04.11.2012 Views

SNO+ (1000 tonnes highly purified Liquid Scintillator): 2010

SNO+ (1000 tonnes highly purified Liquid Scintillator): 2010

SNO+ (1000 tonnes highly purified Liquid Scintillator): 2010

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Erich W. Vogt<br />

Canadian Statesman<br />

in Sub-atomic Physics


TRIUMF and UBC in the SNO Project<br />

Faculty, and TRIUMF Scientists: Chris Waltham, Rich<br />

Helmer, Scott Oser<br />

Post Docs: Salvador Gil, Rob Komar , Thomas Kutter,<br />

Juergen Wendland, Blair Jamieson, Ron Schubank,<br />

Reena Meijer Drees<br />

Graduate Students: Alan Poon, Jaret Heise, Christian<br />

Nally, Tyron Tsui, Louis McGarry, Guy Ouellette<br />

Undergraduates: Mitch Crowe, Bryce Croll, Ben Short,<br />

Ivan Sham, Jamil Sharif, Tudor Costin, Dave Branch,<br />

Jonathan Harris, Rob Newman, Vicky Valiani, Kiara<br />

Moran, Siong Ng, Chris Nell, Chris Callendar, Sam<br />

Marchand, Janice Boyce


Flavour Change for Solar Neutrinos<br />

Solar Model Flux Calculations<br />

CNO<br />

Bahcall et al.<br />

, SNO<br />

Previous Experiments Sensitive<br />

to Electron Neutrinos<br />

SNO was designed to observe separately ν e and all<br />

neutrino types to determine if low ν e fluxes<br />

come from flavor change or solar models


Unique Signatures in SNO (D 2 O)<br />

Charged-Current (CC)<br />

ν e+d → e - +p+p<br />

Ethresh = 1.4 MeV<br />

νe only<br />

Neutral-Current (NC)<br />

ν x+d →ν x+n+p<br />

E thresh = 2.2 MeV<br />

Equally sensitive to νe e νμ ντ Elastic Scattering (ES) (D 2O & H 2O)<br />

ν x+e - →ν x+e -<br />

ν x, but enhanced for ν e<br />

3 ways to<br />

detect neutrons


SNO: 3 neutron (NC) detection<br />

methods (systematically different)<br />

Phase I (D 2O)<br />

Nov. 99 - May 01<br />

n captures on<br />

2 H(n, γ) 3 H<br />

Effc. ~14.4%<br />

NC and CC separation<br />

by energy, radial, and<br />

directional<br />

distributions<br />

2 H+n<br />

3 H<br />

6.25 MeV<br />

Phase II (salt)<br />

July 01 - Sep. 03<br />

2 t NaCl. n captures<br />

on<br />

35 Cl(n, γ) 36 Cl<br />

Effc. ~40%<br />

NC and CC separation<br />

by event isotropy<br />

35 Cl+n<br />

36 Cl<br />

8.6 MeV<br />

Phase III ( 3 He)<br />

Nov. 04-Dec. 06<br />

40 proportional<br />

counters<br />

3He(n, p) 3H Effc. ~ 30% capture<br />

Measure NC rate with<br />

entirely different<br />

detection system.<br />

5 cm<br />

3 H<br />

3 He<br />

p<br />

n<br />

n + 3 He → p + 3 H


The Sudbury Neutrino Observatory: SNO<br />

Acrylic vessel (AV)<br />

12 m diameter<br />

<strong>1000</strong> <strong>tonnes</strong> D 2 O<br />

($300 million)<br />

1700 <strong>tonnes</strong> H 2 O<br />

inner shielding<br />

5300 <strong>tonnes</strong> H 2 O<br />

outer shielding<br />

~9500 PMT’s<br />

6800 feet (~2km) underground<br />

Creighton mine<br />

Sudbury, CA<br />

- Entire detector<br />

Built as a Class 2000<br />

Clean room<br />

- Low Radioactivity<br />

Detector materials<br />

The heavy water has recently been returned and development work is in progress<br />

on <strong>SNO+</strong> with liquid scintillator and 150 Nd additive.


