schematic Editor<br />

(Figure 11).<br />

Figure 11: R<strong>in</strong>g oscillator schematic<br />

For the circuit simulation we can use one of two solutions — the Virtuoso UltraSim Full-chip Simulator or a<br />

SPICE-like commercial simulator such as the Virtuoso Spectre <strong>Circuit</strong> Simulator.<br />

INPUT SIMULATION OUTPUT<br />

Schematic<br />

SPICE netlist<br />

SPICE model<br />

<strong>Reliability</strong> param<br />

<strong>Reliability</strong> spec<br />

HSPICE, ELDO<br />

& Virtuoso<br />

Spectre<br />

RelXpert<br />

Virtuoso<br />

UltraSim<br />

• Device deg. table<br />

• Isub/Id table<br />

• Waveform comp.<br />

Fresh vs. aged<br />

BSIMProPlus<br />

&<br />

RelProPlus<br />

RelL<strong>in</strong>k<br />

Schematic<br />

Figure 12: <strong>Reliability</strong> simulation with Virtuoso UltraSim or RelXpert<br />

The SPICE-like simulator does not have HCI and NBTI simulation. In this case, we use RelXpert. RelXpert<br />

will drive the commercial SPICE-like simulator for the lifetime and degradation computations. RelXpert<br />

will generate a new netlist allow<strong>in</strong>g an aged circuit simulation.<br />

Virtuoso UltraSim offers the advantage of be<strong>in</strong>g a FastSPICE isomorphic simulator. It can easily handle<br />

larger circuits for mixed-signal and digital applications. For example, Virtuoso UltraSim can simulate<br />

memories like 1GB DRAM, with more than one billion transistors. The HCI/NBTI circuit simulation is built<br />

<strong>in</strong>side Virtuoso UltraSim. Figure 13 shows a snapshot of Virtuoso UltraSim Full-chip Simulator <strong>in</strong>tegration<br />

with the Virtuoso Analog <strong>Design</strong> Environment.<br />

6


Figure 13: Virtuoso UltraSim Full-chip Simulator GUI <strong>in</strong>side the Virtuoso Analog <strong>Design</strong> Environment<br />

With the reliability simulation we can:<br />

• Ask for the prediction of the age of each MOS <strong>in</strong>stance.<br />

• Request the simulator to predict degradation after several years of operation, for example 10 years, and<br />

also to generate degraded transistor models after 10 years of operation.<br />

• Request a lifetime prediction for each transistor, under the circuit operation condition, to reach a certa<strong>in</strong><br />

percentage of degradation. 10% degradation is a common request for reliability.<br />

• Select both HCI and NBTI at the same time, HCI only, or NBTI only, to get an aged simulation with<br />

degradation.<br />

In this simulation, comput<strong>in</strong>g the age of each MOS <strong>in</strong>stance is key <strong>in</strong>formation. For example, NMOS age is<br />

calculated with the follow<strong>in</strong>g formula:<br />

Age (t) =<br />

”(<br />

t<br />

I<br />

)<br />

sub ()<br />

o<br />

I ds<br />

()<br />

m<br />

I ds ()<br />

HW<br />

The simulator will pr<strong>in</strong>t out the degradation results <strong>in</strong> a table or with schematic backannotation<br />

(see Figure 14).<br />

<br />

Figure 14: Backannotation of the lifetime and degradation <strong>in</strong>to the schematic. In this example the lifetime is bad.<br />

7


This age <strong>in</strong>formation is used by the AgeMos to predict HCI and NBTI degradation, as shown <strong>in</strong> Figure 15.<br />

Figure 15: Result of fresh and aged simulation us<strong>in</strong>g Virtuoso UltraSim Full-chip Simulator and displayed <strong>in</strong> AWD.<br />

The period of the oscillator is <strong>in</strong>creased.<br />

Note: Virtuoso UltraSim and RelXpert can also be used as standalone products, outside the Virtuoso<br />

Analog <strong>Design</strong> Environment.<br />

8 DESIGN CHALLENGES<br />

HCI and NBTI <strong>in</strong>troduce a threshold voltage <strong>in</strong>crease for the MOS. This may be a real issue for mixedsignal<br />

applications. There is also a gm transconductance variation. This characteristic changes the ga<strong>in</strong> of<br />

transistors, which may not be expected by analog designers.<br />

With HCI and NBTI circuit simulation, designers can detect and locate potential issues.<br />

Because HCI is dependant of the horizontal electrical field <strong>in</strong> the channel, designers can improve the<br />

robustness of the devices by <strong>in</strong>creas<strong>in</strong>g their length. There is also an exponential decrease <strong>in</strong> hot carriers<br />

with a decrease <strong>in</strong> supply voltage. <strong>Design</strong>ers can change the bias conditions of the devices where the issue<br />

is found.<br />

NBTI problems are more difficult to fix. <strong>Design</strong>ers can check voltage overshoot to avoid the damage<br />

caused by NBTI. They may decide to <strong>in</strong>crease capacitive loads, <strong>in</strong>crease the transconductances, or reduce<br />

the supply voltage of the function to reduce NBTI susceptibility.<br />

<strong>Design</strong>ers should make it a priority to study the IO blocks of their designs. Creat<strong>in</strong>g robust HCI/NBTI<br />

circuits is a new challenge for digital/analog designers.<br />

9 CONCLUSION<br />

A complete flow allow<strong>in</strong>g digital and analog designers to compute HCI and NBTI reliability circuit<br />

simulation is available. <strong>Reliability</strong> circuit simulations are now possible: block reliability analysis can be<br />

conducted with RelXpert driv<strong>in</strong>g commercial simulators, and SOIC analysis is run with the new Virtuoso<br />

UltraSim Full-chip Simulator. HCI/NBTI reliability is a must for designs implemented with new processes.<br />

<strong>Reliability</strong> simulation needs to be implemented <strong>in</strong> PDK libraries located on the model<strong>in</strong>g stage. <strong>Cadence</strong><br />

offers a model<strong>in</strong>g service and can tra<strong>in</strong> the company model<strong>in</strong>g team on HCI/NBTI measurement and<br />

parameter extraction.<br />

<strong>Design</strong>ers need to learn to design for reliability and they should be educated on additional reliability<br />

analyses. The value is the reduction of failure and redesign costs.<br />

8


<strong>Cadence</strong> <strong>Design</strong> Systems, Inc.<br />

Corporate Headquarters<br />

2655 Seely Avenue<br />

San Jose, CA 95134<br />

800.746.6223<br />

408.943.1234<br />

www.cadence.com<br />

© 2003 <strong>Cadence</strong> <strong>Design</strong> Systems, Inc. All rights reserved. <strong>Cadence</strong>,<br />

the <strong>Cadence</strong> logo, Spectre, and Virtuoso are registered trademarks of<br />

<strong>Cadence</strong> <strong>Design</strong> Systems, Inc. All others are properties of their respective<br />

holders.<br />

#5082 12/03

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!