13.11.2014 Views

Changes in the activity of antioxidant enzyme superoxide dismutase ...

Changes in the activity of antioxidant enzyme superoxide dismutase ...

Changes in the activity of antioxidant enzyme superoxide dismutase ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF<br />

AGRICULTURE. SODININKYSTĖ IR DARŽININKYSTĖ. 2008. 27(2).<br />

<strong>Changes</strong> <strong>in</strong> <strong>the</strong> <strong>activity</strong> <strong>of</strong> <strong>antioxidant</strong> <strong>enzyme</strong><br />

<strong>superoxide</strong> <strong>dismutase</strong> <strong>in</strong> Crepis capillaris plants<br />

after <strong>the</strong> impact <strong>of</strong> UV-B and ozone<br />

Reg<strong>in</strong>a Vyšniauskienė, Vida Rančelienė<br />

Institute <strong>of</strong> Botany, Žaliųjų ežerų str. 49, Vilnius LT-08406, Lithuania<br />

E-mail: reg<strong>in</strong>a.vysniauskiene@botanika.lt<br />

The aim <strong>of</strong> <strong>the</strong> work was to determ<strong>in</strong>e <strong>the</strong> changes <strong>of</strong> <strong>antioxidant</strong> <strong>enzyme</strong> <strong>superoxide</strong><br />

<strong>dismutase</strong> (SOD) <strong>activity</strong> <strong>in</strong> model plant Crepis capillaris after <strong>the</strong> impact <strong>of</strong> UV-B and ozone.<br />

Comparison <strong>of</strong> <strong>the</strong> SOD <strong>activity</strong> <strong>in</strong> Crepis capillaris leaves after <strong>the</strong> effect <strong>of</strong> small adaptational<br />

doses <strong>of</strong> UV-B and ozone with <strong>the</strong> control revealed that after UV-B (3 kJm -2 ) <strong>the</strong> SOD <strong>activity</strong><br />

<strong>in</strong>creases 1.4 times and after <strong>the</strong> impact <strong>of</strong> ozone <strong>the</strong> SOD <strong>in</strong>creases by 1.94 times. After larger<br />

UV-B (9 kJm -2 ) doses <strong>the</strong> SOD <strong>activity</strong> <strong>in</strong>creases even 2 times. Still three times higher ozone<br />

dose already <strong>in</strong>hibits <strong>the</strong> SOD <strong>activity</strong> but does not reach <strong>the</strong> level <strong>of</strong> <strong>the</strong> control.<br />

Investigations <strong>of</strong> <strong>the</strong> impact <strong>of</strong> adaptation on repeated impact <strong>of</strong> UV-B and ozone showed<br />

that SOD <strong>activity</strong> to Crepis capillaris plants is similar and <strong>in</strong>creases by 1.74 and 1.98 times<br />

compar<strong>in</strong>g with <strong>the</strong> control. Even when plants are adapted to one factor and <strong>in</strong>fluenced by <strong>the</strong><br />

o<strong>the</strong>r (cross adaptation), <strong>the</strong> SOD <strong>activity</strong> rema<strong>in</strong>s similar. The research showed that adaptation<br />

by small UV-B and ozone doses to one and <strong>the</strong> o<strong>the</strong>r factor <strong>in</strong>fluences <strong>the</strong> <strong>in</strong>crease <strong>of</strong> SOD <strong>activity</strong><br />

<strong>in</strong> plants. The <strong>in</strong>creased SOD <strong>activity</strong> after UV-B irradiation and ozone should be considered<br />

as adaptational response <strong>of</strong> a plant to oxidative stress caused by unfavourable factors.<br />

Key words: Crepis capillaris, ozone, UVB, adaptation, <strong>superoxide</strong> <strong>dismutase</strong>,<br />

EC 1.15. 1.1.<br />

Introduction. Unfavourable environmental factors, like UVB and ozone, are<br />

usually related with each o<strong>the</strong>r. Incident UVB radiation (<strong>in</strong> particular, <strong>the</strong> waveband<br />