SNO: One million pieces transported down in the<br />

9 ft x 12 ft x 9 ft mine cage and re-assembled under<br />

ultra-clean conditions. Every worker takes a shower<br />

and wears clean, lint-free clothing.<br />

Over 70,000<br />

Showers<br />

to date and<br />

counting


Christian Nally Jaret Heise<br />

UBC Graduate Students during Detector Construction


Two Undergrads taught by Erich Vogt in their first year at UBC:<br />

Fraser Duncan:<br />

- Detector Operations Manager for SNO<br />

- Deputy Director of SNO<br />

- Associate Director of SNOLAB<br />

Please pass on my best wishes to Erich. He was a strong<br />

supporter of graduate students especially myself (well, in my mind)<br />

during his tenure as Director of TRIUMF. It has special meaning for<br />

me that the seminar to honour him is in Hebb Theater at UBC. The<br />

first lecture of my first day at university 28 years ago (sigh) was<br />

in Hebb Theater and the professor was Erich Vogt. I recall apples<br />

levitating into the rafters... - Fraser<br />

Aksel Hallin:<br />

- Tier 1 Canada Research Chair at Alberta<br />

- Calibration Group Leader on SNO<br />

I came to UBC in 1973 and took the first year honours physics course from<br />

Erich. I remember him as someone who was very approachable and really<br />

enjoyed students. I also remember talking with Erich before deciding to go<br />

to Princeton (his alma mater) for graduate work…. - Aksel


- Major work by Chris Waltham and<br />

his students on the development and<br />

testing of the light collectors<br />

installed on each photomultiplier.<br />

- Alan Poon with testing apparatus in<br />

1990 at UBC. Did his Ph. D. work on<br />

the (p,t) calibration source and is<br />

now the Analysis Coordinator for<br />

SNO as a Staff Member at LBL.


