15.11.2014 Views

SPEA Math Camp - Oncourse

SPEA Math Camp - Oncourse

SPEA Math Camp - Oncourse

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>SPEA</strong> <strong>Math</strong> <strong>Camp</strong><br />

Course Materials<br />

Professor Henry Wakhungu<br />

August 2012


Table of Contents<br />

Day One: Basic Algebra, Geometry, and Miscellaneous Topics .................................................................... 4<br />

Day One Class Notes ................................................................................................................................. 4<br />

Day One In-Class Exercises ...................................................................................................................... 24<br />

Day One In-Class Exercises Solutions ...................................................................................................... 28<br />

Day One Homework ................................................................................................................................ 34<br />

Day One Homework Solutions ................................................................................................................ 36<br />

Day Two: Solving and Manipulating Equations ........................................................................................... 38<br />

Day Two Class Notes ............................................................................................................................... 38<br />

Day Two In-Class Exercises...................................................................................................................... 56<br />

Day Two In-Class Exercises Solutions ...................................................................................................... 58<br />

Day Two Homework ................................................................................................................................ 65<br />

Day Two Homework Solutions ................................................................................................................ 66<br />

Day Three: Functions and their Graphs ...................................................................................................... 70<br />

Logarithmic and Exponential Functions ...................................................................................................... 70<br />

Day Three Class Notes ............................................................................................................................. 70<br />

Day Three In-Class Exercises ................................................................................................................... 99<br />

Day Three In-Class Exercises Solutions ................................................................................................. 102<br />

Day Three Homework ........................................................................................................................... 115<br />

Day Three Homework Solutions ........................................................................................................... 117<br />

Day Four: Derivatives, Optimization, and Integration .............................................................................. 126<br />

Day Four Class Notes............................................................................................................................. 126<br />

Day Four In-Class Exercises ................................................................................................................... 138<br />

Day Four In-Class Exercises Solutions ................................................................................................... 139<br />

Day Four Homework ............................................................................................................................. 141<br />

Day Four Homework Solutions ............................................................................................................. 143<br />

Day Five: Word Problems and Applications .............................................................................................. 148<br />

Day Five Class Notes ............................................................................................................................. 148<br />

Day Five In-Class Exercises .................................................................................................................... 157<br />

Day Five In-Class Exercises Solutions .................................................................................................... 159<br />

Day Five Homework .............................................................................................................................. 167<br />

Day Five Homework Solutions .............................................................................................................. 170<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 2


Supplemental Problems ........................................................................................................................ 184<br />

Solutions to Supplemental Problems .................................................................................................... 202<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 3


MATH CAMP<br />

School of Public and Environmental Affairs<br />

Day One: Basic Algebra, Geometry, and Miscellaneous Topics<br />

Common <strong>Math</strong>ematical Symbols<br />

Day One Class Notes<br />

= Equals<br />

Approximately equal to (used especially for decimal representations of<br />

irrational numbers)<br />

Not equal to<br />

> Greater than<br />

< Less than<br />

Greater than or equal to<br />

Less than or equal to<br />

Plus or minus<br />

Minus or plus<br />

Therefore, implies<br />

If and only if<br />

Set of real numbers<br />

Sum<br />

Infinity (positive)<br />

Negative infinity<br />

x Absolute value of x<br />

f(x)<br />

Types of Numbers<br />

Function of x<br />

Real Numbers: Basically all numbers<br />

Integers (Whole Numbers): 0,<br />

1, 2,<br />

3...<br />

Rational Numbers: Numbers that can be represented as a fraction of integers<br />

Irrational Numbers: Real numbers that aren’t rational (they will have infinite decimals)<br />

Positive Numbers: Numbers that are greater than 0<br />

Negative Numbers: Numbers that are less than 0<br />

Non-zero Numbers: Numbers that aren’t equal to zero, both positive and negative<br />

Non-Negative Numbers: Numbers greater than or equal to zero<br />

Complex Numbers: Contain the symbol i, includes all real and imaginary numbers<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 4


GREEK LETTERS<br />

Letter Lower Case Upper Case<br />

Alpha <br />

Beta <br />

Gamma <br />

Delta <br />

Epsilon <br />

Zeta <br />

Eta <br />

Theta<br />

<br />

<br />

Iota <br />

Kappa <br />

Lambda <br />

Mu <br />

Nu <br />

Zi <br />

Omicron <br />

Pi <br />

Rho <br />

Sigma <br />

Tau <br />

Upsilon <br />

Phi <br />

Chi <br />

Psi <br />

Omega <br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 5


A FEW BASIC MATHEMATICAL LAWS<br />

Commutative Law of Addition<br />

Commutative Law of Multiplication<br />

Associative Law of Addition<br />

Associative Law of Multiplication<br />

Distributive Law<br />

a b b a<br />

ab ba<br />

a ( b c)<br />

( a b)<br />

c<br />

a ( bc)<br />

( ab)<br />

c<br />

( a b)<br />

c ac bc<br />

NEGATIVE NUMBERS AND ZERO<br />

The number that we must add to the number n to get 0 we call the opposite of n. The symbol for<br />

the opposite of n is –n. Therefore, n + (the opposite of n) = 0. In mathematical symbols, we<br />

have n + (-n) = 0.<br />

The subtraction problem m - n = ( ) has the same answer as the addition problem m + (-n) = ( ).<br />

Multiplying a number by -1 gives the opposite of that number.<br />

1 n <br />

n<br />

The product of two negative numbers is positive.<br />

3 5 <br />

15<br />

The product of a negative number and a positive number is negative.<br />

( 5)(8) 40<br />

The product of any number and 0 is 0.<br />

( 8)(0) <br />

0<br />

Division of anything by 0 is undefined.<br />

ORDERS OF OPERATIONS<br />

<strong>Math</strong>ematical expressions often contain many operators ( , ,<br />

,<br />

)<br />

, and we need to follow a<br />

certain order when evaluating expressions with multiple operators. If we don’t follow the<br />

necessary steps, then we will get different answers.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 6


For instance, suppose we wanted to evaluate the expression, 3 25. If we add and then<br />

multiply, we get 25. If we multiply and then add, we get 13 — two very different answers.<br />

Thus, we need rules to help us figure out the correct order for performing these operations.<br />

Rules for the Orders of Operations:<br />

1. Start by evaluating any expressions that you find in parentheses ( ), brackets [ ], or braces<br />

{ }. If there are parentheses (or brackets or braces) nested within each other (meaning<br />

that one set of parentheses is completely within another parentheses), then evaluation the<br />

expressions in the innermost parentheses first. Then work outward.<br />

2. Evaluate all exponents that are on single numbers. If a parentheses has an exponent on it,<br />

then you have to evaluate the expression inside the parentheses before you evaluate the<br />

exponent on the parentheses.<br />

3. Evaluate the multiplications and divisions. Start from the left and do them in the order<br />

they appear as you move from left to right.<br />

4. Evaluate the additions and subtractions. Start from the left and do them in the order that<br />

they appear as you move from left to right.<br />

Examples:<br />

3 56<br />

3<br />

30 33 => do the multiplication before the addition<br />

2<br />

(3 8)<br />

14<br />

2(<br />

5)<br />

14<br />

10<br />

14<br />

4 => evaluate the expression in the parentheses<br />

first by subtracting 8 from 3, then multiply 2 by that quantity, then add the remaining<br />

quantities together from left to right<br />

10<br />

85<br />

2 310<br />

83 310<br />

24 3<br />

34 31<br />

3 => evaluate the<br />

innermost parentheses first by subtracting 2 from 5, then evaluate all the expressions in<br />

the outermost parentheses by multiplying 8 by 3 and then adding 10 to that quantity,<br />

finally end by adding/subtracting the remaining quantities<br />

Note: You have to be careful when using a calculator to evaluate these expressions. A scientific<br />

calculator should be programmed to follow the order of operations. A regular calculator,<br />

however, will evaluate the operators in the order that you enter them in the calculator. So you<br />

have to remember to enter multiplications and divisions before additions and subtractions, etc.<br />

ROOTS AND EXPONENTS<br />

Introduction to Simple Exponents<br />

Let b be a real number and n be a positive integer. The product of n of the b’s is (b) (b) (b)…(b)<br />

{done n times}. This is called “b to the nth power,” or “b raised to the n,” or “b to the n.”<br />

We write (5) (5) (5) as 5 3 . We read this as 5 to the 3 rd power. To calculate 5 3 we multiply 5 by<br />

itself three times, so (5) (5) (5) = 125. In this particular case, the base is 5 and the exponent is 3.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 7


To calculate 4 3 , just multiply (4) (4) (4) = (16) (4) = 64.<br />

To calculate 6 5 , just multiply (6) (6) (6) (6) (6) = 7,776.<br />

To summarize, if x is the base, then<br />

x x<br />

1<br />

x x x<br />

2<br />

x x x x<br />

3<br />

x x x x x<br />

4<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 8


Rules for Working with Exponents<br />

The following fourteen rules will help guide you in manipulating expressions that have<br />

exponents in them. Each of these rules will be discussed in more detail below with<br />

accompanying examples.<br />

1<br />

Rule 1: b b<br />

Rule 2: b 0 1, (where b 0)<br />

0<br />

Rule 3: 0 is undefined<br />

Rule 4:<br />

Rule 5:<br />

Rule 6:<br />

Rule 7:<br />

b<br />

b<br />

b<br />

1<br />

2<br />

b<br />

1<br />

n<br />

n<br />

<br />

2<br />

m<br />

n<br />

b<br />

b<br />

n<br />

b<br />

1<br />

<br />

n<br />

b<br />

<br />

<br />

<br />

, (where b 0)<br />

, (where b 0)<br />

, (where b 0)<br />

<br />

<br />

<br />

n n<br />

Rule 8: x x x m<br />

Rule 9: b<br />

1<br />

m<br />

r s rs<br />

b b , (where 0<br />

r s<br />

Rule 10: <br />

rs<br />

b )<br />

b b , (where b 0)<br />

r r<br />

a b a b , (where b 0)<br />

Rule 11: <br />

r<br />

r<br />

r<br />

a a<br />

Rule 12: , (where b 0)<br />

r<br />

b b<br />

r<br />

b rs<br />

Rule 13: b , (where b 0)<br />

s<br />

b<br />

a <br />

Rule 14: <br />

b <br />

Square Roots<br />

r<br />

b <br />

<br />

a <br />

r<br />

, (where b 0)<br />

For any positive number b,<br />

1<br />

2<br />

b<br />

shall be that positive number whose square is b; that is,<br />

( b<br />

1<br />

2<br />

)<br />

2<br />

1<br />

2<br />

1<br />

2<br />

b b<br />

b<br />

This is called the square root of b. It can also be written as b .<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 9


1<br />

2<br />

So 9 = the square root of 9 = 9 3<br />

1<br />

2<br />

25 = the square root of 25 = 25 5<br />

There are a few things to keep in mind about square roots:<br />

1. Negative numbers do not have square roots (at least in the real number system). For<br />

example, 9 is not a real number.<br />

2. The square root of 0 is 0 because 0 2 0 . So 0 0 .<br />

3. The square root of a positive number is positive.<br />

4. If 0<br />

b then b b<br />

2<br />

. So 2 2 2.<br />

2<br />

5. And finally, we have Rule 5 from above, which says b b . Because<br />

2<br />

b is a<br />

2<br />

positive number, the square root of b must be a positive number (see #3 above), so<br />

2<br />

we need the absolute value to make sure that the square root of b is positive. For<br />

example, 5 2 5 5<br />

Other Fractional Exponents<br />

.<br />

If b is a number whose nth power (where n is a positive integer) equals the number x, then b is<br />

called the nth root of x. In other words, if b n = x, then b is the nth root of x. This can be written<br />

as n x b.<br />

When we write expressions using the radical sign, , we say that the expression is<br />

written in radical form.<br />

Note that<br />

b 2<br />

b .<br />

Negative Exponents<br />

For any number b (other than 0), b -1 shall be the reciprocal of b:<br />

1<br />

b<br />

1 <br />

b<br />

For any number b (other than 0) and any positive integer n, b -n shall be the reciprocal of b n :<br />

n<br />

1<br />

b <br />

(Rule 7)<br />

n<br />

b<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 10


If n is a positive integer and b is a number other than 0, then<br />

Manipulating Exponents<br />

n<br />

1 1<br />

<br />

n<br />

b b<br />

b<br />

n<br />

(Rule 7 and Rule 12)<br />

The basic law for multiplying number with exponents is:<br />

b<br />

r s rs<br />

b b<br />

(Rule 9)<br />

Basically this means that when we multiply the bases we can add the exponents together. So if<br />

you want to multiply (2 3 )(2 4 ), then it would be:<br />

2<br />

3<br />

2<br />

4<br />

(2<br />

2<br />

2)(2<br />

2<br />

2<br />

2) 2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2 2<br />

7<br />

2<br />

34<br />

Note: This does not work if the bases are different. The base must be the same for this rule to<br />

5 2<br />

apply. For instance, we could not apply this rule to the product 3 7 because 3 and 7 are two<br />

different bases.<br />

Examples of Exponent Rules:<br />

1<br />

2<br />

16<br />

<br />

<br />

9 <br />

<br />

16<br />

<br />

<br />

9<br />

1<br />

2<br />

1<br />

2<br />

<br />

<br />

<br />

<br />

<br />

16<br />

9<br />

<br />

4<br />

3<br />

6 3<br />

5 5 <br />

5<br />

9<br />

1<br />

4<br />

4<br />

81 81 3<br />

16<br />

5<br />

2<br />

<br />

5<br />

5<br />

16 4 1024<br />

7<br />

7<br />

10<br />

8<br />

7<br />

108<br />

7<br />

2<br />

This could also be written as<br />

7<br />

7<br />

10<br />

8<br />

7<br />

10<br />

7<br />

8<br />

7<br />

10(<br />

8)<br />

7<br />

2<br />

(3<br />

)<br />

4 2<br />

3<br />

4(<br />

2)<br />

3<br />

8<br />

6 6 6<br />

3 7 3 7<br />

2<br />

5 <br />

<br />

16<br />

<br />

<br />

1<br />

<br />

2<br />

1<br />

2<br />

16 <br />

<br />

2<br />

<br />

5 <br />

<br />

16<br />

5<br />

1<br />

2<br />

1<br />

2<br />

2<br />

4<br />

<br />

<br />

5<br />

1<br />

4 5<br />

20<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 11


Dealing with Negative Bases<br />

When the base of an exponent is negative the following rules apply. If the exponent is odd, then<br />

the final answer will be negative. If the exponent is even, then the answer will be positive.<br />

Examples:<br />

(-2) 1 = -2<br />

(-2) 2 = (-2)(-2) = 4<br />

(-2) 3 = -8<br />

(-2) 4 = 16<br />

Scientific Notation<br />

The population of the world is approximately 6,598,678,357 people (www.census.gov, May<br />

2007). Big numbers like this are difficult to read and to say. Even if we rounded this number off<br />

to 6,000,000,000, it is time-consuming to count the zeros. To deal with big numbers like this,<br />

scientists have developed what is called scientific notation.<br />

Before we explain exactly what scientific notation is, take a look at the following:<br />

10 1 = 10 ten<br />

10 2 = (10)(10) = 100 hundred<br />

10 3 = (10)(10)(10) = 1,000 thousand<br />

10 4 = (10)(10)(10)(10) = 10,000 ten thousand<br />

10 5 = (10)(10)(10)(10)(10) = 100,000 hundred thousand<br />

10 6 = (10)(10)(10)(10)(10)(10) = 1,000,000 million<br />

Every number larger than 10 can be written as:<br />

So,<br />

500 = (5)(10 2 )<br />

683 = (6.83)(10 2 ) = 6.83 x 10 2<br />

1,784 = (1.784)(10 3 )<br />

(b)(10 n ) or, equivalently b x 10 n<br />

Because numbers in scientific notation both have a base of 10, we can easily multiply two<br />

numbers is scientific notation. We just multiply the bases and then add the exponents on 10.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 12


3 8<br />

5(10 ) 7(10 )<br />

(5)(7)(10<br />

(5)(7)(10<br />

(5)(7)(10<br />

35(10<br />

11<br />

)<br />

(3.5)(10)(10<br />

(3.5)(10<br />

12<br />

3<br />

11<br />

)<br />

)(10<br />

38<br />

)<br />

)<br />

11<br />

)<br />

8<br />

)<br />

Scientific Notation for Small Numbers<br />

n<br />

Every positive number less than 1 can be written in the form b(10<br />

) , where b is at least 1 but<br />

less than 10 and n is a positive integer.<br />

<br />

So 510<br />

5 . 00005<br />

Note: Sometimes you will see a different form for scientific notation if you use a calculator or<br />

excel.<br />

5.67 E-03 = 5.67 x 10 -3<br />

3.89 E07 = 3.89 x 10 7<br />

FRACTIONS<br />

Defining Fractions<br />

The fraction b<br />

a represents a portion. It means that we are taking a parts out of b parts.<br />

The top number in a fraction is called the numerator (in this case, a). The bottom number in a<br />

fraction is called the denominator (in this case, b).<br />

Fundamental Principle: The value of a fraction is not changed by multiplying or dividing the<br />

numerator and denominator by the same nonzero expression.<br />

For instance,<br />

x 3<br />

<br />

y 3<br />

is still equal to y<br />

x .<br />

Adding Fractions<br />

To add two fractions with the same denominator, just add the numerators and place them over<br />

the denominator.<br />

a b a b<br />

<br />

c c c<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 13


To add two fractions with different denominators, we have to replace at least one of the<br />

denominators with a denominator that will allow us to add the two fractions as above. This is<br />

called the least common denominator or lowest common denominator.<br />

If the positive integers a and b are denominators of fractions, then the smallest positive integer<br />

that both a and b divide evenly (that is, the remainder of the division is 0) is called the lowest<br />

common denominator for the numbers a and b, or the lowest common denominator of the two<br />

fractions.<br />

A positive integer is called a prime if it is larger than 1 and cannot be written as the product of<br />

smaller positive integers. If an integer is not prime, then it can be written as the product of two<br />

or more primes.<br />

To find a common denominator, you can break each number down into its prime components<br />

and use those to find the lowest common denominator.<br />

2 7 2 4 7 3 8<br />

Example 1: <br />

3 4 3 4 4 3 12<br />

5 7 5 7 5 7 2<br />

Example 2: <br />

6 3 23<br />

3 23<br />

3 2<br />

21<br />

<br />

12<br />

5<br />

<br />

6<br />

29<br />

<br />

12<br />

14<br />

<br />

6<br />

To add an integer and a fraction, you have to turn the integer into a fraction by dividing it by 1<br />

and then follow the rules above.<br />

Subtracting Fractions<br />

4 5 4 5 3 4 1 15 4<br />

5 <br />

3 1 3 1 3 3 1 3 3<br />

Subtracting fractions is very similar to adding them. If the base is the same, then you can just<br />

subtract the numerators, but if the bases are different, then you have to find a common<br />

denominator before subtracting the two fractions.<br />

19<br />

3<br />

19<br />

6<br />

Example 2:<br />

9 6 3<br />

Example 1: <br />

8 8 8<br />

3 6 3 8 6 5 24 30 6 3<br />

<br />

5 8 5 8 8 5 40 40 40 20<br />

Note: When working with fractions, you should express your final answer in the smallest terms<br />

6 3<br />

possible. That is why we simplify from to . This is called factoring or canceling out.<br />

40 20<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 14


The cancellation rule tells us how to reduce a fraction.<br />

nb n <br />

mb m<br />

Basically, all you need to do is to factor the numerator and denominator, and then cancel out all<br />

the common factors.<br />

3<br />

x (2y<br />

2)<br />

5x(<br />

y 1)<br />

<br />

3<br />

x (2)( y 1)<br />

5x(<br />

y 1)<br />

<br />

2x<br />

5<br />

2<br />

Multiplying Fractions<br />

To multiply two fractions, we multiply their numerators to get the numerator of the answer and<br />

then multiply their denominators to get the denominator of the answer. In mathematical<br />

notation,<br />

a<br />

b<br />

<br />

c<br />

d<br />

<br />

ac<br />

bd<br />

Example:<br />

3<br />

4<br />

<br />

2 3<br />

2<br />

<br />

7 4<br />

7<br />

<br />

6<br />

28<br />

<br />

3<br />

14<br />

Multiplying an Integer and a Fraction<br />

To multiply an integer and a fraction, just turn the integer into a fraction by dividing it by 1.<br />

Example:<br />

4 5 4<br />

5<br />

<br />

3 1 3<br />

20<br />

3<br />

Dividing Fractions<br />

The quotient of two fractions is written as<br />

a<br />

a c or as<br />

b<br />

b d c<br />

d<br />

To divide a fraction, you multiply the first fraction by the reciprocal of the second fraction. So in<br />

order to divide by d<br />

c you actually multiply by c<br />

d . This is often called cross-multiplication.<br />

a<br />

b<br />

<br />

c<br />

d<br />

<br />

a<br />

b<br />

c<br />

d<br />

<br />

a<br />

b<br />

<br />

d<br />

c<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 15


To divide a fraction by an integer, just turn the integer into a fraction by dividing it by 1.<br />

4 4 2 4 1 4 2<br />

Example: 2 <br />

5 5 1 5 2 10 5<br />

Note: When working with fractions, you should express your final answer in the smallest terms<br />

4 2<br />

possible. That is why we simplify from to . 10 5<br />

WORKING WITH ALGEBRAIC EXPRESSIONS<br />

Introducing Polynomials<br />

A monomial is an expression that has the form kx n where k is a number, n is a non-negative<br />

integer and x is a letter. The integer n is the degree of the monomial. The number k is called the<br />

coefficient of the monomial. The letter x is called the variable.<br />

The sum of any number of monomials is called a polynomial. It is customary to write a<br />

polynomial so that the degrees of the monomials decrease from left to right. The following are<br />

examples of polynomials.<br />

17x<br />

3x<br />

5<br />

9x<br />

3<br />

38x<br />

5<br />

13<br />

3x<br />

x<br />

4<br />

3x<br />

4<br />

5x<br />

3<br />

4x<br />

5x<br />

1<br />

2<br />

6x<br />

6<br />

The degree of a polynomial is the degree of the monomial (within the polynomial) that has the<br />

highest degree.<br />

3x 3 5x has degree 3<br />

5 2<br />

5x 4x<br />

3x<br />

5 has degree 5<br />

5x 1 has degree 1<br />

Simplifying Polynomials<br />

When we have a polynomial (algebraic expression), we can simplify it by collecting all the like<br />

terms. You can collect like terms by adding (or subtracting) the coefficients on monomials of<br />

the same degree.<br />

For instance,<br />

3x 5x<br />

(3 5) x 8x<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 16


To simplify the following expression, we will collect all the like terms.<br />

15x<br />

3<br />

15x<br />

(15 1)<br />

x<br />

14x<br />

3x<br />

5 2x<br />

3<br />

3<br />

x<br />

3<br />

3<br />

6x<br />

2x<br />

4x<br />

(2 4) x<br />

2<br />

2<br />

2<br />

x<br />

8x<br />

5<br />

2<br />

3<br />

2<br />

6x<br />

10<br />

4x<br />

3x<br />

6x<br />

x 5 10<br />

(3 6 1)<br />

x ( 5<br />

10)<br />

2<br />

x<br />

Multiplying Polynomials<br />

One basic rule of algebra is the distributive rule. The distributive rule says:<br />

a(<br />

b c)<br />

ab ac<br />

The distributive rule is what allows us to collective like terms to simplify expressions. The<br />

distributive rule can also help us to multiply out polynomials. We use the distributive rule<br />

several times to multiply two polynomials.<br />

The reminder we use to do this is called FOIL—first, outside, inside, last. This is how it works.<br />

First, multiply the first term from each expression. Then multiply the terms on the outside of the<br />

expression. Then proceed to the terms on the inside, and then take the terms at the end of each<br />

expression.<br />

2<br />

ax<br />

bcx<br />

d acx adx bcx bd<br />

Example:<br />

(5x<br />

3)(2x<br />

1)<br />

5x<br />

2x<br />

5x<br />

(<br />

1)<br />

3<br />

2x<br />

(3)( 1)<br />

10x<br />

Basic Manipulation of Algebraic Expressions<br />

2<br />

5x<br />

6x<br />

3 10x<br />

2<br />

x 3<br />

The same rules that we used in manipulating fractions apply to working with algebraic<br />

expressions as well.<br />

Before we learn how to add, subtract, multiply and divide fractions of polynomials, we need to<br />

learn how to simplify fractions involving polynomials. Whenever you have a fraction that has<br />

polynomials in it, you can factor both the numerator and the denominator and cancel out the<br />

factors that appear in both the numerator and the denominator.<br />

4<br />

6x<br />

3 x (3)(2x<br />

1)<br />

2<br />

4<br />

x<br />

<br />

2<br />

x (2x<br />

1)<br />

2<br />

x (2x<br />

1)<br />

3x<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 17


Adding Polynomial Fractions<br />

If the denominators of two algebraic expressions are the same, then you can simply add the<br />

numerators together.<br />

2<br />

5x<br />

3 x<br />

<br />

x 1<br />

2<br />

5x<br />

1<br />

6x<br />

<br />

x 1<br />

2<br />

5x<br />

4<br />

x 1<br />

To add fractions of polynomials where the denominators are not equal, then we have to find a<br />

lowest common denominator. One common denominator that will always work is just the<br />

product of the two denominators.<br />

To add the two fractions,<br />

2<br />

6x<br />

4 2x<br />

x 1<br />

, the common denominator is x ( x<br />

2 2)<br />

.<br />

2<br />

x x 2<br />

2<br />

6x<br />

4 2x<br />

x 1<br />

<br />

2<br />

x x 2<br />

2<br />

2<br />

6x<br />

4 x 2 2x<br />

x 1<br />

x<br />

<br />

2<br />

2<br />

x x 2 x 2 x<br />

3<br />

2<br />

3 2<br />

(6x<br />

12x<br />

4x<br />

8) (2x<br />

x x)<br />

<br />

2<br />

x(<br />

x 2)<br />

8x<br />

<br />

3<br />

5x<br />

x(<br />

x<br />

2<br />

2<br />

11x<br />

8<br />

2)<br />

Subtracting Polynomial Fractions<br />

Again, to subtract two algebraic fractions, first find a common denominator, and then subtract.<br />

2<br />

5x<br />

2 x 1<br />

<br />

3<br />

x x<br />

2 2<br />

5x<br />

2 x x 1<br />

<br />

2 3<br />

x x x<br />

3 2 2<br />

(5x<br />

2x<br />

) ( x 1)<br />

<br />

3<br />

x<br />

3 2<br />

5x<br />

x 1<br />

<br />

3<br />

x<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 18


Multiplying Polynomial Fractions<br />

Again, we multiply algebraic fractions the same way we multiply numerical fractions:<br />

a c ac<br />

<br />

b d bd<br />

Example:<br />

x 1<br />

x 3 ( x 1)(<br />

x 3)<br />

<br />

3x<br />

2 x 2 (3x<br />

2)( x 2)<br />

x<br />

<br />

3x<br />

2<br />

2<br />

3x<br />

x 3 x<br />

<br />

6x<br />

2x<br />

4 3x<br />

2<br />

2<br />

2x<br />

3<br />

8x<br />

4<br />

To multiply a simple polynomial by a fractional algebraic expression, use the same method as<br />

when we multiplied a fraction by an integer. That is, turn the polynomial into a fraction by<br />

giving it a denominator of 1.<br />

2<br />

2<br />

x 2 x 4 x 2 x 2x<br />

4x<br />

8 x 6x<br />

8<br />

( x 4) <br />

<br />

<br />

x 2 1 x 2 x 2 x 2<br />

Dividing Polynomial Fractions<br />

And, once again, to divide algebraic expressions, we follow the same rules as for regular<br />

fractions—just cross multiplication.<br />

3x<br />

2<br />

<br />

5<br />

Evaluating Algebraic Expressions<br />

<br />

3<br />

3x<br />

2<br />

<br />

2<br />

3x<br />

2<br />

<br />

5<br />

2<br />

3x<br />

2 3x<br />

2<br />

To evaluate an algebraic expression, all you have to do is plug in a number into each variable in<br />

the expression. This allows us to find the value of an expression in a particular case.<br />

Example 1: Evaluate the following expression when x = 1.<br />

3x<br />

2<br />

3(1)<br />

3 9 5<br />

7<br />

9x 5<br />

2<br />

9 1<br />

5<br />

Example 2: Evaluate the following expression when a = 3 and b = -2.<br />

a<br />

2<br />

(3)<br />

3ab<br />

5b<br />

2<br />

2<br />

8a<br />

4b<br />

3<br />

3(3)( 2)<br />

5( 2)<br />

9 18<br />

20 24 8 3 16<br />

2<br />

8(3) 4( 2)<br />

3<br />

3<br />

<br />

15<br />

3<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 19


Remember: The expression<br />

2<br />

x is not the same thing as 2<br />

need to evaluate it as x<br />

2 x<br />

x. If you have <br />

x 2<br />

2<br />

x ( x)(<br />

x)<br />

.<br />

Example:<br />

Evaluate the following expressions for x = 3<br />

x<br />

2<br />

( x )<br />

5 3<br />

2<br />

2<br />

5 ( 3)<br />

PERCENT CHANGE<br />

5 9<br />

5 4<br />

2<br />

5 9 5 14<br />

x<br />

. If you are given<br />

, then you need to evaluate it as<br />

2<br />

x , then you<br />

We can figure out the percent change in a quantity by forming a ratio of the quantities that we<br />

are interested in. When dealing with a percent change, the original price or quantity becomes the<br />

denominator. This is because we want to make all comparison relative to this value.<br />

Example 1: Suppose that Big Macs cost $3.15 last year and $3.65 this year. What is the percent<br />

change?<br />

3.65 3.15<br />

Well, .16 16%<br />

. The price of Big Macs increased by 16% this year.<br />

3.15<br />

Example 2: Suppose that your GPA was 3.9 last semester and now it is 3.5. What is the percent<br />

change?<br />

3.5 3.9<br />

Well, .<br />

1. Thus your GPA decreased by 10%.<br />

3.9<br />

WORKING WITH SUMMATION SIGNS<br />

Defining the Summation Sign<br />

<strong>Math</strong>ematics uses a lot of symbols in order to simplify presentation of material. One helpful<br />

symbol is the summation sign, which is capital sigma, or . This sign can be used to tell us to<br />

add several things together.<br />

For instance, if we wanted to add several numbers, we could write the following:<br />

x<br />

x<br />

<br />

1<br />

x2<br />

x x4<br />

x5<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 20


If we wanted to represent this same sum using the summation symbol, we would write:<br />

5<br />

<br />

i1<br />

The summation symbol itself tells us that we are going to add. The x<br />

i<br />

tells us that we are<br />

going to add values of x. The letter i basically stands as an index. Under the summation sign,<br />

we learn what our starting value for the index is—in this case it is i = 1. And the number on top<br />

of the summation sign tells us the ending value for the index—in this case 5. So the above<br />

symbol tells us to add all the values of x starting with x<br />

1<br />

and ending with x<br />

5<br />

(which includes all<br />

the values in between the two).<br />

One formula using the summation symbol that you will see again in your statistics class is the<br />

following:<br />

n<br />

<br />

xi<br />

i<br />

x 1 , which is sometimes also written just as<br />

n<br />

x<br />

i<br />

x<br />

x <br />

n<br />

When the summation is written without the index, it means to sum over all the possible or<br />

available values.<br />

The above formula is the formula for finding the mean (or average) of a set of numbers. It tells<br />

us that if we have n numbers, we sum them all, and then divide by n.<br />

Example: Find the mean of the following numbers: 1, 7, 3, 22, 64, 13<br />

x <br />

n<br />

<br />

i1<br />

n<br />

x<br />

i<br />

<br />

x x<br />

1<br />

2<br />

x<br />

3<br />

x<br />

n<br />

4<br />

x<br />

5<br />

x<br />

6<br />

1<br />

7 3 22 62 13<br />

110<br />

<br />

18.33<br />

6<br />

6<br />

Rules for Summation Signs<br />

The following rules are helpful when working with summation signs.<br />

Rule 1:<br />

Rule 2:<br />

c nc (Sum of a Constant)<br />

cxi<br />

c<br />

xi<br />

where c is any constant<br />

i i<br />

xi<br />

<br />

Rule 3: x<br />

y <br />

i i<br />

xi<br />

<br />

Rule 4: x<br />

y <br />

y<br />

y<br />

i<br />

i<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 21


2<br />

Rule 5: x <br />

2<br />

i<br />

xi<br />

Rule 6: x<br />

i<br />

y<br />

i<br />

<br />

<br />

x<br />

i<br />

<br />

y<br />

i<br />

2 2 2<br />

xi<br />

i<br />

xi<br />

yi<br />

2<br />

Rule 7: y <br />

x y<br />

i<br />

A couple other sums that you will definitely encounter in statistical applications are x 2 and<br />

2<br />

x . For the first formula 2 x , we square each value of x and then sum those squares<br />

x<br />

together. For the second formula 2<br />

i<br />

, we sum the x values and then square the final number.<br />

Example: Given the numbers—9, 17, 32, 16, 8, 2, 9, 7, 3, 18—find x , x 2 , and x 2<br />

x 9 17<br />

32 16<br />

8 2 9 7 3 18<br />

121<br />

2 2 2 2 2 2 2 2 2 2<br />

x 9 17<br />

32 16<br />

8 2 9 7 3 18<br />

81<br />

289 1024<br />

64 4 81<br />

49 9 324 1925<br />

2<br />

2 2<br />

(9 17<br />

32 16<br />

8 2 9 7 3 18)<br />

121 14,<br />

641<br />

x<br />

Summation Application Problem<br />

An important statistical concept is the variance. At this point it isn’t important for you to know<br />

what the variance is or why it is important (you will learn that in your statistics class), but we can<br />

use what we know about summation signs to help us calculate it. There are two different<br />

formulas for calculating the variance, and we will use both.<br />

Trout, Inc. feeds fingerling trout in special ponds and markets them when they attain a certain<br />

weight. A sample of 10 trout were isolated in a pond and fed a special food mixture, designated<br />

RT-10. At the end of the experimental period, the weights of the trout were (in grams): 124, 125,<br />

125, 123, 120, 124, 127, 125, 126, and 121.<br />

(Lind, Marchal and Mason, Statistical Techniques in Business & Economics, 11 th edition, McGraw-Hill: Boston. p. 108)<br />

2<br />

x<br />

x<br />

2<br />

a. Calculate the variance using the deviation formula. s <br />

n 1<br />

x 124 125<br />

125<br />

123<br />

120<br />

124<br />

127<br />

125<br />

126<br />

121<br />

x <br />

<br />

n<br />

10<br />

2<br />

1240<br />

10<br />

124<br />

s<br />

2<br />

2<br />

2<br />

2<br />

2<br />

x<br />

x 124<br />

124 (125 124)<br />

(125 124)<br />

... 121124<br />

<br />

n 1<br />

<br />

10 1<br />

2<br />

42<br />

4.6667<br />

9<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 22


. Calculate the variance using the direct formula.<br />

s<br />

2<br />

<br />

<br />

<br />

<br />

x<br />

2<br />

x <br />

n<br />

n 1<br />

2<br />

x 124 125<br />

125<br />

123<br />

120<br />

124<br />

127<br />

125<br />

126<br />

121<br />

1240<br />

<br />

s<br />

2<br />

x<br />

<br />

2<br />

2 2 2 2 2 2 2 2 2 2<br />

124<br />

125<br />

125<br />

123<br />

120<br />

124<br />

127<br />

125<br />

126<br />

121<br />

153,<br />

802<br />

<br />

<br />

<br />

x<br />

2<br />

x <br />

n<br />

n 1<br />

2<br />

2<br />

1240<br />

153,802 <br />

<br />

10<br />

4.6667<br />

10 1<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 23


ORDERS OF OPERATIONS<br />

MATH CAMP<br />

School of Public and Environmental Affairs<br />

Day One In-Class Exercises<br />

1. Evaluate the following expressions using the order of operations:<br />

a. 10 35 56<br />

2 15<br />

150 15 3 6 7<br />

2 <br />

b. 21<br />

ROOTS AND EXPONENTS<br />

2. Calculate the following:<br />

a. 2 3<br />

b. 3 2<br />

c. 6 5<br />

d. 1 35<br />

e. 10 2<br />

f. 7 2<br />

g. (-1) 3<br />

h. (-1) 600<br />

i. 3 4<br />

j. 5 0<br />

k. 19 1<br />

l. 6 6<br />

3. Compute:<br />

a. 5 -1<br />

b. 3 -3<br />

c. 17 -2<br />

2<br />

1 <br />

<br />

d. <br />

3 <br />

e. 2 -10<br />

4. Evaluate the following:<br />

1<br />

2<br />

a. 25<br />

b.<br />

1 <br />

<br />

25<br />

1<br />

2<br />

2<br />

3<br />

c. 125<br />

5. Simplify the following:<br />

5 8<br />

a. 3 3<br />

2 3<br />

b. ( 6) ( 6)<br />

( 6)<br />

c.<br />

6<br />

x <br />

x<br />

2<br />

4<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 24


d.<br />

e.<br />

2<br />

2<br />

2<br />

f.<br />

5<br />

x<br />

6<br />

x<br />

1<br />

9 <br />

7<br />

9<br />

2<br />

g. 3<br />

5<br />

h.<br />

2<br />

7<br />

1 1<br />

5<br />

2<br />

3 <br />

i. <br />

4<br />

6. Write the following in the form 10 n :<br />

a. 100<br />

b. 1000<br />

c. (10)(10)(10)(10)(10)<br />

d. (10)(10)(10)(10)(10)(10)(10)<br />

e. ten to the seventh power<br />

f. 10<br />

7. Write the following in scientific notation:<br />

a. 983<br />

b. 1,542<br />

c. 10,000,000<br />

d. 987,400<br />

e. 732,000,000,000<br />

f. .00035<br />

g. .01<br />

h. -.006<br />

i. .0000000892<br />

8. Multiply the following numbers and express the result in scientific notation.<br />

5 3<br />

a. 4(10 ) 5(10 )<br />

FRACTIONS<br />

b. 3(10<br />

3 3<br />

) 3(10 )<br />

9. Compute the following:<br />

a.<br />

5 2 <br />

3 5<br />

b.<br />

6 3<br />

7<br />

c.<br />

5 2 <br />

3 9<br />

d.<br />

7 2<br />

13<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 25


e.<br />

3 2 <br />

4 6<br />

f.<br />

3 4 <br />

8 5<br />

g.<br />

7 5<br />

4<br />

WORKING WITH ALGEBRAIC EXPRESSIONS<br />

10. Simplify the following polynomials by collecting like terms:<br />

a. 6x 3x<br />

5x<br />

2<br />

2<br />

3<br />

b. 5x<br />

2 3x<br />

x 3x<br />

12x<br />

3x<br />

5 x<br />

c. 6( x 4) 3x<br />

2 x<br />

2 5x<br />

11. Multiply the following polynomials:<br />

a. 6x<br />

42<br />

x 1<br />

b. x<br />

3x<br />

3<br />

12. Compute the following:<br />

5x 1<br />

9x<br />

1<br />

a. <br />

x x<br />

2<br />

6x<br />

7 x 1<br />

b. <br />

x 1<br />

x 2<br />

6x 3 9x<br />

4<br />

c. <br />

5x<br />

2 x<br />

8x<br />

2 5x<br />

7x<br />

1<br />

d. <br />

x 8 x <br />

3<br />

13. Evaluate the following expression:<br />

a. 5x 3 y 8x<br />

9y<br />

3, where x = 3 and y = 5<br />

14. A radioactive substance decays in the following manner: In any second, half of it<br />

disappears. If it weighs one ounce at the beginning, how much is left after<br />

a. One second<br />

b. Two seconds<br />

c. Three seconds<br />

d. Four seconds<br />

PERCENT CHANGE<br />

15. Suppose that you paid $5,498 in taxes last year and $6,743 in taxes this year. What is the<br />

percentage increase in the amount you paid for taxes?<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 26


WORKING WITH SUMMATION SIGNS<br />

x<br />

16. Find x for the following:<br />

n<br />

a. -8, 34, -63, 25, 101, -90, 5, 76, 43, -5<br />

x<br />

17. For each set of values, find x , x 2 , and 2<br />

a. 5, 12, 8, 3, 4<br />

<br />

18. Calculate 2<br />

x i<br />

x<br />

for the following. To do this you will first need to compute<br />

x<br />

x .<br />

n<br />

a. 5, 3, -11, 10, 17, 3, -21, 36<br />

19. The annual report of Dennis Industries cited these primary earnings per common share<br />

for the past five years: $2.68, $1.03, $2.26, $4.30, and $3.58.<br />

(Lind, Marchal and Mason, Statistical Techniques in Business & Economics, 11 th edition, McGraw-Hill: Boston. p. 106)<br />

x<br />

a. What is the mean primary earnings per share of common stock? x <br />

n<br />

<br />

2<br />

x<br />

x<br />

2<br />

b. What is the variance? s <br />

n 1<br />

20. An insurance company wants to determine the strength of the relationship between the<br />

number of hours a person works and the number of injuries or accidents that person has<br />

over a period of one week. The data follow. Compute r.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 487)<br />

Hours<br />

worked, x<br />

No. of<br />

accidents, y<br />

r <br />

40 32 36 44 41<br />

1 0 3 8 5<br />

n<br />

xy<br />

<br />

x<br />

y<br />

2<br />

2<br />

2<br />

<br />

x <br />

<br />

x<br />

n<br />

y <br />

n<br />

y<br />

2<br />

<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 27


ORDERS OF OPERATIONS<br />

MATH CAMP<br />

School of Public and Environmental Affairs<br />

Day One In-Class Exercises Solutions<br />

1. Evaluate the following expressions using the order of operations:<br />

2<br />

10<br />

35 5<br />

6 15<br />

10<br />

35 536<br />

15<br />

10<br />

7 36<br />

15<br />

<br />

a.<br />

10<br />

252 15<br />

242 15<br />

227<br />

150 <br />

b.<br />

150<br />

ROOTS AND EXPONENTS<br />

15<br />

36<br />

7 2 21 150 15<br />

36<br />

14 21 150 15<br />

3<br />

20<br />

15<br />

60<br />

21 150 75 21 2 21 23<br />

2. Calculate the following:<br />

a. 2 3 = 8<br />

b. 3 2 = 9<br />

c. 6 5 = 7776<br />

d. 1 35 = 1<br />

e. 10 2 = 100<br />

f. 7 2 = 49<br />

g. (-1) 3 = -1<br />

h. (-1) 600 = 1<br />

i. 3 4 = 81<br />

j. 5 0 = 1<br />

k. 19 1 = 19<br />

l. 6 6 = 46,656<br />

3. Compute:<br />

a. 5 -1 1<br />

= . 2<br />

5<br />

b. 3 -3 1 1<br />

. 037<br />

3<br />

3 27<br />

c. 17 -2 1 1<br />

. 00346<br />

2<br />

17 289<br />

2<br />

2<br />

1 3<br />

3 9<br />

d. 9<br />

2<br />

3<br />

1 1 1<br />

e. 2 -10 1 1<br />

. 000977<br />

10<br />

2 1024<br />

4. Evaluate the following:<br />

a. 25 5<br />

25 2 1<br />

2<br />

21<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 28


1<br />

2<br />

1<br />

2<br />

1 1 1 1<br />

b. . 20<br />

1<br />

25 <br />

25 5<br />

2<br />

25<br />

2<br />

3<br />

3<br />

c. 125 125 5 25<br />

5. Simplify the following:<br />

5 8 58<br />

13<br />

a. 3 3<br />

3 3<br />

2 3 4 234<br />

b. ( 6)<br />

( 6)<br />

( 6)<br />

( 6)<br />

( 6)<br />

c.<br />

d.<br />

e.<br />

f.<br />

6 2 62<br />

8<br />

x x x x<br />

1 7 17<br />

8<br />

9 9<br />

9 9<br />

7<br />

2 72<br />

5<br />

2 2<br />

2<br />

2<br />

x 5<br />

x x<br />

1<br />

56<br />

1<br />

<br />

6<br />

x<br />

x<br />

5<br />

3 3 3<br />

2 2 5 10<br />

g. <br />

h.<br />

2<br />

1<br />

5<br />

2<br />

1<br />

2<br />

(25)<br />

1<br />

2<br />

10<br />

1<br />

<br />

1<br />

10<br />

2<br />

3 3 9<br />

i. <br />

2<br />

4 4 16<br />

6. Write the following in the form 10 n :<br />

a. 100 = 10 2<br />

b. 1000 = 10 3<br />

c. (10)(10)(10)(10)(10) = 10 5<br />

d. (10)(10)(10)(10)(10)(10)(10) = 10 7<br />

e. ten to the seventh power = 10 7<br />

f. 10 = 10 1<br />

7. Write the following in scientific notation:<br />

a. 983 = (9.83)(10 2 )<br />

b. 1,542 = (1.542)(10 3 )<br />

c. 10,000,000 = (10 7 )<br />

d. 987,400 = (9.874)(10 5 )<br />

e. 732,000,000,000 = (7.32)(10 11 )<br />

f. .00035 = (3.5)(10 -4 )<br />

g. .01 = 10 -2<br />

h. -.006 = (-6)(10 -3 )<br />

i. .0000000892 = (8.92)(10 -8 )<br />

8. Multiply the following numbers and express the result in scientific notation.<br />

5 3<br />

53<br />

8<br />

9<br />

a. 4(10 ) 5(10<br />

) (45)(10<br />

) (20)(10 ) (2.0)(10 )<br />

3 3<br />

33<br />

6<br />

b. 3(10 ) 3(10<br />

) (3<br />

3)(10 ) (9)(10 )<br />

9<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 29


FRACTIONS<br />

9. Compute the following:<br />

a.<br />

5 2 5 5 2 3 25 6 25 6 31<br />

<br />

3 5 3 5 5 3 15 15 15 15<br />

b.<br />

6 6 3 6 3 7 6 21 6 21 27<br />

3 <br />

7 7 1 7 1 7 7 7 7 7<br />

c.<br />

d.<br />

5 2 5 3 2 15 2 13<br />

<br />

3 9 3 3 9 9 9 9<br />

7 7 2 7 2 14<br />

2 <br />

13 13 1 131<br />

13<br />

e.<br />

3 2 3<br />

2 6 1<br />

<br />

4 6 4 6 24 4<br />

f.<br />

3 4 3 5 35<br />

15<br />

<br />

8 5 8 4 8<br />

4 32<br />

g.<br />

7 7 5 7 1 7 1<br />

7<br />

5 <br />

4 4 1 4 5 4 5<br />

20<br />

WORKING WITH ALGEBRAIC EXPRESSIONS<br />

10. Simplify the following polynomials by collecting like terms:<br />

a. 6x 3x<br />

5x<br />

8x<br />

b.<br />

5x<br />

2 3x<br />

x<br />

3<br />

9x<br />

2<br />

2<br />

x 3x<br />

12x<br />

7<br />

2<br />

3x<br />

5 x<br />

3<br />

2<br />

2<br />

6( x 4) 3x<br />

2 x 5x<br />

6x<br />

24 3x<br />

2 x 5x<br />

c.<br />

2<br />

x 8x<br />

22<br />

11. Multiply the following polynomials:<br />

2<br />

2<br />

a. 6x<br />

42<br />

x 1 12x<br />

6x<br />

8x<br />

4 12x<br />

2x<br />

4<br />

2<br />

2<br />

b. x<br />

3x<br />

3 x 3x<br />

3x<br />

9 x 9<br />

12. Compute the following:<br />

5x<br />

1<br />

9x<br />

1<br />

5x<br />

1<br />

9x<br />

1<br />

14x<br />

a. <br />

14<br />

x x x x<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 30


.<br />

2<br />

2<br />

6x<br />

7 x 1<br />

6x<br />

7 x 2 x 1<br />

<br />

x 1<br />

x 2 x 1<br />

x 2 x 2<br />

2<br />

3 2<br />

6x<br />

12x<br />

7x<br />

14<br />

x x x 1<br />

<br />

<br />

2<br />

2<br />

x x 2x<br />

2 x x 2x<br />

2<br />

2<br />

3 2<br />

6x<br />

12x<br />

7x<br />

14<br />

x x x 1<br />

<br />

2<br />

x x 2x<br />

2<br />

3 2<br />

x 7x<br />

18x<br />

15<br />

<br />

2<br />

x x 2<br />

x<br />

x<br />

1<br />

1<br />

c.<br />

3<br />

3<br />

6x<br />

9x<br />

4 6x<br />

(9x<br />

4)<br />

<br />

5x<br />

2 x x(5x<br />

2)<br />

2<br />

6x<br />

(9x<br />

4)<br />

<br />

5x<br />

2<br />

3<br />

54x<br />

24x<br />

<br />

5x<br />

2<br />

2<br />

2<br />

2<br />

3 2 2<br />

8x<br />

5x<br />

7x<br />

1<br />

8x<br />

5x<br />

x 3 8x<br />

24x<br />

5x<br />

15x<br />

<br />

2<br />

x 8 x 3 x 8 7x<br />

1<br />

7x<br />

x 56x<br />

8<br />

d.<br />

3 2<br />

8x<br />

29x<br />

15x<br />

<br />

2<br />

7x<br />

55x<br />

8<br />

13. Evaluate the following expression:<br />

a. 5x 3 y 8x<br />

9y<br />

3, where x = 3 and y = 5<br />

3<br />

5(3) (5) 8(3) 9(5) 3 675 24 45 3 741<br />

14. A radioactive substance decays in the following manner: In any second, half of it<br />

disappears. If it weighs one ounce at the beginning, how much is left after<br />

1 1<br />

a. One second 1<br />

ounce<br />

2 2<br />

1 1 1<br />

b. Two seconds ounce<br />

2 2 4<br />

1 1 1<br />

c. Three seconds ounce<br />

4 2 8<br />

1 1 1<br />

d. Four seconds ounce<br />

8 2 16<br />

PERCENT CHANGE<br />

15. Suppose that you paid $5,498 in taxes last year and $6,743 in taxes this year. What is the<br />

percentage increase in the amount you paid for taxes?<br />

6743 5498<br />

.23 => the amount of taxes you paid increased by 23%<br />

5498<br />

WORKING WITH SUMMATION SIGNS<br />

x<br />

16. Find x for the following:<br />

n<br />

a. -8, 34, -63, 25, 101, -90, 5, 76, 43, -5 = 11.8<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 31


17. For each set of values, find x , x 2 , and x 2<br />

a. 5, 12, 8, 3, 4<br />

x 5 12<br />

8 3 4 32<br />

x<br />

2<br />

5<br />

2<br />

12<br />

2<br />

8<br />

2<br />

3<br />

2<br />

4<br />

2<br />

258<br />

2<br />

2 2<br />

(5 12<br />

8 3 4) 32 1024<br />

x<br />

<br />

18. Calculate 2<br />

x i<br />

x<br />

x<br />

x .<br />

n<br />

a. 5, 3, -11, 10, 17, 3, -21, 36<br />

for the following. To do this you will first need to compute<br />

x<br />

x <br />

n<br />

5 3 1110<br />

17<br />

3 21<br />

36<br />

<br />

<br />

8<br />

42<br />

5.25<br />

8<br />

<br />

<br />

<br />

2<br />

2<br />

2<br />

2<br />

2<br />

x i<br />

x x1<br />

x x2<br />

x x3<br />

x ... x8<br />

x<br />

2<br />

2<br />

2<br />

2<br />

2<br />

5<br />

5.25 3<br />

5.25 11<br />

5.25 10<br />

5.25 17<br />

5.25 3<br />

5.25<br />

2<br />

2<br />

<br />

21<br />

5.25 36<br />

5.25 2069. 5<br />

19. The annual report of Dennis Industries cited these primary earnings per common share<br />

for the past five years: $2.68, $1.03, $2.26, $4.30, and $3.58.<br />

(Lind, Marchal and Mason, Statistical Techniques in Business & Economics, 11 th edition, McGraw-Hill: Boston. p. 106)<br />

a. What is the mean primary earnings per share of common stock?<br />

x 2.68 1.03<br />

2.26 4.30 3.58 13.85<br />

x <br />

$2.77<br />

n<br />

5<br />

5<br />

b. What is the variance?<br />

<br />

2<br />

x<br />

x<br />

2<br />

s <br />

n 1<br />

<br />

2<br />

2<br />

2<br />

2<br />

2.68<br />

2.77 1.03<br />

2.77 2.26<br />

2.77 (4.30 2.77) 3.58<br />

2.77<br />

6.2928<br />

$1.57<br />

4<br />

5 1<br />

2<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 32


20. An insurance company wants to determine the strength of the relationship between the<br />

number of hours a person works and the number of injuries or accidents that person has<br />

over a period of one week. The data follow. Compute r.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 487)<br />

Hours<br />

worked, x<br />

No. of<br />

accidents, y<br />

r <br />

40 32 36 44 41<br />

1 0 3 8 5<br />

n<br />

xy<br />

<br />

x<br />

y<br />

2<br />

2<br />

2<br />

<br />

x <br />

<br />

x<br />

n<br />

y <br />

n<br />

y<br />

x 193<br />

y 17<br />

xy 705<br />

x 2<br />

7, 537<br />

y 2<br />

99<br />

r <br />

<br />

n<br />

xy<br />

<br />

x<br />

y<br />

2<br />

2<br />

2<br />

<br />

x <br />

<br />

x<br />

n<br />

y <br />

2<br />

<br />

2<br />

n<br />

y<br />

<br />

5(705) (193)(17)<br />

2<br />

2<br />

5(7,537)<br />

(193) 5(99)<br />

(17) <br />

.814<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 33


MATH CAMP<br />

School of Public and Environmental Affairs<br />

Day One Homework<br />

1. Simplify the following:<br />

a.<br />

2<br />

5 <br />

<br />

<br />

7 <br />

1<br />

2<br />

2<br />

b. 3<br />

.16<br />

c.<br />

<br />

2<br />

4b<br />

c<br />

<br />

4<br />

b c<br />

1<br />

2<br />

1<br />

4<br />

<br />

<br />

<br />

<br />

<br />

1<br />

2<br />

2. Compute the following:<br />

a. 7 x<br />

2 5x<br />

62<br />

x 9<br />

b.<br />

2<br />

3x 2 9x<br />

x 12<br />

<br />

x x<br />

3. Suppose that your nonprofit organization had 135 clients last year and 156 clients this year.<br />

By what percent did your clientele increase?<br />

4. Suppose that you had 3 cousins in 1995 and 23 cousins in 2005. What is the percent change?<br />

<br />

5. Show that x<br />

x 0<br />

i<br />

. (This is something that you will see again in your statistics class.<br />

These are called deviations from the mean.) (Hint: You will use the fact that<br />

x<br />

x )<br />

n<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 34


6. Dave’s Automatic Door installs automatic garage door openers. Based on a sample, following<br />

are the times, in minutes, required to install 10 doors: 28, 32, 24, 46, 44, 40, 54, 38, 32, and 42.<br />

