Mechanisms of Multidrug-Resistance in Cancer - NIH Clinical Center

Mechanisms of Multidrug-Resistance in Cancer - NIH Clinical Center Mechanisms of Multidrug-Resistance in Cancer - NIH Clinical Center

clinicalcenter.nih.gov
from clinicalcenter.nih.gov More from this publisher

Learn<strong>in</strong>g Some New Tricks<br />

From a <strong>Multidrug</strong> Transporter<br />

Michael M. Gottesman, M.D.<br />

Chief, Laboratory <strong>of</strong> Cell Biology<br />

<strong>Center</strong> for <strong>Cancer</strong> Research, NCI<br />

National Institutes <strong>of</strong> Health<br />

January 15, 2009


Estimated New <strong>Cancer</strong> Cases & Deaths, 2008<br />

Sites New Cases Deaths* %<br />

All Sites 1,437,180 565,650 39%<br />

Prostate 186,320 28,660 15%<br />

Breast 184,450 40,930 22%<br />

Digestive System 202,720 79,090 39%<br />

Pancreas, Liver & Gall Bladder 68,570 56,040 82%<br />

Lung & Bronchus 215,020 161,840 75%<br />

Bladder 68,810 14,100 20%<br />

Kidney & Renal Pelvis 54,390 13,010 24%<br />

Ovary 21,650 15,520 72%<br />

Cervical <strong>Cancer</strong> 11,070 3,870 35%<br />

Lymphoma & Leukemia 118,610 42,220 36%<br />

Bra<strong>in</strong> & Nervous System 21,810 13,070 60%<br />

*Virtually all deaths are due to chemotherapy resistance CA <strong>Cancer</strong> J Cl<strong>in</strong>, 2008


Drug <strong>Resistance</strong> <strong>in</strong> <strong>Cancer</strong><br />

• May affect multiple drugs used simultaneously:<br />

known as multidrug resistance (MDR)<br />

• Affects all classes <strong>of</strong> drugs, <strong>in</strong>clud<strong>in</strong>g newly<br />

designed targeted drugs<br />

• Just as oncogene targets have been catalogued,<br />

we need to enumerate all mechanisms <strong>of</strong> drug<br />

resistance <strong>in</strong> cancer to solve this problem and<br />

circumvent resistance


<strong>Mechanisms</strong> <strong>of</strong> resistance to<br />

anti-cancer drugs<br />

Decreased<br />

uptake<br />

Reduced apoptosis<br />

Altered cell cycle checkpo<strong>in</strong>ts<br />

Increased metabolism <strong>of</strong> drugs<br />

Increased or altered targets<br />

Increased repair <strong>of</strong> damage<br />

Compartmentalization<br />

Increased<br />

efflux


Ultimate Goals<br />

1. Molecular analysis <strong>of</strong> human cancers<br />

to predict response to therapy<br />

2. Use this <strong>in</strong>formation to develop novel<br />

drugs to treat cancer and new imag<strong>in</strong>g<br />

modalities for cancer<br />

3. To learn more about cellular<br />

pharmacology and pharmacok<strong>in</strong>etics<br />

<strong>of</strong> drugs, <strong>in</strong>clud<strong>in</strong>g drug uptake,<br />

distribution, and excretion


ABC transporters: Doma<strong>in</strong> organization<br />

ABCB1<br />

TM Doma<strong>in</strong><br />

ATP b<strong>in</strong>d<strong>in</strong>g<br />

TM Doma<strong>in</strong><br />

ATP b<strong>in</strong>d<strong>in</strong>g<br />

ABCC1<br />

ABC<br />

G2


Hypothetical Model <strong>of</strong> Human P-glycoprote<strong>in</strong><br />

