13.11.2014 Views

tribology in industry 1-2013.pdf

tribology in industry 1-2013.pdf

tribology in industry 1-2013.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>tribology</strong> <strong>in</strong> <strong>in</strong>dustry<br />

ISSN 0354-8996<br />

1<br />

VOLUME 35<br />

2013.


Vol. 35, Nº 1 ( 2013)<br />

Tribology <strong>in</strong> Industry<br />

Journal of the<br />

Serbian<br />

Tribology Society<br />

www.<strong>tribology</strong>.f<strong>in</strong>k.rs<br />

EDITOR IN CHIEF:<br />

MANAGING EDITOR:<br />

EDITORIAL BOARD:<br />

TECHNICAL EDITOR:<br />

ISSN:<br />

Published by:<br />

F<strong>in</strong>ancially supported by:<br />

M. BABI Ć, Faculty of Eng<strong>in</strong>eer<strong>in</strong>g, University of Kragujevac, Serbia<br />

B. IVKOVI Ć, Faculty of Eng<strong>in</strong>eer<strong>in</strong>g, University of Kragujevac, Serbia<br />

S. MITROVI Ć, Faculty of Eng<strong>in</strong>eer<strong>in</strong>g, University of Kragujevac, Serbia<br />

B. BHUSHAN, The Ohio State University, Columbus, USA<br />

K.-D. BOUZAKIS, Aristotle University of Thessaloniki, Thessaloniki, Greece<br />

M.D. BRYANT, The University of Texas at Aust<strong>in</strong>, Aust<strong>in</strong>, USA<br />

M.A. CHOWDHURY, Dhaka University of Eng<strong>in</strong>eer<strong>in</strong>g & Technology, Gazipur,<br />

Bangladesh<br />

M. KANDEVA, Technical University of Sofia, Sofia, Bulgaria<br />

G. MANIVASAGAM, VIT University, Vellore, India<br />

N. MANOLOV, Technical University of Sofia, Sofia, Bulgaria<br />

M. MILOSAVLJEVI Ć, V<strong>in</strong>ča Institute of Nuclear Sciences, Belgrade, Serbia<br />

N. MYSHKIN, Metal-Polymer Research Institute of National Academy of Sciences<br />

of Belarus, Gomel, Belarus<br />

S. PYTKO, AGH University of Science and Technology, Krakow, Poland<br />

A. RAC, Faculty of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, University of Belgrade, Serbia<br />

S. SEKULI Ć, Faculty of Technical Sciences, University of Novi Sad, Serbia<br />

A.I. SVIRIDENOK, The Research Center of Resources Sav<strong>in</strong>g Problems of the<br />

National Academy of Sciences of Belarus, G rodno, Belarus<br />

A. TUDOR, University Politehnica of Bucharest, Bucharest, Romania<br />

A. VENCL, Faculty of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, University of Belgrade, Serbia<br />

S. MITROVIĆ,<br />

Faculty of Eng<strong>in</strong>eer<strong>in</strong>g, University of Kragujevac, Serbia<br />

0354-8996 (pr<strong>in</strong>t version)<br />

2217-7965 (electronic version)<br />

Tribology Center, Faculty of Eng<strong>in</strong>eer<strong>in</strong>g, University of Kragujevac<br />

Sestre Janjić 6, 34000 Kragujevac, Serbia<br />

M<strong>in</strong>istry of Education, Science and Technological Development<br />

Republic of Serbia<br />

Nemanj<strong>in</strong>a 22-26, 11000 Belgrade, Serbia<br />

Published quarterly


www.<strong>tribology</strong>.f<strong>in</strong>k.rs<br />

Vol. 35, Nº 1 ( 2013)<br />

Tribology <strong>in</strong> Industry<br />

Contents<br />

RESEARCH<br />

B. CHATTERJEE, P. SAHOO: Shakedown Behavior <strong>in</strong> Multiple Normal<br />

Load<strong>in</strong>g-Unload<strong>in</strong>g of an Elastic-Plastic Spherical Stick Contact . . . . . . . . .<br />

M. IANCU, R.G. RIPEANU, I. TUDOR: Heat Exchanger Tube to Tube Sheet<br />

Jo<strong>in</strong>ts Corrosion Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

K.K. ALANEME, B.O. ADEMILUA,<br />

M.O. BODUNRIN: Mechanical<br />

Properties and Corrosion Behaviour of Alum<strong>in</strong>ium Hybrid Composites<br />

Re<strong>in</strong>forced with Silicon Carbide and Bamboo Leaf Ash . . . . . . . . . . . . . . . . .<br />

A. TODIĆ, D. ČIKARA, V. LAZIĆ, T. TODIĆ, I. ČAMAGIĆ, A. SKULIĆ,<br />

D. ČIKARA: Exam<strong>in</strong>ation of Wear Resistance of Polymer – Basalt<br />

Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

M.A. CHOWDHURY, D.M. NURUZZAMAN: Experimental Investigation<br />

on Friction and Wear Properties of Different Steel Materials . . . . . . . . . . . .<br />

R.R. RAO, K. GOUTHAMI, J.V. KUMAR: Effects of Velocity-Slip and<br />

Viscosity Variation <strong>in</strong> Squeeze Film Lubrication of Two<br />

Circular Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

S.A. ADNANI, S.J. HASHEMI, A. SHOOSHTARI, M.M. ATTAR:<br />

The Initial Estimate of the Useful Lifetime of the Oil <strong>in</strong> Diesel Eng<strong>in</strong>es<br />

Us<strong>in</strong>g Oil Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

S. ILAIYAVEL, A. VENKATESAN: Investigation of Wear Coefficient of<br />

Manganese Phosphate Coated Tool Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

A. SONTHALIA, C.R. KUMAR: The Effect of Compression R<strong>in</strong>g Profile on<br />

the Friction Force <strong>in</strong> an Internal Combustion Eng<strong>in</strong>e . . . . . . . . . . . . . . . . . .<br />

S.K. ROY CHOWDHURY, K. MALHOTRA, H. PADMAWAR: Effect of Contact<br />

Temperature Rise Dur<strong>in</strong>g Slid<strong>in</strong>g on the Wear Resistance of TiNi Shape<br />

Memory Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

3<br />

19<br />

25<br />

36<br />

42<br />

51<br />

61<br />

69<br />

74<br />

84


<strong>tribology</strong> <strong>in</strong> <strong>in</strong>dustry<br />

ISSN 0354-8996<br />

VOLUME 33<br />

2011.<br />

3


Vol. 35, No. 1 (2013) 3‐18<br />

Tribology <strong>in</strong> Industry<br />

www.<strong>tribology</strong>.f<strong>in</strong>k.rs<br />

RESEARCH<br />

Shakedown Behavior <strong>in</strong> Multiple Normal<br />

Load<strong>in</strong>g‐Unload<strong>in</strong>g of an Elastic‐Plastic<br />

Spherical Stick Contact<br />

B. Chatterjee a , P. Sahoo a<br />

a Department of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Jadavpur University, Kolkata 700032, India.<br />

Keywords:<br />

Shakedown<br />

Multiple load<strong>in</strong>g‐unload<strong>in</strong>g<br />

Stra<strong>in</strong> harden<strong>in</strong>g<br />

Spherical contact<br />

ANSYS<br />

Correspond<strong>in</strong>g author:<br />

Prasanta Sahoo<br />

Department of Mechanical<br />

Eng<strong>in</strong>eer<strong>in</strong>g, Jadavpur University,<br />

Kolkata 700032, India<br />

E‐mail: psjume@gmail.com<br />

A B S T R A C T<br />

The effect of stra<strong>in</strong> harden<strong>in</strong>g and harden<strong>in</strong>g rule on shakedown behavior is<br />

studied <strong>in</strong> a multiple normal <strong>in</strong>teraction process of an elastic plastic sphere<br />

aga<strong>in</strong>st a rigid flat us<strong>in</strong>g f<strong>in</strong>ite element software ANSYS under full stick contact<br />

condition. Seven to ten repeated load<strong>in</strong>g cycles are considered <strong>in</strong> the<br />

<strong>in</strong>terference controlled multiple normal load<strong>in</strong>g unload<strong>in</strong>g depend<strong>in</strong>g upon the<br />

maximum <strong>in</strong>terference of load<strong>in</strong>g. Emphasis is placed on wide range of tangent<br />

modulus by vary<strong>in</strong>g the harden<strong>in</strong>g parameter with<strong>in</strong> the range as found for<br />

most of the practical materials with both the k<strong>in</strong>ematic and isotropic harden<strong>in</strong>g<br />

model, which has not yet been <strong>in</strong>vestigated. It is found that with small tangent<br />

modulus, the cyclic load<strong>in</strong>g process gradually converges <strong>in</strong>to elastic shakedown<br />

with both k<strong>in</strong>ematic and isotropic stra<strong>in</strong> harden<strong>in</strong>g laws; similar to recently<br />

published f<strong>in</strong>ite element based normal load<strong>in</strong>g unload<strong>in</strong>g results. The effect of<br />

stra<strong>in</strong> harden<strong>in</strong>g laws on shakedown behavior is pronounced at higher tangent<br />

modulus. The higher dimensionless <strong>in</strong>terference of load<strong>in</strong>g and higher tangent<br />

modulus <strong>in</strong>crease the dimensionless dissipated energy with k<strong>in</strong>ematic<br />

harden<strong>in</strong>g rule. The load‐<strong>in</strong>terference hysteretic response with vary<strong>in</strong>g tangent<br />

modulus us<strong>in</strong>g both k<strong>in</strong>ematic and isotropic harden<strong>in</strong>g laws is <strong>in</strong>terpreted <strong>in</strong><br />

the context of elastic and plastic shakedown.<br />

© 2013 Published by Faculty of Eng<strong>in</strong>eer<strong>in</strong>g<br />

1. INTRODUCTION<br />

When a material is subjected to repeated normal<br />

load<strong>in</strong>g‐unload<strong>in</strong>g, its deformation depends on<br />

the extent of the amplitude of the maximum<br />

stress with respect to the yield stress of the<br />

material. When contact stress exceeds yield<br />

stress, plastic flow of the material occurs beyond<br />

the elastic limit load<strong>in</strong>g. Residual stresses,<br />

developed after complete unload<strong>in</strong>g, are<br />

protective <strong>in</strong> nature as they reduce the tendency<br />

of plastic flow <strong>in</strong> the subsequent load<strong>in</strong>g. Stra<strong>in</strong><br />

harden<strong>in</strong>g of the material strongly affects the<br />

development of residual stra<strong>in</strong> after complete<br />

unload<strong>in</strong>g. The cyclic response may be perfectly<br />

elastic and reversible, stabilized and closed cycle<br />

of plastic stra<strong>in</strong> or consists of repetitive<br />

accumulation of <strong>in</strong>cremental unidirectional<br />

plastic stra<strong>in</strong> [1‐3] depend<strong>in</strong>g on the <strong>in</strong>tensity of<br />

load<strong>in</strong>g, elastic and plastic properties of the<br />

3


B. Chatterjee and P. Sahoo, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 3‐18<br />

materials and the tribological system parameters<br />

like friction, wear etc. [4]. Thus the model<strong>in</strong>g of<br />

cyclic response is quite complex. The repeated<br />

cyclic load<strong>in</strong>g promotes fatigue of the deformable<br />

or softer materials. Non‐conform<strong>in</strong>g bodies when<br />

brought <strong>in</strong>to contact without deformation, either<br />

po<strong>in</strong>t or l<strong>in</strong>e contact may occur [5]. The type of<br />

relative motion between mat<strong>in</strong>g surfaces<br />

produces slid<strong>in</strong>g, roll<strong>in</strong>g contact. The prom<strong>in</strong>ent<br />

contact damages encountered due to the slid<strong>in</strong>g<br />

and roll<strong>in</strong>g contact fatigues are gall<strong>in</strong>g, surface<br />

distress, spall<strong>in</strong>g, pitt<strong>in</strong>g etc. [6]. Frett<strong>in</strong>g fatigue<br />

is observed ow<strong>in</strong>g to the relative cyclic motion<br />

with small amplitude between two oscillat<strong>in</strong>g<br />

surfaces [7].<br />

The basic step of <strong>in</strong>vestigat<strong>in</strong>g the cyclic<br />

response of rough surfaces <strong>in</strong>volves the study<br />

with s<strong>in</strong>gle asperity contact. Cattaneo [8] and<br />

then M<strong>in</strong>dl<strong>in</strong> [9] <strong>in</strong>dependently published the<br />

solutions for pure elastic slid<strong>in</strong>g contact. Both of<br />

them assumed a central stick region surrounded<br />

by a slip annulus <strong>in</strong> the contact area. The local<br />

Coulomb’s friction law governs the slip annulus<br />

region and it <strong>in</strong>creases with the <strong>in</strong>crease <strong>in</strong><br />

tangential load<strong>in</strong>g. The local Coulomb’s friction<br />

law couples normal stress with local shear stress<br />

and the central stick region gets elim<strong>in</strong>ated at<br />

the po<strong>in</strong>t of slid<strong>in</strong>g <strong>in</strong>ception. M<strong>in</strong>dl<strong>in</strong> et al. [10,<br />

11] offered first analytical solutions for the<br />

problem of oscillat<strong>in</strong>g tangential load<strong>in</strong>g. The<br />

derived force‐displacement hysteretic loop by<br />

M<strong>in</strong>dl<strong>in</strong> et al. is concerned about the energy<br />

dissipation due to partial frictional slid<strong>in</strong>g<br />

between the contact<strong>in</strong>g surfaces dur<strong>in</strong>g the<br />

load<strong>in</strong>g cycles. The frett<strong>in</strong>g models, which are<br />

based on the assumptions of Cattaneo‐M<strong>in</strong>dil<strong>in</strong><br />

[8,9], ignored the formation of junction growth.<br />

The authors of frett<strong>in</strong>g models [12,13] also made<br />

simplified assumption that the normal contact<br />

pressure and the contact area, which resulted<br />

from the normal load<strong>in</strong>g alone, rema<strong>in</strong><br />

unchanged dur<strong>in</strong>g application of the tangential<br />

load<strong>in</strong>g. Bowden and Tabor [14] described the<br />

slid<strong>in</strong>g <strong>in</strong>ception and static friction as a failure<br />

mechanism, which are functions of material<br />

properties. The approach of Bowden and Tabor<br />

was different from Cattaneo‐M<strong>in</strong>dl<strong>in</strong> <strong>in</strong> the sense<br />

that <strong>in</strong> the former the static friction coefficient is<br />

not known a priori. Bowden and Tabor was also<br />

successful to completely decouple the maximum<br />

shear stresses at the contact <strong>in</strong>terface from the<br />

normal stresses. Based on the assumptions of<br />

Bowden and Tabor, Tabor [15] further<br />

presented the concept of junction growth <strong>in</strong><br />

metallic friction. Recently, Ovcharenko et al. [16]<br />

<strong>in</strong>vestigated the junction growth <strong>in</strong> elastic<br />

plastic spherical contact. The materials deform<br />

elastically follow<strong>in</strong>g Hooke’s law with<strong>in</strong> elastic<br />

limit. Above elastic limit the deformation follows<br />

certa<strong>in</strong> stra<strong>in</strong>‐harden<strong>in</strong>g rule. No bodies are<br />

perfectly elastic, so dur<strong>in</strong>g cyclic load<strong>in</strong>gunload<strong>in</strong>g<br />

even with<strong>in</strong> elastic limit some energy<br />

is dissipated. Tabor [17] reported the resistance<br />

to roll<strong>in</strong>g of bodies of imperfectly elastic<br />

material, which can also be expressed <strong>in</strong> terms<br />

of their hysteresis loss factor. The model of<br />

roll<strong>in</strong>g friction provided by Tabor was well<br />

supported by Greenwood et al. [18] <strong>in</strong> their<br />

experimental work with rubber. Tabor <strong>in</strong>ferred<br />

that the theory of roll<strong>in</strong>g friction does not hold<br />

good for metals. Actually hysteresis loss factor,<br />

fraction of loss of maximum stra<strong>in</strong> energy<br />

stored, is not generally a material constant.<br />

Hysteresis loss is common phenomena for both<br />

stress controlled (Constant load dur<strong>in</strong>g cyclic<br />

load<strong>in</strong>g) and stra<strong>in</strong> controlled (Constant<br />

<strong>in</strong>terference) fatigue. The respective stra<strong>in</strong><br />

amplitude and stress amplitude dur<strong>in</strong>g stress<br />

controlled and stra<strong>in</strong> controlled cyclic load<strong>in</strong>g<br />

unload<strong>in</strong>g atta<strong>in</strong>s a stable saturation value after<br />

an <strong>in</strong>itial shakedown period. This saturation<br />

provides a stable hysteresis loop.<br />

Depend<strong>in</strong>g up on the nature of hysteresis loop,<br />

many authors identified the type of shakedowns<br />

<strong>in</strong> slid<strong>in</strong>g contact, frett<strong>in</strong>g contact, adhesive<br />

contact apart from the literatures discussed<br />

above. In the recently published research works,<br />

shakedown has been simulated <strong>in</strong> elastic plastic<br />

load<strong>in</strong>g level with the use of f<strong>in</strong>ite element<br />

software, which can provide an accurate result<br />

of <strong>in</strong>terfacial parameters dur<strong>in</strong>g elastic plastic as<br />

well as <strong>in</strong> plastic contact. Kad<strong>in</strong> et al. [19] found<br />

plastic shake down with k<strong>in</strong>ematic harden<strong>in</strong>g<br />

while elastic shake down with isotropic<br />

harden<strong>in</strong>g for a cyclic load<strong>in</strong>g of an elasticplastic<br />

adhesive spherical micro contact with the<br />

use of f<strong>in</strong>ite element software ANSYS. They also<br />

<strong>in</strong>ferred that the plasticity parameter, a function<br />

of yield strength, of the material plays an<br />

important role on the shakedown behavior. Song<br />

and Komvopoulos [20] performed the f<strong>in</strong>ite<br />

element simulation for the adhesive contact of<br />

an elastic plastic half space with a rigid sphere<br />

us<strong>in</strong>g f<strong>in</strong>ite element software ABAQUS. They<br />

concluded that the elastic and plastic shakedown<br />

might occur even with elastic perfectly plastic<br />

4


B. Chatterjee and P. Sahoo, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 3‐18<br />

materials, depend<strong>in</strong>g on the plasticity<br />

parameter. They found elastic shakedown for a<br />

low plasticity parameter even under large<br />

maximum normal displacement while plastic<br />

shakedown for a high plasticity parameter under<br />

very small maximum normal displacement.<br />

Based on the fundamental of Bowden and Tabor<br />

[14], Zolotarevskiy et al. [21] simulated elastic<br />

plastic spherical contact under cyclic tangential<br />

load<strong>in</strong>g <strong>in</strong> pre‐slid<strong>in</strong>g us<strong>in</strong>g ANSYS. They found<br />

that the friction‐displacement loops of isotropic<br />

harden<strong>in</strong>g materials exhibited elastic<br />

shakedown whereas materials with k<strong>in</strong>ematic<br />

harden<strong>in</strong>g shows plastic shakedown follow<strong>in</strong>g<br />

the second cycle. The experimental results by<br />

Ovcharenko and Etsion [7] report elastic<br />

shakedown with 2.5% harden<strong>in</strong>g steel spheres<br />

and plastic shakedown with elastic perfectly<br />

plastic copper spheres for elastic plastic<br />

spherical contact frett<strong>in</strong>g.<br />

The type of harden<strong>in</strong>g model and the <strong>in</strong>tensity of<br />

stra<strong>in</strong> harden<strong>in</strong>g greatly affect the <strong>in</strong>terfacial<br />

parameters of a spherical contact dur<strong>in</strong>g<br />

repeated normal load<strong>in</strong>g unload<strong>in</strong>g. It is<br />

pert<strong>in</strong>ent to mention here that the changes <strong>in</strong><br />

contact geometry are more pronounced <strong>in</strong><br />

purely normal load<strong>in</strong>g rather than dur<strong>in</strong>g roll<strong>in</strong>g<br />

or slid<strong>in</strong>g contact. Most of the theoretical studies<br />

on normal load<strong>in</strong>g unload<strong>in</strong>g of a spherical<br />

contact assumed frictionless contact with<br />

bil<strong>in</strong>ear isotropic harden<strong>in</strong>g or with the elastic<br />

perfectly plastic material. Kral et al. [22] <strong>in</strong>ferred<br />

that the effect of stra<strong>in</strong> harden<strong>in</strong>g on the contact<br />

parameters dur<strong>in</strong>g load<strong>in</strong>g unload<strong>in</strong>g <strong>in</strong> the<br />

elastic plastic region is severe <strong>in</strong> comparison<br />

with the less significant effect of elastic<br />

properties of the material. They simulated the<br />

repeated normal <strong>in</strong>dentation of an elastic plastic<br />

half space by a rigid sphere assum<strong>in</strong>g a<br />

harden<strong>in</strong>g power law, where the stra<strong>in</strong>harden<strong>in</strong>g<br />

exponent was varied up to 0.5, to<br />

study the effect of stra<strong>in</strong> harden<strong>in</strong>g. They also<br />

observed that the harden<strong>in</strong>g materials reached a<br />

shakedown <strong>in</strong> respect to accumulation of plastic<br />

stra<strong>in</strong> after three to four repeated normal<br />

load<strong>in</strong>g unload<strong>in</strong>g under perfect slip contact<br />

condition with isotropic harden<strong>in</strong>g. Chatterjee<br />

and Sahoo [23] offered a model for load<strong>in</strong>g<br />

unload<strong>in</strong>g of a deformable sphere aga<strong>in</strong>st a rigid<br />

flat to study the effect of stra<strong>in</strong> harden<strong>in</strong>g under<br />

perfect slip contact condition assum<strong>in</strong>g a<br />

harden<strong>in</strong>g parameter which enabled them to<br />

study the effect of tangent modulus as high as<br />

33% of modulus of elasticity. They found that<br />

the higher stra<strong>in</strong> harden<strong>in</strong>g caters less<br />

resistance to full recovery of the orig<strong>in</strong>al shape.<br />

They noted that the load <strong>in</strong>terference path for<br />

the second load<strong>in</strong>g co<strong>in</strong>cides with the first<br />

unload<strong>in</strong>g path for the elastic perfectly plastic<br />

material as well as the materials with high<br />

tangent modulus under perfect slip contact<br />

condition with bil<strong>in</strong>ear isotropic harden<strong>in</strong>g.<br />

Thus the multiple load<strong>in</strong>g unload<strong>in</strong>g of a<br />

deformable sphere aga<strong>in</strong>st a rigid flat under<br />

perfect slip contact condition is reversible. Then<br />

Chatterjee and Sahoo [24] extended their study<br />

to <strong>in</strong>vestigate the effect of stra<strong>in</strong> harden<strong>in</strong>g <strong>in</strong><br />

elastic plastic load<strong>in</strong>g of a deformable sphere<br />

aga<strong>in</strong>st a rigid flat under full stick contact<br />

condition. They also considered both the<br />

isotropic and k<strong>in</strong>ematic harden<strong>in</strong>g rules. The<br />

only f<strong>in</strong>ite element based multiple load<strong>in</strong>g<br />

unload<strong>in</strong>g of a deformable sphere aga<strong>in</strong>st a rigid<br />

flat under full stick contact condition with<br />

isotropic and k<strong>in</strong>ematic harden<strong>in</strong>g is available so<br />

far <strong>in</strong> the literature is the simulation generated<br />

by Zait et al. [25]. They considered only 2%<br />

bil<strong>in</strong>ear harden<strong>in</strong>g and their load displacement<br />

loop exhibited vanish<strong>in</strong>g dissipated energy,<br />

which resulted <strong>in</strong> elastic shakedown for both<br />

isotropic and k<strong>in</strong>ematic harden<strong>in</strong>g. The same<br />

result of hysteresis loop with both the harden<strong>in</strong>g<br />

model provides a ground to study the effect of<br />

stra<strong>in</strong> harden<strong>in</strong>g with vary<strong>in</strong>g tangent modulus<br />

us<strong>in</strong>g the model of Zait et al. [25]. Hence the<br />

ma<strong>in</strong> goal of the present study is to <strong>in</strong>vestigate<br />

the effect of stra<strong>in</strong> harden<strong>in</strong>g on the hysteretic<br />

behavior of repeated normal load<strong>in</strong>g unload<strong>in</strong>g<br />

of a deformable sphere aga<strong>in</strong>st a rigid flat under<br />

full stick contact condition consider<strong>in</strong>g both the<br />

isotropic and k<strong>in</strong>ematic harden<strong>in</strong>g models.<br />

2. MULTIPLE NORMAL LOADING‐UNLOADING<br />

MODEL<br />

The deformable sphere with a rigid flat is shown<br />

<strong>in</strong> Fig. 1. The dashed and solid l<strong>in</strong>es <strong>in</strong> the figure<br />

show the position of sphere and the rigid flat<br />

before and after the load<strong>in</strong>g respectively. The<br />

<strong>in</strong>terference (), the contact radius (a) of the<br />

deformable sphere of radius R, correspond to an<br />

external load (P) applied to the contact are<br />

presented <strong>in</strong> the Fig. 1. The expressions of<br />

critical <strong>in</strong>terference, c , which <strong>in</strong>itiates the yield<br />

<strong>in</strong>ception at first load<strong>in</strong>g and the correspond<strong>in</strong>g<br />

critical load Pc under full stick condition are<br />

5


B. Chatterjee and P. Sahoo, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 3‐18<br />

given by Brizmer et al. [26], which are used to<br />

normalized the contact parameters.<br />

2<br />

(1<br />

<br />

) Y 2<br />

2<br />

c ( C v ( )) R(6.82<br />

7.83( 0.0586)) (1)<br />

2 E<br />

3<br />

Y 3<br />

2 Y 2<br />

2<br />

P C ( R(1<br />

<br />

)( )) (8.88<br />

10.13(<br />

0.089))<br />

(2)<br />

c v<br />

6<br />

E<br />

Where C v 1.234<br />

1.256<br />

. The parameters Y, E,<br />

and are the virg<strong>in</strong> yield stress, the Young<br />

modulus, and Poisson’s ratio of the sphere<br />

material, respectively and R is the radius of the<br />

sphere. The sphere size used for this analysis is<br />

R = 1 m. The material properties used here are<br />

Young’s Modulus ( E ) = 70 GPa, Poisson’s Ratio<br />

( ) = 0.3 and Yield stress (Y) = 100 MPa.<br />

Fig. 1. A deformable sphere pressed by a rigid flat.<br />

Multiple normal load<strong>in</strong>g unload<strong>in</strong>g cycle consists<br />

two stages. First the rigid flat gradually loads the<br />

deformable sphere to a dimensionless <strong>in</strong>terference<br />

max / c , which results a dimensionless load<strong>in</strong>g<br />

P max /P c . The plastic zone evolves with<strong>in</strong> contact<br />

region <strong>in</strong>side the sphere. Dur<strong>in</strong>g the second stage<br />

of unload<strong>in</strong>g, the <strong>in</strong>terference () is gradually<br />

reduced. At the completion of the unload<strong>in</strong>g, under<br />

zero contact load and contact area, the sphere has<br />

locked‐<strong>in</strong> residual stresses and stra<strong>in</strong>.<br />

The residual stresses and stra<strong>in</strong>s, which rema<strong>in</strong><br />

locked <strong>in</strong> the sphere results <strong>in</strong> a deformed unloaded<br />

sphere and the amount depends on the harden<strong>in</strong>g<br />

ratio (E t /E) [27]. Therefore the orig<strong>in</strong>al undeformed<br />

spherical geometry is not fully recovered.<br />

The normal load<strong>in</strong>g unload<strong>in</strong>g cycle, to the same<br />

max / c , is performed seven to ten times<br />

consider<strong>in</strong>g both isotropic and k<strong>in</strong>ematic harden<strong>in</strong>g<br />

models to study the effect of stra<strong>in</strong> harden<strong>in</strong>g as<br />

well as harden<strong>in</strong>g rule on the hysteretic behavior<br />

under full stick contact condition.<br />

3. THE FINITE ELEMENT MODEL<br />

The commercial f<strong>in</strong>ite element software ANSYS<br />

11.0 is used to get the response of the repeated<br />

normal load<strong>in</strong>g unload<strong>in</strong>g of the elastic plastic<br />

sphere aga<strong>in</strong>st a rigid flat. The sphere is modeled<br />

as quarter of a circle due to the advantage of<br />

simulation of axisymmetric problems. A l<strong>in</strong>e<br />

models the rigid flat. Six node triangular<br />

axisymmetric elements (plane183) are used <strong>in</strong><br />

the present model. Plane183 has plasticity,<br />

hyperelasticity, creep, stress stiffen<strong>in</strong>g, large<br />

deflection, and large stra<strong>in</strong> capabilities along with<br />

the capability for simulat<strong>in</strong>g deformations of<br />

nearly <strong>in</strong>compressible elastoplastic materials, and<br />

fully <strong>in</strong>compressible hyperelastic materials [28].<br />

The mesh consists of maximum 18653 six node<br />

triangular axisymmetric elements (plane183)<br />

compris<strong>in</strong>g 37731 nodes. The result<strong>in</strong>g ANSYS<br />

mesh is presented <strong>in</strong> Fig. 2. The mesh density at<br />

the bottom of the sphere is coarsest one and is<br />

made gradually f<strong>in</strong>er towards the sphere summit.<br />

The f<strong>in</strong>est mesh density near the contact region<br />

simultaneously allows the sphere’s curvature to<br />

be captured and accurately simulated dur<strong>in</strong>g<br />

deformation with a reduction <strong>in</strong> computation<br />

time. W<strong>in</strong>dow 2 of Fig. 2 presents the enlarged<br />

view of the f<strong>in</strong>est mesh density at sphere summit.<br />

The sphere surface is modeled with the contact<br />

elements CONTA172 and the rigid flat is modeled<br />

by a s<strong>in</strong>gle, non‐flexible two‐node target surface<br />

element TARGE169. The nodes ly<strong>in</strong>g on the axis<br />

of symmetry of the hemisphere are restricted to<br />

move only <strong>in</strong> the radial direction. Likewise the<br />

nodes <strong>in</strong> the bottom of the hemisphere are fixed<br />

<strong>in</strong> both the axial and radial direction. For full stick<br />

contact condition, <strong>in</strong>f<strong>in</strong>ite friction condition is<br />

adopted. Both the bil<strong>in</strong>ear k<strong>in</strong>ematic harden<strong>in</strong>g<br />

(BKIN) and bil<strong>in</strong>ear isotropic harden<strong>in</strong>g (BISO)<br />

options are considered to study the effect of<br />

harden<strong>in</strong>g rule on the hysteretic loop dur<strong>in</strong>g the<br />

repeated normal load<strong>in</strong>g unload<strong>in</strong>g. The rate<br />

<strong>in</strong>dependent plasticity algorithm <strong>in</strong>corporates the<br />

von Mises criterion. The mesh density is<br />

gradually doubled until the contact force and<br />

contact area differed by less than 1% between the<br />

iterations. In addition to mesh convergence, the<br />

model also compares well with the Hertz elastic<br />

solution at <strong>in</strong>terferences below the critical<br />

<strong>in</strong>terference for perfect slip contact condition.<br />

This work uses Lagrangian multiplier method.<br />

The tolerance of current work is set to 1% of the<br />

element width.<br />

6


B. Chatterjee and P. Sahoo, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 3‐18<br />

Fig. 2. F<strong>in</strong>ite element mesh of a sphere generated by ANSYS.<br />

Eng<strong>in</strong>eer<strong>in</strong>g stress‐stra<strong>in</strong> curves are used with<strong>in</strong><br />

elastic limit. The dimension of the specimen<br />

changes substantially <strong>in</strong> the region of plastic<br />

deformation. The <strong>in</strong>crement of stra<strong>in</strong> <strong>in</strong><br />

conjunction with true stress can be termed as<br />

stra<strong>in</strong> harden<strong>in</strong>g. Stra<strong>in</strong> harden<strong>in</strong>g causes an<br />

<strong>in</strong>crease <strong>in</strong> strength and hardness of the metal.<br />

Stra<strong>in</strong> harden<strong>in</strong>g is expressed <strong>in</strong> terms of<br />

tangent modulus (E t ), which is the slope of the<br />

stress‐stra<strong>in</strong> curve. Below the proportional limit,<br />

the tangent modulus is the same as the Young’s<br />

modulus (E). Above the proportional limit, the<br />

tangent modulus varies with the stra<strong>in</strong>. The<br />

tangent modulus is useful <strong>in</strong> describ<strong>in</strong>g the<br />

behaviour of materials that have been stressed<br />

beyond the elastic region. In elastic perfectly<br />

plastic cases, the tangent modulus becomes zero.<br />

Very few materials exhibit elastic perfectly<br />

plastic behaviour, generally all the materials<br />

follow the multi‐l<strong>in</strong>ear behaviour with some<br />

tangent modulus. This multi‐l<strong>in</strong>ear behaviour<br />

can be modelled as bil<strong>in</strong>ear behaviour for<br />

analysis purpose <strong>in</strong> elastic‐plastic cases. In this<br />

analysis a bil<strong>in</strong>ear material property, as shown<br />

<strong>in</strong> Fig. 3, is provided for the deformable sphere.<br />

Fig. 3. Stress‐stra<strong>in</strong> diagram for a material with<br />

bil<strong>in</strong>ear properties.<br />

7


B. Chatterjee and P. Sahoo, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 3‐18<br />

4. RESULTS AND DISCUSSIONS<br />

It is already stated that the aim of the present<br />

study is to <strong>in</strong>vestigate the <strong>in</strong>fluence of stra<strong>in</strong><br />

harden<strong>in</strong>g and the harden<strong>in</strong>g model on the<br />

hysteretic loop. Shankar and Mayuram [29]<br />

mentioned that the tangent modulus for the<br />

most practical materials is less than 0.05 E,<br />

whereas Kad<strong>in</strong> et al. [27] found the tangent<br />

modulus for most practical materials below 0.02<br />

E. However both the authors used tangent<br />

modulus up to 0.1E for analytical purpose. On<br />

the other hand, Ovcharenko et al. [30] used<br />

sta<strong>in</strong>less steel specimen with tangent modulus<br />

of 0.26 E (Fig. 6(b)) <strong>in</strong> their <strong>in</strong>‐situ<br />

<strong>in</strong>vestigation). It is also available <strong>in</strong> literature<br />

that structural steel, alum<strong>in</strong>um alloys have<br />

significant amount of stra<strong>in</strong> harden<strong>in</strong>g. Zait et al.<br />

[25] found elastic shakedown with two percent<br />

k<strong>in</strong>ematic harden<strong>in</strong>g. Thus first multiple normal<br />

load<strong>in</strong>g‐unload<strong>in</strong>g is simulated with elastic<br />

perfectly plastic material and the elastic plastic<br />

sphere with 2.5 and 5 percent bil<strong>in</strong>ear harden<strong>in</strong>g<br />

us<strong>in</strong>g both isotropic and k<strong>in</strong>ematic harden<strong>in</strong>g.<br />

Figure 4 presents dimensionless normal contact<br />

load as a function of dimensionless normal<br />

<strong>in</strong>terference dur<strong>in</strong>g ten multiple load<strong>in</strong>gunload<strong>in</strong>g<br />

cycles for maximum dimensionless<br />

<strong>in</strong>terference, max =100.<br />

Fig. 4. Dimensionless normal contact load vs.<br />

dimensionless <strong>in</strong>terference hysteretic loop for<br />

maximum load<strong>in</strong>g, * max =100.<br />

The sphere material is considered as elastic<br />

perfectly plastic. Interference controlled<br />

multiple load<strong>in</strong>g unload<strong>in</strong>g is adopted. It is<br />

found that the response of the elastic perfectly<br />

plastic materials dur<strong>in</strong>g multiple load<strong>in</strong>gunload<strong>in</strong>g<br />

with both the isotropic and k<strong>in</strong>ematic<br />

harden<strong>in</strong>g is identical. The area bounded by<br />

dimensionless <strong>in</strong>terference and dimensionless<br />

contact load after first unload<strong>in</strong>g under full stick<br />

contact condition, the quantity of dissipated<br />

energy, clearly <strong>in</strong>dicates elastic shakedown.<br />

Figure 5 shows the load <strong>in</strong>terference hysteretic<br />

loop dur<strong>in</strong>g ten repeated load<strong>in</strong>g unload<strong>in</strong>g. The<br />

maximum dimensionless <strong>in</strong>terference for<br />

load<strong>in</strong>g is * max =100, with tangent modulus, E t =<br />

0.025E us<strong>in</strong>g k<strong>in</strong>ematic harden<strong>in</strong>g.<br />

Fig. 5. Dimensionless normal contact load vs.<br />

dimensionless <strong>in</strong>terference hysteretic loop for maximum<br />

load<strong>in</strong>g, * max =100 with k<strong>in</strong>ematic harden<strong>in</strong>g.<br />

The elastic shakedown with vanish<strong>in</strong>g dissipated<br />

energy even with k<strong>in</strong>ematic harden<strong>in</strong>g is<br />

prom<strong>in</strong>ent from the figure. Zait et al. [25]<br />

furnished the results (Fig. 4) with maximum<br />

dimensionless <strong>in</strong>terference of 60 us<strong>in</strong>g k<strong>in</strong>ematic<br />

harden<strong>in</strong>g. They have shown that with small<br />

tangent modulus the materials result <strong>in</strong> elastic<br />

shakedown even under the <strong>in</strong>fluence of k<strong>in</strong>ematic<br />

harden<strong>in</strong>g. The present simulated results are <strong>in</strong><br />

good agreement with the f<strong>in</strong>d<strong>in</strong>gs of Zait et al.<br />

[25]. The right top figure (a) here, enlarged view<br />

of contact load after each load<strong>in</strong>g cycle, shows the<br />

decrease of contact load dur<strong>in</strong>g ten repeated<br />

load<strong>in</strong>g cycles, us<strong>in</strong>g 2.5% bil<strong>in</strong>ear k<strong>in</strong>ematic<br />

harden<strong>in</strong>g, under full stick contact condition. The<br />

bottom right figure (b), detailed view of residual<br />

<strong>in</strong>terferences after each unload<strong>in</strong>g cycles,<br />

presents the <strong>in</strong>crease of residual <strong>in</strong>terferences<br />

dur<strong>in</strong>g ten repeated load<strong>in</strong>g unload<strong>in</strong>g cycles<br />

with 2.5% bil<strong>in</strong>ear k<strong>in</strong>ematic harden<strong>in</strong>g under<br />

full stick contact condition.<br />

8


B. Chatterjee and P. Sahoo, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 3‐18<br />

Figure 6 represents the load <strong>in</strong>terference<br />

hysteretic loop dur<strong>in</strong>g ten repeated load<strong>in</strong>gunload<strong>in</strong>g<br />

cycles under full stick contact<br />

condition. The simulation used 2.5% bil<strong>in</strong>ear<br />

isotropic harden<strong>in</strong>g for the maximum<br />

dimensionless load<strong>in</strong>g up to * max =100. Here<br />

also the elastic plastic deformable sphere yields<br />

<strong>in</strong> elastic shakedown. The right top figure (a)<br />

<strong>in</strong>dicates the decrease of dimensionless contact<br />

load dur<strong>in</strong>g ten repeated load<strong>in</strong>g cycles. The<br />

bottom right figure (b) presents the <strong>in</strong>crease of<br />

residual <strong>in</strong>terferences after each unload<strong>in</strong>g<br />

cycles dur<strong>in</strong>g ten load<strong>in</strong>g unload<strong>in</strong>g cycles.<br />

Compar<strong>in</strong>g the results of Figs. 5 and 6, it is<br />

observed that the decrease of contact load after<br />

tenth load<strong>in</strong>g cycles and <strong>in</strong>crease of residual<br />

<strong>in</strong>terference after ten load<strong>in</strong>g unload<strong>in</strong>g cycles<br />

with both harden<strong>in</strong>g rule is almost identical with<br />

vanish<strong>in</strong>g dissipated energy.<br />

(a)<br />

(b)<br />

Fig. 7. Dimensionless normal contact load vs.<br />

dimensionless <strong>in</strong>terference hysteretic loop for<br />

maximum load<strong>in</strong>g, * max =100 with (a) isotropic<br />

harden<strong>in</strong>g (b) k<strong>in</strong>ematic harden<strong>in</strong>g.<br />

Fig. 6. Dimensionless normal contact load vs.<br />

dimensionless <strong>in</strong>terference hysteretic loop for<br />

maximum load<strong>in</strong>g, * max =100 with isotropic harden<strong>in</strong>g.<br />

Figure 7(a) presents the hysteretic loop of the<br />

dimensionless normal contact load with respect<br />

to dimensionless <strong>in</strong>terference dur<strong>in</strong>g ten<br />

repeated load<strong>in</strong>g unload<strong>in</strong>g cycles under full<br />

stick contact condition with 5% bil<strong>in</strong>ear<br />

isotropic harden<strong>in</strong>g. The maximum<br />

dimensionless <strong>in</strong>terference of load<strong>in</strong>g is<br />

* max =100. The figure reveals the elastic<br />

shakedown with vanish<strong>in</strong>g dissipated energy as<br />

expected for isotropic harden<strong>in</strong>g. Figure 7(b) is<br />

the plot of the hysteretic loop under full stick<br />

contact condition with 5% bil<strong>in</strong>ear k<strong>in</strong>ematic<br />

harden<strong>in</strong>g. The maximum dimensionless<br />

<strong>in</strong>terference of load<strong>in</strong>g dur<strong>in</strong>g ten repeated<br />

load<strong>in</strong>g unload<strong>in</strong>g cycles is * max =100.<br />

Here also the figure <strong>in</strong>dicates the elastic<br />

shakedown even with k<strong>in</strong>ematic harden<strong>in</strong>g. Zait<br />

et al. [25] also observed that under full stick<br />

contact condition the deformable sphere<br />

resulted <strong>in</strong> elastic shakedown with 2% bil<strong>in</strong>ear<br />

k<strong>in</strong>ematic harden<strong>in</strong>g for normal repeated<br />

load<strong>in</strong>g. They attributed the similar shakedown<br />

behavior with both harden<strong>in</strong>g models to the<br />

small variation of the von Mises stress.<br />

As can be seen from Figs. 4 to 7, the deformable<br />

sphere shows elastic shakedown with both the<br />

harden<strong>in</strong>g models for repeated normal load<strong>in</strong>g<br />

unload<strong>in</strong>g under full stick contact condition. The<br />

results show excellent agreement with the<br />

results of Zait et al. [25]. Zait et al. did not<br />

consider the effect of high tangent modulus on<br />

the multiple normal load<strong>in</strong>g‐unload<strong>in</strong>g of a<br />

deformable sphere aga<strong>in</strong>st a rigid flat. Kral et al.<br />

9


B. Chatterjee and P. Sahoo, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 3‐18<br />

[22] used stra<strong>in</strong>‐harden<strong>in</strong>g exponent to study<br />

the effect of stra<strong>in</strong> harden<strong>in</strong>g on the deformation<br />

of an elastic plastic half space aga<strong>in</strong>st a rigid<br />

sphere dur<strong>in</strong>g repeated load<strong>in</strong>g unload<strong>in</strong>g. They<br />

reported that the harden<strong>in</strong>g materials (stra<strong>in</strong><br />

harden<strong>in</strong>g exponent up to 0.5) reached to a<br />

shakedown <strong>in</strong> light of accumulation of plastic<br />

stra<strong>in</strong> after three to four repeated normal<br />

load<strong>in</strong>g unload<strong>in</strong>g cycles under perfect slip<br />

contact condition with isotropic harden<strong>in</strong>g. The<br />

tangent modulus of sta<strong>in</strong>less steel, structural<br />

steel, alum<strong>in</strong>um alloys etc. are 15% or above the<br />

modulus of elasticity of the respective materials.<br />

Thus <strong>in</strong> the next part of present analysis, the<br />

tangent modulus (E t ) is varied accord<strong>in</strong>g to a<br />

harden<strong>in</strong>g parameter (H). The harden<strong>in</strong>g<br />

parameter is def<strong>in</strong>ed as:<br />

H<br />

E<br />

t<br />

.<br />

E Et<br />

The present analysis considered four different<br />

values of H, cover<strong>in</strong>g wide range of tangent<br />

modulus to depict the effect of stra<strong>in</strong> harden<strong>in</strong>g<br />

<strong>in</strong> s<strong>in</strong>gle asperity multiple load<strong>in</strong>g unload<strong>in</strong>g<br />

contact analysis with other material properties<br />

be<strong>in</strong>g constant. The values of H used <strong>in</strong> this<br />

analysis are with<strong>in</strong> range 0 H 0. 5 as most of<br />

the practical materials falls <strong>in</strong> this range [31].<br />

The value of H equals to zero <strong>in</strong>dicates elastic<br />

perfectly plastic material behavior, which is an<br />

idealized material behavior. The harden<strong>in</strong>g<br />

parameters used for this analysis and their<br />

correspond<strong>in</strong>g E t values are shown <strong>in</strong> Table 1.<br />

shakedown. Figure 8(b) shows the resulted<br />

hysteretic loop of the dimensionless normal<br />

contact load versus dimensionless <strong>in</strong>terference<br />

under full stick contact condition for the elastic<br />

perfectly plastic material. Here the maximum<br />

dimensionless <strong>in</strong>terference of load<strong>in</strong>g <strong>in</strong> the<br />

<strong>in</strong>terference controlled repeated load<strong>in</strong>g<br />

unload<strong>in</strong>g is 200. It is clear from Figs. 8(a) and<br />

8(b) that the <strong>in</strong>crease of the load<strong>in</strong>g <strong>in</strong>terference<br />

exhibits no effect on the shakedown behaviour<br />

as hysteretic loop <strong>in</strong> both the figure <strong>in</strong>dicate<br />

vanish<strong>in</strong>g dissipated energy.<br />

(a)<br />

Table 1. Different H and E t values used for the study<br />

of stra<strong>in</strong> harden<strong>in</strong>g effect.<br />

H E t <strong>in</strong> %E E t (GPa)<br />

0 0.0 0.0<br />

0.1 9.0 6.3<br />

0.3 23.0 16.1<br />

0.5 33.0 23.1<br />

Figure 8(a) is the plot of hysteretic loop of<br />

dimensionless normal contact load versus<br />

dimensionless <strong>in</strong>terference under full stick<br />

contact condition for the elastic perfectly plastic<br />

material. The maximum dimensionless<br />

<strong>in</strong>terference of load<strong>in</strong>g <strong>in</strong> this <strong>in</strong>terference<br />

controlled repeated normal load<strong>in</strong>g unload<strong>in</strong>g is<br />

* max =50. The figure <strong>in</strong>dicates vanish<strong>in</strong>g<br />

dissipated energy, which resulted <strong>in</strong> elastic<br />

(b)<br />

Fig. 8. Dimensionless normal contact load vs.<br />

dimensionless <strong>in</strong>terference hysteretic loop for<br />

maximum load<strong>in</strong>g, (a) * max =50 (b) * max =200.<br />

Figure 9 presents the dimensionless contact load<br />

as a function of dimensionless <strong>in</strong>terference<br />

dur<strong>in</strong>g ten normal load<strong>in</strong>g unload<strong>in</strong>g cycles<br />

under full stick contact condition for the sphere<br />

material with harden<strong>in</strong>g parameter, H=0.1. The<br />

hysteretic loop consider<strong>in</strong>g bil<strong>in</strong>ear isotropic<br />

10


B. Chatterjee and P. Sahoo, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 3‐18<br />

harden<strong>in</strong>g with tangent modulus (E t ) equals to<br />

9% of elastic modulus clearly converged <strong>in</strong>to<br />

elastic shakedown. The right top figure (a)<br />

shows the slight decrease of dimensionless<br />

contact load <strong>in</strong> <strong>in</strong>terference controlled repeated<br />

normal load<strong>in</strong>g with maximum <strong>in</strong>terference of<br />

load<strong>in</strong>g equals to * max =50 while bottom right<br />

figure (b) presents the <strong>in</strong>crease of residual<br />

<strong>in</strong>terferences after each unload<strong>in</strong>g cycles.<br />

(a)<br />

Fig. 9. Dimensionless normal contact load vs.<br />

dimensionless <strong>in</strong>terference hysteretic loop for<br />

maximum load<strong>in</strong>g, * max =50.<br />

Hysteretic loop of repeated normal load<strong>in</strong>g<br />

unload<strong>in</strong>g for the deformable sphere with<br />

harden<strong>in</strong>g parameter, H=0.1 consider<strong>in</strong>g<br />

k<strong>in</strong>ematic harden<strong>in</strong>g under full stick contact<br />

condition is plotted <strong>in</strong> Fig. 10(a). The figure<br />

reveals more dissipated energy with k<strong>in</strong>ematic<br />

harden<strong>in</strong>g compared to the dissipated energy<br />

with isotropic harden<strong>in</strong>g.<br />

The top Fig. of 10 (b) shows the evolution of<br />

contact load after each load<strong>in</strong>g cycles dur<strong>in</strong>g ten<br />

repeated load<strong>in</strong>g unload<strong>in</strong>g cycles with tangent<br />

modulus, E t =0.09E. The maximum dimensionless<br />

<strong>in</strong>terference of load<strong>in</strong>g is 50.<br />

The bottom Fig. of 10(b) exhibits the residual<br />

<strong>in</strong>terference after each unload<strong>in</strong>g cycles.<br />

Compar<strong>in</strong>g the results with two different<br />

harden<strong>in</strong>g models, it is found that the contact<br />

load at the end of maximum dimensionless<br />

<strong>in</strong>terference with k<strong>in</strong>ematic harden<strong>in</strong>g is greater<br />

than the contact load with isotropic harden<strong>in</strong>g.<br />

Similar behaviour is also observed elsewhere<br />

[24]. On the other hand, the residual<br />

<strong>in</strong>terference with k<strong>in</strong>ematic harden<strong>in</strong>g is lesser<br />

than that of with isotropic harden<strong>in</strong>g.<br />

(b)<br />

Fig. 10. (a) Dimensionless normal contact load vs.<br />

dimensionless <strong>in</strong>terference hysteretic loop for<br />

maximum load<strong>in</strong>g, * max= 50 with k<strong>in</strong>ematic harden<strong>in</strong>g<br />

(b) Decrease of contact load and <strong>in</strong>crease of residual<br />

<strong>in</strong>terferences dur<strong>in</strong>g ten load<strong>in</strong>g unload<strong>in</strong>g cycles.<br />

The dimensionless normal contact load as a<br />

function of the dimensionless normal <strong>in</strong>terference is<br />

presented <strong>in</strong> Fig. 11(a). The hysteretic loop, area<br />

bounded by unloaded cycle and load<strong>in</strong>g cycle after<br />

first load<strong>in</strong>g, with maximum dimensionless<br />

<strong>in</strong>terference of 200 shows that the value of the<br />

bounded area subsequently decreas<strong>in</strong>g <strong>in</strong> nature.<br />