(Lind, Marchal and Mason, Statistical Techniques in Business & Economics, 11 th edition, McGraw-Hill: Boston. p. 108)<br />

a. Calculate the variance using the deviation formula.<br />

b. Calculate the variance using the direct formula. s<br />

2<br />

s<br />

<br />

2<br />

<br />

x x<br />

<br />

n 1<br />

<br />

<br />

<br />

2<br />

<br />

x<br />

2<br />

x <br />

n<br />

n 1<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 35


MATH CAMP<br />

School of Public and Environmental Affairs<br />

Day One Homework Solutions<br />

1. Simplify the following:<br />

2<br />

2<br />

5 7 7<br />

a. <br />

2<br />

7 5 5<br />

b. 3.16<br />

2<br />

2<br />

1<br />

3.16 1<br />

2<br />

2<br />

1<br />

<br />

2 3.16 3. 16<br />

c.<br />

<br />

2<br />

4b<br />

c<br />

<br />

4<br />

b c<br />

b<br />

<br />

1<br />

1<br />

2<br />

1<br />

4<br />

1 1 2<br />

<br />

8 4 2<br />

c<br />

2<br />

<br />

<br />

<br />

<br />

<br />

1<br />

2<br />

<br />

4<br />

b c<br />

<br />

2<br />

4b<br />

c<br />

1 2<br />

<br />

8 8<br />

c<br />

<br />

2b<br />

1<br />

4<br />

1<br />

2<br />

<br />

1<br />

<br />

8<br />

1<br />

2<br />

<br />

<br />

<br />

<br />

<br />

c<br />

<br />

2b<br />

4<br />

b<br />

1<br />

2<br />

1<br />

2bc<br />

1<br />

4<br />

2<br />

b<br />

1<br />

8<br />

c<br />

1<br />

2<br />

2<br />

1 1<br />

<br />

4 2<br />

c<br />

1 1<br />

<br />

2 2<br />

<br />

b<br />

2<br />

2b<br />

c<br />

1<br />

1<br />

8<br />

c<br />

1<br />

4<br />

b<br />

<br />

c<br />

2<br />

2(<br />

1)<br />

1 1<br />

<br />

8 4<br />

2. Compute the following:<br />

2<br />

7x<br />

5x<br />

6 2x<br />

9<br />

14x<br />

a. 3 2<br />

14x<br />

53x<br />

33x<br />

54<br />

3<br />

10x<br />

2<br />

12x<br />

63x<br />

2<br />

45x<br />

54<br />

b.<br />

2<br />

2<br />

2<br />

3x 2 9x<br />

x 12<br />

3x<br />

2 9x<br />

x 12<br />

9x<br />

4x<br />

10<br />

<br />

<br />

<br />

x x<br />

x<br />

x<br />

3. Suppose that your nonprofit organization had 135 clients last year and 156 clients this year.<br />

By what percent did your clientele increase?<br />

156 1.16 => your clientele is 116% of what is was last year, so it increased by<br />

135<br />

16%<br />

4. Suppose that you had 3 cousins in 1995 and 23 cousins in 2005. What is the percent change?<br />

23 3 20<br />

6.67 => your number of cousins has increased by 667%<br />

3 3<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 36


5. Show that x<br />

x 0<br />

These are called deviations from the mean.)<br />

i<br />

. (This is something that you will see again in your statistics class.<br />

<br />

<br />

<br />

<br />

x x<br />

x <br />

i<br />

<br />

<br />

( x x1<br />

) ( x x2<br />

) ... ( x xn<br />

)<br />

x<br />

i<br />

nx <br />

<br />

x<br />

i<br />

<br />

n<br />

<br />

<br />

xi<br />

<br />

<br />

n<br />

<br />

<br />

x<br />

i<br />

0<br />

6. Dave’s Automatic Door, referred to in Exercise 3, installs automatic garage door openers.<br />

Based on a sample, following are the times, in minutes, required to install 10 doors: 28, 32, 24,<br />

46, 44, 40, 54, 38, 32, and 42.<br />

(Lind, Marchal and Mason, Statistical Techniques in Business & Economics, 11 th edition, McGraw-Hill: Boston. p. 108)<br />

x<br />

x <br />

n<br />

a. Calculate the variance using the deviation formula.<br />

<br />

2<br />

x<br />

x<br />

2<br />

s <br />

n 1<br />

28 32 24 46 44 40 54 38 32 42 380<br />

<br />

38<br />

10<br />

10<br />

s<br />

2<br />

2<br />

2<br />

x<br />

x 28<br />

38 ... 42<br />

38<br />

744<br />

<br />

82.6667<br />

n 1<br />

10 1<br />

9<br />

b. Calculate the variance using the direct formula.<br />

<br />

x<br />

2<br />

x <br />

2<br />

s <br />

n<br />

n 1<br />

x 28 32 24 46 44 40 54 38 32 42 380<br />

<br />

2<br />

2<br />

x<br />

2<br />

28<br />

2<br />

32<br />

2<br />

24<br />

2<br />

46<br />

2<br />

...<br />

32<br />

2<br />

42<br />

2<br />

15,184<br />

s<br />

2<br />

<br />

<br />

2<br />

<br />

x 380<br />

2<br />

x <br />

n<br />

n 1<br />

15,184 <br />

<br />

10<br />

10 1<br />

2<br />

744<br />

82.66667<br />

9<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 37


MATH CAMP<br />

School of Public and Environmental Affairs<br />

Day Two: Solving and Manipulating Equations<br />

Day Two Class Notes<br />

FACTORING<br />

If an algebraic expression is the product of other algebraic expressions, then each of the algebraic<br />

expressions that were multiplied together is called a factor of the product. Suppose that a, b, and<br />

c are algebraic expressions. If a b c then a and b are both factors of c.<br />

2<br />

2<br />

For instance, because ( x 1)(<br />

x 2) x 2x<br />

x 2 x x 2 , we can say that (x-1) and<br />

2<br />

(x+2) are factors of x x 2 .<br />

The process of finding factors of an algebraic expression is called factoring. Factoring is useful<br />

because it helps us to solve equations or otherwise manipulate algebraic expressions. We want<br />

to factor a polynomial until it is prime. A prime algebraic expression is one that doesn’t have<br />

any monomial or polynomial factors with integer coefficients other than one and itself.<br />

3 2<br />

2<br />

Example 1: x 3x<br />

2x<br />

6 ( x 3)( x 2)<br />

Each of the two factors, (x-3) and x 2 2<br />

are prime because the integer coefficients are<br />

not divisible by anything other than 1 and themselves.<br />

4 2<br />

2 2<br />

2<br />

Example 2: 20x<br />

48x<br />

y 16y<br />

(4x<br />

8y)(5x<br />

2y)<br />

Even though we have factored this equation into two separate factors, we still aren’t done<br />

because the factor 4x 2 8y<br />

isn’t prime yet. We can still factor it further.<br />

4 2<br />

2 2<br />

2<br />

2<br />

2<br />

So 20x<br />

48x<br />

y 16y<br />

(4x<br />

8y)(5x<br />

2y)<br />

4( x 2y)(5x<br />

2y)<br />

3 2<br />

Example 3: To factor the polynomial 10x 15x<br />

5x<br />

, we have to factor out the monomial 5x,<br />

which is common to all three terms in the polynomial.<br />

3 2<br />

2<br />

So 10x<br />

15x<br />

5x<br />

5x(2x<br />

3x<br />

1)<br />

Example 4: Even if the whole polynomial might not have a common monomial to factor out, we<br />

can often group terms together and factor a monomial out of the group.<br />

2x<br />

2 5x<br />

2xy<br />

5y<br />

x(2x<br />

5) y(2x<br />

5) ( x y)(2x<br />

5)<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 38


Formulas for Factoring<br />

The following formulas can be useful in helping us to factor various polynomials into their prime<br />

factors.<br />

2<br />

Formula 1: x ( a b)<br />

x ab ( x a)(<br />

x b)<br />

Formula 2:<br />

x<br />

2<br />

<br />

2<br />

2xy<br />

y ( x y<br />

2<br />

2<br />

Formula 3: acx ( ad bc)<br />

xy bdy ( ax by)(<br />

cx dy)<br />

)<br />

2 2<br />

Formula 4: (Difference of Two Squares): x y ( x y)(<br />

x y)<br />

3 3<br />

2<br />

2<br />

Formula 5: (Difference of Two Cubes): x y ( x y)(<br />

x xy y )<br />

3 3<br />

2<br />

2<br />

Formula 6: (Sum of Two Cubes): x y ( x y)(<br />

x xy y )<br />

2<br />

2<br />

Formula 7: (A Variant on the Difference of Two Squares): x d ( x d )( x d )<br />

Using these factoring formulas, we can follow this general procedure to factor polynomials into<br />

their prime factors.<br />

(1) If all the terms in the polynomial have a common factor (other than 1), then factor out the<br />

common factor.<br />

(2) If the polynomial has only two terms, then determine if it is the difference of two squares,<br />

the difference of two cubes or the sum of two cubes. If the polynomial falls into one of<br />

these categories, then you can use it is, then you can use Formulas 4, 5, 6 or 7 to factor<br />

the equation.<br />

(3) If the polynomial has three terms, then you will need to use Formulas 1, 2 or 3 to factor<br />

it.<br />

(4) If the polynomial has more than three terms, try to factor the polynomial by grouping<br />

terms together that might have a common factor.<br />

a. Arrange the four terms so that the first two terms have a common factor and the<br />

second two terms have a common factor.<br />

b. Use the distributive property to factor each group of two terms.<br />

(5) Look at your polynomial again to see if the terms in any of the factors have a common<br />

factor. If so, then factor it out.<br />

(6) Check your work to make sure that you factored everything correctly.<br />

These examples show how to use the factoring formulas to factor polynomials.<br />

Example 1:<br />

Example 2:<br />

Example 3:<br />

2<br />

2<br />

x 2x<br />

15<br />

x ( 3)<br />

x 5x<br />

( 3)(5)<br />

by Formula 1<br />

x(<br />

x 3) 5( x 3) ( x 3)( x 5)<br />

2<br />

2<br />

x 4x<br />

4 ( x 2)( x 2) ( x 2) by Formula 2<br />

9 <br />

2<br />

2<br />

a 24a<br />

16<br />

(3a<br />

4) by Formula 2<br />

2 2<br />

Example 4: 25u<br />

36v<br />

(5u<br />

6v)(5u<br />

6v)<br />

by Formula 4<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 39


2<br />

2<br />

Example 5: To factor the polynomial 6x<br />

11xy<br />

10y<br />

into the product of two binomials<br />

( ax by)(<br />

cx dy)<br />

, such as in Formula 3, we have to find a and c such that ac = 6 and b and d<br />

such that bd = -10 and such that ad + bc = -11. The possibilities for b and d are: (1,-10); (-1, 10);<br />

(2,-5) and (-2, 5). The possibilities for a and c are: (1,6) or (2,3). By testing these combinations,<br />

2<br />

2<br />

we find that 6x<br />

11xy<br />

10y<br />

(2x<br />

5y)(3x<br />

2y)<br />

.<br />

3<br />

3 3<br />

8a<br />

27 (2a)<br />

3 (2a<br />

3) (2a)<br />

Example 6:<br />

2<br />

(2a<br />

3)(4a<br />

6a<br />

9)<br />

<br />

2<br />

(2a)(3)<br />

3<br />

2<br />

Example 7: x 81<br />

( x 81)( x 81) ( x 9)( x 9)<br />

by Formula 7<br />

Example 8:<br />

64a<br />

3<br />

b<br />

3<br />

(4a)<br />

<br />

(4a<br />

b)16a<br />

2<br />

3<br />

3<br />

b<br />

(4a<br />

b)<br />

(4a)<br />

4ab<br />

b<br />

2<br />

<br />

<br />

2<br />

(4a)(<br />

b)<br />

b<br />

2<br />

2<br />

<br />

<br />

by Formula 6<br />

by Formula 5<br />

2<br />

2<br />

Example 9: x 2xy<br />

3xy<br />

6y<br />

xx<br />

2y)<br />

3y(<br />

x 2y)<br />

( x 3y ( x 2y)<br />

by grouping terms<br />

together and using the distributive property to factor out their common factor<br />

QUICK POLYNOMIAL REVIEW<br />

Remember that the degree of a polynomial is equal to the degree of the monomial with the<br />

highest degree in the polynomial.<br />

f ( x)<br />

a<br />

0<br />

Constant function, degree = 0 (think of a x a 1<br />

a )<br />

f ( x)<br />

a bx<br />

Linear function, degree = 1<br />

f ( x)<br />

cx<br />

2<br />

a bx <br />

Quadratic function, degree = 2<br />

f ( x)<br />

dx<br />

…and so on<br />

2 3<br />

x bx cx Cubic function, degree = 3<br />

SOLVING EQUATIONS<br />

As mentioned earlier, one of the reasons that we need to know how to factor polynomials is<br />

because we want to be able to find all the roots of the polynomial. A root of a polynomial is a<br />

number that when substituted into a polynomial in place of the variable, the entire equation<br />

equals 0. A root is also called a solution to the equation.<br />

Solving Linear Equations<br />

We can find these roots by solving for x in an equation. We’ll start with a simple linear equation<br />

(a polynomial of degree 1). We want to find the value of x that will make the equation equal 0.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 40


To solve for x, remember one very important rule—whatever you do to one side of the equation,<br />

you must also do to the other side. So if you add 5 to one side, then you must add five to the<br />

other side, and so forth.<br />

3<br />

Example: Solve the equation 5x x 4 for x.<br />

2<br />

3<br />

5x<br />

x 4<br />

2<br />

3 3 3<br />

5x<br />

x x x 4<br />

2 2 2<br />

3<br />

5x<br />

x 4<br />

2<br />

3<br />

2 (5x)<br />

2 x (2)( 4)<br />

2<br />

10x<br />

3x<br />

8<br />

7x<br />

8<br />

7x<br />

<br />

7<br />

x <br />

8<br />

7<br />

8<br />

7<br />

8<br />

3<br />

Therefore x is the root of the equation 5x<br />

x 4 . We can check this answer by<br />

7<br />

2<br />

8<br />

substituting x into the equation in the place of x.<br />

7<br />

This is how to find a root for a polynomial of degree 1 (a linear function). Now we will find the<br />

roots for a polynomial of degree 2 (a quadratic function). One thing to note: the number of roots<br />

(solutions) to an equation will be equal to the degree of the equation. So our linear equation<br />

above had only one solution. Quadratic equations will have two roots.<br />

Finding Solutions to Quadratic Equations<br />

A second degree algebraic expression with one variable is called a quadratic equation, and it<br />

2<br />

written as: ax bx c 0 . This is the standard form for a quadratic equation.<br />

To find the solutions (roots) to a quadratic equation, follow these steps:<br />

2<br />

(1) Write the equation in the standard form with the x term coming first and having a<br />

positive coefficient. If necessary, rewrite the equation so that all the terms are on the left<br />

hand side of the equation and zero is on the right hand side of the equation.<br />

(2) Factor the left hand side of the equation using the factoring formulas.<br />

(3) Set each of these factors equal to zero (using the Zero-Factory Property) and solve for the<br />

variable.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 41


(4) Check each of the solutions in the original equation.<br />

The Zero-Factor Property states that if a b 0 , then either a 0 or b 0 . This property helps<br />

us to find the solutions to equations that have been factored. For instance, if we know that<br />

( 2x 1)(<br />

x 3) 0 then either 2x 1<br />

0 or x 3 0.<br />

Example: Solve the equation x 2 4 for x.<br />

2<br />

x 4<br />

x<br />

2<br />

4 0<br />

( x 2)( x 2) 0<br />

Rewrite the equation in standard form<br />

Factor using Formula 4<br />

x 2 0<br />

x 2<br />

Set each of the factor equal to zero and solve<br />

x 2 0<br />

x 2<br />

x<br />

2<br />

( 2)<br />

(2)<br />

4<br />

2<br />

2<br />

4<br />

4<br />

Check each solution in the original equation<br />

Therefore, the solutions to this equation are x 2 and x 2<br />

.<br />

2<br />

Example: Find the solutions to the equation x 4x 21 0.<br />

x<br />

2<br />

4x<br />

21 0<br />

( x 7)( x 3) 0<br />

x 7 0 x 7<br />

x 3 0 x 3<br />

x<br />

2<br />

(7)<br />

4x 21 0<br />

2<br />

4 7 21 0<br />

49 28 21 0<br />

0 0<br />

x<br />

2<br />

( 3)<br />

4x 21 0<br />

2<br />

4( 3)<br />

21 0<br />

9 12<br />

21 0<br />

0 0<br />

2<br />

Thus, x = 7 and x = -3 are the solutions to the equation x 4x 21 0.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 42


Remember: The number of roots to an equation is equal to the degree of the equation. So a<br />

quadratic equation always has two roots.<br />

Example: Find the roots of the equation 4y 2 16y 20 0 .<br />

4y<br />

2<br />

4( y<br />

16y<br />

20 0<br />

2<br />

4y<br />

5) 0<br />

4( y 5)( y 1)<br />

0<br />

y 5 0<br />

y 5<br />

y 1<br />

0<br />

y 1<br />

Using the Quadratic Equation<br />

In the event that a quadratic equation cannot be easily factored, we can also use the quadratic<br />

equation to find the solutions to the equation. Remember that a second degree algebraic<br />

2<br />

expression with one variable is typically written as: ax bx c 0 . Anytime we have an<br />

equation of this form, the roots to the equation can be found by substituting the coefficients a, b,<br />

and c into the formula:<br />

b <br />

x <br />

b<br />

2 4ac<br />

2a<br />

Example: Find the roots to the equation 6x<br />

2 7x 5 0 using the quadratic formula. In this<br />

case a = 6, b = -7 and c = -5.<br />

b <br />

x <br />

( 7)<br />

<br />

<br />

7 <br />

<br />

7 169<br />

<br />

12<br />

7 13<br />

<br />

12<br />

2<br />

b 4ac<br />

2a<br />

( 7)<br />

2(6)<br />

49 120<br />

12<br />

2<br />

4(6)( 5)<br />

So<br />

7 13<br />

20 5<br />

x and<br />

12 12 3<br />

7 13<br />

x <br />

12<br />

6 1<br />

are the solutions to the equation.<br />

12 2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 43


Imaginary Numbers<br />

Sometimes when determining the roots of an equation, you will encounter a square root of a<br />

negative number, such as<br />

to define i, where i 1<br />

.<br />

2<br />

n<br />

. In order to take the square root of a negative number, we need<br />

Example: Using the quadratic equation, we can find the roots of the equation<br />

25x<br />

2 10x 13<br />

0<br />

b <br />

x <br />

10<br />

<br />

<br />

10<br />

<br />

<br />

10<br />

1200<br />

<br />

50<br />

10<br />

<br />

<br />

10<br />

<br />

<br />

10<br />

20i<br />

<br />

50<br />

1<br />

2i<br />

<br />

5<br />

2<br />

b 4ac<br />

2a<br />

(10)<br />

100 1300<br />

50<br />

11200<br />

50<br />

1 1200<br />

50<br />

10<br />

i 400 3<br />

<br />

50<br />

3<br />

2(25)<br />

3<br />

4(25)(13)<br />

When dealing with real world application, we usually won’t be dealing with imaginary roots. An<br />

imaginary root might be a mathematical solution to a problem but not a practical solution to a<br />

problem. However, you should be aware that imaginary roots do exist.<br />

Solving Radical Equations<br />

Radical equations are equations where the variable appears in a radical, such as a square root or<br />

cube root. We often solve these equations by changing the form of the equation to make it linear<br />

or quadratic. However, extraneous roots can arise in certain mathematical situations when we<br />

change the form of an equation. For instance, when we square an equation to get rid of a square<br />

root, we can introduce extraneous or false roots because squaring both a number and the opposite<br />

of that number will give you the same result. In this case, one, both or neither solution might<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 44<br />

2


work. In order to determine if extraneous roots are present, you must go back and check each of<br />

the roots to see if it satisfies the original equation.<br />

Example: Solve the following equation: x 10 x 10<br />

x 10<br />

x 10<br />

x 10<br />

10 x<br />

2<br />

x 10 10<br />

x<br />

x 10<br />

(10 x)(10<br />

x)<br />

x 10<br />

100 10x<br />

10x<br />

x<br />

x<br />

x<br />

2<br />

2<br />

20x<br />

100<br />

x 10<br />

0<br />

21x<br />

90 0<br />

( x 15)(<br />

x 6) 0<br />

x 6,15<br />

2<br />

Now we have to check both of these solutions.<br />

2<br />

x 10<br />

x 10<br />

6 10<br />

6 10<br />

16 6 10<br />

4 6 10<br />

10 10<br />

Because x = 6 solves the original equation, it is a solution.<br />

x 10<br />

x 10<br />

15 10<br />

15<br />

10<br />

25 15<br />

10<br />

5 15<br />

10<br />

20 10<br />

Because x = 15 doesn’t solve the original equation, it is not a<br />

solution.<br />

Solving Cubic and Higher Polynomials<br />

To find the solutions (roots) to a higher degree polynomial (usually a cubic polynomial), follow<br />

these steps:<br />

(1) Write the equation in standard form with the right hand side of the equation being zero<br />

and the other terms being written in decreasing order on the left hand side of the<br />

equation.<br />

(2) Factor the left hand side of the equation using the factoring formulas.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 45


a. If the polynomial cannot be factored using the formulas, then it would be<br />

necessary to use a computer to find the solutions to the equation.<br />

(3) Set each of these factors equal to zero (using the Zero-Factory Property) and solve for the<br />

variable.<br />

(4) Check each of the solutions in the original equation.<br />

Example: Find the roots of the following equation: 27x 3 8<br />

0 .<br />

27x<br />

3<br />

8 0<br />

(3x<br />

2)(9x<br />

2<br />

6x<br />

4) 0<br />

Factor using Formula 5<br />

3x<br />

2 0<br />

3x<br />

2<br />

x <br />

2<br />

3<br />

Set each factor equal to zero and solve<br />

9x 2 6x 4 0<br />

Solve this equation using the quadratic formula.<br />

x <br />

x <br />

x <br />

x <br />

b <br />

6 <br />

2<br />

b 4ac<br />

2a<br />

6<br />

4(9)(4)<br />

2(9)<br />

6 36 144<br />

18<br />

6 i 108<br />

18<br />

2<br />

SOLVING SYSTEMS OF EQUATIONS<br />

Not only do we want to solve one equation with one variable for its roots, but we also want to be<br />

able to solve two or more related equations for their roots as well. Two or more of these related<br />

equations are called systems of equations, or simultaneous equations. A system of two equations<br />

could look like this:<br />

ax<br />

by c<br />

<br />

dx<br />

ey f<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 46


Substitution Method<br />

The substitution method for solving a system of equations involves solving one of the equations<br />

for one variable in terms of the second variable, and then substituting that into the second<br />

equation.<br />

x<br />

4y<br />

6<br />

<br />

2x<br />

y 3<br />

Start by solving the first equation for x in terms of y.<br />

x 4y<br />

6<br />

x 6 4y<br />

Then substitute this in for x in the second equation, and then solve that equation for y.<br />

2x<br />

y 3<br />

2(6 4y)<br />

y 3<br />

12 8y<br />

y 3<br />

9y<br />

3 12<br />

9y<br />

9<br />

y 1<br />

Now substitute y 1<br />

into the first equation to get a value for x.<br />

x 4y<br />

6<br />

x 4( 1)<br />

6<br />

x 4 6<br />

x 6 4<br />

x 2<br />

So the solution set for this system of equations is (2,-1).<br />

Addition-Subtraction Method<br />

This method is based on the principle that when you multiply any equation by a constant, it is<br />

still the same equation. As long as we are consistent about performing the same operation on<br />

both sides of the equation, then we are still dealing with the same equation.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 47


Example: Suppose we want to find the solution set for the following system of equations.<br />

x<br />

y 1<br />

<br />

3x<br />

4y<br />

2<br />

We want to find a multiple of one equation that when added to (or subtracted from) the other<br />

equation, it will cancel out one of the variables. Since we have x in equation 1 and 3x in<br />

equation 2, we could multiply equation 1 by the number -3 and then add the two equations<br />

together in order to get rid of the x.<br />

x<br />

y 1<br />

<br />

3x<br />

4y<br />

2<br />

(<br />

3)<br />

x ( 3)<br />

y ( 3)(1)<br />

<br />

3x<br />

4y<br />

2<br />

<br />

3x<br />

3y<br />

3<br />

<br />

3x<br />

4y<br />

2<br />

3x<br />

3x<br />

4y<br />

3y<br />

2 ( 3)<br />

7 y 1<br />

1<br />

y <br />

7<br />

Now substitute the solution for y back into the first equation to get x.<br />

x y 1<br />

1 <br />

x 1<br />

7 <br />

1<br />

x 1<br />

7<br />

x 1<br />

1<br />

7<br />

<br />

7<br />

7<br />

<br />

1<br />

7<br />

<br />

6<br />

7<br />

Therefore the solution set to this system of equations is<br />

6 1 <br />

, .<br />

7 7 <br />

Systems of Equations with No Solutions<br />

In order for a system of equations to have one unique solution, the systems need to be<br />

independent and consistent. We also need to have as many equations as we have variables, so if<br />

we have two variables, then we need to have two equations in order to solve it. If we have three<br />

variables, then we need to have three equations in order to find the solution.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 48


What does it mean to be consistent and independent? Well, dependent equations (opposite of<br />

independent) are equations that are a linear combination of each other. This means that you can<br />

obtain one equation by multiplying the other equation by a non-zero constant.<br />

Example: Find the solution set to the following system of equations.<br />

3x<br />

2y<br />

4<br />

<br />

6x<br />

4y<br />

8<br />

Using the addition/subtraction method, we just multiply equation 1 by -2 and add that to the<br />

second equation.<br />

3x<br />

2y<br />

4<br />

<br />

6x<br />

4y<br />

8<br />

(<br />

2)(3x)<br />

( 2)(2y)<br />

( 2)(4)<br />

<br />

6x<br />

4y<br />

8<br />

<br />

6x<br />

4y<br />

8<br />

<br />

6x<br />

4y<br />

8<br />

If we were to try to add these two equations together, then not only would x cancel out, but y<br />

would as well. There is no unique solution because there are actually infinite solutions to this<br />

system of equations. These equations actually describe the same exact line, so any point on that<br />

line is a solution. This gives us an infinite solution set.<br />

This is an example of a set of dependent equations.<br />

Inconsistency basically means that there is no solution to the system of equations. There is no<br />

point (x, y) that will simultaneously satisfy both equations. Consider the following system of<br />

equations:<br />

6x<br />

3y<br />

5<br />

<br />

2x<br />

y 4<br />

If we were to graph these two lines, we would see that they are parallel and never intersect. If<br />

we solve equation 1 in terms of y, we get:<br />

6x<br />

3y<br />

5<br />

3y<br />

5 6x<br />

5<br />

y 2x<br />

3<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 49


Now substitute this into equation 2:<br />

2x<br />

y 4<br />

<br />

2x<br />

<br />

<br />

5<br />

2x<br />

<br />

3<br />

5<br />

4<br />

3<br />

<br />

5 <br />

2x<br />

4<br />

3 <br />

2x<br />

4<br />

The final result is not true. Therefore this system of equations is inconsistent and we cannot find<br />

a unique solution.<br />

SOLVING INEQUALITIES<br />

An inequality is any equation that uses the symbols<br />

inequalities:<br />

, ,<br />

,<br />

. So the following would all be<br />

a b<br />

ax b 0<br />

5 3<br />

ax<br />

2<br />

5 bx 8<br />

When we solve an inequality, we are trying to find all the values of the variable that make the<br />

statement true. Solving inequalities is very similar to solving other types of equations.<br />

Remember the rule—whatever you do to one side of the equation, you also must do to the other<br />

side of the equation. With inequalities, there are just a few other things to pay attention to.<br />

Some Rules to Remember When Solving Inequalities:<br />

(1) Just like other equations, you can add or subtract the same number from both sides of the<br />

inequality.<br />

(2) When multiplying or dividing an inequality by a negative number, you need to change<br />

the direction of the inequality (from < to >, etc).<br />

(3) When multiplying an inequality by a positive number, you do not need to change the<br />

direction of the inequality.<br />

(4) If you take the reciprocal of both sides of an inequality, then you need to change the<br />

direction of the inequality.<br />

(5) If you square both sides of an inequality, then you do not need to change the sign of the<br />

inequality.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 50


Example 1: Solve the following inequality for x.<br />

2x<br />

5 21<br />

2x<br />

21<br />

5<br />

2x<br />

16<br />

16<br />

x 8<br />

2<br />

x 8<br />

Example 2: Solve the following inequality for x.<br />

x<br />

9 1<br />

3<br />

x<br />

1<br />

9<br />

3<br />

x<br />

8<br />

3<br />

x ( 8)(3)<br />

x 24<br />

x 24<br />

Inequalities with No Solution or Infinitely Many Solutions<br />

It is possible when solving an inequality that we cannot find a simple solution to the equation. In<br />

this case there is either no solution or infinitely many solutions, depending on the result of the<br />

problem.<br />

Example 1: Solve this inequality 3(<br />

x 5) 6x<br />

3x<br />

20 .<br />

3( x 5) 6x<br />

3x<br />

20<br />

3x<br />

15<br />

6x<br />

3x<br />

20<br />

3x<br />

15<br />

3x<br />

20<br />

15 20<br />

Because 15 < 20 is true, there are infinitely many solutions to this inequality.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 51


Example 2: Solve the inequality<br />

4(<br />

x 1) x 23 3x<br />

.<br />

4( x 1)<br />

x 23 3x<br />

4x<br />

4 x 23 3x<br />

4x<br />

4 4x<br />

23<br />

4 23<br />

Because 4 > 23 is never true, there are no solutions to this inequality.<br />

Solving Quadratic Inequalities<br />

When solving quadratic inequalities, we have to be a little bit more careful. We will need to use<br />

a number line to help us to determine which solutions are correct. Follow these steps when<br />

solving quadratic inequalities:<br />

(1) Write the inequality in standard form with zero on the right hand side.<br />

(2) Factor the inequality on the left hand side.<br />

(3) Set the factors equal to zero and solve for the roots.<br />

(4) Plot these roots on a number line.<br />

(5) For each segment of the number line, determine the signs of the two factors in that<br />

interval.<br />

(6) Find the segments on the number line that makes the original inequality true.<br />

2<br />

Example: Solve the inequality x x 12<br />

.<br />

x<br />

x<br />

2<br />

2<br />

x 12<br />

x 12<br />

0<br />

x<br />

2<br />

x 12<br />

0<br />

( x 4)( x 3) 0<br />

x 4<br />

x 3<br />

(-)(-) (-)(+) (+)(+)<br />

(1)<br />

x < -3<br />

(2)<br />

x = -3 x = 4<br />

-3 < x < 4<br />

(3)<br />

x > 4<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 52


We plot the two solutions x 3<br />

and x 4 on the number line. These two solutions<br />

divide the number line into three intervals. In the interval on the left, interval (1), we have<br />

x 3 . In this range, the first factor of the equation above, ( x 4)<br />

, would be negative because<br />

if we insert any number less than -3 into the equation, we would get a negative number. In<br />

interval 1, the second factor ( x 3)<br />

would also be negative because we would be adding three to<br />

some number less than -3. So both factors would be negative in this interval. The product of<br />

these two negative numbers would be positive, and that satisfies the original equation that the<br />

product of these two factors be greater than 0. So x 3<br />

is a solution of this equation.<br />

In interval (2), where 3 x 4, we would get a negative factor and a positive factor.<br />

The product of these two factors would be negative, so that does not satisfy the original equation.<br />

Thus, 3 x 4 is not a solution to the inequality.<br />

In interval (3), where x 4 , both factors would be positive. The product of two positive<br />

factors is positive, so x 4 is also a solution to the inequality.<br />

Solving Absolute Value Equations<br />

The following formulas are helpful in working with equations and inequalities that use absolute<br />

values.<br />

Formula 1:<br />

a<br />

a <br />

a<br />

Formula 2:<br />

a <br />

a<br />

Formula 3:<br />

a b<br />

b a<br />

Formula 4:<br />

ab <br />

a b<br />

Formula 5:<br />

2<br />

b <br />

b<br />

2<br />

Formula 6:<br />

a b<br />

<br />

a b<br />

Formula 7:<br />

a b<br />

<br />

a b<br />

Formula 8:<br />

Formula 9:<br />

true for )<br />

x a is equivalent to x = a or x = -a, where a is any positive number<br />

x a is equivalent to a x a , where a is any positive number (The same is<br />

Formula 10: x a is equivalent to x a<br />

or x a , where a is any positive number (The same<br />

is true for )<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 53


There are three main steps to follow when solving inequalities that involve an absolute value.<br />

(1) First you will need to get rid of the absolute value sign by rewriting the original equation.<br />

a. If the equation involves an equality (=), such as ax b c then write the original<br />

equation as the two equations ax b c or ax b c<br />

. (By Formula 8)<br />

b. If the equation uses the greater than sign (>), such as ax b c then rewrite the<br />

equation as ax b c or ax b c<br />

. (by Formula 10)<br />

c. If the equation uses a less than sign (


Now check both solutions<br />

y 3 6 2<br />

y 3 6 2<br />

7 3 6 2<br />

1<br />

3 6 2<br />

4 6 2<br />

4 6 2<br />

10 2<br />

10 2<br />

Neither y 7<br />

nor y 1 work as solutions to this problem.<br />

Example 3: 9x<br />

5 4<br />

9x<br />

5 4<br />

9x<br />

4 5<br />

9x<br />

9<br />

x 1<br />

9x<br />

5 4<br />

9x<br />

4<br />

5<br />

9x<br />

1<br />

x <br />

1<br />

9<br />

Example 4: 9x<br />

5 4<br />

4 9x<br />

5 4<br />

4 5 9x<br />

4 5<br />

1 9x<br />

9<br />

1<br />

x 1<br />

9<br />

Taking the Square Root in an Equation<br />

When taking the square root of a variable that is a square, we need to remember to use Rule 5 for<br />

working with exponents (see Day One Class Notes), which says<br />

rules for working with absolute values to finish solving the equation.<br />

2<br />

Example: Solve the equation x 25 0 .<br />

x<br />

x<br />

2<br />

2<br />

x<br />

25 0<br />

25<br />

2<br />

<br />

x 5<br />

x 5<br />

25<br />

b<br />

2<br />

b . We can then use our<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 55


MATH CAMP<br />

School of Public and Environmental Affairs<br />

Day Two In-Class Exercises<br />

FACTORING<br />

1. Factor the given polynomial:<br />

a. 5a 2 25ab<br />

b.<br />

3 3<br />

x n <br />

3x<br />

c.<br />

2<br />

2<br />

4x<br />

29xy<br />

25y<br />

d. x<br />

2 16<br />

e.<br />

3<br />

64a b<br />

SOLVING EQUATIONS<br />

3<br />

2. Find the solutions (roots) to the following equations either directly or by using the<br />

factoring formulas if necessary:<br />

a. 2t<br />

2 11<br />

0<br />

b. 25x<br />

2 85x 30 0<br />

c. x 3 x 5<br />

3. Find the solutions to the following equations by using the quadratic formula:<br />

2<br />

a. x 4x 3 0<br />

2<br />

b. 6y<br />

6 y<br />

4. Find the solutions to the following higher-order equation:<br />

a. 64x<br />

3 125<br />

5. Find three consecutive positive integers, the sum of whose squares is 770.<br />

SOLVING SYSTEMS OF EQUATIONS<br />

6. Find the solution set to the following systems of equations using the substitution method:<br />

a.<br />

x<br />

y 1<br />

<br />

2x<br />

y 3<br />

b.<br />

3y<br />

x 5<br />

<br />

x<br />

2y<br />

10<br />

7. Find the solution set to the following systems of equations using the addition/subtraction<br />

method. If the system of equations cannot be solved, then indicate if it is dependent or<br />

inconsistent.<br />

4x<br />

y 5 0<br />

a. <br />

3y<br />

12x<br />

15<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 56


.<br />

c.<br />

2x<br />

4y<br />

5<br />

<br />

4x<br />

5y<br />

6<br />

x 3 y 5<br />

<br />

7<br />

2 3<br />

<br />

x 4 2y<br />

3<br />

2<br />

3 5<br />

SOLVING INEQUALITIES<br />

8. Solve the following inequalities for x:<br />

2<br />

a. x 9 0<br />

b. 17x<br />

15<br />

5<br />

c. 3x 2 9x<br />

9. Solve the following absolute value equation:<br />

a. 2x<br />

7 5<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 57


MATH CAMP<br />

School of Public and Environmental Affairs<br />

Day Two In-Class Exercises Solutions<br />

FACTORING<br />

1. Factor the given polynomial:<br />

a. 5a<br />

2 25ab<br />

5a(<br />

a 5b)<br />

3 3 3<br />

b. x<br />

n 3x<br />

x ( x<br />

n 3)<br />

2<br />

2<br />

c. 4x<br />

29xy<br />

25y<br />

(4x<br />

25y)(<br />

x y)<br />

2<br />

d. x 16<br />

( x 4)( x 4)<br />

3 3<br />

2<br />

2<br />

e. 64a<br />

b (4a<br />

b)(16a<br />

4ab<br />

b )<br />

SOLVING EQUATIONS<br />

2. Find the solutions (roots) to the following equations either directly or by using the<br />

factoring formulas if necessary:<br />

2<br />

2t<br />

11<br />

0<br />

a.<br />

2t<br />

t<br />

2<br />

2<br />

<br />

t <br />

11<br />

11<br />

2<br />

11<br />

2<br />

b.<br />

25x<br />

2 <br />

(25x<br />

<br />

25x<br />

10<br />

25x<br />

10<br />

10<br />

x <br />

25<br />

85x<br />

30 0<br />

10)( x 3) 0<br />

0<br />

2<br />

5<br />

x 3 0<br />

x 3<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 58


c.<br />

x 3 x 5<br />

2<br />

x 3 x<br />

5<br />

x 3 ( x 5)( x 5)<br />

x 3 x<br />

x<br />

x<br />

2<br />

2<br />

10x<br />

x 25 3 0<br />

11x<br />

28 0<br />

( x 7)( x 4) 0<br />

x <br />

4, 7<br />

2<br />

5x<br />

5x<br />

25<br />

2<br />

Because we squared the equations, we need to check the roots to see if they are<br />

extraneous or not.<br />

x 3 x 5<br />

4 3 4 5<br />

1 4<br />

1 4<br />

Accordingly, x = 4 is not a root of this equation.<br />

x 3 x 5<br />

7 3 7 5<br />

4 2<br />

2 2<br />

Accordingly, x = 7 is a root of this equation.<br />

3. Find the solutions to the following equations by using the quadratic formula:<br />

2<br />

a. x 4x 3 0<br />

b <br />

x <br />

( 4)<br />

<br />

x <br />

4 <br />

x <br />

2<br />

b 4ac<br />

2a<br />

( 4)<br />

2(1)<br />

16 12<br />

2<br />

2<br />

4(1)(3)<br />

4 <br />

<br />

2<br />

4 4 2<br />

1,3<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 59


.<br />

6y<br />

6 y<br />

y<br />

2<br />

2<br />

6y<br />

6 0<br />

b <br />

x <br />

( 6)<br />

<br />

x <br />

6 <br />

x <br />

2<br />

b 4ac<br />

2a<br />

( 6)<br />

36 24<br />

2<br />

2(1)<br />

6 2 15<br />

3 15<br />

2<br />

4. Find the solutions to the following higher-order equation:<br />

3<br />

64x<br />

125<br />

0<br />

a.<br />

2<br />

(4x<br />

5)(16x<br />

20x<br />

25) 0<br />

4x<br />

5 0<br />

4x<br />

5<br />

x <br />

5<br />

4<br />

2<br />

4(1)( 6)<br />

6 60<br />

<br />

2<br />

16x<br />

2<br />

20x<br />

25 0<br />

2<br />

b b 4ac<br />

x <br />

2a<br />

20 <br />

x <br />

20<br />

2(16)<br />

4(16)(25)<br />

20 400 1600<br />

x <br />

32<br />

20 20i<br />

3 5 5i<br />

x <br />

<br />

32<br />

8<br />

2<br />

3<br />

5. Find three consecutive positive integers, the sum of whose squares is 770.<br />

Let x = the first positive integer<br />

Let x +1 = the second consecutive positive integer<br />

Let x + 2 = the third consecutive positive integer<br />

Then we know that<br />

2<br />

2<br />

x ( x 1)<br />

( x 2)<br />

x<br />

x<br />

2<br />

2<br />

3x<br />

3x<br />

( x 1)(<br />

x 1)<br />

( x 2)( x 2) 770<br />

x<br />

2<br />

2<br />

2<br />

2x<br />

1<br />

x<br />

6x<br />

5 770 0<br />

6x<br />

765 0<br />

2<br />

2<br />

770<br />

4x<br />

4 770<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 60


x <br />

x <br />

x <br />

x <br />

b <br />

6 <br />

6 <br />

6 <br />

2<br />

b 4ac<br />

2a<br />

(6)<br />

2<br />

2(3)<br />

36 9180<br />

6<br />

9216<br />

6<br />

4(3)( 765)<br />

6 96<br />

15, 17<br />

6<br />

Thus the consecutive positive integers are 15, 16, and 17<br />

SOLVING SYSTEMS OF EQUATIONS<br />

6. Find the solution set to the following systems of equations using the substitution method:<br />

x<br />

y 1<br />

a. <br />

2x<br />

y 3<br />

x y 1<br />

x y<br />

1<br />

Solve the first equation for x<br />

2x<br />

y 3<br />

2( y<br />

1)<br />

y 3<br />

2y<br />

2 y 3<br />

y 1<br />

y 1<br />

Substitute this value for x in the second equation<br />

x y<br />

1<br />

x 11<br />

x 2<br />

Insert this value for y back into the first equation<br />

b.<br />

3y<br />

x 5<br />

<br />

x<br />

2y<br />

10<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 61


3y<br />

x 5<br />

x 5 3y<br />

x 3y<br />

5<br />

Solve the first equation for x<br />

x 2y<br />

10<br />

(3y<br />

5) 2y<br />

10<br />

5y<br />

5<br />

y 1<br />

Substitute this value of x into the second equation<br />

x 3y<br />

5<br />

x 3( 1)<br />

5<br />

x 3<br />

5<br />

Substitute this value of y back into the first equation<br />

x 8<br />

7. Find the solution set to the following systems of equations using the addition/subtraction<br />

method. If the system of equations cannot be solved, then indicate if it is dependent or<br />

inconsistent.<br />

4x<br />

y 5 0<br />

a. <br />

3y<br />

12x<br />

15<br />

This system of equations is dependent because the first equation is equal<br />

to the second equation multiplied by 3.<br />

b.<br />

2x<br />

4y<br />

5<br />

<br />

4x<br />

5y<br />

6<br />

2x<br />

4y<br />

5<br />

<br />

4x<br />

5y<br />

6<br />

<br />

4x<br />

8y<br />

10<br />

<br />

4x<br />

5y<br />

6<br />

4x<br />

4x<br />

8y<br />

5y<br />

10<br />

6<br />

3y<br />

4<br />

y <br />

4<br />

3<br />

2x<br />

4y<br />

5<br />

4<br />

2x<br />

4 5<br />

3<br />

6x<br />

16<br />

15<br />

6x<br />

1<br />

1<br />

x <br />

6<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 62


<strong>Math</strong> <strong>Camp</strong> 2011 Page 63<br />

c.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

5<br />

3<br />

2<br />

3<br />

4<br />

7<br />

3<br />

5<br />

2<br />

3<br />

y<br />

x<br />

y<br />

x<br />

5<br />

70<br />

14<br />

1<br />

69<br />

6<br />

6<br />

5<br />

9<br />

1<br />

6<br />

5<br />

69<br />

6<br />

9<br />

1<br />

6<br />

5<br />

23<br />

2<br />

3<br />

30<br />

9<br />

6<br />

20<br />

5<br />

42<br />

10<br />

2<br />

9<br />

3<br />

30<br />

3)<br />

3(2<br />

4)<br />

5(<br />

42<br />

5)<br />

2(<br />

3)<br />

3(<br />

2<br />

5<br />

3<br />

2<br />

3<br />

4<br />

7<br />

3<br />

5<br />

2<br />

3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

y<br />

y<br />

x<br />

x<br />

y<br />

x<br />

y<br />

x<br />

y<br />

x<br />

y<br />

x<br />

y<br />

x<br />

y<br />

x<br />

y<br />

x<br />

y<br />

x<br />

y<br />

x<br />

y<br />

x<br />

4<br />

8<br />

2<br />

23<br />

2<br />

15<br />

23<br />

2<br />

3(5)<br />

23<br />

2<br />

3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

y<br />

y<br />

y<br />

y<br />

y<br />

x<br />

SOLVING INEQUALITIES<br />

8. Solve the following inequalities for x:<br />

a.<br />

3<br />

3,<br />

3<br />

9<br />

9<br />

9<br />

0<br />

9<br />

2<br />

2<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

b.<br />

17<br />

10<br />

10<br />

17<br />

15<br />

5<br />

17<br />

5<br />

15<br />

17<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

x<br />

x


c.<br />

3x<br />

3x<br />

2<br />

2<br />

9x<br />

9x<br />

0<br />

3x(<br />

x 3) 0<br />

3x<br />

0<br />

x 0<br />

x 3 0<br />

x 3<br />

(-)(-) (+)(-) (+)(+)<br />

x = 0 x = 3<br />

Therefore, the solutions to this inequality are x 0 and x 3 .<br />

9. Solve the following absolute value equation:<br />

2x<br />

7 5<br />

2x<br />

7 5<br />

2x<br />

5 7<br />

2x<br />

2<br />

x 1<br />

2x<br />

7 5<br />

2x<br />

5<br />

7<br />

2x<br />

12<br />

x 6<br />

Now we check both solutions.<br />

2( 1)<br />

7 5<br />

2( 6)<br />

7 5<br />

2 7 5<br />

12<br />

7 5<br />

5 5<br />

5 5<br />

5 5<br />

5 5<br />

Both of the solutions work, so we have x 1<br />

and x 6<br />

as solutions to this equation.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 64


MATH CAMP<br />

School of Public and Environmental Affairs<br />

Day Two Homework<br />

1. Factor the given polynomial:<br />

3 6<br />

a. 64x y<br />

b.<br />

u <br />

3 3<br />

3v<br />

u 27v<br />

2. Find the solutions to the following equations by using the factoring formulas and the<br />

quadratic formula, if necessary:<br />

a.<br />

2 2<br />

3x 24x<br />

60x<br />

b.<br />

4<br />

2<br />

5x<br />

405x<br />

0<br />

c. 64x<br />

3 8<br />

0<br />

d.<br />

3<br />

a 125<br />

0<br />

3. Two hikers leave town A at the same time and walk by two different routes to town B.<br />

The average speed of one hiker is 1 mile per hour more than the average speed of the<br />

other hiker. The slower hiker reaches town B ½ hour before the faster hiker because the<br />

route taken by the faster hiker is 15 miles long, while the routes taken by the slower hiker<br />

is only 10 miles long. What is the average speed of each hiker? (Hint: distance =<br />

rate*time)<br />

4. Find the solution set to the following system of equations using the addition/subtraction<br />

method. You might have to rearrange the equations to be in the correct format first. If<br />

the system cannot be solved, then indicate whether it is dependent or inconsistent.<br />

a. 3x<br />

9y<br />

18<br />

0<br />

x 3y<br />

6<br />

b.<br />

x y 10<br />

<br />

<br />

7 5 7<br />

<br />

y 14<br />

x <br />

3 3<br />

5. In the United States, normal household voltage is 115 volts. However, it is not<br />

uncommon for actual voltage to differ from normal voltage by at most 5 volts. Express<br />

this situation as an inequality involving an absolute value. Use x as the actual voltage<br />

and solve for x. (Michael Sullivan, College Algebra, Upper Saddle Rive, NJ: Prentice Hall, 2005, p. 140)<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 65


MATH CAMP<br />

School of Public and Environmental Affairs<br />

Day Two Homework Solutions<br />

1. Factor the given polynomial:<br />

3 6<br />

2 2 2 4<br />

a. 64x<br />

y (4x<br />

y )(16x<br />

4xy<br />

y )<br />

b.<br />

u 3v<br />

u<br />

3<br />

(3v<br />

u)(9v<br />

27v<br />

2<br />

3<br />

(27v<br />

3vu<br />

u<br />

2<br />

3<br />

u<br />

3<br />

) ( 3v<br />

u)<br />

) (3v<br />

u)<br />

(3v<br />

u)<br />

(9v<br />

<br />

2<br />

3vu<br />

u<br />

2<br />

<br />

) 1<br />

2. Find the solutions to the following equations by using the factoring formulas and the<br />

quadratic formula, if necessary:<br />

a.<br />

3x<br />

3x<br />

2<br />

2<br />

27x<br />

24x<br />

24x<br />

2<br />

2<br />

2<br />

60x<br />

60x<br />

0<br />

3x(9x<br />

20) 0<br />

3x<br />

0<br />

x 0<br />

60x<br />

0<br />

9x<br />

20 0<br />

9x<br />

20<br />

x <br />

20<br />

9<br />

b.<br />

5x<br />

5x<br />

4<br />

2<br />

5x<br />

2<br />

405x<br />

( x<br />

x 0<br />

2<br />

0<br />

2<br />

0<br />

81) 0<br />

x<br />

2<br />

81 0<br />

( x 9)( x 9) 0<br />

x 9, 9<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 66


c.<br />

64x<br />

3<br />

8 0<br />

(4x<br />

2)(16x<br />

2<br />

8x<br />

4) 0<br />

16x<br />

2<br />

8x<br />

4 0<br />

x <br />

b <br />

2<br />

b 4ac<br />

2a<br />

4x<br />

2 0<br />

4x<br />

2<br />

x <br />

1<br />

2<br />

x <br />

x <br />

x <br />

x <br />

8 <br />

8<br />

2<br />

4(16)(4)<br />

2(16)<br />

8 64 256<br />

32<br />

8 192<br />

32<br />

8 8i<br />

3 1<br />

i 3<br />

<br />

32 4<br />

d.<br />

a<br />

3<br />

125<br />

0<br />

( a 5)( a<br />

2<br />

5a<br />

25) 0<br />

a<br />

2<br />

5a<br />

25 0<br />

a 5 0<br />

a 5<br />

2<br />

b b 4ac<br />

x <br />

2a<br />

5 25 4(1)(25)<br />

x <br />

2<br />

5 75<br />

x <br />

2<br />

5 5i<br />

3<br />

x <br />

2<br />

3. Two hikers leave town A at the same time and walk by two different routes to town B.<br />

The average speed of one hiker is 1 mile per hour more than the average speed of the<br />

other hiker. The slower hiker reaches town B ½ hour before the faster hiker because the<br />

route taken by the faster hiker is 15 miles long, while the routes taken by the slower hiker<br />

is only 10 miles long. What is the average speed of each hiker? (Hint: distance =<br />

rate*time)<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 67


Let x be the number of miles per hour in average speed of the slower hiker<br />

Let (x+1) be the number of miles per hour in the average speed of the faster hiker<br />

Given that d rt , we know that the time it takes the faster hiker to reach his<br />

15<br />

destination is . And this should be equal to the time it takes the slower hiker<br />

x 1<br />

10 1<br />

to reach the destination plus ½ hour .<br />

x 2<br />

15 10 1<br />

So <br />

x 1<br />

x 2<br />

Now we just need to solve this equation for x…first we need to clear the<br />

denominators.<br />

15 10 1<br />

<br />

x 1<br />

x 2<br />

15<br />

10 1<br />

2x(<br />

x 1)<br />

2x(<br />

x 1)<br />

2x(<br />

x 1)<br />

x 1<br />

x 2<br />

2x(15)<br />

20( x 1)<br />

x(<br />

x 1)<br />

30x<br />

20x<br />

20 x<br />

x<br />

x<br />

2<br />

2<br />

21x<br />

30x<br />

20 0<br />

9x<br />

20 0<br />

( x 5)( x 4) 0<br />

x 4<br />

x 5<br />

2<br />

x<br />

So the average speed of the slower hiker is either 4 or 5 miles per hour. This<br />

means that the average speed of the faster hiker is either 5 or 6 miles per hour.<br />

4. Find the solution set to the following system of equations using the addition/subtraction<br />

method. You might have to rearrange the equations to be in the correct format first. If<br />

the system cannot be solved, then indicate whether it is dependent or inconsistent.<br />

a.<br />

3x<br />

9y<br />

18<br />

0<br />

<br />

x<br />

3y<br />

6<br />

This system of equations cannot be solved because the equations are dependent.<br />

The first equation is a multiple of the second equation.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 68