100<br />

OUT<br />

MEMBRANE<br />

200<br />

IN<br />

300<br />

ATP SITE<br />

ATP SITE<br />

A<br />

B<br />

700<br />

1000 1200<br />

A B<br />

400<br />

C<br />

600<br />

P<br />

800<br />

P<br />

P<br />

P<br />

900<br />

1100<br />

C<br />

1<br />

500<br />

POINT MUTATIONS ( ),<br />

PHOTOAFFINITY LABELED<br />

REGIONS ( ), AND<br />

PHOSPHORYLATION SITES ( P )<br />

1280


Substrates and Revers<strong>in</strong>g Agents <strong>of</strong> Pgp<br />

N<br />

H<br />

H 3 COOC<br />

N<br />

H<br />

OH<br />

N<br />

CH 2 CH 3<br />

H 3 CO<br />

H 3 CO<br />

H 3 CO<br />

OCH 3<br />

NHCOCH 3<br />

L-Pro<br />

D-Val<br />

L-Thr<br />

Sar<br />

O<br />

L-M eva l<br />

O<br />

C<br />

N<br />

L-Pro<br />

D-Val<br />

C<br />

O<br />

Sar<br />

L-T<br />

hr<br />

NH 2<br />

L-M eva l<br />

O<br />

H 3 CO<br />

N<br />

HO<br />

CH 3<br />

V<strong>in</strong>blast<strong>in</strong>e<br />

CH 2 CH 3<br />

COOCH 3<br />

COOCH 3<br />

O<br />

Colchic<strong>in</strong>e<br />

O<br />

O<br />

O<br />

CH 3 CH 3<br />

Act<strong>in</strong>omyc<strong>in</strong> D<br />

O<br />

OH<br />

H<br />

OCH 3 O OH<br />

H<br />

OH<br />

H<br />

H 3 C<br />

H<br />

NH 2<br />

O<br />

H<br />

O<br />

H<br />

CHOCH 3<br />

OH<br />

Daunorubic<strong>in</strong><br />

O<br />

C<br />

H 3 CO<br />

H 3 CO<br />

NH<br />

O O<br />

H<br />

C C<br />

H<br />

C<br />

CN<br />

O<br />

H 3 C<br />

H 3 C<br />

C C C C N<br />

H 2 H 2 H 2<br />

CH(CH 3 ) 2<br />

C<br />

HO<br />

Taxol<br />

O<br />

O<br />

O<br />

CH 3<br />

CH 3<br />

CH 3<br />

O<br />

OH<br />

CH 2 O<br />

C CH 3<br />

CH 3<br />

C<br />

H 2<br />

C<br />

H 2<br />

OCH 3<br />

Verapamil<br />

O<br />

OCH 3<br />

HO<br />

H 3 CO<br />

O<br />

HO<br />

H 3 C<br />

H 3 C<br />

CH 3<br />

O O<br />

OH<br />

N<br />

H 3 C<br />

O<br />

O<br />

H 3 CO<br />

O<br />

H<br />

O OCH 3 C<br />

3<br />

CH 3<br />

CH 3<br />

Rapamyc<strong>in</strong>


P-glycoprote<strong>in</strong> removes hydrophobic substrates<br />

directly from the plasma membrane<br />

+<br />

OUT<br />

+<br />

MEMBRANE<br />

ATP<br />

ATP<br />

+<br />

IN


Homology model <strong>of</strong> human P-<br />

glycoprote<strong>in</strong> based on the<br />

structure <strong>of</strong> bacterial ABC<br />

transporter Sav1866 <strong>of</strong> S. aureus<br />

N-TMD<br />

Plasma membrane<br />

C-TMD<br />

Cell<br />

N-NBD<br />

C-NBD


Role <strong>of</strong> P-glycoprote<strong>in</strong> <strong>in</strong> cancer<br />

• Approximately 50% <strong>of</strong> human cancers express P-glycoprote<strong>in</strong> at<br />

levels sufficient to confer MDR<br />

• <strong>Cancer</strong>s which acquire expression <strong>of</strong> P-gp follow<strong>in</strong>g treatment <strong>of</strong> the<br />

patient <strong>in</strong>clude leukemias, myeloma, lymphomas, breast, ovarian<br />

cancer; prelim<strong>in</strong>ary results with P-gp <strong>in</strong>hibitors suggest improved<br />

response to chemotherapy <strong>in</strong> some <strong>of</strong> these patients<br />