Glove Box and manipulator<br />

system for calibration sources<br />

Roland Roper, Ivor Yhap, Roland Kokke…<br />

Rich Helmer and TRIUMF staff and<br />

students did primary electronics testing<br />

and commissioning as well as providing<br />

major components for the SNO detector.<br />

Rich was the Commissioning Manager.<br />

“Whiffletrees” for load balancing on<br />

ropes supporting the acrylic vessel


6.13 MeV<br />

SNO Energy Calibrations: 25% of running time<br />

19.8 MeV<br />

β’s from 8 Li (Rich Helmer)<br />

γ’s from 16 N<br />

and t(p,γ) 4 He (Alan Poon)<br />

Energy calibrated to ~1.5 %<br />

Throughout detector volume<br />

252 Cf neutrons<br />

Optical calibration at 5 wavelengths with the “Laserball”<br />

+ AmBe, 24 Na


ν μ ,<br />

ν τ<br />

φ<br />

φ<br />

CC<br />

NC<br />

φ<br />

(In<br />

ES<br />

=<br />

=<br />

Electron neutrinos<br />

1.<br />

68<br />

4.<br />

94<br />

= 2.<br />

35<br />

units of<br />

φ<br />

φ<br />

CC<br />

NC<br />

+ 0.<br />

06<br />

−0.<br />

06<br />

+ 0.<br />

21<br />

−0.<br />

21<br />

( stat. )<br />

( stat. )<br />

( stat. )<br />

−2<br />

cm s<br />

+ 0.<br />

08<br />

−0.<br />

09<br />

+ 0.<br />

38<br />

−0.<br />

34<br />

+ 0.<br />

22 + 0.<br />

15<br />

−0.<br />

22 −0.<br />

15<br />

6 −1<br />

10<br />

=<br />

0.<br />

34<br />

±<br />

( syst. )<br />

( syst. )<br />

( syst. )<br />

)<br />

0.<br />

023(<br />

stat. )<br />

+ 0.<br />

029<br />

−0.<br />

031<br />

Flavor change<br />

determined by > 7 σ.<br />

CC, NC FLUXES<br />

MEASURED<br />

INDEPENDENTLY<br />

The Total Flux of Active<br />

Neutrinos is measured<br />

independently (NC) and agrees<br />

well with solar model<br />

Calculations:<br />

5.82 +- 1.3 (Bahcall et al),<br />

5.31 +- 0.6 (Turck-Chieze et al)<br />

Electron neutrinos are<br />

Only about 1/3 of total!


U<br />

li<br />

Using the oscillation framework:<br />

⎛U<br />

⎜<br />

= ⎜U<br />

⎜<br />

⎝U<br />

⎛ c<br />

⎜<br />

= ⎜−<br />

s<br />

⎜<br />

⎝ 0<br />

12<br />

12<br />

where c<br />

ij<br />

e1<br />

μ1<br />

τ1<br />

s<br />

c<br />

If neutrinos have mass:<br />

12<br />

12<br />

0<br />

U<br />

U<br />

U<br />

e2<br />

μ2<br />

τ 2<br />

ij<br />

U<br />

U<br />

U<br />

e3<br />

μ3<br />

τ3<br />

0⎞<br />

⎛1<br />

⎟ ⎜<br />

0⎟<br />

⋅⎜<br />

0<br />

1⎟<br />

⎜<br />

⎠ ⎝0<br />

= cosθ<br />

, and<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

− s<br />

s<br />

c<br />

ij<br />

0<br />

23<br />

23<br />

s<br />

c<br />

0<br />

23<br />

23<br />

= sinθ<br />

ij<br />

⎞ ⎛1<br />

⎟ ⎜<br />

⎟⋅<br />

⎜0<br />

⎟ ⎜<br />

⎠ ⎝0<br />

0<br />

1<br />

0<br />

ν ∑<br />

0 ⎞ ⎛ c<br />

⎟ ⎜<br />

0 ⎟⋅<br />

⎜ 0<br />

e<br />

−iδ<br />

⎟ ⎜<br />

⎠ ⎝−<br />

s<br />

l = U li ν i<br />

For 3 Active neutrinos. (MiniBoone has recently ruled out LSND result)<br />

Solar,Reactor Atmospheric<br />

P(νμ → νe<br />

)<br />

13<br />

13<br />

0<br />

1<br />

0<br />

( 1.<br />

27<br />

s<br />

c<br />

13<br />

0<br />

13<br />

⎞ ⎛1<br />

⎟ ⎜<br />

⎟⋅<br />

⎜0<br />

⎟ ⎜<br />

⎠ ⎝0<br />

Δm<br />

E<br />

e<br />

0<br />

−iα<br />

/ 2<br />

0<br />

2<br />

)<br />

e<br />

0<br />

0<br />

−iα<br />

/ 2+<br />

iδ<br />

For two neutrino oscillation in a vacuum: (a valid approximation in many cases)<br />