Thus the repeated ten load<strong>in</strong>g unload<strong>in</strong>g cycles<br />

under full stick contact condition with isotropic<br />

harden<strong>in</strong>g converges <strong>in</strong>to elastic shakedown even<br />

with large <strong>in</strong>terference. The area of the hysteretic<br />

loop between the unload<strong>in</strong>g curve and the<br />

subsequent load<strong>in</strong>g curve of dimensionless contact<br />

load and dimensionless <strong>in</strong>terference under full stick<br />

contact condition presents the amount of dissipated<br />

energy. The Fig. 11(b) <strong>in</strong>dicates a constant<br />

dissipation of energy after first unload<strong>in</strong>g cycle.<br />

Thus it is evident that the material with high<br />

tangent modulus and k<strong>in</strong>ematic harden<strong>in</strong>g resulted<br />

11


B. Chatterjee and P. Sahoo, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 3‐18<br />

<strong>in</strong> plastic shakedown. It can also be seen from the<br />

figure that the area of the hysteretic loop <strong>in</strong>creases<br />

with the <strong>in</strong>crease <strong>in</strong> maximum dimensionless<br />

<strong>in</strong>terference of load<strong>in</strong>g <strong>in</strong> the <strong>in</strong>terference<br />

controlled repeated load<strong>in</strong>g unload<strong>in</strong>g.<br />

curve and load<strong>in</strong>g curve on and from first unload<strong>in</strong>g<br />

cycle of load displacement figure, shows no<br />

remarkable dissipation of energy. The vanish<strong>in</strong>g<br />

nature of dissipated energy resulted <strong>in</strong> elastic<br />

shakedown. These f<strong>in</strong>d<strong>in</strong>gs are <strong>in</strong> good agreement<br />

with Kad<strong>in</strong> et al. [19] where the authors concluded<br />

that the elastic shakedown is associated with<br />

isotropic harden<strong>in</strong>g.<br />

(a)<br />

(a)<br />

(b)<br />

Fig. 11. Dimensionless normal contact load vs.<br />

dimensionless <strong>in</strong>terference hysteretic loop for<br />

maximum load<strong>in</strong>g,* max =200 with (a) isotropic<br />

harden<strong>in</strong>g (b) k<strong>in</strong>ematic harden<strong>in</strong>g.<br />

Figure 12(a) to 12(c) presents the dimensionless<br />

elastic plastic load displacement results dur<strong>in</strong>g<br />

repeated normal load<strong>in</strong>g unload<strong>in</strong>g process <strong>in</strong><br />

terms of P* vs. * under full stick contact condition.<br />

The simulations have done with the harden<strong>in</strong>g<br />

parameter of the sphere material, H=0.3 (tangent<br />

modulus, E t =0.23E) us<strong>in</strong>g isotropic harden<strong>in</strong>g. The<br />

maximum dimensionless <strong>in</strong>terferences of load<strong>in</strong>g<br />

for Figs. 12(a), 12(b) and 12(c) are 50, 100 and 200<br />

respectively. We have considered ten repeated<br />

load<strong>in</strong>g unload<strong>in</strong>g cycles for the maximum load<strong>in</strong>g<br />

<strong>in</strong>terference of 50 and 100 while seven load<strong>in</strong>g<br />

unload<strong>in</strong>g cycles for the load<strong>in</strong>g <strong>in</strong>terference of 200.<br />

The hysteretic loop, the area between the unload<strong>in</strong>g<br />

(b)<br />

(c)<br />

Fig. 12. Dimensionless normal contact load vs.<br />

dimensionless <strong>in</strong>terference hysteretic loop for maximum<br />

load<strong>in</strong>g, (a) * max =50, (b) * max =100, (c) * max =200.<br />

12


B. Chatterjee and P. Sahoo, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 3‐18<br />

The dimensionless normal contact loads as a<br />

function of normal dimensionless <strong>in</strong>terferences<br />

under full stick contact condition are plotted <strong>in</strong><br />

Fig. 13 (a) to 13(c). The harden<strong>in</strong>g parameter<br />

chosen for these simulations is, H=0.3 (tangent<br />

modulus, E t =0.23E) us<strong>in</strong>g k<strong>in</strong>ematic harden<strong>in</strong>g. It<br />

reveals from the figures that the unload<strong>in</strong>g curves<br />

and the load<strong>in</strong>g curves are identical on and from<br />

second cycle exhibit<strong>in</strong>g constant dimensionless<br />

energy dissipation (the area of the hysteretic<br />

loop) dur<strong>in</strong>g each repeated cycle. Here also we<br />

have used ten repeated cycles for the maximum<br />

<strong>in</strong>terference load<strong>in</strong>g of 50 and 100, whereas<br />

seven repeated cycles for the maximum<br />

<strong>in</strong>terference load<strong>in</strong>g of 200. The constant<br />

dimensionless energy dissipation <strong>in</strong>dicates plastic<br />

shakedown as would be expected for k<strong>in</strong>ematic<br />

harden<strong>in</strong>g. It is also observed from Fig. 13(a) to<br />

13(c) that the dissipated energy <strong>in</strong>creases with<br />

the <strong>in</strong>crease <strong>in</strong> maximum <strong>in</strong>terference of load<strong>in</strong>g.<br />

Figure 14, the details of Fig. 13(c), presents the<br />

evolution of dimensionless contact load and<br />

dimensionless residual <strong>in</strong>terferences dur<strong>in</strong>g<br />

repeated load<strong>in</strong>g unload<strong>in</strong>g. It is found from the<br />

figure (a) that the dimensionless contact load is<br />

almost identical from second load<strong>in</strong>g cycles and<br />

figure (b) <strong>in</strong>dicates that the <strong>in</strong>crease <strong>in</strong><br />

dimensionless residual <strong>in</strong>terference is also<br />

negligible after repeated unload<strong>in</strong>g cycles.<br />

Comparison of two harden<strong>in</strong>g model also reveals<br />

that the dimensionless contact load for the same<br />

dimensionless <strong>in</strong>terference is larger with isotropic<br />

harden<strong>in</strong>g than that of with k<strong>in</strong>ematic harden<strong>in</strong>g.<br />

However the effect of harden<strong>in</strong>g model is more<br />

pronounced dur<strong>in</strong>g unload<strong>in</strong>g, the materials with<br />

k<strong>in</strong>ematic harden<strong>in</strong>g offer less resistance to<br />

recovery of orig<strong>in</strong>al shape compared to the<br />

materials associated with isotropic harden<strong>in</strong>g.<br />

(b)<br />

(c)<br />

Fig. 13. Dimensionless normal contact load vs.<br />

dimensionless <strong>in</strong>terference hysteretic loop for maximum<br />

load<strong>in</strong>g, (a) * max =50, (b) * max =100, (c) * max =200.<br />

Fig. 14. Evolution of contact load and residual<br />

<strong>in</strong>terferences dur<strong>in</strong>g repeated load<strong>in</strong>g unload<strong>in</strong>g of<br />

plastic shakedown process.<br />

(a)<br />

Figure 15(a) to 15(c) presented the effect of<br />

maximum dimensionless <strong>in</strong>terference of load<strong>in</strong>g<br />

13


B. Chatterjee and P. Sahoo, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 3‐18<br />

<strong>in</strong> <strong>in</strong>terference controlled repeated load<strong>in</strong>g<br />

unload<strong>in</strong>g on the evolution of dimensionless<br />

normal contact load versus dimensionless<br />

normal <strong>in</strong>terference for repeated load<strong>in</strong>g<br />

unload<strong>in</strong>g cycles. Ten repeated load<strong>in</strong>g<br />

unload<strong>in</strong>g cycles are considered when the<br />

maximum dimensionless <strong>in</strong>terferences are 50<br />

and 100. Seven repeated load<strong>in</strong>g unload<strong>in</strong>g<br />

cycles are simulated for maximum<br />

dimensionless <strong>in</strong>terference load<strong>in</strong>g of 200. The<br />

load displacement loop of the sphere material<br />

with harden<strong>in</strong>g parameter, H=0.5 (tangent<br />

modulus, E t =0.33E) us<strong>in</strong>g isotropic harden<strong>in</strong>g<br />

exhibit<strong>in</strong>g convergence to an elastic shakedown<br />

irrespective of the extent of maximum<br />

<strong>in</strong>terference of load<strong>in</strong>g. Thus the shakedown<br />

behavior <strong>in</strong> case of normal repeated load<strong>in</strong>g<br />

unload<strong>in</strong>g depends predom<strong>in</strong>antly on the<br />

harden<strong>in</strong>g rule and tangent modulus of the<br />

deformable sphere rather than the extent of<br />

load<strong>in</strong>g <strong>in</strong> the <strong>in</strong>terference controlled repeated<br />

load<strong>in</strong>g unload<strong>in</strong>g.<br />

(a)<br />

(b)<br />

(c)<br />

Fig. 15. Dimensionless normal contact load vs.<br />

dimensionless <strong>in</strong>terference hysteretic loop for maximum<br />

load<strong>in</strong>g, (a) * max =50, (b) * max =100, (c) * max =200.<br />

The dimensionless normal contact load versus<br />

dimensionless normal <strong>in</strong>terference <strong>in</strong> repeated<br />

load<strong>in</strong>g unload<strong>in</strong>g for a deformable sphere with a<br />

rigid flat under full stick contact condition us<strong>in</strong>g<br />

k<strong>in</strong>ematic harden<strong>in</strong>g are shown <strong>in</strong> Fig. 16(a) to<br />

16(c). The maximum dimensionless <strong>in</strong>terferences<br />

of load<strong>in</strong>g for the sphere material with tangent<br />

modulus, E t =0.33E (Harden<strong>in</strong>g parameter, H=0.5)<br />

are 50,100 and 200 respectively. Ten repeated<br />

load<strong>in</strong>g unload<strong>in</strong>g cycles are used for the<br />

maximum dimensionless load<strong>in</strong>g <strong>in</strong>terferences of<br />

50 and 100 although seven such repeated cycles<br />

are used foe the maximum load<strong>in</strong>g <strong>in</strong>terference of<br />

200. It reveals from the figures that the loaddisplacement<br />

hysteretic loops, irrespective of the<br />

maximum dimensionless <strong>in</strong>terferences of load<strong>in</strong>g,<br />

exhibited constant dissipated energy <strong>in</strong>dicat<strong>in</strong>g<br />

plastic shakedown.<br />

From the several simulations it was found that <strong>in</strong><br />

order to enable a common basis for the comparison<br />

of the dimensionless dissipated energy, the energy<br />

transferred to the deformable sphere dur<strong>in</strong>g first<br />

load<strong>in</strong>g is to be kept constant. Thus the dissipated<br />

energy is normalized with the product P of elastic<br />

perfectly plastic materials. The dissipated energy is<br />

calculated by numerically <strong>in</strong>tegrat<strong>in</strong>g the area<br />

enclosed with<strong>in</strong> the hysteretic load‐displacement<br />

loop. The effects of stra<strong>in</strong> harden<strong>in</strong>g (E t /E) on the<br />

constant dissipated energy at plastic shakedown are<br />

shown for maximum dimensionless load<strong>in</strong>g<br />

<strong>in</strong>terference of 50, 100 and 200 <strong>in</strong> Figs. 17(a), 17(b)<br />

and 17(c) respectively. As can be observed from the<br />

figures, the constant dissipated energy dur<strong>in</strong>g<br />

plastic shakedown <strong>in</strong>creases with the <strong>in</strong>crease <strong>in</strong><br />

14


B. Chatterjee and P. Sahoo, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 3‐18<br />

the tangent modulus of the deformable sphere.<br />

Compar<strong>in</strong>g the results for the different maximum<br />

dimensionless <strong>in</strong>terference of load<strong>in</strong>g, it is evident<br />

that the constant dissipation energy dur<strong>in</strong>g plastic<br />

shakedown is <strong>in</strong>creas<strong>in</strong>g with the <strong>in</strong>crease <strong>in</strong><br />

maximum dimensionless <strong>in</strong>terference of load<strong>in</strong>g for<br />

a specific tangent modulus of the sphere material.<br />

Zolotarevskiy et al. [21] found that the constant<br />

dissipated energy dur<strong>in</strong>g plastic shakedown<br />

<strong>in</strong>creases with the <strong>in</strong>crease <strong>in</strong> dimensionless<br />

normal load while simulat<strong>in</strong>g under tangential<br />

load<strong>in</strong>g <strong>in</strong> pre‐slid<strong>in</strong>g under full stick contact<br />

condition. Our results for repeated normal load<strong>in</strong>g<br />

unload<strong>in</strong>g under full stick contact condition<br />

correlate well with Zolotarevskiy et al. [21] <strong>in</strong><br />

regards to the effect of normal load on constant<br />

dissipated energy dur<strong>in</strong>g plastic shakedown.<br />

(c)<br />

Fig. 16. Dimensionless normal contact load vs.<br />

dimensionless <strong>in</strong>terference hysteretic loop for<br />

maximum load<strong>in</strong>g, (a) * max =50, (b) * max =100, (c)<br />

* max =200.<br />

(a)<br />

(a)<br />

(b)<br />

(b)<br />

15


B. Chatterjee and P. Sahoo, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 3‐18<br />

(c)<br />

Fig. 17. Dimensionless dissipated energy vs. E t /E at<br />

(a) * max =50, (b) * max =100, (c) * max =200.<br />

The present study considers the shakedown<br />

behavior <strong>in</strong> full stick contact condition for vary<strong>in</strong>g<br />

tangent modulus. However, there are other<br />

material parameters like Poisson’s ratio, work<br />

harden<strong>in</strong>g, ratio of elastic modulus to yield<br />

strength etc. that need to be considered [32]. Also<br />

other contact conditions like pure slip and stickslip<br />

need to be considered <strong>in</strong> future studies. The<br />

present study assumes non‐adhesive contact<br />

situation but a realistic contact analysis should<br />

<strong>in</strong>clude the presence of adhesion [33]. Future<br />

work will consider such contact situations.<br />

5. CONCLUSIONS<br />

The elastic plastic spherical contact subjected to<br />

repeated normal load<strong>in</strong>g unload<strong>in</strong>g under full<br />

stick contact condition with vary<strong>in</strong>g tangent<br />

modulus was analyzed us<strong>in</strong>g commercial f<strong>in</strong>ite<br />

element software ANSYS. Both the isotropic and<br />

k<strong>in</strong>ematic harden<strong>in</strong>g rules were studied. The<br />

elastic shakedown for isotropic harden<strong>in</strong>g and<br />

plastic shakedown for k<strong>in</strong>ematic harden<strong>in</strong>g was<br />

predicted for most of the published results of<br />

slid<strong>in</strong>g, frett<strong>in</strong>g and roll<strong>in</strong>g contact repetitive<br />

load<strong>in</strong>g. Recently published f<strong>in</strong>ite element based<br />

multiple normal load<strong>in</strong>g unload<strong>in</strong>g of a<br />

deformable sphere aga<strong>in</strong>st a rigid flat converged<br />

<strong>in</strong>to elastic shakedown with both 2% bil<strong>in</strong>ear<br />

isotropic and k<strong>in</strong>ematic harden<strong>in</strong>g. The present<br />

results with<strong>in</strong> 5% harden<strong>in</strong>g were found<br />

qualitatively similar elastic shakedown with<br />

both isotropic and k<strong>in</strong>ematic harden<strong>in</strong>g as<br />

<strong>in</strong>ferred <strong>in</strong> recently published f<strong>in</strong>ite element<br />

based results. The sphere material with high<br />

tangent modulus (from 9% to 33% of elastic<br />

modulus), as observed <strong>in</strong> sta<strong>in</strong>less steel,<br />

structural steel and different alum<strong>in</strong>um alloys,<br />

exhibited constant dissipated energy (plastic<br />

shakedown) follow<strong>in</strong>g the second load<strong>in</strong>g cycles<br />

with k<strong>in</strong>ematic harden<strong>in</strong>g and converges <strong>in</strong>to<br />

elastic shakedown with isotropic harden<strong>in</strong>g. It<br />

was also found that elastic plastic spherical<br />

contact with isotropic harden<strong>in</strong>g produced more<br />

dimensionless contact load than the elastic<br />

plastic spherical contact with k<strong>in</strong>ematic<br />

harden<strong>in</strong>g particularly for high tangent modulus.<br />

The residual <strong>in</strong>terferences with k<strong>in</strong>ematic<br />

harden<strong>in</strong>g after complete unload<strong>in</strong>g is less<br />

compared to the residual <strong>in</strong>terferences<br />

simulated with isotropic harden<strong>in</strong>g, which, <strong>in</strong><br />

turn, offers less resistance to full recovery of the<br />

orig<strong>in</strong>al shape with k<strong>in</strong>ematic harden<strong>in</strong>g. The<br />

results from present simulation also revealed<br />

that the higher dimensionless <strong>in</strong>terference of<br />

load<strong>in</strong>g and higher tangent modulus <strong>in</strong>crease the<br />

dimensionless dissipated energy.<br />

NOMENCLATURE<br />

a Contact area radius<br />

E Modulus of elasticity of the sphere<br />

Y Yield Strength of the sphere material<br />

A Real contact area<br />

R Radius of the sphere<br />

P Contact load<br />

Interference<br />

Poisson’s ratio of sphere<br />

p Mean contact pressure<br />

E t Tangent modulus of the sphere<br />

P* Dimensionless contact load, P/P c <strong>in</strong> stick<br />

contact<br />

A* Dimensionless contact area, A/A c <strong>in</strong> stick<br />

contact<br />

* Dimensionless <strong>in</strong>terference,/ c <strong>in</strong> stick<br />

contact<br />

Subscripts<br />

c critical values<br />

res Residual values follow<strong>in</strong>g unload<strong>in</strong>g<br />

max Maximum values dur<strong>in</strong>g load<strong>in</strong>gunload<strong>in</strong>g<br />

process<br />

Superscripts<br />

* Dimensionless<br />

16


B. Chatterjee and P. Sahoo, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 3‐18<br />

REFERENCES<br />

[1] C.P. Jones, W.R. Tyfor, J.H. Beynon, A. Kapoor:<br />

The effect of stra<strong>in</strong> harden<strong>in</strong>g on shakedown<br />

limits of a pearlitic rail steel, J. Rail Rapid Transit,<br />

Vol. 211, pp. 131‐140, 1997.<br />

[2] A. Kapoor, K.L. Johnson: Plastic ratchet<strong>in</strong>g as a<br />

mechanism of metallic wear, Proc. R. Soc. Lond.,<br />

Vol. A445, pp. 367‐381, 1994.<br />

[3] S. Fouvry, Ph. Kapsa, L. V<strong>in</strong>cent: An elastic‐plastic<br />

shakedown analysis of frett<strong>in</strong>g wear, Wear, Vol.<br />

247, pp. 41‐54, 2001.<br />

[4] U. Olofsson, R. Lewis: Handbook of Railway<br />

Vehicle Dynamics, Taylor & Francis Group, LLC,<br />

2006.<br />

[5] K.L. Johnson: Contact Mechanics, Cambridge<br />

University Press, Cambridge, MA, 1985.<br />

[6] S. Suresh: Fatigue of Materials, Cambridge<br />

University Press, Cambridge, MA, 1998.<br />

[7] A. Ovcharenko, I. Etsion: Junction growth and<br />

energy dissipation at the very early stage of<br />

elastic‐plastic spherical contact frett<strong>in</strong>g, ASME J.<br />

Tribol., Vol. 131, pp. 1‐8, 2009.<br />

[8] C. Cattaneo: sul contatto di due corpi elastici:<br />

distribuzione locale degli sforzi, Rendiconti dell,<br />

Accademia Nazionale dei l<strong>in</strong>cei 27, Ser. 6, pp.<br />

342‐348,434‐436,474‐478, 1938.<br />

[9] R.D. M<strong>in</strong>dl<strong>in</strong>: Compliance of elastic bodies <strong>in</strong><br />

contact, ASME J. Appl. Mech., Vol. 16, pp. 259‐<br />

268, 1949.<br />

[10] R.D. M<strong>in</strong>dl<strong>in</strong>, W.P. Mason, J.F. Osmer, H.<br />

Deresiewicz: Effects of an oscillat<strong>in</strong>g tangential<br />

force on the contact surfaces of elastic spheres, <strong>in</strong>:<br />

Proceed<strong>in</strong>gs of the 1st US National Congress of<br />

Applied Mechanics‐1951, ASME, New York, pp.<br />

203‐208, 1952.<br />

[11] R.D. M<strong>in</strong>dl<strong>in</strong>, H. Deresiewicz: Elastic spheres <strong>in</strong><br />

contact under vary<strong>in</strong>g oblique forces, ASME J.<br />

Appl. Mech., Vol. 20, pp. 327‐344, 1953.<br />

[12] M. Odfalk, O. V<strong>in</strong>gsbo: An elastic‐plastic model for<br />

frett<strong>in</strong>g contact, Wear, Vol. 157, pp. 435‐444, 1992.<br />

[13] M. Eriten, A.A. Polycarpou, L.A. Bergman: Physicsbased<br />

model<strong>in</strong>g for partial slip behavior of<br />

spherical contacts, Int. J. Solids Struct., Vol. 47,<br />

pp. 2554‐2567, 2010.<br />

[14] F.P. Bowden, D. Tabor: The friction and lubrication<br />

of solids, Clarendon Press, Oxford, 1954.<br />

[15] D. Tabor: Junction growth <strong>in</strong> metallic friction: the<br />

role of comb<strong>in</strong>ed stresses and surface<br />

contam<strong>in</strong>ation, Proc. R. Soc. Lond., Vol. A251. pp.<br />

378‐393, 1959.<br />

[16] A. Ovcharenko, G. Halper<strong>in</strong>, I. Etsion: In situ and<br />

real‐time optical <strong>in</strong>vestigation of junction growth<br />

<strong>in</strong> spherical elastic‐plastic contact, Wear, Vol.<br />

264, pp. 1043‐1050, 2008.<br />

[17] D. Tabor: The mechanism of roll<strong>in</strong>g friction: the<br />

elastic range, Proc. R. Soc. Lond., Vol. A229, pp.<br />

198‐220, 1955.<br />

[18] J.A. Greenwood, J. M<strong>in</strong>shall, D. Tabor: Hysteresis<br />

losses <strong>in</strong> roll<strong>in</strong>g and slid<strong>in</strong>g friction, Proc. R. Soc.<br />

Lond., Vol. A259, pp. 480‐507, 1961.<br />

[19] Y. Kad<strong>in</strong>, Y. Kligerman, I. Etsion: Load<strong>in</strong>gunload<strong>in</strong>g<br />

of an elastic‐plastic adhesive spherical<br />

micro contact, J. Colloid Interface Sci., Vol. 321,<br />

pp. 242‐250, 2008.<br />

[20] Z. Song, K. Komvopoulos: Adhesion‐<strong>in</strong>duced<br />

<strong>in</strong>stabilities <strong>in</strong> elastic and elastic‐plastic contacts<br />

dur<strong>in</strong>g s<strong>in</strong>gle and repetitive normal load<strong>in</strong>g, J<br />

Mech. Phys. Solids, Vol. 59, pp. 884‐897, 2011.<br />

[21] V. Zolotarevskiy, Y. Kligerman, I. Etsion: Elasticplastic<br />

spherical contact under cyclic tangential<br />

load<strong>in</strong>g <strong>in</strong> pre‐slid<strong>in</strong>g, Wear, Vol. 270, pp. 888‐<br />

894, 2011.<br />

[22] E.R. Kral, K. Komvopoulous, D.B. Bogy: Elasticplastic<br />

f<strong>in</strong>ite element analysis of repeated<br />

<strong>in</strong>dentation of a half‐space by a rigid sphere,<br />

ASME J. Appl. Mech., Vol. 60, pp. 829‐841, 1993.<br />

[23] B. Chatterjee, P. Sahoo: Effect of stra<strong>in</strong> harden<strong>in</strong>g<br />

on unload<strong>in</strong>g of a deformable sphere loaded<br />

aga<strong>in</strong>st a rigid flat‐ A f<strong>in</strong>ite element study, Int. J.<br />

Engg. Tech., Vol. 2, No. 4, pp. 225‐233, 2010.<br />

[24] B. Chatterjee, P. Sahoo: Effect of stra<strong>in</strong> harden<strong>in</strong>g<br />

on elastic‐plastic contact of a deformable sphere<br />

aga<strong>in</strong>st a rigid flat under full contact condition,<br />

Advances <strong>in</strong> Tribology, Vol. 2012, pp. 1‐8, 2012.<br />

[25] Y. Zait, V. Zolotarevskiy, Y. Kligerman, I. Etsion:<br />

Multiple normal load<strong>in</strong>g cycles of a spherical<br />

contact under stick contact condition, ASME J.<br />

Tribology, Vol. 132, pp. 1‐7, 2010.<br />

[26] V. Brizmer, Y. Kligerman, I. Etsion: The effect of<br />

contact conditions and material properties on the<br />

elasticity term<strong>in</strong>us of a spherical contact, Int. J.<br />

Solids Struct., Vol. 43, pp. 5736‐5749, 2006.<br />

[27] Y. Kad<strong>in</strong>, Y. Kligerman, I. Etsion: Multiple load<strong>in</strong>gunload<strong>in</strong>g<br />

of an elastic‐plastic spherical contact,<br />

Int. J. Solids Struct., Vol. 43, pp. 7119‐7127, 2007.<br />

[28] ANSYS theory manual, Release 11.0, ANSYS Inc,<br />

Camonburg, USA, 2007.<br />

[29] S. Shankar, M.M. Mayuram: Effect of stra<strong>in</strong><br />

harden<strong>in</strong>g <strong>in</strong> elastic‐plastic transition behavior <strong>in</strong><br />

a hemisphere <strong>in</strong> contact with a rigid flat, Int. J.<br />

Solids Struct., Vol. 45, pp. 3009‐3020, 2008.<br />

17


B. Chatterjee and P. Sahoo, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 3‐18<br />

[30] A. Ovcharenko, G. Halper<strong>in</strong>, G. Verberne, I. Etsion:<br />

In situ <strong>in</strong>vestigation of the contact area <strong>in</strong> elasticplastic<br />

spherical contact dur<strong>in</strong>g load<strong>in</strong>g‐unload<strong>in</strong>g,<br />

Tribol. Lett., Vol. 25, pp. 153‐160, 2007.<br />

[31] F. Wang, L.M. Keer: Numerical simulation for<br />

three‐dimensional elastic‐plastic contact with<br />

harden<strong>in</strong>g behavior, ASME J. Tribology, Vol. 127,<br />

No. 3, pp. 494‐502, 2005.<br />

[32] B. Chatterjee, P. Sahoo: Elastic‐plastic contact of a<br />

deformable sphere aga<strong>in</strong>st a rigid flat at vary<strong>in</strong>g<br />

material properties under full stick contact<br />

condition, Tribology <strong>in</strong> Industry, Vol. 33, No. 4,<br />

pp. 164‐172, 2011.<br />

[33] A. Mitra, P. Sahoo, K. Saha: A multi‐asperity model<br />

of contact between a smooth sphere and a rough<br />

flat surface <strong>in</strong> presence of adhesion, Tribology <strong>in</strong><br />

Industry, Vol. 33, No. 1, pp. 3‐10, 2011.<br />

18


Vol. 35, No. 1 (2013) 19‐24<br />

Tribology <strong>in</strong> Industry<br />

www.<strong>tribology</strong>.f<strong>in</strong>k.rs<br />

RESEARCH<br />

Heat Exchanger Tube to Tube Sheet<br />

Jo<strong>in</strong>ts Corrosion Behavior<br />

M. Iancu a , R.G. Ripeanu b , I. Tudor b<br />

a OMV PETROM S.A., Brazi, Trandafirilor, No.65, 107080, Romania.<br />

b Petroleum‐Gas University of Ploiesti, Blvd. Bucuresti, No.39, 100680, Romania.<br />

Keywords:<br />

Tube to tube sheet fitt<strong>in</strong>gs<br />

Stress<br />

Corrosion rate<br />

Hydrof<strong>in</strong><strong>in</strong>g oil<br />

Temperature<br />

Correspond<strong>in</strong>g author:<br />

Razvan George Ripeanu<br />

Petroleum‐Gas University of Ploiesti,<br />

Blvd. Bucuresti, No.39, 100680,<br />

Romania<br />

E‐mail: rrapeanu@upg‐ploiesti.ro<br />

A B S T R A C T<br />

Paper presents the studies made by the authors above the tube to tube sheet<br />

fitt<strong>in</strong>gs of heat exchanger with fixed covers from hydrof<strong>in</strong><strong>in</strong>g oil reform<strong>in</strong>g<br />

unit. Tube fitt<strong>in</strong>gs are critical zones for heat exchangers failures. On a device<br />

made from material tube and tube sheet at real jo<strong>in</strong>ts dimensions were<br />

establish axial compression force and traction force at which tube is<br />

extracted from expanded jo<strong>in</strong>t. Were used two shapes jo<strong>in</strong>ts with two types<br />

of fitt<strong>in</strong>gs surfaces, one with smooth hole of tube sheet and other <strong>in</strong> which on<br />

bor<strong>in</strong>g surface we made a groove. From extracted expanded tube zones<br />

were made samples for corrosion tests <strong>in</strong> order to establish the corrosion<br />

rate, corrosion potential and corrosion current <strong>in</strong> work<strong>in</strong>g mediums such as<br />

hydrof<strong>in</strong><strong>in</strong>g oil and <strong>in</strong>dustrial water at different temperatures. The<br />

corrosion rate values and the temperature <strong>in</strong>fluence are important to<br />

evaluate jo<strong>in</strong>ts durability and also the results obta<strong>in</strong>ed shows that the<br />

bor<strong>in</strong>g tube sheet shape with a groove on hole tube shape presents a better<br />

corrosion behavior then the shape with smooth hole tube sheet.<br />

© 2013 Published by Faculty of Eng<strong>in</strong>eer<strong>in</strong>g<br />

1. INTRODUCTION<br />

Shell and tube heat exchangers are most<br />

commonly used <strong>in</strong> the process ref<strong>in</strong>ery<br />

<strong>in</strong>dustries due to a large ratio of heat transfer<br />

area to volume and weight. The tubes are the<br />

basic component of the heat exchanger,<br />

provid<strong>in</strong>g the heat transfer surface between one<br />

fluid flow<strong>in</strong>g <strong>in</strong>side the tube and the other fluid<br />

flow<strong>in</strong>g across the outside of the tubes. The<br />

tubes are held <strong>in</strong> place by be<strong>in</strong>g <strong>in</strong>serted <strong>in</strong>to<br />

holes <strong>in</strong> the tube sheet and there either<br />

expanded <strong>in</strong>to grooves cut <strong>in</strong>to the holes or<br />

welded to the tube sheet were the tube<br />

protrudes from the surface. The ma<strong>in</strong> failures of<br />

heat exchangers are: corrosion of tubes and<br />

jacket, tubes blockage and failures of tube to<br />

tube sheet jo<strong>in</strong>ts. Paper presents the studies<br />

made by authors above the tube to tube sheet<br />

fitt<strong>in</strong>gs of heat exchanger, type BEM as classified<br />

of Tubular Exchanger Manufacturers<br />

Association, with fixed covers from hydrof<strong>in</strong><strong>in</strong>g<br />

oil reform<strong>in</strong>g unit, [1]. In Fig. 1 is presented the<br />

catalytic reform<strong>in</strong>g unit of hydrof<strong>in</strong><strong>in</strong>g oil<br />

schema were heat exchanger has position “121‐<br />

S1”. Weld<strong>in</strong>gs between tubes and tube sheet is<br />

not recommended [2,3,4]. At studied heat<br />

exchanger the tube to tube sheet are expanded<br />

19


M. Iancu et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 19‐24<br />

jo<strong>in</strong>ts. The tubes and tube sheet, <strong>in</strong> addition to<br />

mechanical requirements, must withstand<br />

corrosive attack by both fluids <strong>in</strong> the heat<br />

exchanger and must be electrochemically<br />

compatible with the tube and all tube‐side<br />

material [1,2,3].<br />

Fig. 1. Catalytic reform<strong>in</strong>g unit schema.<br />

At heat exchanger analyzed through the jacket is<br />

circulat<strong>in</strong>g hydrof<strong>in</strong><strong>in</strong>g oil and through the tubes<br />

is circulat<strong>in</strong>g <strong>in</strong>dustrial water. In Table 1 are<br />

presented the ma<strong>in</strong> work<strong>in</strong>g conditions.<br />

Table 1. Ma<strong>in</strong> work<strong>in</strong>g conditions<br />

Parameter Jacket Tubes<br />

Maximum work<strong>in</strong>g<br />

pressure, MPa<br />

1.15 0.65<br />

Maximum<br />

temperature, 0 C<br />

70 38<br />

M<strong>in</strong>imum<br />

temperature, 0 C<br />

50 30<br />

Work<strong>in</strong>g medium<br />

Danger<br />

Hydrof<strong>in</strong><strong>in</strong>g<br />

oil<br />

Toxic,<br />

<strong>in</strong>flammable<br />

Industrial<br />

water<br />

The mechanical process of expand<strong>in</strong>g of tube<br />

comprises two dist<strong>in</strong>ct phases, [4]:<br />

a) pre expand<strong>in</strong>g of tube, that prelim<strong>in</strong>ary<br />

flexible flare or / and elastic‐plastic the tubular<br />

element (TE) until it comes <strong>in</strong> contact with the<br />

wall tube sheet hole (TP);<br />

b) proper expand<strong>in</strong>g of tube, additional<br />

enlargement ma<strong>in</strong>ly concerned elastic‐plastic,<br />

residual TE, while broaden<strong>in</strong>g ma<strong>in</strong>ly flexible,<br />

reversible, the holes <strong>in</strong> TP as shown <strong>in</strong> Fig. 2, [4].<br />

‐<br />

Fig. 2. Typical characteristic curves of TE materials<br />

and, respectively, TP regarded as jo<strong>in</strong>t materials<br />

build<strong>in</strong>g plastic l<strong>in</strong>ear harden<strong>in</strong>g.<br />

Pre expand<strong>in</strong>g of tube phase corresponds to full<br />

depletion clearance of assembly δ 0 = 2δ (Fig.3), [4].<br />

Fig. 3. Tube to tube sheet schema<br />

The ma<strong>in</strong> requirement of a tube‐to tube sheet<br />

jo<strong>in</strong>t is better to resist the axial stress,<br />

compressive or tensile, applied to tube. This<br />

happens if tube to tube sheet jo<strong>in</strong>ts, where<br />

tubes and tube sheet are made of steel, when<br />

the hoop stress <strong>in</strong> tube sheet is higher than <strong>in</strong><br />

tubes [4].<br />

In order to better respect conditions of tension<br />

and compression <strong>in</strong> expanded tube to tube sheet<br />

jo<strong>in</strong>ts the paper propose a different geometry of<br />

tube sheet which on bor<strong>in</strong>g surface we made a<br />

groove.<br />

20


M. Iancu et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 19‐24<br />

2. EXPERIMENTS<br />

2.1 Tension and compression tests<br />

To simulate the tube to tube sheet expanded<br />

jo<strong>in</strong>ts were prepared samples at real jo<strong>in</strong>t<br />

dimensions. In Fig. 4 is presented the tube sheet<br />

sample with smooth hole tube sheet and <strong>in</strong> Fig. 5<br />

the tube sheet sample which on bor<strong>in</strong>g surface<br />

we made a groove.<br />

The obta<strong>in</strong>ed assemblies were tested at tension<br />

and at compression. In Fig. 7 it is shown the<br />

tension variation vs. tube displacement <strong>in</strong><br />

expanded jo<strong>in</strong>t with smooth hole tube sheet.<br />

Fig. 7. Tension variation vs. tube displacement <strong>in</strong><br />

expanded jo<strong>in</strong>t with smooth hole tube sheet.<br />

In Fig. 8 it is presented the tension variation vs.<br />

tube displacement <strong>in</strong> expanded jo<strong>in</strong>t with a<br />

grove on tube sheet bor<strong>in</strong>g surface.<br />

Fig. 4. Tube sheet with smooth hole tube sheet.<br />

Fig. 5. Tube sheet with a groove on bor<strong>in</strong>g surface.<br />

In Fig. 6 it is shown the tube samples<br />

dimensions.<br />

Fig. 6. Tube sample construction.<br />

Tube sheet samples were made of steel type P355<br />

NH, EN 10028 – 2:2009 and tubes of steel type<br />

P265 GH, SR EN 10217‐5. The samples were<br />

extruded <strong>in</strong> similar conditions as real components.<br />

Fig. 8. Tension force variation vs. tube displacement<br />

<strong>in</strong> expanded jo<strong>in</strong>t with a groove on bor<strong>in</strong>g surface.<br />

From Figs. 7 and 8 could be observed that the<br />

tension values were grater at expanded jo<strong>in</strong>t<br />

with tube sheet with a grove on bor<strong>in</strong>g surface. A<br />

similar behaviour was obta<strong>in</strong>ed at compression<br />

test. The maximum compression value obta<strong>in</strong>ed<br />

at expanded jo<strong>in</strong>t with smooth hole tube sheet<br />

was 3280 daN and at jo<strong>in</strong>t with a grove on tube<br />

sheet bor<strong>in</strong>g surface was 3350 daN.<br />

The tension and compression results obta<strong>in</strong>ed<br />

confirm that model with a grove on tube sheet<br />

bor<strong>in</strong>g has an efforts better behavior.<br />

Measur<strong>in</strong>g the samples surfaces microgeometric<br />

parameters <strong>in</strong>itial and after disassembl<strong>in</strong>g<br />

extruded jo<strong>in</strong>ts by tension and by compression<br />

21


M. Iancu et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 19‐24<br />

for the tubes that was <strong>in</strong> tube sheet with smooth<br />

hole tube sheet the roughness rise after<br />

compression and after tension than <strong>in</strong>itial<br />

roughness. In Table 2 are presented the<br />

roughness modifications for tubes.<br />

Table 2. Tubes surface roughness modification.<br />

Type of<br />

extruded jo<strong>in</strong>t Disassembl<strong>in</strong>g<br />

type<br />

Tubes for<br />

jo<strong>in</strong>t with<br />

smooth hole<br />

tube sheet<br />

Tubes for<br />

jo<strong>in</strong>t with a<br />

grove on tube<br />

sheet bor<strong>in</strong>g<br />

surface<br />

Roughness<br />

parameter<br />

modification, m<br />

Ra Rz Rt<br />

Tension 1.765 13.4 14.67<br />

Compression 0.445 ‐0.22 0.37<br />

Tension ‐0.051 ‐0.04 0.78<br />

Compression ‐0.281 ‐1.96 ‐2.24<br />

For the tubes that was <strong>in</strong> tube sheet with a<br />

groove on bor<strong>in</strong>g surface the roughness was<br />

smaller after compression and after tension than<br />

<strong>in</strong>itial roughness. The tube sheet surface<br />

roughnesses were greater <strong>in</strong> case of<br />

disassembl<strong>in</strong>g by tension than <strong>in</strong> case of<br />

disassembl<strong>in</strong>g by compression for both tested<br />

geometries.<br />

2.2 Corrosion tests<br />

From both types expanded jo<strong>in</strong>ts with tube<br />

sheet with smooth hole and with a grove on tube<br />

sheet bor<strong>in</strong>g surface were extracted samples<br />

from tube tubes active surfaces for corrosion<br />

tests. The samples were of steel type P265 GH,<br />

SR EN 10217‐5. Also were tested samples<br />

extracted from tubes not used for expanded<br />

jo<strong>in</strong>ts. Samples were named:<br />

“I” extracted from tubes not used for<br />

expanded jo<strong>in</strong>ts:<br />

“5A” extracted from tubes from expanded<br />

jo<strong>in</strong>t with smooth hole tube sheet;<br />

“1A” extracted from tubes from expanded<br />

jo<strong>in</strong>t with a grove on tube sheet bor<strong>in</strong>g<br />

surface.<br />

Work<strong>in</strong>g medium were <strong>in</strong>dustrial water with<br />

pH=7.18, conductivity=1524 S/cm, total solid<br />

deposition TDS=42 mg/l and hydrof<strong>in</strong><strong>in</strong>g oil with<br />

pH=5.55, conductivity=80pS/m, sulphur=1 ppm.<br />

Test<strong>in</strong>g medium temperatures were 20, 40, 60<br />

and 70 0 C.<br />

Samples have parallelepiped shapes and were<br />

mach<strong>in</strong>ed without affect<strong>in</strong>g tubes active surface.<br />

At immersion corrosion tests the corrosion rate<br />

was obta<strong>in</strong>ed with relation, [5]:<br />

m<br />

f<br />

mi<br />

vcor 8 . 76 , mm/year (1)<br />

A <br />

m f ‐ sample f<strong>in</strong>al mass, g;<br />

m i ‐ <strong>in</strong>itial sample mass, g;<br />

A ‐ sample area, m 2 ;<br />

‐ time, hours;<br />

γ ‐ specific weight, g/cm 3 .<br />

In Fig. 9 is it presented the corrosion rate<br />

variation <strong>in</strong> time at temperature of 20 0 C for<br />

tube samples immersed <strong>in</strong> <strong>in</strong>dustrial water.<br />

Corrosion rate, Vcor [mm/an]<br />

0.055<br />

0.05<br />

0.045<br />

0.04<br />

0.035<br />

0.03<br />

I 1A 5A<br />

120 135 150 165 180 195 210 225 240 255 270<br />

Time [hours]<br />

Fig. 9. Corrosion rate at 20 0 C <strong>in</strong> <strong>in</strong>dustrial water.<br />

In Fig. 10 it is shown the corrosion rate vs. time<br />

at temperature 40 0 C, <strong>in</strong> Fig. 11 at 60 0 C and <strong>in</strong><br />

Fig. 12 at 70 0 C <strong>in</strong> <strong>in</strong>dustrial water.<br />

Corrosion rate, Vcor [mm/an]<br />

0.07<br />

0.065<br />

0.06<br />

0.055<br />

0.05<br />

0.045<br />

0 5 10 15 20 25<br />

Time [hours]<br />

Fig. 10. Corrosion rate at 40 0 C <strong>in</strong> <strong>in</strong>dustrial water.<br />

From Figs. 9‐12 could be observed that corrosion<br />

rate rise with temperature. Also the samples<br />

made from tube expanded jo<strong>in</strong>t with smooth hole<br />

tube sheet have a better corrosion behavior than<br />

samples made of tube with jo<strong>in</strong>t expanded hav<strong>in</strong>g<br />

a grove on tube sheet bor<strong>in</strong>g surface.<br />

1A<br />

5A<br />

22


M. Iancu et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 19‐24<br />

Corrosion rate, Vcor [mm/an]<br />

0.075<br />

0.07<br />

0.065<br />

0.06<br />

0.055<br />

0.05<br />

0.045<br />

0 5 10 15 20 25<br />

Time [hours]<br />

Fig. 11. Corrosion rate at 60 0 C <strong>in</strong> <strong>in</strong>dustrial water.<br />

Corrosion rate, Vcor [mm/an]<br />

0.075<br />

0.07<br />

0.065<br />

0.06<br />

0.055<br />

0.05<br />

0.045<br />

0 5 10 15 20 25<br />

Time [hours]<br />

Fig. 12. Corrosion rate at 70 0 C <strong>in</strong> <strong>in</strong>dustrial water.<br />

In Fig. 13 it is presented the corrosion rate<br />

variation <strong>in</strong> time at temperature of 70 0 C for<br />

tube samples immersed <strong>in</strong> hydrof<strong>in</strong><strong>in</strong>g oil.<br />

Corrosion rate, Vcor [mm/an]<br />

0.012<br />

0.01<br />

0.008<br />

0.006<br />

0.004<br />

0 5 10 15 20 25<br />

Time [hours]<br />

Fig. 13. Corrosion rate at 70 0 C <strong>in</strong> hydrof<strong>in</strong><strong>in</strong>g oil.<br />

At temperatures of 20, 40 and 60 0C was<br />

observed a similar behaviour of corrosion rate<br />

as shown <strong>in</strong> Fig. 13. Could be observed that <strong>in</strong><br />

hydrof<strong>in</strong><strong>in</strong>g oil a better corrosion behaviour<br />

presents samples extracted from tube expanded<br />

jo<strong>in</strong>t with smooth hole tube sheet than samples<br />

extracted from tube expanded jo<strong>in</strong>t with a grove<br />

on tube sheet bor<strong>in</strong>g surface.<br />

To establish electrochemical parameters,<br />

corrosion potential E corr , corrosion current I corr<br />

and corrosion rate v corr, were extracted samples<br />

1A<br />

1A<br />

5A<br />

1A<br />

5A<br />

5A<br />

from tubes none extruded similar as from<br />

immersion corrosion tests. Specimens were<br />

mach<strong>in</strong>ed with small cutt<strong>in</strong>g conditions and with<br />

cutt<strong>in</strong>g fluid <strong>in</strong> order to avoid the <strong>in</strong>fluence<br />

above metallographic structure at dimensions<br />

16 ‐0.1 x3 mm. Active samples surface was<br />

polish with 500 Mesh abrasive papers.<br />

There are several electrochemical techniques<br />

that can be used to evaluate the behavior of<br />

materials <strong>in</strong> aggressive medium such as [5,6,9]:<br />

potentiodynamic anodic, cathodic or both<br />

polarization measurements, galvanic corrosion<br />

measurements, potentiostatic measurements,<br />

l<strong>in</strong>ear polarization, pitt<strong>in</strong>g scans, Tafel plots<br />

measurements etc. Tafel plots technique quickly<br />

yields corrosion rate <strong>in</strong>formation. The l<strong>in</strong>ear<br />

portion of the anodic or cathodic polarization<br />

logarithm current vs. potential plot is<br />

extrapolated to <strong>in</strong>tersect the corrosion potential<br />

l<strong>in</strong>e. This permits rapid, high accuracy<br />

measurement of extremely low corrosion rates.<br />

For this reason to determ<strong>in</strong>e electrochemical<br />

parameters we used this technique.<br />

Accord<strong>in</strong>g to the mixed potential theory [5,6,9], any<br />

electrochemical reaction can be divided <strong>in</strong>to two or<br />

more oxidation and reduction reactions, and can be<br />

no accumulation of electrical charge dur<strong>in</strong>g the<br />

reaction. In a corrod<strong>in</strong>g system, corrosion of the<br />

metal and reduction of some species <strong>in</strong> solution is<br />

tak<strong>in</strong>g place at same rate and the net measurable<br />

current, i meas is zero. Electrochemically, corrosion<br />

rate measurement is based on the determ<strong>in</strong>ation of<br />

the oxidation current, i ox at the corrosion potential,<br />

E corr . This oxidation current is called the corrosion<br />

current, i corr .<br />

i meas = i corr ‐i red =0 at E corr (2)<br />

The corrosion measurement system used was<br />

EG&G Pr<strong>in</strong>ceton, New Jersey‐ model 350 that<br />

works together with compensator IR 351,<br />

[6,7,8,9].<br />

Corrosion cell works with a saturated calomel<br />

reference electrode and specimen holder<br />

exposes 1 cm 2 of the specimen to the test<br />

solution. Us<strong>in</strong>g Tafel plots technique were<br />

determ<strong>in</strong>ed the electrochemical parameters<br />

presented <strong>in</strong> Table 3. Electrochemical tests were<br />

made accord<strong>in</strong>g to ASTM G5‐94, [7] and ASTM<br />

G1‐90, [8]. The reference electrode was Calomel<br />

(Pt/Hg/Hg 2 Cl 2 ). For tests at 40 and 60 0 C was<br />

used a thermometer and a thermostatic plate<br />

were placed corrosion cell.<br />

23


M. Iancu et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 19‐24<br />

In Fig. 14 it is presented the electrochemical<br />

parameters obta<strong>in</strong>ed by Tafel technique sample<br />

“I” <strong>in</strong> <strong>in</strong>dustrial water at 20 0 C.<br />

roughness is smaller than <strong>in</strong> case of disassembl<strong>in</strong>g<br />

extruded jo<strong>in</strong>ts by compression.<br />

Because the tube sheet with a grove on bor<strong>in</strong>g<br />

surface rise the stress <strong>in</strong> jo<strong>in</strong>ts, more than smooth<br />

tube sheet surface, this modify the corrosion<br />

potential and the corrosion rate is greater.<br />

The differences between corrosion rates for two<br />

models is not significant, nevertheless the number<br />

of groves and groves dimension must be<br />

reconsidered <strong>in</strong> order to obta<strong>in</strong> a uniform stress<br />

on the entire contact surface <strong>in</strong> the extruded jo<strong>in</strong>t.<br />

Fig. 14. Electrochemical parameters obta<strong>in</strong>ed by Tafel<br />

technique sample “I” <strong>in</strong> <strong>in</strong>dustrial water at 20 0 C.<br />

In Table 3 are presented electrochemical<br />

parameters obta<strong>in</strong>ed for specimens extracted<br />

from non extruded tubes <strong>in</strong> <strong>in</strong>dustrial water.<br />

Table 3. Electrochemical parameters.<br />

Temperature<br />

T, 0 C<br />

Corrosion<br />

potential<br />

Ecor, V<br />

Corrosion<br />

current<br />

Icor, A<br />

Corrosion<br />

rate<br />

vcor, mm/year<br />

20 0.154 1.466 0.017<br />

40 0.143 3.133 0.053<br />

60 0.137 5.981 0.070<br />

From values presented <strong>in</strong> Table 3 we could<br />

observe that the corrosion current and<br />

corrosion rate rise with temperature. The<br />

obta<strong>in</strong>ed corrosion rate values by immersion are<br />

proximate with values obta<strong>in</strong>ed by<br />

electrochemical method.<br />

3. CONCLUSION<br />

Tube to tube extruded jo<strong>in</strong>ts at heat exchangers<br />

represents a critical zone for stress and corrosion.<br />

The tension and compression tests show that<br />

proposed model of tube sheet with a grove on<br />

bor<strong>in</strong>g surface improve the tube to tube sheet jo<strong>in</strong>t.<br />

It is recommended to disassembl<strong>in</strong>g the extruded<br />

jo<strong>in</strong>ts by tension because the obta<strong>in</strong>ed surfaces<br />

REFERENCES<br />

[1] Wolver<strong>in</strong>e Eng<strong>in</strong>eer<strong>in</strong>g Data Book II, available at<br />

www.wlv.com/products/databook/databook.p<br />

df, accessed: 20.05.2011.<br />

[2] Η.Μ. Τawancy: Failure of hydrocracker heat<br />

exchanger tubes <strong>in</strong> an oil ref<strong>in</strong>ery by polythionic<br />

acid‐stress corrosion crack<strong>in</strong>g, Eng<strong>in</strong>eer<strong>in</strong>g Failure<br />

Analysis, Vol. 16, No. 7, pp. 2091–2097, 2009.<br />

[3] Y. Gong, J. Zhong, Z.G. Yang: Failure analysis of<br />

burst<strong>in</strong>g on the <strong>in</strong>ner pipe of a jacketed pipe <strong>in</strong> a<br />

tubular heat exchanger, Materials & Design, Vol.<br />

31, No. 9, pp. 4258‐4268, 2010.<br />

[4] M. Iancu, A. Pupazescu, I. Tudor: Study on the<br />

state of stress and stra<strong>in</strong> <strong>in</strong> tube‐to tubular plate<br />

jo<strong>in</strong>ts, Petroleum – Gas University of Ploieşti<br />

Bullet<strong>in</strong>, Technical Series, Vol. LXII, No. 4B, pp.<br />

61‐66, 2010.<br />

[5] I. Tudor, R.G. Ripeanu: Corrosion eng<strong>in</strong>eer<strong>in</strong>g,<br />