• <strong>Cancer</strong>s which express P-gp at time <strong>of</strong> diagnosis <strong>in</strong>clude colon,<br />

kidney, pancreas, liver; these do not respond to P-gp <strong>in</strong>hibitors alone<br />

and have other mechanisms <strong>of</strong> resistance<br />

• Be<strong>in</strong>g able to image P-gp <strong>in</strong> cancer (and ultimately other transporters<br />

that contribute to resistance) could help guide therapy


Physiologic Role <strong>of</strong> P-glycoprote<strong>in</strong>


ABC transporters determ<strong>in</strong>e oral bioavailability, excretion, penetration<br />

and protect the organism aga<strong>in</strong>st airborne xenobiotics<br />

BRAIN<br />

B1, C1, C2, G2<br />

BBB<br />

BLOOD<br />

MILK<br />

G2<br />

CSF<br />

B1<br />

C1<br />

choroid plexus<br />

C1, C3-5<br />

C2, B1, B4, B11, G2<br />

C1<br />

GI TRACT<br />

oral<br />

aerosol<br />

LUNG<br />

LIVER<br />

C2, B1,<br />

G2<br />

B1, C1,<br />

A3,G21<br />

PLACENTA<br />

FETUS<br />

B1, G2<br />

KIDNEY<br />

B1, C2, G2<br />

BTB<br />

URINE<br />

C1<br />

C1<br />

TESTIS


Polymorphisms <strong>in</strong> the human<br />

MDR1 1 gene<br />

1. More than 50 SNPs have been reported <strong>in</strong> the MDR1 gene.<br />

14 <strong>of</strong> them are silent polymorphisms.<br />

2. 5 common cod<strong>in</strong>g (non-synonymous) polymorphisms have no<br />

demonstrable effect on drug transport function.<br />

3. The synonymous SNP <strong>in</strong> exon 26 (C3435T) was the first associated<br />

with altered MDR1 function and is <strong>of</strong>ten part <strong>of</strong> a haplotype <strong>in</strong>clud<strong>in</strong>g<br />

another synonymous (C1236T) and a nonsynonymous SNP (G2677T).


The C1236T, G2677T, C3435T haplotype has<br />

been l<strong>in</strong>ked to several different phenotypes<br />

•Altered digox<strong>in</strong> and fex<strong>of</strong>enad<strong>in</strong>e<br />

pharmacok<strong>in</strong>etics<br />

•Altered toxicity <strong>in</strong> transplant patients from<br />

cyclospor<strong>in</strong>e A, tacrilimus<br />

•Altered <strong>in</strong>cidence <strong>of</strong> Crohn’s disease,<br />

colon cancer, and Park<strong>in</strong>son’s disease


MDR1 1 wild-type, SNPs, and<br />

haplotypes show similar P-gp P<br />

total<br />

and surface expression<br />

pTM1<br />

MDR1<br />

C1236T<br />

G2677T<br />

C3435T<br />

C1236T-G2677T<br />

C1236T-C3435T<br />

G2677T-C3435T<br />

C1236T-G2677T-C3435T<br />

pTM1<br />

X3<br />

WT<br />

P-gp<br />

10 0 10 1 10 2 10 3 10 4<br />

Fluorescence Intensity


MDR1 1 wild-type and the haplotype<br />

(1236-2677<br />

2677-3435) do not exhibit similar<br />

Bodipy-verapamil<br />

accumulation<br />

WT<br />

X3<br />

pTM1<br />

10 0 10 1 10 2 10 3 10 4<br />

Fluorescence Intensity


MDR1 1 wild-type and the haplotype exhibit<br />

different patterns us<strong>in</strong>g rhodam<strong>in</strong>e 123 efflux with<br />

cyclospor<strong>in</strong> A revers<strong>in</strong>g agent<br />

MDR1 WT<br />

pTM1 control<br />

1236-2677-3435<br />

10 0 10 1 10 2 10 3 10 4<br />

Fluorescence Intensity<br />

5 mM CsA


MDR1 1 wild-type and haplotype show the same P-gp P<br />

cell<br />

surface expression us<strong>in</strong>g MRK16 and 17F9, but not UIC2<br />

- a conformational sensitive antibody<br />

pTM1<br />

WT<br />

1236-2677-3435


MDR1 1 wild-type and haplotype show different<br />

tryps<strong>in</strong>ization patterns confirm<strong>in</strong>g altered<br />

conformation


Polymorphic forms <strong>of</strong> P-gp with alleles that<br />

don’t change am<strong>in</strong>o acid sequence change the<br />

conformation <strong>of</strong> P-gp<br />

1 . In transient transfection experiments, the amount <strong>of</strong> P-gp<br />

mRNA, prote<strong>in</strong>, and prote<strong>in</strong> localization on the cell<br />

surface is unchanged.<br />

2. The conformation <strong>of</strong> polymorphic P-gp is altered as<br />

shown by tryptic peptide analysis and conformationspecific<br />

MoAbs.<br />

3. Translational toepr<strong>in</strong>t experiments show a major delay <strong>in</strong><br />

translation at the site <strong>of</strong> the “silent” polymorphism.