2<br />

2 2 L<br />

=<br />

Maki-Nakagawa-Sakata-Pontecorvo matrix<br />

sin<br />

?<br />

CP Violating Phase Reactor, Accel. Majorana Phases<br />

2θ<br />

sin<br />

?<br />

(Double β decay only)<br />

?<br />

Range defined for Δm 12 , Δm 23<br />

3<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />


Matter Effects – the MSW effect<br />

i<br />

d<br />

dt<br />

⎡ν<br />

e ⎤<br />

⎢ ⎥<br />

⎣ν<br />

x ⎦<br />

=<br />

H<br />

⎡ν<br />

e ⎤<br />

⎢ ⎥<br />

⎣ν<br />

x ⎦<br />

2<br />

2<br />

⎡ Δm<br />

Δm ⎤<br />

⎢−<br />

cos2θ + 2G<br />

FN<br />

e sin2θ⎥<br />

H = ⎢<br />

4E<br />

4E<br />

2<br />

2 ⎥<br />

⎢ Δm<br />

Δm<br />

sin2θ<br />

cos2θ⎥<br />

⎢⎣<br />

4E<br />

4E ⎥⎦<br />

The extra term arises because solar ν e have an extra interaction<br />

via W exchange with electrons in the Sun or Earth.<br />

In the oscillation formula:<br />

sin<br />

2<br />

2θ<br />

m<br />

=<br />

ω =<br />

−<br />

2<br />

sin 2θ<br />

2<br />

( ω − cos2θ<br />

) + sin<br />

2GF<br />

Ne<br />

E / Δm<br />

(Mikheyev, Smirnov, Wolfenstein)<br />

2<br />

2<br />

2θ<br />

MSW effect can produce an energy spectrum distortion<br />

and flavor regeneration in Earth giving a Day-night effect.<br />

If observed, matter interactions define the mass heirarchy.


SOLAR ONLY<br />

AFTER<br />

SNO SALT<br />

DATA<br />

MSW: Large<br />

Mixing Angle<br />

(LMA) Region<br />

- The solar<br />

results define the<br />

mass hierarchy<br />

(m 2 > m 1) through the<br />

Matter interaction (MSW)<br />

- SNO: CC/NC flux<br />

defines tan 2 θ 12 < 1<br />

(ie Non - Maximal mixing)<br />

by more than 5<br />

standard deviations<br />

LMA for solar ν predicts very small<br />

spectral distortion, small (~ 3 %) day-night<br />

asymmetry, as observed by SK, SNO<br />

Asym O<br />

salt + D = 0 . 037 ±<br />

2<br />

(Scott Oser and students)<br />

SOLAR PLUS<br />

KAMLAND (Reactor ν’s)<br />

0 . 040


Periodicity in Solar Flux?<br />

(Scott Oser and students)<br />

hep-ex/0507079<br />

SNO data 1999-2003<br />

Unbinned Maximum Likelihood<br />

Method compares fit for<br />

Sinusoidal variation with<br />

Expectation for zero amplitude.<br />

Monte Carlo used to estimate<br />

sensitivity shows<br />

35% probability of a larger<br />

likelihood ratio (S) with zero<br />

sinusoidal amplitude than the<br />

maximum S observed in the fits.<br />

Conclusion: No observed<br />

sinusoidal variation at periods<br />

from 1 day to 10 years.<br />

Analysis sensitive to amplitude<br />

of 8-10% at 99% C.L..


SNO Muon & Atmospheric Neutrino Analysis<br />

Analysis:<br />

Chris Waltham,<br />

Thomas Kutter,<br />

Tyron Tsui,<br />

Christian Nally ….<br />

Also: Supernova Watch (SNEWS) (Jaret Heise UBC Thesis)<br />

SNEWS: International collaboration of detectors to watch for burst of<br />

neutrinos from a galactic supernova and alert the astronomical community.


Final Phase: SNO Phase III<br />

Neutral-Current Detectors (NCD):<br />

An array of 3 He proportional counters<br />

40 strings on 1-m grid<br />

~440 m total active length<br />

• Search for spectral distortion<br />

• Improve solar neutrino flux by breaking the<br />

CC and NC correlation (ρ = -0.53 in Phase II):<br />

CC: Cherenkov Signal ⇒ PMT Array<br />

NC: n+ 3 He ⇒ NCD Array<br />

•Improvement in θ 12, as<br />

Correlations D 2 O unconstrained D 2 O constrained Salt unconstrained NCD<br />

NC,CC -0.950 -0.520 -0.521 ~0<br />

CC,ES -0.208 -0.162 -0.156 ~-0.2<br />

ES,NC -0.297 -0.105 -0.064 ~0<br />

Blind<br />

Analysis<br />

Phase III production data taking Dec 2004 to Dec 2006. D 2 O now removed.