297–310 nm) is <strong>in</strong>creas<strong>in</strong>g due to <strong>the</strong> reduction <strong>in</strong> <strong>the</strong> stratospheric ozone concentration<br />

(Caldwell et al., 1989). Environmental stress factors are known to cause oxidative<br />

stress. Stress caused by <strong>the</strong>se abiotic factors <strong>in</strong>duces <strong>the</strong> excess <strong>of</strong> free radicals. Part<br />

<strong>of</strong> free radicals cause changes <strong>in</strong> macromolecules, such as DNA and prote<strong>in</strong>s. The<br />

o<strong>the</strong>r part acts as a signal trigger<strong>in</strong>g <strong>the</strong> protective <strong>antioxidant</strong> mechanisms <strong>of</strong> plants<br />

(Ballarй, 2003). Enzyme system is one <strong>of</strong> such mechanisms. Such antioxidative<br />

<strong>enzyme</strong>s as <strong>superoxide</strong> <strong>dismutase</strong> (SOD), catalase (CAT), peroxidase (POD) detoxify<br />

<strong>the</strong> excess <strong>of</strong> free radicals (Mazza et al., 1999). Selection <strong>of</strong> test-plants characteriz<strong>in</strong>g<br />

<strong>the</strong> contam<strong>in</strong>ation is essential while <strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong> impact <strong>of</strong> natural factors upon<br />

ambient environment. Harmful factors are usually <strong>in</strong>vestigated separately, and complex<br />

mechanism <strong>of</strong> <strong>the</strong> impact <strong>of</strong> both factors is still under <strong>in</strong>vestigated.<br />

Aim <strong>of</strong> <strong>the</strong> work was to determ<strong>in</strong>e changes <strong>in</strong> <strong>the</strong> <strong>activity</strong> <strong>of</strong> antioxidative <strong>enzyme</strong><br />

<strong>superoxide</strong> <strong>dismutase</strong> (SOD) <strong>in</strong> leaves <strong>of</strong> Crepis capillaris after complex impact <strong>of</strong><br />

209


UVB and ozone and to answer <strong>the</strong> question whe<strong>the</strong>r <strong>enzyme</strong> <strong>of</strong> antioxidative stress<br />

SOD participates <strong>in</strong> protective mechanisms <strong>of</strong> plant.<br />

Object, methods and conditions. Crepis capillaris (L.) Wallr. plants grown for 2<br />

weeks <strong>in</strong> a phytotron at <strong>the</strong> Laboratory <strong>of</strong> Cell Eng<strong>in</strong>eer<strong>in</strong>g <strong>of</strong> <strong>the</strong> Institute <strong>of</strong> Botany<br />

and later transferred <strong>in</strong>to <strong>the</strong> phytotron <strong>of</strong> <strong>the</strong> Lithuanian Institute <strong>of</strong> Horticulture<br />

were used. Growth regime – 16/8 hour photoperiod; 21/16 °C day/night temperature.<br />

The plants were divided <strong>in</strong>to groups <strong>of</strong> unequal size: control (K) – unaffected plants;<br />

plants affected by ozone or UVB, i.e. affected for 5 days by low adaptive doses: or<br />

3 kJ m -2 d -1 (UVB), or 120 µg m -3 ozone (O 3<br />

), respectively. Dur<strong>in</strong>g <strong>the</strong> second stage <strong>of</strong><br />

<strong>the</strong> research <strong>the</strong> first portion <strong>of</strong> plants was divided <strong>in</strong>to 3 groups: control – unaffected<br />

plants (K + K) affected plants by threefold dose (without adaptation): UVB (9 kJ m -2 d -1 )<br />

or ozone (360 µg m -3 ), marked (K + UV) and (K + O 3<br />

), respectively. Second group <strong>of</strong><br />

plants adapted by UVB or ozone was also affected by <strong>the</strong> same threefold doses only <strong>in</strong><br />

various comb<strong>in</strong>ations: comb<strong>in</strong><strong>in</strong>g <strong>the</strong> first impact with <strong>the</strong> second one: UVB + UVB;<br />

