15.11.2014 Views

Chapter 4

Chapter 4

Chapter 4

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Structure Analysis I<br />

<strong>Chapter</strong> 4<br />

١<br />

Types of Structures & Loads<br />

١<strong>Chapter</strong>


<strong>Chapter</strong> 4<br />

Internal Loading<br />

Developed in<br />

Structural Members


Internal loading at a specified<br />

Point<br />

In General<br />

• The loading for coplanar structure will<br />

consist of a normal force N, shear force V,<br />

and bending moment M.<br />

• These loading actually represent the<br />

resultants of the stress distribution acting over<br />

the member’s cross-sectional sectional are


Sign Convention<br />

+ve Sign


Procedure for analysis<br />

• Support Reaction<br />

• Free-Body Diagram<br />

• Equation of Equilibrium


Example 1<br />

Determine the internal shear and moment acting in the<br />

cantilever beam shown in figure at sections passing through<br />

h<br />

points C & D


∑<br />

M<br />

M<br />

kN<br />

V<br />

V<br />

F<br />

C<br />

C<br />

y<br />

0<br />

20<br />

5(3)<br />

5(2)<br />

5(1)<br />

0<br />

15<br />

0<br />

5<br />

5<br />

5<br />

0<br />

=<br />

−<br />

−<br />

−<br />

−<br />

⇒ −<br />

=<br />

=<br />

=<br />

−<br />

−<br />

−<br />

⇒<br />

=<br />

∑<br />

∑<br />

kN m<br />

M<br />

M<br />

M<br />

c<br />

c<br />

C<br />

.<br />

50<br />

0<br />

20<br />

5(3)<br />

5(2)<br />

5(1)<br />

0<br />

= −<br />

=<br />

⇒<br />

=<br />


M<br />

M<br />

kN<br />

V<br />

V<br />

F<br />

C<br />

D<br />

y<br />

0<br />

20<br />

5(3)<br />

5(2)<br />

5(1)<br />

0<br />

20<br />

0<br />

5<br />

5<br />

5<br />

5<br />

0<br />

=<br />

=<br />

−<br />

−<br />

−<br />

−<br />

⇒<br />

=<br />

∑<br />

∑<br />

kN m<br />

M<br />

M<br />

M<br />

D<br />

D<br />

C<br />

.<br />

50<br />

0<br />

20<br />

5(3)<br />

5(2)<br />

5(1)<br />

0<br />

= −<br />

=<br />

−<br />

−<br />

−<br />

−<br />

⇒ −<br />

=<br />


Example 2<br />

Determine the internal shear and moment acting in section 1 in<br />

the beam as shown in figure<br />

18kN<br />

R<br />

=<br />

R<br />

= 9<br />

kN<br />

A B<br />

9<br />

6kN<br />

∑<br />

V<br />

∑<br />

F y<br />

= 0<br />

=<br />

3<br />

kN<br />

M D<br />

= 12<br />

kN.<br />

m<br />

⇒ −V<br />

+ 9 − 6 = 0<br />

M<br />

at section<br />

= 0 ⇒M<br />

+ 6(1) − 9(2) =<br />

0


Example 3<br />

Determine the internal shear and moment acting in the<br />

cantilever beam shown in figure at sections passing through<br />

h<br />

points C


∑<br />

V<br />

∑<br />

M<br />

F<br />

y<br />

= 6k<br />

D<br />

M<br />

c<br />

= 0<br />

= 0<br />

= 48k.<br />

ft<br />

⇒ −VC<br />

+ 9 − 3 = 0<br />

⇒M<br />

+ 3(2) − 9(6)<br />

c<br />

=<br />

0


Shear and Moment function<br />

Procedure for Analysis:<br />

1- Support reaction<br />

2- Shear & Moment Function<br />

• Specify separate coordinate x and associated origins,<br />

extending into regions of the beam between concentrated forces<br />

and/or couple moments or where there is a discontinuity of<br />

distributed loading.<br />

• Section the beam at x distance and from the free body<br />

diagram determine V from , M at section x


Example 4<br />

Determine the internal shear and moment Function


Example 5<br />

Determine the internal shear and moment Function


15<br />

1<br />

30<br />

2 =<br />

=<br />

x<br />

w<br />

w 2<br />

x<br />

30<br />

2<br />

2<br />

1 0<br />

15<br />

30<br />

0<br />

x<br />

V<br />

F y =<br />

−<br />

+<br />

⇒ −<br />

=<br />

∑<br />

2<br />

1<br />

2<br />

0<br />

600<br />

)<br />

30(<br />

0<br />

0.033<br />

30<br />

x<br />