Blind Data<br />

Another analysis<br />

is almost complete<br />

that combines data<br />

from<br />

the first two SNO<br />

Phases and<br />

reduces the<br />

threshold by ~ 1<br />

MeV.<br />

This also provides<br />

improved accuracy<br />

on CC/NC flux<br />

ratio and therefore<br />

θ 12 mixing matrix<br />

element.<br />

NCD Phase Signal<br />

Extraction: Jamieson, Oser…<br />

Very low Background. About one count per 2 hours in region of interest.<br />

Can be reduced by a factor of more than 20 by pulse shape discrimination.


New International Underground Facility: SNOLAB<br />

Phase 1 Experimental area: Available 2008<br />

Cryopit addition: Excavation nearly completed. Available 2009.<br />

Total additional excavated volume in new lab: 2 times SNO volume.<br />

For Experiments that benefit from a very deep and clean lab:<br />

• ν - less Double Beta Decay<br />

• Dark Matter<br />

• Solar Neutrinos<br />

• Geo – neutrinos<br />

• Supernova ν `s<br />

David Sinclair: Director<br />

of Facility Development<br />

TRIUMF Research<br />

Scientist at Carleton<br />

SUSEL


SNOLAB (Same depth as SNO: 2 km)<br />

Cube Hall (2008)<br />

70 to 800 times lower<br />

μ fluxes than<br />

Gran Sasso, Kamioka.<br />

SNO Cavern<br />

(Existing)<br />

Personnel<br />

facilities<br />

Ladder Labs<br />

(2008)<br />

Phase II<br />

Cryopit (2009)<br />

All Lab Air: Class < 2000<br />

Utility<br />

Area


Excavation Status<br />

ryopit Rock Removal<br />

omplete<br />

olting, Shotcrete and<br />

oncrete will be completed<br />

several weeks.<br />

Cryopit<br />

Cube Hall and Ladder Lab<br />

Excavation complete, walls<br />

painted, services being<br />

installed.<br />

Ladder Lab<br />

Cube Hall


Cube Hall


Dark Matter:<br />

Letters of Intent/Interest for SNOLAB<br />

Timing of <strong>Liquid</strong> Argon/Neon Scintillation: DEAP-1 (7 kg), MINI-CLEAN (360 kg),<br />

DEAP/CLEAN (3.6 Tonne)<br />

Freon Super-saturated Gel: PICASSO<br />

Silicon Bolometers: SUPER-CDMS (25 kg)<br />

Neutrino-less Double Beta Decay:<br />

150 Nd: Organo-metallic in liquid scintillator in <strong>SNO+</strong><br />

136 Xe: EXO (Gas or <strong>Liquid</strong>) (Longer Term)<br />

CdTe: COBRA (Longer Term)<br />

Solar Neutrinos:<br />

<strong>Liquid</strong> <strong>Scintillator</strong>: <strong>SNO+</strong> (also Reactor Neutrinos, Geo-neutrinos)<br />

<strong>Liquid</strong> Ne: CLEAN (also Dark Matter) (Longer Term)<br />

SuperNovae:<br />

<strong>SNO+</strong>: <strong>Liquid</strong> scintillator; HALO: Pb plus SNO 3 He detectors.<br />

6 th Workshop and<br />

Experiment Review Committee<br />

Aug 22, 23, 2007<br />

www.snolab.ca<br />

RED IMPLIES APPROVED<br />

FOR SITING


Composition of the Universe as we understand it in 2008<br />

(Very different than 20 years ago thanks to very sensitive astronomical,<br />

astronomical,<br />

astrophysical and particle physics experiments.)<br />

Responsible for accelerating the Universe’s expansion<br />

Neutrinos<br />

Are only<br />

a few %<br />

With SNOLAB we can look for Dark Matter particles (WIMPS)<br />

left from the Big Bang, with ultra-low ultra low radioactive background.