.<br />

x y 10<br />

<br />

<br />

7 5 7<br />

<br />

y 14<br />

x <br />

3 3<br />

x y 10<br />

<br />

<br />

7 5 7<br />

<br />

y 14<br />

x <br />

3 3<br />

3x<br />

y 14<br />

5x<br />

7 y 50<br />

<br />

3(3) y 14<br />

3x<br />

y 14<br />

y 14 9<br />

5x<br />

7 y 50<br />

<br />

y 5<br />

<br />

21x<br />

7 y 98<br />

5x<br />

21x<br />

7 y 7 y 50 98<br />

16x<br />

48<br />

x 3<br />

5. In the United States, normal household voltage is 115 volts. However, it is not<br />

uncommon for actual voltage to differ from normal voltage by at most 5 volts. Express<br />

this situation as an inequality involving an absolute value. Use x as the actual voltage and<br />

solve for x. (Michael Sullivan, College Algebra, Upper Saddle Rive, NJ: Prentice Hall,<br />

2005, p. 140)<br />

AV NV 5<br />

where AV = actual voltage and NV = normal voltage<br />

x 115<br />

5<br />

5 x 115<br />

5<br />

5 115<br />

x 5 115<br />

110 x 120<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 69


MATH CAMP<br />

School of Public and Environmental Affairs<br />

Day Three: Functions and their Graphs<br />

Logarithmic and Exponential Functions<br />

Day Three Class Notes<br />

FUNCTIONS<br />

Definition of a Function<br />

A function describes the relationship between two variables, x and y. A function maps all the<br />

possible x values to the values of y in such a way that each x value is only mapped to one value<br />

of y. We denote a function as y f (x), which means that y is a function of x. We say that x is<br />

the independent variable and y is the dependent variable because the values of y are dependent on<br />

x.<br />

Domain and Range<br />

The domain of a function is all the possible values that we can substitute in the function for x.<br />

The range is all the possible values that we can get for y. Unless stated otherwise, we assume<br />

that the domain of a function is all real numbers that produce a real value on the dependent<br />

variable, y. The range will then be all the values of the dependent variable, y, that we get by<br />

using all the values of the independent variable, x.<br />

Example 1: The function f ( x)<br />

x 2 2 has a domain that includes all real numbers because we<br />

can insert any number in for x and get a real value of y. The range of this function is all positive<br />

numbers greater than or equal to 2, meaning that the y values will range anywhere from 2 to<br />

positive infinity.<br />

Example 2: The function f ( x)<br />

ln x (the natural log of x) has a domain that includes all positive<br />

real numbers greater than 0. We can’t insert 0 in for x because ln 0 is not defined. So 0 is<br />

definitely not in the domain of our function. The range will be all real numbers from negative<br />

infinity to positive infinity.<br />

1<br />

Example 3: The function f ( x)<br />

has a domain of all real numbers except 0, because division<br />

x<br />

by 0 is undefined. The range is all real numbers from negative infinity to positive infinity.<br />

1<br />

Example 4: The function f ( x)<br />

is trickier. The domain of the function will be all<br />

3 x<br />

possible x values such that 3 x 0 because we won’t get real number values of y if we take the<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 70


square root of a negative number. Luckily, we can solve for the domain of the function as<br />

follows:<br />

3 x 0<br />

x<br />

3<br />

x 3<br />

1<br />

Therefore the domain of f ( x)<br />

is all values of x that are less than -3. The range will be<br />

3 x<br />

all positive numbers greater than 0.<br />

Elementary Functions and their Graphs<br />

Now that we understand the basic principles of functions, we can look at some of the most basic<br />

and common functions that you will encounter. This is a list of these functions, followed by<br />

their basic graphs:<br />

f ( x)<br />

a<br />

Constant Function<br />

f ( x)<br />

x<br />

Identity Function (a special case of the linear function)<br />

2<br />

f ( x)<br />

x<br />

Square Function<br />

3<br />

f ( x)<br />

x<br />

Cube Function<br />

f ( x)<br />

x Square Root Function<br />

f ( x)<br />

x<br />

Absolute Value Function<br />

f<br />

x<br />

( x)<br />

e<br />

Exponential Function<br />

f<br />

f ( x)<br />

mx b<br />

Linear Function<br />

2<br />

f ( x)<br />

ax bx c , a 0<br />

Quadratic Function<br />

( x)<br />

n<br />

x<br />

Nth root Function<br />

n<br />

f ( x)<br />

a x a<br />

a<br />

f ( x)<br />

<br />

n<br />

p(<br />

x)<br />

an<br />

x<br />

<br />

q(<br />

x)<br />

b x<br />

n1<br />

n 1<br />

x ...<br />

a1x<br />

<br />

0<br />

Polynomial Function<br />

n<br />

a<br />

b<br />

m<br />

m<br />

x<br />

( x)<br />

a , 0,<br />

a 1<br />

n1<br />

m1<br />

x<br />

x<br />

n1<br />

m1<br />

... a x a<br />

1<br />

1<br />

0<br />

... b x b<br />

0<br />

Rational Function<br />

f a Exponential Function<br />

f ( x)<br />

log x , b 0,<br />

b 1<br />

Logarithmic Function<br />

b<br />

The graphs of examples of these basic functions are below:<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 71


f ( x)<br />

3<br />

f ( x)<br />

x<br />

Constant Function<br />

Identity Function<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1 -1 1 3 5<br />

-2<br />

-3<br />

-4<br />

-5<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1 -1 1 3 5<br />

-2<br />

-3<br />

-4<br />

-5<br />

3<br />

f ( x)<br />

x<br />

Cube Function<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1 -1 1 3 5<br />

-2<br />

-3<br />

-4<br />

-5<br />

2<br />

f ( x)<br />

x<br />

Square Function<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1 -1 1 3 5<br />

-2<br />

-3<br />

-4<br />

-5<br />

f ( x)<br />

x<br />

f ( x)<br />

x<br />

Square Root Function<br />

Absolute Value Function<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1 -1 1 3 5<br />

-2<br />

-3<br />

-4<br />

-5<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1 -1 1 3 5<br />

-2<br />

-3<br />

-4<br />

-5<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 72


3<br />

f ( x)<br />

x<br />

f ( x)<br />

2x<br />

1<br />

Nth Root Function<br />

Linear Function<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1 1 3 5<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1 -1 1 3 5<br />

-2<br />

-3<br />

-4<br />

-5<br />

2 1 3<br />

f ( x)<br />

x x <br />

2 2<br />

3 2<br />

f ( x)<br />

x x x 1<br />

Quadratic Function<br />

Polynomial Function<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1 -1 1 3 5<br />

-2<br />

-3<br />

-4<br />

-5<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1 -1 1 3 5<br />

-2<br />

-3<br />

-4<br />

-5<br />

f<br />

Exponential Function<br />

x<br />

( x)<br />

e<br />

f ( x)<br />

ln( x)<br />

Logarithmic Function<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1 -1 1 3 5<br />

-2<br />

-3<br />

-4<br />

-5<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1 -1 1 3 5<br />

-2<br />

-3<br />

-4<br />

-5<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 73


1<br />

f ( x)<br />

x 3<br />

Rational Function<br />

x<br />

2 2<br />

f ( x)<br />

<br />

x<br />

Exponential Function<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1 -1 1 3 5<br />

-2<br />

-3<br />

-4<br />

-5<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1<br />

-1<br />

1 3 5<br />

-2<br />

-3<br />

-4<br />

-5<br />

BASICS OF GRAPHING FUNCTIONS<br />

Graphing Ordered Pairs<br />

Graphing is a useful way of presenting and interpreting numbers. Many people find that the<br />

visual presentation of a graph makes the numbers easier to understand. The first place to start<br />

when discussing graphing is to graph ordered pairs. An ordered pair is a pair of numbers ( x,<br />

y)<br />

where the ordering of the numbers is important. In this case, we know that if we see the ordered<br />

pair (3,5), that x = 3 and y = 5 because of the order in which the numbers were presented to us.<br />

The following pair of lines to the right are<br />

called the Cartesian coordinate system, and<br />

we can use this to graph ordered pairs. The<br />

horizontal line represents the values of x and<br />

the vertical line represents the values of y.<br />

So if we wanted to plot the point (2,3) on<br />

the graph, we would go two spaces to the<br />

right on the x (horizontal) axis, and then up<br />

three spaces on the y (vertical) axis and<br />

draw a point. Then we will have plotted the<br />

point (2,3).<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 74


Y<br />

The graph below shows the plots of the following points: (1,3), (0,8), (-3,0), (-2,-7),<br />

(-1,5), (5,5), (8,-4), (10,0), (9,3), (-3,-9).<br />

Plotted Points<br />

10<br />

8 0, 8<br />

6<br />

-1, 5 5, 5<br />

4<br />

1, 3<br />

9, 3<br />

2<br />

-3, 0 0<br />

10, 0<br />

-10 -5 -2 0 5 10<br />

-4<br />

8, -4<br />

-6<br />

-2, -7<br />

-8<br />

-3, -9 -10<br />

X<br />

Given a scatter plot (as above) of data, we can identify certain types of relationships between x<br />

and y.<br />

1. We have a positive linear relationship when the points fall in an approximate line that<br />

ascends from left to right. In this type of relationship, values of y increase as values<br />

of x increase.<br />

2. We have a negative linear relationship when the points fall in an approximate line that<br />

descends from left to right. In this type of relationship, values of y decrease as values<br />

of x increase.<br />

3. We have a nonlinear relationship when the points fall in some identifiable pattern<br />

than isn’t a straight line. This is often a curve or a horseshoe shape. The type of<br />

curve describes the nature of the relationship.<br />

4. We have no relationship between x and y when the dots don’t fall in any discernible<br />

pattern. It would look like a bunch of points randomly scattered around.<br />

Positive Relationship<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-6 -4 -2 0<br />

-2<br />

2 4 6<br />

-4<br />

-6<br />

Negative Relationship<br />

6<br />

4<br />

2<br />

0<br />

-6 -4 -2 0<br />

-2<br />

2 4 6<br />

-4<br />

-6<br />

-8<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 75


Nonlinear Relationship<br />

No Relationship<br />

3<br />

2<br />

1<br />

0<br />

-6 -4 -2 -1 0 2 4 6<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

-7<br />

1.5<br />

1<br />

0.5<br />

0<br />

-6 -4 -2 0 2 4 6<br />

-0.5<br />

-1<br />

-1.5<br />

Transformations of Basic Graphs<br />

We can use a basic function to create a new function by performing a transformation on that<br />

function. For instance, we can add or subtract any number from the function y f (x)<br />

by<br />

transforming the function to y f ( x)<br />

c . We could also transform y f (x)<br />

by adding or<br />

subtracting any number from x within the function, such as y f ( x c)<br />

. Performing these<br />

operations has a predictable impact on the graph of y f (x). These rules are summarized<br />

below:<br />

Vertical Translation Rule 1:<br />

Vertical Translation Rule 2:<br />

y f ( x)<br />

c => Shifts the graph up by c units<br />

y f ( x)<br />

c => Shifts the graph down by c units<br />

Horizontal Translation Rule 1: y f ( x c)<br />

=> Shifts the graph left by c units<br />

Horizontal Translation Rule 1: y f ( x c)<br />

=> Shifts the graph right by c units<br />

Reflection Rule: y f (x)<br />

=> Reflects the graph of y f (x)<br />

over a horizontal line<br />

Flattening Rule: y kf(x)<br />

=> Flattens the graph (by multiplying each y value by k, when<br />

k 1)<br />

Expanding Rule: y kf(x)<br />

=> Expands the graph (by multiplying each y value by k, when<br />

0 k 1)<br />

2<br />

Suppose we have a quadratic function f ( x)<br />

ax b. The graph of a quadratic function is<br />

called a parabola. We will use this parabola to illustrate the graph transformation rules above.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 76


2<br />

f ( x)<br />

x<br />

f ( x)<br />

x 2 5<br />

Basic Parabola Vertical Transformation Rule 1<br />

Entire graph shifts upward by 5 units<br />

f ( x)<br />

x 2 5<br />

Vertical Transformation Rule 2<br />

Entire graph shifts downward by 5 units<br />

2<br />

f ( x)<br />

10x<br />

Flattening Rule<br />

Flattens the entire graph<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 77


1<br />

f ( x)<br />

x<br />

10<br />

2<br />

f ( x)<br />

x<br />

2<br />

Expansion Rule<br />

Reflection Rule<br />

Entire graph is expanded out larger Entire graph is reflected over the line y 0<br />

2<br />

f ( x)<br />

( x 5)<br />

2<br />

f ( x)<br />

( x 5)<br />

Horizontal Transformation Rule 1 Horizontal Transformation Rule 2<br />

Shifts entire graph left by 5 units Shifts entire graph right by 5 units<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 78


LINEAR FUNCTIONS AND THEIR GRAPHS<br />

A linear function is a special type of function because it has the same slope over its entire<br />

domain. The slope of a linear function is constant. However, in other functions, the slope varies<br />

across the domain of the function.<br />

Now that we can plot single points on a pair of axes, we can now draw the graph of a linear<br />

function (or a line). An equation for a line is an equation in two variables where both variables<br />

are of degree 1. Suppose that we had the following equation for a line:<br />

3x<br />

5y<br />

15<br />

3<br />

y x 3<br />

5<br />

Before we actually graph this line, we should talk about some of its properties. First of all, this<br />

equation tells us that y is a function of x. This function (or equation) tells us how y changes for<br />

different values of x. Just as a reminder, x would be an independent variable and y is the<br />

dependent variable.<br />

In order to graph this line, we need to know the points that it passes through. We can make a<br />

table of the values of x and y that define this line. Then we just plot those points and draw a line<br />

through them.<br />

x y<br />

-10 9<br />

-5 6<br />

0 3<br />

5 0<br />

10 -3<br />

-10, 9<br />

-5, 6<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0, 3<br />

0<br />

5, 0<br />

-15 -10 -5 0 5 10 15<br />

-2<br />

10, -3<br />

-4<br />

Because a line is determined by two points, we actually only need to figure out two points on the<br />

graph, and then we can draw the line connecting them. The easiest way to get these two points is<br />

to substitute 0 in for x and then get the corresponding y value. Then substitute in 0 for y and get<br />

the corresponding x value.<br />

To plot the line 7x 3y<br />

42 , we set x = 0 and find that y = 14 and then we set y = 0 and get x =<br />

6. We can then plot these two points and draw a line through them.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 79


20<br />

15<br />

0, 14<br />

10<br />

5<br />

0<br />

6, 0<br />

-7 -5 -3 -1 1 3 5 7<br />

-5<br />

-10<br />

The place where the line crosses the x-axis is called the x-intercept. The place where the line<br />

crosses the y-axis is called the y-intercept.<br />

Finding the Distance between Two Points<br />

Suppose you have two points, called ( x<br />

1,<br />

y1)<br />

and ( x<br />

2,<br />

y2<br />

) . The distance between these two<br />

points is given by the formula:<br />

Distance between x , ) and , )<br />

(<br />

1<br />

y1<br />

(<br />

2<br />

y2<br />

2<br />

x = 2<br />

x<br />

2<br />

x1<br />

y2<br />

y1<br />

Example: Given the points (3,5) and (-7,0), find the distance between them.<br />

2<br />

2<br />

2 2<br />

<br />

7 3 0<br />

5 ( 10)<br />

( 5)<br />

100 25 125 5 5<br />

Finding the Midpoint of a Line Segment<br />

This formula gives us the coordinates of the point that is exactly halfway between two other<br />

points, or the midpoint.<br />

Midpoint of line segment =<br />

<br />

<br />

<br />

x x<br />

2<br />

y<br />

,<br />

<br />

2<br />

1 2 1<br />

y2<br />

Example: Given the points (3,6) and (-2,4), the midpoint between these two points would be:<br />

<br />

<br />

<br />

x x<br />

2<br />

y<br />

,<br />

<br />

2<br />

1 2 1<br />

y2<br />

3 2 6 4 1 <br />

, ,5<br />

2 2 2 <br />

<br />

<br />

<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 80


Finding the Slope of a Line<br />

The slope of a line is an important concept in mathematics. It tells us the nature of the<br />

relationship between x and y — whether they are positive or negatively related or unrelated. It<br />

also allows us to quantify this relationship by saying how much y will change when you change x<br />

by one unit.<br />

Given that we have two points called ( x<br />

1,<br />

y1)<br />

and ( x<br />

2,<br />

y2<br />

) , we can find the slope of the line<br />

connecting these two points using the following formula.<br />

m <br />

rise<br />

run<br />

<br />

y<br />

x<br />

<br />

y<br />

x<br />

2<br />

2<br />

y1<br />

x<br />

1<br />

Example: Given the points (3,5) and (-7,0), find the slope of the line connecting the two points.<br />

rise<br />

m <br />

run<br />

<br />

y<br />

x<br />

2<br />

2<br />

<br />

<br />

y<br />

x<br />

1<br />

1<br />

0 5 5<br />

<br />

7 3 10<br />

1<br />

2<br />

Two lines that have the same slope are said to be parallel. If you have two lines and the product<br />

of their slopes is -1 or ( m<br />

1m2<br />

1)<br />

, then the lines are perpendicular (meaning that they are at<br />

right angles to each other). Two lines that have the same slope and y-intercept will be exactly on<br />

top of each other are said to be collinear.<br />

A positive slope means that the x and y are positively related to each other. This means that as x<br />

increases, y will also increase (and vice versa). If the slope is negative, then it means that x and y<br />

have a negative relationship. So as x decreases, y will increase (and vice versa). If the slope of<br />

the line is 0, then there is no relationship between x and y.<br />

Finding the Equation of a Line<br />

Generally, the equation for a line is of the form ax by c , where and a and b are both not<br />

equal to zero. However, there are two other ways to write the equation for a line that are more<br />

helpful to us. The first is called the point-slope form, which follows this format:<br />

y y m( x 1) where<br />

1<br />

x<br />

m <br />

rise<br />

run<br />

<br />

y<br />

x<br />

2<br />

2<br />

y1<br />

x<br />

1<br />

The second is called the slope-intercept form of the line, which takes the form y mx b , where<br />

m is the slope of the line and b is the y-intercept (or the point on the y-axis that the line passes<br />

through).<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 81


Given any two points, we can not only determine the distance between the two points and the<br />

slope of the line connecting the two points, but we can also determine the equation for the line<br />

itself.<br />

Example 1: Find the equation of the line through the two points (2,1) and (4,7). In order to do<br />

this, we first compute the slope.<br />

rise<br />

m <br />

run<br />

<br />

y<br />

x<br />

2<br />

2<br />

<br />

<br />

y<br />

x<br />

1<br />

1<br />

7 1<br />

6<br />

3<br />

4 2 2<br />

Then the equation for the line would be:<br />

y y<br />

1<br />

y 1<br />

3( x 2)<br />

y 3x<br />

6 1<br />

y 3x<br />

5<br />

m( x x ) 1<br />

We can also use a line’s equation to give us information about the line itself.<br />

Example 2: Suppose you are given the equation for a line 7x<br />

21y 3 0 . Determine the<br />

slope.<br />

In order to determine the slope, we need to first put the equation in slope-intercept form.<br />

7x<br />

21y<br />

3 0<br />

21y<br />

7x<br />

3<br />

1<br />

y x <br />

3<br />

The slope of the line is the coefficient on x, which is<br />

1<br />

7<br />

1<br />

.<br />

3<br />

Economics Application Problem<br />

(This application problem was taken in its entirety from Barnett, Ziegler and Byleen, Finite <strong>Math</strong>ematics for Business, Economics, Life Sciences,<br />

and Social Sciences, tenth edition, Upper Saddle River, NJ: Prentice Hall, pp. 46-47)<br />

At the beginning of the twenty-first century, the world demand for crude oil was about 75<br />

million barrels per day and the price of a barrel fluctuated between $20 and $40. Suppose that<br />

the daily demand for crude oil is 76.1 million barrels when the price is $25.52 per barrel and this<br />

demand drops to 74.9 million barrels when the price rises to $33.68. Assuming a linear<br />

relationship between the demand x and the price p, find a linear function in the form p ax b<br />

that models the price-demand relationship for crude oil. Use this model to predict the demand if<br />

the price rises to $39.12 per barrel.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 82


Find the equation of the line through (76.1, 25.52) and (74.9, 33.68). We first find the slope of<br />

the line:<br />

m <br />

y<br />

x<br />

2<br />

2<br />

<br />

<br />

y<br />

x<br />

1<br />

1<br />

33.68 25.52 8.16<br />

<br />

6.8<br />

74.9 76.1 1.2<br />

Use the point-slope form to find the equation of the line:<br />

p p<br />

1<br />

m( x x ) 1<br />

p 25.52 6.8(<br />

x 76.1)<br />

p 25.52 6.8x<br />

517.48<br />

p 6.8x<br />

543<br />

To find the demand when the price is $39.12 per barrel, we solve the equation p 39. 12 for x:<br />

p 39.12<br />

6.8x<br />

543 39.12<br />

6.8x<br />

503.88<br />

503.88<br />

x 74.1 million barrels per day<br />

6.8<br />

The daily supply for crude oil also varies with the price. Suppose that the daily supply is 73.4<br />

million barrels when the price is $23.84 and this supply rises to 77.4 million barrels when the<br />

price rises to $34.24. Assuming a linear relationship between the supply x and the price p, find a<br />

linear function in the form p ax b that models the price-supply relationship for crude oil.<br />

Use this model to predict the supply if the price drops to $20.98 per barrel.<br />

Find the equation of the line through (73.4, 23.84) and (77.4, 34.24). We first find the slope of<br />

the line:<br />

m <br />

y<br />

x<br />

2<br />

2<br />

<br />

<br />

y<br />

x<br />

1<br />

1<br />

34.24 23.84 10.4<br />

<br />

2.6<br />

77.4 73.4 4<br />

Use the point-slope form to find the equation of the line:<br />

p p<br />

1<br />

m( x x ) 1<br />

p 23.84 2.6( x 73.4)<br />

p 23.84 2.6x<br />

190.84<br />

p 2.6x<br />

167<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 83


To find the demand when the price drops to $20.98 per barrel, we solve the equation p 20. 98<br />

for x.<br />

p 20.98<br />

2.6x<br />

167<br />

20.98<br />

2.6x<br />

187.98<br />

187.98<br />

x <br />

2.6<br />

x 72.4 million barrels per day<br />

In a free competitive market, the price of a product is determined by the relationship between<br />

supply and demand. The price tends to stabilize at the point of intersection of the demand and<br />

supply functions. This is the equilibrium point.<br />

The equilibrium point for the supply and demand functions is found as follows:<br />

2.6x<br />

167<br />

6.8x<br />

543<br />

9.4x<br />

710<br />

710<br />

x <br />

9.4<br />

x 75.532 million barrels (equilibrium quantity)<br />

p 2.6(75.532)<br />

167<br />

$29.38 (equilibrium price)<br />

QUADRATIC FUNCTIONS AND THEIR GRAPHS<br />

2<br />

Quadratic functions, such as y ax bx c , are also common functions that you will<br />

encounter in economics and other classes. Knowing the properties of quadratic functions can<br />

help us to solve many important problems. As mentioned earlier, the graph of a quadratic<br />

function is called a parabola. The domain of a quadratic function is all real numbers. The range<br />

of a quadratic function depends on the values of a, b, and c.<br />

Just like with a line, it is helpful to know the x- and y-intercepts of a parabola. We can easily<br />

find the y-intercept by substituting in 0 for x. We can find the x-intercepts by substituting 0 in<br />

for y and solving for x. As we learned yesterday, a quadratic function will have two roots, so it<br />

can potentially cross the x-axis in two places.<br />

2<br />

Example: Find the x- and y-intercepts for the following quadratic function y x 2x<br />

15.<br />

y x<br />

y 0<br />

2<br />

2<br />

y 15<br />

2x<br />

15<br />

2 0 15<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 84


y x<br />

0 x<br />

2x<br />

15<br />

2x<br />

15<br />

0 ( x 5)( x 3)<br />

x 3, 5<br />

A graph of this parabola would look like this:<br />

2<br />

2<br />

10<br />

-1 0123456789<br />

-9 -4 -3<br />

-2<br />

1 6<br />

-4<br />

-6<br />

-5<br />

-10<br />

-9<br />

-7<br />

-8<br />

-12<br />

-11<br />

-14<br />

-13<br />

-15<br />

-17<br />

-16<br />

-18<br />

Notice that the parabola crosses the y-axis at -15 and the x-axis at -5 and 3.<br />

Generally, the graph of a quadratic function is a parabola. In most cases, the parabola will have<br />

a line of symmetry that is parallel to the vertical axis. The vertex of a parabola is the lowest or<br />

highest point on the parabola. The highest point on a parabola is called the maximum, and this<br />

occurs in parabolas that open downward. The lowest point on a parabola is called the minimum<br />

and this occurs on parabolas that open upward. The maximum and minimum always occur at the<br />

vertex of the parabola. The line of symmetry that goes though the vertex and is parallel to the<br />

vertical axis is called the axis of the parabola.<br />

Finding the minimum or maximum value of a quadratic function can help us to solve many<br />

important real-world problems. For instance, a company’s revenue function is a quadratic<br />

equation. If we want to find the maximum revenue, all we have to do is find the maximum of the<br />

parabola. Because we know that the maximum or minimum value will always occur at a<br />

parabola’s vertex, all we have to do is find the vertex of the parabola. (When we learn about<br />

derivatives, we will see another way to easily determine the maximum or minimum point of a<br />

parabola.)<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 85


If we have a quadratic function of the form,<br />

b<br />

will be found at , f<br />

2a<br />

<br />

<br />

<br />

b<br />

2a<br />

<br />

<br />

y ax<br />

2<br />

bx c , then the vertex of the parabola<br />

. We know that the vertex will be a minimum value if a 0<br />

and it will yield a maximum value if a 0. The axis of symmetry will be the line<br />

b<br />

x .<br />

2a<br />

Example: Find the vertex of this parabola and determine whether it is a maximum or minimum<br />

2<br />

point. f ( x)<br />

2x<br />

12x<br />

9<br />

b<br />

a<br />

<br />

2<br />

12<br />

12<br />

3<br />

2<br />

2 4<br />

b <br />

f <br />

2a<br />

<br />

f<br />

2<br />

3 23<br />

12<br />

3<br />

9 18 36 9 9<br />

The vertex for this parabola is the point ( 3, 9)<br />

and because a 2 0, this is a minimum point<br />

on the parabola.<br />

POLYNOMIAL AND RATIONAL FUNCTIONS<br />

Polynomial Functions<br />

Remember that a polynomial function will be of the form:<br />

n<br />

f ( x)<br />

a x a a x a<br />

n<br />

n1<br />

n<br />

1<br />

x ...<br />

1<br />

0<br />

We have already discussed some special cases of the polynomial function, such as straight lines<br />

and parabolas. The domain of a polynomial function is the set of all real numbers.<br />

When we graph higher-level polynomial functions, we will see that the degree of the polynomial<br />

is related to the graph of the polynomial. Even-degree polynomials have similar shapes, and<br />

odd-degree polynomials will also have similar graphs. Below are some graphs of polynomial<br />

functions.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 86


2<br />

f ( x)<br />

2x<br />

1<br />

f ( x)<br />

x 3x<br />

2. 5<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1 -1 1 3 5<br />

-2<br />

-3<br />

-4<br />

-5<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1 -1 1 3 5<br />

-2<br />

-3<br />

-4<br />

-5<br />

f ( x)<br />

x<br />

3 4x<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1 -1 1 3 5<br />

-2<br />

-3<br />

-4<br />

-5<br />

f ( x)<br />

2x<br />

4<br />

4x<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-2<br />

-3<br />

-4<br />

-5<br />

2<br />

2x<br />

<br />

1<br />

2<br />

-5 -3 -1 1 3 5<br />

-1<br />

5 3<br />

6 4 2<br />

f ( x)<br />

x 5x<br />

4x<br />

1<br />

f ( x)<br />

x 7x<br />

14x<br />

x 5<br />

5<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1 1 3 5<br />

-1<br />

-2<br />

-3<br />

-4<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1 1 3 5<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-5<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 87


As you look at these graphs, the graphs on the left hand side are of odd degree and the graphs on<br />

the right hand side are of even degree. The graphs of the odd degree polynomials all begin<br />

negative and end positive and they all cross the x-axis at least once. The graphs of the even<br />

degree polynomials all begin positive and end positive and have at least one turn in the graph.<br />

This is what is called a turning point. A turning point is a place on a continuous graph that<br />

separates a section where the function is increasing from a section where the function is<br />

decreasing.<br />

The graph of a polynomial function of degree n will have at most n-1 turning points and can only<br />

cross the x-axis at most n times.<br />

Rational Functions<br />

Remember that a rational function is of the form:<br />

f ( x)<br />

<br />

p(<br />

x)<br />

q(<br />

x)<br />

an<br />

x<br />

<br />

b x<br />

m<br />

n<br />

m<br />

a<br />

b<br />

n1<br />

m1<br />

x<br />

x<br />

n1<br />

m1<br />

... a x a<br />

1<br />

1<br />

0<br />

... b x b<br />

0<br />

The domain of a rational function is all real numbers except those that make the denominator<br />

equal to zero.<br />

We can find the x- and y-intercepts for a rational function in the same way that we find the<br />

intercepts for other functions.<br />

Many times a graph of a rational function will not be continuous, meaning that it has no holes or<br />

breaks in the graph. Because of this, many graphs of rational functions can have vertical or<br />

horizontal asymptotes. A vertical asymptote helps up to describe the behavior of the graph of the<br />

function when it gets close to a certain number. The graph will never cross over an asymptote.<br />

1<br />

The graph below is a graph of the rational function f ( x)<br />

. The graph has a vertical<br />

x 3<br />

5<br />

asymptote at the line x 3. Notice how the graph<br />

4<br />

of the function gets closer and closer to the line<br />

x 3 but never crosses it.<br />

3<br />

2<br />

1<br />

0<br />

-5 -3 -1 1 3 5<br />

-1<br />

We can easily find the vertical asymptotes of a<br />

rational function by solving for all the values of x<br />

that make the denominator equal to zero.<br />

-2<br />

The graph above has a horizontal asymptote at the<br />

-3<br />

line y 0 . Horizontal asymptotes can be found<br />

-4<br />

by dividing each term of the numerator and<br />

-5<br />

denominator by the highest power of x in the<br />

function. Then you look at what happens to the<br />

graph as you increase and decrease the values of x.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 88


1<br />

For instance, in our example f ( x)<br />

, we divide all the terms in the numerator and<br />

x 3<br />

1<br />

denominator by x, because that is the highest power of x in the function. So we get f ( x)<br />

<br />

x<br />

3<br />

1<br />

x<br />

As we increase the values of x toward positive infinity, the values of x<br />

1 and x<br />

3 will get closer<br />

and closer to zero. This makes the values of the entire function get closer and closer to zero (or<br />

zero divided by 1). As we decrease the values of x toward negative infinity, we see that the<br />

function will once again approach zero. This indicates that we have a horizontal asymptote at<br />

y 0 .<br />

EXPONENTIAL FUNCTIONS<br />

Exponential functions have a wide variety of real-world applications, so they are very useful to<br />

learn. We can apply exponential functions to such things as the growth of money in your bank<br />

account to radioactive decay to the growth of an endangered species to how fast someone can<br />

learn to use a computer.<br />

Basics of the Exponential Function<br />

As you might guess, the exponential function is just a function of x where x is the exponent of<br />

some number (or expression), as opposed to raising x to some exponent. So the exponential<br />

function is given by:<br />

f ( x)<br />

<br />

for any b > 0 and b 1. We exclude b = 1 because 1 raised to any power is equal to 1, which is<br />

just the constant function. We also want b 0 because we want to avoid imaginary numbers.<br />

The domain of the exponential function is all real numbers, and the range of the exponential<br />

function is the set of all positive numbers.<br />

x<br />

b<br />

The graphs of the functions<br />

f 2<br />

x<br />

( x)<br />

and<br />

f<br />

x<br />

( x)<br />

2 are below.<br />

f ( x)<br />

2<br />

x<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 89


10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-10 -5 0 5 10<br />

f ( x)<br />

1 <br />

<br />

<br />

x<br />

2<br />

<br />

2<br />

x<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-10 -5 0 5 10<br />

Notice a couple of things about these graphs. First of all, these two graphs are reflections of each<br />

x<br />

other across the y-axis. Second, the graph of f ( x)<br />

2 is the same thing as the graph of<br />

x<br />

1 <br />

f ( x)<br />

. We can summarize the properties of these graphs as follows:<br />

2 <br />

x<br />

Basic Properties of the Exponential Function, f ( x)<br />

b , where b 1<br />

x<br />

(1) The domain of f ( x)<br />

b is all real numbers<br />

x<br />

(2) The range of f ( x)<br />

b is the set of all positive numbers<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 90


x<br />

(3) The graph of f ( x)<br />

b will always pass through the point (0,1) because b 0 1 for any<br />

base b. Thus, the y-intercept is 1.<br />

x<br />

(4) The graph of f ( x)<br />

b is continuous, meaning that there are no breaks or holes in the<br />

graph.<br />

x<br />

(5) The x-axis is a horizontal asymptote for the graph of f ( x)<br />

b . Because the x-axis is a<br />

horizontal asymptote, there are no x-intercepts.<br />

x<br />

(6) The graph of f ( x)<br />

b increases as x increases.<br />

x<br />

The graph of f ( x)<br />

b when 0 b 1<br />

has the same properties as when b 1 except that<br />

f<br />

x<br />

( x)<br />

b decreases (rather than increases) as x increases.<br />

The Base e<br />

There is a special number that often comes up in mathematical applications. It is the number e,<br />

which is an irrational number (so when written out in decimal form its decimals continue to<br />

eternity). When written out to several decimal places, we have e 2. 7182818 . When we want<br />

x<br />

x<br />

to write a function using e, we usually write exp( x)<br />

e . The graph of exp( x)<br />

e is below and<br />

x<br />

is very similar to the graph of f ( x)<br />

b (because in this caseb e 2. 7182818.<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-10 -5 0 5 10<br />

Exponential Probability Application Problem<br />

(This application problem was taken from Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, pp. 422-423)<br />

Between 9:00pm and 10:00pm cars arrive at Burger King’s drive-thru at the rate of 12 cars per<br />

hour (0.2 car per minute). The following formula from the field of probability can be used to<br />

determine the probability that a car will arrive within t minutes of 9:00pm.<br />

F(<br />

t)<br />

1<br />

e<br />

0.2t<br />

(a) Determine the probability that a car will arrive within 5 minutes of 9:00pm (before<br />

9:05pm).<br />

(b) Determine the probability that a car will arrive within 30 minutes of 9:00pm (before<br />

9:30pm).<br />

(c) What value does F approach as t becomes unbounded in the positive direction?<br />

(d) Within how many minutes of 9:00pm will the probability of a car arriving equal 50%?<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 91


Solutions:<br />

a) The probability that a car will arrive within 5 minutes is found by evaluating F (t)<br />

at<br />

t 5<br />

0.2(5)<br />

F ( t)<br />

1<br />

e 0.63212<br />

We conclude that there is a 63% probability that a car will arrive within 5 minutes.<br />

b) The probability that a car will arrive within 30 minutes is found by evaluating F (t)<br />

at<br />

t 30<br />

0.2(30)<br />

F ( t)<br />

1<br />

e 0.9975<br />

There is a 99.75% probability that a car will arrive within 30 minutes.<br />

c) As time passes, the probability that a car will arrive increases. The value that F<br />

approaches can be found by letting<br />

as<br />

t . Thus, F approaches 1 as t gets large.<br />

.2t<br />

t . Since e <br />

0. 2t<br />

0 1<br />

e<br />

0.2t<br />

, it follows that e 0<br />

d) Within 3.5 minutes of 9:00pm, the probability of a car arriving equals 50% .<br />

Formulas for Common Applications of Exponential Functions<br />

Exponential Growth and Decay<br />

A population experiencing exponential growth (or growth compounded continuously) can be<br />

modeled using the formula:<br />

rt<br />

A A0e<br />

where A = the size of the population in the future<br />

A<br />

0<br />

= the size of the population at time t 0<br />

r = the rate of population growth (as a decimal)<br />

t = time in years<br />

Exponential decay can be modeled using a similar formula:<br />

A<br />

0<br />

A e<br />

rt<br />

where A = amount in the future<br />

A<br />

0<br />

= amount at time t 0<br />

r = the rate of decay (as a decimal)<br />

t = time in years<br />

Compound Interest<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 92


A P<br />

1 <br />

<br />

r<br />

m<br />

<br />

<br />

<br />

mt<br />

where A = future value of the account<br />

P = the principal or present value of the account<br />

r = annual rate (as a decimal)<br />

m = the number of times per year the interest is compounded (for instance, for interest<br />

compounded quarterly m 4)<br />

Continuous Compound Interest<br />

rt<br />

A Pe<br />

where A = future value of the account in t years<br />

P = the principal or present value of the account or amount invested<br />

r = rate (as a decimal)<br />

t = number of years<br />

LOGARITHMIC FUNCTIONS<br />

Basic Information about Logarithmic Functions<br />

The logarithmic function is the inverse of the exponential function (with base b). This function<br />

is denoted f ( x)<br />

log<br />

b<br />

x , where b 0 andb<br />

1. The domain of this function is the set of<br />

positive numbers and the range is the set of real numbers.<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-2<br />

-1<br />

0 2 4 6 8 10<br />

4<br />

-2<br />

3<br />

-3<br />

2<br />

-4<br />

1<br />

0<br />

-2<br />

-1<br />

0 2 4 6 8 10<br />

-2<br />

The graph to the left is of the function<br />

f ( x)<br />

log x , where b 1.<br />

b<br />

Notice that the graph of f ( x)<br />

log x is a<br />

x<br />

reflection of the graph f ( x)<br />

b across the<br />

line y x .<br />

The graph to the left is of the function<br />

f ( x)<br />

log x , where 0 b 1.<br />

b<br />

b<br />

-3<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 93<br />

-4<br />

-5<br />

-6


Notice that this second graph (where 0 b 1) is a reflection of the original graph (where b 1)<br />

across the x-axis.<br />

Basic Properties of the Logarithmic Function, f ( x)<br />

log x , where b 1<br />

(1) The domain of f ( x)<br />

log x is all real numbers<br />

b<br />

(2) The range of f ( x)<br />

log x is the set of all positive numbers<br />

b<br />

(3) The graph of f ( x)<br />

log<br />

b<br />

x will always pass through the point (1,0) because log<br />

b<br />

1 0<br />

for any base b. Thus, the x-intercept is 1.<br />

(4) The graph of f ( x)<br />

log<br />

b<br />

x is continuous, meaning that there are no breaks or holes in<br />

the graph.<br />

(5) The y-axis is a vertical asymptote for the graph of f ( x)<br />

log<br />

b<br />

x . Because the y-axis is a<br />

horizontal asymptote, there are no y-intercepts.<br />

(6) The graph of f ( x)<br />

log x increases as x increases.<br />

b<br />

The graph of f ( x)<br />

log x when 0 b 1<br />

has the same properties as when b 1 except that<br />

b<br />

f ( x)<br />

log x decreases (rather than increases) as x increases.<br />

b<br />

The number e is also special number when working with logarithms as well. The inverse of<br />

x<br />

f ( x)<br />

e is the function f ( x)<br />

log<br />

e<br />

x , which is commonly shortened to f ( x)<br />

ln x . This is<br />

known as the natural log of x. The natural log behaves the same as any other log function.<br />

Relationship between Logarithms and Exponents<br />

x<br />

The following equations provide an illustration of the relationship between f ( x)<br />

b and<br />

f ( x)<br />

log x . (Remember that these two functions are inverses of each other)<br />

b<br />

3 2 9 is equal to log 3<br />

9 2<br />

b<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 94


1 1<br />

2<br />

<br />

<br />

9 <br />

<br />

1<br />

3<br />

is equal to<br />

log<br />

1<br />

3<br />

1<br />

<br />

9<br />

1<br />

1<br />

10 3 is equal to log 10<br />

3<br />

1000<br />

1000<br />

5 0 1 is equal to log 5<br />

1 0<br />

1<br />

2<br />

Therefore, whenever we see a logarithmic function, we can express it as an exponential function<br />

and vice versa.<br />

Example 1: If we have log 9<br />

81 2 , we know that 9 2 81.<br />

Example 2: If we have 2 10 1024 , we can also express it as log 2<br />

1024 10 .<br />

In addition to this, whenever we have the logarithmic function f ( x)<br />

log<br />

b<br />

x we can also solve<br />

for either x or b, which can be helpful in solving many equations.<br />

Example 1: Solve log<br />

b<br />

49 2<br />

for b.<br />

b<br />

<br />

2<br />

b<br />

49<br />

<br />

1<br />

2<br />

2<br />

1 1<br />

b <br />

2<br />

49<br />

1<br />

b <br />

49<br />

1<br />

b <br />

7<br />

49<br />

1<br />

2<br />

Example 2: Solve log 6<br />

x 4for x.<br />

x <br />

6 4<br />

x 1296<br />

Rules for Manipulating Logarithms<br />

Just as we had several rules for working with exponents, we have several rules that can help use<br />

to manipulate equations that contain logarithms.<br />

Rule 1:<br />

Rule 2:<br />

Rule 3:<br />

log<br />

b<br />

b y<br />

b<br />

log b x<br />

<br />

log<br />

b<br />

y<br />

x<br />

xy log<br />

b<br />

x log<br />

b<br />

y<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 95


Rule 4:<br />

Rule 5:<br />

log<br />

b<br />

x<br />

y<br />

log<br />

n<br />

log x nlog<br />

b<br />

b<br />

x log<br />

b<br />

x<br />

b<br />

y<br />

Rule 6: log<br />

b<br />

1 0 for all bases b<br />

Rule 7: log<br />

b<br />

b 1 for all bases b<br />

Rule 8:<br />

Rule 9:<br />

1<br />

log<br />

b<br />

log b<br />

n<br />

n<br />

log<br />

n<br />

b<br />

x log<br />

b<br />

x<br />

1<br />

n<br />

1<br />

log<br />

n<br />

b<br />

x<br />

Rule 10:<br />

log<br />

log<br />

b<br />

x <br />

log<br />

n<br />

n<br />

x<br />

b<br />

2 3<br />

5<br />

Example 1: log 32 log 48<br />

log 2 2 log 2 5 by Rule 1<br />

2 2<br />

2<br />

2<br />

<br />

Example 2: log<br />

3<br />

243 log<br />

3<br />

9<br />

27 log<br />

3<br />

9 log<br />

3<br />

27 2 3 5 by Rule 3<br />

25<br />

Example 3: log<br />

5<br />

log<br />

5<br />

25 log<br />

5<br />

125 2 3 1<br />

by Rule 4<br />

125<br />

1<br />

This is equivalent to log<br />

5<br />

log<br />

5<br />

1<br />

log<br />

5<br />

5 0 1<br />

1<br />

5<br />

Example 4: Given that log 10<br />

2 0. 3010 and log 10<br />

3 0. 4771, evaluate the following.<br />

log<br />

10<br />

6 log<br />

10<br />

23<br />

log<br />

10<br />

2 log<br />

10<br />

3 0.3010 0.4771 0.7781<br />

5<br />

Example 5: log<br />

10<br />

32 log<br />

10<br />

2 5log<br />

10<br />

2 5(0.3010)<br />

1.<br />

505 by Rule 5<br />

1 1 3<br />

log<br />

2<br />

<br />

2<br />

2<br />

3<br />

by Rule 5<br />

2 2 2<br />

Example 6: 8 log 8 log<br />

8<br />

1<br />

2<br />

Logs can also be helpful when we are working with very large and very small numbers that can<br />

be expressed in scientific notation.<br />

Example:<br />

log<br />

10<br />

log<br />

623 log<br />

10<br />

10<br />

<br />

6.23 2log<br />

6.2310<br />

10<br />

2<br />

<br />

10 log<br />

log<br />

10<br />

10<br />

(6.23) log<br />

10<br />

10<br />

6.23 2 0.7945 2 2.7945<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 96


Alcohol and Driving Application Problem<br />

(This application problem was taken from Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, pp. 435-436)<br />

The concentration of alcohol in a person’s blood is measurable. Recent medical research<br />

suggests that the risk R (given as a percent) of having an accident while driving a car can be<br />

modeled by the equation<br />

kx<br />

R 6e<br />

where x is the variable concentration of alcohol in the blood and k is a constant.<br />

(a) Suppose that a concentration of alcohol in the blood of 0.04 results in a 10% risk ( R 10<br />

) of an accident. Find the concentration k in the equation.<br />

(b) Using this value of k, what is the risk if the concentration is 0.17?<br />

(c) Using the same value of k, what concentration of alcohol corresponds to a risk of 100%?<br />

(d) If the law asserts that anyone with a risk of having an accident of 20% or more should not<br />

have driving privileges, at what concentration of alcohol in the blood should a driver be<br />

arrested and charged with a DUI (Driving While Under the Influence)?<br />

Solutions:<br />

(a) For a concentration of alcohol in the blood of 0.04 and a risk of 10%, we let x 0. 04and<br />

R 10 in the equation and solve for k.<br />

kx<br />

R 6e<br />

10 6e<br />

k (0.04)<br />

10 k (0.04)<br />

e<br />

6<br />

10<br />

0.04k<br />

ln 0.510826<br />

6<br />

k 12.77<br />

(b) Using k = 12.77 and x = 0.17 in the equation, we find the risk R to be<br />

rx (12.77)(0.17)<br />

R 6e<br />

6e<br />

52.6<br />

For a concentration of alcohol in the blood of 0.17, the risk of an accident is about 52.6%.<br />

(c) Using k = 12.77 and R = 100 in the equation, we find the concentration x of alcohol in the<br />

blood to be<br />

kx<br />

R 6e<br />

100 6e<br />

12.77x<br />

100 12.77x<br />

e<br />

6<br />

100<br />

12.77x<br />

ln 2.8134<br />

6<br />

x 0.22<br />

For a concentration of alcohol in the blood of 0.22, the risk of an accident is 100%.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 97


(d) Using k = 12.77 and R = 20 in the equation, we find the concentration x of alcohol in the<br />

blood to be<br />

kx<br />

R 6e<br />

20 6e<br />

12.77x<br />

20 12.77x<br />

e<br />

6<br />

20<br />

12.77x<br />

ln 1.204<br />

6<br />

x 0.094<br />

A driver with a concentration of alcohol in the blood of 0.094 or more (9.4%) should be<br />

arrested and charged with a DUI.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 98


MATH CAMP<br />

School of Public and Environmental Affairs<br />

Day Three In-Class Exercises<br />

FUNCTIONS<br />

1. Find the domain and range of the following functions:<br />

2<br />

a. f ( x)<br />

x 3x<br />

5<br />

b. f ( x)<br />

3x<br />

12<br />

BASICS OF GRAPHING FUNCTIONS<br />

2. Plot the points (1,9), (-2,-6), (-4, 10), (0, 7), (9,1), (-5,0), (5,-7) and (10,3) on a graph.<br />

3. Write the function whose graph is the graph of<br />

a. Shifted to the right by 8 units<br />

b. Shifted to the left by 3 units<br />

c. Shifted up by 4 units<br />

d. Shifted down by 10 units<br />

e. Reflected about the x-axis<br />

f. Flattened by a factor of 3<br />

g. Expanded by a factor of .5<br />

4<br />

y x , but is:<br />

LINEAR FUNCTIONS AND THEIR GRAPHS<br />

4. Graph the following lines:<br />

a. 4x<br />

6y 9 0<br />

b. 5x<br />

2y<br />

0<br />

5. Draw a graph of the line connecting these two points and find the length of the line.<br />

a. (0,4), (0,-4)<br />

6. What is the midpoint of the two points?<br />

a. (0,3), (5,1)<br />

b. (-3,-7), (-2,9)<br />

7. Draw a graph of the line connecting these two points and find the slope of the line.<br />

a. (4,-1), (-2,3)<br />

b. (-5,3), (1,-3)<br />

8. Find an equation of the line through the two given points. Graph the line.<br />

a. ( 0,0),(6,2)<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 99


9. Find an equation of the line through the given point and with the given slope. Graph the<br />

line.<br />

1<br />

a. ( 0,6), m <br />

4<br />

QUADRATIC FUNCTIONS AND THEIR GRAPHS<br />

10. Graph the following equations:<br />

a. f ( x)<br />

( x 6)<br />

2 9<br />

b. f ( x)<br />

5x<br />

5<br />

11. Find the x- and y-intercepts of the following functions:<br />

2<br />

a. f ( x)<br />

x 5x<br />

14<br />

12. Suppose that you are given the following equation for a demand curve for widgets. In<br />

this case, Q = the quantity of widgets demanded and P = the price of widgets.<br />

Q 8.5<br />

.<br />

05P<br />

a. Solve this equation for P.<br />

b. Graph the equation for the line that you found in Part A.<br />

c. Suppose that you know that revenue is the price multiplied by the quantity, or<br />

R P Q<br />

. Using the equation for P that you found in Part A, determine the<br />

revenue function.<br />

d. Graph the revenue function from Part C. (Revenue will go on the vertical axis)<br />

e. If the quantity sold was 2 units, what would the price be? What would the<br />

revenue be?<br />

f. Just by looking at this graph, at approximately what quantity will revenue be the<br />

greatest?<br />

POLYNOMIAL AND RATIONAL FUNCTIONS<br />

13. Find the domain and range of the following function:<br />

x 3<br />

a. f ( x)<br />

x 6<br />

14. Graph the following equations:<br />

a. f ( x)<br />

x 3 3<br />

b. f ( x)<br />

x 4<br />

1<br />

c. f ( x)<br />

x 5<br />

15. Find the x- and y-intercepts of the following functions:<br />

a. f ( x)<br />

x 3 8<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 100


EXPONENTIAL FUNCTIONS<br />

16. Graph the following functions:<br />

a.<br />

b.<br />

1 <br />

f ( x)<br />

<br />

4 <br />

x<br />

f ( x)<br />

4<br />

x<br />

0.06t<br />

17. In a certain culture, if A is the number of bacteria present at t minutes, then A ke<br />

where k is a constant. If there are 1000 bacteria present initially, how many bacteria will<br />

be present after 1 hour has elapsed?<br />

LOGARITHMIC FUNCTIONS<br />

18. Find the value of the following logarithms:<br />

a. log 5<br />

25<br />

b. log 2<br />

16<br />

19. Solve the following equations for x or b, respectively.<br />

a. log 5<br />

x 2<br />

b.<br />

2<br />

log 27<br />

x <br />

3<br />

c.<br />

1<br />

log<br />

b<br />

5 <br />

3<br />

d. log<br />

10<br />

x log<br />

10(<br />

x 15)<br />

2<br />

20. Simplify these logarithmic expressions:<br />

a.<br />

2<br />

4log<br />

b<br />

x log<br />

b<br />

y log<br />

b<br />

z<br />

3<br />

b.<br />

3 4 2<br />

log<br />

b<br />

x log<br />

b<br />

y log<br />

b<br />

z<br />

5 5 5<br />

21. Find the following logarithms given that log 10<br />

2 0. 3010 , log 10<br />

3 0. 4771, and<br />

log 10<br />

7 0.8451:<br />

a. log 7,000<br />

b. log .00007<br />

c. log 1400<br />

d. log .0003<br />

22. Between 12:00pm and 1:00pm, cars arrive at Citibank’s drive-thru at the rate of 6 cars<br />

per hour (0.1 car per minute). The following formula from statistics can be used to<br />

determine the probability that a car will arrive within t minutes of 12:00pm.<br />

0.1t<br />

F(<br />

t)<br />

1<br />

e<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, p. 440)<br />

a. Determine how many minutes are needed for the probability to reach 50%<br />

b. Determine how many minutes are needed for the probability to reach 80%<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 101


y<br />

MATH CAMP<br />

School of Public and Environmental Affairs<br />

Day Three In-Class Exercises Solutions<br />

FUNCTIONS<br />

1. Find the domain and range of the following functions:<br />

2<br />

a. f ( x)<br />

x 3x<br />

5 Domain = all real numbers, Range = all real numbers<br />

b. f ( x)<br />

3x<br />

12<br />

Domain = x 4, Range = y 0<br />

BASICS OF GRAPHING FUNCTIONS<br />

2. Plot the points (1,9), (-2,-6), (-4, 10), (0, 7), (9,1), (-5,0), (5,-7) and (10,3) on a graph.<br />

Answers to #1<br />

12<br />

-4, 10 10<br />

1, 9<br />

8<br />

0, 7<br />

6<br />

4<br />

10, 3<br />

2<br />

9, 1<br />

-5, 0<br />

0<br />

-6 -4 -2 -2 0 2 4 6 8 10 12<br />

-4<br />

-2, -6 -6<br />

-8<br />

5, -7<br />

x<br />

3. Write the function whose graph is the graph of<br />

a. Shifted to the right by 8 units<br />

b. Shifted to the left by 3 units<br />

4<br />

y x , but is:<br />

f ( x)<br />

( x 8)<br />

f ( x)<br />

( x 3)<br />

c. Shifted up by 4 units f ( x)<br />

x 4 4<br />

d. Shifted down by 10 units f ( x)<br />

x 4 10<br />

e. Reflected about the x-axis<br />

f. Flattened by a factor of 3<br />

g. Expanded by a factor of .5<br />

LINEAR FUNCTIONS AND THEIR GRAPHS<br />

f ( x)<br />

x<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 102<br />

4<br />

4<br />

f ( x)<br />

3x<br />

1<br />

f ( x)<br />

x<br />

2<br />

4<br />

4<br />

4


4. Graph the following lines:<br />

a. 4x<br />

6y 9 0<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-15 -10 -5 0 5 10 15<br />

-2<br />

b. 5x<br />

2y<br />

0<br />

-4<br />

-6<br />

30<br />

20<br />

10<br />

0<br />

-15 -10 -5 0 5 10 15<br />

-10<br />

-20<br />

-30<br />

5. Draw a graph of the line connecting these two points and find the length of the line.<br />

a. (0,4), (0,-4)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1 -0.5 -1 0 0.5 1<br />