mRNA<br />

no ribosome<br />

(Control)<br />

Primer extension <strong>in</strong>hibition (toepr<strong>in</strong>t) assay – to<br />

detect presence <strong>of</strong> ribosome stall<strong>in</strong>g sites<br />

32 P labeled primer<br />

for reverse transcription<br />

Control<br />

Wild-type<br />

+ribosome<br />

Mutant<br />

+ribosome<br />

G A U C<br />

5’<br />

CAP<br />

Wild type mRNA<br />

+ ribosome<br />

CHX<br />

ribosome<br />

complex<br />

CHX<br />

ribosome<br />

complex<br />

CAP<br />

Mutant mRNA<br />

+ ribosome<br />

CHX<br />

ribosome<br />

complex<br />

CHX<br />

ribosome<br />

complex<br />

CHX<br />

ribosome<br />

complex<br />

CAP<br />

Reverse transcription products<br />

were resolved by<br />

polyacrylamide gel<br />

electrophoresis<br />

3’


Toepr<strong>in</strong>t analysis <strong>of</strong> MDR1 mRNA<br />

around the 3435 SNP<br />

A<br />

C<br />

In vitro<br />

translated<br />

MDR1<br />

Toepr<strong>in</strong>t<br />

signal<br />

B<br />

Wild-type SNP 3435T SNP 3435A<br />

Nucleotide<br />

AUC<br />

AUU<br />

AUA<br />

Codon usage<br />

47% 35% 18%


Synonymous SNPs affect P-glycoprote<strong>in</strong> conformation and function<br />

Wild-type Pgp<br />

tRNAs<br />

mRNA<br />

G<br />

G<br />

G<br />

G<br />

G<br />

G G<br />

A<br />

A<br />

A A<br />

A<br />

A A<br />

GGCXXXXXXXXGCTXXXXXXXXATCXXX<br />

1236 2677 3435<br />

I<br />

I<br />

The Pgp Haplotype<br />

(rare tRNAs) or altered<br />

mRNA structure<br />

I<br />

I<br />

I<br />

I<br />

I<br />

Wild-type: normal<br />

k<strong>in</strong>etics <strong>of</strong><br />

translation<br />

ATP<br />

ATP<br />

Drug-substrate<br />

sites show different<br />

conformations<br />

tRNAs<br />

G<br />

G<br />

I<br />

A<br />

G A<br />

A<br />

I<br />

I<br />

Haplotype: altered<br />

k<strong>in</strong>etics <strong>of</strong><br />

translation<br />

ATP<br />

ATP<br />

mRNA<br />

GG XXXX CTXX XXXXXXAT X<br />

TXX XXT TXX<br />

SNP<br />

(synonymous)<br />

SNP<br />

(non-synonymous)<br />

SNP<br />

(synonymous)<br />

Interaction with antibody<br />

and modulators is affected


P-gp expression on cell surface (MRK16)<br />

<strong>of</strong> stably transfected LLC-PK1 cells<br />

1 0 Antibody: MRK16<br />

2 0 Antibody: Goat antimouse<br />

FITC


P-gp expression on cell surface (UIC2) <strong>of</strong><br />

transfected LLC-PK1 cells<br />

Conformation-sensitive<br />

Monoclonal antibody


V<strong>in</strong>ca-alkaloids<br />

Survival (%)<br />

150<br />

125<br />

100<br />

75<br />

50<br />

V<strong>in</strong>crist<strong>in</strong>e<br />

V<br />

WT<br />

3H<br />

3HA<br />

Survival (%)<br />

150<br />

125<br />

100<br />

75<br />

50<br />

V<strong>in</strong>blast<strong>in</strong>e<br />

V<br />

WT<br />

3H<br />

3HA<br />

25<br />

25<br />

0<br />

-12 -11 -10 -9 -8 -7 -6 -5<br />

Concentration (M)<br />

0<br />

-11 -10 -9 -8 -7 -6 -5 -4<br />

Concentration (M)