Petroleum ‐ Gas, Ploiesti, 2002.<br />

[6] AN 140‐10M‐5: Application note 140,<br />

Pr<strong>in</strong>cetown Applied Research Corporation,<br />

Pr<strong>in</strong>cetown, 1978.<br />

[7] ASTM G5‐94(2011)e1: Standard Reference Test<br />

Method for Mak<strong>in</strong>g Potentiostatic and<br />

Potentiodynamic Anode Polarization<br />

Measurements, 2011.<br />

[8] ASTM G1‐90(1999)e1: Standard Practice for<br />

Prepar<strong>in</strong>g, Clean<strong>in</strong>g and Evaluat<strong>in</strong>g Corrosion<br />

Test Specimens, 1999.<br />

[9] NACE Publication: Electrochemical Techniques<br />

for Corrosion, Houston, U.S.A. 77027, 1978.<br />

24


Vol. 35, No. 1 (2013) 25‐35<br />

Tribology <strong>in</strong> Industry<br />

www.<strong>tribology</strong>.f<strong>in</strong>k.rs<br />

RESEARCH<br />

Mechanical Properties and Corrosion Behaviour of<br />

Alum<strong>in</strong>ium Hybrid Composites Re<strong>in</strong>forced with<br />

Silicon Carbide and Bamboo Leaf Ash<br />

K.K. Alaneme a , B.O. Ademilua a , M.O. Bodunr<strong>in</strong> a<br />

a Department of Metallurgical and Materials Eng<strong>in</strong>eer<strong>in</strong>g, Federal University of Technology, Akure, P.M.B 704, Nigeria.<br />

Keywords:<br />

Hybrid composites<br />

Bamboo leaf ash<br />

Al‐Mg‐Si alloy<br />

Corrosion<br />

Stir cast<strong>in</strong>g<br />

Mechanical properties<br />

Silicon carbide<br />

Correspond<strong>in</strong>g author:<br />

Kenneth K. Alaneme<br />

Department of Metallurgical and<br />

Materials Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Federal University of Technology,<br />

Akure, P.M.B 704, Nigeria<br />

E‐mail: kkalaneme@gmail.com<br />

A B S T R A C T<br />

The viability of develop<strong>in</strong>g low cost – high performance Al matrix hybrid<br />

composites with the use of bamboo leaf ash (an agro waste ash) and silicon<br />

carbide as complement<strong>in</strong>g re<strong>in</strong>forcements was <strong>in</strong>vestigated. Silicon carbide<br />

(SiC) particulates added with 0, 2, 3, and 4 wt% bamboo leaf ash (BLA) were<br />

utilized to prepare 10 wt% of the re<strong>in</strong>forc<strong>in</strong>g phase with Al‐Mg‐Si alloy as<br />

matrix us<strong>in</strong>g two‐step stir cast<strong>in</strong>g method. Microstructural characterization,<br />

mechanical properties evaluation and corrosion behaviour were used to<br />

assess the performance of the composites. The results show that the<br />

hardness, ultimate tensile strength, and percent elongation of the hybrid<br />

composites decrease with <strong>in</strong>crease <strong>in</strong> BLA content. The fracture toughness of<br />

the hybrid composites were however superior to that of the s<strong>in</strong>gle re<strong>in</strong>forced<br />

Al ‐ 10 wt% SiC composite. Only the 2 wt% BLA conta<strong>in</strong><strong>in</strong>g hybrid composite<br />

had specific strength value comparable to that of the s<strong>in</strong>gle re<strong>in</strong>forced<br />

composite. In 5wt% NaCl solution, it was observed that the 2 and 3 wt %<br />

BLA conta<strong>in</strong><strong>in</strong>g hybrid composites had higher corrosion resistance <strong>in</strong><br />

comparison to the s<strong>in</strong>gle re<strong>in</strong>forced Al ‐ 10 wt% SiC composite but the<br />

reverse trend was observed <strong>in</strong> 0.3 M H 2 SO 4 solution where the s<strong>in</strong>gle<br />

re<strong>in</strong>forced had superior corrosion resistance.<br />

© 2013 Published by Faculty of Eng<strong>in</strong>eer<strong>in</strong>g<br />

1. INTRODUCTION<br />

The synthesis and characterization of a wide<br />

range of Alum<strong>in</strong>ium based composites has<br />

cont<strong>in</strong>ued to generate a lot of <strong>in</strong>terest judg<strong>in</strong>g<br />

from the large volume of publications <strong>in</strong> this area<br />

of materials science and eng<strong>in</strong>eer<strong>in</strong>g for the past<br />

thirty years [1‐3]. This is due to the versatile<br />

applications Al based composites have been<br />

successfully utilized <strong>in</strong> and the huge prospects it<br />

has for so many other new applications [3‐4].<br />

From the development of high performance<br />

components for automobile, aerospace, defense,<br />

mar<strong>in</strong>e and other notable <strong>in</strong>dustrial applications<br />

to the development of facilities for sports and<br />

recreation [5‐7], the areas of application of Al<br />

based composites is expected to still cont<strong>in</strong>ue to<br />

grow. This is possible by virtue of the attractive<br />

property spectrum possessed by AMCs and the<br />

lower cost of production <strong>in</strong> comparison with<br />

other compet<strong>in</strong>g MMCs or eng<strong>in</strong>eer<strong>in</strong>g materials<br />

for similar applications [8‐9].<br />

25


K.K. Alaneme et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 25‐35<br />

The selection of re<strong>in</strong>forc<strong>in</strong>g material for Al<br />

matrices is very important <strong>in</strong> ensur<strong>in</strong>g that<br />

desired property comb<strong>in</strong>ations are harnessed<br />

[10]. The target for most develop<strong>in</strong>g countries<br />

<strong>in</strong>volved <strong>in</strong> AMCs development is optimiz<strong>in</strong>g<br />

cost reduction and performance levels by<br />

consideration of <strong>in</strong>dustrial and agro wastes as<br />

re<strong>in</strong>forc<strong>in</strong>g materials. This philosophy is<br />

<strong>in</strong>formed by the relatively high cost of<br />

purchas<strong>in</strong>g the commonly used synthetic<br />

re<strong>in</strong>forcements such as silicon carbide and<br />

alum<strong>in</strong>a from abroad [11]. Fly ash, silica, and<br />

graphite are a few examples of<br />

<strong>in</strong>dustrial/<strong>in</strong>organic materials that have been<br />

used as re<strong>in</strong>forcement <strong>in</strong> AMCs [12‐14]. Rice<br />

hush ash, bagasse ash, and coconut shell ash are<br />

a few agro waste products which have also been<br />

tested as potential re<strong>in</strong>forc<strong>in</strong>g material [11,<br />

15,16]. Though literatures on the potentials of<br />

agro‐waste ashes are still scanty (compared to<br />

the synthetic re<strong>in</strong>forcement), the available<br />

results show that Al based composites<br />

re<strong>in</strong>forced with synthetic ceramics such as<br />

silicon carbide and alum<strong>in</strong>a have superior<br />

properties <strong>in</strong> comparison to the agro waste ash<br />

re<strong>in</strong>forced grades [17]. An approach which will<br />

seek to harness the clearly superior strength<br />

levels of the synthetic re<strong>in</strong>forcements and the<br />

lower cost and density advantages of the agro<br />

wastes have not received much attention <strong>in</strong><br />

literature. This research work is motivated by<br />

the prospect of develop<strong>in</strong>g high performance Al<br />

matrix hybrid composites us<strong>in</strong>g silicon carbide<br />

and bamboo leaf ash as complement<strong>in</strong>g<br />

re<strong>in</strong>forcements. Bamboo trees are found <strong>in</strong> large<br />

quantities <strong>in</strong> Nigeria and likewise so many other<br />

parts of the world; and the leaves often liter the<br />

environments where they are found [18].<br />

Management of most agro wastes could be<br />

overwhelm<strong>in</strong>g and the best approach rema<strong>in</strong>s to<br />

explore more recycl<strong>in</strong>g techniques; and then<br />

applications where recycled wastes can be<br />

productively utilized. This work is part of current<br />

efforts aimed at consider<strong>in</strong>g the potentials of a<br />

wide range of agro waste ashes for the<br />

development of low cost‐high performance<br />

Alum<strong>in</strong>ium based hybrid composites. These low<br />

cost hybrid composites could have potentials for<br />

use <strong>in</strong> stress bear<strong>in</strong>g and wear applications<br />

among others [15]. In this paper, the process<strong>in</strong>g,<br />

microstructural features, mechanical and<br />

corrosion behavior of an Al matrix composite<br />

re<strong>in</strong>forced with varied weight ratios of bamboo<br />

leaf ash and silicon carbide is reported.<br />

2. MATERIALS AND METHOD<br />

2.1 Materials<br />

Al‐Mg‐Si alloy with chemical composition presented<br />

<strong>in</strong> Table 1 was selected as Al matrix for the<br />

<strong>in</strong>vestigation. Chemically pure silicon carbide (SiC)<br />

particles hav<strong>in</strong>g average particle size of 30 µm and<br />

processed ash (


K.K. Alaneme et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 25‐35<br />

2.3 Production of Composites<br />

Two steps stir cast<strong>in</strong>g process performed <strong>in</strong><br />

accordance with Alaneme and Aluko [19] was<br />

adopted for the production of the composites.<br />

Charge calculation was used to determ<strong>in</strong>e the<br />

amount of bamboo leaf ash (BLA) and silicon<br />

carbide (SiC) required to prepare 10 wt%<br />

re<strong>in</strong>forcements (<strong>in</strong> the Al matrix) consist<strong>in</strong>g of<br />

0:10, 2:8, 3:7, and 4:6 bamboo leaf ash and<br />

silicon carbide weight percents respectively. The<br />

bamboo leaf ash and silicon carbide particles<br />

were <strong>in</strong>itially preheated separately at a<br />

temperature of 250 o C to remove moisture and<br />

to help improve wettability with the molten Al‐<br />

Mg‐Si alloy. The Al‐Mg‐Si alloy billets were<br />

charged <strong>in</strong>to a gas‐fired crucible furnace (fitted<br />

with a temperature probe), and heated to a<br />

temperature of 750 o C ± 30 o C (above the<br />

liquidus temperature of the alloy) to ensure the<br />

alloy melts completely. The liquid alloy was then<br />

allowed to cool <strong>in</strong> the furnace to a semi solid<br />

state at a temperature of about 600 o C. The<br />

preheated bamboo leaf ash and Sic particles<br />

along with 0.1 wt% magnesium were then<br />

charged <strong>in</strong>to the melt at this temperature and<br />

stirr<strong>in</strong>g of the slurry was performed manually<br />

for 5‐10 m<strong>in</strong>utes. The composite slurry was<br />

superheated to 800 o C ± 50 o C and a second<br />

stirr<strong>in</strong>g performed us<strong>in</strong>g a mechanical stirrer.<br />

The stirr<strong>in</strong>g operation was performed at a speed<br />

of 400 rpm for 10 m<strong>in</strong>utes before cast<strong>in</strong>g <strong>in</strong>to<br />

prepared sand moulds <strong>in</strong>serted with chills.<br />

2.4 Density Measurement<br />

The densities of the composites were<br />

determ<strong>in</strong>ed by compar<strong>in</strong>g the experimental and<br />

theoretical densities of each composition of the<br />

BLA‐SiC re<strong>in</strong>forced composites produced [19].<br />

The experimental density was determ<strong>in</strong>ed by<br />

divid<strong>in</strong>g the measured weight of a test sample by<br />

its measured volume; while the theoretical<br />

density was evaluated by us<strong>in</strong>g the rule of<br />

mixtures given by:<br />

ρ Al‐Mg‐Si / BLA‐SiCp = wt. Al‐Mg‐Si × ρ Al‐Mg‐Si + wt. BLA ×<br />

ρ BLA + wt. SiC × ρ SiC (2.1)<br />

Where, ρ Al‐Mg‐Si / BLA‐SiCp = Density of Composite,<br />

wt. Al‐Mg‐Si = Weight fraction of Al‐Mg‐Si alloy, ρ Al‐<br />

Mg‐Si = Density of Al‐Mg‐Si alloy, wt. BLA = Weight<br />

fraction BLA, ρ BLA = Density of BLA, wt. SiC =<br />

Weight fraction SiC, and ρ SiC = Density of SiC.<br />

The percent porosity of the composites was<br />

evaluated us<strong>in</strong>g the relations [20]:<br />

% porosity = {(ρ T – ρ EX ) ÷ ρ T } × 100% (2.2)<br />

where, ρ T = Theoretical Density (g/cm 3 ), ρ EX =<br />

Experimental Density (g/cm 3 ).<br />

2.5 Tensile test<br />

Tensile tests were performed on the composites<br />

produced <strong>in</strong> accordance with the specifications<br />

of ASTM 8M‐91 standards [21]. The samples for<br />

the test were mach<strong>in</strong>ed to round specimen<br />

configuration with 6 mm diameter and 30 mm<br />

gauge length. The test was carried out at room<br />

temperature us<strong>in</strong>g an Instron universal test<strong>in</strong>g<br />

mach<strong>in</strong>e operated at a stra<strong>in</strong> rate of 10 ‐3 /s.<br />

Three repeat tests were performed for<br />

composite composition to guarantee reliability<br />

of the data generated. The tensile properties<br />

evaluated from the stress‐stra<strong>in</strong> curves<br />

developed from the tension test are ‐ the<br />

ultimate tensile strength (σ u ), the 0.2% offset<br />

yield strength (σ y ), and the stra<strong>in</strong> to fracture (ε f ).<br />

2.6 Fracture Toughness Evaluation<br />

The fracture toughness of the composites was<br />

evaluated us<strong>in</strong>g circumferential notch tensile<br />

(CNT) specimens <strong>in</strong> accordance with Alaneme<br />

[22]. The effectiveness of CNT test<strong>in</strong>g for<br />

fracture toughness determ<strong>in</strong>ation has been well<br />

reported <strong>in</strong> literature [23‐24]. The composites<br />

were mach<strong>in</strong>ed for the CNT test<strong>in</strong>g with gauge<br />

length, specimen diameter (D), notch diameter<br />

(d), and notch angle of 30, 6, 4.5 mm, and 60 o C.<br />

The specimens were then subjected to tensile<br />

load<strong>in</strong>g to fracture us<strong>in</strong>g an <strong>in</strong>stron universal<br />

test<strong>in</strong>g mach<strong>in</strong>e. The fracture load (P f ) obta<strong>in</strong>ed<br />

from the CNT specimens’ load – extension plots<br />

were used to evaluate the fracture toughness<br />

us<strong>in</strong>g the empirical relations by Dieter [25]:<br />

K 1C =P f /(D) 3/2 [1.72(D/d)–1.27] (2.3)<br />

where, D and d are respectively the specimen<br />

diameter and the diameter of the notched<br />

section. The validity of the fracture toughness<br />

values was evaluated us<strong>in</strong>g the relations <strong>in</strong><br />

accordance with Nath and Das [26]:<br />

D≥(K 1C /σ y ) 2 (2.4)<br />

Three repeat tests were performed for each<br />

composite composition and the results obta<strong>in</strong>ed<br />

were taken to be highly consistent if the<br />

27


K.K. Alaneme et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 25‐35<br />

difference between measured values for a given<br />

composite composition is not more than 2%.<br />

2.7 Hardness Test<br />

The hardness of the composites was evaluated<br />

us<strong>in</strong>g an Emco TEST DURASCAN Microhardness<br />

Tester equipped with ecos workflow ultra<br />

modern software. Prior to test<strong>in</strong>g, test<br />

specimens cut out from each composite<br />

composition were polished to obta<strong>in</strong> a flat and<br />

smooth surface f<strong>in</strong>ish. A load of 100 g was<br />

applied on the specimens and the hardness<br />

profile was evaluated follow<strong>in</strong>g standard<br />

procedures. Multiple hardness tests were<br />

performed on each sample and the average<br />

value taken as a measure of the hardness of the<br />

specimen.<br />

2.8 Microstructural Exam<strong>in</strong>ation<br />

A Zeiss Metallurgical Microscope with<br />

accessories for image analysis was used for<br />

optical microscopic <strong>in</strong>vestigation of the<br />

composites produced. The specimens for the test<br />

were metallographic ally polished and etched<br />

with 1HNO3: 1HCl solution before microscopic<br />

exam<strong>in</strong>ation was performed. A JSM 7600F Jeol<br />

ultra‐high resolution field emission gun<br />

scann<strong>in</strong>g electron microscope (FEG‐SEM)<br />

equipped with an EDS (courtesy of the<br />

Department of Chemical and Metallurgical<br />

Eng<strong>in</strong>eer<strong>in</strong>g, Tshwane University of Technology,<br />

Pretoria, South Africa) was used for detailed<br />

study of the microstructural features and<br />

elemental compositions of the composites.<br />

2.9 Corrosion Test<br />

The corrosion behaviour of the composites was<br />

studied by weight loss method us<strong>in</strong>g mass loss<br />

and corrosion rate measurements as basis for<br />

evaluat<strong>in</strong>g the results generated. The corrosion<br />

test was carried out by immersion of the test<br />

specimens <strong>in</strong> 0.3M H 2 SO 4 (pH 1.3) and 5wt%<br />

NaCl (pH 8.37) solutions which were prepared<br />

follow<strong>in</strong>g standard procedures [7]. The<br />

specimens for the test were cut to size<br />

15×15×10 mm and then mechanically polished<br />

with emery papers from 220 down to 600<br />

grades to produce a smooth surface. The<br />

samples were de‐greased with acetone, r<strong>in</strong>sed <strong>in</strong><br />

distilled water, and then dried <strong>in</strong> air before<br />

immersion <strong>in</strong> still solutions of 0.3M H 2 SO 4 and<br />

5wt% NaCl at room temperature (25 o C). The<br />

solution‐to‐specimen surface area ratio was<br />

about 150 ml cm ‐2 , and the corrosion setups<br />

were exposed to atmospheric air for the<br />

duration of the immersion test. The weight loss<br />

read<strong>in</strong>gs were monitored on two day <strong>in</strong>tervals<br />

for a period of 22 days. The mass loss (mg/cm 2 )<br />

for each sample was evaluated <strong>in</strong> accordance<br />

with ASTM G31 standard recommended practice<br />

[27] follow<strong>in</strong>g the relation:<br />

m. l = CW/A (2.5)<br />

where m.l is the mass loss (mg/cm 2 ), CW is the<br />

cumulative weight loss (mg), and A is the total<br />

surface area of the sample (cm 2 ).<br />

Corrosion rate for each sample was evaluated<br />

from the weight loss measurements follow<strong>in</strong>g<br />

the relation [7]:<br />

C.R = KW/ρAt (2.6)<br />

Where C.R is corrosion rate (mmy), W is weight<br />

loss (g), D is the density (g/cm 3 ), A is the area<br />

(cm 2 ), T is time (hours), and K is a constant<br />

equal to 87500.<br />

W = W i ‐ W f (2.7)<br />

where W is the weight loss (g), W i is the <strong>in</strong>itial<br />

weight (g) and W f is the f<strong>in</strong>al weight (g).<br />

Three repeat tests were carried out for each<br />

composition of the composite, and the<br />

reproducibility and repeatability were found to<br />

be good as there were no significant differences<br />

between results from triplicates.<br />

3.0 RESULTS AND DISCUSSION<br />

3.1 Microstructure<br />

Representative optical and scan electron<br />

photomicrographs; and the EDAX profiles of the<br />

BLA‐SiC re<strong>in</strong>forced Alum<strong>in</strong>ium hybrid<br />

composites produced are presented <strong>in</strong> Figs 1‐2.<br />

Figure 1 shows the optical photomicrographs of<br />

the Al‐Mg‐Si/2wt%BLA‐8wt%SiC hybrid<br />

composite. It is observed that the re<strong>in</strong>forc<strong>in</strong>g<br />

particles (BLA and SiC) are visible and clearly<br />

del<strong>in</strong>eated <strong>in</strong> the microstructure. The particles<br />

are fairly well distributed <strong>in</strong> the Al‐Mg‐Si matrix<br />

and signs of particle clusters are m<strong>in</strong>imal. Figure<br />

2 shows secondary electron image and EDAX<br />

profile of the Al‐Mg‐Si/ 2wt% BLA‐8wt%SiC<br />

28


K.K. Alaneme et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 25‐35<br />

hybrid composite. From Fig. 2(a) the re<strong>in</strong>forc<strong>in</strong>g<br />

particles can be easily identified; the EDS profile<br />

of the composite (Fig. 2b) shows peaks of<br />

alum<strong>in</strong>ium (Al), oxygen (O), carbon (C), iron<br />

(Fe), and silicon (Si). The presence of these<br />

elements confirms the presence of silicon carbide<br />

(SiC); silica (SiO 2 ), alum<strong>in</strong>a (Al 2 O 3 ), and ferric<br />

oxide (Fe 2 O 3 ) <strong>in</strong> the composite. It is noted that<br />

silica (SiO 2 ), alum<strong>in</strong>a (Al 2 O 3 ), and ferric oxide<br />

(Fe 2 O 3 ) observed <strong>in</strong> the EDAX profile are primary<br />

constituents found <strong>in</strong> bamboo leaf ash [18].<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

Fig. 1. Photomicrograph show<strong>in</strong>g (a) Al‐Mg‐Si/10 wt% SiC composite with the SiC particles dispersed <strong>in</strong> the Al‐<br />

Mg‐Si matrix, (b) Al‐Mg‐Si/2wt% BLA‐8 wt% SiC hybrid composite with the BLA‐SiC particles dispersed <strong>in</strong> the<br />

Al‐Mg‐Si matrix, (c) Al‐Mg‐Si/3wt% BLA‐7 wt% SiC hybrid composite show<strong>in</strong>g the BLA‐SiC particles dispersed <strong>in</strong><br />

the Al‐Mg‐Si matrix, and (d) Al‐Mg‐Si/4wt% BLA‐6 wt% SiC hybrid composite show<strong>in</strong>g the BLA‐SiC particles<br />

dispersed <strong>in</strong> the Al‐Mg‐Si matrix.<br />

29


K.K. Alaneme et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 25‐35<br />

with the s<strong>in</strong>gle re<strong>in</strong>forced Al ‐ 10 wt% SiC<br />

composite. Porosity levels not above 4% have<br />

been reported to be acceptable <strong>in</strong> cast<br />

Alum<strong>in</strong>ium matrix composites [19].<br />

3.2 Mechanical Behaviour<br />

(a)<br />

The mechanical properties of the composites<br />

presented <strong>in</strong> Figs. 3 ‐ 8. The hardness (Fig. 3),<br />

ultimate tensile strength (Fig. 4) and yield<br />

strength (Fig. 5) of the composites are observed<br />

to decrease with <strong>in</strong>crease <strong>in</strong> BLA content <strong>in</strong> the<br />

composites. 4.58, 8.14, and 10.94% reduction <strong>in</strong><br />

hardness , and 7.97, 15.6, and 23.29% reduction<br />

<strong>in</strong> ultimate tensile strength were observed for<br />

the hybrid composites hav<strong>in</strong>g respectively 2, 3,<br />

and 4 wt% BLA <strong>in</strong> comparison with the s<strong>in</strong>gle<br />

re<strong>in</strong>forced Al‐Mg‐Si matrix ‐10wt% SiC<br />

composite. This trend is due to the composition<br />

of the BLA which consists ma<strong>in</strong>ly of silica which<br />

is noted to have lower hardness and strength<br />

levels <strong>in</strong> comparison with silicon carbide [28].<br />

(b)<br />

Fig. 2. (a) representative SEM Photomicrograph of the<br />

Al‐Mg‐Si/2wt% BLA‐8 wt% SiC hybrid composite<br />

show<strong>in</strong>g particles dispersed <strong>in</strong> the Al‐Mg‐Si matrix, and<br />

(b)EDAX profile obta<strong>in</strong>ed from the Al‐Mg‐Si/2wt% BLA‐<br />

8 wt% SiC hybrid composite confirm<strong>in</strong>g the presence of<br />

SiC, Al 2 O 3 , SiO 2 , Fe 2 O 3 , K 2 O, and CaO.<br />

Table 3. Composite density and estimated percent porosity.<br />

Sample<br />

Weight Ratio<br />

of BLA and<br />

SiC<br />

Theoretical<br />

Density<br />

Experimental<br />

Density<br />

% Porosity<br />

A 0:10 2.745 2.714 1.14<br />

B 2:8 2.694 2.670 0.89<br />

C 3:7 2.668 2.638 1.24<br />

D 4:6 2.643 2.615 1.06<br />

The results of the percent porosity of the<br />

composites are presented <strong>in</strong> Table 3. It is<br />

observed from comparison of the theoretical and<br />

experimental densities of the composites that<br />

slight porosities (less than 1.5%) exist <strong>in</strong> the<br />

produced composites. The use of BLA and SiC as<br />

complement<strong>in</strong>g re<strong>in</strong>forcements <strong>in</strong> the Al matrix<br />

did not arise <strong>in</strong> any significant rise <strong>in</strong> porosity<br />

level of the hybrid composites when compared<br />

Fig. 3. Variation of Hardness for the s<strong>in</strong>gle re<strong>in</strong>forced<br />

Al‐Mg‐Si/10 wt% SiC and hybrid re<strong>in</strong>forced Al‐Mg‐<br />

Si/BLA‐SiC composites.<br />

Fig. 4. Variation of Ultimate Tensile Strength for the<br />

s<strong>in</strong>gle re<strong>in</strong>forced Al‐Mg‐Si/10 wt% SiC and hybrid<br />

re<strong>in</strong>forced Al‐Mg‐Si/BLA‐SiC composites.<br />

30


K.K. Alaneme et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 25‐35<br />

Fig. 5. Variation of Yield Strength for the s<strong>in</strong>gle<br />

re<strong>in</strong>forced Al‐Mg‐Si/10 wt% SiC and hybrid re<strong>in</strong>forced<br />

Al‐Mg‐Si/BLA‐SiC composites.<br />

The specific strength (Fig. 6) and percent<br />

elongation (Fig. 7) are equally observed to<br />

decrease with <strong>in</strong>crease <strong>in</strong> BLA content. In the case<br />

of the specific strength, it is noted that the marg<strong>in</strong><br />

of difference between the specific strength of the<br />

s<strong>in</strong>gle re<strong>in</strong>forced Al‐Mg‐Si/10wt%SiC and the Al‐<br />

Mg‐Si/2wt%BLA‐8wt%SiC is less than 2%. Also,<br />

the fracture toughness of the composites (Fig. 8) is<br />

observed to <strong>in</strong>crease with <strong>in</strong>crease <strong>in</strong> the BLA<br />

content, which is encourag<strong>in</strong>g consider<strong>in</strong>g that<br />

MMCs are noted to have poor fracture toughness<br />

values. The fracture toughness values obta<strong>in</strong>ed<br />

were reported as pla<strong>in</strong> stra<strong>in</strong> fracture toughness<br />

because it meets the conditions specified by Das<br />

and Nath [26] and Alaneme and Aluko [5].The<br />

improvement <strong>in</strong> fracture toughness with <strong>in</strong>crease<br />

<strong>in</strong> BLA content may be attributed to the <strong>in</strong>creased<br />

presence of silica which is a softer ceramic <strong>in</strong><br />

comparison with SiC. It is also noted that for most<br />

eng<strong>in</strong>eer<strong>in</strong>g materials fracture toughness scales<br />

<strong>in</strong>versely with yield strength [29] which is the case<br />

observed for the composites.<br />

Fig. 6. Variation of Specific Strength for the s<strong>in</strong>gle<br />

re<strong>in</strong>forced Al‐Mg‐Si/10 wt% SiC and hybrid re<strong>in</strong>forced<br />

Al‐Mg‐Si/BLA‐SiC composites.<br />

Fig. 7. Variation of Percent Elongation for the s<strong>in</strong>gle<br />

re<strong>in</strong>forced Al‐Mg‐Si/10 wt% SiC and hybrid<br />

re<strong>in</strong>forced Al‐Mg‐Si/BLA‐SiC composites.<br />

Fig. 8. Variation of Fracture Toughness for the s<strong>in</strong>gle<br />

re<strong>in</strong>forced Al‐Mg‐Si/10 wt% SiC and hybrid<br />

re<strong>in</strong>forced Al‐Mg‐Si/BLA‐SiC composites.<br />

3.3 Corrosion Behaviour<br />

Figure 9 show the variation of mass loss and<br />

corrosion rate with exposure time for composite<br />

samples immersed <strong>in</strong> 3.5% NaCl solution. From<br />

Fig. 9(a), it is observed that compared to sample<br />

A (Al‐Mg‐Si/10wt%SiC), sample B (Al‐Mg‐<br />

Si/2wt% BLA‐8 wt% SiC) and sample C (Al‐Mg‐<br />

Si/3wt% BLA‐7wt% SiC ) had negative mass loss<br />

values for virtually the entire period of<br />

immersion <strong>in</strong> the 3.5% NaCl solution. The<br />

negative mass loss is <strong>in</strong>dicative of weight ga<strong>in</strong><br />

dur<strong>in</strong>g the period of immersion‐ suggest<strong>in</strong>g that<br />

the passive film formed on sample B and C are<br />

very stable <strong>in</strong> comparison to that of sample A.<br />

Thus sample B (Al‐Mg‐Si/2wt% BLA‐8 wt% SiC)<br />

and sample C (Al‐Mg‐Si/3wt% BLA‐7wt% SiC)<br />

exhibits a higher resistance to corrosion <strong>in</strong><br />

comparison to the s<strong>in</strong>gle re<strong>in</strong>forced (Al‐Mg‐<br />

Si/10wt%SiC) composite. This trend <strong>in</strong><br />

corrosion behaviour is supported by the<br />

31


K.K. Alaneme et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 25‐35<br />

corrosion rate profiles presented <strong>in</strong> Fig. 9(b). It<br />

is observed from the plot that peak corrosion<br />

was observed on the 3 rd day of immersion with<br />

the 2 and 3 wt% BLA conta<strong>in</strong><strong>in</strong>g composites<br />

exhibit<strong>in</strong>g the least susceptibility to corrosion.<br />

Bobic et al. [30] have reported on the corrosion<br />

susceptibility of Al matrix‐SiC re<strong>in</strong>forced<br />

composites <strong>in</strong> mar<strong>in</strong>e (chloride) environments.<br />

The improvement <strong>in</strong> corrosion resistance<br />

observed by the addition of 2‐3 wt% BLA is<br />

attributed to the presence of silica which is the<br />

primary constituent of BLA. Silica has been<br />

reported to <strong>in</strong>hibit the formation of Al 4 C 3 phase<br />

which forms from <strong>in</strong>terfacial reaction between<br />

the matrix and SiC dur<strong>in</strong>g the production<br />

process [31]. The Al 4 C 3 phase has been reported<br />

to have adverse effect on the corrosion<br />

resistance of alum<strong>in</strong>ium based composites [32].<br />

re<strong>in</strong>forced Al‐Mg‐Si/10 wt% SiC composite<br />

(sample A). This is <strong>in</strong> contrast with the trend<br />

observed <strong>in</strong> 3.5% NaCl solution (Fig. 9). In<br />

addition, the mass loss <strong>in</strong>creases with <strong>in</strong>crease <strong>in</strong><br />

exposure time. This is an <strong>in</strong>dication that the<br />

passive film formed on the composites was unable<br />

to give adequate protection to the substrates; and<br />

the addition of BLA promoted corrosion of the<br />

composites. Furthermore it is observed that<br />

among the hybrid composites, the mass loss is<br />

more pronounced for the Al‐Mg‐Si/4wt%BLA‐<br />

6wt%SiC composition. This same trend was also<br />

observed <strong>in</strong> 3.5% NaCl environment – an<br />

<strong>in</strong>dication that the Al‐Mg‐Si/4wt%BLA‐6wt%SiC<br />

composite composition may not be suitable for use<br />

<strong>in</strong> mar<strong>in</strong>e and acidic environments. Figure 10(b)<br />

shows that the corrosion rate behaviour of the<br />

composites is <strong>in</strong> agreement with the trends<br />

observed <strong>in</strong> Fig. 10(a).<br />

(a)<br />

(a)<br />

(b)<br />

Fig. 9. Variation of (a) mass loss and (b) corrosion<br />

rate with exposure time for the s<strong>in</strong>gle re<strong>in</strong>forced Al‐<br />

Mg‐Si/10 wt% SiC and hybrid re<strong>in</strong>forced Al‐Mg‐<br />

Si/BLA‐SiC composites <strong>in</strong> 5wt% NaCl solution.<br />

Figure 10 shows the plots of variation of mass<br />

loss and corrosion rate with exposure time for<br />

the composites immersed <strong>in</strong> 0.3 M H 2 SO 4<br />

solution. From Fig. 10(a), it is observed that the<br />

hybrid composites exhibit <strong>in</strong>ferior corrosion<br />

resistance <strong>in</strong> comparison with the s<strong>in</strong>gle<br />

(b)<br />

Fig. 10. Variation of (a) mass loss and (b) corrosion<br />

rate with exposure time for the s<strong>in</strong>gle re<strong>in</strong>forced Al‐<br />

Mg‐Si/10 wt% SiC and hybrid re<strong>in</strong>forced Al‐Mg‐<br />

Si/BLA‐SiC composites <strong>in</strong> 0.3M H 2 SO 4 solution.<br />

Figure 11 shows that the corrosion mechanism<br />

of the hybrid composites <strong>in</strong> H 2 SO 4 solution is<br />

most likely to be galvanic corrosion as a result of<br />

the preferential dissolution of the Al matrix<br />

which exposed the BLA‐SiC re<strong>in</strong>forcements. In<br />

32


K.K. Alaneme et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 25‐35<br />

this regards the Al matrix is known to have a<br />

higher electrochemical potential <strong>in</strong> comparison<br />

with BLA‐SiC (ceramic particle) which have<br />

higher resistivity [33]. Thus at the Al<br />

matrix/re<strong>in</strong>forcement <strong>in</strong>terfaces, micro galvanic<br />

corrosion cells are created which results <strong>in</strong> the<br />

dissolution of Al (anode) <strong>in</strong> preference to BLA‐<br />

SiC (which serves as the cathode) [34‐35].<br />

resistance <strong>in</strong> comparison to the s<strong>in</strong>gle<br />

re<strong>in</strong>forced Al ‐ 10 wt% SiC composite but<br />

the reverse trend was observed <strong>in</strong> 0.3M<br />

H2SO4 solution where the s<strong>in</strong>gle<br />

re<strong>in</strong>forced Al ‐ 10 wt% SiC composite had<br />

superior corrosion resistance.<br />

5. The 4 wt % BLA conta<strong>in</strong><strong>in</strong>g hybrid<br />

composite composition was observed to<br />

be the least satisfactory <strong>in</strong> achiev<strong>in</strong>g the<br />

goal of reduced cost while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

high performance levels of the composites.<br />

Acknowledgement<br />

The authors acknowledge the assistance of Dr. P.A.<br />

Olubambi of the Department of Chemical and<br />

Metallurgical Eng<strong>in</strong>eer<strong>in</strong>g, Tshwane University of<br />

Technology, South Africa <strong>in</strong> carry<strong>in</strong>g out<br />

microstructural and compositional characterization<br />

of the composites produced.<br />

Fig. 11. SEM photomicrograph show<strong>in</strong>g secondary<br />

electron image of the corroded surface of the Al‐Mg‐<br />

Si/3wt% BLA‐7 wt% SiC hybrid composite.<br />

3. CONCLUSION<br />

The microstructures, mechanical properties and<br />

corrosion behaviour of Al‐Mg‐Si matrix<br />

composites conta<strong>in</strong><strong>in</strong>g 0:10, 2:8, 3:7, and 4:6 wt<br />

% bamboo leaf ash and silicon carbide as<br />

re<strong>in</strong>forcement was <strong>in</strong>vestigated. The results<br />

show that:<br />

1. The hardness, ultimate tensile strength,<br />

and percent elongation of the hybrid<br />

composites decreased with <strong>in</strong>crease <strong>in</strong><br />

BLA content.<br />

2. The fracture toughness of the hybrid<br />

composites was observed to be superior to<br />

that of the s<strong>in</strong>gle re<strong>in</strong>forced Al ‐ 10 wt%<br />

SiC composite.<br />

3. The specific strength of the 2 wt % BLA<br />

conta<strong>in</strong><strong>in</strong>g hybrid composite was<br />

comparable to that of the s<strong>in</strong>gle re<strong>in</strong>forced<br />

Al ‐ 10 wt% SiC composite while the 3 and<br />

4 wt % BLA conta<strong>in</strong><strong>in</strong>g hybrid composites<br />

had lower specific strength values.<br />

4. In 5wt% NaCl solution, it was observed<br />

that the 2 and 3 wt % BLA conta<strong>in</strong><strong>in</strong>g<br />

hybrid composites had higher corrosion<br />

REFERENCES<br />

[1] P. Rohatgi, B. Schultz: Lightweight metal matrix<br />

nanocomposites – stretch<strong>in</strong>g the boundaries of<br />

metals, Materials Matters, Vol. 2, pp. 16‐19, 2007.<br />

[2] K.K. Alaneme: Mechanical Behaviour of Cold<br />

Deformed and Solution Heat‐treated Alum<strong>in</strong>a<br />

Re<strong>in</strong>forced AA 6063 Composites, The West Indian<br />

Journal of Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 35, No. 2, 2013 (In Press).<br />

[3] M.K. Surappa: Alum<strong>in</strong>ium matrix composites:<br />

Challenges and opportunities, Sadhana, Vol. 28,<br />

No. 1&2, pp. 319‐34, 2003.<br />

[4] D.B. Miracle: Metal matrix composites ‐ from<br />

science to technological significance, Composites<br />

Science and Technology, Vol. 65, No. 15‐16, pp.<br />

2526‐40, 2005.<br />

[5] K.K. Alaneme, A.O. Aluko: Fracture Toughness<br />

(K 1C ) and Tensile Properties of As‐Cast and Age‐<br />

Hardened Alum<strong>in</strong>ium (6063) – Silicon Carbide<br />

Particulate Composites, Scientia Iranica, Vol. 19,<br />

No. 4, pp. 992 – 996, 2012.<br />

[6] A. Macke, B.F. Schultz, P. Rohatgi: Metal matrix<br />

composites offer the automotive <strong>in</strong>dustry an<br />

opportunity to reduce vehicle weight, improve<br />

performance, Advanced Materials and Processes,<br />

Vol. 170, No. 30, pp. 19‐23, 2012.<br />

[7] K.K. Alaneme, M.O. Bodunr<strong>in</strong>: Corrosion behaviour<br />

of alum<strong>in</strong>a re<strong>in</strong>forced Al (6063) metal matrix<br />

composites, Journal of M<strong>in</strong>erals and Materials<br />

Characterisation and Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 10, No. 2,<br />

pp. 1153‐65, 2011.<br />

33


K.K. Alaneme et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 25‐35<br />

[8] S. Mitrović, M. Babić, B. Stojanović, N.<br />

Miloradović, M. Pantić, D. Džunić: Tribological<br />

Potentials of Hybrid Composites Based on Z<strong>in</strong>c<br />

and Alum<strong>in</strong>ium Alloys Re<strong>in</strong>forced with SiC and<br />

Graphite Particles, Tribology <strong>in</strong> Industry, Vol. 34,<br />

No. 4, pp. 177‐185, 2012.<br />

[9] T.V. Christy, N. Murugan, S. Kumar: A comparative<br />

study on the microstructures and mechanical<br />

properties of Al 6061 alloy and the MMC Al<br />

6061/TiB2/12p, Journal of M<strong>in</strong>erals and Materials<br />

Characterization and Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 9, No. 1, pp.<br />

57–65, 2010.<br />

[10] S. Valdez, B. Campillo, R. Perez, L. Mart<strong>in</strong>ez, H.<br />

Garcia: Synthesis and microstructural<br />

characterization of Al‐Mg alloy‐SiC particulate<br />

composite, Materials Letters, Vol. 62, No. 17‐18,<br />

pp. 2623‐2625, 2008.<br />

[11] P.B. Madakson, D.S. Yawas, A. Apasi:<br />

Characterization of Coconut Shell Ash for<br />

Potential Utilization <strong>in</strong> Metal Matrix Composites<br />

for Automotive Applications, International<br />

Journal of Eng<strong>in</strong>eer<strong>in</strong>g Science and Technology<br />

(IJEST), Vol. 4, No. 3, pp. 1190‐1198, 2012.<br />

[12] K.V. Mahendra, A. Radhakrisna: Characterization<br />

of stir cast Al‐Cu‐(fly ash + SiC) hybrid Metal<br />

Matrix Composites, Journal of Composite<br />

Materials, Vol. 44, No. 8, pp. 989‐1005, 2010.<br />

[13] H. Zuhailawati, P. Samayamutthirian, C.H. Mohd<br />

Haizu, Fabrication of Low Cost Alum<strong>in</strong>ium Matrix<br />

Composite Re<strong>in</strong>forced with Silica Sand, Journal of<br />

Physical Science, Vol. 18, No. 1, pp. 47–55, 2007.<br />

[14] F.C.R. Hernandez, H.A. Calderon, Nanostructured<br />

Al/Al4C3 composites re<strong>in</strong>forced with graphite or<br />

fullerene and manufactured by mechanical<br />

mill<strong>in</strong>g and spark plasma s<strong>in</strong>ter<strong>in</strong>g, Materials<br />

Chemistry and Physics, Vol. 132, No. 2‐3, pp.<br />

815‐822, 2012.<br />

[15] K.K. Alaneme, I.B. Ak<strong>in</strong>tunde, P.A. Olubambi, T.M.<br />

Adewale: Mechanical Behaviour of Rice Husk Ash –<br />

Alum<strong>in</strong>a Hybrid Re<strong>in</strong>forced Alum<strong>in</strong>ium Based<br />

Matrix Composites, Journal of Materials research<br />

and Technology, 2012 (In Press).<br />

[16] S.D. Prasad, R.A. Krishna: Tribological Properties<br />

of A356.2/RHA Composites, Journal of Materials<br />

Science and Technology, Vol. 28, No. 4, pp. 367‐<br />

372, 2012.<br />

[17] S.D. Prasad, R.A. Krishna: Production and<br />

Mechanical Properties of A356.2 /RHA Composites,<br />

International Journal of Advanced Science and<br />

Technology, Vol. 33, pp. 51‐58, 2011.<br />

[18] O.A. Olugbenga, A.A. Ak<strong>in</strong>wole: Characteristics of<br />

Bamboo Leaf Ash Stabilization on Lateritic Soil <strong>in</strong><br />

Highway Construction, International Journal of<br />

Eng<strong>in</strong>eer<strong>in</strong>g and Technology, Vol. 2, No. 4, pp.<br />

212‐219, 2010.<br />

[19] K.K. Alaneme, A.O. Aluko: Production and ageharden<strong>in</strong>g<br />

behaviour of borax pre‐mixed SiC<br />

re<strong>in</strong>forced Al‐Mg‐Si alloy composites developed by<br />

double stir cast<strong>in</strong>g technique, The West Indian<br />

Journal of Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 34, No. 1‐2, pp. 80 –<br />

85, 2012.<br />

[20] K.K. Alaneme: Influence of Thermo‐mechanical<br />

Treatment on the Tensile Behaviour and CNT<br />

evaluated Fracture Toughness of Borax premixed<br />

SiCp re<strong>in</strong>forced Alum<strong>in</strong>ium (6063) Composites,<br />

International Journal of Mechanical and Materials<br />

Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 7, No. 1, pp. 96 – 100, 2012.<br />

[21] ASTM E 8M: Standard Test Method for Tension<br />

Test<strong>in</strong>g of Metallic Materials (Metric), Annual<br />

Book of ASTM Standards, Philadelphia, 1991.<br />

[22] K.K. Alaneme: Fracture toughness (K 1C ) evaluation<br />

for dual phase low alloy steels us<strong>in</strong>g circumferential<br />

notched tensile (CNT) specimens, Materials<br />

Research, Vol. 14, No. 2, pp. 155‐160, 2011.<br />

[23] A. Bayram, A. Uguz, A. Durmus: Rapid<br />

Determ<strong>in</strong>ation of the Fracture Toughness of<br />

Metallic Materials Us<strong>in</strong>g Circumferentially Notched<br />

Bars, Journal of Materials Eng<strong>in</strong>eer<strong>in</strong>g and<br />

Performance, Vol. 11, No. 5, pp. 571‐576, 2002.<br />

[24] D.M. Li, A. Bakker: Fracture Toughness<br />

Evaluation Us<strong>in</strong>g Circumferentially‐Cracked<br />

Cyl<strong>in</strong>drical bar Specimens, Eng<strong>in</strong>eer<strong>in</strong>g Fracture<br />

Mechanic, Vol. 57, pp. 1‐11, 1997.<br />

[25] G.E. Dieter. Mechanical Metallurgy, McGraw‐<br />

Hill, S<strong>in</strong>gapore; 1988.<br />

[26] S.K. Nath, U.K. Das: Effect of microstructure and<br />

notches on the fracture toughness of medium<br />

carbon steel, Journal of Naval Architecture and<br />

Mar<strong>in</strong>e Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 3, pp. 15‐22, 2006.<br />

[27] ASTM G31 Standards: Metals Test Methods and<br />

Analytical Procedures, Vol. 3, Wear and Erosion;<br />

Metal Corrosion, Annual Book of ASTM<br />

Standards, Philadelphia, 1994.<br />

[28] T.W. Courtney: Mechanical Behaviour of Materials,<br />

Second Edition, Overseas Press, India, 2006.<br />

[29] K.K. Alaneme, S.M. Hong, I. Sen, E. Fleury, U.<br />

Ramamurty: Effect of Copper Addition on the<br />

Fracture and Fatigue Crack Growth Behaviour of<br />

Solution Heat‐treated SUS 304H Austenitic Steel,<br />

Materials Science and Eng<strong>in</strong>eer<strong>in</strong>g: A, Vol. 527,<br />

No. 18‐19, pp. 4600 – 4604, 2010.<br />

[30] B. Bobic, S. Mitrovic, M. Bobic, I. Bobic: Corrosion<br />

of Metal Matrix Composites with Alum<strong>in</strong>ium Alloy<br />

Substrate, Tribology <strong>in</strong> Industry, Vol. 32, No. 1,<br />

pp. 3‐11, 2010.<br />

[31] K.K. Alaneme: Corrosion Behaviour of heattreated<br />

Al‐6063/ SiC p Composites immersed <strong>in</strong><br />

5wt% NaCl Solution, Leonardo Journal of<br />

science, Vol. 18, pp. 55 – 64, 2011.<br />

34


K.K. Alaneme et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 25‐35<br />

[32] R. Escalera‐Lozano, C. Gutierrez, M.A. Pech‐<br />

Canul, M.I. Pech‐Canul: Degradation of Al/SiCp<br />

Composites produced with Rice‐Hull Ash and<br />

Alum<strong>in</strong>ium Cans, Waste Management, Vol. 28, pp.<br />

389‐395, 2008.<br />

[33] G.M. P<strong>in</strong>to, N. Jagannath, A.N. Shetty: Corrosion<br />

Behavior of 6061 Al‐15 vol. pct. SiC Composite and<br />

its Base Alloy <strong>in</strong> Mixture of 1:1 Hydrochloric and<br />

Sulphuric Acid Medium, International Journal of<br />

Electrochemical Science, Vol. 4, pp. 1452‐1468,<br />

2009.<br />

[34] K.K. Alaneme: An Investigation on the Influence<br />

of SiC Volume Percent and Heat‐Treatment on the<br />

Corrosion Behaviour of Al‐6063/ SiC p Composites<br />

<strong>in</strong> HCl ‐ H 2 SO 4 Environment, Nigerian Society of<br />

Eng<strong>in</strong>eers Technical Transactions, Vol. 46, No. 1,<br />

pp. 13 – 25, 2011.<br />

[35] B. Bobic, S. Mitrovic, M. Bobic, I. Bobic: Corrosion<br />

of Alum<strong>in</strong>ium and Z<strong>in</strong>c‐Alum<strong>in</strong>ium Alloys based<br />

Metal Matrix Composites, Tribology <strong>in</strong> Industry,<br />

Vol. 31, No. 3 & 4, pp. 44‐54, 2009.<br />

35


Vol. 35, No. 1 (2013) 36‐41<br />

Tribology <strong>in</strong> Industry<br />

www.<strong>tribology</strong>.f<strong>in</strong>k.rs<br />

RESEARCH<br />

Exam<strong>in</strong>ation of Wear Resistance of<br />

Polymer – Basalt Composites<br />

A. Todić a , D. Čikara a , V. Lazić b , T. Todić a , I. Čamagić a , A. Skulić, D. Čikara c<br />

a University of Prišt<strong>in</strong>a, Faculty of Technical Sciences, Kneza Milosa 7, 38220 Kosovska Mitrovica, Serbia.<br />

b Universitu of Kragujevac, Faculty of Eng<strong>in</strong>eer<strong>in</strong>g, Sestre Janjić 6, 34000 Kragujevac, Serbia.<br />

c University of Belgrade, Faculty of Technology and Metalurgy, Karnedžijeva 4, 11000 Belgrade, Serbia.<br />

Keywords:<br />

Wear<br />

Basalt<br />

Composite<br />

Polymers<br />

Correspond<strong>in</strong>g author:<br />

V. Lazić<br />

Universitu of Kragujevac,<br />

Faculty of Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Sestre Janjić 6,<br />

34000 Kragujevac, Serbia<br />

E‐mail: vlazic@kg.ac.rs<br />

A B S T R A C T<br />

Oliv<strong>in</strong>e basalt, as a natural material, has excellent physical and mechanical<br />

properties such as hardness, compressive strength, wear resistance, color and<br />

gloss. On the other hand it is difficult for process<strong>in</strong>g, because of its high values of<br />

mechanical properties. Retention of physical and mechanical properties of basalt<br />

and its formation is only possible by mix<strong>in</strong>g basalt powder with polymers which<br />

would enable the composite material that can be formed by the cast<strong>in</strong>g process<br />

<strong>in</strong>to complex shapes. The mechanical properties of the obta<strong>in</strong>ed composites and<br />

production technologies are, to a great extent, unknown <strong>in</strong> both, local and foreign<br />

literature. Researchers conducted and presented <strong>in</strong> this paper show an overview<br />

of tribological behavior of the basaltic composite material and some<br />

technological parameters of the production process. Based on the obta<strong>in</strong>ed<br />

results, it can be determ<strong>in</strong>e the best ratio of components <strong>in</strong> the composite. These<br />

data are important for the development of new composite materials based on<br />

basalt, which will have significant application <strong>in</strong> the future.<br />

© 2013 Published by Faculty of Eng<strong>in</strong>eer<strong>in</strong>g<br />