DEAP/CLEAN: 1 Tonne<br />

Fiducial <strong>Liquid</strong> Argon Dark<br />

Matter (WIMP) detector<br />

- Scintillation time spectrum for Ar<br />

enables nuclear recoils from WIMP<br />

collisions to be separated from<br />

betas and gammas from 39 Ar<br />

background using only scintillation<br />

light.<br />

- DEAP and CLEAN collaborations<br />

have come together to build new<br />

detectors with a simple and easily<br />

scaled technology at SNOLAB.<br />

Queen’s, Alberta, Carleton, Laurentian,<br />

SNOLAB, TRIUMF (Retiere), LANL,<br />

Yale, Boston, South Dakota, New<br />

Mexico, TUNL, Texas, NIST Boulder<br />

Events/0.01 wide bin<br />

Relative probability<br />

8<br />

10<br />

7<br />

10<br />

6<br />

10<br />

5<br />

10<br />

4<br />

10<br />

3<br />

10<br />

2<br />

10<br />

10<br />

10<br />

10<br />

1<br />

-1<br />

-2<br />

10<br />

-3<br />

10<br />

-4<br />

10<br />

-1<br />

10 1 10<br />

10 8 simulated e-’s<br />

From simulation,<br />

γ rejection > 10 8<br />

@ 10 keV<br />

10 keV events<br />

1<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

2<br />

10<br />

electrons<br />

nuclear recoils<br />

3<br />

10<br />

- e<br />

photon<br />

nuclear recoils<br />

100 simulated<br />

WIMPs<br />

M.G. Boulay & A. Hime, astro-ph/0411358<br />

T<br />

4<br />

10<br />

(ns)<br />

F<br />

prompt


Cube Hall<br />

MiniCLEAN<br />

360 kg<br />

2009<br />

DEAP/CLEAN<br />

3.6 tonne<br />

<strong>2010</strong><br />

Assembly<br />

Clean Room<br />

DEAP/CLEAN<br />

Process Systems<br />

DEAP-1 (7 kg): 6 x 10 -8 discrimination of 39 Ar betas demonstrated in running on surface.<br />

Now counting underground. Aiming at better than 10 -9 with lower background there.<br />

Existing discrimination would be adequate if depleted argon (x20) from helium sources is used.


WIMP Sensitivity with 1 tonne of argon<br />

)<br />

2<br />

alized per nucleon (cm<br />

10<br />

-41<br />

10<br />

10<br />

CDMS-2008<br />

-40<br />

-42<br />

CDMS-II<br />

Present<br />

Experimental<br />

Limits<br />

For nominal threshold of 20 keV visible energy, <strong>1000</strong> kg LAr for 3 years is<br />

sensitive to 10 -43<br />

10<br />

Teff<br />

threshold<br />

15 keV<br />

-46 cm2 . Present schedule: Mini-CLEAN 100 kg Fiducial: 2009,<br />

DEAP/CLEAN: <strong>1000</strong> kg Fiducial: starting <strong>2010</strong>


NEUTRINOLESS DOUBLE BETA DECAY: <strong>SNO+</strong> ( 150 Nd), EXO ( 136 Nd)<br />

Measuring Effective ν Mass: m νββ = |∑ i U ei ²m i |<br />

m νββ = |m 1 cos 2 θ 13 cos²θ 12 + m 2 e 2iα cos 2 θ 13 sin²θ 12 + m 3 e 2iβ sin²θ 13 |<br />

Mass Hierarchies<br />

normal hierarchy inverted hierarchy<br />

Normal Inverted<br />

Next Generation Detectors:<br />

Want sensitivity


Main Engineering Changes for <strong>SNO+</strong> : Scint. Purification, AV Hold Down<br />

The organic<br />

liquid is lighter<br />

than water so<br />

the Acrylic Vessel<br />

must be held down.<br />

Existing<br />

AV Support<br />

Ropes<br />

Otherwise, the existing detector, electronics etc. are unchanged.<br />

AV Hold Down<br />

Ropes<br />

(V. Strickland,<br />

TRIUMF Carleton:<br />

Finite element<br />

calcs.)