O 3<br />

+ O 3<br />

; UVB + O 3<br />

; O 3<br />

+ UVB. Dur<strong>in</strong>g <strong>the</strong> second stage <strong>of</strong> <strong>the</strong> research exposition<br />

to UVB or ozone was 7 days.<br />

Activity <strong>of</strong> <strong>superoxide</strong> <strong>dismutase</strong> (SOD, EC 1.15. 1.1). Leaf material (1g) was<br />

grounded with extraction buffer (2 ml), consist<strong>in</strong>g <strong>of</strong> 1mM EDTA, 0.1 % Triton<br />

X-100 <strong>in</strong> 0.05M Na-K phosphate buffer pH 7.8, with mortar and pestle at 4 °C. The<br />

homogenates were centrifuged for 15 m<strong>in</strong> at 12,000 Ч g (4 °C), and supernatants were<br />

used as crude extract for soluble prote<strong>in</strong> quantification accord<strong>in</strong>g to Bradford (1976)<br />

with bov<strong>in</strong>e serum album<strong>in</strong> as <strong>the</strong> standard.<br />

Total SOD <strong>activity</strong> was assayed by <strong>the</strong> <strong>in</strong>hibition <strong>of</strong> <strong>the</strong> photochemical reduction<br />

<strong>of</strong> nitro blue tetrazolium (NBT) accord<strong>in</strong>g to modified method <strong>of</strong> Beyer and Fridovich<br />

(1987). The reaction mixture (2.2 ml) consisted <strong>of</strong> 50 mM (Na-K) phosphate (pH 7.8)<br />

and 20 µl <strong>of</strong> leaves extracts. Each extract was assayed twice with three replications<br />

and measured by spectrophotometer at 560 nm.<br />

The statistical data analysis was carried out by packet <strong>of</strong> statistical analysis tools<br />

<strong>of</strong> MS Exel 2002 (Micros<strong>of</strong>t Corporation) program.<br />

Results. It has been determ<strong>in</strong>ed that <strong>in</strong> <strong>the</strong> course <strong>of</strong> adaptation, after 5 days<br />

treatment (i. e. first measurement) by low UVB (3 kJ m -2 d -1 ) or ozone (120 µg m -3 )<br />

doses <strong>the</strong> concentration <strong>of</strong> soluble prote<strong>in</strong>s decreased compar<strong>in</strong>g with <strong>the</strong> control (K).<br />

The decrease was particularly significant after ozone treatment (table).<br />

Table. Prote<strong>in</strong> content changes after UVB and ozone treatment <strong>in</strong> leaves <strong>of</strong> Crepis<br />

capillaris plants. Prote<strong>in</strong>, mg g -1 F. w.; F. w. – fresh weight.<br />

Lentelė. Baltymo kiekio pokyčiai po UV ir ozono poveikių Crepis capillaris augalų<br />

lapuose, mg g -1<br />

210


After <strong>of</strong> 7 days direct treatment <strong>of</strong> plants with threefold UVB (9 kJm -2 ) and ozone<br />

(360 µg m -3 ) doses <strong>in</strong>creased <strong>the</strong> content <strong>of</strong> prote<strong>in</strong>s <strong>in</strong> comparison with <strong>the</strong> control<br />

(K + K) (i. e. second measurement). It is ra<strong>the</strong>r difficult to compare <strong>the</strong>se data because<br />

control plants differ by <strong>the</strong>ir age. Differences between <strong>the</strong> controls K and K + K<br />

could be predeterm<strong>in</strong>ed by <strong>the</strong> fact that <strong>in</strong> leaves <strong>of</strong> control (K + K) plants, which are<br />

older, than <strong>in</strong> <strong>the</strong> control (K). Investigation <strong>of</strong> <strong>the</strong> impact <strong>of</strong> adaptation upon repeated<br />

treatment with UVB and ozone (table) revealed no significant impact <strong>of</strong> adaptation<br />

with UVB or ozone on <strong>the</strong> prote<strong>in</strong> content.<br />