1. INTRODUCTION<br />

Research <strong>in</strong> this work is aimed to create a new<br />

composite material, which consists of basalt,<br />

polymers and additives.<br />

The ma<strong>in</strong> goal of this research is to obta<strong>in</strong> a<br />

basalt‐polymer base composite that has<br />

properties of basalt (good strength, hardness<br />

and toughness) and is also suitable for form<strong>in</strong>g<br />

by cast<strong>in</strong>g process that is practically impossible<br />

for the pure basalt. The comb<strong>in</strong>ation of these<br />

two materials should allow the obta<strong>in</strong><strong>in</strong>g of a<br />

new material that will keep the characteristics of<br />

basalt (primarily high hardness, color, etc.) and<br />

polymers that allow its easy form<strong>in</strong>g.<br />

The long geological, m<strong>in</strong><strong>in</strong>g and technological<br />

research tends to show that the basalt ore can be<br />

cost‐effective for production of various products of<br />

basalt aggregates such as: basalt composites,<br />

basaltic glass, cast basalt, basalt fibers, and even<br />

jewelry whose value is similar to values of jewelry<br />

made of semi‐precious stones. These researches<br />

<strong>in</strong>cluded def<strong>in</strong><strong>in</strong>g of the parameter of the process<br />

for obta<strong>in</strong><strong>in</strong>g composites of basalt and polyester<br />

res<strong>in</strong> (Polipol 357‐C, 383, Polipol, BRE‐325, etc.),<br />

by cast<strong>in</strong>g methods.<br />

36


A. Todić et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 36‐41<br />

The process parameters to be determ<strong>in</strong>ed are: the<br />

granulometric compo‐sition of basaltic aggregates,<br />

type and amount of the res<strong>in</strong> and additives, elements<br />

of cast<strong>in</strong>g and press<strong>in</strong>g process, etc.<br />

2. PREPARATION OF THE COMPONENTS AND<br />

MOLDS<br />

Basalt is very strength and hard alumo‐silicate<br />

rock, which belong to wild group of granites. For<br />

the purposes of this research, the basalt is taken<br />

from the locality of „Vrelo”, situated on the<br />

slopes of Kopaonik Mounta<strong>in</strong> <strong>in</strong> the South‐west<br />

of Serbia.<br />

From the m<strong>in</strong>eralogical analyses of basalt<br />

samples Vrelo locality, we can see that these<br />

rocks are very compact. Porphyry structure with<br />

dist<strong>in</strong>ctly marked fenocrystals, 1‐3 mm size, was<br />

easily noted. Rock mass is very f<strong>in</strong>e‐gra<strong>in</strong>ed,<br />

crypto crystall<strong>in</strong>e and mat‐black colored.<br />

M<strong>in</strong>eral composition appears on two ways: <strong>in</strong><br />

oliv<strong>in</strong>e fenocrystals that is predom<strong>in</strong>at<strong>in</strong>g and<br />

pyroxene that is <strong>in</strong>ferior. Physical and<br />

mechanical properties of the basalt from Vrelo<br />

locality are given <strong>in</strong> Table 1.<br />

Table 1. Physical and mechanical properties of basalt<br />

from Vrelo locality.<br />

Density (kg/m 3 ) 2600 – 2630<br />

Melt<strong>in</strong>g po<strong>in</strong>t ( °C) 1150 – 1170<br />

Compression strength (dry state) (MPa) 240 – 260<br />

Compression strength (hydrosaturated 210 – 225<br />

state) (MPa)<br />

Compression strength (after freez<strong>in</strong>g) 190 – 195<br />

(MPa)<br />

Wear resistance (method Bohme)<br />

4.1 – 4.5<br />

(cm 3 /50 cm 3 )<br />

Wear resistance (method Los Angeles) (%) 11.5 – 12.0<br />

Raw basalt gra<strong>in</strong> size was 3 to 5 mm. This basalt<br />

aggregate was milled and micronized <strong>in</strong><br />

tungsten‐carbide vibrat<strong>in</strong>g mill. Mill<strong>in</strong>g lasted 30<br />

m<strong>in</strong>utes, and after that basalt powder was<br />

centrifugally sifted <strong>in</strong>to the follow<strong>in</strong>g granulations:<br />

100 μm<br />

150 + 50 μm<br />

300 + 100 μm<br />

500 + 300 μm i<br />

1000 + 500 μm.<br />

For mak<strong>in</strong>g the composites, polyester res<strong>in</strong> BRE<br />

325 (manufacturer BOYTEK ‐ Turkey) was used<br />

[3]. This is orthophthalic unsaturated polyester<br />

res<strong>in</strong> with low reactivity and medium viscosity.<br />

It is used for the construction of sanitary<br />

elements and figur<strong>in</strong>es by cast<strong>in</strong>g process. After<br />

cur<strong>in</strong>g, it has high elongation, nice color and very<br />

good soak<strong>in</strong>g of fillers. Manufacturer of these<br />

polyester res<strong>in</strong>s declared characteristics shown<br />

<strong>in</strong> Table 2 and 3 [3].<br />

Table 2. Physical properties of liquid res<strong>in</strong> at 20 °C.<br />

Viscosity (cp) 700 – 900<br />

Acid number (max.) (mg KOH/g) 30<br />

Styrene content (% mass) 32 – 38<br />

Exothermic peak ( °C) 130 – 140<br />

Time of gelation 1% Co (m<strong>in</strong>utes) 5 – 10<br />

Storage stability (months) 6<br />

Table 3. Mechanical and physical properties of res<strong>in</strong><br />

<strong>in</strong> the fully matured state.<br />

Tensile strength (MPa) 55<br />

Modulus of elasticity (MPa) 2800<br />

Elongation (%)<br />

65<br />

Bend<strong>in</strong>g strenght (MPa) 110<br />

Flexural modulus (MPa) 3100<br />

Hardness (Barkola) 35<br />

Heat distortion temperature ( °C) 55<br />

As the catalyst and <strong>in</strong>itiator high active Methylethyl‐ketone‐peroxide<br />

was used. The catalyst is<br />

added <strong>in</strong> an amount of 2% of the mass of res<strong>in</strong><br />

used. As an accelerant we used Co (6%) at a<br />

concentration between 0.2% and 0.6% of the<br />

amount of the polyester res<strong>in</strong> [456]. Pattern for<br />

mak<strong>in</strong>g molds are made of metal alloy <strong>in</strong><br />

standard sizes for this type of test<strong>in</strong>g.<br />

Moulds are made of high tack<strong>in</strong>ess silicone<br />

(poliysilosan). This is a two‐component silicone<br />

where the first component is pure silicone and the<br />

second component is a hardener. Mix<strong>in</strong>g silicone<br />

and hardener is performed by mix<strong>in</strong>g up to 30 s at<br />

23 °C, until color become homogenous. Molds<br />

mak<strong>in</strong>g is performed by press<strong>in</strong>g of pattern <strong>in</strong> the<br />

formed mass and for full cur<strong>in</strong>g of molds a period<br />

of about 72 h is required [78].<br />

This silicone mass is used because it does not glue<br />

to polyester res<strong>in</strong>, and allows easy extraction of<br />

test specimens from the mold. The disadvantage is<br />

that the silicone molds, do not allow high<br />

pressures, because they will elastically deform.<br />

Therefore, it is necessary to pour a mixture at low<br />

pressure just enough that the excess of material be<br />

extruded from the mold [9].<br />

37


A. Todić et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 36‐41<br />

3. PREPARATION OF THE COMPOSITE<br />

MIXTURE<br />

This silicone mass is used because it does not glue<br />

to polyester res<strong>in</strong>, that allows easy extraction of<br />

test specimens from the mold. The disadvantage<br />

is that the silicone molds, do not allow high<br />

pressures, because they will elastically deform.<br />

Therefore, it is necessary to cast a mixture at low<br />

pressure just enough that the excess of material<br />

be extruded from the mold [9].<br />

Test<strong>in</strong>g samples are made of composites with the<br />

different ratios of basalt powder and polyester<br />

res<strong>in</strong>, different granulation and different content<br />

of accelerators. Samples designations with values<br />

of their masses are given <strong>in</strong> Table 4. Designation<br />

of samples consists of three ascendants (Fig. 1)<br />

where the first ascendant <strong>in</strong>dicates the basalt<br />

gra<strong>in</strong> size, the second amount of basalt <strong>in</strong> the<br />

mixture, and the third, the content of the<br />

accelerator <strong>in</strong> the mixture.<br />

Basalt mixture made of these components are<br />

uniformly mixed to homogeni‐sation about 10<br />

m<strong>in</strong> and then poured <strong>in</strong>to the mold. Poured<br />

mixture solidifies at room temperature and the<br />

cur<strong>in</strong>g time is 30 to 50 m<strong>in</strong>utes, depend<strong>in</strong>g on<br />

the percentage of basalt powder <strong>in</strong> it. After<br />

cur<strong>in</strong>g samples, together with molds,<br />

transferred <strong>in</strong>to the furnace and heated to a<br />

temperature of 60 °C for 3 hours. In the next<br />

stage, the samples will be removed from the<br />

mold and reheated at temperature of 100 °C for<br />

one hour. Completion of the polymerization<br />

process cont<strong>in</strong>ues after remov<strong>in</strong>g the samples<br />

from the furnace <strong>in</strong> the next 24 hours. Samples<br />

for wear resistance test<strong>in</strong>g are made by this<br />

method. Figure 2 shows one of the test samples.<br />

In the Fig. 3 is given photos of the wear<br />

resistance test<strong>in</strong>g device.<br />

Table 4. Samples for test<strong>in</strong>g resistance wear<br />

Samples<br />

designation<br />

Sample mass m0<br />

(g)<br />

I3a 11.36<br />

I3b 10.29<br />

I4a 10.64<br />

I4b 10.93<br />

I5a 12.60<br />

I5b 11.50<br />

I6a 12.71<br />

I6b 11.87<br />

I8a 13.70<br />

I8b 13.57<br />

II6a 12.16<br />

II6b 12.96<br />

III6a 12.20<br />

III6b 12.64<br />

IV6a 12.37<br />

IV6b 12.54<br />

V6a 13.42<br />

V6b 13.52<br />

X Y Z<br />

I<br />

II<br />

III<br />

IV<br />

V<br />

Basalt gra<strong>in</strong> size<br />

150+50 μm<br />

100 μm<br />

300+100 μm<br />

500+300 μm<br />

1000+500 μm<br />

Propor. of basalt<br />

3<br />

4<br />

5<br />

6<br />

8<br />

30%<br />

40%<br />

50%<br />

60%<br />

80%<br />

Prop. of accelerator<br />

a 0.2%<br />

b 0.6%<br />

Fig. 1. Schematic presentation of samples designation.<br />

38


A. Todić et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 36‐41<br />

4. TEST RESULTS<br />

Fig. 2. Wear resistance test sample.<br />

Fig. 3. Tribological and Wear resistance test<strong>in</strong>g device.<br />

The procedure for wear resistance test<strong>in</strong>g is the<br />

follow<strong>in</strong>g: rotary abrasive disc made of steel<br />

with a diameter of 148 mm overlaps the<br />

prepared sample. The disc rotates with speed of<br />

0.05 RPM with 200 revolutions on one sample<br />

(Fig. 3). The higher speed is not possible because<br />

the samples are quickly heated and burn. Wear<br />

resistance is def<strong>in</strong>ed as the loss of mass per unit<br />

of wear surface. Wear surface <strong>in</strong> this case is a<br />

semi‐spherical, so it can be calculated by the<br />

expression:<br />

r <br />

<br />

2<br />

P al<br />

a<br />

10.0037,<br />

cm<br />

o<br />

180<br />

where:<br />

a ‐ width of the sample (which is 3.1 cm)<br />

l ‐ length of the port (which is 3.227 cm)<br />

φ ‐central angle (angle which covers the length<br />

of the arc which is 0.43633 rad).<br />

The loss of mass per surface unit can be<br />

calculated us<strong>in</strong>g the follow<strong>in</strong>g equation:<br />

m 1 g<br />

O ,<br />

2<br />

P cm<br />

The values of mass loss are shown <strong>in</strong> Table 5.<br />

Table 5. Test results of wear resistance.<br />

Sample<br />

designation<br />

Mass before<br />

test<strong>in</strong>g m0 (g)<br />

Mass after<br />

test<strong>in</strong>g m (g)<br />

Mass loss<br />

m1 (g)<br />

I3a 11.36 11.330 0.030 0.00299<br />

I3b 10.29 10.270 0.020 0.00199<br />

I4a 10.64 10.610 0.030 0.00299<br />

I4b 10.93 10.895 0.035 0.00349<br />

I5a 12.60 12.585 0.015 0.00249<br />

I5b 11.50 11.480 0.020 0.00199<br />

I6a 12.71 12.695 0.015 0.00149<br />

I6b 11.87 11.855 0.015 0.00149<br />

I8a 13.70 13.675 0.025 0.00249<br />

I8b 13.57 13.560 0.010 0.00299<br />

II6a 12.16 12.140 0.020 0.00199<br />

II6b 12.96 12.950 0.010 0.00099<br />

III6a 12.20 12.180 0.020 0.00199<br />

III6b 12.64 12.620 0.020 0.00199<br />

IV6a 12.37 12.360 0.010 0.00099<br />

IV6b 12.54 12.530 0.010 0.00099<br />

V6a 13.42 13.400 0.020 0.00199<br />

V6b 13.52 13.510 0.010 0.00099<br />

Mass loss reduced to wear<br />

surface O (g/cm 2 )<br />

4.1. Discussion of the results<br />

Table 5 shows the values of the mass of samples<br />

before and after wear mass loss and mass loss<br />

reduced to wear surface. Based on the results <strong>in</strong><br />

Table 5 a histogram of mass loss per wear<br />

surface is made (Fig. 4).<br />

From the above histogram can be concluded that<br />

the least amount of lost material are on the<br />

samples with the designation I6a and I6b<br />

conta<strong>in</strong><strong>in</strong>g 60% basalt powder and gra<strong>in</strong> size<br />

150+50 μm. Content of accelerator <strong>in</strong> the first<br />

sample is 0.2%, and <strong>in</strong> the second 0.6%.<br />

39


A. Todić et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 36‐41<br />

direction of its application for the production of<br />

parts <strong>in</strong> the automotive <strong>in</strong>dustry and food<br />

production [1011].<br />

Fig. 4. Histogram of samples mass loss.<br />

S<strong>in</strong>ce these samples showed the best wear<br />

resistance we cont<strong>in</strong>ued to test samples with a<br />

60% of basalt powder, but with different gra<strong>in</strong><br />

size. Figure 5 shows histogram the mass loss per<br />

wear surface.<br />

Samples generally showed very uniform values<br />

of wear resistance. However a certa<strong>in</strong> number<br />

of samples have reduced value of mass loss per<br />

wear surface, which is especially noticeable on<br />

the samples: I6a I6b, IV6a and IV6b. This means<br />

that the wear resistance of these samples is the<br />

best, and <strong>in</strong> future work should use these<br />

technological parameters. A broader view of all<br />

these results is given <strong>in</strong> the papers [789].<br />

Technology of the production and design of<br />

these composites is now less known <strong>in</strong> the<br />

world. For the production of such composites<br />

should def<strong>in</strong>e <strong>in</strong> more detail the technological<br />

parameters, equipment, tools, etc. It will<br />

probably be the task of future research.<br />

REFERENCES<br />

Fig. 5. Histogram of samples mass loss.<br />

On the diagram it is evident that the best values<br />

of wear resistance have the samples IV6a and<br />

IV6b. These samples conta<strong>in</strong> 60% basalt powder<br />

with a gra<strong>in</strong> size of 500+300 μm. Content of<br />

accelerator <strong>in</strong> the first case is 0.2%, and <strong>in</strong> the<br />

second 0.6%. This clearly <strong>in</strong>dicates that the<br />

specified granulation of basalt powder gives the<br />

highest wear resistance.<br />

5. CONCLUSION<br />

Good characteristics of basalt qualify them for the<br />

f<strong>in</strong>al works <strong>in</strong> construction and manufactur<strong>in</strong>g of<br />

basalt wool, used as <strong>in</strong>sulat<strong>in</strong>g material. Dur<strong>in</strong>g the<br />

research, the technological parameters of the<br />

production of polymer matrix composites with<br />

basalt as re<strong>in</strong>forcements are established. Further<br />

development of these materials will go <strong>in</strong> the<br />

[1] K. Fl<strong>in</strong>n R. Trojan: Eng<strong>in</strong>eer<strong>in</strong>g materials and<br />

their applications 4‐th edition John Wiley &<br />

Sons New York 1995.<br />

[2] Study on reserves and quality of basalt as raw<br />

materials for technical ‐ build<strong>in</strong>g stone and<br />

petrology “Geozavod‐nemetali” Beograd 1999.<br />

[3] Catalog of polyester res<strong>in</strong>s manu‐facturers<br />

Boytek.<br />

[4] Lowe: Composite materials Depart‐ment of<br />

Eng<strong>in</strong>eer<strong>in</strong>g Australian National University<br />

Canberra 2001.<br />

[5] Iulian‐Gabriel Birsan Circium Adrian Bria<br />

Vasile Ungureanu Victor: Tribological and<br />

electrical properties of filled epoxy re<strong>in</strong>forced<br />

composites Tribologly <strong>in</strong> Industry Vol. 31 No.<br />

1‐2 pp. 33‐36, 2009.<br />

[6] Capitanu Lucian Onişoru Just<strong>in</strong> Iarovici Aron:<br />

Tribological aspects for <strong>in</strong>jection process<strong>in</strong>g of<br />

thermoplastic composite materials with glass<br />

fiber Tribologly <strong>in</strong> Industry Vol. 26, No. 1‐2 pp.<br />

32‐41, 2004.<br />

[7] A. Todic B. Nedeljkovic D. Cikara and I, Ristovic:<br />

Particulate basalt‐polymer composites<br />

characteristics <strong>in</strong>vestigation Materials Design<br />

Vol. 32, No. 3, pp. 1677 – 1683, 2011.<br />

[8] Todić R. Aleksić D. Čikara T. Todić: Research of<br />

particulate composites based on polyester res<strong>in</strong>s<br />

and basalt, IMK – 14 Oktobar Research and<br />

development (28‐29)1‐2/2008. pp. 37‐42.<br />

40


A. Todić et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 36‐41<br />

[9] Todić D. Čikara, T. Todić B. Ćirković: Toughness<br />

test<strong>in</strong>g of particulate composites based on basalt<br />

polymer and silane IMK – 14 Oktobar Research<br />

and development (32‐33)3‐4/2009. pp. 25‐28.<br />

[10] William F. Hosford Mechanical behavior of<br />

materials University of Michigan Cambridge<br />

University press 2005.<br />

[11] Jovičić Gordana and Milosavljević Dragan: The<br />

equivalent macro ‐ mechanical characteristics of<br />

composite lam<strong>in</strong>ate Tribologly <strong>in</strong> Industry Vol.<br />

24 No. 3‐4 pp. 57‐60, 2002.<br />

41


Vol. 35, No. 1 (2013) 42‐50<br />

Tribology <strong>in</strong> Industry<br />

www.<strong>tribology</strong>.f<strong>in</strong>k.rs<br />

RESEARCH<br />

Experimental Investigation on Friction and Wear<br />

Properties of Different Steel Materials<br />

M.A. Chowdhury a , D.M. Nuruzzaman b<br />

a Department of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Dhaka University of Eng<strong>in</strong>eer<strong>in</strong>g and Technology, Gazipur‐1700, Bangladesh.<br />

b Faculty of Manufactur<strong>in</strong>g Eng<strong>in</strong>eer<strong>in</strong>g, University Malaysia Pahang, Malaysia.<br />

Keywords:<br />

SS 314<br />

SS 202<br />

Mild steel<br />

Friction coefficient<br />

Wear rate<br />

Correspond<strong>in</strong>g author:<br />

Mohammad Asaduzzaman Chowdhury<br />

Professor<br />

Department of Mechanical<br />

Eng<strong>in</strong>eer<strong>in</strong>g<br />

Dhaka University of Eng<strong>in</strong>eer<strong>in</strong>g and<br />

Technology, Gazipur<br />

Gazipur‐1700, Bangladesh<br />

E‐mail: asadzmn2003@yahoo.com<br />

A B S T R A C T<br />

Friction coefficient and wear rate of different steel materials are<br />

<strong>in</strong>vestigated and compared <strong>in</strong> this study. In order to do so, a p<strong>in</strong> on disc<br />

apparatus is designed and fabricated. Experiments are carried out when<br />

different types of disc materials such as sta<strong>in</strong>less steel 314 (SS 314),<br />

sta<strong>in</strong>less steel 202 (SS 202) and mild steel slide aga<strong>in</strong>st sta<strong>in</strong>less steel 314<br />

(SS 314) p<strong>in</strong>. Experiments are conducted at normal load 10, 15 and 20 N,<br />

slid<strong>in</strong>g velocity 1, 1.5 and 2 m/s and relative humidity 70%. At different<br />

normal loads and slid<strong>in</strong>g velocities, variations of friction coefficient with the<br />

duration of rubb<strong>in</strong>g are <strong>in</strong>vestigated. The obta<strong>in</strong>ed results show that<br />

friction coefficient varies with duration of rubb<strong>in</strong>g, normal load and slid<strong>in</strong>g<br />

velocity. In general, friction coefficient <strong>in</strong>creases for a certa<strong>in</strong> duration of<br />

rubb<strong>in</strong>g and after that it rema<strong>in</strong>s constant for the rest of the experimental<br />

time. The obta<strong>in</strong>ed results reveal that friction coefficient decreases with the<br />

<strong>in</strong>crease <strong>in</strong> normal load for all the tested materials. It is also found that<br />

friction coefficient <strong>in</strong>creases with the <strong>in</strong>crease <strong>in</strong> slid<strong>in</strong>g velocity for all the<br />

materials <strong>in</strong>vestigated. Moreover, wear rate <strong>in</strong>creases with the <strong>in</strong>crease <strong>in</strong><br />

normal load and slid<strong>in</strong>g velocity for SS 314, SS 202 and mild steel. In<br />

addition, at identical operat<strong>in</strong>g condition, the magnitudes of friction<br />

coefficient and wear rate are different for different materials depend<strong>in</strong>g on<br />

slid<strong>in</strong>g velocity and normal load.<br />

© 2013 Published by Faculty of Eng<strong>in</strong>eer<strong>in</strong>g<br />

1. INTRODUCTION<br />

Study of mechanics of friction and the<br />

relationship between friction and wear dates<br />

back to the sixteenth century, almost<br />

immediately after the <strong>in</strong>vention of Newton’s law<br />

of motion. It was observed by several<br />

researchers [1‐13] that the variation of friction<br />

depends on <strong>in</strong>terfacial conditions such as normal<br />

load, geometry, relative surface motion, slid<strong>in</strong>g<br />

velocity, surface roughness of the rubb<strong>in</strong>g<br />

surfaces, type of material, system rigidity,<br />

temperature, stick‐slip, relative humidity,<br />

lubrication and vibration. Among these factors<br />

normal load and slid<strong>in</strong>g velocity are the two<br />

major factors that play significant role for the<br />

variation of friction. In the case of materials with<br />

surface films which are either deliberately<br />

applied or produced by reaction with<br />

environment, the coefficient of friction may not<br />

42


M.A. Chowdhury and D.M. Nuruzzaman, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 42‐50<br />

rema<strong>in</strong> constant as a function of load. In many<br />

metal pairs, <strong>in</strong> the high load regime, the<br />

coefficient of friction decreases with load.<br />

Bhushan [14] and Blau [15] reported that<br />

<strong>in</strong>creased surface roughen<strong>in</strong>g and a large<br />

quantity of wear debris are believed to be<br />

responsible for decrease <strong>in</strong> friction at higher<br />

loads. It was observed that the coefficient of<br />

friction may be very low for very smooth<br />

surfaces and/or at loads down to micro‐to<br />

nanonewton range [16,17]. The third law of<br />

friction, which states that friction is <strong>in</strong>dependent<br />

of velocity, is not generally valid. Friction may<br />

<strong>in</strong>crease or decrease as a result of <strong>in</strong>creased<br />

slid<strong>in</strong>g velocity for different materials<br />

comb<strong>in</strong>ations. An <strong>in</strong>crease <strong>in</strong> the temperature<br />

generally results <strong>in</strong> metal soften<strong>in</strong>g <strong>in</strong> the case of<br />

low melt<strong>in</strong>g po<strong>in</strong>t metals. An <strong>in</strong>crease <strong>in</strong><br />

temperature may result <strong>in</strong> solid‐state phase<br />

transformation which may either improve or<br />

degrade mechanical properties [13]. The most<br />

drastic effect occurs if a metal approaches its<br />

melt<strong>in</strong>g po<strong>in</strong>t and its strength drops rapidly, and<br />

thermal diffusion and creep phenomena become<br />

more important. The result<strong>in</strong>g <strong>in</strong>creased<br />

adhesion at contacts and ductility lead to an<br />

<strong>in</strong>crease <strong>in</strong> friction [13]. The <strong>in</strong>crease <strong>in</strong> friction<br />

coefficient with slid<strong>in</strong>g velocity due to more<br />

adhesion of counterface material (p<strong>in</strong>) on disc.<br />

Friction coefficient and wear rate of metals and<br />

alloys showed different behavior under different<br />

operat<strong>in</strong>g conditions [18‐25]. In spite of these<br />

f<strong>in</strong>d<strong>in</strong>gs, the effects of normal load and slid<strong>in</strong>g<br />

velocity on friction coefficient of different types<br />

steel materials, particularly SS 314, SS 202 and<br />

mild steel slid<strong>in</strong>g aga<strong>in</strong>st SS 314 are yet to be<br />

<strong>in</strong>vestigated. Therefore, <strong>in</strong> this study, an attempt<br />

is made to <strong>in</strong>vestigate the effect of normal load<br />

and slid<strong>in</strong>g velocity on the friction coefficient of<br />

these materials. The effects of duration of<br />

rubb<strong>in</strong>g on friction coefficient are observed <strong>in</strong><br />

this study. The effects of normal load and slid<strong>in</strong>g<br />

velocity on wear rate of SS 314, SS 202 and mild<br />

steel are also exam<strong>in</strong>ed.<br />

2. EXPERIMENTAL<br />

A schematic diagram of the experimental set‐up<br />

is shown <strong>in</strong> Fig. 1 i.e. a p<strong>in</strong> which can slide on a<br />

rotat<strong>in</strong>g horizontal surface (disc).<br />

In this set‐up a circular test sample (disc) is to<br />

be fixed on a rotat<strong>in</strong>g plate (table) hav<strong>in</strong>g a long<br />

vertical shaft clamped with screw from the<br />

bottom surface of the rotat<strong>in</strong>g plate. The shaft<br />

passes through two close‐fit bush‐bear<strong>in</strong>gs<br />

which are rigidly fixed with sta<strong>in</strong>less steel plate<br />

and sta<strong>in</strong>less steel base such that the shaft can<br />

move only axially and any radial movement of<br />

the rotat<strong>in</strong>g shaft is restra<strong>in</strong>ed by the bush.<br />

These sta<strong>in</strong>less steel plate and sta<strong>in</strong>less steel<br />

base are rigidly fixed with four vertical round<br />

bars to provide the rigidity to the ma<strong>in</strong> structure<br />

of this set‐up. The ma<strong>in</strong> base of the set‐up is<br />

constructed by 10 mm thick mild steel plate<br />

consist<strong>in</strong>g of 3 mm thick rubber sheet at the<br />

upper side and 20 mm thick rubber block at the<br />

lower side. A compound V‐pulley above the top<br />

sta<strong>in</strong>less steel plate was fixed with the shaft to<br />

transmit rotation to the shaft from a motor. An<br />

electronic speed control unit is used to vary the<br />

speed of the motor as required. A 6 mm<br />

diameter cyl<strong>in</strong>drical p<strong>in</strong> whose contact<strong>in</strong>g foot is<br />

flat, made of SS 314, fitted on a holder is<br />

subsequently fitted with an arm. The arm is<br />

pivoted with a separate base <strong>in</strong> such a way that<br />

the arm with the p<strong>in</strong> holder can rotate vertically<br />

and horizontally about the pivot po<strong>in</strong>t with very<br />

low friction. Slid<strong>in</strong>g speed can be varied by two<br />

ways (i) by chang<strong>in</strong>g the frictional radius and (ii)<br />

by chang<strong>in</strong>g the rotational speed of the shaft. In<br />

this research, slid<strong>in</strong>g speed is varied by chang<strong>in</strong>g<br />

the rotational speed of the shaft while<br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g 25 mm constant frictional radius. To<br />

measure the frictional force act<strong>in</strong>g on the p<strong>in</strong><br />

dur<strong>in</strong>g slid<strong>in</strong>g on the rotat<strong>in</strong>g plate, a load cell<br />

(TML, Tokyo Sokki Kenkyujo Co. Ltd, CLS‐10NA)<br />

along with its digital <strong>in</strong>dicator (TML, Tokyo Sokki<br />

Kenkyujo Co. Ltd, Model no. TD‐93A) was used.<br />

The coefficient of friction was obta<strong>in</strong>ed by<br />

divid<strong>in</strong>g the frictional force by the applied normal<br />

force (load). Wear was measured by weigh<strong>in</strong>g the<br />

test sample with an electronic balance before and<br />

after the test, and then the difference <strong>in</strong> mass was<br />

converted to wear rate. To measure the surface<br />

roughness, Taylor Hobson Precision Roughness<br />

Checker (Surtronic 25) was used. Each test was<br />

conducted for 30 m<strong>in</strong>utes of rubb<strong>in</strong>g time with<br />

new p<strong>in</strong> and test sample. Furthermore, to ensure<br />

the reliability of the test results, each test was<br />

repeated five times and the scatter <strong>in</strong> results was<br />

small, therefore the average values of these test<br />

results were taken <strong>in</strong>to consideration.<br />

43


M.A. Chowdhury and D.M. Nuruzzaman, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 42‐50<br />

2<br />

19<br />

1<br />

15<br />

16<br />

17<br />

14<br />

3<br />

5<br />

6<br />

13<br />

4<br />

11<br />

12<br />

7<br />

8<br />

9 10<br />

1 Load arm holder<br />

2. Load arm<br />

3. Normal load (dead weight)<br />

4. Horizontal load (Friction<br />

force)<br />

5. P<strong>in</strong> sample<br />

6. Test disc with rotat<strong>in</strong>g table<br />

7. Load cell <strong>in</strong>dicator<br />

8. Belt and pulley<br />

9. Motor<br />

10. Speed control unit<br />

11. Vertical motor base<br />

12. 3 mm Rubber pad<br />

13. Ma<strong>in</strong> shaft<br />

14. Sta<strong>in</strong>less steel base<br />

15. Sta<strong>in</strong>less steel plate<br />

16. Vertical square bar<br />

17. Mild steel ma<strong>in</strong> base plate<br />

18. Rubber block (20 mm thick)<br />

19. P<strong>in</strong> holder.<br />

18<br />

Fig. 1. Block diagram of the experimental set‐up.<br />

The detail experimental conditions are shown <strong>in</strong><br />

Table 1.<br />

Table 1. Experimental Conditions.<br />

Sl.<br />

No.<br />

Parameters Operat<strong>in</strong>g Conditions<br />

1. Normal Load 10, 15, 20 N<br />

2. Slid<strong>in</strong>g Velocity 1, 1.5, 2 m/s<br />

3. Relative Humidity 70 ( 5)%<br />

4. Disc materials (i) Sta<strong>in</strong>less steel 314<br />

(ii) Sta<strong>in</strong>less steel 202<br />

(iii) Mild steel<br />

5. P<strong>in</strong> material Sta<strong>in</strong>less steel 314<br />

6. Average surface 0.35‐0.45 m<br />

roughness of disks (Ra<br />

)<br />

7. Average surface 0.3‐0.4 m<br />

roughness of p<strong>in</strong> (Ra )<br />

8. Surface Condition Dry<br />

9. Duration of Rubb<strong>in</strong>g 30 m<strong>in</strong>utes<br />

3. RESULTS AND DISCUSSION<br />

Figure 2 shows the variation of friction<br />

coefficient with the duration of rubb<strong>in</strong>g at<br />

different normal loads for SS 314. Dur<strong>in</strong>g<br />

experiment, the slid<strong>in</strong>g velocity and relative<br />

humidity were 1.5 m/s and 70% respectively.<br />

Curve 1 of this figure is drawn for normal load<br />

10 N. From this curve, it is observed that at the<br />

<strong>in</strong>itial duration of rubb<strong>in</strong>g, the value of friction<br />

coefficient is 0.215 and then <strong>in</strong>creases very<br />

steadily up to 0.27 over a duration of 24 m<strong>in</strong>utes<br />

of rubb<strong>in</strong>g and after that it rema<strong>in</strong>s constant for<br />

the rest of the experimental time. At the <strong>in</strong>itial<br />

stage of rubb<strong>in</strong>g, friction is low and the factors<br />

responsible for this low friction are due to the<br />

presence of a layer of foreign material on the<br />

disc surface.<br />

Friction coefficient<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

10 N<br />

15 N<br />

20 N<br />

0.0<br />

0 4 8 12 16 20 24 28 32<br />

Duration of rubb<strong>in</strong>g (m<strong>in</strong>)<br />

Fig. 2. Friction coefficient as a function of duration of<br />

rubb<strong>in</strong>g at different normal loads (slid<strong>in</strong>g velocity:<br />

1.5 m/s, relative humidity: 70%, test sample: SS 314,<br />

p<strong>in</strong>: SS 314).<br />

This layer on the disc surface <strong>in</strong> general<br />

comprises of (i) moisture, (ii) oxide film (iii)<br />

deposited lubricat<strong>in</strong>g material, etc. At <strong>in</strong>itial<br />

duration of rubb<strong>in</strong>g, the oxide film easily<br />

separates the two material surfaces and there is<br />

little or no true metallic contact and also the<br />

oxide film has low shear strength. After <strong>in</strong>itial<br />

1<br />

2<br />

3<br />

44


M.A. Chowdhury and D.M. Nuruzzaman, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 42‐50<br />

rubb<strong>in</strong>g, the film (deposited layer) breaks up<br />

and clean surfaces come <strong>in</strong> contact which<br />

<strong>in</strong>crease the bond<strong>in</strong>g force between the<br />

contact<strong>in</strong>g surfaces. At the same time due to the<br />

plough<strong>in</strong>g effect, <strong>in</strong>clusion of trapped wear<br />

particles and roughen<strong>in</strong>g of the disc surface, the<br />

friction force <strong>in</strong>creases with duration of rubb<strong>in</strong>g.<br />

After certa<strong>in</strong> duration of rubb<strong>in</strong>g, the <strong>in</strong>crease of<br />

roughness and other parameters may reach to a<br />

certa<strong>in</strong> steady state value and hence the values<br />

of friction coefficient rema<strong>in</strong> constant for the<br />

rest of the time. Curves 2 and 3 of this figure are<br />

drawn for normal load 15 and 20 N respectively<br />

and show similar trends as that of curve 1. From<br />

these curves, it is also observed that time to<br />

reach steady state value is different for different<br />

normal loads. Results show that at normal load<br />

10, 15 and 20 N, SS 314 takes 24, 20 and 17<br />

m<strong>in</strong>utes respectively to reach steady friction. It<br />

<strong>in</strong>dicates that the higher the normal load, the<br />

time to reach steady friction is less. This is<br />

because the surface roughness and other<br />

parameter atta<strong>in</strong> a steady level at a shorter<br />

period of time with the <strong>in</strong>crease <strong>in</strong> normal load.<br />

The trends of these results are similar to the<br />

results of Chowdhury and Helali [26,27].<br />

Figure 3 shows the effect of the duration of<br />

rubb<strong>in</strong>g on friction coefficient at different<br />

normal loads for SS 202 at velocity of 1.5 m/s<br />

and 70% of relative humidity.<br />

Friction coefficient<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

10 N<br />

15 N<br />

20 N<br />

0.0<br />

0 4 8 12 16 20 24 28 32<br />

Duration of rubb<strong>in</strong>g (m<strong>in</strong>)<br />

Fig. 3. Friction coefficient as a function of duration of<br />

rubb<strong>in</strong>g at different normal loads (slid<strong>in</strong>g velocity:<br />

1.5 m/s, relative humidity: 70%, test sample: SS 202,<br />

p<strong>in</strong>: SS 314).<br />

Curve 1 of this figure drawn for normal load 10<br />

N, shows that dur<strong>in</strong>g <strong>in</strong>itial rubb<strong>in</strong>g, the value of<br />

friction coefficient is 0.32 which rises for few<br />

m<strong>in</strong>utes to a value of 0.38 and then it becomes<br />

1<br />

2<br />

3<br />

steady for the rest of the experimental time.<br />

Almost similar trends of variation are observed<br />

<strong>in</strong> curves 2 and 3 which are drawn for load 15<br />

and 20 N respectively. From these curves, it is<br />

found that time to reach steady friction is<br />

different for different normal loads. At normal<br />

loads 10, 15 and 20 N, SS 202 takes 22, 19 and<br />

15 m<strong>in</strong>utes respectively to reach steady friction.<br />

It means that higher the normal load, SS 202<br />

takes less time to stabilize.<br />

Experiments are conducted to observe the effect<br />

of duration of rubb<strong>in</strong>g on friction coefficient<br />

under different normal loads for mild steel and<br />

these results are shown <strong>in</strong> Fig. 4.<br />

Friction coefficient<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

10 N<br />

15 N<br />

20 N<br />

0.0<br />

0 4 8 12 16 20 24 28 32<br />

Duration of rubb<strong>in</strong>g (m<strong>in</strong>)<br />

Fig. 4. Friction coefficient as a function of duration of<br />

rubb<strong>in</strong>g at different normal loads (slid<strong>in</strong>g velocity:<br />

1.5 m/s, relative humidity: 70%, test sample: mild<br />

steel, p<strong>in</strong>: SS 314).<br />

Curve 1 of this figure drawn for normal load 10 N<br />

shows that dur<strong>in</strong>g <strong>in</strong>itial rubb<strong>in</strong>g, the value of<br />

friction coefficient is 0.44 which <strong>in</strong>creases almost<br />

l<strong>in</strong>early up to 0.51 over a duration of 21 m<strong>in</strong>utes of<br />

rubb<strong>in</strong>g and after that it rema<strong>in</strong>s constant for the<br />

rest of the experimental time. Curves 2 and 3 of<br />

this figure are drawn for normal load 15 and 20 N,<br />

respectively. These curves also show similar trend<br />

as that of curve 1. Results show that at normal load<br />

10, 15 and 20 N, mild steel takes 21, 18 and 16<br />

m<strong>in</strong>utes respectively to reach constant friction. It<br />

means that the higher the normal load, the time to<br />

reach constant friction is less. The possible reason<br />

is the surface roughness and other parameter<br />

atta<strong>in</strong>s a steady level at a shorter period of time<br />

with the <strong>in</strong>crease <strong>in</strong> normal load.<br />

Figure 5 shows the comparison of the variation of<br />

friction coefficient with normal load and curves of<br />

this figure are drawn for SS 314, SS 202 and mild<br />

steel.<br />

1<br />

2<br />

3<br />

45


M.A. Chowdhury and D.M. Nuruzzaman, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 42‐50<br />

Friction coefficient<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

SS 314<br />

SS 202<br />

Mild steel<br />

0.0<br />

5 10 15 20 25<br />

Normal load (N)<br />

Fig. 5. Variation of friction coefficient with the<br />

variation of normal load for different materials<br />

(slid<strong>in</strong>g velocity: 1.5 m/s, relative humidity: 70%, p<strong>in</strong>:<br />

SS 314).<br />

These results are obta<strong>in</strong>ed from the steady<br />

values of friction coefficient of Figs. 2‐4. It is<br />

shown that friction coefficient varies from<br />

0.27 to 0.21, 0.38 to 0.31 and 0.51 to 0.45 with<br />

the variation of normal load from 10 to 20 N<br />

for SS 314, SS 202 and mild steel respectively.<br />

All of these results show that friction<br />

coefficient decreases with the <strong>in</strong>crease <strong>in</strong><br />

normal load. Increased surface roughen<strong>in</strong>g<br />

and a large quantity of wear debris are<br />

believed to be responsible for the decrease <strong>in</strong><br />

friction [14,15] with the <strong>in</strong>crease <strong>in</strong> normal<br />

load.<br />

Similar behavior is obta<strong>in</strong>ed for Al–Sta<strong>in</strong>less<br />

steel pair [28] i.e friction coefficient decreases<br />

with the <strong>in</strong>crease <strong>in</strong> normal load. From the<br />

obta<strong>in</strong>ed results, it can also be seen that the<br />

highest values of the friction coefficient are<br />

obta<strong>in</strong>ed for mild steel and the lowest values of<br />

friction coefficient are obta<strong>in</strong>ed for SS 314. The<br />

values of friction coefficient of SS 202 are found<br />

<strong>in</strong> between the highest and lowest values. It was<br />

found that after friction tests, the average<br />

roughness of SS 314, SS 202 and mild steel discs<br />

varied from 1.15‐1.32, 1.45‐1.7 and 2.1‐2.45 m<br />

respectively.<br />

Figures 6, 7 and 8 show the variation of friction<br />

coefficient with the duration of rubb<strong>in</strong>g at<br />

different slid<strong>in</strong>g velocities for SS 314, SS 202 and<br />

mild steel respectively at 15 N normal load.<br />

Friction coefficient<br />

0.0<br />

0 4 8 12 16 20 24 28 32<br />

Duration of rubb<strong>in</strong>g (m<strong>in</strong>)<br />

Fig. 6. Friction coefficient as a function of duration of<br />

rubb<strong>in</strong>g at different slid<strong>in</strong>g velocities (normal load:<br />

15 N, relative humidity: 70%, test sample: SS 314,<br />

p<strong>in</strong>: SS 314).<br />

Friction coefficient<br />

0.0<br />

0 4 8 12 16 20 24 28 32<br />

Duration of rubb<strong>in</strong>g (m<strong>in</strong>)<br />

Fig. 7. Friction coefficient as a function of duration of<br />

rubb<strong>in</strong>g at different slid<strong>in</strong>g velocities (normal load:<br />

15 N, relative humidity: 70%, test sample: SS 202,<br />

p<strong>in</strong>: SS 314).<br />

Friction coefficient<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

1 m/s<br />

1.5 m/s<br />

2 m/s<br />

1 m/s<br />

1.5 m/s<br />

2 m/s<br />

1 m/s<br />

1.5 m/s<br />

2 m/s<br />

0.0<br />

0 4 8 12 16 20 24 28 32<br />

Duration of rubb<strong>in</strong>g (m<strong>in</strong>)<br />

Fig. 8. Friction coefficient as a function of duration of<br />

rubb<strong>in</strong>g at different slid<strong>in</strong>g velocities (normal load:<br />

15 N, relative humidity: 70%, test sample: mild steel,<br />

p<strong>in</strong>: SS 314)<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

46


M.A. Chowdhury and D.M. Nuruzzaman, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 42‐50<br />

Curves 1, 2 and 3 of Fig. 6 are drawn for slid<strong>in</strong>g<br />

velocity 1, 1.5 and 2 m/s respectively. Curve 1 of<br />

this figure shows that <strong>in</strong>itially the value of friction<br />

coefficient is 0.14 which <strong>in</strong>creases almost l<strong>in</strong>early<br />

up to 0.2 over a duration of 25 m<strong>in</strong>utes of rubb<strong>in</strong>g<br />

and after that it rema<strong>in</strong>s constant for the rest of the<br />

experimental time. Curves 2 and 3 show that for the<br />

higher slid<strong>in</strong>g velocity, the friction coefficient is<br />

more and the trend <strong>in</strong> variation of friction<br />

coefficient is almost the same as for curve 1. The<br />

obta<strong>in</strong>ed results show that at slid<strong>in</strong>g velocity 1, 1.5<br />

and 2 m/s, time to reach constant friction 25, 21<br />

and 19 m<strong>in</strong>utes respectively. From Figs. 7 and 8, it<br />

can be observed that the trends <strong>in</strong> variation of<br />

friction coefficient with the duration of rubb<strong>in</strong>g are<br />

very similar to that of Fig. 6 but the values of friction<br />

coefficient are different for different disc materials.<br />

Figure 9 shows the comparison of the variation<br />

of friction coefficient with slid<strong>in</strong>g velocity and<br />

the curves of this figure are drawn for SS 314, SS<br />

202 and mild steel. These results are obta<strong>in</strong>ed<br />

from the steady values of friction coefficient of<br />

Figs. 6‐8. It is shown that friction coefficient<br />

varies from 0.2 to 0.29, 0.3 to 0.395 and 0.44 to<br />

0.53 with the variation of slid<strong>in</strong>g velocity from 1<br />

to 2 m/s for SS 314, SS 202 and mild steel<br />

respectively. These results <strong>in</strong>dicate that friction<br />

coefficient <strong>in</strong>creases with the <strong>in</strong>crease <strong>in</strong> slid<strong>in</strong>g<br />

velocity. Slid<strong>in</strong>g contact of two materials results<br />

<strong>in</strong> heat generation at the asperities and hence<br />

<strong>in</strong>creases <strong>in</strong> temperature at the frictional<br />

surfaces of the two materials. The result<strong>in</strong>g<br />

<strong>in</strong>creased adhesion at contacts and ductility lead<br />

to an <strong>in</strong>crease <strong>in</strong> friction [13]. The <strong>in</strong>crease <strong>in</strong><br />

friction coefficient with slid<strong>in</strong>g velocity due to<br />

more adhesion of counterface material (p<strong>in</strong>) on<br />

disc. From the obta<strong>in</strong>ed results, it can also be<br />

seen that the highest values of the friction<br />

coefficient are obta<strong>in</strong>ed for mild steel and the<br />

lowest values of friction coefficient are obta<strong>in</strong>ed<br />

for SS 314. The values of friction coefficient of SS<br />

202 are found <strong>in</strong> between the highest and lowest<br />

values. After friction tests it was found that the<br />

average roughness of SS 314, SS 202 and mild<br />

steel discs varied from 1.2‐1.34, 1.52‐1.85 and<br />

2.23‐2.62 m respectively.<br />

Figure 10 shows the variations of wear rate with<br />

normal load for SS 314, SS 202 and mild steel.<br />

Results show the variation of wear rate from<br />

2.262 to 3.544, 1.956 to 3.187 and 6.524 to<br />

10.354 mg/m<strong>in</strong> with the variation of normal<br />

load from 10 to 20 N for SS 314, SS 202 and mild<br />

steel respectively. From these curves, it is<br />

observed that wear rate <strong>in</strong>creases with the<br />

<strong>in</strong>crease <strong>in</strong> normal load for all types of materials<br />

<strong>in</strong>vestigated. When the load on the p<strong>in</strong> is<br />

<strong>in</strong>creased, the actual area of contact would<br />

<strong>in</strong>crease towards the nom<strong>in</strong>al contact area,<br />

result<strong>in</strong>g <strong>in</strong> <strong>in</strong>creased frictional force between<br />

two slid<strong>in</strong>g surfaces. The <strong>in</strong>creased frictional<br />

force and real surface area <strong>in</strong> contact causes<br />

higher wear. This means that the shear force and<br />

frictional thrust are <strong>in</strong>creased with <strong>in</strong>crease of<br />

applied load and these <strong>in</strong>creased <strong>in</strong> values<br />

accelerate the wear rate. Similar trends of<br />

variation are also observed for mild steel–mild<br />

steel couples [29], i.e wear rate <strong>in</strong>creases with<br />

the <strong>in</strong>crease <strong>in</strong> normal load.<br />

Friction coefficient<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

SS 314<br />

SS 202<br />

Mild steel<br />

0.0<br />

0.5 1.0 1.5 2.0 2.5<br />

Slid<strong>in</strong>g velocity (m/s)<br />

Fig. 9. Variation of friction coefficient with the variation<br />

of slid<strong>in</strong>g velocity for different materials (normal load: 15<br />

N, relative humidity: 70%, p<strong>in</strong>: SS 314).<br />

Wear rate (mg/m<strong>in</strong>)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

SS 314<br />

SS 202<br />

Mild steel<br />

0<br />

5 10 15 20 25<br />

Normal load (N)<br />

Fig. 10. Variation of wear rate with the variation of<br />

normal load for different materials (slid<strong>in</strong>g velocity:<br />

1.5 m/s, relative humidity: 70%, p<strong>in</strong>: SS 314).<br />

From the obta<strong>in</strong>ed results, it can also be seen<br />

that the highest values of wear rate are obta<strong>in</strong>ed<br />

for mild steel and the lowest values of wear rate<br />

are obta<strong>in</strong>ed for SS 202. The values of wear rate<br />

47


M.A. Chowdhury and D.M. Nuruzzaman, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 42‐50<br />

of SS 314 are slightly higher than that of SS 202.<br />

It is very clear that with<strong>in</strong> the observed range of<br />

normal load, the magnitudes of wear rate of mild<br />

steel are significantly higher than that of SS 314<br />

and SS 202.<br />

The variations of wear rate with slid<strong>in</strong>g<br />

velocity for above mentioned materials are<br />

also observed <strong>in</strong> this study and the results are<br />

presented <strong>in</strong> Fig. 11. These results <strong>in</strong>dicate<br />

that wear rate varies from 2.956 to 4.826,<br />

2.642 to 4.495 and 6.934 to 11.862 mg/m<strong>in</strong><br />

with the variation of slid<strong>in</strong>g velocity from 1 to<br />

2 m/s for SS 314, SS 202 and mild steel<br />

respectively. It is observed that wear rate<br />

<strong>in</strong>creases with the <strong>in</strong>crease <strong>in</strong> slid<strong>in</strong>g velocity<br />

for all types of materials <strong>in</strong>vestigated. This is<br />

due to the fact that duration of rubb<strong>in</strong>g is same<br />

for all slid<strong>in</strong>g velocities, while the length of<br />

rubb<strong>in</strong>g is more for higher slid<strong>in</strong>g velocity. The<br />

reduction of shear strength of the material and<br />

<strong>in</strong>creased true area of contact between<br />

contact<strong>in</strong>g surfaces may have some role on the<br />

higher wear rate at higher slid<strong>in</strong>g velocity.<br />

Wear rate (mg/m<strong>in</strong>)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