x<br />

x<br />

M<br />

M<br />

x<br />

V<br />

=<br />

+<br />

⎥<br />

⎤<br />

⎢<br />

⎡<br />

+<br />

−<br />

⇒<br />

=<br />

−<br />

=<br />

∑<br />

3<br />

2<br />

0.011<br />

30<br />

600<br />

0<br />

600<br />

3<br />

15<br />

)<br />

30(<br />

0<br />

x<br />

x<br />

M<br />

x<br />

M<br />

M S<br />

−<br />

+<br />

= −<br />

=<br />

+<br />

⎥<br />

⎦<br />

⎢<br />

⎣<br />

+<br />

⇒<br />

=<br />


Example 6<br />

Determine the internal shear and moment Function


0 < x<br />

1<br />

< 12<br />

∑<br />

V<br />

∑<br />

=<br />

0<br />

y<br />

=F<br />

108 − 4x<br />

M<br />

S<br />

=<br />

⇒ −V<br />

1<br />

+ 108 − 4x<br />

(<br />

x<br />

0 1588 108 4 )<br />

1<br />

⇒M<br />

+ − x + x<br />

M = −<br />

1588 +<br />

108<br />

x − 2<br />

x<br />

1<br />

2<br />

2<br />

1<br />

1<br />

=<br />

1<br />

0<br />

1<br />

2<br />

=<br />

0


12 < x2<br />

< 20<br />

∑<br />

F<br />

y<br />

V = 60<br />

∑<br />

= 0 ⇒ −V<br />

+ 108 − 48 = 0<br />

( x − 6<br />

) 0<br />

M<br />

S<br />

= 0 ⇒M<br />

+ 1588 −108x<br />

2<br />

+ 48<br />

2<br />

=<br />

M = 60x<br />

2<br />

−1300


Example 7<br />

Determine the internal shear and moment Function


w 20<br />

w<br />

x<br />

=<br />

20<br />

9<br />

x<br />

9<br />

∑<br />

V =<br />

⎡ x ⎤<br />

F y<br />

= 0 ⇒ −V<br />

+ 75 −10x<br />

−<br />

⎢<br />

x =<br />

9 ⎥ ⎣ ⎦<br />

75 −10x<br />

−1.11x<br />

x<br />

1<br />

∑<br />

M<br />

S<br />

=<br />

0<br />

⇒<br />

M −<br />

75<br />

x −<br />

10<br />

x<br />

( )<br />

2<br />

−<br />

2<br />

M =<br />

75x<br />

+ 5x<br />

2<br />

2<br />

− 0.370x<br />

3<br />

1 0<br />

2<br />

(20)<br />

x ⎡ x ⎤<br />

x<br />

⎢<br />

(20)<br />

x<br />

3<br />

=<br />

9 ⎥<br />

⎣ ⎦<br />

0


Shear and Moment diagram for a<br />

Beam


∑<br />

ΔV<br />

∑<br />

ΔM<br />

F y<br />

= 0 ⇒ V + w(<br />

x)<br />

Δx<br />

− ( V + ΔV<br />

) = 0<br />

= w(<br />

x)<br />

Δx<br />

M<br />

O<br />

= 0 ⇒ −VΔx<br />

− M<br />

= VΔx<br />

+ w(<br />

x)<br />

ε<br />

( Δx) 2<br />

− w(<br />

x)<br />

Δx<br />

( εΔx<br />

)<br />

+ ( M<br />

+ ΔM<br />

)<br />

=<br />

0<br />

for Δx<br />

→ 0<br />

dV<br />

= w(<br />

x)<br />

⇒ ΔV<br />

= ∫ w(<br />

x)<br />

dx<br />

dx<br />

dM<br />

dx<br />

= V ⇒ ΔM<br />

= ∫V<br />

( x)<br />

dx


Example 1<br />

Draw shear force<br />

and Bending<br />

moment Diagram<br />

S.F.D<br />

B.M.D


Example 2<br />

Draw shear force<br />

and Bending<br />

moment Diagram<br />

S.F.D<br />

B.M.D


18 kN<br />

Example 4<br />

Draw shear force<br />

and Bending moment<br />

Diagram<br />

Max. moment at x = L/2<br />

then<br />

wL<br />

M =<br />

2<br />

M =<br />

max<br />

⎛ L<br />

⎜ ⎝<br />

2<br />

wL<br />

8<br />

2<br />

⎞<br />

⎟ −<br />

⎠<br />

w ⎛<br />

⎜ 2<br />

⎝<br />

L<br />

2<br />

⎞<br />

⎟ ⎠<br />

2


Example 3 Example 3<br />

Draw shear force and Bending moment Diagram


S.F.D<br />

B.M.D


Example 5<br />

Draw shear force<br />

and Bending<br />

moment Diagram<br />

2 x = 14<br />

x = 7<br />

∑<br />

M<br />

M<br />

S<br />

= 49<br />

= −M<br />

−14(3.5)<br />

+ 14(7)


Example 6a<br />

Draw shear force<br />

and Bending<br />

moment Diagram<br />

S.F.D<br />

B.M.D


Example 6b<br />

Draw shear force<br />

and Bending<br />

moment Diagram<br />

S.F.D<br />

B.M.D


Example 6c<br />

Draw shear force<br />

and Bending<br />

moment Diagram<br />

S.F.D<br />

B.M.D


Example 6d<br />

Draw shear force<br />

and Bending<br />

moment Diagram


Group Work<br />

Draw shear force and Bending moment Diagram


Example 1<br />

Draw shear force and Bending moment Diagram


V(kN)