Taxol<br />

Paclitaxel<br />

Docetaxel<br />

Survival (%)<br />

125<br />

100<br />

75<br />

50<br />

V<br />

WT<br />

3H<br />

3HA<br />

Survival (%)<br />

150<br />

100<br />

50<br />

V<br />

WT<br />

3H<br />

3HA<br />

25<br />

0<br />

-11 -10 -9 -8 -7 -6 -5 -4 -3<br />

Concentration (M)<br />

0<br />

-11 -10 -9 -8 -7 -6 -5 -4<br />

Concentration (M)


Anthracycl<strong>in</strong>es<br />

Doxorubic<strong>in</strong><br />

Daunorubic<strong>in</strong><br />

Survival (%)<br />

125<br />

100<br />

75<br />

50<br />

25<br />

V<br />

WT<br />

3H<br />

3HA<br />

Survival (%)<br />

125<br />

100<br />

75<br />

50<br />

25<br />

V<br />

WT<br />

3H<br />

3HA<br />

0<br />

-10 -9 -8 -7 -6 -5 -4 -3<br />

Concentration (M)<br />

0<br />

-10 -9 -8 -7 -6 -5 -4 -3<br />

Concentration (M)<br />

Doxorubic<strong>in</strong> Daunorubic<strong>in</strong>


Implications<br />

• Expla<strong>in</strong>s conservation <strong>of</strong> third position for many<br />

codons<br />

• Might expla<strong>in</strong> some non-Mendelian <strong>in</strong>heritance<br />

• Might expla<strong>in</strong> l<strong>in</strong>kage <strong>of</strong> phenotypes to other<br />

synonymous polymorphisms<br />

• For P-gp, the haplotype could have selective<br />

advantage and/or affect drug distribution<br />

• For cancers, could affect pattern <strong>of</strong> MDR and ability<br />

to respond to specific <strong>in</strong>hibitors


ABC Transporters<br />

Confer <strong>Resistance</strong> to<br />

Anti-<strong>Cancer</strong> Drugs<br />

Confers resistance<br />

Selected<br />

Doesn’t transport


Can we discover new drugs that <strong>in</strong>teract with<br />

ABC transporter genes?<br />

• Use Real Time (RT)-PCR to measure ABC<br />

mRNA levels for 48 ABC transporters and 23<br />

solute carrier prote<strong>in</strong>s<br />

• Exploit NCI-60 cell l<strong>in</strong>e database, with known<br />

resistance to 100,000 different drugs, to<br />

correlate patterns <strong>of</strong> drug-resistance and<br />

expression <strong>of</strong> these transporters


.<br />

Expression <strong>of</strong> ABC-transporters <strong>in</strong> the NCI60 panel


Search for MDR1-potentiated<br />

compounds <strong>in</strong> DTP’s s database<br />

17K<br />

Sensitivity (dlogGI50)<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

NSC 363997<br />

-5 0 5 10 15<br />

ABCB1 expression (dCP)<br />

NSC 73306<br />

NSC 363997<br />

140<br />

cell survival (%)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0.1 1 10 100 1000 10000<br />

-1<br />

-0.9<br />

-0.8<br />

-0.7<br />

-0.6<br />

-0.5<br />

-0.4<br />

-0.3<br />

-0.2<br />

-0.1<br />

-0<br />

0.1<br />

0.2<br />

0.3<br />

0.4<br />

0.5<br />

0.6<br />

0.7<br />

0.8<br />

0.9<br />

1<br />

concentration (uM)<br />

Substrates<br />

MDR1-potentiated compounds?