-2<br />

-3<br />

-4<br />

-5<br />

6. What is the midpoint of the two points?<br />

2<br />

2<br />

2 2<br />

0<br />

0 <br />

4 4 (0) ( 8)<br />

64 8<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 103


a. (0,3), (5,1)<br />

<br />

<br />

<br />

x x<br />

2<br />

y<br />

,<br />

<br />

2<br />

1 2 1<br />

y2<br />

b. (-3,-7), (-2,9)<br />

<br />

<br />

<br />

x x<br />

2<br />

y<br />

,<br />

<br />

2<br />

1 2 1<br />

y2<br />

0 5 3 1<br />

5 <br />

, ,2<br />

2 2 2 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

3 2 7 9<br />

,<br />

2 2<br />

<br />

<br />

<br />

<br />

<br />

5 <br />

,1<br />

2 <br />

7. Draw a graph of the line connecting these two points and find the slope of the line.<br />

a. (4,-1), (-2,3)<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-3 -2 -1 -0.5 0 1 2 3 4 5<br />

-1<br />

-1.5<br />

m <br />

rise<br />

run<br />

<br />

y<br />

x<br />

2<br />

2<br />

<br />

<br />

y<br />

x<br />

1<br />

1<br />

3 ( 1)<br />

<br />

2 4<br />

<br />

4<br />

6<br />

<br />

2<br />

3<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 104


. (-5,3), (1,-3)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-6 -5 -4 -3 -2 -1 0<br />

-1<br />

1 2<br />

-2<br />

-3<br />

-4<br />

rise<br />

m <br />

run<br />

<br />

y<br />

x<br />

2<br />

2<br />

<br />

<br />

y<br />

x<br />

1<br />

1<br />

3 3<br />

<br />

1<br />

( 5)<br />

<br />

6<br />

1<br />

6<br />

8. Find an equation of the line through the two given points. Graph the line.<br />

a. ( 0,0),(6,2)<br />

m <br />

rise<br />

run<br />

<br />

y<br />

x<br />

2<br />

2<br />

<br />

<br />

y<br />

x<br />

1<br />

1<br />

2 0<br />

<br />

6 0<br />

2<br />

6<br />

<br />

1<br />

3<br />

y y<br />

1<br />

y 0 <br />

1<br />

y <br />

3<br />

m( x x1)<br />

x<br />

1<br />

(<br />

3<br />

x 0)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-15 -10 -5 0<br />

-1<br />

5 10 15<br />

-2<br />

-3<br />

-4<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 105


9. Find an equation of the line through the given point and with the given slope. Graph the<br />

line.<br />

1<br />

a. ( 0,6), m <br />

4<br />

y y m( x x1)<br />

1<br />

1<br />

y 6 ( x 0)<br />

4<br />

1<br />

y x 6<br />

4<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-15 -10 -5 0 5 10 15<br />

QUADRATIC FUNCTIONS AND THEIR GRAPHS<br />

10. Graph the following equations:<br />

a. f ( x)<br />

( x 6)<br />

2 9<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-20 -10 0 10 20 30<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 106


. f ( x)<br />

5x<br />

5<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-15 -10 -5 -10 0 5 10 15<br />

-20<br />

-30<br />

-40<br />

-50<br />

11. Find the x- and y-intercepts of the following functions:<br />

2<br />

a. f ( x)<br />

x 5x<br />

14<br />

x-intercepts => x 7, 2<br />

y-intercept => -14<br />

12. Suppose that you are given the following equation for a demand curve for widgets. In<br />

this case, Q = the quantity of widgets demanded and P = the price of widgets.<br />

Q 8.5<br />

.<br />

05P<br />

a. Solve this equation for P.<br />

Q 8.5 .05P<br />

.05P<br />

Q 8.5<br />

Q 8.5<br />

P <br />

.05 .05<br />

P 20Q<br />

170<br />

b. Graph the equation for the line that you found in Part A.<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-15 -10 -5 0 5 10 15 20<br />

-100<br />

-200<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 107


c. Suppose that you know that revenue is the price multiplied by the quantity, or<br />

R P Q<br />

. Using the equation for P that you found in Part A, determine the<br />

revenue function.<br />

R P Q<br />

R ( 20Q<br />

170)<br />

Q<br />

R 20Q<br />

2 <br />

170Q<br />

d. Graph the revenue function from Part C. (Revenue will go on the vertical axis)<br />

1000<br />

0<br />

-15 -10 -5 0 5 10 15 20 25<br />

-1000<br />

-2000<br />

-3000<br />

-4000<br />

-5000<br />

-6000<br />

e. If the quantity sold was 2 units, what would the market clearing price be? What<br />

would the revenue be?<br />

P 20Q<br />

170<br />

P 20(2)<br />

170<br />

P 40<br />

170<br />

P 130<br />

R 20Q<br />

R 20(2)<br />

R 20(4)<br />

340<br />

R 80<br />

340<br />

R 260<br />

2<br />

170Q<br />

2<br />

170(2)<br />

f. Just by looking at this graph, at approximately what quantity will revenue be the<br />

greatest?<br />

Somewhere around 4 widgets<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 108


POLYNOMIAL AND RATIONAL FUNCTIONS<br />

13. Find the domain and range of the following function:<br />

x 3<br />

a. f ( x)<br />

Domain = all real numbers except x 6 (vertical asymptote),<br />

x 6<br />

range = all real numbers except y 1 (horizontal asymptote)<br />

14. Graph the following equations:<br />

a. f ( x)<br />

x 3 3<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-15 -10 -5 -10 0 5 10 15<br />

-20<br />

-30<br />

-40<br />

-50<br />

b. f ( x)<br />

x 4<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-20 -10 0 10 20<br />

-5<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 109


c.<br />

1<br />

f ( t)<br />

t 5<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-10 -5 -1 0 5<br />

-2<br />

-3<br />

-4<br />

-5<br />

15. Find the x- and y-intercepts of the following functions:<br />

a. f ( x)<br />

x 3 8<br />

x-intercepts => x 2<br />

y-intercept => 8<br />

EXPONENTIAL FUNCTIONS<br />

16. Graph the following functions:<br />

1 <br />

a. f ( x)<br />

<br />

4 <br />

x<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-10 -5 0 5 10<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 110


.<br />

f ( x)<br />

4<br />

x<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-10 -5 0 5 10<br />

0.06t<br />

17. In a certain culture, if A is the number of bacteria present at t minutes, then A ke<br />

where k is a constant. If there are 1000 bacteria present initially, how many bacteria will<br />

be present after 1 hour has elapsed?<br />

At t = 0, we have 1,000 bacteria. We can substitute this into our equation to solve for k.<br />

A ke<br />

0.06t<br />

1000 ke<br />

1000 ke<br />

1000 k<br />

0.060 <br />

0<br />

We want to find the number of bacteria present at t = 60 minutes (which is one hour).<br />

A ke<br />

0.06t<br />

A 1000e<br />

A 1000e<br />

3.6<br />

A 1000(36.598)<br />

A 36,598<br />

0.0660 <br />

LOGARITHMIC FUNCTIONS<br />

18. Find the value of the following logarithms:<br />

a. log 5<br />

25 2<br />

b. log 2<br />

16 4<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 111


19. Solve the following equations for x or b, respectively.<br />

a. log x 2<br />

5<br />

2<br />

5<br />

x<br />

x 25<br />

b.<br />

log<br />

27<br />

2<br />

3<br />

27<br />

x 9<br />

x <br />

x<br />

2<br />

3<br />

c.<br />

d.<br />

log<br />

b<br />

1<br />

3<br />

b<br />

5 <br />

5<br />

3<br />

1<br />

3<br />

1<br />

<br />

3 <br />

b<br />

5<br />

<br />

b 125<br />

log<br />

log<br />

10<br />

100 x<br />

x<br />

2<br />

2<br />

10<br />

10<br />

( x 20)( x 5) 0<br />

x 20<br />

x 5<br />

3<br />

x log<br />

x ( x 15)<br />

2<br />

x ( x 15)<br />

2<br />

10<br />

15x<br />

15x<br />

100<br />

0<br />

( x 15)<br />

2<br />

20. Simplify these logarithmic expressions:<br />

a.<br />

4log<br />

b<br />

log<br />

log<br />

b<br />

b<br />

2<br />

x log<br />

3<br />

x<br />

x<br />

4<br />

y<br />

4<br />

log<br />

z<br />

2<br />

3<br />

b<br />

b<br />

y log<br />

y<br />

2<br />

3<br />

b<br />

log<br />

b<br />

z<br />

z<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 112


.<br />

3<br />

log<br />

5<br />

log<br />

log<br />

log<br />

log<br />

b<br />

b<br />

b<br />

b<br />

4<br />

x log<br />

5<br />

x<br />

5<br />

b<br />

3<br />

5<br />

3<br />

<br />

5<br />

x y<br />

2<br />

5<br />

z<br />

3<br />

x y<br />

<br />

2<br />

z<br />

log<br />

4<br />

5<br />

4<br />

3<br />

x y<br />

2<br />

z<br />

4<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

b<br />

1<br />

5<br />

b<br />

2<br />

y log<br />

5<br />

y<br />

4<br />

5<br />

log<br />

b<br />

b<br />

z<br />

z<br />

2<br />

5<br />

21. Find the following logarithms given that log 10<br />

2 0. 3010 , log 10<br />

3 0. 4771, and<br />

log 10<br />

7 0.8451:<br />

3<br />

3<br />

a. log 7,000 log 7 10<br />

log 7 log 10 (.8451) 3 3. 8451<br />

10 10 10<br />

<br />

5<br />

5<br />

b. log.00007 log7 10<br />

log7 log10 (.8451) 5 4.<br />

1549<br />

2<br />

2<br />

log1400 log 7 210<br />

log 7 log 2 log10<br />

c.<br />

.8451<br />

.3010 2 3.1461<br />

4<br />

4<br />

d. log.0003 log3 10<br />

log3 log10 .4771<br />

4 3.<br />

5229<br />

22. Between 12:00pm and 1:00pm, cars arrive at Citibank’s drive-thru at the rate of 6 cars<br />

per hour (0.1 car per minute). The following formula from statistics can be used to<br />

determine the probability that a car will arrive within t minutes of 12:00pm.<br />

0.1t<br />

F(<br />

t)<br />

1<br />

e<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, p. 440)<br />

a. Determine how many minutes are needed for the probability to reach 50%<br />

0.1t<br />

F(<br />

t)<br />

1<br />

e<br />

.50 1<br />

e<br />

.5 1<br />

e<br />

.5 e<br />

.5 e<br />

0.1t<br />

ln .5 ln e<br />

0.1t<br />

0.1t<br />

0.1t<br />

0.1t<br />

ln .5 0.1t<br />

ln .5 .693<br />

t 6.93<br />

0.1 0.1<br />

It will take 6.93 minutes for the probability to reach 50%.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 113


. Determine how many minutes are needed for the probability to reach 80%<br />

F(<br />

t)<br />

1<br />

e<br />

.80 1<br />

e<br />

.8 1<br />

e<br />

.2 e<br />

.2 e<br />

0.1t<br />

ln .2 ln e<br />

0.1t<br />

0.1t<br />

0.1t<br />

0.1t<br />

0.1t<br />

ln .2 0.1t<br />

ln .2 1.61<br />

t 16.09<br />

0.1 0.1<br />

It will take 16.09 minutes for the probability to reach 80%<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 114


MATH CAMP<br />

School of Public and Environmental Affairs<br />

Day Three Homework<br />

1. Find an equation of the line through the given point with the given slope. Graph the line.<br />

1<br />

( 2, 5),<br />

m <br />

2<br />

2. Suppose that you are given the following equation for a demand curve for toy elephants.<br />

In this case, Q = the quantity of elephants demanded and P = the price of toy elephants.<br />

<br />

Q <br />

P 425<br />

.8<br />

a. Solve this equation for P.<br />

b. Suppose that you know that revenue is the price multiplied by the quantity, or<br />

R P Q<br />

. Using the equation for P that you found in Part A, determine the<br />

revenue function.<br />

c. Graph the revenue function from Part B.<br />

d. If the quantity sold was 5 units, what would the price be? What would the<br />

revenue be?<br />

e. Just by looking at the graph, at approximately what quantity will revenue be the<br />

greatest?<br />

f. Now suppose that the cost function of producing toy elephants is given by<br />

C 50 5Q . When you make approximately 4 toy elephants, what is the cost?<br />

g. We also know that profit is the revenue minus the cost, or R C . Using the<br />

revenue function from Part B and the cost function from Part F, find the profit<br />

function.<br />

h. Graph the profit function from Part G.<br />

i. By looking at the graph, at approximately what quantity will you have the highest<br />

profit?<br />

j. If you sell 3 toy elephants, what will be your profit?<br />

3. A rare species of insect was discovered in the Amazon Rain Forest. To protect the<br />

species, environmentalists declare the insect endangered and transplant the insects into a<br />

protected area. The population of the insect t years after being transplanted is given by P.<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, pp. 329)<br />

50(1 0.5t)<br />

P(<br />

t)<br />

<br />

(2 0.01 t)<br />

a. How many insects were discovered? In other words, what was the population<br />

when t 0 ?<br />

b. What will the population be after 5 years?<br />

c. Determine the horizontal asymptote of P (t)<br />

. What is the largest population that<br />

the protected area can sustain?<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 115


4. The research department in a company that manufactures AM/FM clock radios<br />

established the following price-demand, cost, and revenue functions:<br />

p( x)<br />

50 1.<br />

25x<br />

Price-demand function<br />

C( x)<br />

160 10x<br />

Cost function<br />

R( x)<br />

xp(<br />

x)<br />

x(50<br />

1.25x)<br />

Revenue function<br />

Where x is in thousands of units, and C(x)<br />

and R (x)<br />

are in thousands of dollars. All<br />

three functions have domain 1 x 40 . (Barnett, Ziegler and Byleen, Finite <strong>Math</strong>ematics for Business,<br />

Economics, Life Sciences, and Social Sciences, tenth edition, Upper Saddle River, NJ: Prentice Hall, pp. 74)<br />

a. Graph the cost function and the revenue function simultaneously in the same<br />

coordinate system.<br />

b. Determine algebraically when R C . Then, with the aid of part (A), determine<br />

when R C and R C to the nearest unit.<br />

c. Determine algebraically the maximum revenue (to the nearest thousand dollars)<br />

and the output (to the nearest unit) that produces the maximum revenue. What is<br />

the wholesale price of the radio (to the nearest dollar) at this output?<br />

0.3t<br />

5. If Y grams of a radioactive substance are present after t seconds, then Y be where b<br />

is a constant. If 100 grams of the substance is present initially, how much is present after<br />

5 seconds?<br />

6. It took from the dawn of humanity to 1830 for the population to grow to the first billion<br />

people, just 100 more years (by 1930) for the second billion, and 3 billion more were<br />

added in only 60 more years (by 1990). In 2002, the estimated world population was 6.2<br />

billion with an annual growth rate of 1.25% compounded continuously.<br />

(Barnett, Ziegler and Byleen, Finite <strong>Math</strong>ematics for Business, Economics, Life Sciences, and Social Sciences, tenth edition, Upper<br />

Saddle River, NJ: Prentice Hall, pp. 108-109)<br />

a. Write an equation that models the world population growth, letting 2002 be year<br />

0.<br />

b. Based on the model, what is the expected world population (to the nearest<br />

hundred million) in 2010? In 2030?<br />

7. Solve the following for x or b, respectively.<br />

a. log 0.1 1<br />

b<br />

b. log<br />

2(<br />

x 1)<br />

log<br />

2(3x<br />

5)<br />

log<br />

2(5x<br />

3)<br />

2<br />

kt<br />

8. Psychologists sometimes use the function L(<br />

t)<br />

A(1<br />

e ) to measure the amount L<br />

learned at time t. The number A represents the amount to be learned, and the number k<br />

measures the rate of learning. Suppose that a student has an amount A of 200 vocabulary<br />

works to learn. A psychologist determines that the student learned 20 vocabulary words<br />

after 5 minutes.<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, p. 440)<br />

a. Determine the rate of learning k.<br />

b. Approximately how many words will the student have learned after 10 minutes?<br />

c. After 15 minutes?<br />

d. How long does it take for the student to learn 180 words?<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 116


MATH CAMP<br />

School of Public and Environmental Affairs<br />

Day Three Homework Solutions<br />

1. Find an equation of the line through the given point with the given slope. Graph the line.<br />

1<br />

( 2, 5),<br />

m <br />

2<br />

y y<br />

1<br />

y ( 5)<br />

<br />

1<br />

y <br />

2<br />

1<br />

y x 6<br />

2<br />

m( x x ) 1<br />

1<br />

(<br />

2<br />

x 1<br />

5<br />

x 2)<br />

0<br />

-15 -10 -5 0 5 10 15<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

2. Suppose that you are given the following equation for a demand curve for toy elephants.<br />

In this case, Q = the quantity of elephants demanded and P = the price of toy elephants.<br />

<br />

Q <br />

P 425<br />

.8<br />

a. Solve this equation for P.<br />

P<br />

Q 425<br />

.8<br />

.8Q<br />

P<br />

(.8)(425)<br />

.8Q<br />

P<br />

340<br />

P .8Q<br />

340<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 117


. Suppose that you know that revenue is the price multiplied by the quantity, or<br />

R P Q<br />

. Using the equation for P that you found in Part A, determine the<br />

revenue function.<br />

R P Q<br />

R ( .8Q<br />

340) Q<br />

R .8Q<br />

2 <br />

340Q<br />

c. Graph the revenue function from Part B.<br />

200000<br />

0<br />

-1500 -1000 -500 0<br />

-200000<br />

500 1000 1500 2000<br />

-400000<br />

-600000<br />

-800000<br />

-1000000<br />

-1200000<br />

-1400000<br />

d. If the quantity sold was 5 units, what would the price be? What would the<br />

revenue be?<br />

P .8Q<br />

340<br />

P .8(5)<br />

340 336<br />

R .8Q<br />

R .8(5)<br />

R .8(25)<br />

1700<br />

R 20<br />

1700<br />

R 1680<br />

2<br />

340Q<br />

2<br />

340(5)<br />

e. Just by looking at the graph, at approximately what quantity will revenue be the<br />

greatest?<br />

Somewhere around 250 or so<br />

f. Now suppose that the cost function of producing toy elephants is given by<br />

C 50 5Q . When you make approximately 4 toy elephants, what is the cost?<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 118


C 50 5Q<br />

C 50 5(4)<br />

C 50 20<br />

C 70<br />

g. We also know that profit is the revenue minus the cost, or R C . Using the<br />

revenue function from Part B and the cost function from Part F, find the profit<br />

function.<br />

R C<br />

.8Q<br />

340Q<br />

(50 5Q)<br />

2<br />

.8Q<br />

335Q<br />

50<br />

h. Graph the profit function from Part G.<br />

2<br />

200000<br />

0<br />

-1500 -1000 -500 0<br />

-200000<br />

500 1000 1500 2000<br />

-400000<br />

-600000<br />

-800000<br />

-1000000<br />

-1200000<br />

-1400000<br />

i. By looking at the graph, at approximately what quantity will you have the highest<br />

profit?<br />

Somewhere around 200 or 250, definitely between 0 and 500<br />

j. If you sell 3 toy elephants, what will be your profit?<br />

2<br />

.8Q<br />

335Q<br />

50<br />

.8(3)<br />

947.8<br />

2<br />

335(3) 50<br />

3. A rare species of insect was discovered in the Amazon Rain Forest. To protect the<br />

species, environmentalists declare the insect endangered and transplant the insects into a<br />

protected area. The population of the insect t years after being transplanted is given by P.<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, pp. 329)<br />

50(1 0.5t)<br />

P(<br />

t)<br />

<br />

(2 0.01 t)<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 119


a. How many insects were discovered? In other words, what was the population<br />

when t 0 ?<br />

50(1 0.5t)<br />

P(<br />

t)<br />

<br />

(2 0.01 t)<br />

50(1 0.5 0)<br />

P(0)<br />

<br />

(2 0.01<br />

0)<br />

<br />

50<br />

25<br />

2<br />

b. What will the population be after 5 years?<br />

50(1 0.5t)<br />

P(<br />

t)<br />

<br />

(2 0.01 t)<br />

<br />

<br />

<br />

<br />

50 1<br />

(0.5)(5)<br />

P(5)<br />

<br />

2 (0.01)(5)<br />

50(1 2.5)<br />

<br />

2 .05<br />

<br />

175<br />

2.05<br />

85.37<br />

After 5 years, there will be approximately 85 insects.<br />

c. Determine the horizontal asymptote of P (t)<br />

. What is the largest population that<br />

the protected area can sustain?<br />

To find the horizontal asymptote of P (t)<br />

we need to divide every term in the<br />

numerator and denominator by t.<br />

50(1 0.5t)<br />

P(<br />

t)<br />

<br />

(2 0.01 t)<br />

50 25t<br />

<br />

2 0.01t<br />

50<br />

25<br />

<br />

t<br />

2<br />

0.01<br />

t<br />

50 2<br />

As t , 0 and 0 .<br />

t t<br />

50<br />

25<br />

This means that the expression t 25<br />

will draw closer to 2500<br />

2<br />

0.01<br />

0.01<br />

t<br />

as t . The same is true as t . Therefore, the horizontal<br />

asymptote is P ( t)<br />

2500 . This asymptote tells us that the protected area<br />

cannot sustain more insects than 2500.<br />

4. The research department in a company that manufactures AM/FM clock radios<br />

established the following price-demand, cost, and revenue functions:<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 120


p( x)<br />

50 1.<br />

25x<br />

Price-demand function<br />

C( x)<br />

160 10x<br />

Cost function<br />

R( x)<br />

xp(<br />

x)<br />

x(50<br />

1.25x)<br />

Revenue function<br />

Where x is in thousands of units, and C(x)<br />

and R (x)<br />

are in thousands of dollars. All<br />

three functions have domain 1 x 40 . (Barnett, Ziegler and Byleen, Finite <strong>Math</strong>ematics for Business,<br />

Economics, Life Sciences, and Social Sciences, tenth edition, Upper Saddle River, NJ: Prentice Hall, pp. 74)<br />

a. Graph the cost function and the revenue function simultaneously in the same<br />

coordinate system.<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 10 20 30 40<br />

b. Determine algebraically when R C . Then, with the aid of part (A), determine<br />

when R C and R C to the nearest unit.<br />

R C<br />

x(50<br />

1.25x)<br />

160 10x<br />

50x<br />

1.25x<br />

1.25x<br />

1.25x<br />

2<br />

2<br />

2<br />

160 10x<br />

50x<br />

10x<br />

160<br />

0<br />

40x<br />

160<br />

0<br />

b <br />

x <br />

2<br />

b 4ac<br />

2a<br />

40 1600 800<br />

<br />

2.5<br />

40 <br />

<br />

(40)<br />

4( 1.25)(<br />

160)<br />

2( 1.25)<br />

40 28.28 4.688<br />

<br />

<br />

2.5 27.312<br />

2<br />

As seen in the graph, R C when x 4. 688 or when x 27. 312 . Also,<br />

R C when 4.688<br />

x 27. 312<br />

c. Determine algebraically the maximum revenue (to the nearest thousand dollars)<br />

and the output (to the nearest unit) that produces the maximum revenue. What is<br />

the wholesale price of the radio (to the nearest dollar) at this output?<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 121


To find the maximum revenue, we need to find the vertex of the revenue curve,<br />

which will occur at:<br />

b 50<br />

x 20<br />

2a<br />

2( 1.25)<br />

The output when we hit the maximum revenue is 20 units.<br />

So the maximum revenue will be:<br />

b <br />

2<br />

R R (20) 1.25(20)<br />

50(20) 500<br />

1000<br />

$500<br />

2a<br />

<br />

The price at this output will be:<br />

p ( 20) 50 1.25(20)<br />

50 25 $25<br />

0.3t<br />

5. If Y grams of a radioactive substance are present after t seconds, then Y be where b<br />

is a constant. If 100 grams of the substance is present initially, how much is present after<br />

5 seconds?<br />

We know that there are 100 grams of substance initially, so there are 100 grams of the<br />

substance at t = 0. We can plug this into our formula to get b.<br />

Y = be -0.3t<br />

100 = be (-0.3)(0)<br />

100 = be 0<br />

b = 100<br />

Now we can solve for Y when t = 5, given that b = 100.<br />

Y = 100e -0.3t<br />

Y = 100e (-0.3)(5) = 100e -1.5 = 100(0.223) = 22.3 grams<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 122


6. It took from the dawn of humanity to 1830 for the population to grow to the first billion<br />

people, just 100 more years (by 1930) for the second billion, and 3 billion more were<br />

added in only 60 more years (by 1990). In 2002, the estimated world population was 6.2<br />

billion with an annual growth rate of 1.25% compounded continuously.<br />

(Barnett, Ziegler and Byleen, Finite <strong>Math</strong>ematics for Business, Economics, Life Sciences, and Social Sciences, tenth edition, Upper<br />

Saddle River, NJ: Prentice Hall, pp. 108-109)<br />

a. Write an equation that models the world population growth, letting 2002 be year<br />

0.<br />

P =6.2e (0.0125)t<br />

b. Based on the model, what is the expected world population (to the nearest<br />

hundred million) in 2010? In 2030?<br />

7. Solve the following for x or b, respectively.<br />

a. log 0.1 1<br />

b<br />

b. log<br />

2(<br />

x 1)<br />

log<br />

2(3x<br />

5) log<br />

2(5x<br />

3) 2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 123


kt<br />

8. Psychologists sometimes use the function L(<br />

t)<br />

A(1<br />

e ) to measure the amount L<br />

learned at time t. The number A represents the amount to be learned, and the number k<br />

measures the rate of learning. Suppose that a student has an amount A of 200 vocabulary<br />

works to learn. A psychologist determines that the student learned 20 vocabulary words<br />

after 5 minutes.<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, p. 440)<br />

a. Determine the rate of learning k.<br />

b. Approximately how many words will the student have learned after 10 minutes?<br />

c. After 15 minutes?<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 124


d. How long does it take for the student to learn 180 words?<br />

It would take approximately 115 minutes to learn 180 words.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 125


MATH CAMP<br />

School of Public and Environmental Affairs<br />

DERIVATIVES<br />

What are Derivatives?<br />

Day Four: Derivatives, Optimization, and Integration<br />

Day Four Class Notes<br />

Slopes can help us to understand the relationships between variables. When we have an equation<br />

for a line, finding the slope is really straightforward and easy to do. When we have functions<br />

that take other shapes, however, finding the slope at any particular point on the function becomes<br />

a little harder. In addition, in many functions the slope is different at different points on the<br />

curve. In order to do this, we are going to have to learn a few basic principles of calculus,<br />

specifically taking the derivative of a function.<br />

Because finding the slope of a line is easy, we can exploit the properties of a line in order to find<br />

the slope of another function at a given point.<br />

A tangent line is a straight line that intersects a curve at a single point and has the same slope as<br />

the curve at the point of intersection. Thus, if we can find the slope of the tangent line, we can<br />

find the slope of the curve at the point of tangency. The graph below shows a parabola with a<br />

tangent line.<br />

60<br />

40<br />

20<br />

0<br />

-15 -10 -5 0 5 10 15<br />

-20<br />

-40<br />

-60<br />

We want to know this slope so that we can know the rate of change of the function (curve) at that<br />

particular point. This rate of change has many important real world applications.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 126


Given a curve and a tangent line, if we know the equation for the line, we can easily determine<br />

the slope of the curve at the point where the tangent line and the curve meet. The problem is that<br />

we don’t always know the equation for a line tangent to the curve at a particular point, so we<br />

need another way to find the slope at that point. Taking the derivative of the curve at that point<br />

can do this for us.<br />

The derivative is the slope of the line tangent to the curve at a given point. This slope can give<br />

us important information about the curve that we are interested in. For one thing, the derivative<br />

of a curve tells us the instantaneous rate of change of the curve. A really curvy function can<br />

change at different rates in different places—it can be increasing or decreasing, shallow or deep,<br />

etc. (A line has the same slope at every point, but other curves have a different slope at different<br />

points along the curve.)<br />

As mentioned earlier, the instantaneous rate of change has many real world applications. For<br />

instance, velocity is the derivative of the position function. Marginal cost is the derivative of the<br />

cost function, and marginal revenue is the derivative of the revenue function.<br />

In math camp, we are only going to learn some simple derivatives—derivatives for polynomials.<br />

These will be the most common kinds of derivatives that you will encounter in your <strong>SPEA</strong><br />

classes. But we can apply the rules of derivatives to almost any functional equation. The<br />

process of finding the slope of the tangent line is referred to as taking the derivative of (or<br />

differentiating) the functional equation.<br />

Let y denote the dependent variable and let x denote the independent variable. We can write y as<br />

a function of x as so: y f (x)<br />

where f (x)<br />

is some unspecified functional relationship between<br />

dy<br />

x and y. The derivative of this function is represented by the notation , which is basically the<br />

dx<br />

derivative of y with respect to x.<br />

Rules of Differentiation<br />

d<br />

Rule 1: ( c)<br />

0<br />

dx<br />

for any constant c.<br />

Rule 2:<br />

d<br />

dx<br />

( cx)<br />

c for any cx where c is a constant and x is a variable.<br />

Rule 3: A power function of the form<br />

d d n<br />

n1<br />

( y)<br />

( cx ) n cx .<br />

dx dx<br />

n<br />

y cx , where c and n are constants, has the derivative<br />

Rule 4: (Sum Rule) For any function y f ( x)<br />

g(<br />

x)<br />

where f (x)<br />

and g(x)<br />

are both functions of<br />

dy df dg<br />

x. Then we have .<br />

dx dx dx<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 127


dy df dg<br />

Rule 5: (Product Rule) For any function y f ( x)<br />

g(<br />

x)<br />

, g f<br />

dx dx dx<br />

Rule 6: (Quotient Rule) Given the function<br />

f ( x)<br />

y ,<br />

g(<br />

x)<br />

dy<br />

dx<br />

<br />

<br />

df dg <br />

<br />

g<br />

f<br />

dx dx<br />

<br />

<br />

<br />

2<br />

g<br />

Rule 7: (Chain Rule) This is used for functions nested within functions, such as y f ( g(<br />

x))<br />

. It<br />

dy df dg<br />

states ( g(<br />

x)) . Basically, this means that we take the derivative of the outer function<br />

dx dx dx<br />

while leaving the inner function alone inside of it, and then multiply by the derivative of the<br />

inner function.<br />

Rule 8:<br />

Rule 9:<br />

d (ln x)<br />

<br />

1<br />

dx x<br />

d<br />

dx<br />

x<br />

( e ) e<br />

x<br />

Examples of the Rules of Differentiation<br />

dy<br />

Example 1: Suppose the y f (x)<br />

is y = 10, where 10 is a constant. Then 0 . This makes<br />

dx<br />

sense because the function y = 10 is a horizontal line which has a slope of 0.<br />

dy dy<br />

Example 2: Suppose that y f (x)<br />

is y 14x. Then ( y)<br />

(14x)<br />

14 . This also makes<br />

dx dx<br />

sense because the equation y 14x<br />

is the equation for a line with slope 14 and a y-intercept of 0.<br />

3<br />

Example 3: Given the function y 4x , the derivative would be<br />

dy dy 3<br />

31<br />

2<br />

( y)<br />

(4x<br />

) 3<br />

4x<br />

12x<br />

.<br />

dx dx<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 128


2<br />

2<br />

Example 4: Suppose that we have y 5 x x . Then f ( x)<br />

5x<br />

and g( x)<br />

x . Using the<br />

df 2<br />

21<br />

dy<br />

rules above, (5x<br />

) 25x<br />

10x<br />

and ( x)<br />

1. Using our Sum Rule, we get<br />

dx<br />

dx<br />

dy df dg<br />

dy 2<br />

10x<br />

1. So (5x<br />

x)<br />

10x<br />

1.<br />

dx dx dx<br />

dx<br />

2 4<br />

Example 5: Let y (3x<br />

)(5x<br />

).<br />

Example 6: Let<br />

2<br />

4x<br />

<br />

x<br />

dy<br />

dx<br />

<br />

df<br />

dx<br />

g <br />

dy df<br />

(3x<br />

dx <br />

dx<br />

dy<br />

<br />

dx<br />

dy<br />

(6x)(5x<br />

dx<br />

<br />

df<br />

<br />

(2x<br />

<br />

dx<br />

<br />

<br />

dg<br />

dx<br />

2x<br />

2<br />

y . Then x 1<br />

<br />

df dg <br />

<br />

g<br />

<br />

dy <br />

dx dx <br />

<br />

2<br />

dx g<br />

dy<br />

dx<br />

dy<br />

dx<br />

2<br />

<br />

)<br />

<br />

(5x<br />

<br />

21<br />

4<br />

41<br />

2<br />

3x<br />

(5<br />

x ) 4<br />

5x<br />

<br />

4<br />

f<br />

4<br />

) (20x<br />

dg<br />

) <br />

<br />

(5x<br />

dx<br />

3<br />

)(3x<br />

2<br />

)<br />

4<br />

(3x<br />

<br />

<br />

)<br />

<br />

(3x<br />

<br />

21<br />

2<br />

2<br />

2<br />

2x<br />

(<br />

x 1)<br />

(1)(2x<br />

) (4<br />

x)(<br />

x 1)<br />

2x<br />

<br />

2<br />

2<br />

4x<br />

2x<br />

2x<br />

2<br />

dg <br />

) (<br />

x 1)<br />

( x 1<br />

2x<br />

dx <br />

2<br />

( x 1)<br />

( x 1)<br />

2<br />

f<br />

2<br />

<br />

<br />

<br />

2<br />

2x<br />

4x<br />

<br />

2<br />

x 2x<br />

2<br />

<br />

x<br />

2<br />

2<br />

2<br />

)<br />

<br />

<br />

<br />

<br />

2<br />

)<br />

2x<br />

2<br />

Example 7: Let y 5x<br />

3 3 . This is tricky because we have a square root function of an<br />

algebraic expression. In this case, f(x) is the square root function and g ( x)<br />

5x 3 3 . So<br />

applying the Chain Rule, we get:<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 129


dy<br />

dx<br />

dy<br />

dx<br />

dy<br />

dx<br />

<br />

df<br />

dx<br />

1<br />

<br />

2<br />

( g(<br />

x))<br />

<br />

15x<br />

<br />

3<br />

2 5x<br />

3<br />

1 1<br />

3 1<br />

5 3 2<br />

<br />

x 3<br />

5x<br />

0<br />

2<br />

3<br />

dg<br />

dx<br />

<br />

<br />

Finding the Equation of a Tangent Line<br />

Using our derivatives, we can now find the equation for a tangent line at any point on a curve.<br />

2<br />

Find the tangent line to the curve f ( x)<br />

3x<br />

4x<br />

1at the point where x = 2. Well, when x = 2,<br />

2<br />

we know that y f (2) 3(2 ) 4(2) 1<br />

12<br />

8<br />

1<br />

5, so the point of tangency is (2,5). The<br />

slope at this point should be the derivative of the curve at x = 2.<br />

dy<br />

dx<br />

<br />

d<br />

dx<br />

(3x<br />

2<br />

4x<br />

1)<br />

23x<br />

21<br />

4 6x<br />

4<br />

We evaluate the first derivative at x = 2 and get 6(2)<br />

4 12<br />

4 8. Thus, the slope at this<br />

point is 8.<br />

Now that we have a point and a slope, we can use the point-slope form of a line to get the<br />

equation for the tangent line.<br />

y y<br />

1<br />

y 5 8( x 2)<br />

y 8x<br />

16<br />

5<br />

y 8x<br />

11<br />

m( x x ) 1<br />

OPTIMIZATION AND APPLICATIONS OF DERIVATIVES<br />

In many real-world applications, finding a maximum or minimum point of an equation is<br />

important. The derivative can help us to these types of optimization problems.<br />

Maximizing Revenue Application Problem<br />

2<br />

Suppose a firm has a revenue function of R 170Q<br />

20Q<br />

, where Q is the quantity of goods<br />

sold. Find the point where revenue is maximized. Let’s graph the revenue function first. This<br />

graph would be:<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 130


1000<br />

500<br />

0<br />

-15 -10 -5 -500 0 5 10 15 20 25<br />

-1000<br />

-1500<br />

-2000<br />

-2500<br />

-3000<br />

-3500<br />

-4000<br />

-4500<br />

Just by looking at the graph, we can see that revenue will be maximized at the very top of the<br />

parabola (somewhere in the neighborhood of Q=4). The tangent line at the top of the parabola<br />

will have a slope of zero. So if we can find a point where the slope of our curve is 0, then we<br />

know where the maximum revenue is.<br />

Let’s take the derivative of the revenue function to find the slope.<br />

dR<br />

dx<br />

170 40Q<br />

Now let’s set the derivative equal to zero and solve for Q.<br />

170 40Q<br />

0<br />

40Q<br />

170<br />

170<br />

Q <br />

40<br />

17<br />

4<br />

17<br />

Therefore, when quantity equals , we will have the maximum revenue. We can substitute this<br />

4<br />

value of Q back into our equation to find out what this revenue will be.<br />

Second Derivatives<br />

R 170Q<br />

20Q<br />

17 17<br />

<br />

R 170 20<br />

<br />

4 4 <br />

2<br />

2<br />

$361.25<br />

Not only can the derivative give us valuable information about a function, but the second<br />

derivative of a function can also provide us with valuable information. Often, we are interested<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 131


in places on a curve where the first derivative is 0 (meaning that the slope is 0). This can happen<br />

at minimum and maximum points. But from the first derivative, we can’t tell whether or not we<br />

are at a maximum or a minimum point. The second derivative gives us an easy way to determine<br />

if we have a maximum or a minimum.<br />

We know that at a maximum point, the slope changes from positive to zero to negative. At a<br />

minimum point, the slope changes from negative to zero to positive. Therefore, if the second<br />

derivative is negative, then we know we are at a local maximum. If the second derivative is<br />

positive, then we are at a local minimum.<br />

We get the second derivative by taking the derivative of a function twice.<br />

2<br />

Example: Find the maximum or minimum of the following function: f ( x)<br />

5x<br />

10x<br />

12<br />

.<br />

Use the second derivative to determine whether this point is indeed a maximum or a minimum.<br />

2<br />

df<br />

The first derivative of f ( x)<br />

5x<br />

10x<br />

12<br />

is f ( x)<br />

10x<br />

10. We can set this<br />

dx<br />

derivative equal to zero to get the location of the maximum or minimum.<br />

10x<br />

10<br />

0<br />

10x<br />

10<br />

x 1<br />

f (1) 5(1)<br />

2<br />

10(1)<br />

12<br />

5 10<br />

12<br />

7<br />

The point of the curve that is our maximum or minimum point is ( 1,7)<br />

.<br />

Now we can take the second derivative of the function.<br />

2<br />

f ( x)<br />

5x<br />

10x<br />

12<br />

df<br />

f ( x)<br />

10x<br />

10<br />

dx<br />

2<br />

d f<br />

f ( x)<br />

10<br />

2<br />

dx<br />

Because the second derivative is positive, the point is a minimum point.<br />

INTEGRATION<br />

Integration, also known as antidifferentiation, is the reverse of differentiation. The indefinite<br />

integral<br />

<br />

f ( x)<br />

dx<br />

is a function whose derivative is f(x). You will be given a function, f(x), and need to find a<br />

function, F(x), such that F'<br />

( x)<br />

f ( x).<br />

The function<br />

<br />

f ( x)<br />

dx F(<br />

x)<br />

C<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 132


expresses that all antiderivatives of f(x) are the function F(x) + C, where C is any constant.<br />

Each time we differentiate a function, we also derive an integration formula. The derivative<br />

d 2<br />

(5x<br />

) 10x<br />

d(<br />

x)<br />

can be turned into the integration formula<br />

<br />

2<br />

10xdx<br />

5x<br />

C.<br />

Notation<br />

<br />

f ( x)<br />

dx F(<br />

x)<br />

C where F'<br />

( x)<br />

f ( x)<br />

Where<br />

f ( x)<br />

dx is the indefinite integral of f(x).<br />

<br />

<br />

f(x)<br />

is the integral sign.<br />

is the integrand and is the quantity to be integrated.<br />

dx<br />

F(x)<br />

C<br />

indicates that x is the variable with respect to which the integration is to take<br />

place.<br />

is the antiderivative.<br />

is the constant of integration.<br />

The process for finding f ( x)<br />

dx is called indefinite integration and f ( x)<br />

dx is read as “the<br />

indefinite integral” of f of x dx.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 133


Helpful formulas<br />

Differentiation Formula Corresponding Integration Formula<br />

d r<br />

r1<br />

( x ) dx rx r1<br />

r<br />

rx dx x C or<br />

dx<br />

r1<br />

r x<br />

x dx C,<br />

r 1<br />

r 1<br />

d ( e x ) e<br />

x (1) x x<br />

e dx e C<br />

dx<br />

d x<br />

1<br />

1<br />

(ln ) <br />

dx x<br />

dx ln x C<br />

x<br />

d<br />

(sin x)<br />

cos x<br />

dx<br />

cos xdx sin x C<br />

d<br />

dx<br />

(cos x)<br />

sin<br />

x<br />

d 2<br />

<br />

<br />

sin xdx cos x C<br />

(tan x)<br />

sec x sec 2 xdx tan x C<br />

dx<br />

We will concentrate on two methods for evaluating indefinite integrals – integration by<br />

substitution and integration by parts.<br />

Integration by substitution<br />

The following formula is called integration by substitution and is often used to transform a<br />

complicated integral into a simpler one<br />

<br />

f ( g(<br />

x))<br />

g'(<br />

x)<br />

dx F(<br />

g(<br />

x))<br />

C.<br />

(1)<br />

Example 1:<br />

<br />

2 3<br />

( x 1)<br />

2xdx<br />

3<br />

2<br />

2 3<br />

Set f ( x)<br />

x , g(<br />

x)<br />

x 1, then f ( g(<br />

x))<br />

( x 1)<br />

and g'<br />

( x)<br />

2x.<br />

1 4<br />

An antiderivative F(x) of f(x) is given by F(<br />

x)<br />

x , so that, by formula (1), we have<br />

4<br />

<br />

( x<br />

2<br />

3<br />

1 2 4<br />

1) 2xdx<br />

F(<br />

g(<br />

x))<br />

C ( x 1)<br />

C.<br />

4<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 134


Example 1 can be solved another way using equation 1. Using equation 1, g(x) is replaced by the<br />

new variable u, and g '(<br />

x)<br />

dx is replaced by du. Replacing the variables from equation 1 with u<br />

and du reduces the complex expression f(g(x)) into a simpler one, f(u):<br />

f ( g(<br />

x))<br />

g'(<br />

x)<br />

dx f ( u)<br />

du<br />

Since u = g(x), we then obtain<br />

<br />

<br />

<br />

<br />

f ( u)<br />

du F(<br />

u)<br />

C.<br />

f ( g(<br />

x))<br />

g'(<br />

x)<br />

dx F(<br />

u)<br />

C F(<br />

g(<br />

x))<br />

C.<br />

It is important to note that replacing g’(x)dx by du is only a correct mathematical statement<br />

because doing so leads to the correct answers.<br />

Evaluating Example 1 using the new method<br />

Set u = x 2 + 1. Then<br />

d<br />

du ( x<br />

2 1)<br />

dx 2xdx<br />

, and<br />

dx<br />

<br />

( x<br />

2<br />

1)<br />

3<br />

2xdx<br />

<br />

1 4<br />

u<br />

4<br />

1<br />

( x<br />

4<br />

C<br />

2<br />

1)<br />

<br />

4<br />

u<br />

3<br />

du<br />

C<br />

(since u =x 2 +1).<br />

Method for integration of function of the form f '(<br />

g(<br />

x))<br />

g'(<br />

x).<br />

1. Define a new variable u = g(x).<br />

2. Transform the integral with respect to x into an integral with respect to u by replacing<br />

g(x) everywhere by u and g′(x)dx by du.<br />

3. Integrate the resulting function of u.<br />

4. Rewrite the answer in terms of x by replacing u by g(x).<br />

Example 2:<br />

<br />

(ln x)<br />

2<br />

x<br />

dx<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 135


Let u = lnx and du = (1/x)<br />

x 2<br />

(ln )<br />

1 2<br />

dx<br />

x<br />

x<br />

2<br />

u du<br />

dx (ln x)<br />

<br />

3<br />

u<br />

C<br />

3<br />

3<br />

(ln x)<br />

<br />

3<br />

C<br />

(since u = ln x).<br />

Integration by Parts<br />

Integration by Parts is another strategy for simplifying integrals and is also known as the product<br />

rule. Let f(x) and g(x) be any two functions and G(x) be an antiderivative of g(x). The product<br />

rule states<br />

d<br />

[ f ( x)<br />

G(<br />

x)]<br />

<br />

d(<br />

x)<br />

f ( x)<br />

G'(<br />

x)<br />

<br />

f '( x)<br />

G(<br />

x)<br />

<br />

f ( x)<br />

g(<br />

x)<br />

f '( x)<br />

G(<br />

x)<br />

[since G’(x) = g(x)]<br />

Therefore,<br />

This last formula can be rewritten as follows<br />

<br />

f ( x)<br />

G(<br />

x)<br />

f ( x)<br />

g(<br />

x)<br />

dx f '( x)<br />

G(<br />

x)<br />

dx.<br />

<br />

<br />

<br />

f ( x)<br />

g(<br />

x)<br />

dx f ( x)<br />

G(<br />

x)<br />

f '( x)<br />

G(<br />

x)<br />

dx<br />

(2)<br />

Equation 2 is one of the most important techniques of integration.<br />

Example 1:<br />

<br />

xe x dx<br />

Set f(x) =x, g(x) =e x . Then f’(x) = 1, G(x) = e x , and equation (1) yields<br />

x<br />

x<br />

x<br />

x x<br />

xe dx xe 1<br />

e<br />

dx xe e <br />

1. The integrand (the integrated function) is the product of functions f(x) = x and g(x) =<br />

e x .<br />

2. To compute f’(x) and G(x), differentiate f(x) and integrate g(x).<br />

C<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 136


3. Calculate f '(<br />

x)<br />

G(<br />

x)<br />

dx<br />

The above principles may be applied to all problems involving integration by parts.<br />

Example 2:<br />

2<br />

x sin xdx<br />

Let f(x) =x 2 , g(x) = sinx, f’(x) = 2x, and G(x) = -cosx.<br />

2<br />

2<br />

sin xdx x<br />

cos x 2x<br />

(<br />

<br />

x cos x)<br />

dx<br />

x<br />

2<br />

cos x 2<br />

<br />

xcos<br />

xdx<br />

(2)<br />

You can used integration by parts on x cos xdx.<br />

Let f(x) = x , g(x) = cosx, f’(x) =1, and G(x) =<br />

sin x.<br />

Combine (2) and (3)<br />

<br />

<br />

xcos<br />

xdx xsin<br />

x 1sin<br />

xdx<br />

xsin x cos x C<br />

(3)<br />

2<br />

2<br />

x sin xdx x<br />

cos x 2( xsin<br />

x cos x)<br />

C<br />

x<br />

2<br />

cos x 2xsin<br />

x 2cos x C.<br />

The Integration section was adapted from L.J. Goldstein et al, Calculus & Its Applications 10 th ed. and B.L. Bleau.<br />

Forgotten Calculus 2 nd ed. These are helpful sources for additional information on integration and definite integrals.<br />

An in-depth lesson in integration will be given in the class Applied <strong>Math</strong> for Environmental Science for the Master of<br />

Science Environmental Science. A basic understanding of integration is satisfactory for the Master of Public Affairs.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 137


MATH CAMP<br />

School of Public and Environmental Affairs<br />

Day Four In-Class Exercises<br />

DERIVATIVES<br />

1. Find the following derivatives:<br />

a.<br />

7<br />

f ( x)<br />

7x<br />

b. f ( x)<br />

26<br />

c. f ( x)<br />

x<br />

5<br />

d. f ( x)<br />

x 3x<br />

1<br />

5<br />

e. f ( x)<br />

11x<br />

ln<br />

x<br />

f.<br />

OPTIMIZATION<br />

f<br />

7 2<br />

3x<br />

5x<br />

3<br />

x)<br />

<br />

17x<br />

1<br />

(<br />

2<br />

2<br />

2. Suppose that your revenue function is R 150Q<br />

10Q<br />

. At what quantity is revenue<br />

maximized? What is the revenue at this point?<br />

INTEGRATION<br />

3. ( 2 7 ) dx<br />

X 3 2<br />

2<br />

3<br />

4. (<br />

x x 7) (2x<br />

1)<br />

dx<br />

5. xsin xdx<br />

<br />

6. x 2 ln xdx<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 138


MATH CAMP<br />

School of Public and Environmental Affairs<br />

Day Four In-Class Exercises Solutions<br />

DERIVATIVES<br />

1. Find the following derivatives:<br />

7<br />

71<br />

a. f ( x)<br />

7x<br />

7 7x<br />

49x<br />

b. f ( x)<br />

26 0<br />

c.<br />

1<br />

2<br />

1 1<br />

1<br />

2<br />

2<br />

f ( x)<br />

x x x x<br />

2 2<br />

1<br />

6<br />

1<br />

<br />

2<br />

1<br />

x<br />

d.<br />

f ( x)<br />

<br />

<br />

1<br />

(<br />

2<br />

x<br />

5<br />

x<br />

5<br />

3x<br />

1<br />

<br />

3x<br />

1)<br />

1<br />

<br />

2<br />

(5x<br />

1<br />

(<br />

2<br />

4<br />

x<br />

5<br />

3) <br />

3x<br />

1)<br />

2( x<br />

5x<br />

5<br />

1<br />

1<br />

2<br />

4<br />

<br />

5x<br />

3<br />

4<br />

3x<br />

1)<br />

1<br />

2<br />

<br />

3<br />

5<br />

4<br />

5<br />

e. f ( x)<br />

11x<br />

ln<br />

x (55x<br />

)(ln x)<br />

(11x<br />

)<br />

7 2<br />

3x<br />

5x<br />

3<br />

f ( x)<br />

<br />

<br />

2<br />

17x<br />

1<br />

<br />

8<br />

3 6<br />

357x<br />

170x<br />

21x<br />

10x<br />

102x<br />

f. <br />

4 2<br />

289x<br />

34x<br />

1<br />

8 6<br />

255x<br />

21x<br />

112x<br />

<br />

4 2<br />

289x<br />

34x<br />

1<br />

1<br />

x<br />

6<br />

2<br />

7 2<br />

21x<br />

10x17x<br />

1 34x3<br />

x 5x<br />

3<br />

8<br />

(17x<br />

2<br />

170x<br />

3<br />

1)<br />

2<br />

102x<br />

OPTIMIZATION<br />

2<br />

2. Suppose that your revenue function is R 150Q<br />

10Q<br />

. At what quantity is revenue<br />

maximized? What is the revenue at this point?<br />

<br />

dR<br />

dQ<br />

150<br />

150 20Q<br />

20Q<br />

0<br />

20Q<br />

150<br />

150<br />

Q <br />

20<br />

15<br />

2<br />

R 150Q<br />

10Q<br />

562.5<br />

2<br />

15 15<br />

<br />

150 10<br />

<br />

2 2 <br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 139


INTEGRATION<br />

3. ( 2 7 ) dx<br />

2<br />

3<br />

X 3 2<br />

du<br />

u 1<br />

3<br />

u<br />

du<br />

7 7<br />

5<br />

2<br />

3<br />

1<br />

u 3 3<br />

3<br />

C u C (2 7x)<br />

7 5 35 35<br />

3<br />

5<br />

3<br />

5<br />

C<br />

2<br />

3<br />

4. (<br />

x x 7) (2x<br />

1)<br />

dx<br />

<br />

<br />

3 du<br />

u ( 2x<br />

1)<br />

<br />

(2x<br />

1)<br />

4<br />

u C 4<br />

<br />

u<br />

3<br />

du<br />

5. xsin xdx<br />

f ( x)<br />

x,<br />

f '( x)<br />

1,<br />

<br />

x<br />

cos x <br />

g(<br />

x)<br />

sin x<br />

G(<br />

x)<br />

cos<br />

x<br />

xsin<br />

xdx x<br />

cos x <br />

cos xdx<br />

x<br />

cos x sin x C<br />

<br />

6. x 2 ln xdx<br />

<br />

<br />

1<br />

( cos<br />

x)<br />

dx<br />

2<br />

f ( x)<br />

ln x,<br />

g(<br />

x)<br />

x<br />

1<br />

3<br />

f '( x)<br />

,<br />

x<br />

G(<br />

x)<br />

<br />

x<br />

3<br />

3<br />

3<br />

2 x 1 x<br />

x ln xdx ln x <br />

3<br />

<br />

x 3<br />

3<br />

x 1 2<br />

ln x x dx<br />

3 3<br />

3<br />

x 1 3<br />

ln x x C<br />

3 9<br />

dx<br />

MATH CAMP<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 140


School of Public and Environmental Affairs<br />

Day Four Homework<br />

DERIVATIVES<br />

1. Find derivatives of the following:<br />

a. f ( x)<br />

ln( x 2 1)<br />

b.<br />

c.<br />

3x<br />

f ( x)<br />

<br />

f<br />

4<br />

2<br />

2x<br />

7x<br />

x 5<br />

2<br />

x 5x<br />

3<br />

x)<br />

<br />

7x<br />

x 7<br />

(<br />

2<br />

2<br />

d. f ( x)<br />

4x<br />

8x<br />

13<br />

e. f ( x)<br />

x <br />

2<br />

x<br />

2 1<br />

<br />

<br />

f. <br />

1 1<br />

f ( x)<br />

1 2<br />

<br />

x <br />

x <br />

g.<br />

f<br />

3<br />

( x)<br />

( x 5x<br />

<br />

3)<br />

3<br />

2. Find the derivatives of the following and evaluate the derivative at the given point:<br />

2<br />

a. f ( x)<br />

5x<br />

3x<br />

7 , x = -1<br />

b.<br />

c.<br />

10<br />

f ( x)<br />

, x = 25<br />

x<br />

2<br />

f ( x)<br />

x x , x = 1<br />

3. Find all the maxima and minima of the following curve. (Hint: Find the first derivative<br />

and set it equal to zero. Then solve for x. Then you can use the second derivative to<br />

determine whether each point is a maximum or minimum.)<br />

3<br />

2x<br />

2<br />

f ( x)<br />

x 4x<br />

19<br />

3<br />

2 3<br />

4. Suppose a firm assess its profit function as 10 48Q<br />

15Q<br />

Q .<br />

(Samuelson and Marks, Managerial Economics, (5 th Edition), Wiley, 2006, p. 59)<br />

a. Compute the firm’s profit for the following levels of output: Q 2 , Q 8, and<br />