SS 314<br />

SS 202<br />

Mild steel<br />

0<br />

0.5 1.0 1.5 2.0 2.5<br />

Slid<strong>in</strong>g velocity (m/s)<br />

Fig. 11. Variation of wear rate with the variation of<br />

slid<strong>in</strong>g velocity for different materials (normal load:<br />

15 N, relative humidity: 70%, p<strong>in</strong>: SS 314).<br />

At different slid<strong>in</strong>g velocities, the highest values<br />

of wear rate are obta<strong>in</strong>ed for mild steel and the<br />

lowest values of wear rate are obta<strong>in</strong>ed for SS<br />

202. Wear rates of SS 314 are slightly higher<br />

than that of SS 202. It is apparent that with<strong>in</strong> the<br />

observed range of slid<strong>in</strong>g velocity, wear rates of<br />

mild steel are remarkably higher than that of SS<br />

314 and SS 202.<br />

4. CONCLUSION<br />

Normal load and slid<strong>in</strong>g velocity <strong>in</strong>deed affect<br />

the friction coefficient and wear rate of SS 314,<br />

SS 202 and mild steel considerably. With<strong>in</strong> the<br />

observed range, the values of friction coefficient<br />

decrease with the <strong>in</strong>crease <strong>in</strong> normal load while<br />

friction coefficients <strong>in</strong>crease with the <strong>in</strong>crease <strong>in</strong><br />

slid<strong>in</strong>g velocity. Friction coefficient varies with<br />

the duration of rubb<strong>in</strong>g and after certa<strong>in</strong><br />

duration of rubb<strong>in</strong>g, friction coefficient becomes<br />

steady for the observed range of normal load<br />

and slid<strong>in</strong>g velocity. The highest values of<br />

friction coefficient are obta<strong>in</strong>ed for mild steel<br />

and the lowest values of friction coefficient are<br />

obta<strong>in</strong>ed for SS 314.<br />

The values of friction coefficient of SS 202 are<br />

found <strong>in</strong> between the highest and lowest values.<br />

Wear rates of SS 314, SS 202 and mild steel<br />

<strong>in</strong>crease with the <strong>in</strong>crease <strong>in</strong> normal load and<br />

slid<strong>in</strong>g velocity. Wear rates of mild steel are<br />

significantly higher than that of SS 314 and SS<br />

202. For the observed range, the values of wear<br />

rates of SS 314 are slightly higher than that of<br />

SS 202.<br />

Therefore, ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g an appropriate level of<br />

normal load, slid<strong>in</strong>g velocity as well as<br />

appropriate choice of slid<strong>in</strong>g pair, friction and<br />

wear may be kept to some optimum value to<br />

improve mechanical processes.<br />

REFERENCES<br />

[1] J.F. Archard: Wear Theory and Mechanisms,<br />

Wear Control Handbook, M. B. Peterson and<br />

W.O. W<strong>in</strong>er, eds., ASME, New York, NY, pp. 35‐<br />

80, 1980.<br />

[2] D. Tabor: Friction and Wear – Developments<br />

Over the Last 50 Years, Keynote Address, <strong>in</strong>:<br />

Proc. International Conf. Tribology – Friction,<br />

Lubrication and Wear, 50 Years On, London,<br />

Inst. Mech. Eng., pp. 157‐172, 1987.<br />

[3] S.T. Oktay, N.P. Suh: Wear Debris Formation<br />

and Agglomeration, ASME Journal of Tribology,<br />

Vol. 114, pp. 379‐393, 1992.<br />

[4] N. Saka, M.J. Liou, N.P. Suh: The role of<br />

Tribology <strong>in</strong> Electrical Cotact Phenomena,<br />

Wear, Vol. 100, pp. 77‐105, 1984.<br />

48


M.A. Chowdhury and D.M. Nuruzzaman, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 42‐50<br />

[5] N.P. Suh, H.C. S<strong>in</strong>: On the Genesis of Friction and<br />

Its Effect on Wear, Solid Contact and<br />

Lubrication, H. S. Cheng and L. M. Keer, ed.,<br />

ASME, New York, NY, AMD‐Vol. 39, pp. 167‐<br />

183, 1980.<br />

[6] V. Aronov, A. F. D'souza, S. Kalpakjian, I.<br />

Shareef: Experimental Investigation of the<br />

effect of System Rigidity on Wear and Friction‐<br />

Induced Vibrations, ASME Journal of<br />

Lubrication Technology, Vol. 105, pp. 206‐211,<br />

1983.<br />

[7] V. Aronov, A. F. D'souza, S. Kalpakjian, I.<br />

Shareef: Interactions Among Friction, Wear,<br />

and System Stiffness‐Part 1: Effect of Normal<br />

Load and System Stiffness, ASME Journal of<br />

Tribology, Vol. 106, pp. 54‐58, 1984.<br />

[8] V. Aronov, A. F. D'souza, S. Kalpakjian, I.<br />

Shareef: Interactions Among Friction, Wear,<br />

and System Stiffness‐Part 2: Vibrations Induced<br />

by Dry Friction, ASME Journal of Tribology,<br />

Vol. 106, pp. 59‐ 64, 1984.<br />

[9] V. Aronov, A. F. D'souza, S. Kalpakjian, I.<br />

Shareef: Interactions Among Friction, Wear,<br />

and System Stiffness‐Part 3: Wear Model,<br />

ASME Journal of Tribology, Vol. 106, pp. 65‐<br />

69, 1984.<br />

[10] J.W. L<strong>in</strong>, M.D. Bryant: Reduction <strong>in</strong> Wear rate of<br />

Carbon Samples Slid<strong>in</strong>g Aga<strong>in</strong>st Wavy Copper<br />

Surfaces, ASME Journal of Tribology, Vol. 118,<br />

pp. 116‐124, 1996.<br />

[11] K.C. Ludema: Friction, Wear, Lubrication A<br />

Textbook <strong>in</strong> Tribology, CRC press, London, UK,<br />

1996.<br />

[12] E.J. Berger, C.M. Krousgrill, F. Sadeghi: Stability<br />

of Slid<strong>in</strong>g <strong>in</strong> a System Excited by a Rough<br />

Mov<strong>in</strong>g Surface, ASME, Vol. 119, pp. 672‐ 680,<br />

1997.<br />

[13] B. Bhushan: Pr<strong>in</strong>ciple and Applications of<br />

Tribology, John Wiley & Sons, Inc., New York,<br />

1999.<br />

[14] B. Bhushan: Tribology and Mechanics of<br />

Magnetic Storage Devices, 2nd edition,<br />

Spr<strong>in</strong>ger‐Verlag, New York, 1996.<br />

[15] P.J. Blau: Scale Effects <strong>in</strong> Slid<strong>in</strong>g Friction: An<br />

Experimental Study, <strong>in</strong> Fundamentals of<br />

Friction: Macroscopic and Microscopic<br />

Processes (I.L., S<strong>in</strong>ger and H. M., Pollock, eds.),<br />

Vol. E220, pp. 523‐534, Kluwer Academic,<br />

Dordrecht, Netherlands, 1992.<br />

[16] B. Bhushan: Handbook of Micro/<br />

Nano<strong>tribology</strong>, 2nd edition, CRC Press, Boca<br />

Raton, Florida, 1999.<br />

[17] B. Bhushan, A.V. Kulkarni: Effect of Normal Load<br />

on Microscale Friction Measurements, Th<strong>in</strong> Solid<br />

Films, Vol. 278, No. 1‐2, pp. 49‐56, 1996.<br />

[18] M.A. Chowdhury, M.M. Helali: The Effect of<br />

Relative Humidity and Roughness on the<br />

Friction Coefficient under Horizontal Vibration,<br />

The Open Mechanical Eng<strong>in</strong>eer<strong>in</strong>g Journal,<br />

Vol. 2, pp. 128‐ 135, 2008.<br />

[19] M.A. Chowdhury, M.M. Helali, A.B.M. Toufique<br />

Hasan: The frictional behavior of mild steel<br />

under horizontal vibration, Tribology<br />

International, Vol. 42, No. 6, pp. 946‐ 950, 2009.<br />

[20] M.A. Chowdhury, S.M.I. Karim, M.L. Ali: The<br />

<strong>in</strong>fluence of natural frequency of the<br />

experimental set‐up on the friction coefficient<br />

of copper, Proc. of IMechE, Journal of<br />

Eng<strong>in</strong>eer<strong>in</strong>g Tribology, Vol. 224, pp. 293‐<br />

298, 2009.<br />

[21] M.A. Chowdhury, D.M. Nuruzzaman, M.L.<br />

Rahaman: Influence of external horizontal<br />

vibration on the coefficient of friction of<br />

alum<strong>in</strong>ium slid<strong>in</strong>g aga<strong>in</strong>st sta<strong>in</strong>less steel,<br />

Industrial Lubrication and Tribology, Vol. 63,<br />

pp. 152‐ 157, 2011.<br />

[22] M.A. Chowdhury, D.M. Nuruzzaman, A.H. Mia<br />

and M.L. Rahaman: Friction Coefficient of<br />

Different Material PairsUnder Different<br />

Normal Loads and Slid<strong>in</strong>g Velocities,<br />

Tribology <strong>in</strong> Industry, Vol. 34, No. 1, pp. 18‐<br />

23, 2012.<br />

[23] J.O. Agunsoye, E.F. Ochulor, S.I. Talabi, S. and<br />

Olatunji: Effect of Manganese Additions and<br />

Wear Parameter on the Tribological Behaviour<br />

of NFGrey (8) Cast Iron, Tribology <strong>in</strong> Industry,<br />

Vol. 34, No. 4, pp. 239‐246, 2012.<br />

[24] S. Srivastava, S. Mohan: Study of Wear and<br />

Friction of Al‐Fe Metal Matrix Composite<br />

Produced by Liquid Metallurgical Method,<br />

Tribology <strong>in</strong> Industry, Vol. 33, No. 3, pp. 128‐<br />

137, 2011.<br />

[25] M. Kandeva, L. Vasileva, R. Rangelov, S.<br />

Simeonova: Wear‐resistance of Alum<strong>in</strong>um<br />

Matrix Microcomposite Materials, Tribology<br />

<strong>in</strong> Industry, Vol. 33, No. 2, pp. 57‐62, 2011.<br />

[26] M.A. Chowdhury, M.M. Helali: The Effect of<br />

frequency of Vibration and Humidity on the<br />

Coefficient of Friction, Tribology International,<br />

Vol. 39, No. 9, pp. 958 – 962, 2006.<br />

[27] M.A. Chowdhury, M.M. Helali: The Effect of<br />

Amplitude of Vibration on the Coefficient of<br />

Friction, Tribology International, Vol. 41, No. 4,<br />

pp. 307‐ 314, 2008.<br />

49


M.A. Chowdhury and D.M. Nuruzzaman, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 42‐50<br />

[28] M.A. Chowdhury, M.K. Khalil, D.M,<br />

Nuruzzaman, M.L. Rahaman: The Effect of<br />

Slid<strong>in</strong>g Speed and Normal Load on Friction<br />

and Wear Property of Alum<strong>in</strong>um,<br />

International Journal of Mechanical &<br />

Mechatronics Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 11, No. 1, pp.<br />

53‐57. 2011.<br />

[29] M.A. Chowdhury, M.M. Helali: The Effect of<br />

Frequency of Vibration and Humidity on the<br />

Wear rate, Wear, Vol. 262, pp. 198‐203, 2007.<br />

50


Vol. 35, No. 1 (2013) 51‐60<br />

Tribology <strong>in</strong> Industry<br />

www.<strong>tribology</strong>.f<strong>in</strong>k.rs<br />

RESEARCH<br />

Effects of Velocity‐Slip and Viscosity Variation <strong>in</strong><br />

Squeeze Film Lubrication of Two Circular Plates<br />

R.R. Rao a , K. Gouthami a , J.V. Kumar b<br />

a Department of Mathematics, K L University, Green Fields,Vaddeswaram,Guntur‐522502., Andhra Pradesh, India.<br />

b Department of Mathematics, Vasireddy Venkatadri Institute of Technology, Nambur‐522508, Andhra Pradesh, India.<br />

Keywords:<br />

Reynolds equation<br />

Velocity‐slip<br />

Viscosity variation<br />

Squeeze film lubrication<br />

Load capacity<br />

Squeez<strong>in</strong>g time<br />

Correspond<strong>in</strong>g author:<br />

R.Raghavendra Rao<br />

Department of Mathematics,<br />

K.L.University, Green Fields,<br />

Vaddeswaram, Guntur, ‐522502.<br />

Andhra Pradesh, India.<br />

E‐mail: rrrsvu@sify.com<br />

A B S T R A C T<br />

A generalized form of Reynolds equation for two symmetrical surfaces is<br />

taken by consider<strong>in</strong>g velocity‐slip at the bear<strong>in</strong>g surfaces. This equation is<br />

applied to study the effects of velocity‐slip and viscosity variation for the<br />

lubrication of squeeze films between two circular plates. Expressions for<br />

the load capacity and squeez<strong>in</strong>g time obta<strong>in</strong>ed are also studied<br />

theoretically for various parameters. The load capacity and squeez<strong>in</strong>g<br />

time decreases due to slip. They <strong>in</strong>crease due to the presence of high<br />

viscous layer near the surface and decrease due to low viscous layer.<br />

© 2013 Published by Faculty of Eng<strong>in</strong>eer<strong>in</strong>g<br />

1. INTRODUCTION<br />

In general, most of the lubricated systems can<br />

be considered to consist of mov<strong>in</strong>g<br />

/stationary surfaces (plane/curve,<br />

loaded/unloaded) with a th<strong>in</strong> film of an<br />

external material (lubricant) between them.<br />

The presence of such a th<strong>in</strong> film between<br />

these surfaces not only helps to support<br />

considerable load but also m<strong>in</strong>imizes friction.<br />

The characteristics such as pressure <strong>in</strong> the<br />

film, frictional force at the surface, flow rate<br />

of the lubricant etc. of the system depend<br />

upon the nature of the surfaces, the nature of<br />

the lubricant film boundary conditions etc.<br />

The equation govern<strong>in</strong>g the pressure generated<br />

<strong>in</strong> the lubricant film can be obta<strong>in</strong>ed by coupl<strong>in</strong>g<br />

the equations of motion with the equation of<br />

cont<strong>in</strong>uity and was first derived by Reynolds [1]<br />

<strong>in</strong> 1886 and is known as ``Reynolds Equation’’.<br />

In deriv<strong>in</strong>g this equation, the thermal,<br />

compressibility, viscosity variation, slip at the<br />

surfaces, <strong>in</strong>ertia and surface roughness effects<br />

were ignored. Later this Reynolds equation is<br />

modified <strong>in</strong> 1949 by Cope [2] <strong>in</strong>clud<strong>in</strong>g viscosity<br />

and density variation along the fluid film. In<br />

1957‐58 the viscosity variation across the film<br />

thickness has been considered by Zienkiewicz<br />

and Cameron [3,4] who also po<strong>in</strong>ted out that<br />

51


R.R. Rao et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 51‐60<br />

temperature gradient and viscosity variation with the follow<strong>in</strong>g usual assumptions of<br />

across the film may not be ignored. In the year lubrication theory:<br />

1962, Dowson [5] unified the various attempts<br />

<strong>in</strong> generaliz<strong>in</strong>g the Reynolds Equation by<br />

consider<strong>in</strong>g the variation of fluid properties<br />

across as well as along the fluid film thickness by<br />

neglect<strong>in</strong>g the slip effects at the bear<strong>in</strong>g surfaces.<br />

S<strong>in</strong>ce then many workers <strong>in</strong>clud<strong>in</strong>g myself have<br />

studied the effects of viscosity variation <strong>in</strong><br />

lubricated systems by consider<strong>in</strong>g Reynolds<br />

Equation with energy equation [6‐13]. R.M.Patel<br />

et.al [14] studied the performance of a magnetic<br />

fluid based squeeze film between transversely<br />

rough triangular plates. Also M.E.Shimpi ,<br />

G.M.Dehari [15] studied surface roughness and<br />

elastic deformation effects on the behaviour of the<br />

magnetic fluid based squeeze film between<br />

rotat<strong>in</strong>g porous circular plates with concentric<br />

circular pockets and improved <strong>in</strong> 2012 to the<br />

rotat<strong>in</strong>g curved porous circular plates [16].In this<br />

study the effects of velocity‐slip and viscosity<br />

variation <strong>in</strong> squeeze film lubrication of two<br />

circular plates has been discussed.<br />

2. BASIC EQUATIONS<br />

Consider the lam<strong>in</strong>ar flow of a fluid between two<br />

symmetric surfaces, whose physical Fig. 1. Coord<strong>in</strong>ate System.<br />

configuration is as shown <strong>in</strong> the Fig. 1.<br />

Consider<strong>in</strong>g the variation of fluid properties 1) Inertia and body force terms are negligible<br />

across as well as along the film thickness, the compared with the pressure and viscous<br />

basic equations of motion and equation of terms.<br />

cont<strong>in</strong>uity <strong>in</strong> their general form for a newtonian<br />

2) There is no variation of pressure across the<br />

fluid can be written as:<br />

<br />

fluid film, which means<br />

<br />

=0.<br />

Dv P<br />

2 v<br />

u<br />

2 v<br />

w<br />

Y<br />

<br />

<br />

<br />

<br />

<br />

<br />

z<br />

Dt y<br />

3 y<br />

y<br />

x<br />

<br />

3 y<br />

y<br />

z<br />

<br />

3) There is no slip <strong>in</strong> the fluid‐solid<br />

boundaries.<br />

w<br />

v<br />

<br />

v<br />

u<br />

<br />

4) No external forces act on the film.<br />

<br />

<br />

<br />

<br />

<br />

<br />

z<br />

y<br />

z<br />

<br />

x<br />

x<br />

y<br />

<br />

5) The flow is viscous and lam<strong>in</strong>ar.<br />

6) Due to the geometry of fluid film the<br />

derivatives of u and v with respect to z are<br />

Dw P<br />

2 w<br />

u<br />

<br />

2 w<br />

v<br />

<br />

Z<br />

<br />

<br />

<br />

<br />

3<br />

3<br />

<br />

<br />

much larger than other derivatives of<br />

Dt z<br />

z<br />

z<br />

x<br />

<br />

z<br />

z<br />

y<br />

<br />

velocity components.<br />

7) The height of the film h is very small<br />

compared to the bear<strong>in</strong>g length l.<br />

u<br />

w<br />

w<br />

v<br />

<br />

<br />

<br />

<br />

<br />

<br />

(1) A typical value of h/l is about 10 ‐3 .<br />

x<br />

z<br />

x<br />

<br />

y<br />

y<br />

z<br />

<br />

The Navier–Stokes equation (1) can be<br />

( u)<br />

+ ( v)<br />

+ ( w)<br />

=0 (2)<br />

t x y<br />

z<br />

simplified by Dowson [5] as follows<br />

52


R.R. Rao et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 51‐60<br />

P u<br />

<br />

=<br />

x<br />

z<br />

<br />

z<br />

<br />

<br />

P v<br />

<br />

=<br />

y<br />

z<br />

z<br />

<br />

(3)<br />

<br />

where P = P (x,y) is the pressure <strong>in</strong> the film and<br />

is the viscosity.<br />

The boundary conditions consider<strong>in</strong>g slip at the<br />

surfaces [17] are:<br />

u<br />

<br />

u = (u) 1 = ( ) 1<br />

<br />

U1<br />

z<br />

<br />

<br />

v<br />

v = (v) 1 = ( ) 1<br />

<br />

V1<br />

z <br />

<br />

<br />

1<br />

1<br />

at Z = H 1<br />

u<br />

<br />

u = (u) 2 = ‐ ( ) 2<br />

<br />

U<br />

2<br />

z <br />

2<br />

at Z = H 2<br />

v<br />

v = (v) 2 = ‐ ( ) 2<br />

<br />

V2<br />

z<br />

<br />

<br />

2<br />

(4)<br />

where ( ) 1 ( ) 2 denote the value at z = H 1<br />

and z = H 2 . Here ’s and ’s are molecular<br />

mean free path for gas lubrication and depend<br />

upon the lubricant temperature, pressure and<br />

viscosity. In liquid lubrication and depend<br />

on viscosity and the coefficient is slid<strong>in</strong>g friction.<br />

However, with porous bear<strong>in</strong>gs and are<br />

functions of slip coefficient at the wall and the<br />

permeability parameter of the porous fac<strong>in</strong>g.<br />

Integrat<strong>in</strong>g equation (3) and us<strong>in</strong>g boundary<br />

conditions (4) expressions for the fluid film<br />

velocities are obta<strong>in</strong>ed.<br />

<br />

u=U 1 + <br />

1H<br />

<br />

<br />

U<br />

<br />

<br />

2<br />

U<br />

F<br />

0<br />

1<br />

<br />

v=V 1 + 1H<br />

<br />

1<br />

z<br />

<br />

H1<br />

F<br />

<br />

F<br />

1<br />

1<br />

0<br />

zdz<br />

P<br />

<br />

<br />

x<br />

P<br />

<br />

<br />

1<br />

x<br />

<br />

z<br />

zdz<br />

<br />

<br />

H1<br />

<br />

P<br />

y<br />

z<br />

<br />

H1<br />

dz<br />

<br />

<br />

V2<br />

V<br />

<br />

1<br />

<br />

F0<br />

1<br />

F<br />

<br />

F<br />

1<br />

1<br />

1<br />

0<br />

P<br />

<br />

z<br />

dz<br />

1<br />

<br />

y<br />

<br />

(5)<br />

<br />

<br />

<br />

H1<br />

<br />

where:<br />

z<br />

z<br />

dz 1<br />

zdz<br />

F 0 = <br />

1<br />

<br />

2<br />

, F0 <br />

1<br />

<br />

2<br />

,<br />

<br />

<br />

H1<br />

H<br />

H1<br />

2<br />

z<br />

F 1 =<br />

zdz<br />

<br />

1H1<br />

<br />

2H<br />

2<br />

, 1<br />

zdz<br />

F1 1H1<br />

<br />

2H<br />

2<br />

,<br />

<br />

<br />

<br />

1<br />

<br />

( )<br />

1<br />

, <br />

( )<br />

1<br />

( )<br />

H1<br />

2<br />

2<br />

,<br />

( )<br />

2<br />

<br />

( )<br />

( )<br />

H1<br />

1<br />

2<br />

1<br />

, <br />

2<br />

(6)<br />

( )<br />

1<br />

( )<br />

2<br />

Integrat<strong>in</strong>g the equation of cont<strong>in</strong>uity (2) w.r.t.<br />

z. and tak<strong>in</strong>g limits from z = H 1 to z = H 2 gives<br />

H 2<br />

<br />

H1<br />

H 2<br />

H2<br />

<br />

<br />

dz <br />

t<br />

( u)<br />

dz x <br />

( ) ( ) H2<br />

v dz w<br />

0 (7)<br />

H1<br />

y<br />

H1<br />

H1<br />

The <strong>in</strong>tegrals of ( u)<br />

and ( v)<br />

are evaluated by<br />

partial <strong>in</strong>tegration. Introduc<strong>in</strong>g the expressions<br />

for ( u)<br />

and ( v)<br />

and their derivatives <strong>in</strong><br />

equation (7) gives:<br />

<br />

<br />

<br />

<br />

x <br />

P<br />

1 1<br />

F<br />

G F<br />

G <br />

<br />

x<br />

<br />

<br />

y<br />

<br />

P<br />

<br />

<br />

y<br />

<br />

=<br />

2 1<br />

2 1<br />

<br />

H ( u)<br />

2<br />

( v)<br />

2 H1<br />

( u)<br />

1<br />

( v<br />

x<br />

y<br />

x<br />

y<br />

2<br />

)<br />

1<br />

H<br />

2<br />

<br />

H<br />

+<br />

dz ( w) H<br />

y<br />

H1<br />

where<br />

2<br />

1<br />

H2<br />

z<br />

F <br />

F 2 =<br />

<br />

1<br />

z dz<br />

<br />

H F0<br />

<br />

F<br />

1<br />

H 2<br />

1<br />

1 z<br />

F <br />

<br />

1<br />

2<br />

z<br />

1 dz,<br />

<br />

H1<br />

F0<br />

<br />

H 2<br />

<br />

<br />

<br />

z<br />

zdz<br />

F<br />

3<br />

<br />

H 2<br />

<br />

H1<br />

z<br />

dz<br />

<br />

dz <br />

<br />

dz<br />

G 1 = 1<br />

z<br />

<br />

<br />

<br />

1<br />

H1<br />

<br />

1<br />

<br />

z<br />

F<br />

H1<br />

<br />

H1 0 <br />

<br />

H1<br />

<br />

<br />

H2<br />

z<br />

z<br />

1<br />

G<br />

1<br />

=<br />

zdz F dz<br />

z H<br />

dz<br />

z<br />

1<br />

1<br />

H<br />

F<br />

1 1<br />

1 1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

1 H1 0 H<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

1<br />

<br />

<br />

F<br />

<br />

z<br />

<br />

<br />

<br />

(8)<br />

53


R.R. Rao et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 51‐60<br />

G 2 =<br />

G 2 1 =<br />

H 2<br />

<br />

<br />

<br />

z<br />

<br />

z<br />

<br />

<br />

1<br />

H1 H1<br />

H 2<br />

<br />

<br />

<br />

<br />

<br />

z<br />

<br />

dz<br />

<br />

dz<br />

<br />

<br />

dz <br />

<br />

<br />

H3<br />

z<br />

1 <br />

dz,<br />

G3<br />

z<br />

z <br />

<br />

H1 H1<br />

z<br />

H1<br />

<br />

dz<br />

z<br />

(9)<br />

Equation (8) represents a generalized form of<br />

Reynolds equation for compressible fluid film<br />

lubrication consider<strong>in</strong>g slip velocities at the<br />

bear<strong>in</strong>g surfaces. The two sets of functions F and<br />

G depend upon the variation of fluid properties<br />

both along as well as across the film and on the<br />

slip conditions at the surfaces.<br />

i.e., ( )<br />

1<br />

( )<br />

2<br />

( )<br />

1<br />

( )<br />

2<br />

0<br />

0<br />

1 2 1 2<br />

<br />

The velocity of the lubricant can vary across the<br />

film and may be different near the bear<strong>in</strong>g<br />

surfaces ow<strong>in</strong>g to the reaction of additives and<br />

surfactants with the surfaces [18‐20].<br />

Consider<strong>in</strong>g a reasonable case where the density<br />

and viscosity of the lubricant near the bear<strong>in</strong>g<br />

surfaces may be different from the central<br />

region, we can have<br />

1 ( x, y), 1<br />

(x, y) H 1 < z < H 1 + h 1<br />

<br />

2<br />

( x, y), 2<br />

(x, y)<br />

H 1 + h 1 < z < H 1 + h 1 + h 2<br />

3 ( x, y), 3<br />

(x, y)<br />

H 1 + h 1 + h 2 < z < H 1 + h 1 + h 2 + h 3 (10)<br />

This <strong>in</strong>troduces the concept of multiple‐layer<br />

lubrication. By tak<strong>in</strong>g<br />

U 1 = U U 2 = V 1 = V 2 = 0<br />

<br />

1<br />

1<br />

<br />

2<br />

<br />

2<br />

<br />

i<br />

0 i 1,2,3,<br />

............<br />

z<br />

(11)<br />

The generalized equation with slip reduces to<br />

the follow<strong>in</strong>g form.<br />

P<br />

P<br />

<br />

<br />

F2<br />

<br />

F2<br />

<br />

x<br />

<br />

x<br />

y<br />

y<br />

<br />

<br />

H<br />

2 ( u)<br />

2<br />

( v)<br />

2 <br />

x<br />

y<br />

<br />

<br />

H1<br />

( u)<br />

1<br />

( v)<br />

1<br />

x<br />

y<br />

<br />

F3<br />

<br />

H2<br />

U [ w]<br />

(12)<br />

H1<br />

x<br />

F0<br />

<br />

where:<br />

h1<br />

h<br />

2<br />

h<br />

3<br />

F 0 = 1<br />

<br />

2<br />

<br />

1<br />

2<br />

3<br />

F 1 =<br />

h1<br />

(2H1<br />

h1)<br />

h<br />

2<br />

(2H1<br />

2h1<br />

h<br />

2<br />

)<br />

1<br />

H1<br />

<br />

2<br />

H<br />

2<br />

<br />

<br />

2<br />

1<br />

2<br />

2<br />

+<br />

h<br />

3<br />

(2H1<br />

2h1<br />

2h<br />

2<br />

h<br />

3)<br />

2<br />

2<br />

F 2 = <br />

1<br />

3 3 <br />

2<br />

3<br />

H<br />

<br />

<br />

3<br />

1<br />

h1<br />

H1<br />

H1<br />

h1<br />

h<br />

2<br />

(H1<br />

h1)<br />

3<br />

3<br />

1<br />

<br />

3<br />

3<br />

3 F1<br />

F3<br />

H<br />

2<br />

(H1<br />

h1<br />

h<br />

2<br />

) <br />

3 <br />

3<br />

F0<br />

1<br />

h1<br />

<br />

2<br />

h<br />

2<br />

F 3 = (2H1<br />

h1<br />

) (2H 1 + 2h 1 + h 2 )<br />

2<br />

2<br />

1<br />

+<br />

3<br />

2<br />

h<br />

2<br />

3<br />

3<br />

<br />

2<br />

(2H 1 + 2h 1 + 2h 2 + h 3 )<br />

F <br />

1 P<br />

<br />

( u)<br />

1<br />

= 1<br />

1 <br />

1<br />

H1<br />

<br />

1U 1 <br />

F0<br />

x<br />

F0<br />

<br />

F <br />

1 P<br />

<br />

2<br />

( u)<br />

2<br />

= 3<br />

<br />

2 H<br />

2<br />

<br />

3U<br />

F0<br />

x<br />

F0<br />

F <br />

1 P<br />

( v)<br />

1<br />

= 1<br />

1<br />

H1<br />

<br />

F0<br />

y<br />

F1<br />

P<br />

( v)<br />

2<br />

= ‐ 3<br />

<br />

2 H<br />

2<br />

<br />

F0<br />

y<br />

(13)<br />

H <br />

2<br />

[ w] H<br />

= (u)<br />

H 2<br />

H<br />

1 2 ( v)<br />

2<br />

2<br />

x<br />

y<br />

H1<br />

H1<br />

( u)<br />

1<br />

( v)<br />

1<br />

V s<br />

x<br />

y<br />

54


R.R. Rao et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 51‐60<br />

here V s is the resultant velocity towards the film.<br />

To see the effect of slip, consider three<br />

symmetrical <strong>in</strong>compressible layers between two<br />

solid boundaries.<br />

1 2<br />

1 <br />

2<br />

3<br />

H 1 = 0<br />

<br />

<br />

H 2 =(h+a)=h, h 1 = h 3 = a/2, h 2 = (h‐a)<br />

1/<br />

<br />

(14)<br />

1 2 1 2<br />

<br />

may be considered. The Reynolds equation can<br />

be written from equation (12) as follows:<br />

P<br />

P<br />

<br />

F4 F4<br />

U (h) V<br />

x x y<br />

<br />

y<br />

<br />

(15)<br />

<br />

<br />

x<br />

where<br />

3 3 2<br />

2 2<br />

(h a) a 3a (h a) 3a(h a) h<br />

F 4 = <br />

<br />

12 2<br />

12<br />

1<br />

2<br />

<br />

tak<strong>in</strong>g<br />

1<br />

as the slip parameter.<br />

<br />

3. SQUEEZE FILM LUBRICATION OF TWO<br />

CIRCULAR PLATES:<br />

Consider the squeeze film lubrication between two<br />

parallel circular plates as shown <strong>in</strong> Fig. 2. Let the<br />

film thickness of the lubricant present between the<br />

two plates be `h’ and squeeze velocity be `V’.<br />

Fig. 2. Squeeze film between two Circular Plates.<br />

The govern<strong>in</strong>g equation of flow of the lubricant<br />

<strong>in</strong> the case of squeeze film lubrication is given by<br />

equation [15] as:<br />

d<br />

dx<br />

dP <br />

<br />

F4<br />

V<br />

dx <br />

<br />

(16)<br />

where h is the total film thickness, a is the<br />

thickness of the peripheral layer, k is the ratio of<br />

the viscosities, be the viscosity of the base<br />

lubricant i.e., the middle layer, be the slip<br />

parameter.<br />

The equation (16) can be written <strong>in</strong> the<br />

follow<strong>in</strong>g form:<br />

where<br />

and<br />

F<br />

4<br />

d<br />

dx<br />

dP <br />

<br />

F4 V<br />

dx <br />

(17)<br />

<br />

3<br />

l (<br />

h a)<br />

<br />

12<br />

<br />

a<br />

a ;<br />

l<br />

3<br />

h<br />

h ;<br />

l<br />

( k 1)<br />

h<br />

k<br />

<br />

<br />

<br />

l<br />

<br />

<br />

<br />

3<br />

2<br />

6h<br />

<br />

<br />

<br />

<br />

<br />

(18)<br />

<br />

The flow flux, Q of the lubricant is given by<br />

equation (17) as<br />

dP <br />

Q 2 b<br />

<br />

F<br />

(19)<br />

4 <br />

dx <br />

where F<br />

4<br />

is given by the equation(18) and b is<br />

the width of the bear<strong>in</strong>g. In the case of circular<br />

plates b is equal to 2 r .<br />

The flux Q obta<strong>in</strong>ed from the equation of<br />

cont<strong>in</strong>uity is given by<br />

2<br />

Q 4r<br />

V<br />

(20)<br />

Now from equations (19) and (20), we obta<strong>in</strong><br />

dP Vr<br />

(21)<br />

dr<br />

F 4<br />

The boundary condition for equation (21) is<br />

P 0 at r R<br />

Now us<strong>in</strong>g the above condition and <strong>in</strong>tegrat<strong>in</strong>g<br />

equation (21), we get<br />

P<br />

V<br />

<br />

<br />

2 2<br />

R r<br />

(22)<br />

2F4<br />

where R is the radius of the approach<strong>in</strong>g<br />

surfaces.<br />

where<br />

F<br />

4<br />

3<br />

3 2<br />

1 (<br />

h a)<br />

( k 1)<br />

h 6h<br />

<br />

<br />

<br />

12<br />

k<br />

<br />

The load capacity W is given by<br />

55


R.R. Rao et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 51‐60<br />

W<br />

<br />

R<br />

<br />

0<br />

<br />

2 rPdr<br />

(23)<br />

substitut<strong>in</strong>g equation (22) <strong>in</strong> (23), we get<br />

4<br />

R<br />

W V<br />

(24)<br />

F 4<br />

4<br />

The squeez<strong>in</strong>g time,T is given from (24) as<br />

4<br />

R<br />

T <br />

4W<br />

h<br />

i<br />

<br />

h<br />

f<br />

F dh<br />

where h<br />

i<br />

is the <strong>in</strong>itial film thickness and<br />

the f<strong>in</strong>al film thickness and F<br />

4<br />

is given by<br />

4<br />

(25)<br />

h<br />

f<br />

is<br />

3<br />

3 2<br />

1 (<br />

h a)<br />

( k 1)<br />

h 6h<br />

<br />

F<br />

4<br />

<br />

<br />

12<br />

k<br />

<br />

Now the equations (24) and (25) are nondimensionalised<br />

as given below and numerically<br />

analyzed to see the effects of velocity‐slip and<br />

viscosity variation. Similar results can be<br />

expected for the case of parallel plates.<br />

Equations (24) and (25) are nondimensionalised<br />

<strong>in</strong> the follow<strong>in</strong>g manner:<br />

Thus<br />

and<br />

where<br />

a<br />

a ;<br />

l<br />

h<br />

f<br />

h<br />

f<br />

<br />

<br />

l<br />

h<br />

h ;<br />

l<br />

<br />

;<br />

<br />

0<br />

V<br />

; V ;<br />

P0<br />

l<br />

<br />

l <br />

F4<br />

F ;<br />

hi<br />

<br />

h<br />

4<br />

i<br />

<br />

3<br />

l l <br />

<br />

12<br />

<br />

W V<br />

W 4 (26)<br />

P l F<br />

T<br />

T <br />

4l<br />

<br />

h<br />

f<br />

W <br />

<br />

4<br />

h i 1<br />

<br />

dh<br />

F<br />

1 4<br />

(27)<br />

3<br />

3 2<br />

( h a)<br />

( k 1)<br />

h 6h<br />

<br />

F<br />

4<br />

<br />

(28)<br />

k<br />

<br />

<br />

equations (26) and (27) are analyzed<br />

numerically and graphs have been plotted.<br />

4. RESULTS AND DISCUSSIONS<br />

a) Load Capacity:<br />

The parameters considered here are , k and<br />

a . So represents the slip, k represents the<br />

ratio of the viscosities of the peripheral layer to<br />

the middle layer and a be the thickness of the<br />

peripheral layer. represents the nondimensionalised<br />

slip parameter. Low values of<br />

<strong>in</strong>dicates high slip at the surfaces and as <br />

<strong>in</strong>creases the slip decreases and it tends to zero<br />

for high values of . Thus an <strong>in</strong>creases <strong>in</strong> <br />

<strong>in</strong>dicates decreas<strong>in</strong>g the slip at the surfaces.<br />

In Figs. 3‐5, the load capacity, W is plotted w.r.t <br />

for various values of k treat<strong>in</strong>g a as constant. All<br />

these graphs co<strong>in</strong>cides for k 1.<br />

It is seen from these figures that the load<br />

capacity <strong>in</strong>creases as <strong>in</strong>creases <strong>in</strong>dicat<strong>in</strong>g<br />

that the load capacities decrease due to slip and<br />

decreases further as the slip parameter<br />

<strong>in</strong>creases. It is also seen from these graphs that<br />

the load capacities <strong>in</strong>crease due to <strong>in</strong>crease <strong>in</strong><br />

the value of k that is the peripheral layer<br />

viscosity i.e., the capacity <strong>in</strong>crease as the<br />

peripheral layer viscosity <strong>in</strong>creases.<br />

3.556<br />

3.048<br />

2.540<br />

2.032<br />

1.524<br />

1.016<br />

0.508<br />

__<br />

w<br />

0.000<br />

0 100 200 300 400 500__<br />

600 700 800 900 1000<br />

k=0.4<br />

<br />

k=0.5<br />

k=0.6<br />

k=0.7<br />

k=0.8<br />

k=0.9<br />

Fig. 3. Variation of W with for various values of k .<br />

56


R.R. Rao et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 51‐60<br />

10.08<br />

8.64<br />

7.20<br />

5.76<br />

4.32<br />

2.88<br />

1.44<br />

__<br />

w<br />

0.00<br />

0 100 200 300 400 _ 500 600 700 800 900 1000<br />

<br />

k=1.5 k=2.0 k=2.5<br />

k=3.0 k=3.5 k=4.0<br />

Fig. 4. Variation of W with for various values of k .<br />

10.22<br />

8.76<br />

7.30<br />

5.84<br />

4.38<br />

2.92<br />

1.46<br />

__<br />

w<br />

0.00<br />

0 100 200 300 400 500 __ 600 700 800 900 1000<br />

<br />

k=1.5 k=2.0 k=2.5<br />

k=3.0 k=3.5 k=4.0<br />

Fig. 5. Variation of W with for various values of k .<br />

__<br />

w<br />

6.951<br />

5.958<br />

4.965<br />

3.972<br />

2.979<br />

1.986<br />

0.993<br />

0.000<br />

0 100 200 300 400 __ 500 600 700 800 900 1000<br />

_ _<br />

_<br />

_ a=0.01 _ a=0.02 a=0.03 _<br />

a=0.04 a=0.05 a=0.06<br />

Fig. 6. Variation of W with for various values of a .<br />

3.234<br />

2.772<br />

2.310<br />

1.848<br />

1.386<br />

0.924<br />

0.462<br />

_<br />

w<br />

0.000<br />

0.000 0.005 0.010 0.015 0.020 0.025 _ 0.030 0.035 0.040 0.045 0.050 0.055<br />

a<br />

k=0.4 k=0.7 k=1.0<br />

k=1.3<br />

k=1.7<br />

Fig. 7. Variation of W with a for various values of k .<br />

In Fig. 6, the load capacity is plotted with <br />

for various values of a (for k 1). It is seen<br />

from these figures that the load capacity<br />

decreases as the slip <strong>in</strong>creases and they<br />

<strong>in</strong>crease as the peripheral layer <strong>in</strong>creases.<br />

In Fig. 7, the load capacity is plotted with a for<br />

various k . It is seen from the graph that for<br />

k 1 , it is parallel to x‐axis. That is when the<br />

peripheral layer viscosity is same as the middle<br />

layer viscosity, the effect of <strong>in</strong>crease <strong>in</strong> the<br />

peripheral layer is nil as expected. It is also seen<br />

from the graph, that whenk<br />

1, the load<br />

capacity decrease as the peripheral layer<br />

viscosity <strong>in</strong>creases i.e., as a <strong>in</strong>creases.<br />

That is when the peripheral layer viscosity is less<br />

than the middle layer viscosity, the load capacity<br />

decreases as the thickness peripheral layer<br />

<strong>in</strong>creases. It is also seen from the graph that when<br />

k 1 , the load capacity <strong>in</strong>crease as the<br />

peripheral layer viscosity <strong>in</strong>creases <strong>in</strong>dicat<strong>in</strong>g<br />

that when the peripheral layer viscosity is higher<br />

than the middle layer, the load capacity <strong>in</strong>creases<br />

and this <strong>in</strong>crease is enhanced as the thickness<br />

of the peripheral layer <strong>in</strong>creases. It is <strong>in</strong><br />

agreement with the experimental reports<br />

observed by various works of Cameron etc. [17]<br />

that when high polymer additives are added to<br />

the base lubricant, the lubricant properties<br />

improved. The high polymer additives due to<br />

their aff<strong>in</strong>ity towards the surface attach<br />

themselves to the surface and form a high viscous<br />

layer near the surface, that is the case of k 1 ,<br />

where we observed <strong>in</strong>crease <strong>in</strong> the load capacity.<br />

57


R.R. Rao et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 51‐60<br />

In Figs. 8 and 9, the load capacity is plotted with<br />

k for various a . It is found these figures, that<br />

the load capacity <strong>in</strong>creases, as k <strong>in</strong>creases for<br />

k 1 and it is more for higher values of a as<br />

expected from the previous results.<br />

543.2<br />

465.6<br />

388.0<br />

310.4<br />

232.8<br />

155.2<br />

77.6<br />

_<br />

w<br />

0.0<br />

0 1 2 3 4 5 6 7 8 9 10 11<br />

_<br />

k<br />

_<br />

_<br />

_ a=0.01 a=0.02 _<br />

a=0.03 _<br />

a=0.04 a=0.05 a=0.06<br />

Fig. 8. Variation of W with k for various values of a .<br />

__<br />

w<br />

5.495<br />

4.710<br />

3.925<br />

3.140<br />

2.355<br />

1.570<br />

0.785<br />

0.000<br />

0 1 2 3 4 5 6 7 8 9 10 11 12<br />

_<br />

k _<br />

_<br />

_ a=0.01 _ a=0.02 _ a=0.03<br />

a=0.04 a=0.05 a=0.06<br />

Fig. 9. Variation of W with k for various values of a .<br />

b) Squeez<strong>in</strong>g Time:<br />

Equation (27) is <strong>in</strong>tegrated numerically for<br />

various values of , k , a and graphs have been<br />

plotted for squeez<strong>in</strong>g time with various values<br />

of these parameters <strong>in</strong> Figs. 10‐14.<br />

In the Figs. 10 and 11, squeez<strong>in</strong>g time, T is<br />

plotted with for various k . It is found from<br />

these figures that the squeez<strong>in</strong>g time <strong>in</strong>creases<br />

as <strong>in</strong>creases, that as slip parameter <strong>in</strong>crease.<br />

It is mentioned earlier that the slip decreases as<br />

<strong>in</strong>creases. Thus due to slip the squeez<strong>in</strong>g time<br />

decreases and decreases further as the slip<br />

<strong>in</strong>creases. It is also observed from these figures<br />

that the squeez<strong>in</strong>g time is more for higher values<br />

of k show<strong>in</strong>g that the squeez<strong>in</strong>g time <strong>in</strong>creases<br />

as the viscosity of the peripheral layer <strong>in</strong>creases.<br />

_<br />

T<br />

889<br />

762<br />

635<br />

508<br />

381<br />

254<br />

127<br />

0<br />

0 100 200 300 400 500__<br />

600 700 800 900 1000 1100<br />

<br />

k=0.4 k=0.5 k=0.6<br />

k=0.7 k=0.8 k=0.9<br />

Fig. 10. Variation of T with for various values of k .<br />

_<br />

T<br />

2548<br />

2184<br />

1820<br />

1456<br />

1092<br />

728<br />

364<br />

0<br />

0 100 200 300 400 500 _ 600 700 800 900 1000 1100<br />

<br />

k=1.5 k=2.0 k=2.5<br />

k=3.0 k=3.5 k=4.0<br />

Fig. 11. Variation of T with for various values of k .<br />

In Fig. 12, the squeez<strong>in</strong>g time,T is plotted with<br />

for various values of a tak<strong>in</strong>g k 2. 0 . It is<br />

seen from these graphs that the squeez<strong>in</strong>g time<br />

<strong>in</strong>creases as <strong>in</strong>creases, i.e., as the slip<br />

decreases and it has more value for higher<br />

58


R.R. Rao et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 51‐60<br />

values of a , show<strong>in</strong>g that the squeez<strong>in</strong>g time<br />

decreases as the slip <strong>in</strong>creases. It is also<br />

observed that for k 1 , the squeez<strong>in</strong>g time has<br />

more value for higher values of a , that is when<br />

the viscosity of the peripheral layer is more than<br />

the middle layer, the squeez<strong>in</strong>g time <strong>in</strong>creases and<br />

this <strong>in</strong>crease is enhanced as its thickness <strong>in</strong>creases.<br />

_<br />

T<br />

1736<br />

1488<br />

1240<br />

992<br />

744<br />

496<br />

248<br />

0<br />

0 100 200 300 400 500 _ 600 700 800 900 1000 1100<br />

_<br />

_<br />

_<br />

_ a=0.01 _ a=0.02 a=0.03 _<br />

a=0.04 a=0.05 a=0.06<br />

Fig. 12. Variation of T with for various values of a .<br />

In Figs. 13 and 14, the squeez<strong>in</strong>g time, T is<br />

plotted with a for various values of k .It is seen<br />

from this figure that when k 1 , the graph is<br />

parallel to the x‐axis, that is when the viscosity<br />

of the peripheral layer and middle layer are<br />

equal, it has no effect on squeez<strong>in</strong>g time as the<br />

peripheral layer thickness <strong>in</strong>creases. It is also<br />

observed that when k 1, the squeez<strong>in</strong>g time<br />

decreases, as a <strong>in</strong>creases for k 1 and<br />

<strong>in</strong>creases for k 1 .<br />

1044<br />

928<br />

812<br />

696<br />

580<br />

464<br />

348<br />

232<br />

116<br />

_<br />

T<br />

0<br />

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055<br />

_<br />

a<br />

k=0.4 k=0.7 k=1.0<br />

k=1.3<br />

k=1.6<br />

Fig. 13. Variation of T with a for various values of k .<br />

1372<br />

1176<br />

980<br />

784<br />

588<br />

392<br />

196<br />

_<br />

T<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10 11 12<br />

_<br />

k _<br />

_<br />

_ a=0.01 a=0.02 _<br />

_ a=0.03<br />

a=0.04 a=0.05 a=0.06<br />

Fig. 14. Variation of T with k for various values of a<br />

That is when the viscosity of the peripheral layer<br />

is less than the viscosity of the middle layer, the<br />

squeez<strong>in</strong>g time decreases as its thickness<br />

<strong>in</strong>creases.<br />

On the other hand, when the viscosity of the<br />

peripheral layer is more than the viscosity of the<br />

middle layer, the squeez<strong>in</strong>g time <strong>in</strong>creases as its<br />

thickness <strong>in</strong>creases. It is <strong>in</strong> agreement with the<br />

experimental reports observed by various<br />

workers.<br />

4. CONCLUSION<br />

A generalized form of Reynolds equation<br />

applicable to fluid film lubrication was derived<br />

consider<strong>in</strong>g the variation of fluid properties,<br />

both across and along the film thickness, with<br />

velocity‐slip at the bear<strong>in</strong>g surfaces. The<br />

effects of velocity‐slip and viscosity variation<br />

<strong>in</strong> squeeze film lubrication of two circular<br />

plates have been studied. The beneficial result<br />

for hydrodynamic lubrication due to the<br />

presence of <strong>in</strong>creased viscosity near the<br />

bear<strong>in</strong>g surface was <strong>in</strong>dicated.<br />

However, although the effects of velocity‐slip<br />

at the bear<strong>in</strong>g is to decrease both the frictional<br />

force and the load capacity, the coefficient of<br />

friction <strong>in</strong>creases, which leads to an<br />

unfavorable results. For a gas‐lubricated<br />

hydrostatic bear<strong>in</strong>g, the gas film pressure and<br />

load decrease with <strong>in</strong>creas<strong>in</strong>g molecular mean<br />

free path.<br />

59


R.R. Rao et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 51‐60<br />

Acknowledgement<br />

The author would like to thank Prof J. B. Shukla,<br />

Indian Institute of Technology, Kanpur for his<br />

valuable help and encouragement dur<strong>in</strong>g the<br />

completion of this study.<br />

Nomenclature<br />

h Total film thickness<br />

h<br />

f<br />

F<strong>in</strong>al film thickness<br />

k Ratio of the viscosities<br />

l Length of the bear<strong>in</strong>g<br />

P Hydrodynamic Pressure<br />

R Radius of the surfaces <strong>in</strong> case of circular<br />

plates<br />

T Squeez<strong>in</strong>g time of for stiff surfaces<br />

V Squeeze Velocity<br />

W Load capacity for stiff surfaces<br />

Viscosity of the purely hydrodynamic zone<br />

References<br />

[1] O. Reynolds: On the theory of lubrication and its<br />

application to Mr. Beauchamp Tower’s<br />

experiment, Phil. Trans. R. Soc. London, Vol. 177,<br />

No. 1, pp. 157‐234, 1886.<br />

[2] W.F. Cope: The hydrodynamic theory of film<br />

lubrication, Proc. R. Soc. London Ser. A, Vol. 197,<br />

pp. 201‐217, 1949.<br />

[3] O.C. Zienkiewiez: Anote on theory of Hydrodynamic<br />

lubrication of parallel surface thrust<br />

bear<strong>in</strong>gs, <strong>in</strong>: Proc. 9 th Int. Conf. On Applied<br />

Mechanics, Brussels, University of Brussels,<br />

Brussels, Vol. 4, pp. 251‐258, 1957.<br />

[4] A. Cameron: The viscous wedge, Trans. ASME,<br />

Vol. 1, pp. 248, 1958.<br />

[5] D. Dowson: A generalized Reynolds equation for<br />

fluid film lubrication, Inst. J. Mech. Sci., Vol. 4, pp.<br />

159‐170, 1962.<br />

[6] J.B. Shukla: Theory for the squeeze film for power<br />

law lubricants, Trans. ASME, Paper No. 64‐lub‐4,<br />

1964.<br />

[7] J.B. Shukla, K.R. Prasad and Peeyush Chandra:<br />

Effects of consistency variation of power law<br />

lubricants <strong>in</strong> squeeze films, Wear, Vol. 76, No. 3,<br />

pp. 299‐319, 1982.<br />

[8] P. S<strong>in</strong>ha, C. S<strong>in</strong>gh and K.R. Prasad: Viscosity<br />

variation consider<strong>in</strong>g cavitation <strong>in</strong> a journal<br />

bear<strong>in</strong>g lubricant conta<strong>in</strong><strong>in</strong>g additives, Wear,<br />

Vol. 86, No. 1, pp. 43‐56, 1983.<br />

[9] J. Prakash: Theoritical effects of solid particles<br />

on the lubrication of journal bear<strong>in</strong>gs consider<strong>in</strong>g<br />

cavitation, Wear, Vol. 41, No. 2, pp. 233‐249,<br />

1977.<br />

[10] R. Raghavendra Rao, K.R. Prasad: Effects of<br />

velocity ‐ slip on the elasto – hydrodynamic<br />

lubrication of heavily loaded Rollers, Bullet<strong>in</strong> of<br />

pure and applied sciences, Vol. 20E, No. 2, pp.<br />

277‐295, 2001.<br />

[11] R. Raghavendra Rao, K.R. Prasad: Effects of<br />

velocity‐slip and viscosity variation <strong>in</strong> Roll<strong>in</strong>g and<br />