However, comparison <strong>of</strong> <strong>the</strong> SOD <strong>activity</strong> <strong>in</strong> Crepis capillaris leaves after <strong>the</strong><br />

impact <strong>of</strong> small adaptation doses <strong>of</strong> UVB and ozone with <strong>the</strong> control revealed that<br />

after UVB treatment (3 kJm -2 ) <strong>the</strong> SOD <strong>activity</strong> <strong>in</strong>creases to 1.4 times and after <strong>the</strong><br />

impact <strong>of</strong> ozone <strong>the</strong> SOD <strong>in</strong>creases to 1.94 times. After higher UVB (9 kJ m -1 ) dose<br />

SOD <strong>activity</strong> doubles, but after threefold O 3<br />

dose SOD <strong>activity</strong> is lower but does not<br />

reach <strong>the</strong> level <strong>of</strong> <strong>the</strong> control.<br />

Fig. Complex action <strong>of</strong> UVB and ozone on SOD <strong>activity</strong> <strong>in</strong> Crepis capillaris<br />

plants adaptation. Exposition <strong>of</strong> 5 days <strong>in</strong> 3 kJ m -2 d -1 UVB or 120 µg m -3 O 3<br />

environment. Treatment without adaptation – exposition <strong>of</strong> 7 days <strong>in</strong> 9 kJ m -2 d -1<br />

to UV or 360 µg m -3 O 3<br />

; K and K + K – control plants, grown <strong>in</strong> <strong>the</strong> same<br />

conditions without any treatment.<br />

Pav. Kompleks<strong>in</strong>is UVB ir ozono poveikis Crepis capillaris SOD aktyvumui.<br />

Adaptacija. 5 dienų ekspozicija 3 kJ m -2 d -1 UVB ar 120 µg m -3 ozono apl<strong>in</strong>koje. Poveikis be<br />

adaptacijos – septynių dienų ekspozicija 9 kJ m -2 d -1 UV ar 360 µg m -3 O 3<br />

apl<strong>in</strong>koje;<br />

K ir K + K – kontrol<strong>in</strong>iai augalai, aug<strong>in</strong>ti tomis pačiomis sąlygomis be poveikių.<br />

Investigations <strong>of</strong> <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> adaptation upon repeated UVB and ozone<br />

treatment (UV + UV and O 3<br />

+ O 3<br />

) showed that SOD <strong>activity</strong> <strong>in</strong> Crepis capillaris<br />

plants is similar and <strong>in</strong>creases up to 1.74 and 1.98 times compar<strong>in</strong>g with <strong>the</strong> control.<br />

Even after adaptation <strong>of</strong> a plant to one factor and later under treatment with <strong>the</strong> o<strong>the</strong>r<br />

211


(UV + O 3<br />

; O 3<br />

+ UV) SOD <strong>activity</strong> rema<strong>in</strong>s similar (Fig.). The research showed that<br />

adaptation by low UVB and ozone doses towards one <strong>of</strong> <strong>the</strong> o<strong>the</strong>r factor <strong>in</strong>fluences<br />

<strong>the</strong> <strong>in</strong>crease <strong>of</strong> SOD <strong>activity</strong> <strong>in</strong> plants.<br />

Discussion. Abiotic stress condition weakens plants; <strong>the</strong>y become more susceptible<br />

to pathogens, and this leads to extensive losses to <strong>of</strong> agricultural crop worldwide.<br />

Usually <strong>the</strong> impact <strong>of</strong> environmental factors is not <strong>in</strong>dividual but comb<strong>in</strong>ed. Therefore,<br />

under conditions <strong>of</strong> climate changes plants have to adapt to simultaneous impact <strong>of</strong><br />

several factors: drought and heat; cold stress and drought comb<strong>in</strong>ed with high light<br />

conditions. For example, dur<strong>in</strong>g heat and high ozone stresses plants open leaf stomata<br />

for transpiration to avoid overheat<strong>in</strong>g, but thus <strong>the</strong> way for more abundant pass<strong>in</strong>g <strong>of</strong><br />

ozone <strong>in</strong>to leaf <strong>in</strong>tercellular ducts is opened, o<strong>the</strong>rwise stomata would close. Therefore<br />