Q 14 .<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 141


5. Evaluate<br />

b. Derive an expression for marginal profit (Hint: marginal profit is the first<br />

derivative of the profit function).. Compute marginal profit at Q 2 , Q 8, and<br />

Q 14 . Confirm that the profit is maximized at Q 8.<br />

<br />

a. xe x 2<br />

2 dx<br />

<br />

2 3<br />

b. 3x x 1dx<br />

2 x<br />

c. <br />

dx<br />

2<br />

2x<br />

8x<br />

1<br />

8<br />

d. x(<br />

x 5) dx<br />

2<br />

e. x ln xdx<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 142


MATH CAMP<br />

School of Public and Environmental Affairs<br />

Day Four Homework Solutions<br />

DERIVATIVES<br />

1. Find derivatives of the following:<br />

2<br />

1 2x<br />

a. f ( x)<br />

ln( x 1)<br />

f '( x)<br />

(2x)<br />

<br />

2<br />

2<br />

x 1<br />

x 1<br />

b.<br />

3x<br />

f ( x)<br />

<br />

4<br />

2<br />

2x<br />

7x<br />

x 5<br />

c.<br />

f<br />

2<br />

x 5x<br />

3<br />

x)<br />

<br />

7x<br />

x 7<br />

(<br />

2<br />

2<br />

d. f ( x)<br />

4x<br />

8x<br />

13<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 143


e. ( 2 1<br />

3<br />

1<br />

f x)<br />

x f '( x)<br />

2x<br />

2x<br />

2( x )<br />

2<br />

x<br />

x<br />

3<br />

<br />

<br />

f. <br />

1 1<br />

f ( x)<br />

1 2<br />

<br />

x <br />

x <br />

1 2<br />

1 2 1 1 1<br />

f ( x)<br />

( x<br />

) 2<br />

( x ) 1<br />

<br />

2 3 2 3<br />

x x x x x x<br />

1<br />

<br />

2<br />

x<br />

<br />

x<br />

2 2<br />

3<br />

3<br />

3<br />

3<br />

2 2<br />

g. f ( x)<br />

( x 5x<br />

3) f '( x)<br />

3( x 5x<br />

3) (3x<br />

5)<br />

2. Find the derivatives of the following and evaluate the derivative at the given point:<br />

2<br />

a. f ( x)<br />

5x<br />

3x<br />

7 , x = -1<br />

f '( x)<br />

10x<br />

3<br />

f '( 1)<br />

10( 1)<br />

3 10<br />

3 7<br />

b.<br />

c.<br />

10<br />

f ( x)<br />

, x = 25<br />

x<br />

10<br />

f '( x)<br />

x<br />

2<br />

5<br />

f '( x)<br />

<br />

3<br />

2<br />

3<br />

<br />

2<br />

x<br />

5 5<br />

f '(25) <br />

3<br />

3<br />

2 25<br />

25<br />

2<br />

f ( x)<br />

x x , x = 1<br />

f '( x)<br />

1<br />

2x<br />

f '( x)<br />

1<br />

2x<br />

f '( x)<br />

1<br />

2 1<br />

5<br />

<br />

125<br />

1<br />

25<br />

3. Find all the maxima and minima of the following curve. (Hint: Find the first derivative<br />

and set it equal to zero. Then solve for x. Then you can use the second derivative to<br />

determine whether each point is a maximum or minimum.)<br />

3<br />

2x<br />

2<br />

f ( x)<br />

x 4x<br />

19<br />

3<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 144


2 3<br />

4. Suppose a firm assess its profit function as 10 48Q<br />

15Q<br />

Q .<br />

(Samuelson and Marks, Managerial Economics, (5 th Edition), Wiley, 2006, p. 59)<br />

a. Compute the firm’s profit for the following levels of output: Q 2 , Q 8, and<br />

Q 14 .<br />

b. Derive an expression for marginal profit (Hint: marginal profit is the first<br />

derivative of the profit function).. Compute marginal profit at Q 2 , Q 8, and<br />

Q 14 . Confirm that the profit is maximized at Q 8.<br />

It appears that Q = 2 and Q = 8 are both roots to the marginal profit equation (or<br />

derivative of the profit equation). Either point could be the maximum point. We need to<br />

use the second derivative to see which point is the maximum point.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 145


Because the second derivative is negative at the point Q = 8, this is the point that<br />

maximizes profit.<br />

5. Evaluate<br />

<br />

a. xe x 2<br />

2 dx<br />

<br />

<br />

e<br />

e<br />

u<br />

x<br />

<br />

2<br />

e<br />

x<br />

2<br />

C<br />

C<br />

2xdx<br />

<br />

2 3<br />

b. 3x x 1dx<br />

u x<br />

3x<br />

x<br />

3<br />

2<br />

u<br />

3<br />

1<br />

x<br />

C<br />

C<br />

<br />

e<br />

1dx<br />

<br />

u<br />

du<br />

3<br />

u x 1<br />

d 3<br />

2<br />

du ( x 1)<br />

dx 3x<br />

dx<br />

dx<br />

<br />

2<br />

(<br />

3<br />

2<br />

3<br />

3<br />

2<br />

3<br />

1)<br />

3<br />

2<br />

<br />

udu<br />

2 x<br />

c. <br />

dx<br />

2<br />

2x<br />

8x<br />

1<br />

1<br />

1<br />

(2<br />

x)<br />

dx <br />

3<br />

2x<br />

8x<br />

1<br />

4<br />

(<br />

4)(2<br />

<br />

2<br />

2x<br />

1<br />

8x<br />

1<br />

x)<br />

dx<br />

1<br />

<br />

4<br />

<br />

1 1<br />

du <br />

u 4<br />

<br />

u<br />

1<br />

2<br />

du<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 146


<strong>Math</strong> <strong>Camp</strong> 2011 Page 147<br />

C<br />

x<br />

x<br />

C<br />

u<br />

C<br />

u<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

1<br />

2<br />

2<br />

1<br />

2<br />

1<br />

1)<br />

8<br />

(2<br />

2<br />

1<br />

2<br />

1<br />

2<br />

4<br />

1<br />

d. dx<br />

x<br />

x<br />

8<br />

5)<br />

(<br />

1,<br />

)<br />

'(<br />

,<br />

)<br />

(<br />

<br />

<br />

x<br />

f<br />

x<br />

x<br />

f<br />

9<br />

8<br />

5)<br />

(<br />

9<br />

1<br />

)<br />

(<br />

5)<br />

(<br />

)<br />

(<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

G<br />

x<br />

x<br />

g<br />

C<br />

x<br />

x<br />

x<br />

C<br />

x<br />

x<br />

x<br />

dx<br />

x<br />

x<br />

x<br />

dx<br />

x<br />

x<br />

x<br />

dx<br />

x<br />

x<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

10<br />

9<br />

10<br />

9<br />

9<br />

9<br />

9<br />

9<br />

8<br />

5)<br />

(<br />

90<br />

1<br />

5)<br />

(<br />

9<br />

1<br />

5)<br />

(<br />

10<br />

1<br />

9<br />

1<br />

5)<br />

(<br />

9<br />

1<br />

5)<br />

(<br />

9<br />

1<br />

5)<br />

(<br />

9<br />

1<br />

5)<br />

(<br />

9<br />

1<br />

1<br />

5)<br />

(<br />

9<br />

1<br />

5)<br />

(<br />

e. xdx<br />

x ln<br />

2<br />

,<br />

1<br />

)<br />

'(<br />

,<br />

ln<br />

)<br />

(<br />

x<br />

x<br />

f<br />

x<br />

x<br />

f<br />

<br />

<br />

3<br />

2<br />

3<br />

)<br />

(<br />

)<br />

(<br />

x<br />

x<br />

G<br />

x<br />

x<br />

g<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

C<br />

x<br />

x<br />

x<br />

dx<br />

x<br />

x<br />

x<br />

dx<br />

x<br />

x<br />

x<br />

x<br />

xdx<br />

x<br />

3<br />

3<br />

2<br />

3<br />

3<br />

3<br />

2<br />

9<br />

1<br />

ln<br />

3<br />

3<br />

1<br />

ln<br />

3<br />

3<br />

1<br />

ln<br />

3<br />

ln


MATH CAMP<br />

School of Public and Environmental Affairs<br />

Day Five: Word Problems and Applications<br />

Day Five Class Notes<br />

STRATEGIES FOR SOLVING WORD PROBLEMS<br />

The following list of steps can help you to understand and solve word problems in mathematics.<br />

1. Read through the problem a couple times.<br />

2. List the values that are known and those that are unknown.<br />

3. Identify what value you need to determine—what final answer you are looking for.<br />

4. Assign a variable to each unknown quantity.<br />

5. Draw a picture, if possible.<br />

6. Use formulas and equations to describe the relationship between the knowns and the<br />

unknowns. Basically you are trying to express the relationships in mathematical terms.<br />

7. Use mathematical procedures to solve these equations for the unknowns.<br />

8. Check your answers to see if they are plausible.<br />

Example: A ladder that is 30 feet long is leaning against a building. The bottom of the ladder is<br />

10 feet away from the building. How high on the building does the ladder reach?<br />

Knowns<br />

We know the length of the ladder is 30 feet.<br />

The ladder is 10 feet from the building<br />

Unknown<br />

Where the ladder reaches on the building, and this is what we want to find out. We will<br />

call this x.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 148


Building<br />

Ladder<br />

30 feet<br />

Find this<br />

distance<br />

= x feet<br />

10 feet<br />

The ladder makes a right triangle against the building, so we can use the properties of a right<br />

triangle to relate our knowns and unknowns. In this case we know that the square of the<br />

2 2 2<br />

hypotenuse is equal to the sum of the squares of the sides, so a b c . In this case c = 30<br />

feet and a = 10 feet. We just need to find b.<br />

a<br />

2<br />

10<br />

100 b<br />

b<br />

2<br />

2<br />

b <br />

b<br />

2<br />

b<br />

2<br />

2<br />

800<br />

c<br />

2<br />

30<br />

2<br />

900<br />

800 28.3<br />

Therefore the ladder is 28.3 feet high against the building.<br />

APPLICATIONS IN STATISTICS<br />

We have already applied our mathematical knowledge to several problems in statistics, such as<br />

calculating the mean and variance. We will now apply what we have learned this week to some<br />

other important statistical concepts.<br />

In your statistics class, you will learn about regression lines. We often want to find the equation<br />

for a line that best fits our data. This gives us an additional method of describing the relationship<br />

between x and y beyond such methods as a scatter plot. The formula for a regression line is<br />

y a bx where a is the y-intercept and b is the slope. Notice that this is basically the slopeintercept<br />

form a line. Given values for x and y, we can compute a and b using the following<br />

formulas.<br />

a <br />

2<br />

<br />

y<br />

x <br />

<br />

x<br />

xy<br />

2<br />

n<br />

x <br />

<br />

x 2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 149


n<br />

<br />

xy<br />

<br />

x<br />

y<br />

2<br />

n<br />

x <br />

<br />

x 2<br />

Example: These data were obtained from a survey of the number of years people smoked and<br />

the percentage of lung damage they sustained. Draw a scatter plot of the data. Then calculate r.<br />

Then calculate a and b and find the regression equation. Predict the percentage of lung damage<br />

for a person who has smoked for 30 years.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. pp. 494-495)<br />

Years, x 22 14 31 36 9 41 19<br />

Damage, 20 14 54 63 17 71 23<br />

y<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 10 20 30 40 50<br />

r <br />

n<br />

xy<br />

<br />

x<br />

y<br />

2<br />

2<br />

2<br />

<br />

x <br />

<br />

x<br />

n<br />

y <br />

n<br />

y<br />

2<br />

<br />

The easiest way to calculate r would be to calculate the component parts of r. These components<br />

are shown in the following table.<br />

Years, Damage,<br />

xy x^2 y^2<br />

x y<br />

22 20 440 484 400<br />

14 14 196 196 196<br />

31 54 1674 961 2916<br />

36 63 2268 1296 3969<br />

9 17 153 81 289<br />

41 71 2911 1681 5041<br />

19 23 437 361 529<br />

Sum 172 262 8079 5060 13340<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 150


So we have<br />

x 172<br />

y 262<br />

xy 8, 079<br />

x<br />

2 5,060<br />

y 2<br />

13, 340<br />

r <br />

<br />

n<br />

xy<br />

<br />

x<br />

y<br />

2<br />

2<br />

2<br />

<br />

x <br />

<br />

x<br />

n<br />

y <br />

2<br />

n<br />

y<br />

<br />

7(8079) (172)(262)<br />

2<br />

2<br />

7(5060)<br />

(172) 7(13340) (262) <br />

.96<br />

a <br />

2<br />

<br />

y<br />

x <br />

<br />

x<br />

xy<br />

2<br />

2<br />

n<br />

x <br />

<br />

x<br />

(262)(5060) (172)(8079)<br />

<br />

10.944<br />

2<br />

7(5060) (172)<br />

n<br />

b <br />

<br />

xy<br />

<br />

x<br />

y<br />

2<br />

2<br />

n<br />

x <br />

<br />

x<br />

7(8079) (172)(262)<br />

<br />

1.969<br />

2<br />

7(5060) (172)<br />

Therefore, the equation for the regression line is y 1.969x<br />

10.<br />

944. The scatter plot with this<br />

line imposed on it is shown below.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 151


80<br />

70<br />

y = 1.9686x - 10.944<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 10 20 30 40 50<br />

Now if we want to predict the amount of damage done when the person has smoked for 30 years,<br />

we just substitute x = 30 into this equation to get y.<br />

y 1.969x 10.944<br />

1.969(30)<br />

10.944<br />

48.126<br />

APPLICATIONS IN ECONOMICS<br />

Another important idea in economics is elasticity. Elasticity measures the responsiveness of the<br />

sales of a particular good to changes in the price of that good. The price elasticity of demand is<br />

the ratio of the percent change in quantity and the percent change in price.<br />

E P<br />

<br />

Q<br />

Q<br />

P<br />

P<br />

( Q1<br />

Q0<br />

)<br />

<br />

( P P )<br />

1<br />

0<br />

Q<br />

P<br />

0<br />

0<br />

Well, given that we know that the first derivative is the instantaneous rate of change, we can<br />

rewrite this equation in terms of the first derivative. Remember that the elasticity is measuring<br />

the change in quantity in relation to the change in price. So,<br />

Q<br />

Q ( Q1<br />

Q0<br />

) Q<br />

E P<br />

<br />

P<br />

( P1<br />

P0<br />

) P0<br />

P<br />

0<br />

<br />

dQ<br />

Q<br />

dP<br />

P<br />

dQ <br />

P <br />

<br />

<br />

dP <br />

Q <br />

Example: Suppose we had a demand function like the following:<br />

Q 850 50P<br />

74Pop<br />

.<br />

6A<br />

where P is the price, Pop is the local population in thousands and A is the advertising<br />

expenditure.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 152


If P = $2.50 and A = $400 and Pop = 50, what is the quantity?<br />

Q 850 50P<br />

74Pop<br />

.6A<br />

Q 850 50(2.50) 74(50) .6(400)<br />

4665<br />

If we wanted to find the price elasticity, we just take the derivative of the demand function with<br />

respect to P. We treat all other variables as if they were just constants (or numbers).<br />

Q 850 50P<br />

74Pop<br />

.<br />

6A<br />

dQ<br />

Q 50<br />

dP<br />

E P<br />

dQ <br />

P <br />

<br />

<br />

dP <br />

Q <br />

2.50 <br />

<br />

3540 <br />

<br />

50 .<br />

0035<br />

APPLICATIONS IN FINANCE<br />

One important concept in public finance is the idea of discounting future benefits. When doing a<br />

cost-benefit analysis of a project, it is important to discount the future benefits of the project in<br />

order to get at true view of the value of the project. We need to discount future benefits because<br />

of positive interest rates. The existence of positive interest rates implies that a dollar of benefits<br />

in the future will be less than a dollar of benefits right now. This is because we could invest less<br />

than a dollar right now and because of positive interest rates that amount will grow to be equal to<br />

a dollar at some point in the future.<br />

For instance, if the interest rate is 10% per year, then we need only invest $90.91 dollars today to<br />

have that money grow to be $100 in one year. This means that the present value of receiving<br />

$100 on year from now is $90.91. We call this the present value of receiving $100 in one year.<br />

The formula for calculating present value is:<br />

PV<br />

X<br />

<br />

( 1<br />

r)<br />

n<br />

where X is the dollar amount to be received in the future, n is the number of years, and r is called<br />

the social discount rate, or interest rate.<br />

If the benefits of a project will accrue over several years, then we can add up their present values<br />

in this fashion:<br />

PV<br />

<br />

X<br />

n<br />

i<br />

i<br />

i1 (1 r)<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 153


Example: Suppose you are going to build a new park that will yield the following benefits<br />

Year 1 $0<br />

Year 2 $0<br />

Year 3 $500<br />

Year 4 $1000<br />

Year 5 $5000<br />

Assuming a social discount rate of 5%, what is the present value of the project? Assuming a<br />

social discount rate of 20%, what is the present value of the project?<br />

PV<br />

PV<br />

PV<br />

PV<br />

PV<br />

PV<br />

PV<br />

n<br />

X<br />

i<br />

<br />

(1 r)<br />

i1<br />

X<br />

1<br />

<br />

(1 r)<br />

0<br />

<br />

(1 .05)<br />

0<br />

<br />

(1.05)<br />

1<br />

1<br />

0 0 500 1000<br />

<br />

1.05 1.1025 1.157625 1.21550625<br />

0 0 431.92 822.70 3917.62<br />

$5,172.25<br />

X<br />

2<br />

<br />

(1 r)<br />

1<br />

<br />

i<br />

0<br />

<br />

(1 .05)<br />

0<br />

(1.05)<br />

2<br />

2<br />

X<br />

3<br />

<br />

(1 r)<br />

<br />

2<br />

500<br />

<br />

(1 .05)<br />

500<br />

(1.05)<br />

3<br />

3<br />

X<br />

4<br />

<br />

(1 r)<br />

3<br />

1000<br />

<br />

(1.05)<br />

X<br />

5<br />

<br />

(1 r)<br />

1000<br />

<br />

(1 .05)<br />

4<br />

4<br />

4<br />

5000<br />

<br />

(1.05)<br />

<br />

5000<br />

<br />

(1 .05)<br />

5<br />

5<br />

5<br />

5000<br />

1.2762815625<br />

The present value of the project is $5,172.25 when using a social discount rate of 5%.<br />

PV<br />

PV<br />

PV<br />

PV<br />

PV<br />

PV<br />

PV<br />

n<br />

X<br />

i<br />

<br />

(1 r)<br />

i1<br />

X<br />

1<br />

<br />

(1 r)<br />

0<br />

<br />

(1 .20)<br />

0<br />

<br />

(1.20)<br />

1<br />

1<br />

0 0 500 1000 5000<br />

<br />

1.20 1.44 1.728 2.0736 2.48832<br />

0 0 289.35 482.25 2009.39<br />

$2,780.99<br />

X<br />

2<br />

<br />

(1 r)<br />

1<br />

<br />

i<br />

0<br />

<br />

(1 .20)<br />

0<br />

(1.20)<br />

2<br />

2<br />

X<br />

3<br />

<br />

(1 r)<br />

<br />

2<br />

500<br />

<br />

(1 .20)<br />

500<br />

(1.20)<br />

3<br />

3<br />

X<br />

4<br />

<br />

(1 r)<br />

3<br />

1000<br />

<br />

(1.20)<br />

X<br />

5<br />

<br />

(1 r)<br />

1000<br />

<br />

(1 .20)<br />

4<br />

4<br />

4<br />

5000<br />

<br />

(1.20)<br />

5000<br />

<br />

(1 .20)<br />

5<br />

5<br />

5<br />

The present value of the project is $2,780.99 when we use a social discount rate of 20%.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 154


APPLICATIONS IN ENVIRONMENTAL SCIENCE<br />

One important application in environmental science is to model the growth or decline of<br />

kt<br />

populations. We have used the exponential growth model A( t)<br />

A0e<br />

to model the growth of a<br />

population. However, this growth function assumes uninhibited growth. In many real-life<br />

situations, however, the environment has limited space and food, and that inhibits the growth of<br />

populations. In these cases, we can use the logistic growth model to model these types of<br />

situations.<br />

The logistic growth model follows the formula:<br />

c<br />

P(<br />

t)<br />

1<br />

bt<br />

ae<br />

where P is the size of the population, t is the time, b is the growth rate, and c is the carrying<br />

capacity of the environment. The carrying capacity is the maximum number that the<br />

environment can support.<br />

Example: Fruit flies are placed in a half-pint milk bottle with a banana (for food) and yeast<br />

plants (for food and to provide a stimulus to lay eggs). Suppose that the fruit fly population P<br />

230<br />

after t days is given by P( t)<br />

.<br />

0.<br />

37t<br />

1<br />

56.5e<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, p. 471)<br />

a. What is the carrying capacity of the half-pint bottle?<br />

b. How many fruit flies were initially placed in the half-pint bottle?<br />

c. When will the population of fruit flies be 180?<br />

Solutions:<br />

a. The carrying capacity of the half-pint bottle is equal to the coefficient c, which in this<br />

case is 230. Therefore, the half-pint bottle cannot support more than 230 fruit flies.<br />

b. We need to know the fruit fly population when t 0 .<br />

230<br />

P(<br />

t)<br />

<br />

0.37t<br />

1<br />

56.5e<br />

230<br />

P(<br />

t)<br />

<br />

0.37(0)<br />

1<br />

56.5e<br />

230<br />

P(<br />

t)<br />

<br />

0<br />

1<br />

56.5e<br />

230 230<br />

P(<br />

t)<br />

4<br />

1<br />

56.5 57.5<br />

c. To find the time when the fruit fly population reaches 180, we solve the following<br />

equation for t.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 155


230<br />

P(<br />

t)<br />

<br />

1<br />

56.5e<br />

230<br />

180 <br />

<br />

1<br />

56.5e<br />

<br />

180 1<br />

56.5e<br />

<br />

180 10170e<br />

10170e<br />

10170e<br />

0.37t<br />

0.37t<br />

0.37t<br />

0.37t<br />

50<br />

0.37t<br />

0.37t<br />

0.37t<br />

50<br />

e <br />

10170<br />

0.37t<br />

50 <br />

ln e ln<br />

<br />

10170<br />

<br />

0.37t<br />

ln e ln 50 ln10170<br />

0.37t<br />

ln 50 ln10170<br />

ln 50 ln10170<br />

t <br />

14.37<br />

0.37<br />

<br />

230<br />

230<br />

230 180<br />

The fruit fly population will reach 180 at approximately 14.37 days.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 156


MATH CAMP<br />

School of Public and Environmental Affairs<br />

SOLVING WORD PROBLEMS<br />

Day Five In-Class Exercises<br />

1. A rectangular walk in a park surrounds a flower bed. The outer perimeter of the walk is<br />

60- by 80-foot. If the walk is of uniform width and its area is equal to the area of the<br />

flower bed, how wide is the walk?<br />

(Johnson, How to Solve Word Problems in Algebra: A Solved Problem Approach, McGraw Hill, 2000)<br />

APPLICATIONS IN STATISTICS<br />

2. An educator wants to see how the number of absences a student in her class has affects<br />

the student’s final grade. Draw a scatter plot of the data. Calculate r. Calculate a and b<br />

and write the equation for the regression line.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 495)<br />

No. of<br />

absences,<br />

x<br />

Final<br />

grade, y<br />

10 12 2 0 8 5<br />

70 65 96 94 75 82<br />

APPLICATIONS IN ECONOMICS<br />

3. General Motors (GM) produces light trucks in several Michigan factories, where its<br />

annual fixed costs are $180 million, and its marginal cost per truck is approximately<br />

$20,000. Regional demand for the trucks is given by P 30000 0. 1Q<br />

, where P denotes<br />

price in dollars and Q denotes annual sales of trucks.<br />

(Samuelson and Marks, Managerial Economics, (5 th Edition), Wiley, 2006, pp. 115-116)<br />

a. Find GM’s profit maximizing output level and price. Find the annual profit<br />

generated by light trucks. {Hint: To find the maximizing output level and price,<br />

we need to set marginal revenue equal to marginal cost and solve the resulting<br />

equation. Marginal cost is given above. Marginal revenue is the first derivative<br />

of the revenue equation, which is R PQ . Remember that profit is<br />

R C PQ C ( P CPV ) Q FC where CPV is cost per vehicle and FC<br />

is total fixed costs.}<br />

b. GM is getting ready to export trucks to several markets in South America. Based<br />

on several marketing surveys, GM has found the elasticity of demand in these<br />

foreign markets to be EP<br />

9<br />

for a wide range of prices (between $20,000 and<br />

$30,000). The additional cost of shipping (including paying some import fees) is<br />

about $800 per truck. One manager argues that the foreign price should be set at<br />

$800 above the domestic price (in part a) to cover the transportation cost. Do you<br />

agree that this is the optimal price for foreign sales? Justify your answer. {Hint:<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 157


Use the optimal price markup formula to solve this problem. This formula is<br />

EP<br />

<br />

P MC<br />

E<br />

where MC is the marginal cost and EP<br />

is the price elasticity.<br />

1 <br />

P <br />

Marginal cost was given in part a, and we need to add to it the price of shipping<br />

the trucks.}<br />

c. GM also produces an economy (“no frills”) version of its light truck at a marginal<br />

cost of $12,000 per vehicle. However, at the price set by GM, $20,000 per truck,<br />

customer demand has been very disappointing. GM has recently discontinued<br />

production of this model but still finds itself with an inventory of 18,000 unsold<br />

trucks. The best estimate of demand for the remaining trucks is: P 30000 Q .<br />

One manager recommends keeping the price at $20,000; another favors cutting<br />

the price to sell the entire inventory. What price (one of these or some other<br />

price) should GM set and how many trucks should it sell? Justify your answer.<br />

{Hint: We just need to maximize revenue in this problem. Remember that<br />

R PQ .}<br />

APPLICATIONS IN FINANCE<br />

4. Suppose that your local government is interested in doing a capital works project that will<br />

have the following benefit schedule:<br />

Year 1 $0<br />

Year 2 $8000<br />

Year 3 $15,000<br />

a. Calculate the present value of the project if the social discount rate is 5%<br />

b. Calculate the present value of the project if the social discount rate is 10%<br />

c. Calculate the present value of the project if the social discount rate is 15%<br />

APPLICATIONS IN ENVIRONMENTAL SCIENCE<br />

5. Fruit flies are placed in a half-pint milk bottle with a banana (for food) and yeast plants<br />

(for food and to provide a stimulus to lay eggs). Suppose that the fruit fly population P<br />

230<br />

after t days is given by P( t)<br />

.<br />

0.<br />

37t<br />

1<br />

56.5e<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, p. 471)<br />

a. How many fruit flies will there be after 3 days?<br />

b. When will the population of fruit flies be 215?<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 158


MATH CAMP<br />

School of Public and Environmental Affairs<br />

SOLVING WORD PROBLEMS<br />

Day Five In-Class Exercises Solutions<br />

1. A rectangular walk in a park surrounds a flower bed. The outer perimeter of the walk is<br />

60- by 80-foot. If the walk is of uniform width and its area is equal to the area of the<br />

flower bed, how wide is the walk?<br />

(Johnson, How to Solve Word Problems in Algebra: A Solved Problem Approach, McGraw Hill, 2000)<br />

Let x = width of walk in feet<br />

The area of the large rectangle is 80 × 60 = 4800, the area of the small rectangle is onehalf<br />

the area of the large rectangle = 2400, and the formula for the area of the small rectangle<br />

is (80 - 2x) (60 - 2x).<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 159


APPLICATIONS IN STATISTICS<br />

2. An educator wants to see how the number of absences a student in her class has affects<br />

the student’s final grade. Draw a scatter plot of the data. Calculate r. Calculate a and b<br />

and write the equation for the regression line.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 495)<br />

No. of<br />

absences,<br />

x<br />

Final<br />

grade, y<br />

10 12 2 0 8 5<br />

70 65 96 94 75 82<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 2 4 6 8 10 12 14<br />

x 37<br />

y 482<br />

xy 2,682<br />

x 2<br />

337<br />

y 2<br />

39, 526<br />

r <br />

<br />

n<br />

xy<br />

<br />

x<br />

y<br />

2<br />

2<br />

2<br />

<br />

x <br />

<br />

x<br />

n<br />

y <br />

2<br />

n<br />

y<br />

<br />

6(2682) (37)(482)<br />

2<br />

2<br />

6(337)<br />

(37) 6(39526) (482) <br />

.98<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 160


a <br />

2<br />

<br />

y<br />

x <br />

<br />

x<br />

xy<br />

2<br />

2<br />

n<br />

x <br />

<br />

x<br />

(482)(337) (37)(2682)<br />

<br />

96.78<br />

2<br />

6(337) (37)<br />

n<br />

b <br />

<br />

xy<br />

<br />

x<br />

y<br />

2<br />

2<br />

n<br />

x <br />

<br />

x<br />

6(2682) (37)(482)<br />

<br />

2.668<br />

2<br />

6(337) (37)<br />

Y<br />

2.668X<br />

96.78<br />

APPLICATIONS IN ECONOMICS<br />

3. General Motors (GM) produces light trucks in several Michigan factories, where its<br />

annual fixed costs are $180 million, and its marginal cost per truck is approximately<br />

$20,000. Regional demand for the trucks is given by P 30000 0. 1Q<br />

, where P denotes<br />

price in dollars and Q denotes annual sales of trucks.<br />

(Samuelson and Marks, Managerial Economics, (5 th Edition), Wiley, 2006, pp. 115-116)<br />

a. Find GM’s profit maximizing output level and price. Find the annual profit<br />

generated by light trucks. {Hint: To find the maximizing output level and price,<br />

we need to set marginal revenue equal to marginal cost and solve the resulting<br />

equation. Marginal cost is given above. Marginal revenue is the first derivative<br />

of the revenue equation, which is R PQ . Remember that profit is R C .}<br />

R PQ<br />

R (30000 0.1Q ) Q<br />

R 30000Q<br />

0.1Q<br />

MR R<br />

30000 (2)(0.1) Q<br />

MR 30000 0.2Q<br />

C 20000Q<br />

180,000,000<br />

MC C<br />

20000<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 161


MR MC<br />

30000 0.2Q<br />

20000<br />

0.2Q<br />

20000 30000<br />

0.2Q<br />

10000<br />

10000<br />

Q 50,000<br />

0.2<br />

Thus, the optimal output is 50,000 trucks. We insert this into the Price equation<br />

to get the optimal price.<br />

P 30,000 0.1Q<br />

P 30,000 0.1(50,000)<br />

P 30,000 5,000 $25,000<br />

At this level of output and price, profit would be given by<br />

( P CPV ) Q FC<br />

(25,000 20,000)(50,000) 180,000,000<br />

$70,000,000<br />

b. GM is getting ready to export trucks to several markets in South America. Based<br />

on several marketing surveys, GM has found the elasticity of demand in these<br />

foreign markets to be EP<br />

9<br />

for a wide range of prices (between $20,000 and<br />

$30,000). The additional cost of shipping (including paying some import fees) is<br />

about $800 per truck. One manager argues that the foreign price should be set at<br />

$800 above the domestic price (in part a) to cover the transportation cost. Do you<br />

agree that this is the optimal price for foreign sales? Justify your answer. {Hint:<br />

Use the optimal price markup formula to solve this problem. This formula is<br />

EP<br />

<br />

P MC<br />

E<br />

where MC is the marginal cost and EP<br />

is the price elasticity.<br />

1 <br />

P <br />

Marginal cost was given in part a, and we need to add to it the price of shipping<br />

the trucks.}<br />

EP<br />

<br />

P <br />

<br />

1<br />

MC<br />

EP<br />

<br />

9 <br />

P (20,000<br />

800)<br />

1<br />

9 <br />

P (1.125)(20,800) $23,400<br />

According to the markup formula, GM should charge $23,400 per truck in the<br />

foreign market due to the elasticity of demand to maximize profit.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 162


c. GM also produces an economy (“no frills”) version of its light truck at a marginal<br />

cost of $12,000 per vehicle. However, at the price set by GM, $20,000 per truck,<br />

customer demand has been very disappointing. GM has recently discontinued<br />

production of this model but still finds itself with an inventory of 18,000 unsold<br />

trucks. The best estimate of demand for the remaining trucks is: P 30000 Q .<br />

One manager recommends keeping the price at $20,000; another favors cutting<br />

the price to sell the entire inventory. What price (one of these or some other<br />

price) should GM set and how many trucks should it sell to maximize profit?<br />

Justify your answer. {Hint: We just need to maximize revenue in this problem.<br />

Remember that R PQ .}<br />

R PQ<br />

R (30,000 Q)<br />

Q<br />

R 30,000Q<br />

Q<br />

R<br />

30,000 2Q<br />

30,000 2Q<br />

0<br />

2Q<br />

30,000<br />

30,000<br />

Q 15,000<br />

2<br />

At this quantity, the price will be<br />

P 30,000 Q<br />

P 30,000 15,000<br />

P $15,000<br />

2<br />

These numbers say that GM should discount the price to $15,000 per vehicle, but<br />

that in order to maximize revenue, GM should only sell 15,000 of the 18,000<br />

trucks on hand.<br />

APPLICATIONS IN FINANCE<br />

4. Suppose that your local government is interested in doing a capital works project that will<br />

have the following benefit schedule:<br />

Year 1 $0<br />

Year 2 $8000<br />

Year 3 $15,000<br />

a. Calculate the present value of the project if the social discount rate is 5%<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 163


PV<br />

PV<br />

PV<br />

PV<br />

PV<br />

PV<br />

PV<br />

n<br />

X<br />

i<br />

<br />

(1 r)<br />

i1<br />

X<br />

1<br />

<br />

(1 r)<br />

0<br />

<br />

(1 .05)<br />

0<br />

<br />

(1.05)<br />

1<br />

1<br />

0 8000 15000<br />

<br />

1.05 1.1025 1.157625<br />

0 7256.24 12957.56<br />

$20,213.80<br />

X<br />

2<br />

<br />

(1 r)<br />

1<br />

i<br />

8000<br />

<br />

(1 .05)<br />

8000<br />

<br />

(1.05)<br />

2<br />

2<br />

X<br />

3<br />

<br />

(1 r)<br />

2<br />

15000<br />

<br />

(1 .05)<br />

15000<br />

<br />

3<br />

(1.05)<br />

3<br />

3<br />

b. Calculate the present value of the project if the social discount rate is 10%<br />

PV<br />

PV<br />

PV<br />

PV<br />

PV<br />

PV<br />

PV<br />

n<br />

X<br />

i<br />

<br />

(1 r)<br />

i1<br />

X<br />

1<br />

<br />

(1 r)<br />

0<br />

<br />

(1 .10)<br />

0<br />

<br />

(1.10)<br />

1<br />

1<br />

0 8000 15000<br />

<br />

1.10 1.21 1.331<br />

0 6611.57 11269.72<br />

$17,881.29<br />

X<br />

2<br />

<br />

(1 r)<br />

1<br />

i<br />

8000<br />

<br />

(1 .10)<br />

8000<br />

<br />

(1.10)<br />

2<br />

2<br />

X<br />

3<br />

<br />

(1 r)<br />

2<br />

3<br />

15000<br />

<br />

(1 .10)<br />

15000<br />

<br />

3<br />

(1.10)<br />

3<br />

c. Calculate the present value of the project if the social discount rate is 15%<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 164


PV<br />

PV<br />

PV<br />

PV<br />

PV<br />

PV<br />

PV<br />

n<br />

X<br />

i<br />

<br />

(1 r)<br />

i1<br />

X<br />

1<br />

<br />

(1 r)<br />

0<br />

<br />

(1 .15)<br />

0<br />

<br />

(1.15)<br />

1<br />

1<br />

0 8000 15000<br />

<br />

1.15 1.3225 1.520875<br />

0 6049.15 9862.74<br />

$15,911.89<br />

X<br />

2<br />

<br />

(1 r)<br />

1<br />

i<br />

8000<br />

<br />

(1 .15)<br />

8000<br />

<br />

(1.15)<br />

2<br />

2<br />

X<br />

3<br />

<br />

(1 r)<br />

2<br />

15000<br />

<br />

(1 .15)<br />

15000<br />

<br />

3<br />

(1.15)<br />

3<br />

3<br />

APPLICATIONS IN ENVIRONMENTAL SCIENCE<br />

5. Fruit flies are placed in a half-pint milk bottle with a banana (for food) and yeast plants<br />

(for food and to provide a stimulus to lay eggs). Suppose that the fruit fly population P<br />

230<br />

after t days is given by P( t)<br />

.<br />

0.<br />

37t<br />

1<br />

56.5e<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, p. 471)<br />

a. How many fruit flies will there be after 3 days?<br />

230<br />

P(<br />

t)<br />

<br />

0.37t<br />

1<br />

56.5e<br />

230<br />

P(<br />

t)<br />

<br />

0.37(3)<br />

1<br />

56.5e<br />

230<br />

P(<br />

t)<br />

<br />

1.11<br />

1<br />

56.5e<br />

230<br />

P(<br />

t)<br />

<br />

1<br />

56.5(.32956)<br />

230<br />

P(<br />

t)<br />

<br />

118.62<br />

230<br />

19.62<br />

11.7<br />

b. When will the population of fruit flies be 215?<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 165


230<br />

P(<br />

t)<br />

<br />

1<br />

56.5e<br />

230<br />

215 <br />

1<br />

56.5e<br />

<br />

215 1<br />

56.5e<br />

<br />

215 12147.5e<br />

12147.5e<br />

12147.5e<br />

0.37t<br />

0.37t<br />

0.37t<br />

0.37t<br />

0.37t<br />

0.37t<br />

15<br />

e <br />

12147.5<br />

0.37t<br />

15 <br />

ln e ln<br />

<br />

12147.5<br />

<br />

0.37t<br />

ln e ln15 ln12147.5<br />

0.37t<br />

ln15 ln12147.5<br />

ln15 ln12147.5<br />

t <br />

18.1<br />

0.37<br />

<br />

0.37t<br />

230 215<br />

15<br />

230<br />

230<br />

The fruit fly population will be 215 after 18.1 days.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 166


MATH CAMP<br />

School of Public and Environmental Affairs<br />

SOLVING WORD PROBLEMS<br />

Day Five Homework<br />

1. A carpenter wants to cut a 30-foot board into two pieces. He wants the longer piece to be<br />

3 feet longer than twice the length of the shortest piece. Where should he cut the board?<br />

2. You manage an ice cream factory that makes two flavors: Creamy Vanilla and<br />

Continental Mocha. Into each quart of Creamy Vanilla go two eggs and 3 cups of cream.<br />

Into each quart of Continental Mocha go one egg and 3 cups of cream. You have in stock<br />

500 eggs and 900 cups of cream. How many quarts of each flavor should you make to<br />

use all the eggs and cream?<br />

(Waner & Costenoble, Finite <strong>Math</strong>ematics, 2 nd Edition, Brooks/Cole 2001)<br />

3. Ezekiel has some coins in his pocket consisting of dimes, nickels, and pennies. He has<br />

two more nickels than dimes and three times as many pennies as nickels. How many of<br />

each kind of coin does he have if the total value is 52 cents?<br />

(Johnson, How to Solve Word Problems in Algebra: A Solved Problem Approach, McGraw Hill, 2000)<br />

APPLICATIONS IN STATISTICS<br />

4. Refer to the following frequency distribution.<br />

Class<br />

Frequency<br />

0 up to 5 2<br />

5 up to 10 7<br />

10 up to 15 12<br />

15 up to 20 6<br />

20 up to 25 3<br />

(Lind, Marchal and Mason, Statistical Techniques in Business & Economics, 11 th edition, McGraw-Hill: Boston. p. 111)<br />

a. What is the range of times taken to assemble a dresser?<br />

fx<br />

b. What is the grouped mean? x where f is the frequency of each group and<br />

n<br />

x is the midpoint of each group and n is the total number of observations (or sum<br />

x<br />

of f). The midpoint can be calculate as 1<br />

x<br />

m 2<br />

.<br />

2<br />

c. What is variance?<br />

s<br />

2<br />

fx<br />

<br />

2<br />

<br />

<br />

n 1<br />

n<br />

fx<br />

<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 167


5. The following data were obtained from a sample of counties in Southwestern<br />

Pennsylvania and indicate the number (in thousands) of tons of bituminous coal produced<br />

in each county and the number of employees working in coal production in each county.<br />

Draw a scatter plot of the data. Calculate r. Calculate a and b and write the equation for<br />

the regression line. Predict the number of employees needed to produce 500 thousand<br />

tons of coal. The data are given here.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 495)<br />

Tons, x 227 5410 5328 147 729 8095 635 6157<br />

No. of<br />

employees,<br />

y<br />

110 731 1031 20 118 1162 103 752<br />

APPLICATIONS IN ECONOMICS<br />

6. Suppose a firm assess its profit function as<br />

<br />

2 3<br />

10 48Q<br />

15Q<br />

Q<br />

a. Compute the firm’s profit for the following levels of output: Q = 2, 8 and 14<br />

b. Derive an expression for marginal profit (take the first derivative of the profit<br />

function with respect to Q). Compute marginal profit at Q = 2, 8, and 14.<br />

Confirm that profit is maximized at Q = 8.<br />

(Samuelson and Marks, Managerial Economics, (5 th Edition), Wiley, 2006)<br />

7. Firms A and B make up a cartel that monopolizes the market for a scarce natural resource.<br />

The firms’ marginal costs are MC<br />

A<br />

6 2QA<br />

and MCB<br />

18 QB<br />

, respectively. The<br />

firms seek to maximize the cartel’s total profit.<br />

(Samuelson and Marks, Managerial Economics, (5 th Edition), Wiley, 2006, pp. 463)<br />

a. The firms have decided to limit their total output to Q 18 . What outputs should<br />

the firms produce to achieve this level of output at total minimum cost? What is<br />

each firm’s marginal cost? {Hint: To produce output at minimum total cost, the<br />

first should set their outputs so that MC<br />

A<br />

MCB<br />

. We also know that we want<br />

Q A<br />

Q B<br />

18 . We can solve these two equations simultaneously for Q<br />

A<br />

Q<br />

B<br />

b. The market demand curve is P 86 Q , where Q is the total output of the cartel.<br />

Show that the cartel can increase its profit by expanding its total output. (Hint:<br />

Compare MR to MC at Q 18 ).<br />

c. Find the cartel’s optimal outputs and optimal price. (Hint: At the optimum,<br />

MR MC A<br />

MC B<br />

.)<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 168


APPLICATIONS IN FINANCE<br />

8. Capital One Bank of Glen Allen, Virginia recently offered a certificate of deposit that<br />

paid 3.62% compounded daily. If a $5,000 CD earns this rate for 5 years, how much will<br />

it be worth?<br />

(Barnett, Ziegler and Byleen, Finite <strong>Math</strong>ematics for Business, Economics, Life Sciences, and Social Sciences, tenth edition, Upper<br />

Saddle River, NJ: Prentice Hall, pp. 124)<br />

9. A cost-benefit analysis of a new irrigation project indicates that the net benefits ( B C)<br />

of the project in each of the first four years will be -$2 million. Thereafter, the project<br />

will yield positive net benefits of $750,000 for the next 20 years. Calculate the present<br />

value of benefits minus costs when the social rate of discount is 10 percent. Does the<br />

program merit approval? How would the present value of the net benefits change if the<br />

social rate of discount were 15 percent? (Use a spreadsheet to make things easier.)<br />

(Hyman, Public Finance: A Contemporary Application of Theory to Policy, seventh edition, Fort Worth, TX: Harcount,<br />

2002, p. 238)<br />

APPLICATIONS IN ENVIRONMENTAL SCIENCE<br />

10. Often environmentalists will capture an endangered species and transport the species to a<br />

controlled environment where the species can produce offspring and regenerate its<br />

population. Suppose that six American bald eagles are captured, transported to Montana,<br />

and set free. Based on experience, the environmentalists expect the population to grow<br />

500<br />

according to the model t)<br />

where P (t)<br />

is the population after t years.<br />

P( 0.<br />

162t<br />

1<br />

83.33e<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, p. 474)<br />

a. What is the predicted population of this species of American bald eagle in 20<br />

years?<br />

b. When will the population be 300?<br />

11. In a particular region, there are two lakes rich in fish. The quantity of fish caught in each<br />

lake depends on the number of persons who fish in each, according to<br />

Q<br />

1<br />

N1<br />

.<br />

1<br />

10 N<br />

2<br />

and Q2 16N2<br />

.<br />

4N2<br />

, where N<br />

1<br />

and N<br />

2<br />

denote the number of fishers at each lake. In<br />

all, there are 40 fishers.<br />

(Samuelson and Marks, Managerial Economics, (5 th Edition), Wiley, 2006, pp. 248-249)<br />

a. Suppose N<br />

1<br />

16 and N<br />

2<br />

24. At which lake is the average catch per fisher<br />

greater? In light of this fact, how would you expect the fishers to redeploy<br />

themselves?<br />

b. How many fishers will settle at each lake? (Hint: Find N<br />

1<br />

and N<br />

2<br />

such that the<br />

average catch is equal between the two lakes.)<br />

c. The commissioner of fisheries seeks a division of fishers that will maximize the<br />

total catch at the two lakes. Explain how the commissioner should use<br />

information on the marginal catch at each lake to accomplish this goal. What<br />

division of the 40 fishers would you recommend? {Hint: Set the marginal catch at<br />

each lake equal to each other. Use the fact that N<br />

1<br />

N2<br />

40 to help you solve<br />

for N<br />

1<br />

and N<br />

2<br />

}<br />

2<br />

1<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 169


MATH CAMP<br />

School of Public and Environmental Affairs<br />

SOLVING WORD PROBLEMS<br />

Day Five Homework Solutions<br />

1. A carpenter wants to cut a 30-foot board into two pieces. He wants the longer piece to be<br />

3 feet longer than twice the length of the shortest piece. Where should he cut the board?<br />

Let x = length of the shorter piece<br />

Let y = length of the longer piece<br />

So x + y = 30 feet<br />

Because the longer piece is 3 feet longer than twice the shortest piece, we know that y =<br />

2x + 3<br />

x y 30<br />

x 2x<br />

3 30<br />

3x<br />

3 30<br />

3x<br />

27<br />

x 9<br />

y 2x 3 2(9) 3 21<br />

So the length of the shorter piece is 9 feet, the length of the longer piece is 21 feet. The<br />

carpenter should cut the board at 9 feet.<br />

2. You manage an ice cream factory that makes two flavors: Creamy Vanilla and<br />

Continental Mocha. Into each quart of Creamy Vanilla go two eggs and 3 cups of cream.<br />

Into each quart of Continental Mocha go one egg and 3 cups of cream. You have in stock<br />

500 eggs and 900 cups of cream. How many quarts of each flavor should you make to<br />

use all the eggs and cream?<br />

(Waner & Costenoble, Finite <strong>Math</strong>ematics, 2 nd Edition, Brooks/Cole 2001)<br />

Let V = creamy vanilla<br />

Let M = continental mocha<br />

Each quart of vanilla uses 2 eggs and 3 cups of cream<br />

Each quart of mocha uses 1 egg and 3 cups of cream<br />

Total eggs = 500<br />

Total cups of cream = 900<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 170


2V + M = 500 (egg equation)<br />

3V +3M = 900 (cream equation<br />

2V<br />

M 500<br />

M 500 2V<br />

3V<br />

3M<br />

3V<br />

3(500 2V<br />

) 900<br />

3V<br />

1500<br />

6V<br />

3V<br />

V 200<br />

900<br />

600<br />

900<br />

M<br />

M<br />

M<br />

500 2V<br />

500 2(200)<br />

500 400 100<br />

So you should make 100 quarts of Continental Mocha and 200 quarts of Creamy Vanilla.<br />

3. Ezekiel has some coins in his pocket consisting of dimes, nickels, and pennies. He has<br />

two more nickels than dimes and three times as many pennies as nickels. How many of<br />

each kind of coin does he have if the total value is 52 cents?<br />

(Johnson, How to Solve Word Problems in Algebra: A Solved Problem Approach, McGraw Hill, 2000)<br />

Let x = number of dimes<br />

y = number of nickels<br />

z = number of pennies<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 171


APPLICATIONS IN STATISTICS<br />

4. Refer to the following frequency distribution.<br />

Class<br />

Frequency<br />

0 up to 5 2<br />

5 up to 10 7<br />

10 up to 15 12<br />

15 up to 20 6<br />

20 up to 25 3<br />

(Lind, Marchal and Mason, Statistical Techniques in Business & Economics, 11 th edition, McGraw-Hill: Boston. p. 111)<br />

a. What is the range of times taken to assemble a dresser? 25-0 = 25<br />

fx<br />

b. What is the grouped mean? x where f is the frequency of each group and<br />

n<br />

x is the midpoint of each group and n is the total number of observations (or sum<br />

x<br />

of f). The midpoint can be calculate as 1<br />

x<br />

m 2<br />

.<br />

2<br />

fx 2.5 2 ... 22.5 3<br />

380<br />

x <br />

12.6667<br />

n<br />

30 30<br />

2<br />

<br />

fx 380<br />

<br />

2<br />

fx 5,637.50 <br />

2<br />

c. What is variance? s <br />

n<br />

<br />

30<br />

28.42<br />

n 1<br />

30 1<br />

5. The following data were obtained from a sample of counties in Southwestern<br />

Pennsylvania and indicate the number (in thousands) of tons of bituminous coal produced<br />

in each county and the number of employees working in coal production in each county.<br />

Draw a scatter plot of the data. Calculate r. Calculate a and b and write the equation for<br />

the regression line. Predict the number of employees needed to produce 500 thousand<br />

tons of coal. The data are given here.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 495)<br />

Tons, x 227 5410 5328 147 729 8095 635 6157<br />

No. of<br />

employees,<br />

y<br />

110 731 1031 20 118 1162 103 752<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 172


1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 2000 4000 6000 8000 10000<br />

x 26,728<br />

y 4,027<br />

xy 23,663,669<br />

x<br />

2 162,101,162<br />

y 2<br />

3,550, 103<br />

r <br />

<br />

n<br />

xy<br />

<br />

x<br />

y<br />

2<br />

2<br />

2<br />

<br />

x <br />

<br />

x<br />

n<br />

y <br />

2<br />

n<br />

y<br />

<br />

8(23663669) (26728)(4027)<br />

2<br />

2<br />

8(162101162)<br />

(26728) 8(3550103) (4027) <br />

.97<br />

a <br />

2<br />

<br />

y<br />

x <br />

<br />

x<br />

xy<br />

2<br />

2<br />

n<br />

x <br />

<br />

x<br />

(4027)(162101162) (26728)(23663669)<br />

<br />

2<br />

8(162101162) (26728)<br />

n<br />

b <br />

<br />

xy<br />

<br />

x<br />

y<br />

2<br />

2<br />

n<br />

x <br />

<br />

x<br />

8(23663669) (26728)(4027)<br />

<br />

.14<br />

2<br />

8(162101162) (26728)<br />

34.85<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 173


Y<br />

. 14X<br />

34.85<br />

To produce 500 thousand tons of coal, we would need<br />

Y . 14X 34.85 .14(500) 34.85 105<br />

employees<br />

APPLICATIONS IN ECONOMICS<br />

6. Suppose a firm assess its profit function as<br />

<br />

2 3<br />

10 48Q<br />

15Q<br />

Q<br />

a. Compute the firm’s profit for the following levels of output: Q = 2, 8 and 14<br />

Respective profits are: -10, -54, 54, and -486<br />

b. Derive an expression for marginal profit (take the first derivative of the profit<br />

function with respect to Q). Compute marginal profit at Q = 2, 8, and 14.<br />

Confirm that profit is maximized at Q =8.<br />

(Samuelson and Marks, Managerial Economics, (5 th Edition), Wiley, 2006)<br />

d<br />

M<br />

48<br />

30Q<br />

3Q<br />

dQ<br />

2<br />

3(<br />

Q 2)( Q 8)<br />

Marginal profit is zero at Q = 2 and Q = 8. From part a, we can determine that<br />

profit reaches a local minimum at Q = 2 and a maximum at Q = 8.<br />

7. Firms A and B make up a cartel that monopolizes the market for a scarce natural resource.<br />

The firms’ marginal costs are MC<br />

A<br />

6 2QA<br />

and MCB<br />

18 QB<br />

, respectively. The<br />

firms seek to maximize the cartel’s total profit.<br />

(Samuelson and Marks, Managerial Economics, (5 th Edition), Wiley, 2006, pp. 463)<br />

a. The firms have decided to limit their total output to Q 18 . What outputs should<br />

the firms produce to achieve this level of output at total minimum cost? What is<br />

each firm’s marginal cost? {Hint: To produce output at minimum total cost, the<br />

first should set their outputs so that MC<br />

A<br />

MCB<br />

. We also know that we want<br />

Q A<br />

Q B<br />

18 . We can solve these two equations simultaneously for Q<br />

A<br />

and<br />

MC<br />

6 2Q<br />

2Q<br />

A<br />

A<br />

MC<br />

A<br />

Q<br />

18 Q<br />

B<br />

B<br />

12<br />

B<br />

Q<br />

B<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 174


2QA<br />

QB<br />

12<br />

<br />

Q<br />

A<br />

QB<br />

18<br />

2Q<br />

Q Q Q<br />

3Q<br />

Q<br />

Q<br />

A<br />

A<br />

A<br />

A<br />

10 Q<br />

A<br />

30<br />

B<br />

30<br />

10<br />

3<br />

Q 18<br />

B<br />

B<br />

18<br />

B<br />

12 18<br />

QB<br />

18 10<br />

8<br />

To find each firm’s marginal cost, we only need to solve for one firm’s marginal<br />

cost because they are both equal.<br />

MC<br />

A<br />

6 2Q<br />

6 2(10) 6 20 26<br />

A<br />

b. The market demand curve is P 86 Q , where Q is the total output of the cartel.<br />