Example 2<br />

Draw shear force and Bending moment Diagram


Example 2<br />

Draw shear force<br />

and Bending<br />

moment Diagram


Example 3<br />

Draw shear force<br />

and Bending<br />

moment Diagram


+<br />

+<br />

+<br />

+


Example 4<br />

Draw shear force<br />

and Bending<br />

moment Diagram


+<br />

+<br />

+


Problem 1<br />

Draw shear force and Bending moment Diagram


30.5 23.5<br />

+<br />

-<br />

-<br />

+<br />

+


Problem 2<br />

Draw shear force and Bending moment Diagram


2<br />

3<br />

x<br />

at →V<br />

5 =<br />

M<br />

M<br />

= 0<br />

5 2<br />

=<br />

12<br />

x ⇒ x<br />

2<br />

2<br />

3<br />

x( RA)<br />

=<br />

3<br />

=<br />

= 11.55<br />

3.46m<br />

(3.46)(5)


Example 1<br />

Draw shear force and Bending moment Diagram<br />

Hinge


∑<br />

Reaction Calculation<br />

( )<br />

C<br />

M<br />

k<br />

A<br />

A<br />

M<br />

y<br />

y<br />

left<br />

B<br />

0<br />

60<br />

4(32)<br />

20(27)<br />

5(16)<br />

18(6)<br />

(12)<br />

0<br />

4<br />

0<br />

60<br />

20(5)<br />

10<br />

0<br />

=<br />

=<br />

−<br />

+<br />

⇒ −<br />

=<br />

∑<br />

∑<br />

E<br />

F<br />

k<br />

C<br />

C<br />

M<br />

y<br />

y<br />

E<br />

0<br />

0<br />

45<br />

0<br />

60<br />

4(32)<br />

20(27)<br />

5(16)<br />

18(6)<br />

(12)<br />

0<br />

=<br />

⇒<br />

=<br />

=<br />

=<br />

−<br />

−<br />

+<br />

+<br />

+<br />

⇒<br />

=<br />

∑<br />

∑<br />

k<br />

E<br />

E<br />

E<br />

F<br />

y<br />

y<br />

x<br />

x<br />

6<br />

0<br />

45<br />

4<br />

20<br />

5<br />

18<br />

0<br />

F<br />

0<br />

0<br />

y<br />

=<br />

=<br />

−<br />

−<br />

+<br />

+<br />

+<br />

⇒<br />

=<br />

=<br />

⇒<br />

=<br />

∑<br />

∑<br />

y


Frames (Example 1)<br />

Draw Bending moment Diagram


Support reaction & Free Body diagram


_<br />

_<br />

S.F.D<br />

B.M.D


+ S.F.D<br />

- - B.M.D


Frames (Example 2)<br />

Draw shear force and Bending moment Diagram


+<br />

NFD N.F.D<br />

+<br />

_<br />

S.F.D<br />

N.F.D<br />

S.F.D<br />

B.M.D<br />

+<br />

-<br />

+<br />

B.M.D<br />

N.F.D<br />

+ -


Frames (Example 3)<br />

Draw shear force and Bending moment Diagram


N.F.D<br />

S.F.D<br />

B.M.D<br />

-<br />

-<br />

-


_<br />

NFD N.F.D<br />

64<br />

+<br />

26<br />

S.F.D<br />

+<br />

B.M.D<br />

251.6


NFD N.F.D<br />

S.F.D<br />

BMD B.M.D<br />

168


64<br />

+<br />

13.22<br />

S.F.D<br />

_<br />

26<br />

36<br />

_<br />

31.78<br />

432<br />

_<br />

432 139.3<br />

_<br />

+<br />

251.6<br />

168+<br />

B.M.D


Frames (Example 4)<br />

Draw shear force and Bending moment Diagram


S.F.D<br />

B.M.D<br />

+<br />

+


_<br />

S.F.D<br />

+<br />

B.M.D


Frames (Example 5)<br />

Draw shear force and Bending moment Diagram


Frames (Example 6)<br />

Draw shear force and Bending moment Diagram


N.F.D S.F.D B.M.D<br />

_<br />

_<br />

_


_<br />

N.F.D<br />

+<br />

_<br />

+ S.F.D<br />

_<br />

+<br />

_<br />

B.M.D


B.M.D<br />

S.F.D<br />

N.F.D<br />

_<br />

+<br />

_


Frames (Example 7)<br />

Draw Normal force, shear force and Bending moment<br />

Diagram


10kN/m<br />

60kN<br />

20.8<br />

47.7<br />

110<br />

53.7<br />

26.56 o<br />

43.2<br />

26.8<br />

10.5


N.F.D S.F.D B.M.D<br />

S.F.D<br />

B.M.D


N.F.D<br />

S.F.D<br />

B.M.D


B.M.D


Moment diagram constructed by the<br />

Example 1<br />

method of superposition


Example 2.a


Example 2.b


Problem 1<br />

D N l f h f d B di t<br />

Draw Normal force, shear force and Bending moment<br />

Diagram


Problem 2<br />

D N l f h f d B di t<br />

Draw Normal force, shear force and Bending moment<br />

Diagram

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!