Normal motion, Journal of Aeronautical Society<br />

of India, Vol. 54, No. 4, pp. 399‐407, 2002.<br />

[12] R. Raghavendra Rao, K.R. Prasad: Effects of<br />

velocity ‐ slip and viscosity variation for<br />

lubrication of Roller Bear<strong>in</strong>gs, Defence Science<br />

Journal, Vol. 53, No. 4, pp. 431‐442, 2003.<br />

[13] R. Raghavendra Rao, K.R. Prasad: Effects of<br />

velocity‐slip and viscosity variation on Journal<br />

Bear<strong>in</strong>gs, ANZIAM Journal, Vol. 46, pp. 143‐ 155,<br />

2004.<br />

[14] R.M. Patel, G.M. Dehari, P.A. Vadhar: Performance<br />

of a Magnetic Fluid Based Squeeze film between<br />

Transversely Rough Triangular plates, Tribology<br />

<strong>in</strong> Industry, Vol. 32, No. 1, pp. 33‐38, 2010.<br />

[15] M.E. Shimpi, G.M. Dehari: Surface roughness and<br />

Elastic Deformation Effects on the behavior of the<br />

Magnetic Fluid Based squeeze film between<br />

rotat<strong>in</strong>g porous circular plates with concentric<br />

circular pockets, Tribology <strong>in</strong> Industry, Vol. 32,<br />

No. 2, pp. 21‐30, 2010.<br />

[16] M.E. Shimpi, G.M. Dehari: Magnetic Fluid ‐ Based<br />

squeeze Film Performance <strong>in</strong> Rotat<strong>in</strong>g curved<br />

porous circular plates: The effects of Deformation<br />

and Surface roughness, Tribology <strong>in</strong> Industry,Vol.<br />

34, No. 2, pp. 57‐67, 2012.<br />

[17] G.S. Beavers, D.D. Joseph: Boundary condition at<br />

a naturally permeable wall, J. Fluid Mech., Vol.<br />

30, pp. 197‐207, 1967.<br />

[18] T.C. Devenport: The Rheology of Lubricants,<br />

Wiley, New York, 1973.<br />

[19] E.B. Quale, F.R. Wiltshire: The performance of<br />

dynamic lubricat<strong>in</strong>g films with viscosity variation<br />

perpendicular to the direction of motion, J. Lubr.<br />

Technol., Vol. 94F, No. 1, pp. 44‐48, 1972.<br />

[20] A. Cameron, A.R. Gohar: Theoretical and experimental<br />

studies of the oil film <strong>in</strong> lubricated po<strong>in</strong>t contacts, Proc.<br />

Roy. Soc., Vol. 291A, P.520, 1966.<br />

60


Vol. 35, No. 1 (2013) 61‐68<br />

Tribology <strong>in</strong> Industry<br />

www.<strong>tribology</strong>.f<strong>in</strong>k.rs<br />

RESEARCH<br />

The Initial Estimate of the Useful Lifetime of the Oil<br />

<strong>in</strong> Diesel Eng<strong>in</strong>es Us<strong>in</strong>g Oil Analysis<br />

S.A. Adnani a , S.J. Hashemi b , A. Shooshtari c , M.M. Attar d<br />

a Department of Eng<strong>in</strong>eer<strong>in</strong>g, Hamedan Branch, Islamic Azad University, Science and Research Campus, Hamedan, Iran.<br />

b Petroleum University of Technology, Department of Eng<strong>in</strong>eer<strong>in</strong>g, Iran.<br />

c Bu‐Ali S<strong>in</strong>a University, Department of Eng<strong>in</strong>eer<strong>in</strong>g, Iran.<br />

d Department of Mechanics, Hamedan Branch, Islamic Azad University, Hamedan, Iran.<br />

Keywords:<br />

Diesel eng<strong>in</strong>e<br />

Oil analysis<br />

Oil life<br />

Oil properties<br />

Wear<br />

Correspond<strong>in</strong>g author:<br />

S.A. Adnani<br />

Department of Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Hamedan branch, Islamic Azad<br />

University, Science and Research<br />

Campus, Hamedan, Iran<br />

E‐mail: ah_adnani@yahoo.com<br />

A B S T R A C T<br />

In this paper the Initial lifetime of the lubricat<strong>in</strong>g oil <strong>in</strong> 70 Diesel<br />

eng<strong>in</strong>es model E6‐350 ECONODYNE 4VH has been estimated us<strong>in</strong>g oil<br />

analysis. The eng<strong>in</strong>es have been <strong>in</strong>stalled on the super heavy vehicles. This<br />

method is used to change the used oil based on oil operat<strong>in</strong>g hours,<br />

odometer and tak<strong>in</strong>g samples before that. Next, the samples are sent to the<br />

laboratory for analysis and obta<strong>in</strong><strong>in</strong>g the results. In order to be able to<br />

determ<strong>in</strong>e the overall condition of the eng<strong>in</strong>e, we have to study various<br />

parameters, such as wear elements, pollutants, elements correlation<br />

coefficients, viscosity, base number, acid number, type and the amount of<br />

eng<strong>in</strong>e wear <strong>in</strong> the same condition of the eng<strong>in</strong>e model, oil consumption and<br />

operat<strong>in</strong>g condition and therefore, the useful oil life is determ<strong>in</strong>ed (100<br />

hours). At last, a formula for silicon and alum<strong>in</strong>um elements is found. If the<br />

number of samples <strong>in</strong>creases then the error rate will be reduced. So, the<br />

results are only based on the number of taken samples.<br />

© 2013 Published by Faculty of Eng<strong>in</strong>eer<strong>in</strong>g<br />

1. INTRODUCTION<br />

Today, mach<strong>in</strong>es and equipment condition<br />

monitor<strong>in</strong>g through oil analysis as a method of<br />

effective ma<strong>in</strong>tenance program is known.<br />

Nevertheless, the application of this technology to<br />

the various types of <strong>in</strong>dustry and user equipment<br />

is still very broad to a certa<strong>in</strong> extent [1].<br />

The best performance eng<strong>in</strong>e oil is important <strong>in</strong><br />

two aspects: 1) the economy 2) <strong>in</strong> terms of its<br />

effect on eng<strong>in</strong>e life. The economic aspects<br />

should be emphasized the probability that the<br />

eng<strong>in</strong>e oil should be changed sooner is very high<br />

and it is not economically. On the other hand, it<br />

may be late to oil change because this is the<br />

probable cause eng<strong>in</strong>e damage and wear. So, the<br />

use of oil analysis is the best method for<br />

achiev<strong>in</strong>g this goal. Among the important factors<br />

that could affect the oil life reduction as follows:<br />

Improper storage and contam<strong>in</strong>ation<br />

before use,<br />

Incorrect oil selection and mixed oils that<br />

are not compatible with each other (for<br />

example, when overflow),<br />

61


S.A. Adnani et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 61‐68<br />

Lack of adequate consumer appliances (air<br />

filter, oil filter and etc.),<br />

Fuel, water and dust contam<strong>in</strong>ations,<br />

Not regulated eng<strong>in</strong>e,<br />

Existence of excessive metal particles <strong>in</strong> oil,<br />

Oil clean reduction <strong>in</strong> sensitive mechanical<br />

systems (turb<strong>in</strong>es, compressors and<br />

hydraulic) [2].<br />

2. ENGINES SPECIFICATIONS<br />

Model: E6‐350 ECONODYNE 4VH<br />

Horsepower maximum BHP@1800 rpm:<br />

350 (261 Kw)<br />

Compression Ratio (pressure@1000 rpm):<br />

15:1(31.72 bar)<br />

Bore & Stroke: 123.8 mm × 152.4 mm<br />

Cyl<strong>in</strong>der: 6<br />

Year: 1990<br />

Manufactured by Mack Co. <strong>in</strong> U.S.A [3].<br />

3. EXPERIMENTAL WORK<br />

Sampl<strong>in</strong>g procedure has been done when<br />

chang<strong>in</strong>g the eng<strong>in</strong>e oil and after laboratory tests,<br />

test results have been evaluated (see Table 1).<br />

Table 1. The number of eng<strong>in</strong>es and samples.<br />

Tested eng<strong>in</strong>es<br />

70<br />

Table 2. The new oil properties [4].<br />

Oil name<br />

Manufacturer<br />

Performance grade(API)<br />

Grade (SAE)<br />

T.B.N (mgKOH/g)<br />

T.A.N (mgKOH/g)<br />

Viscosity <strong>in</strong>dex(M<strong>in</strong>)<br />

Viscosity at 40 ° C (cSt)<br />

Viscosity at 100 ° C (cSt)<br />

Open flash po<strong>in</strong>t (° C)<br />

Oil samples number<br />

160<br />

Sepahan<br />

Generator speedy<br />

CD/SF<br />

40<br />

14.5<br />

1.1<br />

99<br />

163.91<br />

15.84<br />

241<br />

Sampl<strong>in</strong>g has been done so that each eng<strong>in</strong>e has<br />

been sampled <strong>in</strong> two or three times. S<strong>in</strong>ce all<br />

eng<strong>in</strong>es have the same oil, model and work<br />

conditions, so variables are low. If oil samples<br />

<strong>in</strong>creases, errors <strong>in</strong> results will be less. In addition<br />

to the regular test and verification of new oil,<br />

specifications <strong>in</strong> terms of quality and standards of<br />

the new oil have been tested <strong>in</strong> accordance with<br />

Table 2. The results are based on the number of<br />

oil samples <strong>in</strong> accordance with Table 1.<br />

4. OIL USEFUL LIFE ESTIMATION<br />

For eng<strong>in</strong>e oil life estimation, items should<br />

<strong>in</strong>clude physical and chemical properties of oil,<br />

such as acid number, base number, viscosity, oil<br />

pollution, and wear parameters can be analyzed<br />

at various functions. Then we should compare<br />

the figures obta<strong>in</strong>ed from physical and chemical<br />

properties of oil. As we know, the new oil<br />

properties go away from its ideal operat<strong>in</strong>g<br />

conditions and <strong>in</strong>curred loss. So <strong>in</strong> first step, we<br />

evaluate the wear and pollutants elements that<br />

play important role <strong>in</strong> oil life reduction.<br />

4.1 Wear elements<br />

Metallic particles <strong>in</strong> eng<strong>in</strong>e oil are ma<strong>in</strong>ly due to<br />

wear. If wear rate arises then the rate of metal<br />

<strong>in</strong> the oil will be higher. The most wear<br />

elements and their orig<strong>in</strong>s are accord<strong>in</strong>g to<br />

Table 3 [5]:<br />

Table 3. Wear elements and orig<strong>in</strong>s [2,6].<br />

Wear<br />

elements<br />

Fe<br />

Cr<br />

Al<br />

Cu<br />

Pb<br />

Orig<strong>in</strong>s<br />

Cyl<strong>in</strong>der bush – Piston r<strong>in</strong>gs –P<strong>in</strong>s –<br />

Cyl<strong>in</strong>der block – Nuts<br />

R<strong>in</strong>gs – L<strong>in</strong>ers – Valves – Cool<strong>in</strong>g<br />

system<br />

Cyl<strong>in</strong>der – Piston – Blowers<br />

Piston p<strong>in</strong> bushes – Crank case – Oil<br />

cooler<br />

Bear<strong>in</strong>gs<br />

4.2 Determ<strong>in</strong>ation of maximum concentration<br />

limit for wear elements<br />

To determ<strong>in</strong>e the limit of wear, pollution and<br />

silicon boundary between normal and abnormal<br />

wear on eng<strong>in</strong>e components, the formula for the<br />

standard deviation formula (1) can be used:<br />

σ = S.D. = (1)<br />

Where σ, the standard deviation values, Xi, wear<br />

and pollutant elements, μ, wear and pollutant<br />

element values, N, the number of values [1].<br />

Accord<strong>in</strong>g to oil analysis results, we can have<br />

the data on Table 4.<br />

62


S.A. Adnani et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 61‐68<br />

Table 4. Maximum concentration limits for different<br />

elements of wear <strong>in</strong> eng<strong>in</strong>es (ppm) [7].<br />

4.3 Correlation coefficient<br />

One of the basic def<strong>in</strong>itions of statistics is<br />

correlation between two variables. Dependence<br />

between two variables is def<strong>in</strong><strong>in</strong>g correlation.<br />

The correlation coefficient changes between ‐1<br />

and 1. Relationship between two variables can<br />

be positive or negative. However, a closer<br />

correlation between the two variables, then the<br />

dependency rate is higher [8]. Here, by us<strong>in</strong>g<br />

Pearson's correlation and statistical analysis<br />

software (s.p.s.s), we can calculate correlation<br />

coefficients between wear and pollutant<br />

elements. The results can be seen <strong>in</strong> Table 5.<br />

Table 5. Correlation coefficient between wear elements.<br />

Fe<br />

Al<br />

Cr<br />

Cu<br />

Pb<br />

Si<br />

Elements Si Pb Cu Cr Al Fe<br />

Average 8.1 2.8 2.7 2.8 3.2 26<br />

Standard deviation 5.6 2 2.4 2.4 1.8 16<br />

Maximum<br />

concentration<br />

limits<br />

14 5 5 5.5 5 42<br />

Fe<br />

1<br />

0.626<br />

0.474<br />

0.369<br />

0.541<br />

0.526<br />

Al<br />

0.626<br />

1<br />

0.632<br />

0.334<br />

0.439<br />

0.869<br />

Cr<br />

0.474<br />

0.632<br />

1<br />

0.217<br />

0.442<br />

0.544<br />

Cu<br />

0.369<br />

0.334<br />

0.217<br />

1<br />

0.274<br />

0.208<br />

Pb<br />

0.541<br />

0.439<br />

0.442<br />

0.274<br />

1<br />

0.367<br />

Si<br />

0.526<br />

0.869<br />

0.544<br />

0.208<br />

0.367<br />

1<br />

Accord<strong>in</strong>g to Table 5, alum<strong>in</strong>um and silicon<br />

have the most correlation, while silicon and<br />

copper have the lowest correlation. In fact, with<br />

the arrival of silicon <strong>in</strong> oil, erosion effects occur<br />

<strong>in</strong> parts which are made of alum<strong>in</strong>um, such as<br />

pistons. Accord<strong>in</strong>g to the correlation rate,<br />

effects of erosion vary <strong>in</strong> different parts of the<br />

eng<strong>in</strong>e. Next, a higher correlation is between<br />

alum<strong>in</strong>um and chromium. In fact, wear <strong>in</strong> each<br />

of these two elements has a direct effect on<br />

other wear. For example, if silicon entrance<br />

causes erosion on the pistons then the r<strong>in</strong>gs that<br />

made of chrome and the piston grooves will<br />

wear. Other elements that are correlated<br />

<strong>in</strong>fluence on erosion of eng<strong>in</strong>e components.<br />

S<strong>in</strong>ce the alum<strong>in</strong>um and silicon have the most<br />

correlation between each other, therefore,<br />

accord<strong>in</strong>g to Fig. 1 and equation (2) the exact<br />

relationship between them is found.<br />

Fig. 1. Silicon and alum<strong>in</strong>um profile (ppm).<br />

Y = 0.2733X + 1.0379 (2)<br />

Here, X and Y are amount of silicon and<br />

alum<strong>in</strong>um <strong>in</strong> ppm, respectively.<br />

So if x = 14 ppm then y = 4.86 ppm. So the<br />

results <strong>in</strong> Table 4 are correct.<br />

4.4 Eng<strong>in</strong>e wear process<br />

Accord<strong>in</strong>g to (Fig. 2) and plotted po<strong>in</strong>ts, operat<strong>in</strong>g<br />

hours by <strong>in</strong>creas<strong>in</strong>g iron concentration was<br />

<strong>in</strong>creased. Po<strong>in</strong>ts that have gone beyond the<br />

maximum concentration limit for iron element<br />

(42 ppm) will appear up to 100 hours. So this time<br />

is the warn<strong>in</strong>g border for iron.<br />

Fig. 2. Operat<strong>in</strong>g hours and iron wear debris<br />

concentration.<br />

Figure 3 shows that up to 100 hours, the copper<br />

has exceeded its maximum limit (5 ppm). So,<br />

100 hours is determ<strong>in</strong>ed as a warn<strong>in</strong>g border<br />

for it. Accord<strong>in</strong>g to scatter of po<strong>in</strong>ts <strong>in</strong> Fig. 4,<br />

with <strong>in</strong>creas<strong>in</strong>g operat<strong>in</strong>g hours, chromium<br />

concentration has also <strong>in</strong>creased. S<strong>in</strong>ce up to<br />

100 hours po<strong>in</strong>ts that have gone beyond the<br />

limit 5.5 ppm are strongly, so, 100 hours is<br />

determ<strong>in</strong>ed as a warn<strong>in</strong>g border for chromium.<br />

63


S.A. Adnani et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 61‐68<br />

Fig. 3. Operat<strong>in</strong>g hours and copper wear debris<br />

concentration.<br />

Fig. 5. Operat<strong>in</strong>g hours and alum<strong>in</strong>um wear debris<br />

concentration.<br />

Fig. 6. Operat<strong>in</strong>g hours and lead wear debris<br />

concentration.<br />

Fig. 4. Operat<strong>in</strong>g hours and chromium wear debris<br />

concentration.<br />

Figure 5 is related to the alum<strong>in</strong>um element.<br />

With <strong>in</strong>creas<strong>in</strong>g operat<strong>in</strong>g hours, alum<strong>in</strong>um<br />

concentration has also <strong>in</strong>creased. Thus,<br />

accord<strong>in</strong>g to the plotted po<strong>in</strong>ts, up to 100 hours,<br />

the limit po<strong>in</strong>ts of these elements have exceeded<br />

from 5 ppm. So, for this element, 100 hours is a<br />

warn<strong>in</strong>g border too. Figure 6 is related to lead<br />

element. With <strong>in</strong>creas<strong>in</strong>g operat<strong>in</strong>g hours, lead<br />

concentration has also <strong>in</strong>creased. Accord<strong>in</strong>g to<br />

the plotted po<strong>in</strong>ts, up to 100 hours, the limit<br />

po<strong>in</strong>ts of these elements have exceeded from 5<br />

ppm. So, for this element, 100 hours is a warn<strong>in</strong>g<br />

border. But beside the wear elements, pollutants<br />

also play a ma<strong>in</strong> role <strong>in</strong> loss of life and oil<br />

properties. Based on oil analysis, the only<br />

pollutant <strong>in</strong> oil samples is silicon that is <strong>in</strong> the<br />

form of dust <strong>in</strong>to the oil. Therefore, accord<strong>in</strong>g to<br />

(Fig. 7) we <strong>in</strong>vestigate this pollutant.<br />

Figure 7 shows the limit po<strong>in</strong>ts of these<br />

elements have exceeded from 14 ppm. So, for<br />

this pollutant, 100 hours is a warn<strong>in</strong>g border.<br />

Oil quality and its life are affected by silicon.<br />

Fig. 7. Operat<strong>in</strong>g hours and silicon wear debris<br />

concentration.<br />

The analysis conducted can be summarized<br />

bordered warned on wear elements as<br />

presented <strong>in</strong> Table 6.<br />

64


S.A. Adnani et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 61‐68<br />

Table 6. Warn<strong>in</strong>g border for wear elements.<br />

Elements and pollutants<br />

Fe<br />

Al<br />

Cr<br />

Cu<br />

Pb<br />

Si<br />

Warn<strong>in</strong>g border<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

Here, wear elements of oil were studied. But <strong>in</strong><br />

addition to these cases, the properties of the oil<br />

play ma<strong>in</strong> role <strong>in</strong> oil life. That is why <strong>in</strong> this step,<br />

we will study the physical and chemical<br />

properties of the oil.<br />

<strong>in</strong>vestigate the viscosity of the oil <strong>in</strong> different hours<br />

and conditions. Accord<strong>in</strong>g to (Fig. 9), the viscosity of<br />

oil decl<strong>in</strong>ed from 164 cSt. In normal conditions, i.e.<br />

without pollutants, due to the <strong>in</strong>crease <strong>in</strong> oil hour,<br />

viscosity trend has become decreased and<br />

approximately rema<strong>in</strong>s at 150 cSt. But the greatest<br />

loss of viscosity is after 120 hours. In (Fig. 10), the<br />

viscosity of the oil due to the presence of the<br />

contam<strong>in</strong>ant is 150 cSt. Up to 200 hours, maximum<br />

viscosity loss is seen. So, 120 hours is determ<strong>in</strong>ed as<br />

warn<strong>in</strong>g border for viscosity.<br />

4.5 Wear <strong>in</strong>dex<br />

One of the most important factors <strong>in</strong> eng<strong>in</strong>e<br />

wear is wear <strong>in</strong>dex of iron particles <strong>in</strong> oil so<br />

called P.Q. [2]. Accord<strong>in</strong>g to (Fig. 8), with<br />

<strong>in</strong>creas<strong>in</strong>g operat<strong>in</strong>g hours, iron particles have<br />

also <strong>in</strong>creased. Accord<strong>in</strong>g to focal po<strong>in</strong>ts, up to<br />

150 hours, po<strong>in</strong>ts are separated from each other<br />

and even we see po<strong>in</strong>ts that reached to 250<br />

ppm. This matter <strong>in</strong>dicates sudden <strong>in</strong>crease <strong>in</strong><br />

the number of iron particles. So, 150 hours is<br />

determ<strong>in</strong>ed as an warn<strong>in</strong>g border for P.Q, So at<br />

this step, we <strong>in</strong>vestigate other oil properties.<br />

Fig. 9. Operat<strong>in</strong>g hours and viscosity without<br />

pollution.<br />

Fig. 10. Operat<strong>in</strong>g hours and viscosity with pollution.<br />

4.7 Base number<br />

Fig. 8. The variation of wear rate on eng<strong>in</strong>es.<br />

Base number is a k<strong>in</strong>d of oil properties. By<br />

reduc<strong>in</strong>g the oil base number, oil ability <strong>in</strong> the face<br />

of acid enter<strong>in</strong>g from combustion get weak. It<br />

<strong>in</strong>dicates the need to replace or add new oil<br />

[1,2,10,11]. On the base of tested samples, oil base<br />

numbers <strong>in</strong> different status were evaluated and<br />

the results are <strong>in</strong> accordance with Fig. 11.<br />

4.6 Viscosity<br />

Viscosity as a one of oil properties, affect on<br />

reduction of bear<strong>in</strong>gs friction and oil film thickness.<br />

Therefore, evaluation of viscosity <strong>in</strong> oil analysis<br />

program is sensitive. Any change <strong>in</strong> the viscosity of<br />

the lubricant <strong>in</strong>dicates oil degradation, the presence<br />

of thermal stresses <strong>in</strong> the oil and oxidation [1,9]. So<br />

after analyz<strong>in</strong>g the wear <strong>in</strong>dex, we desire to<br />

Fig. 11. Operat<strong>in</strong>g hours and base number.<br />

65


S.A. Adnani et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 61‐68<br />

Accord<strong>in</strong>g to the (Fig. 11), standard limit of base<br />

number is 14.5 mg (KOH) but maximum loss is 7.5<br />

mg (KOH) and it is happened on 160 hours. It is<br />

very natural because with <strong>in</strong>creas<strong>in</strong>g operat<strong>in</strong>g<br />

hours, oil properties and its life losses. So by<br />

<strong>in</strong>creas<strong>in</strong>g operat<strong>in</strong>g hours, the oil life decreased<br />

as a result of oil properties. So, 120 hours is<br />

determ<strong>in</strong>ed as a warn<strong>in</strong>g border for base number.<br />

4.8 Acid number<br />

Acid number is a k<strong>in</strong>d of oil properties that is used<br />

for <strong>in</strong>dustrial oil. Acid number is used for<br />

measur<strong>in</strong>g of oil acidity. Increas<strong>in</strong>g acid value<br />

<strong>in</strong>dicates the end of the useful life of oil and its<br />

replacement is necessary. Acid value higher than<br />

4 mg (KOH) is highly corrosive and bear<strong>in</strong>gs and<br />

other metal substances can be <strong>in</strong>vaded [1,2,11].<br />

Accord<strong>in</strong>g to (Fig. 12), with <strong>in</strong>creas<strong>in</strong>g operat<strong>in</strong>g<br />

hours, the amount of acid number has also<br />

<strong>in</strong>creased. Accord<strong>in</strong>g to focal po<strong>in</strong>ts, up to 180<br />

hours, the acid number has exceeded its limit (4<br />

mg (KOH)). So, 180 hours is determ<strong>in</strong>ed as a<br />

warn<strong>in</strong>g border for acid number.<br />

Table 7. Warn<strong>in</strong>g border for oil properties.<br />

Oil properties<br />

Base number<br />

Acid number<br />

Viscosity<br />

P.Q<br />

Warn<strong>in</strong>g boundary<br />

120 hours<br />

180 hours<br />

120 hours<br />

150 hours<br />

4.9 The eng<strong>in</strong>e oil life <strong>in</strong> kilometer<br />

Now we <strong>in</strong>tend to equivalency the oil by other<br />

factors such as the amount of kilometer unit,<br />

kilometers were recorded at each sampl<strong>in</strong>g.<br />

Accord<strong>in</strong>g to the Figs. 13 to 15, we can also<br />

estimate oil life <strong>in</strong> hour and kilometer. S<strong>in</strong>ce the<br />

operation of heavy vehicles <strong>in</strong> terms of workplace<br />

is different, so we classify vehicles <strong>in</strong>to<br />

three categories respectively, "Tandem",<br />

"Keshande" and "Jean Paul".<br />

4.10 "Tandem" eng<strong>in</strong>e<br />

Figure 13 shows the correlation between<br />

operat<strong>in</strong>g hours and the distance traveled by<br />

the vehicle "Tandem". This vehicles move <strong>in</strong> a<br />

limited area. As <strong>in</strong> previous discussions of the<br />

oil life was 100 hours, now, with respect to (Fig.<br />

13), we want to get the maximum distance<br />

traveled by vehicle after 100 hours. So 100<br />

hours is equal to 3000 km.<br />

Fig. 12. Operat<strong>in</strong>g hours and acid number.<br />

So, the properties of the oil and its<br />

correspond<strong>in</strong>g warn<strong>in</strong>g limits can be<br />

summarized as described <strong>in</strong> Table 7.<br />

At this stage of the <strong>in</strong>vestigation carried out on<br />

erosion, pollution, and f<strong>in</strong>ally the physical and<br />

chemical properties of oil and accord<strong>in</strong>g to the<br />

results <strong>in</strong> Table 6 and 7, and based on the<br />

number of samples, look carefully and errors,<br />

<strong>in</strong>itial eng<strong>in</strong>e oil life is estimated 100 hours.<br />

Based on figures obta<strong>in</strong>ed after 100 hours, we<br />

can see the presence of contam<strong>in</strong>ants, the<br />

sudden drop <strong>in</strong> oil properties and wear on<br />

eng<strong>in</strong>e parts and it is necessary to oil change.<br />

Fig. 13. Operat<strong>in</strong>g hours and distance.<br />

4.11 "Keshande" eng<strong>in</strong>e<br />

Accord<strong>in</strong>g to data from oil analysis, Fig. 14<br />

shows the relationship between distance<br />

traveled by these vehicles and operat<strong>in</strong>g<br />

hours. It is worth mention<strong>in</strong>g that these<br />

vehicles are more mobile and have road<br />

traffic. Therefore, accord<strong>in</strong>g to the 100 hours,<br />

the maximum distance traveled by these<br />

vehicles is 5,900 km.<br />

66


S.A. Adnani et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 61‐68<br />

Oil laboratory equipment error<br />

Error <strong>in</strong> the type of oil used <strong>in</strong> an eng<strong>in</strong>e oil<br />

(two types)<br />

Fig. 14. Operat<strong>in</strong>g hours and distance.<br />

4.12 "Jean paul" eng<strong>in</strong>e<br />

Based on data from oil analysis, Fig. 15 is obta<strong>in</strong>ed.<br />

This vehicles move <strong>in</strong> a limited area. Based on<br />

po<strong>in</strong>ts <strong>in</strong> (Fig. 15), for 100 hours, maximum<br />

distance traveled by these vehicles is 900 km.<br />

Fig. 15. Operat<strong>in</strong>g hours and distance.<br />

Correspond to the useful life of oil per hour with<br />

maximum distance traveled by all vehicles; we<br />

can summarize the results presented <strong>in</strong> Table 8.<br />

Table 8. Primary and useful life of the oil <strong>in</strong> all vehicles.<br />

Vehicle<br />

Jean paul<br />

Tandem<br />

Keshande<br />

5. CONCLUSION<br />

Operat<strong>in</strong>g hours<br />

100<br />

100<br />

100<br />

Km<br />

900<br />

3000<br />

5900<br />

As was mentioned to achieve the oil life should<br />

be a lot of th<strong>in</strong>gs are considered, <strong>in</strong>clud<strong>in</strong>g the<br />

follow<strong>in</strong>g:<br />

Wear elements<br />

Pollutants<br />

Physical and chemical properties of oil<br />

Sampl<strong>in</strong>g error<br />

Read<strong>in</strong>g operat<strong>in</strong>g hours <strong>in</strong>dicator error<br />

Based on the above, we <strong>in</strong>vestigated wear<br />

elements, pollutants, their allowable limitations<br />

and correlation coefficients. The highest<br />

correlation was between silicon and alum<strong>in</strong>um<br />

element. We <strong>in</strong>troduced a relation between<br />

them and we got a formula about it. Accord<strong>in</strong>g<br />

to the result<strong>in</strong>g curves, we noticed that <strong>in</strong> what<br />

time abnormal abrasion of eng<strong>in</strong>e parts occurs.<br />

Therefore, we chose warn<strong>in</strong>g boundary that will<br />

have m<strong>in</strong>imal wear on eng<strong>in</strong>e parts. The<br />

physical and chemical properties of the oil<br />

studied and accord<strong>in</strong>g to the figures the<br />

warn<strong>in</strong>g boundary (100 hours) is determ<strong>in</strong>ed <strong>in</strong><br />

order to prevent sudden and sharp changes <strong>in</strong><br />

oil properties. F<strong>in</strong>ally, consider<strong>in</strong>g the results of<br />

wear elements, silicon and physical and<br />

chemical oil properties, the useful life of oil <strong>in</strong><br />

hour and kilometer is determ<strong>in</strong>ed. It is<br />

important that the results are only based on oil<br />

samples taken from the vehicles. So if we<br />

<strong>in</strong>crease the number of oil samples, surely,<br />

better results can be obta<strong>in</strong>ed. That is why a<br />

title as "Early Life" for the oil life is selected. If,<br />

we provide the ideal conditions for eng<strong>in</strong>es, oil<br />

life of 100 hours goes beyond. These conditions<br />

are as follows:<br />

Replace air filters (every 4 months),<br />

Choos<strong>in</strong>g the right oil,<br />

Choos<strong>in</strong>g the right fuel,<br />

Proper us<strong>in</strong>g <strong>in</strong> accordance with the<br />

recommendations of vehicle manufacturers<br />

Check to make sure no oil pollutants<br />

<strong>in</strong>clud<strong>in</strong>g aerosols, fuel, water and silicon<br />

<strong>in</strong>to eng<strong>in</strong>e,<br />

To ensure the quality and authenticity of<br />

replacement parts for eng<strong>in</strong>es.<br />

6. REFERENCES<br />

[1] A. Masoudi: Oil Analysis Basics, Doost Mehraban,<br />

Tehran, 2011.<br />

[2] A.T. Khouzestan: Mach<strong>in</strong>ery condition<br />

monitor<strong>in</strong>g, Series of technology articles, Vol. 2,<br />

No. 28, pp.17‐20, 2009.<br />

[3] M.T.S. Manual: Mack Eng<strong>in</strong>e Tune up<br />

Specifications, Service, Pennsylvania, 1990.<br />

[4] Oil Analysis Services Reports.<br />

67


S.A. Adnani et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 61‐68<br />

[5] G. Hamidi: Condition Monitor<strong>in</strong>g Services Us<strong>in</strong>g<br />

Oil Analysis, Wear Elements and a Case Study for<br />

Wear<strong>in</strong>g Iron, <strong>in</strong>: 6 rd Condition Monitor<strong>in</strong>g and<br />

Fault Diagnosis Conference, 28.02.2012, Tehran,<br />

Iran, pp. 1‐12.<br />

[6] B. Nedic, S. Peric, M. Vuruna: Monitor<strong>in</strong>g physical<br />

and chemical characteristics oil for lubrication,<br />

Tribology <strong>in</strong> Industry, Vol. 31, No. 3&4, pp. 59‐<br />

61, 2009.<br />

[7] H. Kaleli, E. Yildirim: Determ<strong>in</strong>ation of oil dra<strong>in</strong><br />

period <strong>in</strong> naval ship Diesel eng<strong>in</strong>e, Tribology <strong>in</strong><br />

Industry, Vol. 30, No. 3, pp. 21‐30, 2008.<br />

[8] M. Najibi: Correlation Coefficients and Calculations,<br />

Statistical Science Group, Tehran, 2009.<br />

[9] A. Toms, L. Toms: Oil Analysis and Condition<br />

Monitor<strong>in</strong>g, <strong>in</strong>: Chemistry and Technology of<br />

Lubricants, Spr<strong>in</strong>ger, Netherlands, pp.459‐495,<br />

2010.<br />

[10] S. Peric, B. Nedic: Monitor<strong>in</strong>g lubricant<br />

performance <strong>in</strong> field application, Tribology <strong>in</strong><br />

Industry, Vol. 34, No. 2, pp. 93‐94, 2012.<br />

[11] A.T. Khouzestan: Mach<strong>in</strong>ery condition<br />

monitor<strong>in</strong>g, Series of technology articles,<br />

Vol.1, No.17, pp. 4‐6, 2009.<br />

68


Vol. 35, No. 1 (2013) 69‐73<br />

Tribology <strong>in</strong> Industry<br />

www.<strong>tribology</strong>.f<strong>in</strong>k.rs<br />

RESEARCH<br />

Investigation of Wear Coefficient of Manganese<br />

Phosphate Coated Tool Steel<br />

S. Ilaiyavel a , A. Venkatesan a<br />

a Mechanical Eng<strong>in</strong>eer<strong>in</strong>g Department, Sri Venkateswara College of Eng<strong>in</strong>eer<strong>in</strong>g, Sriperumbudur, Tamil Nadu, India.<br />

Keywords:<br />

Wear Test<strong>in</strong>g<br />

Slid<strong>in</strong>g Wear<br />

Lubricated Wear <strong>in</strong>clud<strong>in</strong>g Scuff<strong>in</strong>g<br />

Lubricant additives<br />

Boundary Lubrication<br />

Surface analysis<br />

Correspond<strong>in</strong>g author:<br />

Sivakumaran Ilaiyavel<br />

Mechanical Eng<strong>in</strong>eer<strong>in</strong>g<br />

Department, Sri Venkateswara<br />

College of Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Sriperumbudur, Tamil Nadu, India<br />

E‐mail: ilaiyavel@svce.ac.<strong>in</strong><br />

A B S T R A C T<br />

In recent years the properties of the coat<strong>in</strong>g <strong>in</strong> terms of wear resistance is<br />

of paramount importance <strong>in</strong> order to prevent the formation of severe<br />

damages. In this study, Wear coefficient of uncoated, Manganese<br />

Phosphate coated, Manganese Phosphate coated with oil lubricant, Heat<br />

treated Manganese Phosphate coated with oil lubricant on AISI D2 steels<br />

was <strong>in</strong>vestigated us<strong>in</strong>g Archard’s equation. The wear tests were performed<br />

<strong>in</strong> a p<strong>in</strong> on disk apparatus as per ASTM G‐99 Standard. The volumetric<br />

wear loss and wear coefficient were evaluated through p<strong>in</strong> on disc test<br />

us<strong>in</strong>g a slid<strong>in</strong>g velocity of 3.0 m/s under normal load of 40 N and<br />

controlled condition of temperature and humidity. Based on the results of<br />

the wear test, the Heat treated Manganese Phosphate with oil lubricant<br />

exhibited the lowest average wear coefficient and the lowest wear loss<br />

under 40 N load.<br />

© 2013 Published by Faculty of Eng<strong>in</strong>eer<strong>in</strong>g<br />

1. INTRODUCTION<br />

The Pr<strong>in</strong>cipal aim of conversion coat<strong>in</strong>g is confer<br />

anti‐weld<strong>in</strong>g characteristics although it may also<br />

cause a slight <strong>in</strong>crease <strong>in</strong> the surface hardness<br />

[1]. High carbon high chromium steels are used<br />

<strong>in</strong> application requir<strong>in</strong>g tremendous wear<br />

resistance <strong>in</strong> tool and die mak<strong>in</strong>g <strong>in</strong>dustries.<br />

Phosphat<strong>in</strong>g is chemical conversion treatments<br />

which produce a porous surface layer of<br />

crystall<strong>in</strong>e phosphate [2]. This process relat<strong>in</strong>g a<br />

reaction between a solution and a metal surface<br />

such that the coat<strong>in</strong>g derives partly from the<br />

solution and partly from the substrate [3].<br />

Phosphate coat<strong>in</strong>gs are normally formed by<br />

immers<strong>in</strong>g iron <strong>in</strong>to an aqueous solution of<br />

phosphoric acid and manganese carbonate [4].<br />

Manganese Phosphate coat<strong>in</strong>g are produced by<br />

chemical conversion and the ma<strong>in</strong> component of<br />

the film is hureaulite (Mn Fe) 5 .H 2 (PO 4 ) 2 . Due to<br />

its economy, speed of operation, ability to afford<br />

excellent corrosion resistance, wear resistance,<br />

adhesion and lubricative properties, it plays a<br />

significant role <strong>in</strong> the <strong>in</strong>dustries [5‐9]. To<br />

understand the wear properties of different<br />

types of coat<strong>in</strong>g wear test are carried out with<br />

suitable wear test<strong>in</strong>g techniques. The p<strong>in</strong> on disc<br />

test is the established method universally used<br />

for wear experiment. To assist the measurement<br />

the p<strong>in</strong> is usually the wear<strong>in</strong>g member that has<br />

lesser hardness. Wear coefficient is superior<br />

parameter though wear loss and Friction<br />

69


S. Ilaiyavel and A. Venkatesan, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 69‐73<br />

coefficient are frequently used for study<strong>in</strong>g the<br />

wear characteristics of test specimen. It is so<br />

because the wear coefficient takes <strong>in</strong>to account<br />

not only the wear rate, but also the applied load,<br />

and the hardness of the p<strong>in</strong> [10]. L.J. Yang [11]<br />

proposed new mov<strong>in</strong>g p<strong>in</strong> technique that is<br />

allowed to move across most of the disc space<br />

dur<strong>in</strong>g test<strong>in</strong>g at the same time ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the<br />

constant speed by vary<strong>in</strong>g the distance and<br />

rotational speed. The wear coefficient values<br />

obta<strong>in</strong>ed is not vary<strong>in</strong>g with the disc materials<br />

used. The variation is about 4% and 17% of the<br />

mean value obta<strong>in</strong>ed from the mov<strong>in</strong>g p<strong>in</strong> and<br />

stationary p<strong>in</strong> tests, respectively. Therefore<br />

more reliable wear coefficient values are<br />

obta<strong>in</strong>ed from the mov<strong>in</strong>g p<strong>in</strong> test than from the<br />

stationary p<strong>in</strong> test. Reasonably, the mov<strong>in</strong>g p<strong>in</strong><br />

technique has given to a higher wear rate and a<br />

slightly higher wear coefficient. This is due to a<br />

enhanced work‐harden<strong>in</strong>g effect with the use of<br />

more virg<strong>in</strong> disc surface area <strong>in</strong> the wear test<strong>in</strong>g.<br />

C.S. Ramesh [12] <strong>in</strong>vestigated on wear<br />

coefficient of Al6061–TiO2 composites. Based on<br />

the result Al 6061–TiO2 composites exhibited<br />

higher hardness, lower wear coefficient when<br />

compared with matrix alloy. M.A. Chowdhury et<br />

al [13] observed that the presence of normal<br />

load and slid<strong>in</strong>g velocity affects the co effect of<br />

friction considerably. The values of friction<br />

coefficient decrease with the <strong>in</strong>crease <strong>in</strong> normal<br />

load for copper‐copper, copper‐brass, brassbrass<br />

and brass‐copper pairs. V. Bria et al [14]<br />

expla<strong>in</strong>ed that the role of aramids fibers <strong>in</strong> the<br />

composite on <strong>in</strong>creas<strong>in</strong>g the wear resistance of<br />

materials while the graphite particles appear<strong>in</strong>g<br />

from carbon fibers break<strong>in</strong>g acts as dry<br />

lubricant. The aim of this paper is to f<strong>in</strong>d the<br />

volumetric wear loss and wear coefficient of<br />

uncoated, Manganese Phosphate coated,<br />

Manganese Phosphate coated with oil lubricant<br />

and heat treated Manganese Phosphate coat<strong>in</strong>g<br />

with oil lubricant on AISI D2 steel substrate.<br />

2. EXPERIMENTAL PROCEDURE<br />

2.1 Materials<br />

The High carbon and high chromium tool steel<br />

was used as substrates. The chemical<br />

composition of the materials is given <strong>in</strong> Table1.<br />

2.2 Specimen<br />

The specification, <strong>in</strong>itial hardness values and<br />

surface roughness for the p<strong>in</strong> and disc are listed<br />

<strong>in</strong> Table 2. The four types of p<strong>in</strong>s were prepared<br />

such as uncoated, Manganese Phosphate coated,<br />

Manganese Phosphate coated with oil lubricant<br />

and heat treated Manganese Phosphate coat<strong>in</strong>g<br />

with oil lubricant for the comparison of the wear<br />

coefficient parameter.<br />

2.3 Manganese Phosphate Coat<strong>in</strong>g<br />

The Manganese Phosphatation consists of<br />

three basic sequences are clean<strong>in</strong>g, ref<strong>in</strong><strong>in</strong>g<br />

and phosphat<strong>in</strong>g. The ref<strong>in</strong><strong>in</strong>g bath consist<strong>in</strong>g<br />

of Mn Phosphate solutions favours the deposit<br />

of a f<strong>in</strong>e layout of metallic salts onto the steel<br />

surface. S. Ilaiyavel et al [15] expla<strong>in</strong>ed the<br />

details of Manganese Phosphate coat<strong>in</strong>g<br />

procedure used <strong>in</strong> this present study. The<br />

coat<strong>in</strong>g thickness is around 1.5 to 2 g/m 2 by an<br />

immersion process. The coat<strong>in</strong>gs produced are<br />

s<strong>in</strong>gle phase and the only coat<strong>in</strong>g form<strong>in</strong>g<br />

m<strong>in</strong>eral is hurealite i.e. mixed iron‐manganese<br />

orthophosphate, hav<strong>in</strong>g the chemical formula<br />

as: ‐(Mn,Fe) 3 (PO 4 ) 2 .2(Mn,Fe)HPO 4 .4H 2 O.<br />

Table 1. Chemical composition of the material [wt. %] analysed by optical emission vacuum spark spectrometer.<br />

Elements C Si Mn Cr Ni Mo V Ti S P Fe<br />

Percentage 1.50 0.41 0.74 12.01 0.01 1.01 0.27 0.01 0.03 0.03 Balance<br />

Table 2. Specification, hardness and surface f<strong>in</strong>ish for p<strong>in</strong> and disc.<br />

Description Material<br />

Surface Roughness<br />

Hardness HRc<br />

(Ra) Microns<br />

P<strong>in</strong> (8 mm dia, 15 mm long) D2 Steel (As received) 20 0.1<br />

Disc (Dia 60 mm, Thickness 10mm) D2 Steel Hardened and Tempered 60 0.1<br />

70


S. Ilaiyavel and A. Venkatesan, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 69‐73<br />

71<br />

2.4 Heat treatment after the Coat<strong>in</strong>g<br />

The coated steel substrate is heated slowly up to<br />

450 0 C and kept around 15 m<strong>in</strong>s duration. It is<br />

then cooled <strong>in</strong> the furnace to reach room<br />

temperature. The steel substrate surface is not<br />

affected by the heat<strong>in</strong>g and furnace cool<strong>in</strong>g.<br />

2.5 Lubrication<br />

In this experiment 20W40 oil is used as a<br />

lubricant. Table 4 shows the properties of the<br />

lubricant. After coat<strong>in</strong>g prior to wear test<strong>in</strong>g<br />

both coated and heat treated and only coated<br />

p<strong>in</strong>s are dipped <strong>in</strong>to oil lubricant for around 15<br />

to 20 m<strong>in</strong>s at room temperature. Lubricat<strong>in</strong>g oil<br />

creates a th<strong>in</strong> separat<strong>in</strong>g film between surfaces<br />

of adjacent mov<strong>in</strong>g parts [16] .This m<strong>in</strong>imizes<br />

direct contact between them, decreases heat<br />

caused by friction and reduces wear.<br />

Table 4. Properties of lubricant.<br />

K<strong>in</strong>ematic Viscosity at 100 0 C 13.5‐15.5<br />

Viscosity Index, M<strong>in</strong>. 110<br />

Flash po<strong>in</strong>t (COC), o C M<strong>in</strong>. 200<br />

Pour po<strong>in</strong>t, o C Max. (‐)21<br />

causes the heavy deformation at higher slid<strong>in</strong>g<br />

distance. Manganese Phosphate coated p<strong>in</strong>s shows<br />

slight higher volumetric loss after 600 m slid<strong>in</strong>g<br />

distance, because of partly removal of coat<strong>in</strong>g after<br />

longer slid<strong>in</strong>g distances at constant load 40 N. Both<br />

Manganese Phosphate coated with oil lubricant and<br />

Heat treated Manganese Phosphate coated with oil<br />

lubricant show lowest volumetric loss, because of<br />

very less coefficient of friction achieved by the<br />

presences of oil lubricant. S. Ilaiyavel et al [8]<br />

expressed that Manganese Phosphate coated with<br />

oil lubricant p<strong>in</strong>s show very low coefficient of<br />

friction about 0.1 to 0.2. Heat treated Manganese<br />

Phosphate coated with oil lubricant p<strong>in</strong>s show the<br />

same coefficient of friction even at higher the loads<br />

and longer slid<strong>in</strong>g distances. Because of heat<br />

treatment more micro cracks present <strong>in</strong> the crystal<br />

which are perpendicular to the substrate surface.<br />

Fig. 2 shows micro graph of heat treated Manganese<br />

Phoshate coated AISI D2 steel. These cracks occur<br />

due to the loss of water and when the dehydration<br />

is completed, the maximum oil reta<strong>in</strong><strong>in</strong>g capacity<br />

also improved.<br />

2.6 Wear test<strong>in</strong>g<br />

Wear performance of materials are commonly<br />

obta<strong>in</strong>ed from test<strong>in</strong>g carried out <strong>in</strong> p<strong>in</strong>‐on‐disk<br />

equipment to ASTM G99 standard procedure. It<br />

gives a laboratory standard method to carry out<br />

slid<strong>in</strong>g and abrasion wear tests. The tests were<br />

carried out under 40 N applied load and for<br />

slid<strong>in</strong>g velocity of 3.0 m/s for a constant slid<strong>in</strong>g<br />

radius of 15 mm. Dur<strong>in</strong>g test<strong>in</strong>g the tangential<br />

force was measured by a set of load cell and<br />

monitored by Computerised data acquisition<br />

system. In all the cases the friction coefficient<br />

and volumetric wear loss of the p<strong>in</strong> were<br />

estimated by tak<strong>in</strong>g three p<strong>in</strong>s average value.<br />

Fig. 1. Volumetric wear loss vs slid<strong>in</strong>g distance at<br />

velocity of 3.0 m/s.<br />

3. RESULTS AND DISCUSSION<br />

3.1 Volumetric Wear loss<br />

The variation of volumetric wear loss with slid<strong>in</strong>g<br />

distance is shown <strong>in</strong> Fig. 1. With <strong>in</strong>crease <strong>in</strong> slid<strong>in</strong>g<br />

distances there is higher volumetric loss for<br />

uncoated p<strong>in</strong>s, at longer slid<strong>in</strong>g distance higher rise<br />

<strong>in</strong> temperature on both the slid<strong>in</strong>g surfaces. This<br />

Fig. 2. Micro graph of heat treated manganese<br />

phosphate coated AISI D2 steel.