<strong>in</strong> case <strong>of</strong> complex stress plants might require conflict<strong>in</strong>g or antagonistic responses<br />

(Pasqual<strong>in</strong>i et al., 2003; Mittler, 2006).<br />

The response type depends upon <strong>the</strong> plant genotype. Cultivated plants are more<br />

susceptible to stresses than wild plants, which are better adapted to climate changes.<br />

Even <strong>the</strong> slightest changes <strong>of</strong> climate factors could be relevant for agricultural plants.<br />

Previous <strong>in</strong>vestigations have shown that even <strong>the</strong> lowest UVB (2 kJ m -1 ) and ozone<br />

doses reduce <strong>the</strong> leaf size <strong>of</strong> a model plant Crepis capillaris; it is particularly true <strong>in</strong><br />

case <strong>of</strong> ozone (Rančelienė et al., 2006). Ozone, as a strong oxidant, or its secondary<br />

derivatives, such as ROS (Reactive Oxygen Species) frequently cause leaf necroses.<br />

It is known that viruses also cause necroses <strong>of</strong> plant leaves. In case <strong>of</strong> hypersensitivity<br />

reaction necrotic spots, localiz<strong>in</strong>g <strong>the</strong> virus spread, form on <strong>the</strong> <strong>in</strong>jured areas <strong>of</strong> leaves.<br />

There is an op<strong>in</strong>ion that ozone also triggers a hypersensitive response (Koch et al.,<br />

2000). Therefore, necroses <strong>in</strong>dicate <strong>the</strong> death <strong>of</strong> some cells irrespective <strong>of</strong> <strong>the</strong> stress<br />

factor caus<strong>in</strong>g <strong>the</strong>m: viruses, bacteria, UVB, ozone, cold and drought. So <strong>the</strong> damages<br />

<strong>in</strong>dicate <strong>the</strong> so-called programmed cell death (Pasqual<strong>in</strong>i et al., 2002). But response<br />

and defense genes are simultaneously <strong>in</strong>duced, and <strong>the</strong>y determ<strong>in</strong>e trigger<strong>in</strong>g <strong>of</strong> plant<br />

defence mechanism to antioxidative response (Yun-Hee Kim et al., 2007). Antioxidative<br />

<strong>enzyme</strong> systems, especially SOD <strong>enzyme</strong>, actively participates <strong>in</strong> this process. Our<br />

research showed that after preadaptation by low doses <strong>the</strong> repeated treatment by o<strong>the</strong>r<br />

factor doubly <strong>in</strong>creases <strong>the</strong> <strong>activity</strong> <strong>of</strong> antioxidative SOD <strong>enzyme</strong>. It demonstrates that<br />

plants adapted to one factor are frequently more tolerant to o<strong>the</strong>r factors. It confirms<br />

<strong>the</strong> results <strong>of</strong> our earlier researches performed with cold-resistant <strong>in</strong>terspecific potato<br />

hybrids treated with UVB (Vyšniauskienė et al., 2006). However, results <strong>of</strong> o<strong>the</strong>r 7-year<br />

long researches performed with plants grow<strong>in</strong>g <strong>in</strong> tundra showed that under conditions<br />

<strong>of</strong> stratospheric ozone depletion and by enhanced UVB, <strong>the</strong> supplementation <strong>of</strong> UVB<br />

<strong>in</strong> field produced no negative effect upon growth parameters (Rozema et al., 2006). It<br />

demonstrates that <strong>in</strong> <strong>the</strong> course <strong>of</strong> time plants become UVB-tolerant.<br />