The cytotoxicity <strong>of</strong> NSC 73306 is<br />

<strong>in</strong>creased <strong>in</strong> KB-V1 cells<br />

Sensitivity (dlogGI50)<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

r = 0.54<br />

-1<br />

-1.5<br />

-5 0 5 10 15<br />

ABCB1 expression (dCP)<br />

Cell survival (%)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

1 10 100 1000<br />

Concentration (µM)<br />

KB-3-1<br />

(MDR1-)<br />

KB-V1<br />

(MDR1+)<br />

KB-3-1<br />

+PSC 833<br />

KB-V1<br />

+PSC 833<br />

NSC73306


Potential Cl<strong>in</strong>ical Utility <strong>of</strong> Discovery <strong>of</strong><br />

Compounds that Specifically Kill MDR1-<br />

Express<strong>in</strong>g Cells<br />

Can be used <strong>in</strong> comb<strong>in</strong>ation with standard<br />

chemotherapy to elim<strong>in</strong>ate MDR1-express<strong>in</strong>g cell<br />

populations<br />

Precl<strong>in</strong>ical development <strong>of</strong> thiosemicarbazones and<br />

search for additional compounds with similar<br />

properties is underway


Balance <strong>of</strong> uptake and efflux determ<strong>in</strong>es drug<br />