S. Ilaiyavel and A. Venkatesan, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 69‐73<br />

3.2 Wear Coefficient<br />

Steady state wear was proposed by Archard V=<br />

KsPL/3H where V is the volumetric loss of<br />

material after slid<strong>in</strong>g for a distance L and load P<br />

normal to the wear surface. H is the Br<strong>in</strong>ell<br />

hardness number of the p<strong>in</strong> while Ks a<br />

dimensionless standard wear coefficient. For<br />

known values of V, P, L and H the standard wear<br />

coefficient can be calculated from the equation<br />

Ks=3HV/PL. Volumetric wear loss can be<br />

calculated from the weight loss W and the<br />

density. L.J. Yang [10] expressed that the higher<br />

<strong>in</strong>itial runn<strong>in</strong>g – <strong>in</strong> wear rate, has a higher value<br />

<strong>in</strong>itially <strong>in</strong> the transient wear regime and will<br />

reach a steady – state value when the wear rate<br />

become constant. Figure 3 shows the variation<br />

of wear coefficient with slid<strong>in</strong>g distance. It is<br />

observed that wear coefficient decreased with<br />

<strong>in</strong>creased slid<strong>in</strong>g distance. However under the<br />

same conditions Heat treated Manganese<br />

Phosphate coated with oil lubricant shows<br />

lowest wear coefficient. The major reason is the<br />

lowest volumetric loss is recorded. The<br />

anneal<strong>in</strong>g treatment <strong>in</strong>crease the micro crack<strong>in</strong>g<br />

and also <strong>in</strong>creases oil retention. Oil can react at<br />

the gra<strong>in</strong> boundaries of the Heat treated coat<strong>in</strong>g<br />

to form a beneficial adherent film, <strong>in</strong>creas<strong>in</strong>g the<br />

wear resistance under oil lubricat<strong>in</strong>g conditions.<br />

P.H. Hivart et al [17] also expressed that the<br />

dehydrated and transformed new coat<strong>in</strong>g<br />

surface has a better reactivity towards<br />

lubrication than the <strong>in</strong>itial Huralite.<br />

phosphate coated with oil lubricant p<strong>in</strong>s were<br />

exam<strong>in</strong>ed under 40 N loads at slid<strong>in</strong>g velocity of<br />

3.0 m/s us<strong>in</strong>g p<strong>in</strong> on disk apparatus and the<br />

results are summarized as follows:<br />

Increased slid<strong>in</strong>g distance resulted <strong>in</strong><br />

higher volumetric loss and lowered the<br />

wear coefficient for, un coated, Manganese<br />

phosphate coated, Manganese phosphate<br />

coated with oil lubricant and Heat treated<br />

Manganese phosphate coated with oil<br />

lubricant p<strong>in</strong>s.<br />

Heat treated Manganese phosphate coated<br />

with oil lubricant p<strong>in</strong>s exhibited the lower<br />

coefficient friction and lower wear<br />

coefficient as compared with uncoated,<br />

Manganese phosphate coated, Manganese<br />

phosphate coated with oil lubricant p<strong>in</strong>s.<br />

The heat treatment may <strong>in</strong>crease the<br />

quantity of oil reta<strong>in</strong>ed through the micro<br />

crack<strong>in</strong>g phenomenon which <strong>in</strong>creases oil<br />

retention. Oil can react at the gra<strong>in</strong><br />

boundaries of the Heat treated coat<strong>in</strong>g to<br />

form a beneficial adherent film, which<br />

<strong>in</strong>crease the wear resistance under oil<br />

lubricat<strong>in</strong>g conditions result<strong>in</strong>g lower the<br />

wear coefficient.<br />

Acknowledgement<br />

The Authors are thankful to Sri Venkateswara<br />

college of Eng<strong>in</strong>eer<strong>in</strong>g for provid<strong>in</strong>g the<br />

cont<strong>in</strong>uous support.<br />

REFERENCES<br />

Fig. 3. Wear coefficient vs slid<strong>in</strong>g distance at velocity<br />

of 3.0 m/s.<br />

4. CONCLUSIONS<br />

The Wear coefficient of uncoated, Manganese<br />

phosphate coated, Manganese phosphate coated<br />

with oil lubricant and Heat treated Manganese<br />

[1] J.C. Gregory: Chemical conversion coat<strong>in</strong>gs of<br />

metals to resist scuff<strong>in</strong>g and wear, Tribol. <strong>in</strong>t., Vol.<br />

105, pp.105‐112, 1978.<br />

[2] J. Perry, T.S. Eyre: The effect of Phosphat<strong>in</strong>g on<br />

the Friction and wear properties of Grey cast iron,<br />

Wear, Vol. 43, No. 2, pp. 185‐197, 1977.<br />

[3] Jose Daniel B. De Mello, Henara L. Costa, Roberto<br />

B<strong>in</strong>der: Friction and wear behavior of steamoxidized<br />

s<strong>in</strong>tered iron components coated with<br />

manganese Phosphate, Wear, Vol. 263, No. 1‐6, pp.<br />

842‐848, 2007.<br />

[4] Simon C. Tung, Donald J. Smolenski, SU‐Chee S.<br />

Wang: Determ<strong>in</strong>ation of differences <strong>in</strong> tribological<br />

behavior and surface Morphology between<br />

Electrodeposited and Traditional Phosphate<br />

72


S. Ilaiyavel and A. Venkatesan, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 69‐73<br />

73<br />

Coat<strong>in</strong>gs, Th<strong>in</strong> Solid Films, Vol. 200, No. 2, pp.<br />

247‐261, 1991.<br />

[5] S. Jaganathan, T.S.N Sankara Narayanan, K.<br />

Ravichandran, S. Rajeswari: Formation of Z<strong>in</strong>c<br />

phosphate coat<strong>in</strong>g by anodic electrochemical<br />

treatment, Surface and Coat<strong>in</strong>gs Technology, Vol.<br />

200, No. 20‐21, pp. 6014‐6021, 2006.<br />

[6] D.B. Freeman: Phosphat<strong>in</strong>g and Metal<br />

Pretreatment: A Guide to Modern Process and<br />

Practice, Industrial Press Inc., New York, 1986.<br />

[7] W. Raush: The Phosphat<strong>in</strong>g of Metals, F<strong>in</strong>ish<strong>in</strong>g<br />

Publication Ltd, London, 1990.<br />

[8] S. Ilaiyavel, A. Venkatesan, N. Nallusamy, T.<br />

Sornakumar: Wear characteristics of Manganese<br />

Phosphate coat<strong>in</strong>g with oil lubricant, Applied<br />

Mechanic and Materials, Vol. 110‐116, pp. 616‐<br />

620, 2012.<br />

[9] T.S.N. Sankara Narayanan: Surface Pretreatment by<br />

Phosphate conversion coat<strong>in</strong>gs, Advanced<br />

Materials Science, Vol. 9, No. 2, pp. 130‐177, 2005.<br />

[10] L.J. Yang: Wear coefficient equation for<br />

alum<strong>in</strong>ium–based matrix composites aga<strong>in</strong>st steel<br />

disc, Wear, Vol. 253, pp. 579‐592, 2003.<br />

[11] L.J. Yang: P<strong>in</strong>‐on‐disc wear test<strong>in</strong>g of tungsten<br />

carbide with a new mov<strong>in</strong>g p<strong>in</strong> technique, Wear,<br />

Vol. 225–229, pp. 557–562, 1999.<br />

[12] C.S. Ramesh, A.R. Anwar Khan, N. Ravikumar, P.<br />

Saravanprabhu: Prediction of wear coefficient o<br />

Al6061‐Tio2 Composites, Wear, Vol. 259, pp. 602‐<br />

608, 2005.<br />

[13] M.A. Chowdhury, D.M. Nuruzzaman, A.H. Mia,<br />

M.L. Rahaman: Friction Coefficient of Different<br />

Material Pairs Under Different Normal Loads and<br />

Slid<strong>in</strong>g Velocities, Tribology <strong>in</strong> Industry, Vol. 34,<br />

No. 1, pp. 18‐23, 2012 .<br />

[14] V. Bria, D. Dima, G. Andrei, I.G. Birsan, A.<br />

Circiumaru: Tribological and Wear Properties of<br />

Multi‐Layered Materials, Tribology <strong>in</strong> Industry,<br />

Vol. 33, No. 3, pp. 104‐109, 2011.<br />

[15] S. Ilaiiyavel, A. Venkatesan: Experimental<br />

<strong>in</strong>vestigation of manganese phosphate coated AISI<br />

D2 steel, Int. j. of Pre. Eng and Manu, Vol. 13, pp.<br />

581‐586, 2012.<br />

[16] S. Ilaiyavel, A. Venkatesan: The wear<br />

characteristics of heat treated Manganese<br />

Phosphate coat<strong>in</strong>g applied to AISI D2 steel with<br />

oil lubricant, Tribology <strong>in</strong> Industry, Vol. 34, No. 4,<br />

pp. 247‐254, 2012.<br />

[17] Ph. Hivart, B. Hauw, J. Crampon, J.P. Bricout:<br />

Anneal<strong>in</strong>g improvement of tribological properties<br />

of manganese phosphate coat<strong>in</strong>gs, Wear, Vol. 219,<br />

No. 2, pp. 195‐204, 1998.


Vol. 35, No. 1 (2013) 74‐83<br />

Tribology <strong>in</strong> Industry<br />

www.<strong>tribology</strong>.f<strong>in</strong>k.rs<br />

RESEARCH<br />

The Effect of Compression R<strong>in</strong>g Profile on the<br />

Friction Force <strong>in</strong> an Internal Combustion Eng<strong>in</strong>e<br />

A. Sonthalia a , C.R. Kumar a<br />

a VIT University, India.<br />

Keywords:<br />

Friction<br />

R<strong>in</strong>g profile design<br />

Simulation<br />

Float<strong>in</strong>g l<strong>in</strong>er method<br />

Correspond<strong>in</strong>g author:<br />

C. Ramesh Kumar<br />

VIT University, India<br />

E‐mail: crameshkumar@vit.ac.<strong>in</strong><br />

A B S T R A C T<br />

In an <strong>in</strong>ternal combustion eng<strong>in</strong>e piston, piston r<strong>in</strong>g and cyl<strong>in</strong>der are the<br />

most important assembly for transmitt<strong>in</strong>g the forces produced by the<br />

combustion process. The friction between piston r<strong>in</strong>g pack and cyl<strong>in</strong>der<br />

accounts for major portion of friction <strong>in</strong> an <strong>in</strong>ternal combustion eng<strong>in</strong>e and<br />

it also significantly affects the mechanical efficiency of the eng<strong>in</strong>e. In the<br />

piston r<strong>in</strong>g pack, friction is ma<strong>in</strong>ly due to the compression r<strong>in</strong>g, especially at<br />

the top dead centre and bottom dead centre where boundary lubrication<br />

exists. This paper provides a detailed study on the effect of r<strong>in</strong>g profile on<br />

r<strong>in</strong>g friction us<strong>in</strong>g MATLAB code. Three different r<strong>in</strong>g profiles were selected<br />

and analysed for lubricant film thickness, r<strong>in</strong>g twist angle, r<strong>in</strong>g friction and<br />

friction coefficient. Out of these three, friction force and friction coefficient of<br />

one r<strong>in</strong>g profile design was found m<strong>in</strong>imum. The r<strong>in</strong>g design with m<strong>in</strong>imum<br />

friction force and friction coefficient was manufactured and assembled <strong>in</strong> a<br />

low speed SI eng<strong>in</strong>e. The eng<strong>in</strong>e l<strong>in</strong>er was modified to float and friction of<br />

the r<strong>in</strong>g was studied us<strong>in</strong>g motor<strong>in</strong>g test method. The experimental results<br />

were compared with the simulation result, it was found that simulation<br />

result was <strong>in</strong> agreement with the experimental result.<br />

© 2013 Published by Faculty of Eng<strong>in</strong>eer<strong>in</strong>g<br />

1. INTRODUCTION<br />

Reduc<strong>in</strong>g fuel consumption <strong>in</strong> IC eng<strong>in</strong>e is<br />

important from viewpo<strong>in</strong>ts of both effective use<br />

of oil resources and prevention of global<br />

warm<strong>in</strong>g. For realiz<strong>in</strong>g a better heat balance <strong>in</strong><br />

eng<strong>in</strong>es it is desirable that not only combustion<br />

efficiency but also mechanical efficiency is<br />

improved. Reduction of friction loss is a proper<br />

measure of the improvement <strong>in</strong> mechanical<br />

efficiency as po<strong>in</strong>ted out by many eng<strong>in</strong>e<br />

developers and researchers [1]. 30‐50 % of total<br />

friction losses <strong>in</strong> an <strong>in</strong>ternal combustion eng<strong>in</strong>e<br />

occur at the <strong>in</strong>terfaces of piston cyl<strong>in</strong>der, piston<br />

r<strong>in</strong>g‐cyl<strong>in</strong>der, and piston‐piston r<strong>in</strong>g. Even small<br />

reduction <strong>in</strong> friction at piston r<strong>in</strong>g‐cyl<strong>in</strong>der l<strong>in</strong>er<br />

<strong>in</strong>terface may contribute <strong>in</strong> significant fuel<br />

sav<strong>in</strong>g and reduction <strong>in</strong> emissions [2,3]. The<br />

piston r<strong>in</strong>gs move freely <strong>in</strong> its grooves and these<br />

movements depends on the forces act<strong>in</strong>g on the<br />

piston r<strong>in</strong>g system, like, the r<strong>in</strong>g tension due to<br />

the placement of the piston r<strong>in</strong>g <strong>in</strong> cyl<strong>in</strong>der, the<br />

gas pressure forces due to combustion and<br />

blow‐by, the hydrodynamic force due to<br />

lubricant film, the <strong>in</strong>ertia forces due to the r<strong>in</strong>g<br />

mass, the eng<strong>in</strong>e speed and asperity contact<br />

74


A. Sonthalia and C.R. Kumar, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 74‐83<br />

forces between the r<strong>in</strong>g and cyl<strong>in</strong>der walls [4].<br />

The study of piston r<strong>in</strong>g motion leads to a better<br />

understand<strong>in</strong>g of these mechanisms and many<br />

researchers have attempted to understand the<br />

same through experimental studies. For<br />

example, the <strong>in</strong>vestigation of the friction force<br />

exert<strong>in</strong>g on the piston r<strong>in</strong>g us<strong>in</strong>g float<strong>in</strong>g l<strong>in</strong>er<br />

test rig [5], and the <strong>in</strong>vestigation of oil film<br />

thickness was done us<strong>in</strong>g ultraviolet light [6]<br />

and us<strong>in</strong>g differential voltage drop method [7].<br />

Similarly, piston r<strong>in</strong>g motions have also been<br />

studied, through simulation method [6‐10]. The<br />

model used by these researchers were similar<br />

for each mechanism, but with different<br />

procedures and assumptions. However, they did<br />

not revealed the detailed steps of simulation.<br />

The present work aims to analytically study the<br />

effect of piston r<strong>in</strong>g profile on the friction force.<br />

Three different r<strong>in</strong>g profiles were analyzed for<br />

lubricant film thickness, r<strong>in</strong>g twist angle, r<strong>in</strong>g<br />

friction and friction coefficient us<strong>in</strong>g the MATLAB<br />

code. The r<strong>in</strong>g with the m<strong>in</strong>imum friction force<br />

was manufactured and tested us<strong>in</strong>g non fir<strong>in</strong>g<br />

float<strong>in</strong>g l<strong>in</strong>er method. The friction force<br />

computed from the theoretical analysis was<br />

compared with the experimental results.<br />

2. THEORETICAL ANALYSIS OF PISTON RING<br />

Initially, the dimensionless parameters that<br />

characterize the operation of a piston r<strong>in</strong>g and<br />

its friction were identified. Next an analytical<br />

model describ<strong>in</strong>g the dynamics surround<strong>in</strong>g<br />

r<strong>in</strong>g’s performance was developed. Us<strong>in</strong>g this<br />

model <strong>in</strong> numerical simulation, the operational<br />

behavior of r<strong>in</strong>g was predicted. The <strong>in</strong>‐cyl<strong>in</strong>der<br />

pressure which is one of the <strong>in</strong>puts for the<br />

MATLAB code was simulated us<strong>in</strong>g the first law<br />

of thermodynamics.<br />

2.1 Assumptions<br />

focus <strong>in</strong> only on <strong>in</strong>teraction between r<strong>in</strong>g, the<br />

piston and the wall. The r<strong>in</strong>g is much wider <strong>in</strong> its<br />

relaxed state but when <strong>in</strong>stalled <strong>in</strong> the cyl<strong>in</strong>der<br />

the r<strong>in</strong>g was squeezed to fit <strong>in</strong> the cyl<strong>in</strong>der.<br />

The r<strong>in</strong>g deflects <strong>in</strong>wards and it exerts a local<br />

elastic pressure on the cyl<strong>in</strong>der wall. In this study<br />

it is assumed that the r<strong>in</strong>g contracts and expands<br />

equally round the circumference. It was assumed<br />

that the r<strong>in</strong>g rests on a s<strong>in</strong>gle po<strong>in</strong>t, as shown <strong>in</strong><br />

Fig. 1, with a roll<strong>in</strong>g contact on the topland or the<br />

bottomland of the groove. The angle of tilt is used<br />

to determ<strong>in</strong>e the contact po<strong>in</strong>t. It is assumed that<br />

the contact po<strong>in</strong>ts seal the pressure on one side<br />

from the other so that there is a step change <strong>in</strong><br />

the pressure across this contact po<strong>in</strong>t. Due to<br />

reciprocat<strong>in</strong>g motion of the piston <strong>in</strong> the cyl<strong>in</strong>der,<br />

the velocity of the piston is maximum at the midstroke<br />

and zero at the dead centers.<br />

The change <strong>in</strong> piston speed changes the<br />

lubrication regime <strong>in</strong> the cyl<strong>in</strong>der, which <strong>in</strong> turn<br />

changes the friction between the r<strong>in</strong>g and the<br />

l<strong>in</strong>er dur<strong>in</strong>g the entire stroke of the piston. The<br />

frictional patterns which the piston r<strong>in</strong>g would<br />

experience can be classified <strong>in</strong>to different modes<br />

based on this lubrication regime [11]. In this<br />

study hydrodynamic lubrication was assumed i.e.<br />

the r<strong>in</strong>g always rides on full fluid film.<br />

The friction force peaks at the midpo<strong>in</strong>t,<br />

where the speed is at its maximum, i.e. it is<br />

proportional to the <strong>in</strong>stantaneous piston<br />

speed <strong>in</strong> mid‐stroke. If the eng<strong>in</strong>e speed or oil<br />

viscosity is high, a thick oil film is formed that<br />

would not be completely squeezed out even at<br />

dead centers where the piston velocity falls to<br />

zero [11]. Also, the effect of temperature on oil<br />

viscosity was not considered. Us<strong>in</strong>g these<br />

assumptions a model for theoretical analysis<br />

of piston r<strong>in</strong>gs was made us<strong>in</strong>g cos<strong>in</strong>e method<br />

[12] and the govern<strong>in</strong>g equations were solved<br />

by bisection method.<br />

The follow<strong>in</strong>g assumptions were considered for<br />

the analytical model:<br />

Side thrust force is the largest cause of friction <strong>in</strong><br />

an <strong>in</strong>ternal combustion eng<strong>in</strong>e, this force is<br />

transmitted to the cyl<strong>in</strong>der wall on the thrust<br />

side, result<strong>in</strong>g <strong>in</strong> noticeable wear on the wall<br />

near the top dead centre position of first r<strong>in</strong>g.<br />

This force is neglected <strong>in</strong> this work s<strong>in</strong>ce our<br />

Fig. 1. R<strong>in</strong>g pivot position.<br />

75


A. Sonthalia and C.R. Kumar, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 74‐83<br />

2.2 The govern<strong>in</strong>g equations<br />

The Reynolds’ equation [13], for a fully<br />

lubricated gap; which <strong>in</strong>dicates the relationship<br />

the pressure and film shape as a function of<br />

viscosity and velocity, can be used, which is<br />

given by (1).<br />

3 P P 3<br />

<br />

h h 6U dh 6V dh 12<br />

dh<br />

(1)<br />

x x y<br />

<br />

y<br />

<br />

dx dy dt<br />

Assum<strong>in</strong>g axis symmetry along the cyl<strong>in</strong>der axis,<br />

at each <strong>in</strong>stant of time [1] can be written <strong>in</strong> one<br />

dimensional form for piston and r<strong>in</strong>g l<strong>in</strong>er<br />

contact:<br />

3 P<br />

dh dh<br />

h<br />

6U 12<br />

(2)<br />

x<br />

x<br />

dx dt<br />

To produce pressure <strong>in</strong> the oil film, the film<br />

thickness under the r<strong>in</strong>g changes with respect to<br />

time, is given by (3)<br />

h( x,<br />

t)<br />

hp ( x)<br />

hr<br />

( t)<br />

a(<br />

t).<br />

x (3)<br />

Us<strong>in</strong>g classical slit flow theory, the shear stress<br />

between two parallel plates is given by Eq.4<br />

h P U<br />

Shear <br />

(4)<br />

2 x<br />

h<br />

The piston r<strong>in</strong>g <strong>in</strong> the piston fits loosely <strong>in</strong> the<br />

r<strong>in</strong>g groove, thus leav<strong>in</strong>g room axially and<br />

beh<strong>in</strong>d the r<strong>in</strong>g. Due to this the r<strong>in</strong>g can move<br />

axially <strong>in</strong> its groove, from topland to bottomland,<br />

depend<strong>in</strong>g upon operat<strong>in</strong>g conditions [12]. It can<br />

thus be assumed that r<strong>in</strong>g operates <strong>in</strong> two<br />

modes (Fig. 2) it is either on topland or<br />

bottomland. The r<strong>in</strong>g can be considered a free<br />

body which is <strong>in</strong>fluenced by outside forces: On<br />

the front surface, there is a normal oil pressure<br />

distributed over the axial width, which produces<br />

a normal force as well as a moment on the r<strong>in</strong>g<br />

surface. When the r<strong>in</strong>g is rest<strong>in</strong>g on the<br />

bottomland, the pressure above and beh<strong>in</strong>d the<br />

r<strong>in</strong>g is assumed to be the combustion chamber<br />

pressure (Fig. 3). However, the pressure below<br />

is the crankcase pressure and the combustion<br />

pressure before the contact po<strong>in</strong>t thus a step <strong>in</strong><br />

pressure can be seen <strong>in</strong> Fig. 3.<br />

direction. The <strong>in</strong>ertial properties of the r<strong>in</strong>g<br />

exerts a d’ Alembert force axially on the r<strong>in</strong>g, as<br />

it is mov<strong>in</strong>g along with the piston.<br />

Fig. 2. R<strong>in</strong>g modes.<br />

Fig. 3. Pressure distributions about r<strong>in</strong>g.<br />

Composite Secant method [12] was used to f<strong>in</strong>d<br />

the r<strong>in</strong>g friction, r<strong>in</strong>g twist angle and the film<br />

height. The above equations were normalized,<br />

and then a MATLAB code was written to f<strong>in</strong>d the<br />

effects of r<strong>in</strong>g movement <strong>in</strong> the cyl<strong>in</strong>der l<strong>in</strong>er.<br />

The normalized equations are given below.<br />

The dimensionless radial force act<strong>in</strong>g on the r<strong>in</strong>g<br />

is given by [5].<br />

2<br />

2 2<br />

P 6U<br />

L1 1 L2<br />

1 z2 s<strong>in</strong> z2<br />

1<br />

1<br />

2<br />

<br />

2<br />

Pe<br />

hr' L<br />

<br />

e<br />

1 z<br />

<br />

PWh 2 4 4<br />

2<br />

sec<br />

s<strong>in</strong><br />

z2<br />

<br />

2cosz2 2 C2z2<br />

F<br />

<br />

<br />

3 2<br />

<br />

2 2 2<br />

1 z1 s<strong>in</strong> z1 sec<br />

s<strong>in</strong><br />

z1<br />

<br />

2cosz<br />

2 <br />

12C1z1<br />

z1<br />

4 4 3 2<br />

<br />

(5)<br />

The dimensionless moment equation for the oil<br />

is given by [6].<br />

On the other hand when the r<strong>in</strong>g is rest<strong>in</strong>g on<br />

topland the pressure step is on the top surface<br />

and the pressure beh<strong>in</strong>d and below the r<strong>in</strong>g is<br />

assumed to be same as that of the crankcase. The<br />

elastic properties of the r<strong>in</strong>g also exert an<br />

effective elastic pressure on the r<strong>in</strong>g <strong>in</strong> radial<br />

76


A. Sonthalia and C.R. Kumar, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 74‐83<br />

F<br />

2 '<br />

'<br />

PB 1<br />

P EBW<br />

1<br />

2 2 <br />

' 1<br />

2<br />

4PW <br />

e<br />

P 6<br />

0 e<br />

PR<br />

e cyl<br />

2<br />

BY<br />

ULB<br />

1 1 s<strong>in</strong>z1 L2<br />

s<strong>in</strong>z2<br />

<br />

2 '<br />

PW PW<br />

e<br />

<br />

<br />

m e<br />

h<br />

<br />

h<br />

<br />

L<br />

r<br />

z<br />

<br />

1 1 z2<br />

3 sec<br />

sec<br />

<br />

s<strong>in</strong> z1 z1 s<strong>in</strong> 2z1<br />

z<br />

<br />

<br />

2 4 <br />

1<br />

<br />

<br />

<br />

<br />

<br />

3<br />

3 L2<br />

sec<br />

sec<br />

s<strong>in</strong> z2 z2 s<strong>in</strong> 2z2<br />

z L<br />

<br />

2 1<br />

2 4<br />

<br />

<br />

<br />

2<br />

2<br />

12U<br />

L L 2 2<br />

1 <br />

L 1 z s<strong>in</strong> z<br />

2<br />

2<br />

'2 2<br />

PW h L<br />

e<br />

h <br />

r 1 z <br />

2 4 4<br />

1 2 2 2 2<br />

2<br />

sec<br />

s<strong>in</strong><br />

z<br />

<br />

2<br />

2cosz2<br />

2 Cz<br />

2 2<br />

3<br />

<br />

<br />

2<br />

<br />

2 2<br />

<br />

2<br />

z1 z1 z<br />

<br />

1<br />

2cosz1<br />

2<br />

<br />

1 4 4 3<br />

<br />

2<br />

1 s<strong>in</strong> sec s<strong>in</strong><br />

z <br />

<br />

12U<br />

L 1 1 z s<strong>in</strong> 2z<br />

<br />

<br />

3<br />

3<br />

1 1 1<br />

1 1 <br />

2<br />

<br />

2 '2 3<br />

PW<br />

e<br />

h <br />

<br />

hr<br />

z <br />

1 6 16<br />

Cz<br />

z1 2sec<br />

s<strong>in</strong> 2z1<br />

cos2z1 <br />

<br />

z1cos z1s<strong>in</strong><br />

z1 <br />

8 3 <br />

16<br />

3<br />

2 3<br />

1 L<br />

1 1 2 <br />

2<br />

s<strong>in</strong> 2<br />

2<br />

cos2z1 C1<br />

<br />

<br />

3<br />

z<br />

L <br />

<br />

<br />

2 1 <br />

z z z z<br />

<br />

8 2 6 16<br />

z2 2sec<br />

s<strong>in</strong> 2z2<br />

cos2z2 <br />

<br />

z2cos z2 s<strong>in</strong> z2<br />

<br />

8 3 <br />

16<br />

2<br />

z2 z <br />

2<br />

cos2z2 C2<br />

<br />

8 2 <br />

The dimensionless axial force is given by [7].<br />

'<br />

PBh <br />

1<br />

L1s<strong>in</strong><br />

z1 L2s<strong>in</strong><br />

z2<br />

F3 1<br />

' ' '<br />

2UW<br />

<br />

<br />

<br />

<br />

0 Wz1hr<br />

Wz2hr<br />

3UL<br />

sec<br />

sec<br />

UWz h<br />

1<br />

' s<strong>in</strong> z1z1 s<strong>in</strong> 2z1<br />

1 r 2 4<br />

3UL<br />

sec<br />

sec<br />

UWz h<br />

YBh<br />

U<br />

2<br />

' s<strong>in</strong> z2 z2 s<strong>in</strong> 2z2<br />

2 r 2 4<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

(6)<br />

(7)<br />

1<br />

C <br />

2<br />

z s<strong>in</strong> z cos z sec<br />

s<strong>in</strong> z 2 cos z <br />

(9)<br />

2 2 2 2 2<br />

2<br />

Ph W L s<strong>in</strong> z cos z L s<strong>in</strong> z cos z<br />

<br />

6U<br />

2 2z1 2z2<br />

sec<br />

<br />

L1s<strong>in</strong> z1 2 cosz1 2 2<br />

2<br />

<br />

3z<br />

3z<br />

2<br />

1 r<br />

1 1 1 2 2 2<br />

L s<strong>in</strong> z 2<br />

cosz<br />

<br />

1 2<br />

2.3 Simulation Algorithm<br />

(10)<br />

A step wise procedure was used for simulat<strong>in</strong>g<br />

the piston and piston r<strong>in</strong>g mechanisms at any<br />

<strong>in</strong>stant of time dur<strong>in</strong>g the eng<strong>in</strong>e cycle. The r<strong>in</strong>g<br />

<strong>in</strong>cl<strong>in</strong>ation angle α 1 was assumed <strong>in</strong>itially. α 1 was<br />

substituted <strong>in</strong>to the force equation (F 1 (5)) and<br />

the film thickness h r1 was calculated by the<br />

bisection method. α 1 and h r1 were then<br />

substituted <strong>in</strong>to the moment equation (F 2 (6))<br />

and the residue of F 2 (α 1 , h r1 ) was calculated.<br />

The algorithm then assumes another α 2 , and<br />

solves for h r2 , α 2 and h r2 were then substituted<br />

<strong>in</strong>to F 2 (6), and the residue of F 2 (α 2 , h r2 ) was<br />

calculated. If the residues were of opposite sign,<br />

a solution exists between α 1 and α 2 . For each<br />

crank angle, the values of the state variables α, h r<br />

and the friction was calculated.<br />

2.4 Input for the Program<br />

Simulated cyl<strong>in</strong>der pressure with respect to<br />

crank angle was used as <strong>in</strong>put. Three r<strong>in</strong>g<br />

profiles were considered, as shown <strong>in</strong> figure 4<br />

and their profiles were normalized to form two<br />

secant curves jo<strong>in</strong>ed back to back. This shape<br />

approximates the r<strong>in</strong>g more closely and its<br />

associated oil pressure distribution also<br />

resembles the actual moment distribution. The<br />

physical and operat<strong>in</strong>g properties that are<br />

required are given <strong>in</strong> Table 1. The r<strong>in</strong>g profile<br />

properties are given <strong>in</strong> Table 2.<br />

C1, C2 and sec is given by Eq. 8, 9 and 10<br />

respectively.<br />

Pz1h 1<br />

C1 r<br />

z1<br />

s<strong>in</strong> z1cos<br />

z1<br />

6U<br />

L1<br />

2<br />

(8)<br />

sec<br />

s<strong>in</strong> z 2 cos z<br />

<br />

1 1<br />

<br />

Fig. 4. Different r<strong>in</strong>g profiles.<br />

77


A. Sonthalia and C.R. Kumar, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 74‐83<br />

Table 1. Input parameter for simulation program.<br />

Parameters<br />

Connect<strong>in</strong>g Rod Length<br />

Crank Radius<br />

R<strong>in</strong>g Axial Width<br />

R<strong>in</strong>g Radial Width<br />

Piston Bore Diameter<br />

Value<br />

127 mm<br />

28.7 mm<br />

1.63mm<br />

2.63 mm<br />

70 mm<br />

Oil Density 881.5 kg/m 3<br />

Oil Viscosity<br />

0.008736 Pa‐s<br />

R<strong>in</strong>g Density 7900 kg/m 3<br />

R<strong>in</strong>g Modulus of Elasticity<br />

2.05 e11 Pa<br />

R<strong>in</strong>g Elastic Pressure 93539 N/m 2<br />

Eng<strong>in</strong>e Speed<br />

Compression Ratio 6.67<br />

Table 2. R<strong>in</strong>g profile property.<br />

3000 rpm<br />

Property Type I Type II Type III<br />

R<strong>in</strong>g Surface Crest 0.5 cm 0.5 cm 0.5 cm<br />

Position<br />

R<strong>in</strong>g Surface Upper 1.63 µm 3.26 µm 6.52 µm<br />

Profile Height<br />

R<strong>in</strong>g Surface Lower<br />

Profile Height<br />

1.63 µm 3.26 µm 6.52 µm<br />

3. EXPERIMENTAL SETUP<br />

A s<strong>in</strong>gle cyl<strong>in</strong>der 4‐stroke spark ignition eng<strong>in</strong>e<br />

was coupled to a DC motor cum generator on a<br />

test rig. Eng<strong>in</strong>e specification is given <strong>in</strong> Table 3.<br />

sketch shown <strong>in</strong> Fig. 5 describes the setup of the<br />

test rig onto which the eng<strong>in</strong>e and motor are<br />

be<strong>in</strong>g mounted.<br />

Fig. 5. Test setup.<br />

A simplified float<strong>in</strong>g l<strong>in</strong>er was designed and<br />

fabricated for this experiment. The l<strong>in</strong>er was<br />

constra<strong>in</strong>ed to move only <strong>in</strong> the vertical<br />

direction us<strong>in</strong>g the mount<strong>in</strong>g guide studs. A<br />

piezoelectric force sensor was mounted on a<br />

support stand and it was attached to the l<strong>in</strong>er as<br />

shown <strong>in</strong> Fig. 6. When the piston is mov<strong>in</strong>g<br />

towards TDC, the rubb<strong>in</strong>g friction between the<br />

piston and l<strong>in</strong>er imparts a force which tends to<br />

move the l<strong>in</strong>er along with the piston <strong>in</strong> the<br />

vertical direction. The force sensor restricts the<br />

movement of the l<strong>in</strong>er and converts the<br />

movement <strong>in</strong>to voltage signals. Us<strong>in</strong>g a charge<br />

amplifier, cathode ray oscilloscope (CRO) and<br />

data acquisition system, the voltage signal was<br />

transferred to a personal computer. A crank<br />

angle encoder was used to measure the crank<br />

angle, which gives voltage peaks when the<br />

piston reaches the TDC.<br />

Table 3. Eng<strong>in</strong>e specification.<br />

Parameters<br />

Make<br />

Type<br />

Eng<strong>in</strong>e Capacity<br />

Bore<br />

Value<br />

Greaves MK‐25<br />

Stroke<br />

66.7 mm<br />

Compression Ratio 6.67<br />

Maximum Power<br />

Maximum Torque<br />

Cool<strong>in</strong>g System<br />

Lubrication<br />

4‐stroke, side valve<br />

256 cc<br />

70 mm<br />

2.5 kW @ 3000 rpm<br />

14Nm @ 1700 rpm<br />

Forced Air Cool<strong>in</strong>g<br />

Splash type<br />

Ammeter and voltmeter were used for power<br />

measurements. The prime mover, a DC shunt<br />

motor, was chosen <strong>in</strong> order to keep the speed<br />

constant and precise without fluctuation. Us<strong>in</strong>g a<br />

Ward Leonard system the motor was connected<br />

and speed was varied from zero to 2000 rpm.<br />

Us<strong>in</strong>g diodes AC power was converted to DC<br />

power to run the prime mover. The tests were<br />

performed us<strong>in</strong>g non fir<strong>in</strong>g condition. A simple<br />

Fig. 6. Test setup.<br />

4. RESULTS AND DISCUSSIONS<br />

The piston position, velocity and acceleration<br />

needed for r<strong>in</strong>g dynamics model were found<br />

us<strong>in</strong>g the piston k<strong>in</strong>ematics equations (Appendix<br />

I) and were plotted as shown <strong>in</strong> Figs. 7‐9.<br />

Simulated cyl<strong>in</strong>der pressure is shown <strong>in</strong> figure<br />

10. The piston axial position is considered with<br />

78


A. Sonthalia and C.R. Kumar, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 74‐83<br />

respect to Bottom Dead Centre (BDC) where<br />

piston’s axial position is zero.<br />

The simulated result for non‐dimensional r<strong>in</strong>g<br />

twist angle is shown <strong>in</strong> Fig. 11. The positive<br />

values of the twist angle refer to the r<strong>in</strong>g’s back<br />

(<strong>in</strong>ner diameter) mov<strong>in</strong>g down and the r<strong>in</strong>g’s<br />

face mov<strong>in</strong>g up. The largest twist will take place<br />

just after Top Dead Centre (TDC) follow<strong>in</strong>g<br />

compression, s<strong>in</strong>ce it is necessary to generate<br />

the lift force as the piston speed is low at the<br />

TDC. It can be seen that Type 3 has the smallest<br />

r<strong>in</strong>g twist angle, and Type 1 hav<strong>in</strong>g the largest<br />

r<strong>in</strong>g twist angle.<br />

Fig. 7. Piston axial location.<br />

Fig. 11. R<strong>in</strong>g twist angle.<br />

Fig. 8. Piston axial speed.<br />

Fig. 9. Piston acceleration.<br />

Fig. 10. Simulated cyl<strong>in</strong>der pressure.<br />

Figure 12 shows the non‐dimensional lubricant<br />

film thickness with respect to crank angle. The<br />

compression and power stroke has lower film<br />

thickness contribut<strong>in</strong>g to <strong>in</strong>crease friction. The<br />

exhaust stroke is similar to the <strong>in</strong>take stroke, as<br />

the cyl<strong>in</strong>der gas pressure is closer to<br />

atmospheric pressure. At both the dead center<br />

the film is very th<strong>in</strong>, especially at the TDC after<br />

compression stroke; this may result <strong>in</strong> heavy<br />

wear of the cyl<strong>in</strong>der wall due to surface to<br />

surface contact. Type 1 r<strong>in</strong>g profile has highest<br />

oil film thickness and type 3 the lowest.<br />

In order to validate the film thickness values<br />

obta<strong>in</strong>ed through simulation, data collected from<br />

literature was utilized, as shown <strong>in</strong> Fig. 13.<br />

Takiguchi et al. [8] conducted experiments on a<br />

four‐ stroke eng<strong>in</strong>e and found the film thickness.<br />

The same eng<strong>in</strong>e parameters were used as <strong>in</strong>put<br />

for the MATLAB code to f<strong>in</strong>d the oil film thickness.<br />

S<strong>in</strong>ce some data were not available, few<br />

assumptions were made as <strong>in</strong>puts of the program,<br />

like the r<strong>in</strong>g radial width which was assumed to be<br />

0.4 times the bore [15], r<strong>in</strong>g material properties<br />

where the r<strong>in</strong>g density was 7600 kg/m 3 and<br />

modulus of elasticity was taken to be 1.2e +11 . The<br />

output of the simulation code is almost match<strong>in</strong>g<br />

with the work done by Takiguchi et al. [8]. The<br />

79


A. Sonthalia and C.R. Kumar, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 74‐83<br />

small variations could be due to the assumptions<br />

that were made for the <strong>in</strong>put.<br />

Fig. 12. Lubricant film thickness.<br />

friction force. At TDC the film thickness for type 3<br />

profile is found to be lowest. It is expected that<br />

the friction due to lubricant viscosity was<br />

m<strong>in</strong>imum which is <strong>in</strong> l<strong>in</strong>e with [14].<br />

The total force act<strong>in</strong>g between the r<strong>in</strong>g and the<br />

l<strong>in</strong>er is shown <strong>in</strong> figure 15, it comprises of the<br />

friction force act<strong>in</strong>g because of the lubricant oil<br />

viscosity and the combustion mixture <strong>in</strong> the<br />

axial direction, and the r<strong>in</strong>g elastic pressure<br />

force act<strong>in</strong>g <strong>in</strong> radial direction. Type 3 r<strong>in</strong>g<br />

designs has m<strong>in</strong>imum total force act<strong>in</strong>g on it,<br />

followed by type 2 with type 1 hav<strong>in</strong>g the<br />

highest force act<strong>in</strong>g on it at the TDC after<br />

compression.<br />

From Fig. 16 friction coefficient was found<br />

m<strong>in</strong>imum for type 3 r<strong>in</strong>gs, which is 1.82e ‐2 and it<br />

was found to be maximum for type 1 r<strong>in</strong>g (2.8e ‐<br />

2). The reason for m<strong>in</strong>imum friction coefficient<br />

for type 3 r<strong>in</strong>g was due to the m<strong>in</strong>imum force<br />

act<strong>in</strong>g between the r<strong>in</strong>g and the cyl<strong>in</strong>der l<strong>in</strong>er.<br />

The total force can be reduced by us<strong>in</strong>g tribopads<br />

<strong>in</strong>serted <strong>in</strong>to the piston and tribo‐<strong>in</strong>serts<br />

<strong>in</strong>serted <strong>in</strong>to the cyl<strong>in</strong>der l<strong>in</strong>er [16].<br />

Fig. 13. Comparison of film thickness.<br />

Fig. 14. Total force.<br />

Fig. 14. Friction force.<br />

Figure 14 shows the friction force act<strong>in</strong>g between<br />

the r<strong>in</strong>g and the cyl<strong>in</strong>der l<strong>in</strong>er, it can be seen that<br />

friction is maximum at po<strong>in</strong>t of maximum<br />

cyl<strong>in</strong>der pressure. It can be attributed to the fact<br />

that there is an <strong>in</strong>crease <strong>in</strong> asperity contact near<br />

the top and bottom dead center due to the mixed<br />

lubrication regime, whereas hydrodynamic<br />

lubrication exists for most part of the stroke. The<br />

friction was found maximum for type 1 r<strong>in</strong>g<br />

profile, on the other hand type 3 has m<strong>in</strong>imum<br />

Fig. 16. Friction coefficient.<br />

80


A. Sonthalia and C.R. Kumar, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 74‐83<br />

Type 3 r<strong>in</strong>g profiles were then manufactured<br />

and the orig<strong>in</strong>al compression r<strong>in</strong>g was replaced<br />

by type 3 r<strong>in</strong>g profile <strong>in</strong> the eng<strong>in</strong>e piston.<br />

Experiments were performed on the eng<strong>in</strong>e<br />

us<strong>in</strong>g motored float<strong>in</strong>g l<strong>in</strong>er method. Figure 17<br />

and 18 shows the friction force act<strong>in</strong>g on the<br />

l<strong>in</strong>er. From the experimental result it can be<br />

seen that with the <strong>in</strong>crease <strong>in</strong> speed, the friction<br />

force reduces, because of the <strong>in</strong>crease <strong>in</strong> film<br />

thickness and better lubrication. On the other<br />

hand, as it was assumed to be hydrodynamic<br />

lubrication, the friction force obta<strong>in</strong>ed through<br />

simulation <strong>in</strong>creases with the <strong>in</strong>crease <strong>in</strong> speed.<br />

A high friction force was observed for simulated<br />

curve dur<strong>in</strong>g power stroke. This is attributed to<br />

the fact that the eng<strong>in</strong>e was motored dur<strong>in</strong>g<br />

experiments and no combustion took place, as a<br />

result the friction force dur<strong>in</strong>g power stroke is<br />

less. The difference <strong>in</strong> the force dur<strong>in</strong>g the<br />

combustion period was found to be 156.23 N<br />

and 267.72 N for 1500 rpm and 2000 rpm<br />

respectively. The force was calculated by<br />

subtract<strong>in</strong>g the area under the curve of friction<br />

force acquired from the tests from the simulated<br />

friction force.<br />

Fig. 17. Friction force at 1500 rpm.<br />

5. CONCLUSION<br />

In this study a r<strong>in</strong>g dynamics model was<br />

simulated for the analysis of r<strong>in</strong>g film thickness,<br />

the r<strong>in</strong>g twist angles, the friction force and the<br />

friction coefficient us<strong>in</strong>g Secant method, for the<br />

compression r<strong>in</strong>g. Three different r<strong>in</strong>g profiles<br />

were chosen for the analysis purpose. Results<br />

<strong>in</strong>dicate that hydrodynamic lubrication occurs<br />

for most part of the stroke except at the dead<br />

center where mixed lubrication regime was<br />

found due to reduced film thickness result<strong>in</strong>g <strong>in</strong><br />

<strong>in</strong>creased friction force.<br />

Type 3 r<strong>in</strong>g profiles was found to have the<br />

lowest friction coefficient and the lowest friction<br />

force, this would result <strong>in</strong> <strong>in</strong>crease <strong>in</strong> fuel<br />

economy s<strong>in</strong>ce the work done by the eng<strong>in</strong>e<br />

aga<strong>in</strong>st the friction force would be reduced. On<br />

the other hand the oil film thickness was found<br />

to be m<strong>in</strong>imum for type 3 profile, this could be a<br />

cause for concern s<strong>in</strong>ce there can be direct<br />

contact between the r<strong>in</strong>g and the cyl<strong>in</strong>der l<strong>in</strong>er<br />

thus <strong>in</strong>creas<strong>in</strong>g the wear rate of the l<strong>in</strong>er.<br />

Type 3 r<strong>in</strong>g profile was manufactured and<br />

experimental work was carried out on the<br />

eng<strong>in</strong>e us<strong>in</strong>g float<strong>in</strong>g l<strong>in</strong>er method. The result<br />

from the experiment and the simulation were<br />

found to have a similar trend. The oil film<br />

thickness was validated by compar<strong>in</strong>g the<br />

output of the MATLAB code (us<strong>in</strong>g the same data<br />

as given <strong>in</strong> literature) with literature and it was<br />

found to be <strong>in</strong> situ. This shows that whenever a<br />

change <strong>in</strong> r<strong>in</strong>g design is needed this model can<br />

be used before go<strong>in</strong>g for actual manufactur<strong>in</strong>g of<br />

the r<strong>in</strong>g, thus sav<strong>in</strong>g time and expenses <strong>in</strong>volved<br />

<strong>in</strong> r<strong>in</strong>g manufactur<strong>in</strong>g.<br />

Further improvements can be done <strong>in</strong> this model<br />

by tak<strong>in</strong>g <strong>in</strong>to consideration blow‐by and f<strong>in</strong>d<strong>in</strong>g<br />

its effect on hydrocarbon emissions and also<br />

f<strong>in</strong>d<strong>in</strong>g the r<strong>in</strong>g movement <strong>in</strong> the piston groove.<br />

REFERENCES<br />

Fig. 18. Friction force at 2000 rpm.<br />

[1] Y. Wakuri, M. Soejima, Y. Ejima, T. Hamatake, T.<br />

Kitahara: Studies on friction characteristics of<br />

reciprocat<strong>in</strong>g eng<strong>in</strong>e, SAE 952471, 1995.<br />

[2] R.C. S<strong>in</strong>gh, R. Chaudhary, R.K. Pandey, S. Maji:<br />

Experimental Studies for the role of piston r<strong>in</strong>gs’<br />

face profile on performance of a diesel eng<strong>in</strong>e<br />

fueled with diesel and jatropha based biodiesel,<br />

81


A. Sonthalia and C.R. Kumar, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 74‐83<br />

Journal of Scientific and Industrial Research, Vol.<br />

71, pp. 57‐62, 2012.<br />

[3] Y. Wakuri, T. Hamatake, M. Soejima, T. Kitahara:<br />

Piston r<strong>in</strong>g friction <strong>in</strong> <strong>in</strong>ternal combustion<br />

eng<strong>in</strong>es, Tribology International, Vol. 25, No. 5,<br />

pp. 299‐308, 1992.<br />

[4] K. Wannatong, S. Chanchaona, S. Sanitjai:<br />

Simulation algorithm for piston r<strong>in</strong>g dynamics,<br />

Simulation Modell<strong>in</strong>g Practice and Theory, Vol.<br />

16, pp. 127–146, 2008.<br />

[5] Bryan O’Rourke, Rudolf Stanglmaier, Donald<br />

Radford: Development of a float<strong>in</strong>g ‐ l<strong>in</strong>er eng<strong>in</strong>e<br />

for improv<strong>in</strong>g the mechanical efficiency of high<br />

performance eng<strong>in</strong>es, SAE 2006‐01‐3636, 2006.<br />

[6] Kwang‐soo Kim, Thom Godward, Masaaki<br />

Takiguchi, & Shuma Aoki: Part 2: The effects of<br />

lubricat<strong>in</strong>g oil film thickness distribution on<br />

gasol<strong>in</strong>e eng<strong>in</strong>e piston friction, SAE 2007‐01‐<br />

1247, 2007.<br />

[7] Philipe Saad, Lloyd Kamo, Milad Mekari, Walter<br />

Bryzik, Victor Wong, Nicolas Dmitrichenko,<br />

Rudolf Mnatsakanov: Model<strong>in</strong>g and measurement<br />

of tribological parameters between piston r<strong>in</strong>gs<br />

and l<strong>in</strong>er <strong>in</strong> turbocharged diesel eng<strong>in</strong>e, SAE<br />

2007‐01‐1440, 2007.<br />

[8] Y. Harigaya, M. Suzuki, M. Takiguchi: Analysis of<br />

oil film thickness on a piston r<strong>in</strong>g of diesel eng<strong>in</strong>e:<br />

effect of oil film temperature, J. Eng. Gas Turb<strong>in</strong>es<br />

Power Vol. 125, pp. 596–603, 2003.<br />

[9] T. Eduardo, & F.E.B. Nigro: Piston R<strong>in</strong>g Pack and<br />

Cyl<strong>in</strong>der Wear Model<strong>in</strong>g, SAE 2001‐01‐0572, 2001.<br />

[10] T. Tian: Modell<strong>in</strong>g the performance of the piston r<strong>in</strong>gpack<br />

<strong>in</strong> <strong>in</strong>ternal combustion eng<strong>in</strong>es, PhD Thesis,<br />

Massachusetts Institute of Technology, 1997.<br />

[11] Sung‐Woo Cho, Sang M<strong>in</strong> Choi, Choong‐Sik Bae:<br />

Frictional modes of barrel shaped piston r<strong>in</strong>gs<br />

under flooded condition, Tribology International,<br />

Vol. 33, No. 8, pp. 545‐551, 2000.<br />

[12] C.T. Chang: Piston R<strong>in</strong>g Friction, Master of<br />

Science Thesis, Massachusetts Institute of<br />

Technology, 1982.<br />

[13] H. Rahnejat, P.C. Mishra, P.D. K<strong>in</strong>g: Tribology of<br />

the r<strong>in</strong>g–bore conjunction subject to a mixed<br />

regime of lubrication, Proc. IMechE, Part C: J.<br />

Mechanical Eng<strong>in</strong>eer<strong>in</strong>g Science, Vol. 223, pp.<br />

987‐998, 2009.<br />

[14] V.D’ Agost<strong>in</strong>o, P. Maresca, A. Senatore:<br />

Theoretical analysis for friction losses<br />

m<strong>in</strong>imization <strong>in</strong> piston r<strong>in</strong>gs, Proceed<strong>in</strong>gs of the<br />

International Conference on Tribology, Parma,<br />

Italy, 20‐22.09.2006.<br />

[15] A. Kolch<strong>in</strong>, V. Demidov: Design of Automotive<br />

Eng<strong>in</strong>es, MIR Publishers, Moscow, 1984.<br />

[16] R. Pesic, A. Dav<strong>in</strong>ic, S. Ve<strong>in</strong>ovic: Methods of<br />

tribological improves and test<strong>in</strong>g of piston<br />

eng<strong>in</strong>es, compressors and pumps, Tribology In<br />

Industry, Vol. 27, No. 1&2, pp. 38‐47, 2005.<br />

NOMENCLATURE<br />

η dynamic Viscosity of oil (Ns/m 2 )<br />

L 1 width of r<strong>in</strong>g above profile crest (m)<br />

ρ r<strong>in</strong>g density (kg/m 3 )<br />

L 2 width of r<strong>in</strong>g below profile crest (m)<br />

constant of <strong>in</strong>tegration<br />

ΔP pressure difference across the r<strong>in</strong>g (N/m 2 )<br />

characteristic r<strong>in</strong>g tilt angle<br />

P e r<strong>in</strong>g elastic pressure (N/m 2 )<br />

a r<strong>in</strong>g <strong>in</strong>cl<strong>in</strong>ation angle (°)<br />