Conclusions. 1. Increased <strong>activity</strong> <strong>of</strong> plant <strong>enzyme</strong>s, such as SOD, after <strong>the</strong> UVB<br />

and ozone irradiation was assessed as adaptational response <strong>of</strong> plant towards oxidative<br />

stress caused by harmful factors. 2. Plants adapted to one factor are frequently more<br />

tolerant to <strong>the</strong> impact <strong>of</strong> o<strong>the</strong>r factors.<br />

212


Acknowledgements. This research was supported by <strong>the</strong> Lithuanian State Science<br />

and Studies Foundation programme “APLIKOM”. The authors gratefully acknowledge<br />

to <strong>the</strong> Lithuanian Institute <strong>of</strong> Horticulture for availability to perform our experiments<br />

<strong>in</strong> growth chambers <strong>of</strong> Institute.<br />

References<br />

Gauta 2008 04 08<br />

Parengta spausd<strong>in</strong>ti 2008 04 24<br />

1. Ballaré C. L. 2003. Stress under <strong>the</strong> sun: spotlight on ultraviolet-B responses.<br />

Plant Physiology, 132: 1 725–1 727.<br />

2. Beyer W. F., Fridovich I. 1987. Assay<strong>in</strong>g for <strong>superoxide</strong> <strong>dismutase</strong> <strong>activity</strong>: some<br />

large cobsequences <strong>of</strong> m<strong>in</strong>or changes <strong>in</strong> conditions. Analytical Biochemistry,<br />

161: 559–566.<br />

3. Bradford M. N. 1976. A rapid and sensitive method for <strong>the</strong> quantification <strong>of</strong><br />

microgram quantities <strong>of</strong> prote<strong>in</strong> utiliz<strong>in</strong>g <strong>the</strong> pr<strong>in</strong>ciple <strong>of</strong> prote<strong>in</strong>-dye b<strong>in</strong>d<strong>in</strong>g.<br />

Analytical Biochemistry, 72: 248–257.<br />

4. Caldwell M. M, Teramura A. T, Tev<strong>in</strong>i M. 1989. The chang<strong>in</strong>g solar ultraviolet<br />

climate and <strong>the</strong> ecological consequences for higher plants. Trends <strong>in</strong> Ecology and<br />

Evolution, 363–367.<br />

5. Koch J. R., Robert A. et al. 2000. Ozone sensitivity <strong>in</strong> hybrid poplar correlates<br />

with <strong>in</strong>sensitivity to both salicylic acid and jasmonic acid. The role <strong>of</strong> programmed<br />

cell death <strong>in</strong> lesion formation. Plant Physiology, 123: 487–496.<br />

6. Mazza C. A., Battista D, Zima A. M., Szwarcberg-Bracchitta M., Giordano C. V.,<br />

Acevedo A., Scopel A. L., Ballare C. L. 1999. The effects <strong>of</strong> solar UV-B radiation<br />

on <strong>the</strong> growth and yield <strong>of</strong> barley are accompanied by <strong>in</strong>creased DNA damage<br />

and <strong>antioxidant</strong> responses. Plant Cell and Environment, 22: 61–70.<br />

7. Mittler R. 2006. Abiotic stress, <strong>the</strong> field environment and stress comb<strong>in</strong>ation.<br />

Trends <strong>in</strong> Plant Science, 1: 15–19.<br />

8. Pasqual<strong>in</strong>i S., Piccioni C. 2003. Ozone-<strong>in</strong>duced cell death <strong>in</strong> tobacco cultivar<br />

bel W3 plants. The Role <strong>of</strong> programmed cell death <strong>in</strong> lesion formation. Plant<br />

Physiology, 33(3): 1 122–1 134.<br />

9. Rančelienė V., Vyšniauskienė R., Šlekytė K., Radžiūnaitė-Paukštienė A. 2006.<br />

Kompleks<strong>in</strong>is UVB ir ozono poveikis žaliajai kreisvei (Crepis capillaris (L.)<br />

Wallr.). Sod<strong>in</strong><strong>in</strong>kystė ir darž<strong>in</strong><strong>in</strong>kystė, 25(2): 165–173.<br />