Show that the cartel can increase its profit by expanding its total output. (Hint:<br />

Compare MR to MC at Q 18 ).<br />

R PQ<br />

R (86 Q)<br />

Q<br />

R 86Q<br />

Q<br />

MR R<br />

86 2Q<br />

2<br />

Now we calculate marginal revenue at Q 18<br />

MR 86 2Q<br />

MR 86 2(18) 50<br />

In part a, we found that MC 26 50 MR . Because the marginal cost is lower<br />

than the marginal revenue, the cartel can profit by expanding output.<br />

c. Find the cartel’s optimal outputs and optimal price. (Hint: At the optimum,<br />

MR MC A<br />

MC B<br />

.)<br />

From part a, we know that:<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 175


MC<br />

6 2Q<br />

2Q<br />

Q<br />

Q<br />

B<br />

A<br />

A<br />

B<br />

MC<br />

A<br />

Q<br />

12 2Q<br />

2Q<br />

18 Q<br />

B<br />

A<br />

B<br />

12<br />

12<br />

A<br />

B<br />

We also know that<br />

MR MC<br />

86 2( Q<br />

86 2Q<br />

A<br />

A<br />

A<br />

Q ) 6 2Q<br />

B<br />

2Q<br />

B<br />

6 2Q<br />

Now we can substitute in for<br />

MR MC<br />

86 2( Q<br />

86 2Q<br />

86 2Q<br />

86 2Q<br />

2Q<br />

8Q<br />

Q<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

2Q<br />

2(2Q<br />

4Q<br />

4Q<br />

Q<br />

A<br />

104<br />

B<br />

B<br />

2Q<br />

104<br />

13<br />

8<br />

Now plug this value of<br />

B<br />

6 2Q<br />

A<br />

) 6 2Q<br />

A<br />

A<br />

A<br />

Q to find<br />

12)<br />

6 2Q<br />

24 6 2Q<br />

A<br />

A<br />

A<br />

A<br />

6 24 86<br />

Q<br />

A<br />

.<br />

A<br />

Q<br />

A<br />

back into the first equation to get<br />

Q<br />

B<br />

.<br />

Q<br />

Q<br />

B<br />

B<br />

2Q<br />

A<br />

12<br />

2(13) 12<br />

26 12<br />

14<br />

The price at this equilibrium will be:<br />

P 86 ( Q<br />

A<br />

Q<br />

P 86 (13 14)<br />

86 27 59<br />

B<br />

)<br />

The common value for<br />

MR MC A<br />

MC will be:<br />

B<br />

MR 86 2( Q<br />

A<br />

Q<br />

MR 86 2(13 14)<br />

86 54 32<br />

B<br />

)<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 176


APPLICATIONS IN FINANCE<br />

8. Capital One Bank of Glen Allen, Virginia recently offered a certificate of deposit that<br />

paid 3.62% compounded daily. If a $5,000 CD earns this rate for 5 years, how much will<br />

it be worth?<br />

(Barnett, Ziegler and Byleen, Finite <strong>Math</strong>ematics for Business, Economics, Life Sciences, and Social Sciences, tenth edition, Upper<br />

Saddle River, NJ: Prentice Hall, pp. 124)<br />

Compound Interest<br />

<br />

A P<br />

1 <br />

<br />

r<br />

m<br />

<br />

<br />

<br />

mt<br />

where A = future value of the account<br />

P = the principal or present value of the account<br />

r = annual rate (as a decimal)<br />

m = the number of times per year the interest is compounded (for instance, for interest<br />

compounded quarterly m 4)<br />

<br />

A P1<br />

<br />

<br />

r<br />

m<br />

.0362 <br />

A 5,0001<br />

<br />

365 <br />

365*5<br />

1825<br />

$5,992. 02<br />

A 5,000 1.000099178<br />

<br />

<br />

<br />

mt<br />

9. A cost-benefit analysis of a new irrigation project indicates that the net benefits ( B C)<br />

of the project in each of the first four years will be -$2 million. Thereafter, the project<br />

will yield positive net benefits of $750,000 for the next 20 years. Calculate the present<br />

value of benefits minus costs when the social rate of discount is 10 percent. Does the<br />

program merit approval? How would the present value of the net benefits change if the<br />

social rate of discount were 15 percent? (Use a spreadsheet to make things easier.)<br />

(Hyman, Public Finance: A Contemporary Application of Theory to Policy, seventh edition, Fort Worth, TX: Harcount, 2002, p. 238)<br />

Year Net Benefit 1 + r (1+r)^n x/(1+r)^n<br />

1 -2,000,000 1.05 1.05 -1904761.905<br />

2 -2,000,000 1.05 1.1025 -1814058.957<br />

3 -2,000,000 1.05 1.157625 -1727675.197<br />

4 -2,000,000 1.05 1.215506 -1645404.95<br />

5 750,000 1.05 1.276282 587644.6249<br />

6 750,000 1.05 1.340096 559661.5475<br />

7 750,000 1.05 1.4071 533010.9976<br />

8 750,000 1.05 1.477455 507629.5215<br />

9 750,000 1.05 1.551328 483456.6872<br />

10 750,000 1.05 1.628895 460434.9402<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 177


11 750,000 1.05 1.710339 438509.4668<br />

12 750,000 1.05 1.795856 417628.0636<br />

13 750,000 1.05 1.885649 397741.013<br />

14 750,000 1.05 1.979932 378800.9647<br />

15 750,000 1.05 2.078928 360762.8236<br />

16 750,000 1.05 2.182875 343583.6415<br />

17 750,000 1.05 2.292018 327222.5157<br />

18 750,000 1.05 2.406619 311640.4912<br />

19 750,000 1.05 2.52695 296800.4678<br />

20 750,000 1.05 2.653298 282667.1122<br />

21 750,000 1.05 2.785963 269206.7735<br />

22 750,000 1.05 2.925261 256387.4033<br />

23 750,000 1.05 3.071524 244178.4793<br />

24 750,000 1.05 3.2251 232550.9327<br />

PV $ 597,617.46<br />

Year Net Benefit 1 + r (1+r)^n x/(1+r)^n<br />

1 -2,000,000 1.15 1.15 -1739130.435<br />

2 -2,000,000 1.15 1.3225 -1512287.335<br />

3 -2,000,000 1.15 1.520875 -1315032.465<br />

4 -2,000,000 1.15 1.749006 -1143506.491<br />

5 750,000 1.15 2.011357 372882.5515<br />

6 750,000 1.15 2.313061 324245.6969<br />

7 750,000 1.15 2.66002 281952.7799<br />

8 750,000 1.15 3.059023 245176.3304<br />

9 750,000 1.15 3.517876 213196.809<br />

10 750,000 1.15 4.045558 185388.5296<br />

11 750,000 1.15 4.652391 161207.417<br />

12 750,000 1.15 5.35025 140180.3626<br />

13 750,000 1.15 6.152788 121895.9675<br />

14 750,000 1.15 7.075706 105996.4935<br />

15 750,000 1.15 8.137062 92170.8639<br />

16 750,000 1.15 9.357621 80148.57731<br />

17 750,000 1.15 10.76126 69694.41505<br />

18 750,000 1.15 12.37545 60603.83917<br />

19 750,000 1.15 14.23177 52698.99059<br />

20 750,000 1.15 16.36654 45825.20921<br />

21 750,000 1.15 18.82152 39848.008<br />

22 750,000 1.15 21.64475 34650.44174<br />

23 750,000 1.15 24.89146 30130.81891<br />

24 750,000 1.15 28.62518 26200.71209<br />

PV -$3,025,861.91<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 178


When using a social discount rate of 5%, the present benefit of the project is $597,617. 46.<br />

When using a social discount rate of 15%, the present value of the project is -$3,025,861.91. If<br />

the social discount rate if 15%, then the project shouldn’t be done.<br />

APPLICATIONS IN ENVIRONMENTAL SCIENCE<br />

10. Often environmentalists will capture an endangered species and transport the species to a<br />

controlled environment where the species can produce offspring and regenerate its<br />

population. Suppose that six American bald eagles are captured, transported to Montana,<br />

and set free. Based on experience, the environmentalists expect the population to grow<br />

500<br />

according to the model P( t)<br />

where P (t)<br />

is the population after t years.<br />

0.<br />

162t<br />

1<br />

83.33e<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, p. 474<br />

a. What is the predicted population of this species of American bald eagle in 20<br />

years?<br />

500<br />

P(<br />

t)<br />

<br />

0.162t<br />

1<br />

83.33e<br />

500<br />

P(<br />

t)<br />

<br />

<br />

1<br />

83.33e<br />

500<br />

P(<br />

t)<br />

<br />

1<br />

83.33(.039)<br />

500<br />

P(<br />

t)<br />

<br />

1<br />

3.26<br />

0.162(20)<br />

500<br />

4.26<br />

117.3<br />

After 20 years, there will be approximately 117 bald eagles.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 179


. When will the population be 300?<br />

500<br />

P(<br />

t)<br />

<br />

0.162t<br />

1<br />

83.33e<br />

500<br />

300 <br />

0.162t<br />

1<br />

83.33e<br />

0.162t<br />

300(1 83.33e<br />

) 500<br />

300 24999e<br />

24999e<br />

24999e<br />

0.162t<br />

0.162t<br />

0.162t<br />

500 300<br />

200<br />

500<br />

0.162t<br />

200<br />

e <br />

24999<br />

0.162t<br />

200 <br />

ln e ln<br />

<br />

24999 <br />

0.162t<br />

ln e ln 200 ln 24999<br />

0.162t<br />

ln 200 ln 24999<br />

ln 200 ln 24999 5.298 10.1266<br />

t <br />

<br />

29.80<br />

0.162 0.162<br />

It will take almost 30 years for the population to reach 300.<br />

11. In a particular region, there are two lakes rich in fish. The quantity of fish caught in each<br />

2<br />

lake depends on the number of persons who fish in each, according to Q 10N<br />

.<br />

N<br />

1 1<br />

1<br />

2<br />

and Q2 16N2<br />

.<br />

4N2<br />

, where N<br />

1<br />

and N<br />

2<br />

denote the number of fishers at each lake. In<br />

all, there are 40 fishers.<br />

(Samuelson and Marks, Managerial Economics, (5 th Edition), Wiley, 2006, pp. 248-249)<br />

a. Suppose N<br />

1<br />

16 and N<br />

2<br />

24. At which lake is the average catch per fisher<br />

greater? In light of this fact, how would you expect the fishers to redeploy<br />

themselves?<br />

The average catch at lake 1 is given by the formula:<br />

1<br />

AQ<br />

AQ<br />

AQ<br />

AQ<br />

1<br />

1<br />

1<br />

1<br />

Q<br />

<br />

N<br />

1<br />

1<br />

10N1<br />

.1N<br />

<br />

N<br />

2<br />

10(16) .1(16)<br />

<br />

16<br />

160 .1(256) 160 25.6<br />

<br />

<br />

16 16<br />

8.4<br />

1<br />

2<br />

1<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 180


The average catch at the second lake will be:<br />

2<br />

Q2<br />

16N<br />

2<br />

.4N<br />

2<br />

AQ2<br />

<br />

N N<br />

1<br />

2<br />

2<br />

16(24) .4(24)<br />

AQ1<br />

<br />

24<br />

384 .4(576) 384 230.4<br />

AQ1<br />

<br />

<br />

24<br />

24<br />

AQ 6.4<br />

2<br />

Because the average catch at the first lake is greater, more fishermen will<br />

gravitate toward that lake.<br />

b. How many fishers will settle at each lake? (Hint: Find N<br />

1<br />

and N<br />

2<br />

such that the<br />

average catch is equal between the two lakes.)<br />

AQ<br />

1<br />

10N1<br />

.1N<br />

N<br />

1<br />

10 .1N<br />

10N1<br />

.1N<br />

<br />

N<br />

1<br />

2<br />

1<br />

1<br />

2<br />

1<br />

16N<br />

2<br />

.4N<br />

<br />

N<br />

16 .4N<br />

16N<br />

2<br />

.4N<br />

<br />

N<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

<br />

AQ<br />

2<br />

We also know that N<br />

1<br />

N2<br />

40 . Using these two equations, we can solve for<br />

N<br />

1<br />

and N<br />

2<br />

.<br />

N<br />

N<br />

1<br />

1<br />

.1N<br />

.1N<br />

.5N<br />

N<br />

2<br />

40<br />

40 N<br />

10 .1N<br />

10 4 .1N<br />

6 .1N<br />

.4N<br />

10<br />

2<br />

10 .1(40 N<br />

N<br />

2<br />

2<br />

2<br />

2<br />

2<br />

1<br />

16 .4N<br />

16 .4N<br />

16 .4N<br />

16 6 .4N<br />

2<br />

2<br />

2<br />

) 16 .4N<br />

10<br />

10<br />

20<br />

.5<br />

2<br />

2<br />

2<br />

2<br />

2<br />

N<br />

N<br />

1<br />

1<br />

40 N<br />

40 20 20<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 181


The movement between the lakes will cease when the average catch at the two<br />

lakes are the same. This happens when we have 20 fishers at each lake.<br />

c. The commissioner of fisheries seeks a division of fishers that will maximize the<br />

total catch at the two lakes. Explain how the commissioner should use<br />

information on the marginal catch at each lake to accomplish this goal. What<br />

division of the 40 fishers would you recommend? {Hint: Set the marginal catch at<br />

each lake equal to each other. Then use the information that N<br />

1<br />

N2<br />

40 to<br />

help you solve the equation for N<br />

1<br />

and N<br />

2<br />

}<br />

2<br />

Q1<br />

10N1<br />

.1N1<br />

<br />

MQ Q 10 .2N<br />

1<br />

1<br />

1<br />

2<br />

Q2<br />

16N<br />

2<br />

.4N<br />

2<br />

<br />

MQ Q 16 .8N<br />

2<br />

2<br />

2<br />

MQ<br />

1<br />

MQ<br />

10 .2N<br />

16 .8N<br />

1<br />

2<br />

2<br />

We know that<br />

N<br />

N<br />

1<br />

1<br />

N<br />

2<br />

40<br />

40 N<br />

2<br />

, so we can insert this value in for N1<br />

to solve for N<br />

2<br />

MQ<br />

10 .2N<br />

10 .2(40 N<br />

10 8 .2N<br />

.2N<br />

N<br />

2<br />

1<br />

2<br />

MQ<br />

.8N<br />

14<br />

1<br />

2<br />

16 .8N<br />

2<br />

2<br />

2<br />

2<br />

) 16 .8N<br />

16 .8N<br />

2<br />

16 10<br />

8<br />

2<br />

N<br />

N<br />

1<br />

1<br />

40 N<br />

40 14<br />

26<br />

2<br />

Thus, we want 26 fishers at lake one and 14 fishers at lake two.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 182


500<br />

P(<br />

t)<br />

<br />

1<br />

83.33e<br />

500<br />

300 <br />

1<br />

83.33e<br />

<br />

300(1 83.33e<br />

300 24999e<br />

24999e<br />

24999e<br />

0.162t<br />

0.162t<br />

0.162t<br />

0.162t<br />

0.162t<br />

0.162t<br />

500 300<br />

200<br />

) 500<br />

500<br />

0.162t<br />

200<br />

e <br />

24999<br />

0.162t<br />

200 <br />

ln e ln<br />

<br />

24999 <br />

0.162t<br />

ln e ln 200 ln 24999<br />

0.162t<br />

ln 200 ln 24999<br />

ln 200 ln 24999 5.298 10.1266<br />

t <br />

<br />

29.80<br />

0.162 0.162<br />

It will take almost 30 years for the population to reach 300.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 183


MATH CAMP<br />

School of Public and Environmental Affairs<br />

Supplemental Problems<br />

ORDERS OF OPERATIONS<br />

1. Evaluate the following expressions using the order of operations:<br />

a.<br />

2<br />

49 75<br />

4 316<br />

b. 5 2 30 6<br />

c.<br />

2<br />

( 5) 30 6<br />

d. 2<br />

16 2 3 7<br />

4<br />

e. 49 7 2 15<br />

3 42<br />

48<br />

3<br />

2<br />

2 2<br />

f. 2 5<br />

4<br />

3<br />

2 36<br />

23<br />

1200<br />

3 15<br />

82<br />

ROOTS AND EXPONENTS<br />

2. Compute:<br />

5<br />

a. 3<br />

1<br />

b.<br />

3<br />

4<br />

c. 3 -8<br />

d.<br />

0<br />

9<br />

1<br />

1 <br />

e.<br />

<br />

<br />

5 <br />

f.<br />

40<br />

1<br />

g.<br />

2<br />

15<br />

h. 5 -2<br />

i. 16 -1<br />

j. ( 2)<br />

k. 5 -3<br />

3. Evaluate the following:<br />

3<br />

2<br />

a. 9<br />

2<br />

b. 8 3<br />

3<br />

1<br />

1 <br />

3<br />

c.<br />

<br />

<br />

27 <br />

d. 3 2<br />

e. 4<br />

16<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 184


1<br />

3<br />

f. 125<br />

g. <br />

7 2<br />

4. Simplify the following:<br />

2 8<br />

a. ( 3) ( 3)<br />

b.<br />

c. x x<br />

d.<br />

4<br />

7 7<br />

e.<br />

0<br />

2 2<br />

f.<br />

9<br />

5<br />

2<br />

5<br />

g.<br />

3<br />

3<br />

6<br />

3<br />

3 6<br />

5 5 <br />

1 9<br />

2<br />

h. 4<br />

5<br />

7<br />

3<br />

5<br />

8<br />

i.<br />

2 2<br />

3 4<br />

j.<br />

5<br />

5<br />

5<br />

10<br />

(Hint: the answer should be in the form of 2 n )<br />

4<br />

3 7<br />

3<br />

k. <br />

6<br />

5<br />

l.<br />

4<br />

5<br />

5<br />

x<br />

m.<br />

5<br />

x<br />

3x<br />

<br />

n. <br />

5y<br />

<br />

5. Put in radical form:<br />

1<br />

2<br />

a. ( 4x<br />

)<br />

b.<br />

2<br />

0.8<br />

x (Hint: Change 0.8 to a fraction.)<br />

1 1<br />

3<br />

6<br />

c. x x<br />

3<br />

2<br />

d. x<br />

6. Simplify:<br />

a.<br />

b.<br />

3a<br />

a<br />

1<br />

2<br />

b<br />

1<br />

2<br />

1<br />

3<br />

b<br />

<br />

3<br />

25x<br />

y<br />

<br />

3<br />

9x<br />

y<br />

1<br />

3<br />

2<br />

3<br />

<br />

<br />

<br />

<br />

<br />

1<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 185


7. Express the following in scientific notation:<br />

a. 6,780,000<br />

b. 456<br />

c. -9,312<br />

d. 938,000<br />

e. .00000276<br />

f. .03<br />

g. .00000000000000000000723<br />

8. Write in common decimal form:<br />

3<br />

a. 4.2<br />

10<br />

b. (5 x 10 5 )(4 x 10 -3 )<br />

c. 4.007 x 10 -6<br />

9. Multiply the following:<br />

a. (5)(10<br />

5 12<br />

) (2.5)(10 )<br />

FRACTIONS<br />

4<br />

10<br />

b. ( 3.4)(10<br />

) (8.1)(10<br />

)<br />

10. Compute:<br />

a.<br />

3 3 <br />

4 4<br />

b.<br />

8 4 <br />

9 7<br />

c.<br />

6 11<br />

8<br />

d.<br />

2 13 <br />

7 14<br />

e.<br />

4 3 <br />

6 6<br />

f.<br />

5 13 <br />

3 14<br />

g.<br />

4 3<br />

9<br />

4<br />

h. <br />

7<br />

2<br />

<br />

3<br />

3<br />

j. 6<br />

7<br />

3<br />

4<br />

i. <br />

5<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 186


WORKING WITH ALGEBRAIC EXPRESSIONS<br />

11. What degree are the following polynomials?<br />

6 4<br />

a. 5x<br />

7x<br />

2x<br />

3<br />

b. 3x – 2<br />

c. x 3 x<br />

12. Simplify the following expressions by collecting like terms:<br />

3<br />

2<br />

3<br />

a. x 5x<br />

15<br />

2x<br />

2x<br />

3x<br />

8x<br />

9 x<br />

2 3<br />

2<br />

3<br />

b. 4x<br />

6x<br />

x x 4( x 3) 4x<br />

2<br />

c. 17x<br />

5x<br />

3x<br />

3<br />

x 12<br />

x<br />

13. Multiply the following polynomials:<br />

5x<br />

3 7x<br />

1<br />

a. <br />

b. <br />

6x<br />

2 5 x 4<br />

14. Compute the following:<br />

a.<br />

7x 2 4 x 5<br />

<br />

2x<br />

1<br />

x<br />

b.<br />

8x<br />

3 9x<br />

2<br />

<br />

x 1<br />

x 2<br />

c.<br />

3<br />

5x<br />

6 x 1<br />

<br />

2<br />

x 1<br />

5x<br />

d.<br />

3x<br />

2 5x<br />

<br />

2<br />

x 9 x 1<br />

e.<br />

3<br />

2<br />

6x<br />

5x<br />

1<br />

7x<br />

<br />

2x<br />

6 x 1<br />

15. Evaluate the following expressions:<br />

a. 5x 2 6x<br />

3 , where x = 5<br />

b.<br />

2<br />

2<br />

7a 5ab<br />

2b<br />

11a<br />

3, where a = 2 and b = -3<br />

c. 9y 17 y 6 , where y = -1<br />

2<br />

d. y 5x<br />

3y<br />

7( x 2)<br />

where y = 3 and x = 5<br />

2<br />

e. ( y ) 5x<br />

3y<br />

7( x 2)<br />

where y = 3 and x = 5<br />

16. A culture of bacteria triples every hour. If it weighs one ounce at the beginning, what will it<br />

weigh:<br />

a. One hour later<br />

b. Two hours later<br />

c. Three hours later<br />

d. Four hours later<br />

17. A retail store faces a demand equation for Roller Blades given by:<br />

Q = 180 – 1.5P,<br />

where Q is the number of pairs sold per month and P is the price per pair in dollars.<br />

a. The store currently charges P = $80 per pair. At this price, determine the number<br />

of pairs sold.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 187


. If management were to raise the price to $100, how many pairs would the store<br />

sell?<br />

18. The original revenue function for the microchip producer is R = 170Q -20Q 2 , where R is the<br />

total revenue and Q is the number of microchips sold.<br />

a. If the microchip producer sells 10 microchips, how much money will the producer<br />

make?<br />

b. If the microchip producer sells 5 microchips, how much money will the producer<br />

make?<br />

PERCENT CHANGE<br />

19. Suppose that your car was worth $11,354 three years ago and it is now worth $3,221. What<br />

is the percent change?<br />

WORKING WITH SUMMATION SIGNS<br />

20. Find<br />

x<br />

x for the following:<br />

n<br />

a. 5, 6, 17, 3, -5, -25, 6, -12, 9, 31<br />

b. 3.5, 2.1, 2.8, 3.9, 4.0, 1.9, 3.0<br />

c. $5.50, $10.71, $12.01, $1.35, $6.50, $8.98, $9.12, $8.80, $15.00, $2.36, $3.30,<br />

$6.66<br />

x<br />

21. For each set of values, find x , x 2 , and 2<br />

a. 80, 76, 42, 53, 77<br />

b. -9, -12, 18, 0, -2, -15<br />

c. 12, 52, 36, 81, 63, 74<br />

<br />

22. Calculate 2<br />

x i<br />

x<br />

a. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10<br />

b. -13, 15, -34, 23, 31, -40<br />

for the following. To do this you will first need to compute<br />

<br />

<br />

2<br />

x<br />

x .<br />

n<br />

2<br />

x<br />

2<br />

23. Show that x<br />

x<br />

x <br />

n<br />

24. A sample of personnel files of eight male employees employed by Acme Carpet revealed<br />

that, during a six-month period, they lost the following number of days due to illness: 2, 0, 6,<br />

x<br />

3, 10, 4, 1, and 2. Calculate the mean x and the mean deviation<br />

x x<br />

for these<br />

n<br />

n<br />

data.<br />

(Lind, Marchal and Mason, Statistical Techniques in Business & Economics, 11 th edition, McGraw-Hill: Boston.)<br />

25. Each person who applies for an assembly job at Carolina Furniture, Inc. is given a<br />

mechanical aptitude test. One part of the test involves assembling a dresser based on<br />

numbered instructions. A sample of the lengths of time it took 42 persons to assemble the<br />

dresser was organized into the following frequency distribution.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 188


Length of Time<br />

Frequency<br />

(minutes)<br />

2 - 4 4<br />

4 – 6 8<br />

6 – 8 14<br />

8 – 10 9<br />

10 – 12 5<br />

12 – 14 2<br />

(Lind, Marchal and Mason, Statistical Techniques in Business & Economics, 11 th edition, McGraw-Hill: Boston. p. 111)<br />

a. What is the range of times taken to assemble a dresser?<br />

fx<br />

b. What is the grouped mean? x where f is the frequency of each group and x is<br />

n<br />

the midpoint of each group and n is the total number of observations (or sum of f).<br />

x<br />

The midpoint can be calculate as 1<br />

x<br />

m 2<br />

.<br />

2<br />

<br />

<br />

fx<br />

2<br />

fx <br />

2<br />

c. What is variance? s <br />

n<br />

n 1<br />

26. Merrill Lynch Securities and Health Care Retirement, Inc. are two large employers in<br />

downtown Toledo, Ohio. They are considering jointly offering child care for their<br />

employees. As a part of the feasibility study, they wish to estimate the mean weekly childcare<br />

cost of their employees. A sample of 10 employees who use child care reveals the<br />

following amounts spent last week--$107, $92, $97, $95, $105, $101, $91, $99, $95, $104.<br />

(Lind, Marchal and Mason, Statistical Techniques in Business & Economics, 11 th edition, McGraw-Hill: Boston. p. 313)<br />

<br />

a. What is the mean?<br />

b. What is the variance?<br />

c. If the standard deviation is the square root of the variance, what is the standard<br />

deviation?<br />

d. Given the following formula for a confidence interval, compute the confidence<br />

s<br />

interval for these data. x t . In this case, x is the mean you just calculated, s is<br />

n<br />

the standard deviation you just calculated, n is the sample size, and t =1.833.<br />

27. There is a statistic called the chi-squared statistic that you will see again in your statistics<br />

class. The formula for computing this statistic is: <br />

2 O E<br />

<br />

E<br />

where O is the<br />

observed value and E is the expected value. Given the following table of data, compute the<br />

chi-squared statistic.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 515)<br />

Frequency Cherry Strawberry Orange Lime Grape<br />

Observed 32 28 16 14 10<br />

Expected 20 20 20 20 20<br />

2<br />

<br />

<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 189


28. Given the following data, calculate r. This is called the correlation coefficient, and you will<br />

see more of this in your statistics class.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 481)<br />

r <br />

FACTORING<br />

n<br />

xy<br />

<br />

x<br />

y<br />

2<br />

2<br />

2<br />

<br />

x <br />

<br />

x<br />

n<br />

y <br />

n<br />

y<br />

Subject Age, x Pressure, y<br />

A 43 128<br />

B 48 120<br />

C 56 135<br />

D 61 143<br />

E 67 141<br />

F 70 152<br />

29. Factor the given polynomial:<br />

5 3 2 4<br />

a. 15x y 24x<br />

y<br />

b.<br />

3<br />

3<br />

15 5x<br />

3y<br />

yx<br />

c.<br />

3 2<br />

x 1<br />

x x<br />

d.<br />

2<br />

4x<br />

20xy<br />

25y<br />

e.<br />

f.<br />

g.<br />

2<br />

2<br />

4x<br />

101xy<br />

25y<br />

2 2<br />

36x 16y<br />

x<br />

2n<br />

y<br />

4n<br />

SOLVING EQUATIONS<br />

2<br />

30. Find the solutions to the following equations using the factoring formulas:<br />

2<br />

a. y 9y 20 0<br />

b.<br />

2<br />

x 8x 12<br />

c. 45x<br />

2 57x 18<br />

0<br />

d. 9x<br />

2 4 0<br />

e.<br />

2<br />

( x 2) x(2<br />

3x)<br />

f. y 5 y 1<br />

g. x 2 6<br />

2<br />

<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 190


31. Find the solutions to the following equations by using the quadratic formula:<br />

2<br />

a. x 2x 3 0<br />

2<br />

b. 2x<br />

5 x<br />

c. 8w<br />

2 12w<br />

9<br />

32. Find a number whose square exceeds fourteen times the number by 51.<br />

33. An object is thrown upward from the top of a building, and if s feet is the distance of the<br />

object from the ground t seconds after it is thrown, s 16t<br />

2 48t<br />

100<br />

. How long will it<br />

take the object to strike the ground?<br />

SOLVING SYSTEMS OF EQUATIONS<br />

34. Find the solution set to the following systems of equations using the method of substitution.<br />

3x<br />

y 5<br />

a. <br />

5x<br />

y 3<br />

x<br />

3y<br />

11<br />

b. <br />

x<br />

y 1<br />

35. Find the solution set to the following system of equations using the addition/subtraction<br />

method. You might have to rearrange the equations to be in the correct format first. If the<br />

system cannot be solved, then indicate whether it is dependent or inconsistent.<br />

4x<br />

3y<br />

1<br />

a. <br />

6x<br />

y 7<br />

5x<br />

3y<br />

1<br />

b. <br />

x<br />

3y<br />

4<br />

4x<br />

3y<br />

12<br />

0<br />

<br />

c. 4 3<br />

y<br />

x <br />

3 2<br />

x y<br />

<br />

1<br />

2 3<br />

d. <br />

x y<br />

5<br />

4<br />

3<br />

SOLVING INEQUALITIES<br />

36. Solve the following inequalities for x:<br />

a. 9x<br />

36 x 64<br />

b. x 2 49<br />

c. 3x 10<br />

2x<br />

5<br />

d. x 4 5x<br />

12<br />

32 x<br />

e. 6x 2 6x<br />

13<br />

f. ( x 2)( x 3) ( x 1)(<br />

x 1)<br />

g. 6(2y 3) 2(6y<br />

12)<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 191


h.<br />

i.<br />

j.<br />

5x 3 1 3<br />

2x<br />

2 9x 5 0<br />

x 2 x<br />

37. Solve the following equations and inequalities for x:<br />

a. 5y 8 <br />

b.<br />

c.<br />

d.<br />

e.<br />

38. In your Economics 101 class, you have scores of 68, 82, 87, and 89 on the first four of fives<br />

tests. To get a grade of B, the average of the first five test scores must be greater than or<br />

equal to 80 and less than 90. Solve an inequality to find the range of the score that you need<br />

on the last test to get a B. (Michael Sullivan, College Algebra, Upper Saddle Rive, NJ: Prentice Hall, 2005, p. 135)<br />

FUNCTIONS<br />

3 2 2<br />

x<br />

2<br />

x<br />

<br />

2<br />

3x 2 2<br />

1<br />

3<br />

1<br />

8x<br />

5( x 4) 5 x 3 6<br />

9x<br />

6 x 12<br />

x 2 x<br />

39. Determine the domain and range of the following functions:<br />

e.<br />

5<br />

f ( x)<br />

2x<br />

8x<br />

7<br />

f.<br />

x 3<br />

f ( x)<br />

x 5<br />

g. f ( x)<br />

12 x<br />

BASICS OF GRAPHING FUNCTIONS<br />

40. Graph the following lines:<br />

a. 4x<br />

2y<br />

20<br />

b. 4x<br />

2y<br />

20<br />

c. x 8 0<br />

d. y 1<br />

e. 2x<br />

3y<br />

0<br />

41. A statistics instructor wishes to determine if a relationship exists between the final exam<br />

scores in Statistics 101 and the final exam scores of the same students who took Statistics 102.<br />

Draw a scatter plot and comment on the nature of the relationship.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 79)<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 192


Stat 101, x 87 92 68 72 95 78 83 98<br />

Stat 102, y 83 88 70 74 90 74 83 99<br />

42. The data shown indicate the number of tournaments and the earnings in thousands of dollars<br />

of 10 randomly selected LPGA golfers. Draw a scatter plot for the data and determine the<br />

nature of the relationship.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 79)<br />

No. of 27 30 24 21 18 32 25 32 25 27<br />

tournaments,x<br />

Earnings, y $956 757 583 517 104 173 252 303 355 405<br />

43. An educator wants to see if there is relationship between the number of absences a student<br />

has and his or her final grade in a course. Draw a scatter plot and comment on the nature of<br />

the relationship.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 79)<br />

No. of<br />

10 12 2 0 8 5<br />

absences, x<br />

Final grade, y 70 65 96 94 75 82<br />

LINEAR FUNCTIONS AND THEIR GRAPHS<br />

44. Draw a graph of the line connecting these two points and find the length of the line.<br />

a. (2,1), (-1,5)<br />

b. (7,-4), (-5,1)<br />

45. Draw a graph of the line connecting these two points and find the slope of the line.<br />

a. (-7,-1), (-3,4)<br />

b. (0,-5), (-5,0)<br />

c. (3,5), (5, 9)<br />

46. Find the midpoint between the two points:<br />

a. (8,9), (3,9)<br />

b. (-5,0), (7,7)<br />

c. (1,1), (3,3)<br />

47. Find the lengths of the sides of the triangle having vertices at the three given points. Graph<br />

the triangle. A(2,3), B(3,-3), C(-1,1)<br />

48. Show that the line through the points A(3,9) and B(5,5) is parallel to the line through the<br />

points C(1,7) and D(3,3). Draw a sketch of the two lines.<br />

49. Find an equation of the line through the two points. Graph the line.<br />

a. ( 3, 6),(<br />

2,<br />

3)<br />

b. ( 1, 2),(7,<br />

2)<br />

c. ( 3,1),( 5,4)<br />

50. Find an equation of the line through the given point with the given slope. Graph the line.<br />

a. ( 3,<br />

6),<br />

m 3<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 193


2<br />

b. ( 4,0),<br />

m <br />

5<br />

51. Find an equation of the line through the point (6,3) and perpendicular to the line whose<br />

equation is x 3y 15<br />

0 . Graph the lines (on the same axis).<br />

52. Find an equation of the line that is parallel to the given line and passes through the given<br />

point. 5x 2y 1<br />

0, ( 3,3)<br />

53. A ramp connects the ground to the loading platform of a warehouse. If the platform is 5 feet<br />

high and the ramp has a slope of 0.28, how far from the wall of the warehouse is the base of<br />

the ramp?<br />

QUADRATIC FUNCTIONS AND THEIR GRAPHS<br />

54. Graph the following equations:<br />

a. f ( x)<br />

x<br />

2 10<br />

b. f ( x)<br />

25x<br />

2 13<br />

c. f ( x)<br />

10x<br />

5<br />

d. f ( x)<br />

10x<br />

5<br />

e. f ( x)<br />

10x<br />

5<br />

55. The percentage s of seats in the House of Representatives won by Democrats and the<br />

percentage v of votes cast for Democrats (when expresses as decimal fractions) are related by<br />

the equation:<br />

5v 2s<br />

1.4<br />

0 s 1<br />

0.28<br />

v 0. 68<br />

a. Express v as a function of x, and find the percentage of votes required for the<br />

Democrats to win 51% of the seats.<br />

b. Express s as a function of v, and find the percentage of seats won if the Democrats<br />

receive 51% of the votes.<br />

56. A projectile is fired from a cliff 500 feet above the water at an inclination of 45 degrees to<br />

the horizontal, with a muzzle velocity of 400 feet per second. In physics, it is established that<br />

2<br />

32x<br />

the height h of the projectile above the water is given by h ( x)<br />

x 500 , where x is<br />

2<br />

(400)<br />

the horizontal distance of the projectile from the base of the cliff. (Sullivan, College Algebra, seventh<br />

edition, Upper Saddle River, NJ: Prentice Hall, pp. 302-303)<br />

a. Find the maximum height of the projectile.<br />

b. How far from the base of the cliff will the projectile strike the water?<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 194


57. The price p and the quantity x sold of a certain project obey the demand equation<br />

x 5p<br />

100 , 0 p 20<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, pp. 308)<br />

a. Express the revenue R as a function of x.<br />

b. What is the revenue if 15 units are sold?<br />

c. What quantity x maximizes revenue? What is the maximum revenue?<br />

d. What price should the company charge to maximize revenue?<br />

POLYNOMIAL AND RATIONAL FUNCTIONS<br />

58. The following data represent the number of motor vehicle thefts (in thousands) in the United<br />

States for the years 1987-1997, where 1 represents 1987, 2 represents 1988, and so on.<br />

Year, x Motor Vehicle<br />

Thefts, T<br />

1987,1 1289<br />

1988,2 1433<br />

1989,3 1565<br />

1990,4 1636<br />

1991,5 1662<br />

1992,6 1611<br />

1993,7 1563<br />

1994,8 1539<br />

1995,9 1472<br />

1996,10 1394<br />

1997,11 1354<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, pp. 329)<br />

a. Draw a scatter diagram of the data. Comment on the type of relation that may<br />

exist between the two variables.<br />

b. The cubic function of best fit to these data is:<br />

3<br />

2<br />

T ( x)<br />

1.52x<br />

39.81x<br />

282.29x<br />

1035.5<br />

Use this function to predict the number of motor vehicle thefts in 1994.<br />

59. A company manufacturing snow-boards has fixed costs of $200 per day and total costs of<br />

$3,800 per day at a daily output of 20 boards. (Barnett, Ziegler and Byleen, Finite <strong>Math</strong>ematics for Business,<br />

Economics, Life Sciences, and Social Sciences, tenth edition, Upper Saddle River, NJ: Prentice Hall, pp. 93)<br />

a. Assuming that the total cost per day, C (x)<br />

, is linearly related to the total output<br />

per day, x, write an equation for the cost function.<br />

b. The average cost per board for an output of x boards is given by C ( x)<br />

C(<br />

x)<br />

x .<br />

Find the average cost function.<br />

c. Sketch a graph of the average cost function, including any asymptotes, for<br />

1 x 30.<br />

d. What does the average cost per board tend to as production increases?<br />

60. Graph the following equations:<br />

3<br />

a. f ( x)<br />

x 10x<br />

6<br />

b. f ( x)<br />

x 3<br />

c. f ( x)<br />

x 2 10<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 195


EXPONENTIAL FUNCTIONS<br />

61. Graph the following functions:<br />

x<br />

a. f ( x)<br />

5<br />

b.<br />

<br />

f ( x)<br />

3<br />

x<br />

x<br />

1<br />

c. f ( x)<br />

<br />

10<br />

d. f ( x)<br />

(log<br />

2<br />

x)<br />

3<br />

e. f ( x)<br />

log<br />

10<br />

x<br />

f. f ( x)<br />

ln( x 5)<br />

62. Suppose that $2,500 is invested at 7% compounded quarterly. How much money will be in<br />

the account in:<br />

(Barnett, Ziegler and Byleen, Finite <strong>Math</strong>ematics for Business, Economics, Life Sciences, and Social Sciences, tenth edition, Upper Saddle<br />

River, NJ: Prentice Hall, pp. 107)<br />

a. ¾ of a year?<br />

b. 15 years?<br />

63. If you invest $7,500 in an account paying 8.35% compounded continuously, how much<br />

money will be in the account at the end of:<br />

(Barnett, Ziegler and Byleen, Finite <strong>Math</strong>ematics for Business, Economics, Life Sciences, and Social Sciences, tenth edition, Upper Saddle<br />

River, NJ: Prentice Hall, pp. 107)<br />

a. 5.5 years?<br />

b. 12 years?<br />

64. The Joint United Nations Program on HIV/AIDS reported that HIV had infected 60 million<br />

people worldwide prior to 2002. Assume that number increases at an annual rate of 8%<br />

compounded continuously.<br />

(Barnett, Ziegler and Byleen, Finite <strong>Math</strong>ematics for Business, Economics, Life Sciences, and Social Sciences, tenth edition, Upper Saddle<br />

River, NJ: Prentice Hall, p. 108)<br />

a. Write an equation that models the worldwide spread of HIV, letting 2002 be year<br />

0.<br />

b. Based on the model, how many people (to the nearest million) had been infected<br />

prior to 1999? How many would be infected prior to 2010?<br />

LOGARITHMIC FUNCTIONS<br />

65. Express the following relationships in terms of logarithms.<br />

a. 3<br />

b. 10 5<br />

. 00001<br />

66. Express the following relationships using exponential notation.<br />

a. log 7<br />

49 2<br />

9 2 1<br />

b. log 16 4<br />

1<br />

<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 196


67. Find the value of the following logarithms.<br />

a.<br />

1<br />

log 4<br />

4<br />

b. log 3<br />

3<br />

c. log 10<br />

. 000001<br />

d.<br />

3<br />

log<br />

5<br />

25<br />

e. log<br />

e<br />

e<br />

68. Solve the following for x or b, respectively.<br />

1 2<br />

a. log<br />

b<br />

<br />

16 3<br />

b. log x 4<br />

1<br />

<br />

3<br />

c. log 81 2<br />

b<br />

d. log<br />

6(<br />

x 4) log<br />

6(<br />

x 9) 2<br />

e.<br />

2<br />

log<br />

4(<br />

x 6x)<br />

2<br />

f. log<br />

2(11<br />

x ) log<br />

2(<br />

x 1)<br />

3<br />

69. Simplify the following logarithms (express as one logarithm):<br />

a.<br />

1<br />

4log<br />

10<br />

x log<br />

10<br />

y<br />

2<br />

b.<br />

3<br />

4<br />

log<br />

b<br />

x 6log<br />

b<br />

y log<br />

b<br />

z<br />

4<br />

5<br />

70. Evaluate the following logarithms given that log 10<br />

2 0. 3010 , log 10<br />

3 0. 4771, and<br />

log 10<br />

7 <br />

a.<br />

0.8451<br />

log<br />

log<br />

10<br />

10<br />

2<br />

3<br />

b.<br />

<br />

5<br />

49 <br />

log <br />

10<br />

2<br />

36 <br />

c. log 10<br />

35<br />

d.<br />

14 <br />

log<br />

10<br />

<br />

3<br />

84 <br />

e. log 10<br />

30<br />

f. log 10<br />

49000<br />

g. log 10<br />

. 0000006<br />

71. Shannon’s diversity index is a measure of the diversity of a population. The diversity<br />

index is given by the formula<br />

H p1 log p1<br />

p2<br />

log p2<br />

...<br />

p n<br />

log p n<br />

<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 197


where p<br />

1<br />

is the proportion of the population that is species 1, p<br />

2<br />

is the proportion of the<br />

population that is species 2, and so on.<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, p. 439)<br />

a. According to the U.S. Census Bureau, the distribution of race in the United States<br />

in 2000 was as follows:<br />

Race<br />

Proportion<br />

American Indian or 0.014<br />

Native Alaskan<br />

Asian 0.041<br />

Black or African 0.128<br />

American<br />

Hispanic 0.124<br />

Native Hawaiian or 0.003<br />

Pacific Islander<br />

White 0.690<br />

Compute the diversity index of the United States in 2000.<br />

b. The largest value of the diversity index is given by H log( S)<br />

, where S is the<br />

number of categories of race. Compute H<br />

max<br />

.<br />

H<br />

c. The evenness ratio is given by E H<br />

, where 0 E 1. If E 1, there<br />

is a complete evenness. Compute the evenness ratio for the United States.<br />

72. How many years (to two decimal places) will it take $1,000 to grow to $1,800 if it is invested<br />

at 6% compounded quarterly? Compounded continuously?<br />

(Barnett, Ziegler and Byleen, Finite <strong>Math</strong>ematics for Business, Economics, Life Sciences, and Social Sciences, tenth edition, Upper Saddle<br />

River, NJ: Prentice Hall, pp. 120)<br />

SOLVING WORD PROBLEMS<br />

73. A ladder is leaning against a building. The base of the ladder is 8 feet away from the side of<br />

the building and the ladder reaches 9 feet high on the building. How long is the ladder?<br />

74. A farmer mixes milk containing 3% butterfat with cream containing 30% butterfat to obtain<br />

900 gallons of milk which is 8% butterfat. How much of each must the farmer use?<br />

(Johnson, How to Solve Word Problems in Algebra: A Solved Problem Approach, McGraw Hill, 2000)<br />

75. The data shown indicate the number of wins and the number of points scored for teams in the<br />

National Hockey League. Draw a scatter plot for the data and describe the nature of the<br />

relationship.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 79)<br />

Wins,x 10 9 6 5 4 12 11 8 7 5 9 8 6 6 4<br />

Points,y 23 22 15 15 10 26 26 26 21 16 12 19 16 16 11<br />

H max<br />

max<br />

H<br />

H<br />

76. Evaluate the following expression given that p =.8, n = 2000, and z = 1.96.<br />

p( 1<br />

p)<br />

a. Evaluate. p z<br />

n<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 198


p(1<br />

p)<br />

b. If p = .8 and z = 19.6 and p z . 75 , find n.<br />

n<br />

APPLICATIONS IN STATISTICS<br />

77. A sample of eight companies in the aerospace industry was surveyed as to their return on<br />

investment last year. The results are: 10.6, 12.06, 14.8, 18.2, 12.0, 14.8, 12.2, and 15.6.<br />

(Lind, Marchal and Mason, Statistical Techniques in Business & Economics, 11 th edition, McGraw-Hill: Boston. p. 108)<br />

x<br />

a. Calculate the mean. x <br />

n<br />

2<br />

x<br />

x<br />

2<br />

b. Calculate the variance using the deviation formula. s <br />

n 1<br />

x<br />

2<br />

x <br />

2<br />

c. Calculate the variance using the direct formula. s <br />

n<br />

n 1<br />

<br />

78. The formula for computing the chi-squared statistic is: <br />

2<br />

2 O E<br />

<br />

where O is the<br />

E<br />

observed value and E is the expected value. Given the following table of data, compute the<br />

chi-squared statistic.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 515)<br />

Day Mon Tues Wed Thur Fri Sat Sun<br />

Observed 28 32 15 14 38 43 19<br />

Expected 20 34 17 15 30 45 20<br />

<br />

<br />

2<br />

79. Prove that the following two formulas are equal.<br />

r <br />

n<br />

xy<br />

<br />

x<br />

y<br />

2<br />

2<br />

2<br />

<br />

x <br />

<br />

x<br />

n<br />

y <br />

n<br />

y<br />

2<br />

<br />

x<br />

x y y<br />

r <br />

( n 1)(<br />

s x<br />

)( s<br />

y<br />

)<br />

<br />

<br />

and<br />

x<br />

2<br />

x x <br />

2<br />

Remember that: x s <br />

n<br />

x<br />

n<br />

n 1<br />

(Hint: It might be easier to start with the second formula and work backwards.)<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 199


80. A statistics instructor is interested in finding the strength of a relationship between the final<br />

exam grades of students enrolled in Statistics I and Statistics II. Draw a scatter plot of the<br />

data. Calculate r. Calculate a and b and write the equation for the regression line. The data<br />

are given here in percentages.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 495)<br />

Stat I, x 87 92 68 72 95 78 83 98<br />

Stat II,<br />

y<br />

83 88 70 74 90 74 83 99<br />

APPLICATIONS IN ECONOMICS<br />

81. Management of McPablo’s Food Shops has completed a study of weekly demand for its<br />

“old-fashioned” tacos in 53 regional markets. The study revealed that<br />

Q 400 1,200P<br />

.8A<br />

55Pop<br />

800P<br />

0<br />

where Q is the number of tacos sold per store per week, A is the level of local advertising<br />

0<br />

expenditure (in dollars), Pop denotes the local population (in thousands), and P is the<br />

average taco price of local competitors. For the typical McPablo’s outlet, P = $1.50, A =<br />

0<br />

$1,000, Pop = 40 and P =$1.<br />

(Samuelson and Marks, Managerial Economics, (5 th Edition), Wiley, 2006)<br />

a. Estimate the weekly sales for the typical McPablo’s outlet.<br />

b. What is the current price elasticity for tacos? What is the advertising elasticity?<br />

2<br />

82. A firm’s long-run total cost function is: C 360 40Q<br />

10Q<br />

.<br />

(Samuelson and Marks, Managerial Economics, (5 th Edition), Wiley, 2006, p. 293)<br />

a. What is the shape of the long-run average cost curve? (Hint: To find the average<br />

cost function, divide the cost function by Q.)<br />

b. Find the output that minimizes average cost. (Hint: The minimum average costs<br />

occurs where AC MC . Remember that MC is the first derivative of the cost<br />

function.)<br />

c. The firm faces the fixed market price of $140 per unit. At this price, can the firm<br />

survive in the long run? Explain.<br />

83. A manufacturing firm produces output using a single plant. The relevant cost function is<br />

2<br />

C 500 5Q<br />

. The firm’s demand curve is P 600 5Q<br />

.<br />

(Samuelson and Marks, Managerial Economics, (5 th Edition), Wiley, 2006, pp. 296-297)<br />

a. Find the level of output at which average cost is minimized. (Hint: Set AC equal<br />

to MC.) What is the minimum level of average cost?<br />

b. Find the firm’s profit-maximizing output and price. Find its profit. {Hint:<br />

MR MC }<br />

84. In a perfectly competitive market, industry demand is given by Q 1,000<br />

20P<br />

. The typical<br />

firm’s average cost is AC 300 <br />

Q .<br />

Q 3<br />

(Samuelson and Marks, Managerial Economics, (5 th Edition), Wiley, 2006, pp. 429)<br />

Confirm that Q<br />

min<br />

30. (Hint: Set AC equal to MC.) What is AC<br />

min<br />

?<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 200


APPLICATIONS IN FINANCE<br />

ln m<br />

85. The formula t <br />

<br />

<br />

can be used to find the number of years t required to multiply<br />

r<br />

nln<br />

1 <br />

n <br />

and investment m times when r is the per annum interest rate compounded n times a year.<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, p. 464)<br />

a. How many years will it take to double the value of an IRA that compounds<br />

annually at the rate of 12%?<br />

b. How many years will it take to triple the value of a savings account that<br />

compounds quarterly at an annual rate of 6%?<br />

c. Giver a derivation of this formula.<br />

86. You have $12,000 to invest. If part is invested at 10% and the rest at 15%, how much should<br />

be invested at each rate to yield 12% on the total amount?<br />

(Barnett, Ziegler and Byleen, Finite <strong>Math</strong>ematics for Business, Economics, Life Sciences, and Social Sciences, tenth edition, Upper Saddle<br />

River, NJ: Prentice Hall, pp. 690)<br />

87. Suppose that your local government is interested in doing a capital works project that will<br />

have the following benefit schedule:<br />

Year 1 $0<br />

Year 2 $0<br />

Year 3 $50<br />

Year 4 $500<br />

Year 5 $5,000<br />

Year 6 $15,000<br />

a. Calculate the present value of the project if the social discount rate is 5%<br />

b. Calculate the present value of the project if the social discount rate is 10%<br />

c. Calculate the present value of the project if the social discount rate is 15%<br />

APPLICATIONS IN ENVIRONMENTAL SCIENCE<br />

88. The size P of a certain insect population at a time t (in days) obeys the function<br />

0.02t<br />

P( t)<br />

500e<br />

.<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, p. 472)<br />

a. Determine the number of insects at t 0 days.<br />

b. What is the growth rate of the insect population?<br />

c. What is the population after 10 days?<br />

d. When will the insect population reach 800?<br />

e. When will the insect population double?<br />

89. A piece of charcoal is found to contain 30% of the carbon 14 that it originally had. When did<br />

the tree from which the charcoal came die? Use 5600 years as the half-life of carbon 14. Use<br />

kt<br />

the formula ( t)<br />

A e where A<br />

0<br />

is the original amount of the substance and k is the rate of<br />

A<br />

0<br />

decay.<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, p. 473)<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 201