accumulation <strong>in</strong> cancer cells


Solute Carriers are plausible uptake transporters<br />

for anti-cancer drugs<br />

OUT<br />

IN<br />

NH 2<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

SLCO: organic<br />

anion transport<strong>in</strong>g<br />

polypeptide (OATP)<br />

family<br />

COOH<br />

OUT<br />

IN<br />

W S L R N K R E EDTGALLSSGQKDYV NTS<br />

H SN N<br />

S<br />

L<br />

T VQLQNGEIWELSRCS<br />

R P PGNVSQVVFH<br />

C V H H<br />

P<br />

T<br />

V<br />

M F<br />

G<br />

A<br />

V<br />

L S<br />

H I<br />

Y<br />

S G<br />

I C<br />

Q N<br />

F<br />

I A<br />

F<br />

C<br />

RVLY<br />

Q<br />

G<br />

R F<br />

HF<br />

G<br />

V<br />

H<br />

D Y I<br />

G<br />

NH 2<br />

M G S RHFE<br />

G<br />

Y<br />

E<br />

Y<br />

T<br />

G<br />

S<br />

K<br />

K<br />

E F P C VDG<br />

N T W KST<br />

Y I YDQ A<br />

V<br />

T<br />

Q<br />

W<br />

N<br />

L<br />

V<br />

D<br />

C<br />

R<br />

K<br />

T F M AAR<br />

W<br />

M A L<br />

L Q I<br />

L P<br />

M F<br />

F G<br />

A F A V D YY F V<br />

F<br />

L V I A A M A L L V R T W W<br />

L<br />

S<br />

G<br />

V F T<br />

F L F G<br />

V<br />

S A<br />

G Y<br />

L T G Y L Y<br />

Y G<br />

S S M V L L V A<br />

M Q I T L S<br />

F W A T S<br />

G<br />

V F<br />

Y V<br />

V G T L V T<br />

V V L E<br />

M F F A<br />

V P L F I<br />

F I H L H S C C<br />

A S V<br />

W V L<br />

S<br />

DR<br />

R R<br />

G<br />

M K T W<br />

L G S R<br />

P<br />

P<br />

E<br />

T<br />

P<br />

F<br />

W<br />

L L S E G R Y<br />

V N L<br />

S L N S<br />

S Y S F<br />

L G F<br />

F T G<br />

W L I W<br />

L T V<br />

F L N L L V L V G<br />

I E<br />

P T A F Y<br />

C I<br />

V<br />

A<br />

P<br />

V I<br />

L V V M<br />

A C G<br />

C S A<br />

Y S L F<br />

V L A<br />

I L G V V T A M V G K F A I G A A F G L I Y L Y T A<br />

P F S I L A I F R L A<br />

P I Q V L S M V C G F<br />

G S G<br />

M T A S L L<br />

S L A V L G V T<br />

I V R L<br />

S SIW<br />

G G N EY<br />

P Q K H Y S VDL<br />

T K<br />

DKV<br />

R T E L Y P T L PETL<br />

TKRT G R<br />

A E E<br />

Q<br />

K<br />

IVD<br />

I M A K WN R A S S C K L W SI L<br />

P<br />

T L L<br />

K<br />

G<br />

N Y<br />

S<br />

N T<br />

K<br />

S<br />

S R<br />

L<br />

E<br />

S L<br />

D L<br />

Q<br />

G<br />

L<br />

P<br />

V S N S<br />

P T E V QK H N L S Y LF<br />

NSGL<br />

P<br />

K L<br />

P<br />

S A<br />

E T<br />

L<br />

N TWEEA<br />

E G G S D E<br />

R KTE E<br />

P<br />

S<br />

COOH<br />

T<br />

E<br />

I A<br />

L K A<br />

P<br />

SLC22: organic<br />

cation and anion<br />

transporter (OCT<br />

And OAT) families


Summary <strong>of</strong> SLCO and SLC22 Transporters<br />

Most <strong>of</strong> the SLCO and SLC22 family members we tested are<br />

expressed at some level <strong>in</strong> cancer cell l<strong>in</strong>es.<br />

By correlat<strong>in</strong>g the expression pr<strong>of</strong>iles with the growth<br />

<strong>in</strong>hibitory pr<strong>of</strong>iles, expression <strong>of</strong> 3 <strong>of</strong> the SLCO and SLC22<br />

family members were found to correlate with sensitivity to<br />

specific drugs.<br />

Expression <strong>of</strong> SLC22A4 <strong>in</strong> KB cells confers sensitivity to<br />

mitoxantrone, doxorubic<strong>in</strong>, carboplat<strong>in</strong> and cisplat<strong>in</strong>.


Micr<strong>of</strong>luidic technology us<strong>in</strong>g TaqMan Low Density Array<br />

(TLDA)-based detection to study the mechanisms <strong>of</strong><br />

multidrug resistance <strong>in</strong> cl<strong>in</strong>ical samples<br />

Goal: To correlate expression <strong>of</strong> drug-resistance genes with response to<br />

chemotherapy <strong>in</strong> cl<strong>in</strong>ical samples<br />

Method: a customized TLDA with probes for 380 drug-resistance genes enabl<strong>in</strong>g<br />

high-throughput quantitative real-time PCR based on TaqMan chemistry<br />

Port<br />

1 to 8 samples<br />

Channel<br />

Each well conta<strong>in</strong>s a pair<br />

<strong>of</strong> primers and a probe<br />

12 to 380 targets<br />

1, 2 or 4 replicates


The Anti-<strong>Cancer</strong> Drug <strong>Resistance</strong> Transcriptome


No ovarian cell l<strong>in</strong>e has a drug-resistance gene<br />

expression pr<strong>of</strong>ile similar to any cl<strong>in</strong>ical sample


Strategies for deal<strong>in</strong>g with MDR1-<br />

mediated multidrug resistance<br />

Development <strong>of</strong><br />

specific <strong>in</strong>hibitors <strong>of</strong> P-<br />

gp<br />

Poor performance <strong>in</strong><br />

cl<strong>in</strong>ical trials for a<br />

number <strong>of</strong> reasons:<br />

-Poor trial design, e.g.,<br />

cancers don’t<br />

express MDR1<br />

Can we use MDR1<br />

Expression as an<br />

Achilles<br />

heel to kill MDR<br />

cells?<br />

-Side effects due to<br />

<strong>in</strong>hibition <strong>of</strong> endogenous<br />

functions<br />

Drug structural variation<br />

Dose escalation<br />

Imag<strong>in</strong>g <strong>of</strong> P-gp <strong>in</strong> vivo <strong>in</strong> cancers can<br />

enable all <strong>of</strong> these strategies


Acknowledgements<br />

• Gergely Szakacs<br />

• Jean-Philippe Annereau<br />

• Joe Ludwig<br />

• Jean-Pierre Gillet<br />

• Mitsunori Okabe<br />

• Matthew Hall<br />

• Chava Kimchi-Sarfaty<br />

• Jung-Mi Oh<br />

• Andy Fung<br />

• Suresh Ambudkar<br />

– Zuben Sauna<br />

– InWha Kim<br />

– Anna Calcagno<br />

• Ira Pastan<br />

• John We<strong>in</strong>ste<strong>in</strong><br />

• Carol Cardarelli<br />

• Takaaki Abe<br />

• Joe Covey<br />

• Henry Fales

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!