R cyl cyl<strong>in</strong>der bore radius (m)<br />

a’ normalized r<strong>in</strong>g tilt angle<br />

R crank radius (m)<br />

a o ’ normalized maximum r<strong>in</strong>g tilt angle<br />

Al<br />

V<br />

B<br />

W<br />

x<br />

h<br />

Y<br />

h p<br />

Z 1<br />

h r<br />

h r ’<br />

Z 2<br />

normalized piston speed<br />

connect<strong>in</strong>g rod length (m)<br />

circumferential r<strong>in</strong>g speed<br />

r<strong>in</strong>g radial width (m)<br />

r<strong>in</strong>g axial width (m)<br />

characteristic film height<br />

axial coord<strong>in</strong>ate between r<strong>in</strong>g and wall<br />

local film height (m)<br />

piston axial location (m)<br />

r<strong>in</strong>g profile height (m)<br />

transformed coord<strong>in</strong>ate at the top edge of the r<strong>in</strong>g<br />

r<strong>in</strong>g reference distance (m)<br />

normalized r<strong>in</strong>g reference film height<br />

transformed coord<strong>in</strong>ate at the bottom edge of<br />

the r<strong>in</strong>g<br />

APPENDIX I<br />

The piston acceleration, speed and piston<br />

position is calculated us<strong>in</strong>g the below equations<br />

Position of piston<br />

Y R cos<br />

Al cos<br />

Al R<br />

Velocity of the piston<br />

V DthetaRs<strong>in</strong><br />

DphiAl s<strong>in</strong><br />

<br />

82


A. Sonthalia and C.R. Kumar, Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 74‐83<br />

Acceleration of piston<br />

A <br />

2<br />

DDthetaR s<strong>in</strong><br />

Dtheta R cos<br />

<br />

DDphiAl s<strong>in</strong><br />

<br />

Where<br />

1 s<strong>in</strong><br />

s<strong>in</strong><br />

R <br />

<br />

Al<br />

2<br />

Dphi Al<br />

cos<br />

<br />

R cos<br />

Dphi Dtheta Al cos<br />

<br />

2 2 s<strong>in</strong><br />

<br />

DDtheta Dtheta R cos<br />

Dtheta R Al s<strong>in</strong><br />

<br />

<br />

cos<br />

<br />

R cos<br />

2 2 R s<strong>in</strong><br />

DDphi DDtheta Dphi tan<br />

Dtheta<br />

Al cos<br />

Al cos<br />

Dtheta <br />

Rpm<br />

9.54928<br />

83


Vol. 35. No. 1 (2013) 84‐94<br />

Tribology <strong>in</strong> Industry<br />

www.<strong>tribology</strong>.f<strong>in</strong>k.rs<br />

RESEARCH<br />

Effect of Contact Temperature Rise Dur<strong>in</strong>g Slid<strong>in</strong>g on<br />

the Wear Resistance of TiNi Shape Memory Alloys<br />

S.K. Roy Chowdhury a , K. Malhotra a , H. Padmawar a<br />

a Department of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Indian Institute of Technology, Kharagpur 721 302, India.<br />

Keywords:<br />

TiNi alloy<br />

Wear resistance<br />

Phase transformation<br />

Contact temperature<br />

Pseudoelasticity<br />

Correspond<strong>in</strong>g Author:<br />

S.K. Roy Chowdhury<br />

Professor<br />

Department of Mechanical<br />

Eng<strong>in</strong>eer<strong>in</strong>g, Indian Institute of<br />

Technology, Kharagpur 721 302,<br />

India<br />

E‐mail: skrc@mech.iitkgp.ernet.<strong>in</strong><br />

A B S T R A C T<br />

The high wear resistance of TiNi shape memory alloys has generally been<br />

attributed to its pseudoelastic nature. In the present work the harden<strong>in</strong>g<br />

effect due to its phase transformation from martensite to austenite due to<br />

frictional heat<strong>in</strong>g dur<strong>in</strong>g slid<strong>in</strong>g has been considered. Based on exist<strong>in</strong>g<br />

constitutive models that represent the experimental results of TiNi shape<br />

memory alloys a theoretical model of the dependence of wear‐resistance on<br />

the contact temperature rise has been developed.<br />

The analysis was further extended to <strong>in</strong>clude the operat<strong>in</strong>g and surface<br />

roughness parameters. The model essentially <strong>in</strong>dicates that for these alloys<br />

wear decreases with the rise <strong>in</strong> contact temperature over a wide range of<br />

load, speed and surface roughness comb<strong>in</strong>ation dur<strong>in</strong>g slid<strong>in</strong>g. This means<br />

that the wear resistance of these alloys results from the very cause that is<br />

normally responsible for the <strong>in</strong>creased wear and seizure of common<br />

eng<strong>in</strong>eer<strong>in</strong>g materials.<br />

Prelim<strong>in</strong>ary wear tests were carried out with TiNi alloys at vary<strong>in</strong>g ambient<br />

temperature and vary<strong>in</strong>g load‐speed comb<strong>in</strong>ations and the results agree<br />

well with the theoretical predictions.<br />

© 2013 Published by Faculty of Eng<strong>in</strong>eer<strong>in</strong>g<br />

1. INTRODUCTION<br />

Titanium‐Nickel (TiNi) alloys are widely known<br />

for their shape memory effect and<br />

pseudoelasticity. These effects are due to the fact<br />

that these alloys can exist <strong>in</strong> two different<br />

temperature‐dependent crystal structures:<br />

martensite at low temperatures and austenite at<br />

high temperatures. When a TiNi alloy <strong>in</strong><br />

martensite phase is heated the phase changes to<br />

austenite and if it is cooled after complete<br />

transformation it reverts back to martensite phase<br />

with some hysteresis. The phase transformation<br />

can also be <strong>in</strong>duced by change <strong>in</strong> stress level and<br />

the <strong>in</strong>itial phase can be recovered with the<br />

removal of the stress. Here a decrease <strong>in</strong> stress is<br />

equivalent to <strong>in</strong>crease <strong>in</strong> temperature result<strong>in</strong>g <strong>in</strong><br />

nucleation of martensite. This gives rise to<br />

basically three different forms from the practical<br />

application po<strong>in</strong>t of view: martensite, stress<br />

<strong>in</strong>duced martensite and austenite. In the<br />

martensitic form the material is soft and ductile<br />

and can be easily deformed. In the stress <strong>in</strong>duced<br />

martensitic form it is highly elastic and it can<br />

return to its orig<strong>in</strong>al shape on unload<strong>in</strong>g even<br />

after substantial deformation. This form is known<br />

84


S.K. Roy Chowdhury et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 84‐94<br />

as pseudoelasticity. In the austenitic form it is<br />

strong and hard [1,2].<br />

A good deal of research has been carried out on<br />

the shape memory effect of TiNi alloys and their<br />

applications [3‐8]. These alloys have also been<br />

found to be extremely resistant to wear <strong>in</strong> slid<strong>in</strong>g,<br />

fatigue, abrasion and erosion modes [9‐14]. Some<br />

Ti based alloys have also been widely used <strong>in</strong><br />

biomedical eng<strong>in</strong>eer<strong>in</strong>g [15]. The high wear<br />

resistance of TiNi alloys has generally been<br />

attributed not to the <strong>in</strong>crease <strong>in</strong> hardness but to<br />

the pseudoelastic nature of the alloys. The<br />

argument here is that <strong>in</strong> the pseudoelastic state,<br />

contact between the slid<strong>in</strong>g pair would be largely<br />

elastic and wear is likely to be small s<strong>in</strong>ce <strong>in</strong><br />

pseudoelastcity recoverable stra<strong>in</strong> may reach up<br />

to 8% or more [16]. Li [10] proposed that the<br />

excellent wear resistance of these alloys is<br />

<strong>in</strong>fluenced by their hardness too. Accord<strong>in</strong>g to this<br />

proposition wear resistance is partly <strong>in</strong>fluenced by<br />

pseudoelasticity and partly by hardness<br />

depend<strong>in</strong>g on the material state. High hardness<br />

contributes to wear resistance when the<br />

pseudoelasticity is of low order. Some authors<br />

attributed the wear resistance of TiNi alloys to<br />

causes other than pseudoelasticity, for example,<br />

work harden<strong>in</strong>g [17], erosion resistance [18].<br />

Abed<strong>in</strong>i et al. [19] observed decrease <strong>in</strong> wear with<br />

the <strong>in</strong>crease <strong>in</strong> temperature and attributed this<br />

effect to both pseudoelasticity and higher strength<br />

of the alloy <strong>in</strong> the austenitic state at higher<br />

temperatures. Some attempts have been made to<br />

develop a model that shows <strong>in</strong>crease <strong>in</strong> hardness<br />

of these alloys with the <strong>in</strong>crease <strong>in</strong> temperature <strong>in</strong><br />

micro level [20].<br />

However the effect of frictional heat generated<br />

at the contact area between a slid<strong>in</strong>g pair on the<br />

wear resistance of these alloys has not been<br />

considered hitherto. The present work explores<br />

the possibility of attribut<strong>in</strong>g wear resistance of<br />

TiNi alloys to the harden<strong>in</strong>g effect due to phase<br />

transformation from martensite to austenite<br />

due to contact temperature rise dur<strong>in</strong>g slid<strong>in</strong>g.<br />

The deformation dur<strong>in</strong>g wear process is mostly<br />

not recoverable and therefore it is likely that the<br />

wear resistance would be more <strong>in</strong>fluenced by<br />

hardness than pseudoelasticity that occurs <strong>in</strong> a<br />

narrow temperature zone near the austenitic<br />

transformation temperature. In tribological<br />

contacts the temperature rise due to frictional<br />

heat generated at the peaks of the asperities can<br />

be of very high order of magnitude and under<br />

normal circumstances for most eng<strong>in</strong>eer<strong>in</strong>g<br />

materials this has an adverse effect on the life of<br />

rubb<strong>in</strong>g components due to <strong>in</strong>creased wear and<br />

friction. If, however, the wear resistance of near<br />

equi‐atomic TiNi alloys is <strong>in</strong>deed due to<br />

harden<strong>in</strong>g dur<strong>in</strong>g the martensite to austenite<br />

phase transformation due to frictional heat then<br />

this would mean that the wear resistance of<br />

these alloys results from the very cause that is<br />

normally responsible for the <strong>in</strong>creased wear and<br />

seizure of eng<strong>in</strong>eer<strong>in</strong>g components.<br />

The paper attempts to develop a simple<br />

theoretical model to relate contact temperature<br />

rise dur<strong>in</strong>g slid<strong>in</strong>g and wear resistance of TiNi<br />

alloys <strong>in</strong> the macroscopic level. Some<br />

elementary experiments were also carried out<br />

<strong>in</strong> support of the theoretical predictions.<br />

2. A THEORETICAL MODEL OF TEMPERATURE<br />

DEPENDENCE OF HARDNESS AND WEAR<br />

RESISTANCE OF TiNi ALLOYS<br />

In order to develop a theoretical model we first<br />

consider a 1‐D constitutive model that<br />

represents the exist<strong>in</strong>g experimental results of<br />

TiNi shape memory alloys. Several such models<br />

exist and they all basically couple a<br />

phenomenological macro‐scale constitutive law<br />

relat<strong>in</strong>g stress to stra<strong>in</strong> temperature and phase<br />

fraction with a k<strong>in</strong>etic law that describes the<br />

evolution of the phase fraction as a function of<br />

stress and temperature [8,21,22]. Here we use<br />

the model proposed by Liang and Rogers [8].<br />

In a typical martensitic phase change as a<br />

function of temperature there are four<br />

important temperatures: martensitic start<br />

temperature (M s ) , martensitic f<strong>in</strong>ish<br />

temperature (M f ), austenitic start temperature<br />

(A s ) and austenitic f<strong>in</strong>ish temperature (A f ). Liang<br />

and Rogers [8] described the martensitic<br />

fraction () vs. temperature (T) relation as a<br />

cos<strong>in</strong>e function for a shape memory alloy where<br />

A s >M s and the equation describ<strong>in</strong>g the phase<br />

transformation is given as:<br />

1<br />

[cos{ a<br />

A(<br />

T AS<br />

)} 1] (1)<br />

A<br />

2<br />

M<br />

where is the martensite volume fraction, T is<br />

the alloy specimen temperature and the<br />

constant a is given by:<br />

A<br />

85


S.K. Roy Chowdhury et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 84‐94<br />

aA<br />

/( Af<br />

As<br />

)<br />

(2)<br />

S<strong>in</strong>ce we are <strong>in</strong>terested <strong>in</strong> the harden<strong>in</strong>g effect<br />

of the shape memory alloys with rise <strong>in</strong> contact<br />

temperature only the phase transformation<br />

between martensite to austenite needs to be<br />

considered. It has been shown [8] that the phase<br />

changes temperatures are l<strong>in</strong>early related to the<br />

applied stress and with<strong>in</strong> the range between<br />

austenite start and f<strong>in</strong>ish temperatures we may<br />

write:<br />

<br />

0<br />

A0 As<br />

(3)<br />

C<br />

where A 0 s is the austenite start temperatures <strong>in</strong><br />

stress free state and C is a constant. Comb<strong>in</strong><strong>in</strong>g<br />

equations (1) and (3) we have:<br />

1<br />

' o<br />

[cos( aA(<br />

T As<br />

)) 1]<br />

(4)<br />

M A 2<br />

C<br />

Here a<br />

A<br />

will change to:<br />

0 0<br />

a C<br />

/( A A )<br />

A<br />

0<br />

A<br />

f<br />

be<strong>in</strong>g the austenite f<strong>in</strong>ish temperature <strong>in</strong><br />

stress free state. S<strong>in</strong>ce <strong>in</strong> the present case we<br />

consider that the phase transformation will be<br />

complete when all the martensite changes <strong>in</strong>to<br />

austenite we may set to zero and this gives:<br />

M A<br />

f<br />

o<br />

' C(<br />

T As<br />

) (5)<br />

A<br />

a<br />

M<br />

In many cases hardness is taken as three times<br />

the yield stress and therefore the temperature<br />

dependent hardness variation dur<strong>in</strong>g<br />

martensite to austenite transformation can be<br />

given by:<br />

Here C,<br />

H<br />

M A<br />

A and<br />

o<br />

s<br />

A<br />

<br />

3C[<br />

T A<br />

a<br />

A<br />

s<br />

o<br />

s<br />

]<br />

(6)<br />

a<br />

A<br />

are all constants and<br />

therefore hardness varies only with<br />

temperature. In general <strong>in</strong> slid<strong>in</strong>g wear<br />

hardness plays an important role and this is<br />

given by Archard’s wear law:<br />

Wx<br />

V K<br />

(7)<br />

w<br />

H<br />

M A<br />

Here K w is the wear coefficient, W is the load, x<br />

the slid<strong>in</strong>g distance and H the hardness of the<br />

softer of the two rubb<strong>in</strong>g materials. Comb<strong>in</strong><strong>in</strong>g<br />

equations (6) and (7) a simple temperature<br />

dependent wear equation can be written as:<br />

o <br />

where B ( As<br />

) .<br />

a<br />

K<br />

wWx<br />

V (8)<br />

3C(<br />

T B)<br />

Def<strong>in</strong><strong>in</strong>g non‐dimensional wear volume<br />

_<br />

non‐dimensional temperature T as:<br />

_<br />

V<br />

V <br />

Wx<br />

CB<br />

A<br />

and<br />

_<br />

T<br />

T <br />

B<br />

_<br />

V and<br />

we may rewrite equation (8) <strong>in</strong> nondimensional<br />

form as:<br />

_<br />

V<br />

<br />

K<br />

w<br />

3 _<br />

( T 1)<br />

(9)<br />

Variation of non‐dimensional wear with nondimensional<br />

temperature with the experimental<br />

value of K w from section‐5(b) is shown <strong>in</strong> Fig. 1.<br />

Fig. 1. Variation of non‐dimensional wear with nondimensional<br />

temperature with the average K<br />

w value of<br />

2.5E‐5 from the experimental results <strong>in</strong> section 5 (b).<br />

Clearly this shows decrease <strong>in</strong> wear with<br />

<strong>in</strong>crease <strong>in</strong> temperature and this supports the<br />

argument that with the <strong>in</strong>crease <strong>in</strong> contact<br />

temperature is likely to cause the austenitic<br />

phase transformation of TiNi alloy lead<strong>in</strong>g to<br />

<strong>in</strong>creased wear resistance due to <strong>in</strong>crease <strong>in</strong><br />

hardness.<br />

86


S.K. Roy Chowdhury et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 84‐94<br />

3. INFLUENCE OF TRIBOLOGICAL OPERATING<br />

AND MATERIAL PARMETERS THAT<br />

AFFECT CONTACT TEMPERATURE RISE<br />

The total contact temperature at the slid<strong>in</strong>g<br />

<strong>in</strong>terface is the sum of the bulk temperature<br />

T bulk and the contact temperature rise .<br />

T=+T bulk (10)<br />

In general T bulk may be taken as atmospheric<br />

temperature and therefore the effective<br />

temperature at the slid<strong>in</strong>g <strong>in</strong>terface is ma<strong>in</strong>ly<br />

dom<strong>in</strong>ated by the contact temperature rise .<br />

The contact temperature rise between slid<strong>in</strong>g<br />

bodies has been researched widely ever s<strong>in</strong>ce<br />

Block [23] and Jaeger [24] reported their<br />

pioneer<strong>in</strong>g works on flash temperature <strong>in</strong> 1937<br />

and 1942 respectively. Subsequently, Archard<br />

[25] proposed the follow<strong>in</strong>g set of handy<br />

equations to predict the mean contact<br />

temperature rise for different speed and<br />

deformation conditions:<br />

<br />

<br />

<br />

<br />

mhe<br />

mhp<br />

mle<br />

mlp<br />

*<br />

WvE<br />

<br />

0.41<br />

<br />

KcR<br />

<br />

H<br />

0.8<br />

Kc<br />

<br />

3<br />

4<br />

2<br />

3<br />

W E v<br />

0.142<br />

1<br />

3<br />

KR<br />

1<br />

2<br />

W vH<br />

0.125<br />

K<br />

<br />

1<br />

2<br />

W<br />

1<br />

2<br />

1<br />

4<br />

* 1/3<br />

v<br />

1<br />

2<br />

<br />

1<br />

2<br />

(11)<br />

Here mhe, mhp ,mle and mlp <strong>in</strong>dicate mean high<br />

speed elastic, mean high speed plastic, mean low<br />

speed elastic and mean low speed plastic<br />

respectively and v is the slid<strong>in</strong>g speed, E * the<br />

equivalent elastic modulus, K the thermal<br />

conductivity, ρ the density, c specific heat and R<br />

the protrusion radius. These equations are widely<br />

used even today for their simplicity even though<br />

they essentially refer to cont<strong>in</strong>uous area of contact<br />

and disregard the discrete nature of rough<br />

surfaces. The deformation conditions for rough<br />

surfaces with typically Gaussian distribution of<br />

surface heights are ideally determ<strong>in</strong>ed us<strong>in</strong>g the<br />

plasticity <strong>in</strong>dex (ψ) given by:<br />

*<br />

E <br />

(12)<br />

H r<br />

where the equivalent elasticity modulus E * is<br />

2<br />

2<br />

given by<br />

1 1 1<br />

, σ is the standard<br />

*<br />

E E1<br />

E2<br />

deviation of the surface height distribution and r<br />

is the asperity radius. A contact is considered to<br />

be elastic if ψ< 0.6 and plastic if ψ > 1.5. Speed<br />

criterion (L) is given by:<br />

L = vaρc/2K (13)<br />

where a is the contact radius. A contact is<br />

considered to be fast if L > 5 and slow if L < 0.5.<br />

However, s<strong>in</strong>ce Archard’s contact temperature<br />

formulations are essentially for s<strong>in</strong>gle contact<br />

area we consider the bulk deformation and<br />

therefore we would consider the deformation to<br />

be plastic if P/ (πa 2 ) > H. Tak<strong>in</strong>g T≈ and<br />

comb<strong>in</strong><strong>in</strong>g equations (8) and (11) we may write<br />

the wear volumes for different speed and<br />

deformation conditions <strong>in</strong> terms of operat<strong>in</strong>g and<br />

material parameters <strong>in</strong> non‐dimensional form as:<br />

_<br />

V<br />

_<br />

V<br />

_<br />

V<br />

_<br />

V<br />

mhe<br />

mpe<br />

mle<br />

mlp<br />

<br />

<br />

<br />

<br />

3(0.41<br />

W<br />

_ 1/ 4<br />

3(0.8<br />

H<br />

K<br />

w<br />

_ 1/ 2<br />

3(0.142<br />

E<br />

3(0.125<br />

H<br />

K<br />

K<br />

w<br />

_ 1/ 4<br />

W<br />

w<br />

_ 2/ 3 _ 2/ 3<br />

K<br />

w<br />

_ 1/<br />

2<br />

_ 1/ 2<br />

v<br />

e<br />

W<br />

1)<br />

_ 1/ 2<br />

p<br />

_ 1/ 2<br />

W<br />

v<br />

_<br />

v<br />

e<br />

_<br />

1)<br />

1)<br />

v p 1)<br />

(14)<br />

_<br />

where non‐dimensional wear volume V , nondimensional<br />

load W , non‐dimensional<br />

_<br />

velocity<br />

<strong>in</strong> elastic case<br />

_<br />

v , non‐dimensional velocity <strong>in</strong><br />

e<br />

_<br />

plastic case v<br />

p<br />

, non‐dimensional elastic<br />

_<br />

modulus E and non‐dimensional hardness<br />

_<br />

H are given by :<br />

_<br />

_<br />

VCB K _<br />

w<br />

V ; W ; v<br />

2 v ;<br />

Wx BCR<br />

e<br />

<br />

*<br />

( BK / E R)<br />

_<br />

_ *<br />

v v E<br />

; E <br />

p<br />

( BK / HR)<br />

BC<br />

;<br />

_<br />

H <br />

H<br />

BC<br />

87


S.K. Roy Chowdhury et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 84‐94<br />

Non-dimensional Wear volume<br />

Non-dimensional Wear volume<br />

Non-dimensional Wear volume<br />

Non-dimensional Wear volume<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

W 22.510 3<br />

W 4510 3<br />

W 67.510 3<br />

0<br />

20 40 60 80 100<br />

-3<br />

Non-dimensional velocity v×10<br />

<br />

6<br />

4<br />

2<br />

(a)<br />

W 22.510 3<br />

W 4510 3<br />

W 67.510 3<br />

0<br />

60 80 100 120 140 160 180 200<br />

1.5<br />

1<br />

0.5<br />

Non-dimensional velocity v<br />

<br />

(b)<br />

W 1210 2<br />

W 2410 2<br />

W 3610 2<br />

0<br />

20 40 60 80 100<br />

-3<br />

Non-dimensional velocity v×10<br />

<br />

(c)<br />

2<br />

1.5<br />

1<br />

0.5<br />

W 3<br />

W 6<br />

W 9<br />

0<br />

50 100 150 200<br />

Non-dimensional velocity v<br />

<br />

(d)<br />

Fig. 2. Plots of non‐dimensional wear aga<strong>in</strong>st nondimensional<br />

velocity for (a)High Speed Elastic (b)<br />

High Speed Plastic (c) Low Speed Elastic (d) Low<br />

Speed plastic contacts over a range of nondimensional<br />

load with experimental value of<br />

K =2.5E‐5 and =0.3, E =555 and H =6.<br />

w<br />

Non‐dimensional wear calculated with the<br />

average value of experimental wear coefficient<br />

from section‐5(b) plotted aga<strong>in</strong>st nondimensional<br />

velocity over a range of nondimensional<br />

load for different speed and load<br />

conditions are shown <strong>in</strong> Fig. 2.<br />

4. INFLUENCE OF SURFACE ROUGHNESS<br />

PARAMETERS THAT AFFECT CONTACT<br />

TEMPERATURE RISE.<br />

A good deal of work [26‐29] has also been carried<br />

out to <strong>in</strong>clude the multiple heat <strong>in</strong>puts <strong>in</strong> contact<br />

temperature analysis. Based on Archard’s model a<br />

set of equations that takes <strong>in</strong>to account the surface<br />

roughness parameters for both Gaussian and<br />

exponential distributions of surface heights can be<br />

written [29]. The average flash temperature<br />

equations <strong>in</strong> terms of material and roughness<br />

parameters and with exponential surface height<br />

distributions may be given by:<br />

<br />

<br />

<br />

<br />

av.<br />

he<br />

av.<br />

hp<br />

av.<br />

le<br />

av.<br />

lp<br />

EV<br />

1.149<br />

( KC)<br />

HV<br />

1.72<br />

( KC)<br />

EV<br />

0.368<br />

K<br />

VH<br />

0.5 r<br />

K<br />

1/ 2<br />

1/ 2<br />

1/ 2<br />

1/ 2<br />

1/ 2<br />

<br />

<br />

<br />

r<br />

<br />

1/ 2<br />

3/ 4<br />

1/ 4<br />

r<br />

.<br />

1/ 4 1/ 4<br />

(15)<br />

S<strong>in</strong>ce exponential distribution represents the<br />

upper reaches of the asperities this may be used<br />

as a first approximation. There are at least two<br />

issues which need to be addressed here. Firstly,<br />

from operat<strong>in</strong>g conditions and other<br />

considerations we need to identify the equation<br />

among the four that needs to be used <strong>in</strong> a<br />

particular application. This can be determ<strong>in</strong>ed<br />

us<strong>in</strong>g equations (12) and (13) for rough<br />

surfaces and for s<strong>in</strong>gle contact elementary<br />

plasticity condition P/(πa 2 ) > H may be<br />

used.The other important issue is that the<br />

contact temperatures <strong>in</strong> equation (15) appear to<br />

be <strong>in</strong>dependent of load but depends on the<br />

roughness parameters σ and r. The explanation<br />

lies <strong>in</strong> the fact that the total real area of contact<br />

per unit area A r , total elastic load per unit area<br />

W e and total plastic load per unit area W p are<br />

given by [30]:<br />

88


S.K. Roy Chowdhury et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 84‐94<br />

<br />

<br />

d<br />

z<br />

2<br />

Ar N a<br />

dz 2rn<br />

W<br />

(16)<br />

* 1/ 2<br />

e<br />

0.8Ar<br />

E ( / r)<br />

(17)<br />

W p<br />

2rnH<br />

(18)<br />

Here N is the total number of asperities per unit<br />

area, φ(z) is the surface height distribution, n<br />

number of asperities <strong>in</strong> contact , A r is the real<br />

area of contact. This clearly shows the<br />

dependence of load on real area of contact<br />

which <strong>in</strong> turn depends on the roughness<br />

parameters σ and r. Now comb<strong>in</strong><strong>in</strong>g equations<br />

(8), (15) and the non‐dimensional scheme used<br />

<strong>in</strong> equation(14) we may write the wear volumes<br />

for different speed and deformation conditions<br />

<strong>in</strong> terms of operat<strong>in</strong>g and material parameters<br />

<strong>in</strong> non‐dimensional form as:<br />

_<br />

V<br />

_<br />

V<br />

_<br />

V<br />

_<br />

V<br />

avhe<br />

avhp<br />

avle<br />

avlp<br />

<br />

<br />

<br />

<br />

3(1.149<br />

v<br />

3(1.72<br />

v<br />

3(0.368<br />

v<br />

_<br />

3(0.5<br />

v<br />

_<br />

K<br />

K<br />

_ 1/ 2<br />

w<br />

_<br />

w<br />

K<br />

w<br />

_ 1/<br />

2<br />

_<br />

1)<br />

_ 1/ 2<br />

<br />

K<br />

H<br />

w<br />

_ 1/<br />

2<br />

E<br />

1)<br />

_ 3/ 4<br />

<br />

_ 3/ 4<br />

<br />

1)<br />

1)<br />

(19)<br />

<br />

where .<br />

r<br />

Non‐dimensional wear calculated with the<br />

average value of the wear‐coefficient from<br />

section‐5(b) plotted aga<strong>in</strong>st non‐dimensional<br />

roughness over a range of non‐dimensional load<br />

for different load and speed conditions are<br />

shown <strong>in</strong> Fig. 3.<br />

Figs. 2 and 3 essentially show that the wear<br />

decreases with the <strong>in</strong>crease <strong>in</strong> velocity over a<br />

range of load and with the <strong>in</strong>crease <strong>in</strong><br />

roughness over a range of velocity. This <strong>in</strong><br />

turn <strong>in</strong>dicates that wear decreases with<br />

contact temperature and clearly this is<br />

because, contrary to the behaviour of normal<br />

eng<strong>in</strong>eer<strong>in</strong>g materials hardness of this class of<br />

TiNi alloys <strong>in</strong>creases with contact<br />

temperature rise.<br />

Non-dimensional Wear volume<br />

Non-dimensional Wear volume<br />

Non-dimensional Wear volume<br />

Non-dimensional Wear volume<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0.3<br />

0.2<br />

0.1<br />

3<br />

v 1010<br />

3<br />

v 2010<br />

v 3010<br />

2 4 6 8 10<br />

2<br />

Non-dimensional roughness σ×10<br />

<br />

(a)<br />

v 60<br />

v 80<br />

v 120<br />

0<br />

2 4 6 8 10<br />

2<br />

Non-dimensional roughness σ×10<br />

<br />

(b)<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

3<br />

2<br />

1<br />

3<br />

v 1010<br />

3<br />

v 2010<br />

3<br />

v 3010<br />

0<br />

2 4 6 8 10<br />

2<br />

Non-dimensional roughness σ×10<br />

<br />

(c)<br />

v 60<br />

v 80<br />

v 120<br />

0<br />

2 4 6 8 10<br />

2<br />

Non-dimensional roughness σ×10<br />

<br />

(d)<br />

Fig. 3. Plots of non‐dimensional wear aga<strong>in</strong>st nondimensional<br />

roughness for (a)High speed Elastic (b)<br />

High speed Plastic (c) Low speed Elastic (d) Low<br />

speed plastic contacts over a range of nondimensional<br />

load with experimental value of<br />

K =2.5E‐5 and =0.3, E =555 and H =6.<br />

w<br />

3<br />

89


S.K. Roy Chowdhury et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 84‐94<br />

5. EXPERIMENTAL DETAILS<br />

Two prelim<strong>in</strong>ary slid<strong>in</strong>g wear tests were carried<br />

out with TiNi alloys one at a constant load and<br />

speed but at vary<strong>in</strong>g specimen temperature and<br />

the other at a constant load and ambient<br />

temperature but at vary<strong>in</strong>g slid<strong>in</strong>g speed.<br />

(a) Slid<strong>in</strong>g wear test with TiNi alloy at a<br />

constant load and speed but at vary<strong>in</strong>g<br />

specimen temperature.<br />

This set of tests was aimed at determ<strong>in</strong><strong>in</strong>g the<br />

dependence of wear resistance of these alloys on<br />

specimen temperature. A near equi‐atomic TiNi<br />

(Ti‐51at‐%Ni) alloy was prepared <strong>in</strong> a vacuum<br />

<strong>in</strong>duction melt<strong>in</strong>g furnace. A disc specimen of<br />

42mm diameter and 10mm thickness was then<br />

prepared with the alloy. Wear tests were carried<br />

out <strong>in</strong> a commercially available high‐temperature,<br />

high‐vacuum Tribometer, <strong>in</strong>itially us<strong>in</strong>g a 10 mm<br />

diameter tungsten carbide ball rubb<strong>in</strong>g aga<strong>in</strong>st the<br />

alloy disc at a normal load of 1.1 kg and a disc<br />

rotational speed of 200 rpm for 300 seconds <strong>in</strong><br />

water media. Tungsten carbide balls of relatively<br />

high hardness were chosen so that the wear<br />

characteristics of the alloy disc alone could be<br />

observed. The water temperature was varied<br />

between 20 0 C to 80 0 C <strong>in</strong> order to obta<strong>in</strong> different<br />

specimen temperatures. The weight loss of the<br />

specimen was measured us<strong>in</strong>g a high precision<br />

balance. The results with the tungsten carbide<br />

balls are shown <strong>in</strong> Fig. 4.<br />

Fig. 4. Plot of wear volume of a TiNi alloy disc,<br />

rubb<strong>in</strong>g aga<strong>in</strong>st a tungsten carbide ball, aga<strong>in</strong>st the<br />

specimen temperature.<br />

(b) Slid<strong>in</strong>g wear test of TiNi alloy at a constant<br />

load and ambient temperature but at<br />

vary<strong>in</strong>g slid<strong>in</strong>g speed.<br />

Another TiNi (Ti‐51at‐%Ni) specimen was<br />

prepared follow<strong>in</strong>g similar procedure and<br />

slid<strong>in</strong>g tests were carried out us<strong>in</strong>g the same<br />

Tribometer, a steel p<strong>in</strong> of 5mm radius pressed<br />

aga<strong>in</strong>st the TiNi alloy disc specimen under a<br />

constant normal load of 5 N and at vary<strong>in</strong>g<br />

slid<strong>in</strong>g speeds of 20 mm/s, 40 mm/s, 80 mm/s<br />

and 150 mm/s so that different contact<br />

temperatures could be generated. The contact<br />

temperatures for each load and speed<br />

comb<strong>in</strong>ation were calculated us<strong>in</strong>g Archard’s<br />

flash temperature equations, reproduced <strong>in</strong> a<br />

convenient form <strong>in</strong> equation (10). The<br />

deformation conditions were determ<strong>in</strong>ed us<strong>in</strong>g<br />

the elementary plasticity condition P/ (πa 2 ) > H,<br />

a be<strong>in</strong>g the contact radius. The speed conditions<br />

were determ<strong>in</strong>ed us<strong>in</strong>g equation (13). With<br />

these constra<strong>in</strong>ts all the test conditions turned<br />

out to be high speed elastic. The weight loss of<br />

the specimen was aga<strong>in</strong> measured us<strong>in</strong>g a high<br />

precision balance and the plot of experimental<br />

wear volume aga<strong>in</strong>st calculated specimen<br />

temperature is shown <strong>in</strong> Fig. 5.<br />

Fig. 5. A plot of wear volume aga<strong>in</strong>st contact<br />

temperature dur<strong>in</strong>g slid<strong>in</strong>g experiments with TiNi<br />

alloy disc pressed aga<strong>in</strong>st a steel p<strong>in</strong> at a normal load<br />

of 5N and different slid<strong>in</strong>g speeds.<br />

It can be seen that the trend of wear vs.<br />

temperature plots <strong>in</strong> Fig. 4 for tests under<br />

constant load and speed but at vary<strong>in</strong>g<br />

specimen temperature is similar to this plot.<br />

This supports our argument that the rise <strong>in</strong><br />

contact temperature dur<strong>in</strong>g slid<strong>in</strong>g due to<br />

frictional heat itself may be sufficient to cause<br />

the <strong>in</strong>itial martensite to austenite phase<br />

transformation and the associated <strong>in</strong>crease <strong>in</strong><br />

hardness that leads to decrease <strong>in</strong> wear with<br />

<strong>in</strong>creas<strong>in</strong>g slid<strong>in</strong>g velocity.<br />

It is now necessary to consider the phase<br />

transformation due to the frictional heat<br />

generated dur<strong>in</strong>g the slid<strong>in</strong>g process. The X‐ray<br />

diffraction signatures of the sample <strong>in</strong> the constant<br />

load and speed test were recorded before and<br />

90


S.K. Roy Chowdhury et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 84‐94<br />

after the wear test. The signature of the <strong>in</strong>itial<br />

unworn surface is shown <strong>in</strong> Fig. 6. This <strong>in</strong>dicates<br />

rhombohedral and monocl<strong>in</strong>ic crystal structures<br />

which <strong>in</strong>dicate the presence of martensite phase.<br />

Presence of some Ni 4 Ti 3 was also observed. This<br />

may be due to the presence of excess Ni while<br />

prepar<strong>in</strong>g the sample. In general formation of<br />

Ni 4 Ti 3 is favoured <strong>in</strong> case of excess ag<strong>in</strong>g of sample<br />

but <strong>in</strong> the present case no excess ag<strong>in</strong>g was done<br />

and therefore this cannot be the reason for its<br />

presence. The X‐ray analysis of the worn surface is<br />

shown <strong>in</strong> Fig. 7 and this <strong>in</strong>dicates cubic crystal<br />

structure which is responsible for the highest<br />

peak. Cubic crystal structure <strong>in</strong>dicates the<br />

presence of austenite phase <strong>in</strong> worn surface. The<br />

analysis also <strong>in</strong>dicates the presence of small<br />

amount of TiO 2 and this may partly contribute to<br />

the wear resistance of TiNi alloy as suggested by<br />

Korshunov [31].<br />

presence of high elastic stresses <strong>in</strong> austenitic or<br />

pseudoelastic state repeated cyclic load<strong>in</strong>g<br />

dur<strong>in</strong>g slid<strong>in</strong>g may <strong>in</strong>troduce surface or<br />

subsurface cracks that eventually lead to<br />

formation of large cracks on the surface as seen<br />

<strong>in</strong> Fig. 8. Severe plastic deformation needed for<br />

plough<strong>in</strong>g wear <strong>in</strong> martensitic state could not be<br />

detected.<br />

Fig. 8. SEM micrograph of the worn surface.<br />

These prelim<strong>in</strong>ary tests therefore <strong>in</strong>dicate that<br />

TiNi alloy specimens with the <strong>in</strong>itial martensitic<br />

phase transformed to austenitic phase dur<strong>in</strong>g<br />

wear process and this supports the basic claim<br />

<strong>in</strong> this work.<br />

6. CONCLUSIONS<br />

Fig. 6. X‐ray diffraction signature of the <strong>in</strong>itial<br />

surface of TiNi alloy.<br />

Fig. 7. X‐ray diffraction signature of the worn surface<br />

of TiNi alloy.<br />

SEM micrograph of the worn surface is shown <strong>in</strong><br />

Fig. 8. The micrograph generally <strong>in</strong>dicates<br />

fatigue fracture <strong>in</strong> the worn surface. In the<br />

The high wear resistance of TiNi alloy has<br />

traditionally been attributed to its pseudoelastic<br />

nature alone but the present work <strong>in</strong>dicates that<br />

the contact temperature rise due to frictional heat<br />

generated dur<strong>in</strong>g slid<strong>in</strong>g plays an important role.<br />

Based on Liang and Rogers [8] and others<br />

[21,22,25,29,30] works a simple theoretical model<br />

to relate the wear resistance of TiNi alloys to<br />

contact temperature rise dur<strong>in</strong>g slid<strong>in</strong>g aga<strong>in</strong>st<br />

other materials has been proposed <strong>in</strong> equations<br />

(9) and (14). A realistic contact temperature<br />

model [29] for rough slid<strong>in</strong>g bodies has been<br />

<strong>in</strong>corporated and the result<strong>in</strong>g wear model that<br />

takes <strong>in</strong>to account multiple heat source at the<br />

slid<strong>in</strong>g contact is proposed <strong>in</strong> equation (19). The<br />

model aga<strong>in</strong> predicts an <strong>in</strong>crease <strong>in</strong> wear<br />

resistance with temperature.<br />

Prelim<strong>in</strong>ary slid<strong>in</strong>g tests were carried out with a<br />

near equi‐atomic TiNi alloy both at (a) a<br />

constant load and speed comb<strong>in</strong>ation but at<br />

vary<strong>in</strong>g specimen temperature and (b) a<br />

91


S.K. Roy Chowdhury et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 84‐94<br />

constant load and ambient temperature but at<br />

vary<strong>in</strong>g slid<strong>in</strong>g speed. In both cases wear level<br />

fell with the <strong>in</strong>crease <strong>in</strong> temperature and the<br />

results agree well with the theoretical<br />

prediction. The results are of importance <strong>in</strong><br />

<strong>in</strong>dustrial practice where contact temperature<br />

rise is considered to be detrimental to smooth<br />

slid<strong>in</strong>g for most eng<strong>in</strong>eer<strong>in</strong>g materials whereas<br />

here it seems that the temperature rise may<br />

prove to be tribologically useful for TiNi alloys.<br />

However more work is needed to establish the<br />

range of temperature rise where the effect is of<br />

practical use.<br />

NOMENCLATURE<br />

a Contact radius,<br />

0 0<br />

aA<br />

Material constant ( C /( A f<br />

A s<br />

) ),<br />

A f Austenitic phase f<strong>in</strong>ish temperature,<br />

A r Total real area of contact per unit area,<br />

A s Austenitic phase start temperature,<br />

A o f Austenitic phase start temperature <strong>in</strong> stress free state,<br />

A o s Austenitic phase f<strong>in</strong>ish temperature <strong>in</strong> stress free state,<br />

o<br />

B Material constant ( ),<br />

A<br />

c Specific heat,<br />

C Constant,<br />

E Elastic modulus,<br />

E * Equivalent elastic modulus,<br />

_<br />

s<br />

<br />

a<br />

E Non‐dimensional elastic modulus,<br />

H Hardness of the softer of the two rubb<strong>in</strong>g material,<br />

H Non‐dimensional hardness,<br />

K Thermal conductivity,<br />

K w Wear coefficient,<br />

L Non‐dimensional Speed Parameter,<br />

M f Martensitic phase f<strong>in</strong>ish temperature,<br />

M s Martensitic phase start temperature,<br />

n Number of asperities <strong>in</strong> contact per unit area ,<br />

N Total number of asperities per unit area,<br />

P Normal Load,<br />

r Asperity radius,<br />

R Protrusion radius,<br />

T Alloy specimen temperature,<br />

T bulk Bulk temperature,<br />

_<br />

T Non‐dimensional temperature,<br />

v Slid<strong>in</strong>g Speed,<br />

v<br />

e<br />

Non‐dimensional velocity <strong>in</strong> elastic case,<br />

A<br />

v<br />

p<br />

V<br />

_<br />

V<br />

V _<br />

avhe<br />

V _<br />

avhp<br />

V _<br />

avle<br />

V _<br />

avlp<br />

Non‐dimensional velocity <strong>in</strong> plastic case,<br />

Wear volume,<br />

Non‐dimensional wear volume,<br />

Non‐dimensional average wear volume for<br />

high speed elastic case,<br />

Non‐dimensional average wear volume for<br />

high speed plastic case,<br />

Non‐dimensional average wear volume for low<br />

speed elastic case,<br />

Non‐dimensional average wear volume for low<br />

speed plastic case,<br />

W Normal load,<br />

W e Total elastic load per unit area,<br />

W p Total plastic load per unit area,<br />

_<br />

W Non‐dimensional Load,<br />

x Slid<strong>in</strong>g distance,<br />

Coefficient of friction,<br />

<br />

<br />

ξ<br />

υ<br />

ψ<br />

Density,<br />

Martensite volume fraction,<br />

Poisson’s ratio,<br />

Plasticity <strong>in</strong>dex,<br />

zSurface height distribution,<br />

σ<br />

σ'<br />

_<br />

Standard deviation of the surface height distribution,<br />

Applied Stress,<br />

Non‐dimensional roughness,<br />

θ Contact temperature rise,<br />

<br />

avhe<br />

avhp<br />

Average flash temperature for high speed<br />

elastic case,<br />

Average flash temperature for high speed<br />

plastic case,<br />

<br />

avle<br />

Average flash temperature for low speed elastic<br />

case,<br />

avlp<br />

Average flash temperature for low speed plastic<br />

case,<br />

<br />

mhe<br />

Mean contact temperature rise for high speed<br />

elastic case,<br />

<br />

mhp<br />

Mean contact temperature rise for high speed<br />

plastic case,<br />

<br />

mLe<br />

Mean contact temperature rise for low speed<br />

elastic case,<br />

<br />

mlp<br />

Mean contact temperature rise for low speed<br />

plastic case.<br />

92


S.K. Roy Chowdhury et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 84‐94<br />

REFERENCES<br />

[1] W.J. Buehler, J.W. Gilfrich, R.C. Wiley: Effects of<br />

low‐temperature phase changes on the<br />

mechanical properties of alloys near composition<br />

TiNi, Journal of Applied Physics, Vol. 34, pp.<br />

1475 ‐1477, 1963.<br />

[2] F.E. Wang, W.J. Buehler, S.J. Pickart: Crystal<br />

structure and a unique martensitic transition of<br />

TiNi, Journal of Applied Physics, Vol. 36, pp.<br />

3232‐3239, 1965.<br />

[3] J. Perk<strong>in</strong>: Shape Memory Effects <strong>in</strong> Alloys, Plenum<br />

Press, New York, 1976.<br />

[4] S. Kajiwara: Characteristic features of shape<br />

memory effect and related transformation<br />

behavior <strong>in</strong> Fe‐based alloys, Materials Science<br />

and Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 273‐275, pp. 67‐88, 1999.<br />

[5] C.M. Wayman: Some Applications of Shape‐<br />

Memory Alloy, Journal of Metals, Vol. 32, pp.<br />

129‐137, 1980.<br />

[6] W.R. Saunders, H.H. Robertsaw, C.A. Rogers:<br />

Structural Acoustic Control of a Shape Memory<br />

Alloy Composite Beam, Journal of Intelligent<br />

Material Systems and Structures, Vol. 2, No. 4,<br />

pp. 508 ‐527, 1991.<br />

[7] K. Tanaka, R. Iwasaki: A Phenomenological<br />

Theory of Transformation Superplasticity,<br />

Eng<strong>in</strong>eer<strong>in</strong>g Fracture Mechanics, Vol. 21, No. 4,<br />

pp. 709‐720, 1985.<br />

[8] C. Liang, C.A. Rogers: One‐Dimensional<br />

Thermomechanical Constitutive Relations for<br />

Shape Memory Materials, Journal of Intelligent<br />

Material Systems and Structures, Vol. 1, No. 2,<br />

pp. 207‐234, 1990.<br />

[9] P. Clayton: Tribological behaviour of titanium‐nickel<br />

alloy, Wear, Vol. 162‐164, pp. 202‐210, 1993.<br />

[10] D.Y. Li: Exploration of NiTi SMA for potential<br />

application <strong>in</strong> a new area: Tribological<br />

eng<strong>in</strong>eer<strong>in</strong>g, Journal of Smart Material<br />

Structures, Vol. 9, pp. 717‐726, 2000.<br />

[11] K.N. Melton, O. Mercier: Fatigue of NiTi<br />

thermoelastic martensites, Acta Metallurgica,<br />

Vol. 27, pp. 137‐144, 1979.<br />

[12] L.G. Korshunov, V.G. Push<strong>in</strong>, N.L. Cherenkov, V.V.<br />

Makarov: Structural transformations,<br />

strengthen<strong>in</strong>g, and wear resistance of titanium<br />

nickelide upon abrasive and adhesive wear, The<br />

Physics of Metals and Metallography, Vol. 10,<br />

pp 91‐101, 2010.<br />

[13] S.K. Wu, H.C. L<strong>in</strong>, C.H. Yeh: A comparison of the<br />

cavitation erosion resistance of TiNi alloys<br />

SUS304 sta<strong>in</strong>less steel and Ni‐based self‐flux<strong>in</strong>g<br />

alloy, Wear, Vol. 244, pp. 85‐93, 2000.<br />

[14] Y. Shida, Y. Sugimoto: Water jet erosion behavior<br />

of Ti‐Ni b<strong>in</strong>ary alloys, Wear, Vol. 146, pp. 219‐<br />

228, 1991.<br />

[15] I. Cvijović‐Alagić, S. Mitrović, Z Cvijović, Đ.<br />

Veljović, M. Babić, M. Rak<strong>in</strong>: Influence of the Heat<br />

Treatment on the Tribological Characteristics of<br />

the Ti‐based Alloy for Biomedical Applications,<br />

Tribology <strong>in</strong> Industry, Vol. 31, No. 3‐4, pp. 17‐<br />

22, 2009.<br />

[16] A. Ball: On the importance of work harden<strong>in</strong>g <strong>in</strong><br />

the design of wear resistant materials, Wear, Vol.<br />

91, pp. 201‐207, 1983.<br />

[17] T.W. Duerig, R. Zando: Eng<strong>in</strong>eer<strong>in</strong>g Aspects of<br />

Shape Memory Alloys, <strong>in</strong>: T.W. Duerig, K.N.<br />

Melton, D. Stockel, C.M. Wayman (Eds.):<br />

Butterworth He<strong>in</strong>emann, London, pp. 369, 1990.<br />

[18] S. Hattori, A. Ta<strong>in</strong>aka: Cavitation erosion of Ti‐Ni<br />

base shape memory alloys, Wear, Vol. 262, pp.<br />

191‐197, 2007.<br />

[19] M. Abed<strong>in</strong>i, H.M. Ghasemi, M. Nili Ahmadabadi:<br />

Tribological behavior of NiTi alloy <strong>in</strong> martensitic<br />

and austenitic states, Materials and Design, Vol.<br />

30, pp. 4493– 4497, 2009.<br />

[20] L<strong>in</strong>mao Qian, Q<strong>in</strong>gp<strong>in</strong>g Sun, Xudong Xiao: Role of<br />

phase transition <strong>in</strong> the unusual microwear<br />

behavior of superelastic NiTi shape memory alloy,<br />

Wear, Vol. 260, pp. 509‐522, 2006.<br />

[21] K. Tanaka: A Thermomechanical sketch of shape<br />

memory effect: one dimensional tensile behavior,<br />

Res. Mechanica, Vol. 18, pp. 251‐263, 1986.<br />

[22] L.C. Br<strong>in</strong>son: One Dimensional Constitutive<br />

Behavior of Shape Memory Alloys,<br />

thermomechanical derivation with non‐ constant<br />

material functions, Journal of Intelligent Material<br />

Systems and Structures, Vol. 4, No. 2, pp. 229‐<br />

242, 1993.<br />

[23] H. Block: General discussion on lubrication,<br />

Proceed<strong>in</strong>g of Institution of Mechanical<br />

Eng<strong>in</strong>eers, Vol. 2, pp. 222, 1937.<br />

[24] J.C. Jaegar: Mov<strong>in</strong>g sources of heat and the<br />

temperature at slid<strong>in</strong>g surfaces, Proceed<strong>in</strong>g of<br />

Royal Society, N.S.W, Vol. 66, pp. 203–204, 1942.<br />

[25] J.F. Archard: The temperature of rubb<strong>in</strong>g<br />

surfaces, Wear, Vol. 2, pp. 438 ‐ 455, 1959.<br />

[26] B. Gecim, W.O. W<strong>in</strong>er: Transient temperatures <strong>in</strong><br />

the vic<strong>in</strong>ity of an asperity contact, ASME J. Tribol.,<br />

Vol. 107, pp. 333–342, 1985.<br />

[27] R. Wolf: The <strong>in</strong>fluence of surface roughness<br />

texture on the temperature and scuff<strong>in</strong>g <strong>in</strong> slid<strong>in</strong>g<br />

contact, Wear, Vol. 143, pp. 99–117, 1990.<br />

[28] S. Wang, K. Komvopoulos: A fractal theory of the<br />

<strong>in</strong>terfacial temperature distribution <strong>in</strong> the slow<br />

slid<strong>in</strong>g regime: Part I—Elastic contact and heat<br />

93


S.K. Roy Chowdhury et al., Tribology <strong>in</strong> Industry Vol. 35, No. 1 (2013) 84‐94<br />

Transfer analysis, ASME Journal of Tribology,<br />

Vol. 116, pp. 812– 823, 1994.<br />

[29] D. Guha, S.K. Roy Chowdhury: The effect of<br />

surface roughness on the temperature at the<br />

contact between slid<strong>in</strong>g bodies, Wear, Vol. 197,<br />

pp. 63‐73, 1994.<br />

[30] S.K. Roy Chowdhury, H.M. Pollock: Adhesion<br />

between metal surfaces, The Effect of surface<br />

roughness, Wear, Vol. 66, pp. 307‐321, 1981.<br />

[31] L.G Korshunov, V.G. Push<strong>in</strong>, N.L. Cherenkov:<br />

Effect of frictional heat<strong>in</strong>g on surface layer<br />

structure and tribological properties of titaniumnicklide,<br />

Physics of Metals and Metallography,<br />

Vol. 112, pp. 290 – 300, 2011.<br />

94


<strong>tribology</strong> <strong>in</strong> <strong>in</strong>dustry<br />

ISSN 0354-8996<br />

VOLUME 33<br />

2011.<br />

3


<strong>tribology</strong> <strong>in</strong> <strong>in</strong>dustry<br />

ISSN 0354-8996<br />

VOLUME 33<br />

2011.<br />

3


Tribology <strong>in</strong> Industry<br />

Journal of the Serbian Tribology Society


www.<strong>tribology</strong>.f<strong>in</strong>k.rs

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!