MATH CAMP<br />

School of Public and Environmental Affairs<br />

Solutions to Supplemental Problems<br />

ORDERS OF OPERATIONS<br />

1. Evaluate the following expressions using the order of operations:<br />

2<br />

49 7 5<br />

4 3<br />

16<br />

49 7 5<br />

16<br />

3<br />

16<br />

7 5<br />

16<br />

3<br />

16<br />

a.<br />

35 16<br />

3<br />

16<br />

35 48 16<br />

83 16<br />

67<br />

b. 5 2 30 6 25<br />

30 6 25<br />

5 20<br />

2<br />

c. ( 5) 30 6 25 30 6 25 5 30<br />

2<br />

2<br />

2<br />

d. 16<br />

2<br />

3<br />

7 8 3<br />

7 4 (10) 4 100<br />

108<br />

e.<br />

f.<br />

49 7 2 <br />

49 7 2<br />

49 7 2<br />

<br />

2 5<br />

4 <br />

2 5<br />

2 5<br />

2 5<br />

2 5<br />

2 5<br />

2 5<br />

2 5<br />

2 5<br />

2 5<br />

<br />

<br />

<br />

4<br />

15<br />

3 42<br />

4 8 49 7 2 15<br />

8142<br />

4 8<br />

15<br />

8142<br />

32 49 7 2 15<br />

8110 49 7 2 15<br />

810<br />

<br />

795 49 7 2 795 7 2 795 14 795 809<br />

<br />

3 2<br />

<br />

<br />

<br />

<br />

36 2 3<br />

<br />

2<br />

<br />

<br />

<br />

<br />

3<br />

2 2<br />

4 3 2 36<br />

2 91200<br />

3 15<br />

82<br />

3<br />

2 2<br />

4 3 2 18<br />

91200<br />

3 15<br />

82<br />

3<br />

2 2<br />

4 3 2 1621200<br />

3 15<br />

82<br />

2 2<br />

4<br />

3<br />

81621200<br />

3 15<br />

82<br />

2 2<br />

4<br />

3<br />

1296<br />

1200<br />

3 15<br />

82<br />

2 2<br />

4<br />

1299<br />

1200<br />

3 15<br />

82<br />

2 2<br />

2<br />

4 99<br />

3 15<br />

82 2 5<br />

4 9801<br />

3 <br />

4<br />

9801<br />

9 15<br />

82 2 5<br />

<br />

9797 9 15<br />

<br />

9788 15<br />

82 2 5<br />

<br />

9803<br />

82 2 ( <br />

15<br />

49013<br />

82 49,095<br />

3<br />

2<br />

1200<br />

3<br />

2<br />

15<br />

82<br />

82<br />

82<br />

49015) 82<br />

ROOTS AND EXPONENTS<br />

2. Compute:<br />

5<br />

a. 3 = 243<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 202


1 1<br />

b.<br />

4<br />

3<br />

64<br />

c. 3 -8 1<br />

= 6561<br />

d.<br />

0<br />

9 = 1<br />

1<br />

1 <br />

e.<br />

<br />

<br />

5 <br />

= 5<br />

f.<br />

40<br />

1 = 1<br />

g.<br />

2<br />

15 = 225<br />

h. 5 -2 1<br />

= 25<br />

i. 16 -1 1<br />

= 16<br />

3<br />

j. ( 2) = -8<br />

k. 5 -3 1<br />

= 125<br />

3. Evaluate the following:<br />

3<br />

2<br />

2<br />

a. 9 9 3 27<br />

2<br />

3 3<br />

b. 8 2<br />

3<br />

2<br />

2<br />

8<br />

2<br />

3<br />

1<br />

<br />

2<br />

1<br />

1<br />

1<br />

3<br />

1<br />

1<br />

<br />

<br />

27 <br />

d.<br />

1<br />

3 2 <br />

9<br />

e. 4 16 2<br />

<br />

1<br />

4<br />

3 3<br />

c. 27 27 3 3<br />

1<br />

3<br />

3<br />

f. 125 125 5<br />

g. <br />

7 2 7 7<br />

4. Simplify the following:<br />

8 2 <br />

( 3)<br />

( 3)<br />

3<br />

8<br />

<br />

a. 10<br />

b.<br />

c.<br />

d.<br />

e.<br />

f.<br />

2 3<br />

3 6 8 368<br />

5 5<br />

5<br />

5 <br />

1 9 19<br />

10<br />

x x x x<br />

4 7 47<br />

7 7<br />

7 7<br />

0 3 03<br />

2 2 2 2<br />

9<br />

5 9 2 7<br />

5<br />

5<br />

2<br />

5<br />

11<br />

3<br />

5<br />

17<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 203


OR<br />

g.<br />

3 3<br />

36<br />

3<br />

3 3<br />

<br />

6<br />

3<br />

5<br />

4 4 4<br />

2 2 5 10<br />

h. <br />

i. 2 2<br />

2<br />

j.<br />

3 2 4 3<br />

4 12<br />

5 5 5<br />

5<br />

5 5 1 5<br />

2<br />

<br />

5<br />

5 5 5 5<br />

10<br />

<br />

2 5<br />

<br />

2<br />

5<br />

4<br />

7 47<br />

3<br />

k. <br />

3 3 3 3<br />

6<br />

5 6(<br />

4)<br />

10<br />

l. 5 5<br />

4<br />

5<br />

5<br />

x 55<br />

0<br />

m. x x 1<br />

5<br />

x<br />

2<br />

2 2 2<br />

3x<br />

( 3)<br />

x 9x<br />

n. <br />

2 2<br />

2<br />

5y<br />

5 y 25y<br />

5. Put in radical form:<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

a. ( 4x)<br />

4 x 4 x 2 x<br />

8<br />

10<br />

0.8<br />

10<br />

b. x x x 8<br />

1<br />

3<br />

1<br />

6<br />

1 1<br />

<br />

2 1<br />

<br />

3 6 6 6<br />

c. x x x x x x x<br />

3<br />

2<br />

x <br />

6. Simplify:<br />

x<br />

d. 3<br />

a.<br />

a<br />

1<br />

2<br />

3a<br />

b<br />

1<br />

2<br />

1<br />

3<br />

b<br />

<br />

3a<br />

a<br />

1<br />

2<br />

1<br />

3<br />

b<br />

b<br />

1<br />

2<br />

3a<br />

<br />

b<br />

1<br />

2<br />

1<br />

3<br />

2<br />

3<br />

6<br />

1<br />

2<br />

a<br />

<br />

b<br />

1<br />

2<br />

3a<br />

<br />

b<br />

1 1<br />

<br />

2 2<br />

1<br />

1<br />

3<br />

1<br />

3a<br />

<br />

b<br />

1 3<br />

<br />

3 3<br />

3a<br />

<br />

b<br />

4<br />

3<br />

a<br />

1<br />

2<br />

3a<br />

b<br />

1<br />

2<br />

1<br />

3<br />

b<br />

3a<br />

1 1<br />

<br />

<br />

<br />

2 2 <br />

b<br />

1<br />

1<br />

3<br />

1<br />

3a<br />

b<br />

1 3<br />

<br />

3 3<br />

3ab<br />

4<br />

<br />

3<br />

3a<br />

<br />

b<br />

4<br />

3<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 204


.<br />

<br />

3<br />

25x<br />

y<br />

<br />

3<br />

9x<br />

y<br />

3x<br />

<br />

y<br />

3<br />

2<br />

1<br />

3<br />

1<br />

3<br />

2<br />

3<br />

<br />

x<br />

<br />

<br />

<br />

<br />

<br />

3<br />

2<br />

5y<br />

1<br />

2<br />

1<br />

6<br />

<br />

3<br />

9x<br />

y<br />

<br />

3<br />

25x<br />

y<br />

3x<br />

<br />

5y<br />

3 3<br />

<br />

2 2<br />

1 1<br />

<br />

3 6<br />

<br />

2<br />

3<br />

1<br />

3<br />

<br />

5y<br />

1<br />

2<br />

<br />

<br />

<br />

<br />

3x<br />

6<br />

2<br />

<br />

1 2 1<br />

<br />

3 2 6<br />

9<br />

1<br />

2<br />

25<br />

<br />

1<br />

2<br />

x<br />

5y<br />

1<br />

3<br />

2<br />

x<br />

1<br />

3<br />

2<br />

3x<br />

3<br />

y<br />

2 1<br />

<br />

6 6<br />

2<br />

1<br />

<br />

3 2<br />

y<br />

1 1<br />

<br />

3 2<br />

3x<br />

<br />

5y<br />

3x<br />

<br />

3<br />

3<br />

6<br />

5x<br />

3<br />

2<br />

y<br />

3<br />

2<br />

5y<br />

1<br />

3<br />

y<br />

3x<br />

<br />

1<br />

6<br />

3<br />

1<br />

2<br />

<br />

3x<br />

y<br />

3<br />

2<br />

1<br />

3<br />

5y<br />

x<br />

1<br />

6<br />

3<br />

2<br />

OR<br />

<br />

3<br />

25x<br />

y<br />

<br />

3<br />

9x<br />

y<br />

3x<br />

<br />

1<br />

3<br />

2<br />

3<br />

3 3 <br />

2 2 <br />

<br />

<br />

<br />

<br />

<br />

y<br />

5<br />

1<br />

2<br />

<br />

3<br />

9x<br />

y<br />

<br />

3<br />

25x<br />

y<br />

1 1<br />

<br />

3 6<br />

3x<br />

<br />

6<br />

2<br />

2<br />

3<br />

y<br />

5<br />

1<br />

3<br />

<br />

1<br />

2<br />

<br />

<br />

<br />

<br />

2 1<br />

<br />

6 6<br />

<br />

9<br />

1<br />

2<br />

25<br />

1<br />

2<br />

x<br />

3<br />

3x<br />

y<br />

<br />

5<br />

1<br />

3<br />

2<br />

x<br />

1<br />

3<br />

2<br />

3<br />

<br />

6<br />

y<br />

2<br />

1<br />

<br />

3 2<br />

y<br />

1 1<br />

<br />

3 2<br />

3<br />

3x<br />

y<br />

<br />

5<br />

3x<br />

<br />

5x<br />

1<br />

<br />

2<br />

3<br />

2<br />

y<br />

3<br />

2<br />

1<br />

3<br />

y<br />

1<br />

6<br />

3x<br />

<br />

5y<br />

3<br />

1<br />

2<br />

<br />

7. Express the following in scientific notation:<br />

a. 6,780,000 = (6.78)(10 6 )<br />

b. 456 = (4.56)(10 2 )<br />

c. -9,312 = (-9.312)(10 3 )<br />

d. 938,000 = (9.38)(10 5 )<br />

e. .00000276 = (2.76)(10 -6 )<br />

f. .03 = 3(10 -2 )<br />

g. .00000000000000000000723 = (7.23)(10 -21 )<br />

8. Write in common decimal form:<br />

3<br />

a. 4.2<br />

10 = 4,200<br />

b. (5 x 10 5 )(4 x 10 -3 53<br />

2<br />

) = 5<br />

410<br />

<br />

(20)(10 ) 2, 000<br />

c. 4.007 x 10 -6 = .000004007<br />

9. Multiply the following and express the results in scientific notation:<br />

5<br />

12<br />

512<br />

17<br />

18<br />

a. (5)(10 ) (2.5)(10<br />

) (5<br />

2.5)(10 ) (12.5)(10 ) (1.25)(10 )<br />

4<br />

10<br />

410<br />

6<br />

7<br />

b. ( 3.4)(10<br />

) (8.1)(10<br />

) (<br />

3.4)(8.1)<br />

10<br />

( 27.54)(10<br />

) ( 2.754)(10<br />

)<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 205


FRACTIONS<br />

10. Compute:<br />

a.<br />

3 3 3 3 6 3<br />

<br />

4 4 4 4 2<br />

b.<br />

8 4 8 7 4 9 56 36 56 36 92<br />

<br />

9 7 9 7 7 9 63 63 63 63<br />

c.<br />

6 6 11 6 11 8 6 88 6 88<br />

11 <br />

8 8 1 8 1 8 8 8 8<br />

d.<br />

2 13 2 2 13 4 13 4 13<br />

9<br />

<br />

7 14 7 2 14 14 14 14 14<br />

e.<br />

4 3 43<br />

12 1<br />

<br />

6 6 6<br />

6 36 3<br />

f.<br />

5 13 513<br />

65<br />

<br />

3 14 314<br />

42<br />

g.<br />

4 4 3 43<br />

12 4<br />

3 <br />

9 9 1 91<br />

9 3<br />

h.<br />

4 3 4 4 16<br />

<br />

7 4 7 3 21<br />

i.<br />

2 2 5 2 1 21<br />

2<br />

<br />

5<br />

<br />

3 3 1 3 5 3<br />

( 5)<br />

15<br />

j.<br />

3 3 6 3 1 31<br />

3 1<br />

6 <br />

7 7 1 7 6 7 6 42 14<br />

94<br />

8<br />

2<br />

15<br />

<br />

47<br />

4<br />

WORKING WITH ALGEBRAIC EXPRESSIONS<br />

11. What degree are the following polynomials?<br />

6 4<br />

a. 5x 7x<br />

2x<br />

3 = degree of 6<br />

b. 3x – 2 = degree of 1<br />

c. x 3 x = degree of 3<br />

12. Simplify the following expressions by collecting like terms:<br />

3<br />

2<br />

3<br />

x 5x<br />

15<br />

2x<br />

2x<br />

3x<br />

8x<br />

9 x<br />

a.<br />

3 2<br />

7x<br />

2x<br />

5x<br />

24<br />

b.<br />

c.<br />

4x<br />

2<br />

4x<br />

10x<br />

6x<br />

2<br />

6x<br />

3<br />

3<br />

3<br />

5x<br />

x x<br />

2<br />

2<br />

x x<br />

17x<br />

5x<br />

3x<br />

3 x<br />

x<br />

2<br />

20x<br />

9<br />

4( x 3) 4x<br />

2<br />

4x<br />

12<br />

4x<br />

x 4x<br />

12<br />

10x<br />

2<br />

12<br />

x<br />

3<br />

3<br />

3<br />

5x<br />

2<br />

3x<br />

12<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 206


<strong>Math</strong> <strong>Camp</strong> 2011 Page 207<br />

13. Multiply the following polynomials:<br />

a. 3<br />

16<br />

35<br />

3<br />

21<br />

5<br />

35<br />

1<br />

7<br />

3<br />

5<br />

2<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

b. 20<br />

5<br />

24<br />

6<br />

4<br />

5<br />

6<br />

2<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

x<br />

x<br />

x<br />

14. Compute the following:<br />

a.<br />

1)<br />

(2<br />

5<br />

5<br />

2<br />

7<br />

1)<br />

(2<br />

5<br />

5<br />

2<br />

7<br />

1)<br />

(2<br />

5<br />

10<br />

2<br />

4<br />

7<br />

1)<br />

(2<br />

5<br />

10<br />

2<br />

1)<br />

(2<br />

4<br />

7<br />

1<br />

2<br />

1<br />

2<br />

5<br />

1<br />

2<br />

4<br />

7<br />

5<br />

1<br />

2<br />

4<br />

7<br />

2<br />

3<br />

2<br />

3<br />

2<br />

3<br />

2<br />

3<br />

2<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

b.<br />

2<br />

3<br />

8<br />

2<br />

2<br />

3<br />

2)<br />

6<br />

(<br />

)<br />

2<br />

9<br />

3<br />

16<br />

(<br />

)<br />

9<br />

(8<br />

2<br />

3<br />

2<br />

2<br />

9<br />

9<br />

6<br />

3<br />

16<br />

8<br />

2<br />

2<br />

2)<br />

2<br />

9<br />

(9<br />

6<br />

3<br />

16<br />

8<br />

2<br />

2<br />

2<br />

2<br />

9<br />

9<br />

2<br />

2<br />

6<br />

3<br />

16<br />

8<br />

1<br />

1<br />

2<br />

2<br />

9<br />

2<br />

2<br />

1<br />

3<br />

8<br />

2<br />

2<br />

9<br />

1<br />

3<br />

8<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

c. 2<br />

3<br />

3<br />

4<br />

2<br />

3<br />

3<br />

4<br />

2<br />

3<br />

5<br />

5<br />

6<br />

5<br />

6<br />

5<br />

5<br />

5<br />

6<br />

6<br />

5<br />

5<br />

5<br />

1<br />

1<br />

6<br />

5<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

d.<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

45<br />

5<br />

2<br />

5<br />

3<br />

45<br />

5<br />

2<br />

2<br />

3<br />

3<br />

5<br />

1<br />

9<br />

2<br />

3<br />

1<br />

5<br />

9<br />

2<br />

3<br />

3<br />

2<br />

3<br />

2<br />

2<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

e.<br />

2<br />

3<br />

2<br />

3<br />

4<br />

2<br />

3<br />

3<br />

2<br />

4<br />

2<br />

3<br />

2<br />

3<br />

42<br />

14<br />

1<br />

4<br />

5<br />

6<br />

6<br />

42<br />

14<br />

1<br />

5<br />

6<br />

5<br />

6<br />

7<br />

1<br />

6<br />

2<br />

1<br />

5<br />

6<br />

1<br />

7<br />

6<br />

2<br />

1<br />

5<br />

6<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

15. Evaluate the following expressions:<br />

a. 3<br />

6<br />

5 2 <br />

x<br />

x , where x = 5<br />

98<br />

3<br />

30<br />

125<br />

3<br />

30<br />

25<br />

5<br />

3<br />

6(5)<br />

5(5)<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

b. 3<br />

11<br />

2<br />

5<br />

7<br />

2<br />

2<br />

<br />

<br />

<br />

<br />

a<br />

b<br />

ab<br />

a , where a = 2 and b = -3


7(2)<br />

2<br />

5(2)( 3)<br />

2( 3)<br />

11(2)<br />

28 30 6 44 3 51<br />

c. 9y 17 y 6 , where y = -1<br />

9( 1)<br />

17<br />

( 1)<br />

6 9<br />

1<br />

6 2<br />

2<br />

d. y 5x<br />

3y<br />

7( x 2)<br />

where y = 3 and x = 5<br />

3<br />

2<br />

3<br />

55<br />

33<br />

7(5 2)<br />

2<br />

55<br />

33<br />

7(7) 9<br />

55<br />

33<br />

7 7<br />

16 9 49 7 49 56<br />

2<br />

3 7 4 10(<br />

3)<br />

6 11<br />

4 3<br />

9<br />

25 33<br />

7 7 9<br />

25 9 7 7 9<br />

25 9 49<br />

2<br />

e. ( y ) 5x<br />

3y<br />

7( x 2)<br />

where y = 3 and x = 5<br />

( 3)<br />

2<br />

( 3)<br />

55<br />

33<br />

7(5 2)<br />

2<br />

55<br />

33<br />

7(7) 9 55<br />

33<br />

7 7<br />

9 25 33<br />

7 7 9 25 9 7 7 9 25 9 49<br />

34 9 49 25 49 74<br />

16. A culture of bacteria triples every hour. If it weighs one ounce at the beginning, what<br />

will it weigh:<br />

a. One hour later = 1 3 3 ounces<br />

b. Two hours later = 3 3 9 ounces<br />

c. Three hours later 93<br />

27 ounces<br />

d. Four hours later 27 3<br />

81ounces<br />

17. A retail store faces a demand equation for Roller Blades given by:<br />

Q = 180 – 1.5P, where Q is the number of pairs sold per month and P is the price per pair<br />

in dollars.<br />

a. The store currently charges P = $80 per pair. At this price, determine the number<br />

of pairs sold.<br />

Q = 180 – 1.5(80) = 180 – 120 = 60<br />

b. If management were to raise the price to $100, how many pairs would the store<br />

sell?<br />

Q = 180 – 1.5(100) = 180 – 150 = 30<br />

18. The original revenue function for the microchip producer is R = 170Q -20Q 2 , where R is<br />

the total revenue and Q is the number of microchips sold.<br />

a. If the microchip producer sells 10 microchips, how much money will the producer<br />

make?<br />

R = 170 (10) – 20 (10) 2 = 1700 – 20 (100) = 1700 – 2000 = -$300<br />

b. If the microchip producer sells 5 microchips, how much money will the producer<br />

make?<br />

R = 170 (5) – 20 (5) 2 = 850 – 500 = $350<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 208


PERCENT CHANGE<br />

19. Suppose that your car was worth $11,354 three years ago and it is now worth $3,221.<br />

What is the percent change?<br />

3221 .28 => your car is worth 28% of its original worth, so its worth<br />

11354<br />

decreased by 72%<br />

WORKING WITH SUMMATION SIGNS<br />

x<br />

20. Find x for the following:<br />

n<br />

a. 5, 6, 17, 3, -5, -25, 6, -12, 9, 31 = 3.5<br />

b. 3.5, 2.1, 2.8, 3.9, 4.0, 1.9, 3.0 = 3.03<br />

c. $5.50, $10.71, $12.01, $1.35, $6.50, $8.98, $9.12, $8.80, $15.00, $2.36, $3.30,<br />

$6.66 = $7.52<br />

21. For each set of values, find x , x 2 , and x 2<br />

a. 80, 76, 42, 53, 77<br />

x 80 76 42 53 77 328<br />

<br />

2<br />

2 2 2 2 2<br />

x 80 76 42 53 77 22,678<br />

2<br />

2 2<br />

(80 76 42 53 77) 328 107, 584<br />

x<br />

b. -9, -12, 18, 0, -2, -15<br />

x 9 12<br />

18<br />

0 2 15<br />

20<br />

2 2<br />

2 2 2<br />

x ( 9)<br />

( 12)<br />

18<br />

0 ( 2)<br />

2<br />

( 15)<br />

2<br />

778<br />

2<br />

2<br />

2<br />

( 9<br />

12<br />

18<br />

0 2 15)<br />

( 20)<br />

400<br />

x<br />

c. 12, 52, 36, 81, 63, 74<br />

x 12 52 36 81<br />

63 74 318<br />

x<br />

2<br />

12<br />

2<br />

52<br />

2<br />

36<br />

2<br />

81<br />

2<br />

63<br />

2<br />

74<br />

2<br />

20,150<br />

2<br />

2 2<br />

(12 52 36 81<br />

63 74) 318 101, 124<br />

x<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 209


22. Calculate 2<br />

x i<br />

x<br />

x<br />

x .<br />

n<br />

a. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10<br />

for the following. To do this you will first need to compute<br />

x<br />

x <br />

n<br />

5.5<br />

<br />

<br />

x i<br />

82.5<br />

x<br />

<br />

2<br />

(1 5.5)<br />

2<br />

(2 5.5)<br />

2<br />

(3 5.5)<br />

2<br />

.... (10 5.5)<br />

2<br />

b. -13, 15, -34, 23, 31, -40<br />

x<br />

x <br />

n<br />

3<br />

<br />

<br />

x i<br />

4586<br />

x<br />

<br />

2<br />

( 13<br />

3)<br />

2<br />

(15 3)<br />

2<br />

( 34<br />

3)<br />

2<br />

.... ( 40<br />

3)<br />

2<br />

<br />

23. Show that x<br />

x<br />

2<br />

<br />

<br />

x<br />

2<br />

<br />

<br />

n<br />

x<br />

<br />

2<br />

Note:<br />

S<br />

2<br />

2<br />

(<br />

X X ) = ( X X )( X X )<br />

2<br />

X XX <br />

<br />

= XX <br />

X<br />

X<br />

2 X<br />

= X<br />

= X<br />

= X<br />

X<br />

X <br />

n<br />

(<br />

2<br />

2<br />

( )<br />

<br />

X X X<br />

<br />

n 1<br />

n 1<br />

<br />

X<br />

2<br />

X<br />

X n<br />

<br />

2<br />

n n n<br />

2<br />

2<br />

2( <br />

X ) ( <br />

X<br />

n n<br />

2<br />

( X<br />

<br />

n<br />

2<br />

)<br />

2<br />

)<br />

X )<br />

n<br />

2<br />

X<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 210


24. A sample of personnel files of eight male employees employed by Acme Carpet revealed<br />

that, during a six-month period, they lost the following number of days due to illness: 2,<br />

x<br />

0, 6, 3, 10, 4, 1, and 2. Calculate the mean x and the mean deviation<br />

x x<br />

for<br />

n<br />

n<br />

these data.<br />

(Lind, Marchal and Mason, Statistical Techniques in Business & Economics, 11 th edition, McGraw-Hill: Boston.)<br />

x<br />

x <br />

n<br />

<br />

2 0 6 3 10<br />

4 1<br />

2<br />

3.5<br />

8<br />

<br />

x x<br />

n<br />

<br />

2 3.5 0 3.5 6 3.5 .... <br />

8<br />

2 3.5<br />

19<br />

2.375<br />

8<br />

25. Each person who applies for an assembly job at Carolina Furniture, Inc. is given a<br />

mechanical aptitude test. One part of the test involves assembling a dresser based on<br />

numbered instructions. A sample of the lengths of time it took 42 persons to assemble<br />

the dresser was organized into the following frequency distribution.<br />

Length of Time<br />

Frequency<br />

(minutes)<br />

2 - 4 4<br />

4 – 6 8<br />

6 – 8 14<br />

8 – 10 9<br />

10 – 12 5<br />

12 – 14 2<br />

(Lind, Marchal and Mason, Statistical Techniques in Business & Economics, 11 th edition, McGraw-Hill: Boston. p. 111)<br />

a. What is the range of times taken to assemble a dresser? 14-2 = 12 minutes<br />

fx<br />

b. What is the grouped mean? x where f is the frequency of each group and<br />

n<br />

x is the midpoint of each group and n is the total number of observations (or sum<br />

x<br />

of f). The midpoint can be calculate as 1<br />

x<br />

m 2<br />

.<br />

2<br />

The midpoints are: 3, 5, 7, 9, 11, and 13<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 211


fx 3<br />

4 58<br />

... 13<br />

2 312<br />

x <br />

7.43<br />

n<br />

42 42<br />

c. What is variance?<br />

fx<br />

2<br />

43<br />

2<br />

85<br />

2<br />

...2<br />

13<br />

2<br />

2,594<br />

2<br />

<br />

fx 312<br />

<br />

2<br />

fx 2,594 <br />

2<br />

s <br />

n<br />

<br />

42<br />

6.7387<br />

n 1<br />

42 1<br />

26. Merrill Lynch Securities and Health Care Retirement, Inc. are two large employers in<br />

downtown Toledo, Ohio. They are considering jointly offering child care for their<br />

employees. As a part of the feasibility study, they wish to estimate the mean weekly<br />

child-care cost of their employees. A sample of 10 employees who use child care reveals<br />

the following amounts spent last week--$107, $92, $97, $95, $105, $101, $91, $99, $95,<br />

$104.<br />

(Lind, Marchal and Mason, Statistical Techniques in Business & Economics, 11 th edition, McGraw-Hill: Boston. p. 313)<br />

a. What is the mean?<br />

2<br />

x 107 92 ... 104<br />

x <br />

98.6<br />

n 10<br />

b. What is the variance?<br />

<br />

2<br />

2<br />

x x<br />

2<br />

107 98.6 ... 104 98.6<br />

s <br />

n 1<br />

10 1<br />

<br />

2<br />

276.4<br />

30.71<br />

9<br />

c. If the standard deviation is the square root of the variance, what is the standard<br />

deviation? s = 5.54<br />

d. Given the following formula for a confidence interval, compute the confidence<br />

s<br />

interval for these data. x t . In this case, x is the mean you just calculated,<br />

n<br />

s is the standard deviation you just calculated, n is the sample size, and t =1.833.<br />

s<br />

5.54<br />

x t 98.6<br />

(1.833) (95.39,101.81)<br />

n<br />

10<br />

27. There is a statistic called the chi-squared statistic that you will see again in your statistics<br />

class. The formula for computing this statistic is: <br />

2 O E<br />

<br />

where O is the<br />

E<br />

observed value and E is the expected value. Given the following table of data, compute<br />

the chi-squared statistic.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 515)<br />

Frequency Cherry Strawberry Orange Lime Grape<br />

Observed 32 28 16 14 10<br />

Expected 20 20 20 20 20<br />

<br />

<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 212


2<br />

2<br />

2<br />

2<br />

2<br />

O<br />

32<br />

20 28<br />

20 16<br />

20 14<br />

20 10<br />

20<br />

2 E<br />

18.0<br />

E 20 20 20 20 20<br />

28. Given the following data, calculate r. This is called the correlation coefficient, and you<br />

will see more of this in your statistics class.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 481)<br />

r <br />

n<br />

xy<br />

<br />

x<br />

y<br />

2<br />

2<br />

2<br />

<br />

x <br />

<br />

x<br />

n<br />

y <br />

n<br />

y<br />

Subject Age, x Pressure, y<br />

A 43 128<br />

B 48 120<br />

C 56 135<br />

D 61 143<br />

E 67 141<br />

F 70 152<br />

We first compute the following:<br />

x 345<br />

y 819<br />

xy 47,634<br />

x 2<br />

20, 399<br />

y<br />

2 112,443<br />

r <br />

<br />

FACTORING<br />

n<br />

xy<br />

<br />

x<br />

y<br />

2<br />

2<br />

2<br />

<br />

x <br />

<br />

x<br />

n<br />

y <br />

2<br />

<br />

2<br />

n<br />

y<br />

<br />

(6)(47,634) (345)(819)<br />

2<br />

2<br />

(6)(20,399)<br />

(345) (6)(112,443) (819) <br />

29. Factor the given polynomial:<br />

5 3 2 4 2 3 3<br />

a. 15x<br />

y 24x<br />

y 3x<br />

y (5x<br />

8y)<br />

0.897<br />

3<br />

3<br />

3<br />

3<br />

b. 15 5x<br />

3y<br />

yx 3(<br />

y 5) x ( y 5) ( y 5)( x 3)<br />

3 2<br />

3 2<br />

2<br />

2<br />

c. x 1<br />

x x x x x 1<br />

x ( x 1)<br />

( x 1)<br />

( x 1)(<br />

x 1)<br />

2<br />

2<br />

d. 4x<br />

20xy<br />

25y<br />

(2x<br />

5y)(2x<br />

5y)<br />

2<br />

2<br />

e. 4x<br />

101xy<br />

25y<br />

(4x<br />

y)(<br />

x 25y)<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 213


2 2<br />

f. 36x<br />

16y<br />

(6x<br />

4y)(6x<br />

4y)<br />

2n<br />

4n<br />

n 2n<br />

n 2n<br />

g. x y ( x y )( x y )<br />

SOLVING EQUATIONS<br />

30. Find the solutions to the following equations using the factoring formulas:<br />

2<br />

y 9y<br />

20 ( y 5)( y 4) 0<br />

a.<br />

y 4,5<br />

b.<br />

x<br />

2<br />

x<br />

8x<br />

12<br />

2<br />

8x<br />

12<br />

0<br />

( x 6)( x 2) 0<br />

x 2,6<br />

c.<br />

45x<br />

2 57x<br />

18<br />

0<br />

(5x<br />

3)(9x<br />

6) <br />

5x<br />

3 0<br />

5x<br />

3<br />

3<br />

x <br />

5<br />

9x<br />

6 0<br />

9x<br />

6<br />

6 2<br />

x <br />

9 3<br />

3 2<br />

x , <br />

5 3<br />

0<br />

d.<br />

9x<br />

2 4 0<br />

(3x<br />

2)(3x<br />

2) 0<br />

3x<br />

2 0<br />

3x<br />

2<br />

2<br />

x <br />

3<br />

3x<br />

2 0<br />

3x<br />

2<br />

2<br />

x <br />

3<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 214


e.<br />

f.<br />

g.<br />

( x 2)<br />

( x 2)( x 2) 2x<br />

3x<br />

x<br />

x<br />

2<br />

2<br />

2x<br />

2x<br />

2x<br />

4 2x<br />

3x<br />

3x<br />

2<br />

2<br />

2<br />

x(2<br />

3x)<br />

4x<br />

2x<br />

4 0<br />

2x<br />

4 0<br />

( 2x<br />

4)( x 1)<br />

0<br />

2x<br />

4 0<br />

2x<br />

4<br />

x 2<br />

x 1<br />

0<br />

x 1<br />

y 5 y 1<br />

y 5 1<br />

2<br />

2<br />

y 5 1<br />

y <br />

y 5 y 5 1<br />

y 1<br />

y <br />

y 5 1<br />

2 y y<br />

y y 5 1<br />

2 y<br />

4 2<br />

y<br />

2<br />

<br />

4 2<br />

y <br />

16 4y<br />

y 4<br />

x 2 6<br />

x 6 2<br />

2<br />

x 4<br />

x 16<br />

2<br />

y<br />

2<br />

2<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 215


31. Find the solutions to the following equations by using the quadratic formula:<br />

2<br />

b b 4ac<br />

x <br />

2a<br />

a.<br />

2<br />

x 2x 3 0<br />

( 2)<br />

2 4(1)( 3)<br />

x <br />

2(1)<br />

2 4 12<br />

2 16 2 4<br />

x <br />

1,3<br />

2 2 2<br />

<br />

<br />

2<br />

b.<br />

2x<br />

5 x<br />

x<br />

2<br />

2<br />

2x<br />

5 0<br />

x <br />

b <br />

2<br />

b 4ac<br />

2a<br />

x <br />

( 2)<br />

<br />

( 2)<br />

2(1)<br />

2<br />

4(1)( 5)<br />

x <br />

2 <br />

4 20<br />

2<br />

<br />

2 24<br />

2<br />

<br />

2 2<br />

2<br />

6<br />

1<br />

6<br />

c.<br />

8w<br />

8w<br />

2<br />

2<br />

12w<br />

9<br />

12w<br />

9 0<br />

2<br />

b b 4ac<br />

x <br />

2a<br />

(12) <br />

x <br />

(12)<br />

2(8)<br />

4(8)( 9)<br />

12<br />

144 288<br />

x <br />

16<br />

12<br />

432 12<br />

3(144)<br />

x <br />

<br />

16<br />

16<br />

12<br />

12<br />

3 3 3 3<br />

<br />

<br />

16 4<br />

2<br />

32. Find a number whose square exceeds fourteen times the number by 51.<br />

Let x be the number we are looking for.<br />

2<br />

Then x 14x 51<br />

Now we solve for x<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 216


x<br />

2<br />

14x<br />

51<br />

b <br />

x <br />

( 14)<br />

2(1)<br />

4(1)( 51)<br />

2<br />

x 14x<br />

51 0<br />

14 196 204 14 400<br />

x <br />

<br />

2<br />

2<br />

14 20<br />

3,17<br />

2<br />

33. An object is thrown upward from the top of a building, and if s feet is the distance of the<br />

object from the ground t seconds after it is thrown, s 16t<br />

2 48t<br />

100<br />

. How long will<br />

it take the object to strike the ground?<br />

We need to solve this equation for t when s = 0, which is the value of s when the<br />

object hits the ground.<br />

s 16t<br />

16t<br />

2<br />

2<br />

48t<br />

100<br />

48t<br />

100<br />

0<br />

b <br />

x <br />

48 <br />

x <br />

48 <br />

x <br />

48 16<br />

x <br />

32<br />

2<br />

b<br />

2a<br />

( 14)<br />

<br />

x <br />

2<br />

b 4ac<br />

2a<br />

( 48)<br />

2<br />

2( 16)<br />

2304 6400<br />

32<br />

4ac<br />

4( 16)(100)<br />

34 3 34<br />

<br />

2<br />

2<br />

3 34<br />

<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 217


SOLVING SYSTEMS OF EQUATIONS<br />

34. Find the solution set to the following systems of equations using the method of<br />

substitution.<br />

3x<br />

y 5<br />

y 5 3x<br />

a.<br />

3x<br />

y 5<br />

<br />

5x<br />

y 3<br />

5x<br />

y 3<br />

5x<br />

(5 3x)<br />

3<br />

5x<br />

5 3x<br />

3<br />

8x<br />

8<br />

x 1<br />

y 5 3x<br />

y 5 3(1)<br />

y 2<br />

x y 1<br />

x y 1<br />

b.<br />

x<br />

3y<br />

11<br />

<br />

x<br />

y 1<br />

( y 1)<br />

3y<br />

11<br />

4y<br />

12<br />

y <br />

12<br />

4<br />

3<br />

x y 1<br />

x 3 1<br />

2<br />

35. Find the solution set to the following system of equations using the addition/subtraction<br />

method. You might have to rearrange the equations to be in the correct format first. If<br />

the system cannot be solved, then indicate whether it is dependent or inconsistent.<br />

4x<br />

3y<br />

1<br />

<br />

6x<br />

y 7<br />

4x<br />

3y<br />

1<br />

<br />

18x<br />

3y<br />

21<br />

4x<br />

3y<br />

1<br />

a. <br />

4x<br />

18x<br />

3y<br />

3y<br />

1<br />

21<br />

6x<br />

y 7<br />

22x<br />

22<br />

x 1<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 218


<strong>Math</strong> <strong>Camp</strong> 2011 Page 219<br />

1<br />

3<br />

3<br />

3<br />

3<br />

4<br />

1<br />

3<br />

1<br />

3<br />

4<br />

1<br />

3<br />

1<br />

4<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

y<br />

y<br />

y<br />

y<br />

y<br />

b.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

4<br />

3<br />

1<br />

3<br />

5<br />

y<br />

x<br />

y<br />

x<br />

6<br />

7<br />

21<br />

18<br />

20<br />

1<br />

15<br />

3<br />

5<br />

5<br />

20<br />

15<br />

5<br />

1<br />

3<br />

5<br />

4<br />

3<br />

1<br />

3<br />

5<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

y<br />

y<br />

y<br />

y<br />

x<br />

x<br />

y<br />

x<br />

y<br />

x<br />

y<br />

x<br />

y<br />

x<br />

2<br />

1<br />

3<br />

6<br />

24<br />

21<br />

6<br />

4<br />

6<br />

7<br />

3<br />

4<br />

3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

x<br />

x<br />

y<br />

x<br />

c.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

3<br />

3<br />

4<br />

0<br />

12<br />

3<br />

4<br />

x<br />

y<br />

y<br />

x<br />

15<br />

0<br />

9<br />

24<br />

6<br />

6<br />

8<br />

8<br />

9<br />

6<br />

8<br />

24<br />

6<br />

8<br />

9<br />

6<br />

8<br />

12<br />

3<br />

4<br />

9<br />

8<br />

6<br />

12<br />

3<br />

4<br />

2<br />

3<br />

3<br />

4<br />

0<br />

12<br />

3<br />

4<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

y<br />

y<br />

x<br />

x<br />

y<br />

x<br />

y<br />

x<br />

y<br />

x<br />

y<br />

x<br />

x<br />

y<br />

y<br />

x<br />

x<br />

y<br />

y<br />

x<br />

This system of equations is inconsistent and cannot be solved.


<strong>Math</strong> <strong>Camp</strong> 2011 Page 220<br />

d.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

5<br />

3<br />

4<br />

1<br />

3<br />

2<br />

y<br />

x<br />

y<br />

x<br />

8<br />

24<br />

3<br />

24<br />

2<br />

6<br />

4<br />

2<br />

5<br />

1<br />

3<br />

3<br />

4<br />

2<br />

5<br />

3<br />

4<br />

1<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

y<br />

y<br />

x<br />

x<br />

y<br />

x<br />

y<br />

x<br />

9<br />

9<br />

3<br />

12<br />

1<br />

3<br />

4<br />

1<br />

3<br />

2<br />

8<br />

1<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

y<br />

y<br />

y<br />

y<br />

y<br />

y<br />

x<br />

SOLVING INEQUALITIES<br />

36. Solve the following inequalities for x:<br />

a.<br />

10<br />

10<br />

100<br />

10<br />

10<br />

100<br />

10<br />

36<br />

64<br />

9<br />

64<br />

36<br />

9<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

b.<br />

7<br />

7<br />

7<br />

49<br />

49<br />

49<br />

2<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

x<br />

x<br />

x<br />

c.<br />

3<br />

15<br />

5<br />

10<br />

5<br />

2<br />

3<br />

5<br />

2<br />

10<br />

3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

d.<br />

5<br />

4<br />

20<br />

4<br />

16<br />

12<br />

32<br />

4<br />

12<br />

4<br />

32<br />

12<br />

5<br />

4<br />

32<br />

12<br />

5<br />

4<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x


6x<br />

2 6x<br />

13<br />

e. 6x<br />

6x<br />

2 13<br />

2 13<br />

This statement is never true, so there is no solution to this inequality.<br />

f.<br />

( x 2)( x 3) ( x 1)(<br />

x 1)<br />

x<br />

x<br />

x<br />

2<br />

2<br />

2<br />

2x<br />

3x<br />

6 x<br />

5x<br />

6 x<br />

5x<br />

6 x<br />

5x<br />

1<br />

6<br />

5x<br />

7<br />

7<br />

x <br />

5<br />

2<br />

2<br />

1<br />

2<br />

1<br />

x x 1<br />

6(2y<br />

3) 2(6y<br />

12)<br />

12y<br />

18<br />

12y<br />

24<br />

g.<br />

12y<br />

18<br />

12y<br />

24<br />

18<br />

24<br />

This statement is always true, so all numbers are solutions to this inequality.<br />

h.<br />

<br />

<br />

5x<br />

3<br />

1<br />

1<br />

5x<br />

3 <br />

3<br />

1<br />

5x<br />

3<br />

3<br />

1 9<br />

5x<br />

<br />

3 3<br />

10<br />

5x<br />

<br />

3<br />

10 2<br />

x <br />

15 3<br />

3<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 221


i.<br />

2x<br />

2 9x<br />

5 0<br />

(2x<br />

1)(<br />

x 5) 0<br />

2x<br />

1<br />

0<br />

2x<br />

1<br />

x <br />

1<br />

2<br />

x 5 0<br />

x 5<br />

(-)(-) (-)(+) (+)(+)<br />

x = -5<br />

The solutions to this inequality are x 5<br />

and<br />

1<br />

x .<br />

2<br />

j.<br />

3x<br />

3x<br />

2<br />

2<br />

2 x<br />

x 2 0<br />

(3x<br />

2)( x 1)<br />

0<br />

3x<br />

2 0<br />

3x<br />

2<br />

x <br />

2<br />

3<br />

x 1<br />

0<br />

x 1<br />

(-)(-) (-)(+) (+)(+)<br />

x = -1<br />

Therefore, the solution to this inequality is<br />

2<br />

1 x .<br />

3<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 222


37. Solve the following equations and inequalities for x:<br />

a. 5y<br />

8 2<br />

5y<br />

8 2<br />

5y<br />

2 8<br />

5y<br />

10<br />

y 2<br />

5y<br />

8 2<br />

5y<br />

2<br />

8<br />

5y<br />

6<br />

y <br />

6<br />

5<br />

Now we have to check the solutions to make sure that they work.<br />

5y<br />

8 2<br />

5(2) 8 2<br />

10 8 2<br />

2 2<br />

2 2<br />

5y<br />

8 2<br />

6 <br />

5<br />

8 2<br />

5 <br />

6 8 2<br />

2 2<br />

2 2<br />

Both<br />

y 2<br />

and<br />

6<br />

y are solutions to this equation.<br />

5<br />

2<br />

b. x 3x 2 2<br />

x<br />

x<br />

2<br />

2<br />

3x<br />

2 2<br />

3x<br />

4 0<br />

( x 4)( x 1)<br />

0<br />

x 4,1<br />

x<br />

x<br />

2<br />

2<br />

3x<br />

2 2<br />

3x<br />

0<br />

x(<br />

x 3) 0<br />

x 0, 3<br />

Now we need to check all these solutions.<br />

x<br />

2<br />

( 4)<br />

3x 2 2<br />

2<br />

3( 4)<br />

2<br />

16 12<br />

2 2<br />

2 2<br />

2 2<br />

2<br />

x<br />

2<br />

(0)<br />

3x 2 2<br />

2<br />

2 2<br />

2 2<br />

3(0) 2 2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 223


2<br />

x 3x 2 2<br />

2<br />

(1) 3(1) 2 2<br />

1<br />

3 2 2<br />

2 2<br />

x<br />

2<br />

( 3)<br />

3x 2 2<br />

2<br />

3( 3)<br />

2<br />

9 9 2 2<br />

2 2<br />

2 2<br />

2<br />

The solutions to this equation are x 4<br />

, x 1, x 0, and x 3<br />

x 1<br />

c. 1<br />

2 3<br />

x 1<br />

1<br />

2 3<br />

3x<br />

2 6<br />

3x<br />

6 2<br />

3x<br />

8<br />

x <br />

8<br />

3<br />

x 1<br />

1<br />

2 3<br />

3x<br />

2 6<br />

3x<br />

6<br />

2<br />

3x<br />

4<br />

x <br />

4<br />

3<br />

Now we need to check both of these solutions.<br />

x<br />

<br />

2<br />

8 3<br />

2<br />

8<br />

6<br />

4<br />

3<br />

3<br />

3<br />

<br />

<br />

1 1<br />

1<br />

3<br />

<br />

1<br />

3<br />

1<br />

3<br />

1<br />

1<br />

1<br />

3<br />

1<br />

1<br />

1<br />

x<br />

<br />

2<br />

4 3<br />

<br />

2<br />

4<br />

<br />

6<br />

2<br />

<br />

3<br />

<br />

3<br />

3<br />

1<br />

1<br />

1 1<br />

1<br />

3<br />

1<br />

3<br />

1<br />

3<br />

1<br />

1<br />

1<br />

3<br />

1<br />

1<br />

1<br />

Both solutions check out, so<br />

8<br />

x and<br />

3<br />

4<br />

x are solutions to the equation.<br />

3<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 224


d.<br />

8x<br />

5( x 4) 5 x 3 6<br />

8x<br />

5x<br />

20 5 x 6 3<br />

12x<br />

15<br />

9<br />

12x<br />

15<br />

9<br />

12x<br />

9 15<br />

12x<br />

24<br />

x 2<br />

12x<br />

15<br />

9<br />

12x<br />

9<br />

15<br />

12x<br />

6<br />

x <br />

1<br />

2<br />

e.<br />

9x<br />

6 x 12<br />

x 2 x<br />

10x<br />

6 2 12<br />

x x<br />

10x<br />

6 14<br />

14<br />

10x<br />

6 14<br />

14<br />

6 10x<br />

14 6<br />

8 10x<br />

20<br />

8 20<br />

x <br />

10 10<br />

4<br />

x 2<br />

5<br />

38. In your Economics 101 class, you have scores of 68, 82, 87, and 89 on the first four of<br />

fives tests. To get a grade of B, the average of the first five test scores must be greater<br />

than or equal to 80 and less than 90. Solve an inequality to find the range of the score<br />

that you need on the last test to get a B. (Michael Sullivan, College Algebra, Upper Saddle Rive, NJ: Prentice<br />

Hall, 2005, p. 135)<br />

68 82 87 89 x<br />

80 <br />

90<br />

5<br />

400 68 82 87 89 x 450<br />

400 326 x 450<br />

400 326 x 450 326<br />

74 x 124<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 225


FUNCTIONS<br />

39. Determine the domain and range of the following functions:<br />

a.<br />

5<br />

f ( x)<br />

2x<br />

8x<br />

7 => Domain = all real numbers<br />

=> Range = all real numbers<br />

b.<br />

x 3<br />

f ( x)<br />

x 5<br />

=> Domain = all real numbers except x 5<br />

=> Range = all real numbers except y 1<br />

c. f ( x)<br />

12 x => Domain = all real numbers where x 12<br />

=> Range = y 0<br />

BASICS OF GRAPHING FUNCTIONS<br />

40. Graph the following lines:<br />

a. 4x<br />

2y<br />

20<br />

b. 4x<br />

2y<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-15 -10 -5 0<br />

-5<br />

5 10 15<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-15 -10 -5 0<br />

-5<br />

5 10 15<br />

-10<br />

-15<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 226


c. x 8 0<br />

d. y 1<br />

e. 2x<br />

3y<br />

0<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-15 -10 -5 0 5 10 15<br />

-2<br />

-4<br />

-6<br />

-8<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 227


41. A statistics instructor wishes to determine if a relationship exists between the final exam<br />

scores in Statistics 101 and the final exam scores of the same students who took Statistics<br />

102. Draw a scatter plot and comment on the nature of the relationship.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 79)<br />

Stat 101, x 87 92 68 72 95 78 83 98<br />

Stat 102, y 83 88 70 74 90 74 83 99<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 20 40 60 80 100 120<br />

The graph shows a positive linear relationship.<br />

42. The data shown indicate the number of tournaments and the earnings in thousands of<br />

dollars of 10 randomly selected LPGA golfers. Draw a scatter plot for the data and<br />

determine the nature of the relationship.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 79)<br />

No. of 27 30 24 21 18 32 25 32 25 27<br />

tournaments,x<br />

Earnings, y $956 757 583 517 104 173 252 303 355 405<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 228


$1,200<br />

$1,000<br />

$800<br />

$600<br />

$400<br />

$200<br />

$0<br />

0 5 10 15 20 25 30 35<br />

The graph shows no real relationship between number of tournaments and earnings.<br />

43. An educator wants to see if there is relationship between the number of absences a<br />

student has and his or her final grade in a course. Draw a scatter plot and comment on<br />

the nature of the relationship.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 79)<br />

No. of<br />

10 12 2 0 8 5<br />

absences, x<br />

Final grade, y 70 65 96 94 75 82<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 2 4 6 8 10 12 14<br />

The graph shows a negative linear relationship between number of absences and the final grade.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 229


LINEAR FUNCTIONS AND THEIR GRAPHS<br />

44. Draw a graph of the line connecting these two points and find the length of the line.<br />

a. (2,1), (-1,5)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5<br />

2<br />

2<br />

2 2<br />

<br />

1<br />

2 5<br />

1 ( 3)<br />

(4) 9 16<br />

25 5<br />

b. (7,-4), (-5,1)<br />

2<br />

1<br />

0<br />

-6 -4 -2 0 2 4 6 8<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

2<br />

2<br />

2 2<br />

<br />

5 7 1<br />

( 4)<br />

( 12)<br />

(5) 144 25 169 13<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 230


45. Draw a graph of the line connecting these two points and find the slope of the line.<br />

a. (-7,-1), (-3,4)<br />

0<br />

-8 -7 -6 -5 -4 -3 -2 -1 0<br />

-1<br />

5<br />

4<br />

3<br />

2<br />

1<br />

-2<br />

rise<br />

m <br />

run<br />

<br />

y<br />

x<br />

2<br />

2<br />

<br />

<br />

y<br />

x<br />

1<br />

1<br />

4 ( 1)<br />

<br />

3 ( 7)<br />

<br />

5<br />

4<br />

b. (0,-5), (-5,0)<br />

0<br />

-6 -5 -4 -3 -2 -1 0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

rise<br />

m <br />

run<br />

<br />

y<br />

x<br />

2<br />

2<br />

<br />

<br />

y<br />

x<br />

1<br />

1<br />

0 ( 5)<br />

<br />

5 0<br />

<br />

5<br />

5<br />

1<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 231


c. (3,5), (5, 9)<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 1 2 3 4 5 6<br />

m <br />

rise<br />

run<br />

<br />

y<br />

x<br />

2<br />

2<br />

<br />

<br />

y<br />

x<br />

1<br />

1<br />

9 5<br />

<br />

5 3<br />

4<br />

2<br />

2<br />

46. Find the midpoint between the two points:<br />

a. (8,9), (3,9)<br />

<br />

<br />

<br />

x x<br />

2<br />

y<br />

,<br />

<br />

2<br />

1 2 1<br />

y2<br />

b. (-5,0), (7,7)<br />

<br />

<br />

<br />

x x<br />

2<br />

y<br />

,<br />

<br />

2<br />

1 2 1<br />

y2<br />

c. (1,1), (3,3)<br />

<br />

<br />

<br />

x1x2<br />

2<br />

y<br />

,<br />

1<br />

y<br />

2<br />

2<br />

8 3 9 9 11<br />

<br />

, ,9<br />

2 2 2 <br />

5 7 0 7 7 <br />

, 1,<br />

<br />

2 2 2 <br />

1<br />

3 1<br />

3<br />

, <br />

2 2 <br />

47. Find the lengths of the sides of the triangle having vertices at the three given points.<br />

Graph the triangle. A(2,3), B(3,-3), C(-1,1)<br />

<br />

2,2<br />

<br />

2<br />

2 2<br />

Length side AB = 3<br />

2 <br />

3 3 (1) ( 6)<br />

1<br />

36 37<br />

Length side BC =<br />

2<br />

1<br />

3 1<br />

( 3)<br />

<br />

32 4 2<br />

2<br />

2<br />

2<br />

<br />

( 4)<br />

2<br />

(4)<br />

2<br />

16 16<br />

2 2<br />

Length side CA = 2<br />

( 1)<br />

3<br />

1 (3) (2) 9 4 13<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 232


4<br />

3<br />

2<br />

1<br />

0<br />

-2 -1<br />

-1<br />

0 1 2 3 4<br />

-2<br />

-3<br />

-4<br />

48. Show that the line through the points A(3,9) and B(5,5) is parallel to the line through the<br />

points C(1,7) and D(3,3). Draw a sketch of the two lines.<br />

m<br />

m<br />

rise<br />

y<br />

y<br />

5 9 4<br />

<br />

5 3 2<br />

2 1<br />

1<br />

<br />

<br />

run x2<br />

x1<br />

rise<br />

y<br />

y<br />

3 7 4<br />

<br />

3 1<br />

2<br />

2 1<br />

2<br />

<br />

<br />

run x2<br />

x1<br />

Because the two lines have the same slope, they are parallel.<br />

2<br />

2<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 1 2 3 4 5 6<br />

49. Find an equation of the line through the two points. Graph the line.<br />

a. ( 3, 6),(<br />

2,<br />

3)<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 233


m <br />

rise<br />

run<br />

<br />

y<br />

x<br />

2<br />

2<br />

<br />

<br />

y<br />

x<br />

1<br />

1<br />

<br />

3 ( 6)<br />

2 ( 3)<br />

<br />

3<br />

3<br />

1<br />

y y<br />

1<br />

m( x x ) 1<br />

y ( 6)<br />

3( x ( 3))<br />

y 3x<br />

9 6<br />

y 3x<br />

3<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-15 -10 -5 0 5 10 15<br />

-10<br />

-20<br />

-30<br />

b. ( 1, 2),(7,<br />

2)<br />

rise<br />

m <br />

run<br />

<br />

y<br />

x<br />

2<br />

2<br />

<br />

<br />

y<br />

x<br />

1<br />

1<br />

2 ( 2)<br />

<br />

7 ( 1)<br />

<br />

0<br />

0<br />

8<br />

y y<br />

1<br />

m( x x1)<br />

y ( 2)<br />

0( x ( 1))<br />

y 2<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-15 -10 -5 -0.5 0 5 10 15<br />

-1<br />

-1.5<br />

-2<br />

-2.5<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 234


c. ( 3,1),( 5,4)<br />

m <br />

rise<br />

run<br />

<br />

y<br />

x<br />

2<br />

2<br />

<br />

<br />

y<br />

x<br />

1<br />

1<br />

<br />

4 1<br />

<br />

5 3<br />

3<br />

8<br />

y y<br />

1<br />

m( x x ) 1<br />

3<br />

y 1<br />

( x 3)<br />

8<br />

3 9<br />

y x 1<br />

8 8<br />

3 9 8<br />

y x <br />

8 8 8<br />

3 17<br />

y x <br />

8 8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-15 -10 -5 0<br />

-1<br />

5 10 15<br />

-2<br />

50. Find an equation of the line through the given point with the given slope. Graph the line.<br />

a. ( 3,<br />

6),<br />

m 3<br />

y y<br />

1<br />

m( x x ) 1<br />

y ( 6)<br />

3(<br />

x ( 3))<br />

y 3x<br />

9 6<br />

y 3x<br />

15<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 235


20<br />

10<br />

0<br />

-15 -10 -5 0 5 10 15<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

b.<br />

( 4,0),<br />

m <br />

2<br />

5<br />

y y<br />

1<br />

m( x x1)<br />

2<br />

y (0) ( x ( 4))<br />

5<br />

2 8<br />

y x <br />

5 5<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-15 -10 -5<br />

-1<br />

0 5 10 15<br />

-2<br />

-3<br />

51. Find an equation of the line through the point (6,3) and perpendicular to the line whose<br />

equation is x 3y 15<br />

0 . Graph the lines (on the same axis).<br />

We first need to find the slope of the second line. To do this, rewrite the equation in slopeintercept<br />

form.<br />

x 3y<br />

15<br />

0<br />

3y<br />

x<br />

15<br />

1<br />

y x 5<br />

3<br />

The slope of this line is<br />

1<br />

<br />

3<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 236


In order for the lines to be perpendicular, the product of their slopes must equal -1. So<br />