<strong>SNO+</strong>: Neutrino-less Double Beta Decay: 150 Nd<br />

• Nd is one of the most favorable double beta decay candidates<br />

with large phase space due to high endpoint: 3.37 MeV.<br />

• Ideal scintillator (Linear Alkyl Benzene) has been identified.<br />

More light output than Kamland, Borexino, no effect on acrylic.<br />

• Nd metallic-organic compound has been demonstrated to have<br />

long attenuation lengths, stable for more than a year.<br />

• 1 tonne of Nd will cause very little degradation of light output.<br />

• Isotopic abundance 5.6% (in <strong>SNO+</strong> 1 tonne Nd = 56 kg 150 Nd)<br />

• Collaboration to enrich 150 Nd using French laser isotope facility.<br />

Possibility of hundreds of kg of isotope production.<br />

• <strong>SNO+</strong> Capital proposal to be submitted Oct. 2008.<br />

• Plan to start with natural Nd in <strong>2010</strong>.<br />

• Other physics: CNO solar neutrinos, pep solar neutrinos to<br />

study neutrino properties, geo-neutrinos, supernova search..<br />

Queen’s, Alberta, Laurentian, SNOLAB, BNL, Washington, Penn, Texas, LIP<br />

Lisbon, Oxford, Sussex, Dresden


<strong>SNO+</strong> ( 150 Nd ν - less Double Beta Decay)<br />

0ν: 1057 events per<br />

year with 500 kg<br />

150 Nd-loaded liquid<br />

scintillator in <strong>SNO+</strong>.<br />

Simulation<br />

assuming light<br />

output and<br />

background<br />

similar to Kamland.<br />

U Chain<br />

One year of data<br />

m ν = 0.15 eV<br />

Th Chain<br />

Sensitivity (3 yrs): Natural Nd (56 kg isotope): m νββ ~ 0.1 eV<br />

500 kg enriched 150 Nd: m νββ ~ 0.03 eV


A lead detector for<br />

supernova neutrinos<br />

in SNOLAB<br />

H elium<br />

A nd<br />

L ead<br />

O bservatory<br />

Pb: Most sensitivity to electron neutrinos.<br />

~ 50 events for SN at center of Galaxy.<br />

Laurentian, TRIUMF (Yen),<br />

SNOLAB, LANL, Washington,<br />

Duke, Minnesota, Digipen IT HALO-1: 80 tons of existing Pb<br />

& SNO Neutron Detector Array


R&D in Canada: EXO-gas double beta counter<br />

Micro-megas<br />

Electrode<br />

Grids<br />

Xe Gas<br />

Isobutane<br />

TEA<br />

136 Xe decay<br />

. . . . . . . .<br />

. . . . . . . .<br />

For 200 kg, 10 bar, box is 1.5 m on a side<br />

EXO-gas Canada: Carleton (Sinclair), Laurentian<br />

Anode Pads<br />

WLS Bar<br />

Lasers<br />

Ba Ion<br />

PMT<br />

Electrons


Fluorine is very sensitive for the spin-dependent interaction<br />

Montreal, Queen’s<br />

Indiana, Pisa, BTI<br />

WIMP-Nucleus Spin-Dependent Interaction<br />

Acoustic<br />

Signal<br />

Up to 2.6 kg being run in 2007-08


Summary<br />

Excellent Partnerships in the past and for the future….<br />

All of us in Canadian Subatomic physics owe a<br />

tremendous amount to:


Erich W. Vogt<br />

TRIUMF Director 1981-94<br />

Canadian Statesman<br />

in Sub-atomic Physics

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!