10. Rozema J., Boelen P., Solheim B Zielke M. Buskens A., Doorenbosch M., Fijn R.,<br />

Herder J., Callaghan T., Björn L. O., Jones D. G., Broekman R., Blokker P., Poll W.<br />

2006. Stratospheric ozone depletion: high arctic tundra plant growth on Svalbard<br />

is not affected by enhanced UV-b after 7 years <strong>of</strong> UV-B supplementation <strong>in</strong> <strong>the</strong><br />

field. Plant Ecology, 182: 121–135.<br />

11. Vyšniauskienė R., Rančelienė V., Radžiūnaitė-Paukštienė A., Spal<strong>in</strong>skas R. 2007.<br />

The UV-B impact upon <strong>the</strong> <strong>enzyme</strong> <strong>of</strong> <strong>antioxidant</strong> system <strong>superoxide</strong> <strong>dismutase</strong><br />

(SOD) <strong>of</strong> potato somatic hybrids. Biologija, 18(2): 27–30.<br />

213


12. Yun-Hee Kim, Soon Lim, Sim-Hee Han, Jae-Cheon Lee, Wan-Keun Song,<br />

Jae-Wook Bang, Suk-Yoon Kwon, Haeng-Soon Lee, Sang-Soo Kwak.<br />

2007. Differential expression <strong>of</strong> 10 sweet potato peroxidase <strong>in</strong> response to<br />

dioxide, ozone, and ultraviolet radiation. Plant Physiology and Biochemistry,<br />

45: 908–914.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2008. 27(2).<br />

Antioksidac<strong>in</strong>io fermento superoksido dismutazės aktyvumo<br />

pokyčiai Crepis capillaris augaluose po UVB ir ozono poveikio<br />

R. Vyšniauskienė, V. Rančelienė<br />

Santrauka<br />

Darbo tikslas buvo nustatyti antioksidant<strong>in</strong>io fermento superoksido dismutazės (SOD)<br />

aktyvumo pokyčius model<strong>in</strong>io augalo Crepis capillaris augalams po UVB ir ozono poveikių.<br />

Lyg<strong>in</strong>ant SOD aktyvumą Crepis capillaris lapuose po poveikio mažomis –adaptuojančiomis<br />

UVB ir ozono dozėmis su kontrole, gauta, kad po UVB (3 kJ m -1 ) SOD aktyvumas pakyla 1,4<br />

kartus, o po ozono poveikio SOD padidėja 1,94 karto. Po didesnės UVB (9 kJ m -1 ) dozės SOD<br />

aktyvumas pakyla net 2 kartus, tačiau po trigubos O 3<br />

dozės jau SOD aktyvumas mažesnis, tačiau<br />

nesiekia kontrolės lygio. Tiriant adaptacijos poveikį pakartot<strong>in</strong>iam UVB ir ozono paveikiui<br />

gavome, kad SOD aktyvumas Crepis capillaris augalams yra panašus ir lyg<strong>in</strong>ant su kontrole<br />

padidėja 1,74 ir 1,98 karto. Tačiau ir adaptavus augalus vienam veiksniui, o poveikus augalus<br />

kitu veiksniu (kryžm<strong>in</strong>ė adaptacija), SOD aktyvumas išlieka panašus. Tyrimai parodė, kad<br />

mažų UVB ir ozono dozių adaptacija tiek tam pačiam, tiek ir kitam veiksniui, turi poveikį SOD<br />

aktyvumo padidėjimui augaluose. Padidėjęs SOD aktyvumas po UVB sp<strong>in</strong>duliuotės ir ozono<br />

vert<strong>in</strong>t<strong>in</strong>as kaip augalo adaptac<strong>in</strong>is atsakas į nepalankių veiksnių sukeltа oksidac<strong>in</strong>į stresą.<br />

Reikšm<strong>in</strong>iai žodžiai: Crepis capillaris, ozonas, UVB, adaptacija, superoksido dismutazė,<br />

EC 1.15. 1.1.<br />

214

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!