1<br />

1<br />

1<br />

1<br />

3 3<br />

m1m2<br />

1<br />

m1<br />

. Given that m2 , we have m1 3<br />

m2<br />

3<br />

1<br />

1 1<br />

1<br />

3<br />

y y<br />

1<br />

m( x x ) 1<br />

y (3) 3( x 6)<br />

y 3x<br />

18<br />

3<br />

y 3x<br />

15<br />

20<br />

10<br />

0<br />

-15 -10 -5 0 5 10 15<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

52. Find an equation of the line that is parallel to the given line and passes through the given<br />

point. 5x 2y 1<br />

0,<br />

(3,3)<br />

5x<br />

2y<br />

1<br />

0<br />

2y<br />

5x<br />

1<br />

5 1<br />

y x <br />

2 2<br />

5 1<br />

y x <br />

2 2<br />

5<br />

Thus the slope of the line parallel to this line must also have a slope of .<br />

2<br />

y y m( x x ) 1<br />

1<br />

5<br />

y 3 ( x 3)<br />

2<br />

5 15<br />

y x 3<br />

2 2<br />

5 15 6<br />

y x <br />

2 2 2<br />

5 9<br />

y x <br />

2 2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 237


53. A ramp connects the ground to the loading platform of a warehouse. If the platform is 5<br />

feet high and the ramp has a slope of 0.28, how far from the wall of the warehouse is the<br />

base of the ramp?<br />

Pretend that the ramp and platform are placed on an axis. Then the endpoints of the ramp would<br />

be (0,5) and (-x,0). We want to find what x is.<br />

We know that<br />

m 0.28 <br />

y<br />

x<br />

2<br />

2<br />

5 <br />

y1<br />

x<br />

1<br />

<br />

0 5 5<br />

<br />

x 0 x<br />

5<br />

<br />

x<br />

x 17.9<br />

0.28<br />

Therefore the base of the ramp is 17.9 feet away from the platform.<br />

QUADRATIC FUNCTIONS AND THEIR GRAPHS<br />

54. Graph the following equations:<br />

a. f ( x)<br />

x<br />

2 10<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-15 -10 -5 0 5 10 15<br />

b.<br />

f ( x)<br />

25x<br />

2 <br />

13<br />

0<br />

-15 -10 -5 -100 0 5 10 15<br />

-200<br />

-300<br />

-400<br />

-500<br />

-600<br />

-700<br />

-800<br />

-900<br />

-1000<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 238


c.<br />

d.<br />

e.<br />

f ( x)<br />

10x<br />

5<br />

f ( x)<br />

10x<br />

5<br />

f ( x)<br />

10x<br />

5<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-5 -3 -1 -10 1 3 5<br />

-20<br />

-30<br />

-40<br />

-50<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-5 -3 -1 -10 1 3 5<br />

-20<br />

-30<br />

-40<br />

-50<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-5 -3 -1 -10 1 3 5<br />

-20<br />

-30<br />

-40<br />

-50<br />

55. The percentage s of seats in the House of Representatives won by Democrats and the<br />

percentage v of votes cast for Democrats (when expresses as decimal fractions) are<br />

related by the equation:<br />

5v 2s<br />

1.4<br />

0 s 1<br />

0.28<br />

v 0. 68<br />

a. Express v as a function of x, and find the percentage of votes required for the<br />

Democrats to win 51% of the seats.<br />

5v<br />

2s<br />

1.4<br />

5v<br />

2s<br />

1.4<br />

v .4s<br />

.28<br />

v .4(.51) .28<br />

v .484<br />

In order to win 51% of the seats, the Democrats would have to get 48.4% of the votes.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 239


. Express s as a function of v, and find the percentage of seats won if Democrats<br />

receive 51% of the votes.<br />

5v<br />

2s<br />

1.4<br />

2s<br />

5v<br />

1.4<br />

s 2.5v<br />

.7<br />

s 2.5(.51) .7<br />

s .575<br />

If the Democrats receive 51% of the votes, then they will get 57.5% of the seats in the House.<br />

56. A projectile is fired from a cliff 500 feet above the water at an inclination of 45 degrees to<br />

the horizontal, with a muzzle velocity of 400 feet per second. In physics, it is established that<br />

2<br />

32x<br />

the height h of the projectile above the water is given by h( x)<br />

x 500 , where x is<br />

2<br />

(400)<br />

the horizontal distance of the projectile from the base of the cliff. (Sullivan, College Algebra, seventh<br />

edition, Upper Saddle River, NJ: Prentice Hall, pp. 302-303)<br />

57.<br />

a. Find the maximum height of the projectile.<br />

The height of the projectile is given by the quadratic function.<br />

2<br />

32x<br />

1<br />

2<br />

h(<br />

x)<br />

x 500 x x 500<br />

2<br />

(400)<br />

5000<br />

We are looking for the maximum value of h. Since the maximum value is obtained at<br />

the vertex, we compute<br />

b 1 5000<br />

x 2500<br />

2a<br />

1<br />

2<br />

2<br />

<br />

5000 <br />

The maximum height of the projectile is<br />

1<br />

2<br />

h(2500)<br />

2500<br />

2500 500<br />

5000<br />

1250<br />

2500 500 1750<br />

=> 1750 feet<br />

b. How far from the base of the cliff will the projectile strike the water?<br />

The projectile will strike the water when the height is zero. To find the distance<br />

traveled, we need to solve the equation<br />

1<br />

h(<br />

x)<br />

x<br />

5000<br />

2<br />

x 500 0<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 240


We use the quadratic formula<br />

1<br />

<br />

1<br />

1<br />

4<br />

(500)<br />

5000 <br />

x <br />

1<br />

<br />

2<br />

<br />

5000 <br />

458<br />

x <br />

5458<br />

<br />

1<br />

1.4<br />

1<br />

<br />

2<br />

<br />

5000 <br />

We discard the negative solution and find that the projectile will strike the water<br />

at a distance of about 5458 feet from the base of the cliff.<br />

58. The price p and the quantity x sold of a certain project obey the demand equation<br />

x 5p<br />

100 , 0 p 20<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, pp. 308)<br />

a. Express the revenue R as a function of x. Remember that R xp<br />

x 5<br />

p 100<br />

5 p x<br />

100<br />

1<br />

p x 20<br />

5<br />

R(<br />

x)<br />

xp<br />

<br />

R(<br />

x)<br />

x<br />

<br />

<br />

x 20<br />

<br />

1<br />

R(<br />

x)<br />

x<br />

2 20x<br />

5<br />

b. What is the revenue if 15 units are sold?<br />

R(15)<br />

255<br />

1<br />

5<br />

1 2<br />

R(15)<br />

(15) 20(15)<br />

5<br />

1<br />

R(15)<br />

(225) 300<br />

5<br />

R(15)<br />

45<br />

300<br />

The revenue if 15 units are sold is $255.<br />

c. What quantity x maximizes revenue? What is the maximum revenue?<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 241


Remember that the maximum will occur at the vertex of the revenue function, so<br />

we must begin by finding the vertex.<br />

b 20 100<br />

x 50<br />

2a<br />

1 2<br />

2<br />

<br />

5 <br />

Thus, 50 is the quantity that will maximize revenue.<br />

b <br />

1 2<br />

R<br />

R (50) (50) 20(50)<br />

2a<br />

<br />

5<br />

2500<br />

1000<br />

500<br />

1000<br />

500<br />

5<br />

The revenue when 50 units are sold is $500.<br />

d. What price should the company charge to maximize revenue?<br />

1<br />

p x 20<br />

5<br />

1<br />

p (50) 20 10<br />

20 10<br />

5<br />

The price charged should be $10.<br />

POLYNOMIAL AND RATIONAL FUNCTIONS<br />

59. The following data represent the number of motor vehicle thefts (in thousands) in the<br />

United States for the years 1987-1997, where 1 represents 1987, 2 represents 1988, and<br />

so on.<br />

Year, x<br />

Motor Vehicle<br />

Thefts, T<br />

1987,1 1289<br />

1988,2 1433<br />

1989,3 1565<br />

1990,4 1636<br />

1991,5 1662<br />

1992,6 1611<br />

1993,7 1563<br />

1994,8 1539<br />

1995,9 1472<br />

1996,10 1394<br />

1997,11 1354<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, pp. 329)<br />

a. Draw a scatter diagram of the data. Comment on the type of relation that may<br />

exist between the two variables.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 242


1700<br />

1650<br />

1600<br />

1550<br />

1500<br />

1450<br />

1400<br />

1350<br />

1300<br />

1250<br />

1200<br />

1986 1988 1990 1992 1994 1996 1998<br />

The relationship between these data is not linear, nor is it quite a quadratic relationship (a<br />

parabola), so a cubic relationship would be a better model for these data.<br />

b. The cubic function of best fit to these data is:<br />

3<br />

2<br />

T(<br />

x)<br />

1.52x<br />

39.81x<br />

282.29x<br />

1035.5<br />

Use this function to predict the number of motor vehicle thefts in 1994.<br />

The year 1994 corresponds to the number 8 in our dataset.<br />

T(1994)<br />

1.52(8)<br />

1.52(512) 39.81(64) 2258.32 1035.5<br />

778.24 2547.84 2258.32 1035.5<br />

1524.22<br />

3<br />

39.81(8)<br />

282.29(8) 1035.5<br />

The predicted number of motor vehicle deaths in 1994 is approximately 1,524,220<br />

60. A company manufacturing snow-boards has fixed costs of $200 per day and total costs of<br />

$3,800 per day at a daily output of 20 boards. (Barnett, Ziegler and Byleen, Finite <strong>Math</strong>ematics for Business,<br />

Economics, Life Sciences, and Social Sciences, tenth edition, Upper Saddle River, NJ: Prentice Hall, pp. 93)<br />

a. Assuming that the total cost per day, C(x) , is linearly related to the total output<br />

per day, x, write an equation for the cost function.<br />

3800<br />

C(<br />

x)<br />

x 200<br />

20<br />

C(<br />

x)<br />

190x<br />

200<br />

2<br />

b. The average cost per board for an output of x boards is given by C ( x)<br />

C(<br />

x)<br />

x .<br />

Find the average cost function.<br />

C(<br />

x)<br />

C ( x)<br />

<br />

x<br />

190x<br />

200<br />

<br />

x<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 243


c. Sketch a graph of the average cost function, including any asymptotes, for<br />

1 x 30 .<br />

425<br />

375<br />

325<br />

275<br />

225<br />

175<br />

0 5 10 15 20 25 30<br />

d. What does the average cost per board tend to as production increases?<br />

To find the average cost per board as production increases, we need to find the horizontal<br />

asymptote for this function. To do this, we divide every term in the numerator and the<br />

denominator by the highest value of x.<br />

200<br />

190 <br />

190x<br />

200<br />

C ( x)<br />

<br />

x<br />

x 1<br />

200<br />

As x , the value of 0 , so the value of C ( x)<br />

190<br />

x<br />

The horizontal asymptote is y 190 . As production increases, the average cost will tend toward<br />

$190.<br />

61. Graph the following equations:<br />

3<br />

a. f ( x)<br />

x 10x<br />

6<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-25 -15 -5<br />

-200<br />

5 15 25<br />

-400<br />

-600<br />

-800<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 244


.<br />

f ( x)<br />

x 3<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1 -1 1 3 5 7 9<br />

-2<br />

-3<br />

-4<br />

-5<br />

c.<br />

f ( x)<br />

x 2 10<br />

4<br />

2<br />

0<br />

-15 -10 -5<br />

-2<br />

0 5 10<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

EXPONENTIAL FUNCTIONS<br />

61. Graph the following functions:<br />

x<br />

a. f ( x)<br />

5<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 245


.<br />

<br />

f ( x)<br />

3<br />

x<br />

c.<br />

f ( x)<br />

<br />

1<br />

10<br />

x<br />

d.<br />

f ( x)<br />

(log<br />

2<br />

x)<br />

3<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 246


e.<br />

f ( x)<br />

log<br />

10<br />

x<br />

f.<br />

f ( x)<br />

ln( x 5)<br />

62. Suppose that $2,500 is invested at 7% compounded quarterly. How much money will be in<br />

the account in:<br />

(Barnett, Ziegler and Byleen, Finite <strong>Math</strong>ematics for Business, Economics, Life Sciences, and Social Sciences, tenth edition, Upper Saddle River,<br />

NJ: Prentice Hall, pp. 107)<br />

a. ¾ of a year?<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 247


. 15 years?<br />

63. If you invest $7,500 in an account paying 8.35% compounded continuously, how much<br />

money will be in the account at the end of:<br />

(Barnett, Ziegler and Byleen, Finite <strong>Math</strong>ematics for Business, Economics, Life Sciences, and Social Sciences, tenth edition, Upper Saddle River,<br />

NJ: Prentice Hall, pp. 107)<br />

a. 5.5 years?<br />

b. 12 years?<br />

64. The Joint United Nations Program on HIV/AIDS reported that HIV had infected 60 million<br />

people worldwide prior to 2002. Assume that number increases at an annual rate of 8%<br />

compounded continuously.<br />

(Barnett, Ziegler and Byleen, Finite <strong>Math</strong>ematics for Business, Economics, Life Sciences, and Social Sciences, tenth edition, Upper Saddle River,<br />

NJ: Prentice Hall, p. 108)<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 248


c. Write an equation that models the worldwide spread of HIV, letting 2002 be year<br />

0.<br />

d. Based on the model, how many people (to the nearest million) had been infected<br />

prior to 1999? How many would be infected prior to 2010?<br />

LOGARITHMIC FUNCTIONS<br />

65. Express the following relationships in terms of logarithms.<br />

a.<br />

9 2 1<br />

3<br />

b.<br />

<br />

10 5 .00001<br />

66. Express the following relationships using exponential notation.<br />

a. log 7 2 7<br />

49 2 = 49<br />

b. log 16 4<br />

1<br />

<br />

2<br />

67. Find the value of the following logarithms.<br />

1<br />

a. log 4<br />

= -1<br />

4<br />

1<br />

b. log 3<br />

3 =<br />

2<br />

c. log 10<br />

.000001 = -6<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 249


2<br />

d. log 3<br />

5<br />

25 <br />

3<br />

1<br />

e. log<br />

e<br />

e <br />

2<br />

68. Solve the following for x or b, respectively.<br />

1 2<br />

a. log<br />

b<br />

<br />

16 3<br />

b.<br />

log<br />

1<br />

x <br />

3<br />

4<br />

c.<br />

log<br />

b<br />

81 2<br />

d.<br />

log<br />

6(<br />

x 4) log<br />

6(<br />

x 9) 2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 250


e.<br />

2<br />

log<br />

4(<br />

x 6x)<br />

2<br />

f.<br />

log<br />

2(11<br />

x)<br />

log<br />

2(<br />

x 1)<br />

3<br />

11<br />

x<br />

log 2<br />

x 1<br />

3<br />

69. Simplify the following logarithms (express as one logarithm):<br />

1<br />

4log<br />

10<br />

x log<br />

10<br />

y<br />

a.<br />

2<br />

b.<br />

3<br />

log<br />

4<br />

b<br />

x 6log<br />

b<br />

4<br />

y log<br />

5<br />

b<br />

z<br />

70. Evaluate the following logarithms given that log 10<br />

2 0.3010 , log 10<br />

3 0. 4771, and<br />

7 log 10<br />

0.8451<br />

a.<br />

log<br />

log<br />

10<br />

10<br />

2 0.3010<br />

0.6309<br />

3 0.4771<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 251


.<br />

log<br />

10<br />

<br />

5<br />

49 <br />

<br />

2<br />

36 <br />

c.<br />

d.<br />

log 10<br />

35<br />

10<br />

log 10 7 · 5 = log 10 7· = log 10 7 + log 10 10 – log 10 2<br />

2<br />

= 0.8451 + 1 – 0.3010<br />

=1.544<br />

14 <br />

log<br />

10<br />

<br />

3<br />

84 <br />

e. log 10<br />

30 = log 10 3 · 10 = log 10 3 + log 10 10 = .4771 + 1 = 1.4771<br />

f. log = log 10 7 2 · 10 3 10<br />

49000<br />

= 2 log 10 7 + 3 log 10 10 = 2(.8451) + 3 = 4.69<br />

g. log = log 10 2 · 3 · 10 -7 = log 10 2 + log 10 3 + log 10 10 -7<br />

10<br />

. 0000006<br />

= (.3010) + (.4771) – 7 = -6.2219<br />

71. Shannon’s diversity index is a measure of the diversity of a population. The diversity index<br />

is given by the formula<br />

H p1 log p1<br />

p2<br />

log p2<br />

...<br />

p n<br />

log p n<br />

<br />

where p1<br />

is the proportion of the population that is species 1, p2<br />

is the proportion of the<br />

population that is species 2, and so on.<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, p. 439)<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 252


a. According to the U.S. Census Bureau, the distribution of race in the United States<br />

in 2000 was as follows:<br />

Race<br />

Proportion<br />

American Indian or 0.014<br />

Native Alaskan<br />

Asian 0.041<br />

Black or African 0.128<br />

American<br />

Hispanic 0.124<br />

Native Hawaiian or 0.003<br />

Pacific Islander<br />

White 0.690<br />

Compute the diversity index of the United States in 2000.<br />

b. The largest value of the diversity index is given by H log( S)<br />

, where S is the<br />

H max<br />

number of categories of race. Compute .<br />

H<br />

max<br />

log( S)<br />

H<br />

max<br />

log(6) 0.778<br />

H<br />

c. The evenness ratio is given by E H<br />

, where 0 E 1 . If 1, there<br />

H max<br />

is a complete evenness. Compute the evenness ratio for the United States.<br />

max<br />

H<br />

E H<br />

E H<br />

H<br />

H<br />

max<br />

.428<br />

.550<br />

.778<br />

72. How many years (to two decimal places) will it take $1,000 to grow to $1,800 if it is invested<br />

at 6% compounded quarterly? Compounded continuously?<br />

(Barnett, Ziegler and Byleen, Finite <strong>Math</strong>ematics for Business, Economics, Life Sciences, and Social Sciences, tenth edition, Upper Saddle<br />

River, NJ: Prentice Hall, pp. 120)<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 253


lne .06t = ln1.8<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 254


<strong>Math</strong> <strong>Camp</strong> 2011 Page 255<br />

DERIVATIVES<br />

73. Find derivatives of the following:<br />

a.<br />

b.<br />

c.<br />

d.<br />

e.<br />

f.<br />

g.<br />

h.<br />

i.<br />

j.<br />

k.<br />

l.<br />

m.<br />

n.<br />

3<br />

10<br />

36<br />

)<br />

'(<br />

5<br />

3<br />

5<br />

12<br />

)<br />

(<br />

2<br />

2<br />

3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

x<br />

f<br />

x<br />

x<br />

x<br />

x<br />

f<br />

6<br />

6<br />

5<br />

5<br />

5<br />

)<br />

'(<br />

1<br />

)<br />

(<br />

x<br />

x<br />

x<br />

f<br />

x<br />

x<br />

f<br />

<br />

<br />

<br />

<br />

<br />

<br />

7<br />

4<br />

1<br />

2<br />

8<br />

2<br />

1)<br />

(2<br />

4)<br />

2(<br />

)<br />

'(<br />

4)<br />

1)(<br />

(2<br />

)<br />

( <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

f<br />

x<br />

x<br />

x<br />

f<br />

x<br />

x<br />

x<br />

x<br />

f<br />

x<br />

x<br />

x<br />

x<br />

f 8<br />

15<br />

144<br />

)<br />

'(<br />

990<br />

4<br />

3<br />

16<br />

)<br />

(<br />

4<br />

8<br />

2<br />

5<br />

9<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

f<br />

<br />

)<br />

(<br />

x<br />

x<br />

f<br />

x<br />

x<br />

f 18<br />

)<br />

'(<br />

9<br />

)<br />

(<br />

2<br />

<br />

<br />

<br />

1<br />

7<br />

3<br />

)<br />

( 2 <br />

x x <br />

x<br />

f<br />

3<br />

2<br />

3<br />

2<br />

1<br />

3<br />

1<br />

3<br />

)<br />

3<br />

(5<br />

1<br />

)<br />

3<br />

(5<br />

3)<br />

(<br />

)<br />

3<br />

(5<br />

3<br />

1<br />

)<br />

'(<br />

3<br />

5<br />

)<br />

(<br />

x<br />

x<br />

x<br />

x<br />

f<br />

x<br />

x<br />

f<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

2<br />

2<br />

1)<br />

(<br />

2<br />

1)<br />

(<br />

2<br />

2<br />

2<br />

1)<br />

(<br />

)<br />

(1)(2<br />

1)<br />

(2)(<br />

)<br />

'(<br />

1<br />

2<br />

)<br />

(<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

f<br />

x<br />

x<br />

x<br />

f<br />

4<br />

2<br />

4<br />

2<br />

5<br />

2<br />

1)<br />

(<br />

10<br />

)<br />

(2<br />

1)<br />

5(<br />

)<br />

'(<br />

1)<br />

(<br />

)<br />

( <br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

x<br />

x<br />

x<br />

f<br />

x<br />

x<br />

f<br />

8<br />

16<br />

24<br />

)<br />

'(<br />

8<br />

8<br />

8<br />

8<br />

)<br />

(<br />

2<br />

2<br />

3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

x<br />

f<br />

x<br />

x<br />

x<br />

x<br />

f<br />

9<br />

10<br />

7)<br />

10(<br />

7)<br />

(<br />

)<br />

( <br />

<br />

<br />

<br />

x<br />

x<br />

x<br />

f<br />

2<br />

2 5<br />

5<br />

18<br />

)<br />

(<br />

x<br />

x<br />

x<br />

x<br />

x<br />

f<br />

<br />

<br />

<br />

<br />

)<br />

(<br />

1<br />

)<br />

(<br />

2<br />

3 x<br />

x<br />

x<br />

x<br />

f


4<br />

5<br />

o. f ( x)<br />

8x<br />

f '( x)<br />

32x<br />

74. Find the tangent lines to the given curve at the given point:<br />

3 2<br />

a. f ( x)<br />

5x<br />

2x<br />

9x<br />

15<br />

, at x = -4<br />

4 2<br />

b. f ( x)<br />

8x<br />

x 10<br />

at x = 0<br />

3 2<br />

c. f ( x)<br />

x 7x<br />

6x<br />

6 at x = 10<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 256


OPTIMIZATION<br />

75. Find all the maxima and minima of the following curves. (Hint: Find the first derivative<br />

and set it equal to zero. Then solve for x. Then you can use the second derivative to<br />

determine whether each point is a maximum or minimum.)<br />

3 2<br />

a. f ( x)<br />

5x<br />

4x<br />

6x<br />

19<br />

This function has no real roots<br />

b.<br />

f ( x)<br />

<br />

3<br />

x<br />

3<br />

4x<br />

2<br />

12x<br />

15<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 257


At x = 9.3, the second derivative is positive, so x =2 is a local minimum.<br />

At x = -1.3, the second derivative is negative, so x =-1.3 is a local maximum.<br />

2<br />

76. Suppose a ball is thrown into the air and its height after t seconds is 4 48t 16t<br />

feet.<br />

At what time does the ball reach its highest point?<br />

f '( t)<br />

48 32t<br />

48 32t<br />

0<br />

48 3<br />

t <br />

32 2<br />

Now we need to check the second derivative to make sure this is a maximum.<br />

f "(<br />

x)<br />

32<br />

Because the second derivative is everywhere negative, this is a local maximum.<br />

750<br />

77. Find the value of x that minimizes the cost C(x) , where C( x)<br />

95x<br />

for x 0.<br />

x<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 258


78. A firm’s total-revenue and total-cost functions are<br />

TR 4Q<br />

TC 0.04Q<br />

3<br />

0.9Q<br />

2<br />

10Q<br />

5<br />

(Salvatore, Managerial Economics in a Global Economy, sixth edition, New York: Oxford University Press, 2007, p. 78)<br />

a. Determine the best level of output. {This means to find the point where profit is<br />

maximized. Remember that TR TC , where represents the firm’s profit.}<br />

Now find the first and second derivatives of the profit function.<br />

Now we set the first derivative of the profit function equal to zero and solve for<br />

the quantity.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 259


We have two points that can potentially maximize the profit function, x = 5 and<br />

x = 10. We can use the second derivative to determine whether these points are a<br />

minimum or a maximum. If the second derivative is negative at that point, then it<br />

is a maximum, if it is positive then that point is a minimum.<br />

At x = 5 the second derivative is positive, so x =5 is a minimum point. At x = 10<br />

the second derivative is negative, so x = 10 is a maximum point.<br />

Thus, x =10 is the point that maximizes the firm’s profit.<br />

b. Determine the total profit of the firm at its best level of output.<br />

Basically this means that the firm is losing money. If we look at the graph of the<br />

firm’s profit function, we see that at no point is the firm making money. The firm<br />

loses the least money at x = 10.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 260


79. Suppose a firm’s inverse demand curve is given by P 120 . 5Q and its cost equation is<br />

2<br />

C 420 60Q<br />

Q .<br />

(Samuelson and Marks, Managerial Economics, (5 th Edition), Wiley, 2006, p. 56)<br />

a. Find the firm’s optimal quantity, price, and profit (1) by using the profit and<br />

marginal profit equations and (2) by setting MR equal to MC. Also provide a<br />

graph of MR and MC. (Hint: R PQ . Then profit is R C . Marginal profit<br />

is the first derivative of the profit function. Marginal revenue is the first derivative<br />

of the revenue function. Marginal cost is the first derivative of the cost function.)<br />

We can set the marginal profit equation equal to zero to find its roots.<br />

Now we can use the second derivative to confirm that this is a maximum point.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 261


Because the second derivative is negative, the point Q = 20 is a maximum point.<br />

To find the optimal price and profit levels, we just substitute Q = 20 in the price<br />

and profit equations.<br />

The second method of solving this problem involves setting the marginal revenue<br />

equal to the marginal cost. We find the marginal equations by taking the<br />

derivative of the original equations.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 262


80. Suppose you were producing <strong>SPEA</strong>-logo binders with the following cost schedule.<br />

Quantity Total Cost Average Cost Marginal<br />

Cost<br />

0 150<br />

1 233<br />

2 290<br />

3 327<br />

4 350<br />

5 365<br />

6 378<br />

7 395<br />

8 422<br />

9 465<br />

10 530<br />

11 623<br />

12 750<br />

13 917<br />

14 1130<br />

15 1395<br />

Average<br />

Variable Cost<br />

a. What is the fixed cost? $150<br />

b. Complete the table by computing the average cost, marginal cost and average<br />

variable cost for each unit produced.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 263


Quantity Total Cost Average Cost Marginal<br />

Cost<br />

Average<br />

Variable Cost<br />

0 150<br />

1 233 233.0 83 83.0<br />

2 290 145.0 57 28.5<br />

3 327 109.0 37 12.3<br />

4 350 87.5 23 5.8<br />

5 365 73.0 15 3.0<br />

6 378 63.0 13 2.2<br />

7 395 56.4 17 2.4<br />

8 422 52.8 27 3.4<br />

9 465 51.7 43 4.8<br />

10 530 53.0 65 6.5<br />

11 623 56.6 93 8.5<br />

12 750 62.5 127 10.6<br />

13 917 70.5 167 12.8<br />

14 1130 80.7 213 15.2<br />

15 1395 93.0 265 17.7<br />

c. Graph the average cost, marginal cost and average variable cost curves on the<br />

same axis.<br />

d. Suppose the total cost function is TC Q<br />

3 16Q<br />

2 98Q<br />

150 . Graph this<br />

function.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 264


e. What is the average cost function?<br />

f. What is the marginal cost function?<br />

TC Q<br />

3<br />

16Q<br />

MC TC'<br />

3Q<br />

2<br />

2<br />

98Q<br />

150<br />

32Q<br />

98<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 265


SOLVING WORD PROBLEMS<br />

81. A ladder is leaning against a building. The base of the ladder is 8 feet away from the<br />

side of the building and the ladder reaches 9 feet high on the building. How long is the<br />

ladder?<br />

2 2 2<br />

We know that a b c . And in this case a = 8 and b = 9, so we just solve for c.<br />

a<br />

8<br />

2<br />

2<br />

9<br />

64 81 c<br />

c<br />

2<br />

b<br />

2<br />

2<br />

145<br />

c<br />

c 12.04<br />

c<br />

2<br />

2<br />

2<br />

Therefore the ladder is 12 feet long.<br />

82. A farmer mixes milk containing 3% butterfat with cream containing 30% butterfat to<br />

obtain 900 gallons of milk which is 8% butterfat. How much of each must the farmer<br />

use?<br />

(Johnson, How to Solve Word Problems in Algebra: A Solved Problem Approach, McGraw Hill, 2000)<br />

Let x = number of gallons of milk<br />

Let y = number of gallons of cream<br />

x y 900<br />

0.03x 0.30y<br />

0.08(900)<br />

0.03x<br />

0.30y<br />

0.08(900)<br />

0.03x<br />

0.30y<br />

72<br />

3x<br />

30y<br />

7200<br />

x 10y<br />

2400<br />

x 2400 10y<br />

x y 900<br />

2400 10y<br />

y 900<br />

2400 9y<br />

900<br />

9y<br />

1500<br />

1500<br />

y <br />

9<br />

500<br />

3<br />

166<br />

2<br />

3<br />

gallons<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 266


x y 900<br />

500<br />

x 900<br />

3<br />

x 900 <br />

500<br />

3<br />

<br />

2700<br />

3<br />

<br />

500<br />

3<br />

<br />

2200<br />

3<br />

<br />

1<br />

733<br />

3<br />

83. The data shown indicate the number of wins and the number of points scored for teams<br />

in the National Hockey League. Draw a scatter plot for the data and describe the nature<br />

of the relationship.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 79)<br />

Wins,x 10 9 6 5 4 12 11 8 7 5 9 8 6 6 4<br />

Points,y 23 22 15 15 10 26 26 26 21 16 12 19 16 16 11<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 2 4 6 8 10 12 14<br />

The graph shows a positive linear relationship between number of wins and number of points<br />

scored.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 267


84. Evaluate the following expression given that p =.8, n = 2000, and z = 1.96.<br />

a. Evaluate.<br />

p z<br />

p( 1<br />

p)<br />

b. If p = .8 and z = 19.6 and p z = .75, find n.<br />

n<br />

p z<br />

.8 (1.96)<br />

p(1<br />

p)<br />

n<br />

.8(1 .8) .75 .8<br />

<br />

n 1.96<br />

.8(1 .8) <br />

<br />

n <br />

.16<br />

.00065<br />

n<br />

n <br />

.16<br />

.00065<br />

246<br />

APPLICATIONS IN STATISTICS<br />

p(1<br />

p)<br />

.8 (1.96)<br />

n<br />

.8(1 .8)<br />

.75<br />

n<br />

2<br />

(.0255)<br />

2<br />

.8(1 .8)<br />

(.782,.818)<br />

2000<br />

85. A sample of eight companies in the aerospace industry was surveyed as to their<br />

return on investment last year. The results are: 10.6, 12.6, 14.8, 18.2, 12.0, 14.8, 12.2,<br />

and 15.6.<br />

(Lind, Marchal and Mason, Statistical Techniques in Business & Economics, 11 th<br />

edition, McGraw-Hill: Boston. p. 108)<br />

x 10.6 12.6<br />

... 15.6<br />

110.8<br />

a. Calculate the mean. x <br />

13.85<br />

n<br />

8<br />

8<br />

b. Calculate the variance using the deviation formula.<br />

<br />

2<br />

2<br />

2<br />

x<br />

x 2<br />

10.6<br />

13.85 ... 15.6<br />

13.85<br />

s <br />

6.0086<br />

n 1<br />

8 1<br />

c. Calculate the variance using the direct formula.<br />

s<br />

2<br />

<br />

<br />

<br />

<br />

x<br />

2<br />

x <br />

n<br />

n 1<br />

2<br />

(110.8)<br />

1576.64 <br />

<br />

8<br />

8 1<br />

6.0086<br />

86. The formula for computing the chi-squared statistic is: <br />

2 O E<br />

<br />

where O is the<br />

E<br />

observed value and E is the expected value. Given the following table of data, compute<br />

the chi-squared statistic.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 515)<br />

2<br />

<br />

<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 268


Day Mon Tues Wed Thur Fri Sat Sun<br />

Observed 28 32 15 14 38 43 19<br />

Expected 20 34 17 15 30 45 20<br />

2<br />

<br />

<br />

2<br />

2<br />

O<br />

28<br />

30 19<br />

20<br />

E<br />

E<br />

<br />

20<br />

... <br />

20<br />

2<br />

5.89<br />

87. Prove that the following two formulas are equal.<br />

r <br />

n<br />

xy<br />

<br />

x<br />

y<br />

2<br />

2<br />

2<br />

<br />

x <br />

<br />

x<br />

n<br />

y <br />

n<br />

y<br />

2<br />

<br />

x<br />

x y y<br />

r <br />

( n 1)(<br />

s x<br />

)( s<br />

y<br />

)<br />

2<br />

<br />

2 x<br />

x x <br />

2<br />

Remember that: x and s <br />

n<br />

x<br />

n<br />

n 1<br />

(Hint: It might be easier to start with the second formula and work backwards.)<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 269


<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

n<br />

<br />

<br />

<br />

<br />

<br />

<br />

( n 1)<br />

<br />

x<br />

x y y xy<br />

xy xy xy<br />

( n 1)(<br />

s )( s<br />

<br />

<br />

<br />

xy xy xy<br />

1<br />

2<br />

<br />

2<br />

x <br />

<br />

<br />

y<br />

2<br />

y <br />

xy x<br />

y y<br />

x nxy<br />

1<br />

2<br />

<br />

2<br />

2<br />

x <br />

<br />

<br />

y<br />

2<br />

2<br />

y <br />

x<br />

<br />

xy <br />

<br />

x<br />

xy <br />

x<br />

2<br />

<br />

( n 1)<br />

n<br />

x <br />

<br />

n<br />

<br />

y<br />

)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

( n 1)<br />

<br />

<br />

<br />

<br />

n<br />

1<br />

2<br />

<br />

<br />

<br />

y <br />

<br />

<br />

y <br />

<br />

n<br />

<br />

<br />

<br />

<br />

( n 1)<br />

<br />

x n<br />

<br />

<br />

1<br />

2<br />

2<br />

2 2<br />

n x x n<br />

y <br />

y<br />

xy x<br />

y x<br />

y x<br />

y<br />

1<br />

2<br />

2 2<br />

2<br />

2<br />

n<br />

x <br />

x<br />

<br />

n<br />

y <br />

y<br />

<br />

n<br />

xy x<br />

y<br />

2<br />

2 2<br />

2<br />

n<br />

x <br />

x<br />

<br />

n<br />

y <br />

y<br />

<br />

<br />

<br />

<br />

<br />

n<br />

<br />

<br />

<br />

<br />

1<br />

2<br />

2<br />

<br />

x <br />

<br />

<br />

y<br />

2<br />

y <br />

2<br />

x <br />

n<br />

n 1<br />

n<br />

1<br />

2<br />

<br />

2<br />

x <br />

<br />

n<br />

<br />

<br />

<br />

<br />

<br />

<br />

1<br />

2<br />

2<br />

1<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

y <br />

<br />

n<br />

<br />

n<br />

n 1<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

88. A statistics instructor is interested in finding the strength of a relationship between the<br />

final exam grades of students enrolled in Statistics I and Statistics II. Draw a scatter<br />

plot of the data. Calculate r. Calculate a and b and write the equation for the regression<br />

line. The data are given here in percentages.<br />

(Bluman, Elementary Statistics, 2 nd Edition, McGraw-Hill: Boston. p. 495)<br />

Stat I, x 87 92 68 72 95 78 83 98<br />

Stat II, y 83 88 70 74 90 74 83 99<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 270


120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 20 40 60 80 100 120<br />

x 673<br />

y 661<br />

xy 56, 318<br />

x 2<br />

57, 443<br />

y 2<br />

55, 275<br />

r <br />

<br />

n<br />

xy<br />

<br />

x<br />

y<br />

2<br />

2<br />

2<br />

<br />

x <br />

<br />

x<br />

n<br />

y <br />

2<br />

n<br />

y<br />

<br />

8(56318) (673)(661)<br />

2<br />

2<br />

8(57443)<br />

(673) 8(55275) (661) <br />

.96<br />

a <br />

2<br />

<br />

y<br />

x <br />

<br />

x<br />

xy<br />

2<br />

2<br />

n<br />

x <br />

<br />

x<br />

(661)(57443) (673)(56318)<br />

<br />

10.25<br />

2<br />

8(57443) (673)<br />

n<br />

b <br />

<br />

xy<br />

<br />

x<br />

y<br />

2<br />

2<br />

n<br />

x <br />

<br />

x<br />

8(56318) (673)(661)<br />

<br />

.86<br />

2<br />

8(57443) (673)<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 271


Y . 86X<br />

10.25<br />

APPLICATIONS IN ECONOMICS<br />

89. Management of McPablo’s Food Shops has completed a study of weekly demand for its<br />

“old-fashioned” tacos in 53 regional markets. The study revealed that<br />

Q 400 1,200P<br />

.8A<br />

55Pop<br />

800P<br />

0<br />

where Q is the number of tacos sold per store per week, A is the level of local advertising<br />

0<br />

expenditure (in dollars), Pop denotes the local population (in thousands), and P is the<br />

average taco price of local competitors. For the typical McPablo’s outlet, P = $1.50, A =<br />

0<br />

$1,000, Pop = 40 and P =$1.<br />

(Samuelson and Marks, Managerial Economics, (5 th Edition), Wiley, 2006)<br />

a. Estimate the weekly sales for the typical McPablo’s outlet.<br />

Q 400 (1200)(1.5) (.8)(1000) (55)(40) (800)(1) 2,400<br />

b. What is the current price elasticity for tacos? What is the advertising elasticity?<br />

E dQ <br />

P <br />

<br />

( 1200)(1.50) / 2,400 .75<br />

P<br />

dP <br />

Q <br />

E dQ <br />

A <br />

<br />

(. 8)(1000) /(2,400) . 333<br />

A<br />

dA <br />

Q <br />

90. A firm’s long-run total cost function is: C 360 40Q<br />

10Q<br />

2 .<br />

(Samuelson and Marks, Managerial Economics, (5 th Edition), Wiley, 2006, p. 293)<br />

a. What is the shape of the long-run average cost curve? (Hint: To find the average<br />

cost function, divide the cost function by Q.)<br />

C 360 40Q<br />

10Q<br />

360 40Q<br />

10Q<br />

AC <br />

Q<br />

2<br />

2<br />

360<br />

40 10Q<br />

Q<br />

This curve will be U-shaped.<br />

b. Find the output that minimizes average cost. (Hint: The minimum average costs<br />

occurs where AC MC . Remember that MC is the first derivative of the cost<br />

function.)<br />

C 360 40Q<br />

10Q<br />

MC C<br />

40 2(10) Q 40 20Q<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 272


AC<br />

360<br />

40 10Q<br />

Q<br />

360 40Q<br />

10Q<br />

360<br />

360 10Q<br />

Q<br />

2<br />

<br />

20Q<br />

<br />

MC<br />

36<br />

2<br />

2<br />

40 20Q<br />

2<br />

10Q<br />

40Q<br />

20Q<br />

2<br />

2<br />

Q 6<br />

Thus, the quantity that minimizes average cost is 6. At this quantity, the average<br />

cost will be:<br />

AC<br />

AC<br />

360<br />

40 10Q<br />

Q<br />

360<br />

40 10(6)<br />

60 40 60 $160<br />

6<br />

c. The firm faces the fixed market price of $140 per unit. At this price, can the firm<br />

survive in the long run? Explain.<br />

At this price, the firm cannot survive in the long run. If the average cost is $160<br />

and the firm can only sell at $140, the firm will lose money.<br />

91. A manufacturing firm produces output using a single plant. The relevant cost function is<br />

2<br />

C 500 5Q<br />

. The firm’s demand curve is P 600 5Q<br />

.<br />

(Samuelson and Marks, Managerial Economics, (5 th Edition), Wiley, 2006, pp. 296-297)<br />

a. Find the level of output at which average cost is minimized. (Hint: Set AC equal<br />

to MC.) What is the minimum level of average cost?<br />

C 500 5Q<br />

500<br />

AC 5Q<br />

Q<br />

C 500 5Q<br />

MC C<br />

10Q<br />

2<br />

2<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 273


AC MC<br />

500<br />

5Q<br />

10Q<br />

Q<br />

500 5Q<br />

500 10Q<br />

500 5Q<br />

10Q<br />

5Q<br />

2 500<br />

Q 100<br />

5<br />

Q 10<br />

2<br />

2<br />

2<br />

500<br />

AC(<br />

Q 10) 5(10)<br />

10<br />

AC 50 50 100<br />

2<br />

2<br />

b. Find the firm’s profit-maximizing output and price. Find its profit. {Hint:<br />

MR MC }<br />

P 600 5Q<br />

R PQ<br />

R (600 5Q)<br />

Q<br />

R 600Q<br />

5Q<br />

MR R<br />

600 10Q<br />

MR MC<br />

600 10Q<br />

10Q<br />

600 10Q<br />

10Q<br />

20Q<br />

600<br />

600<br />

Q 30<br />

20<br />

2<br />

The maximizing output is<br />

Q 30 . Thus the maximizing price is:<br />

P 600 5Q<br />

P 600 5(30)<br />

P $450<br />

The firm’s profit at this output and price level will be:<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 274


R C (600Q<br />

5Q<br />

600Q<br />

5Q<br />

600Q<br />

10Q<br />

500<br />

600(30) 10(30)<br />

500 5Q<br />

) (500 5Q<br />

500<br />

18,000 9,000 500 $8,500<br />

92. In a perfectly competitive market, industry demand is given by Q 1,000<br />

20P . The<br />

typical firm’s average cost is 300 Q<br />

2 <br />

AC . The firm’s marginal cost is MC Q<br />

.<br />

Q 3<br />

3 <br />

(Samuelson and Marks, Managerial Economics, (5 th Edition), Wiley, 2006, pp. 429)<br />

2<br />

2<br />

2<br />

2<br />

c. Confirm that Qmin 30 . (Hint: Set AC equal to MC.) What is AC<br />

min<br />

?<br />

AC MC<br />

300 Q 2 <br />

Q<br />

Q 3 3 <br />

3(300) Q<br />

900 2Q<br />

Q<br />

2<br />

900<br />

2<br />

2<br />

2Q<br />

Q<br />

2<br />

Q 30<br />

The average cost at this quantity is:<br />

2<br />

2<br />

2<br />

)<br />

AC<br />

AC<br />

300 Q<br />

<br />

Q 3<br />

<br />

300<br />

30<br />

<br />

30<br />

10 10<br />

$20<br />

3<br />

APPLICATIONS IN FINANCE<br />

ln m<br />

93. The formula t <br />

can be used to find the number of years t required to<br />

<br />

<br />

r<br />

nln<br />

1 <br />

n <br />

multiply and investment m times when r is the per annum interest rate compounded n<br />

times a year.<br />

a. How many years will it take to double the value of an IRA that compounds<br />

annually at the rate of 12%?<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 275


ln m<br />

t <br />

r <br />

nln1<br />

<br />

n <br />

ln 2 ln 2 .6931<br />

t <br />

6.12<br />

.12 ln1.12 .1133<br />

(1)ln1<br />

<br />

1 <br />

b. How many years will it take to triple the value of a savings account that<br />

compounds quarterly at an annual rate of 6%?<br />

ln m<br />

t <br />

r <br />

nln1<br />

<br />

n <br />

ln 3 ln 3 1.0986<br />

t <br />

18.45<br />

.06 4ln1.015 .0596<br />

(4)ln1<br />

<br />

4 <br />

c. Giver a derivation of this formula.<br />

Our formula for compound interest is:<br />

mP<br />

r <br />

P<br />

<br />

n <br />

nt<br />

1<br />

where mP = future value of the account (the number of times P is multiplied)<br />

P = the principal or present value of the account<br />

r = annual rate (as a decimal)<br />

n = the number of times per year the interest is compounded (for instance, for<br />

interest compounded quarterly m 4)<br />

<br />

mP P1<br />

<br />

<br />

<br />

r<br />

m 1 <br />

n<br />

<br />

<br />

<br />

r<br />

n<br />

nt<br />

<br />

<br />

<br />

<br />

r<br />

ln m ln 1 <br />

n<br />

ln m <br />

nt ln 1 <br />

<br />

ln m<br />

t <br />

<br />

<br />

r<br />

n ln 1 <br />

n <br />

nt<br />

<br />

<br />

<br />

nt<br />

r<br />

n<br />

<br />

<br />

<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 276


94. You have $12,000 to invest. If part is invested at 10% and the rest at 15%, how much<br />

should be invested at each rate to yield 12% on the total amount?<br />

(Barnett, Ziegler and Byleen, Finite <strong>Math</strong>ematics for Business, Economics, Life Sciences, and Social Sciences, tenth edition, Upper<br />

Saddle River, NJ: Prentice Hall, pp. 690)<br />

Let x be the amount to invest at 10%.<br />

(.10) x (.15)(12,000 x)<br />

(.12)12,000<br />

(.10) x (.15)(12,000) (.15) x 1,440<br />

( .05)<br />

x 1800<br />

1440<br />

( .05)<br />

x 360<br />

360<br />

x $7,200<br />

.05<br />

You should invest $7,200 at 10% and 12,000 – 7,200 = $4,800 at 15%.<br />

95. Suppose that your local government is interested in doing a capital works project that will<br />

have the following benefit schedule:<br />

Year 1 $0<br />

Year 2 $0<br />

Year 3 $50<br />

Year 4 $500<br />

Year 5 $5,000<br />

Year 6 $15,000<br />

a. Calculate the present value of the project if the social discount rate is 5%<br />

PV<br />

PV<br />

PV<br />

PV<br />

PV<br />

PV<br />

PV<br />

n<br />

X<br />

i<br />

<br />

(1 r)<br />

i1<br />

X<br />

1<br />

<br />

(1 r)<br />

0<br />

<br />

(1 .05)<br />

0<br />

<br />

(1.05)<br />

1<br />

1<br />

0 0 50 500 5000<br />

<br />

<br />

1.05 1.1025 1.157625 1.21550625 1.2762815625<br />

0 0 43.19 411.35 3917.63 11193.23<br />

$15,565.40<br />

X<br />

2<br />

<br />

(1 r)<br />

1<br />

<br />

i<br />

0<br />

<br />

(1 .05)<br />

0<br />

(1.05)<br />

2<br />

2<br />

X<br />

3<br />

<br />

(1 r)<br />

<br />

2<br />

50<br />

<br />

(1 .05)<br />

50<br />

(1.05)<br />

3<br />

3<br />

X<br />

4<br />

<br />

(1 r)<br />

<br />

3<br />

500<br />

(1.05)<br />

X<br />

5<br />

<br />

(1 r)<br />

500<br />

<br />

(1 .05)<br />

4<br />

4<br />

4<br />

5000<br />

<br />

(1.05)<br />

X<br />

6<br />

<br />

(1 r)<br />

5000<br />

<br />

(1 .05)<br />

5<br />

5<br />

5<br />

15000<br />

<br />

6<br />

(1.05)<br />

6<br />

15000<br />

<br />

(1 .05)<br />

<br />

6<br />

15000<br />

1.3400956<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 277


. Calculate the present value of the project if the social discount rate is 10%<br />

n<br />

X<br />

i<br />

PV i<br />

(1 r)<br />

PV<br />

PV<br />

i1<br />

X<br />

1<br />

PV <br />

1<br />

(1 r)<br />

0<br />

PV <br />

1<br />

(1 .10)<br />

0<br />

PV <br />

1<br />

(1.10)<br />

X<br />

2<br />

<br />

(1 r)<br />

0<br />

<br />

(1 .10)<br />

0<br />

(1.10)<br />

X<br />

3<br />

<br />

(1 r)<br />

50<br />

<br />

(1 .10)<br />

50<br />

(1.10)<br />

X<br />

4<br />

<br />

(1 r)<br />

500<br />

(1.10)<br />

0 0 50 500 5000 15000<br />

<br />

1.10 1.21 1.331 1.4641 1.61051 1.771561<br />

0 0 37.57 341.51<br />

3104.61<br />

8467.11<br />

PV $11,950.79<br />

c. Calculate the present value of the project if the social discount rate is 15%<br />

n<br />

X<br />

i<br />

PV i<br />

(1 r)<br />

i1<br />

X<br />

1<br />

PV <br />

1<br />

(1 r)<br />

0<br />

PV <br />

1<br />

(1 .15)<br />

0<br />

PV <br />

1<br />

(1.15)<br />

PV<br />

PV<br />

0<br />

(1.15)<br />

APPLICATIONS IN ENVIRONMENTAL SCIENCE<br />

500<br />

<br />

(1 .10)<br />

96. The size P of a certain insect population at a time t (in days) obeys the function<br />

0.02t<br />

P( t)<br />

500e<br />

.<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, p. 472)<br />

a. Determine the number of insects at t 0 days.<br />

0.02t<br />

P(<br />

t)<br />

500e<br />

2<br />

X<br />

2<br />

<br />

(1 r)<br />

X<br />

5<br />

<br />

(1 r)<br />

5000<br />

<br />

(1.10)<br />

b. What is the growth rate of the insect population?<br />

The growth rate is the coefficient on t, or 2%.<br />

2<br />

<br />

0<br />

<br />

(1 .15)<br />

2<br />

2<br />

2<br />

50<br />

(1.15)<br />

3<br />

X<br />

3<br />

<br />

(1 r)<br />

<br />

2<br />

3<br />

<br />

50<br />

<br />

(1 .15)<br />

3<br />

500<br />

(1.15)<br />

4<br />

X<br />

4<br />

<br />

(1 r)<br />

4<br />

500<br />

<br />

(1 .15)<br />

4<br />

5000<br />

<br />

(1.15)<br />

X<br />

6<br />

<br />

(1 r)<br />

5000<br />

<br />

(1 .10)<br />

5<br />

X<br />

5<br />

<br />

(1 r)<br />

5<br />

5<br />

15000<br />

<br />

6<br />

(1.10)<br />

X<br />

6<br />

<br />

(1 r)<br />

5000<br />

<br />

(1 .15)<br />

15000<br />

<br />

6<br />

(1.15)<br />

0 0 50 500 5000<br />

<br />

<br />

1.15 1.3225 1.520875 1.74900625 2.011357<br />

0 0 32.88 285.88 2485.88 6484.91<br />

PV $9,289.55<br />

P(<br />

t)<br />

500e<br />

0.02(0)<br />

500e<br />

0<br />

3<br />

3<br />

<br />

500(1) 500<br />

3<br />

4<br />

4<br />

4<br />

5<br />

5<br />

<br />

5<br />

6<br />

15000<br />

<br />

(1 .10)<br />

6<br />

15000<br />

<br />

(1 .15)<br />

15000<br />

2.313060<br />

6<br />

6<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 278


c. What is the population after 10 days?<br />

0.02t<br />

P(<br />

t)<br />

500e<br />

P(<br />

t)<br />

500e<br />

P(<br />

t)<br />

500e<br />

0.02(10)<br />

.2<br />

P(<br />

t)<br />

500(1.22) 610.7 611<br />

d. When will the insect population reach 800?<br />

0.02t<br />

P(<br />

t)<br />

500e<br />

800 500e<br />

800<br />

<br />

500<br />

1.6 e<br />

0.02t<br />

ln1.6 ln e<br />

ln1.6 0.02t<br />

ln e<br />

0.02t<br />

ln1.6<br />

t <br />

e<br />

ln1.6<br />

0.02<br />

0.02t<br />

<br />

0.02t<br />

0.02t<br />

.4700<br />

23.5<br />

0.02<br />

The insect population will reach 800 after about 23.5 days.<br />

e. When will the insect population double?<br />

0.02t<br />

P(<br />

t)<br />

500e<br />

2(500) 500e<br />

1000<br />

e<br />

500<br />

0.02t<br />

2 e<br />

ln 2 ln e<br />

ln 2 0.02t<br />

ln e<br />

0.02t<br />

ln 2<br />

t <br />

ln 2<br />

0.02<br />

0.02t<br />

0.02t<br />

0.02t<br />

..69314<br />

34.7<br />

0.02<br />

The population will double in approximately 34.7 days.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 279


97. A piece of charcoal is found to contain 30% of the carbon 14 that it originally had. When<br />

did the tree from which the charcoal came die? Use 5600 years as the half-life of carbon<br />

kt<br />

14. Use the formula A( t)<br />

A0e<br />

where A0<br />

is the original amount of the substance and k<br />

is the rate of decay.<br />

(Sullivan, College Algebra, seventh edition, Upper Saddle River, NJ: Prentice Hall, p. 473)<br />

If the half-life of carbon 14 is 5600, years, then half of the original amount should be left<br />

after 5600 years.<br />

A(<br />

t)<br />

A e<br />

1<br />

5600k<br />

A0<br />

A0e<br />

2<br />

1 5600k<br />

e<br />

2<br />

ln .5 5600k<br />

ln e<br />

0<br />

5600k<br />

ln .5<br />

k <br />

ln .5<br />

5600<br />

kt<br />

.693<br />

.000124<br />

5600<br />

A(<br />

t)<br />

A e<br />

(.30) A<br />

0<br />

.30 e<br />

0<br />

( .000124)<br />

t<br />

ln .3 ( .000124)<br />

t ln e<br />

( .000124)<br />

t ln .3<br />

k <br />

<br />

kt<br />

A e<br />

0<br />

ln .3<br />

.000124<br />

( .000124)<br />

t<br />

1.20397<br />

<br />

.000124<br />

9,727<br />

The tree is approximately 9,727 years old.<br />

<strong>Math</strong> <strong>Camp</strong> 2011 Page 280

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!