11.11.2014 Views

Silicon carbide for UV, alpha, beta and X-ray detectors: results and ...

Silicon carbide for UV, alpha, beta and X-ray detectors: results and ...

Silicon carbide for UV, alpha, beta and X-ray detectors: results and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

RESMDD06, Florence, 10-13 October 2006<br />

<strong>Silicon</strong> <strong>carbide</strong> <strong>for</strong> <strong>UV</strong>, <strong>alpha</strong>,<br />

<strong>beta</strong> <strong>and</strong> X-<strong>ray</strong> <strong>detectors</strong>: <strong>results</strong><br />

<strong>and</strong> perspectives<br />

Francesco Moscatelli 1,2*<br />

1<br />

CNR- IMM di Bologna, via Gobetti 101, 40129 Bologna, Italy<br />

2<br />

INFN Perugia, via Pascoli 1 06123 Perugia, Italy<br />

1


RESMDD06, Florence, 10-13 October 2006<br />

Outline<br />

• Introduction on SiC properties<br />

• α <strong>and</strong> β SiC <strong>detectors</strong><br />

• <strong>UV</strong> SiC <strong>detectors</strong><br />

• X-<strong>ray</strong> SiC <strong>detectors</strong><br />

• Conclusions<br />

2


RESMDD06, Florence, 10-13 October 2006<br />

Wide B<strong>and</strong>gap<br />

E G<br />

=3.2 eV<br />

Low thermally<br />

generated currents<br />

Room temperature<br />

operation<br />

4<br />

3<br />

2<br />

1<br />

0<br />

SiC properties<br />

E g<br />

λ th<br />

Si<br />

GaAs<br />

4H-SiC<br />

(eV)<br />

E c<br />

(MV/cm)<br />

High Critical Field<br />

E C<br />

= 2 MV/cm<br />

(W/cmK)<br />

V s<br />

(10 7 cm/s)<br />

High thermal<br />

conductivity<br />

High saturation<br />

velocity<br />

v S = 200 μm/ns<br />

High<br />

frequency/speed<br />

devices<br />

Short transit time<br />

Low trapping<br />

probability<br />

High Voltage<br />

devices<br />

High Power<br />

devices<br />

3


RESMDD06, Florence, 10-13 October 2006<br />

α <strong>and</strong> β SiC <strong>detectors</strong><br />

4


RESMDD06, Florence, 10-13 October 2006<br />

Schottky junctions<br />

• Two samples<br />

irradiated at<br />

3 × 10 15 n cm -2<br />

• Two samples<br />

irradiated at<br />

circular Schottky contact Ni 2<br />

Si<br />

n - , 4H – SiC, 40 ± 2 μm<br />

epitaxial 4H-SiC<br />

n + , 4H – SiC, 360 μm<br />

substrate<br />

7 × 10 15 n cm -2 Ohmic contact - Ti/Pt/Au<br />

From : S. Sciortino et al. “Effects of heavy<br />

proton <strong>and</strong> neutron irradiations on epitaxial SiC<br />

Schottky diodes”, NIM A 552 (2005) 138-145.<br />

(Technology: Alenia Marconi Systems - Rome)<br />

(SiC wafers: CREE Inc., USA)<br />

(epi:CREE, USA or IKZ, Berlin)<br />

5


RESMDD06, Florence, 10-13 October 2006<br />

Schottky - Charge collection with ΜΙPs<br />

Neutron irradiated sample<br />

Collected charges [e - ]<br />

1600<br />

1200<br />

800<br />

400<br />

Schottky diodes<br />

300 e - at 600 V after<br />

7x10 15 n/cm 2 !<br />

0 2 4 6 8<br />

Fluence [10 15 n/cm 2 ]<br />

6


RESMDD06, Florence, 10-13 October 2006<br />

Schottky - Charge collection with α<br />

particles: neutron irradiated samples<br />

Fluence<br />

S. Sciortino et al. “Effects of heavy proton <strong>and</strong><br />

neutron irradiations on epitaxial SiC Schottky<br />

diodes”, NIM A 552 (2005) 138-145.<br />

7


RESMDD06, Florence, 10-13 October 2006<br />

p + /n junction<br />

terminated<br />

Ti/Al<br />

p +<br />

4 x 10 19 cm -3 p -<br />

0.4 μm<br />

SiC Process: p + /n<br />

(Technology: IMM-CNR – Bologna, Italy)<br />

(SiC wafers: CREE Inc., USA)<br />

(epi: IKZ, Berlin)<br />

5 x 10 17 cm -3 55 μm<br />

n -<br />

2 x 10 14 cm -3<br />

n +<br />

Ion implantation: Al + @ 300°C<br />

~10 18 cm -3<br />

4H-SiC<br />

Post implantation annealing: 1600°C<br />

Ni<br />

<strong>for</strong> 30 min 8° offin Argon<br />

Annealing <strong>for</strong> the contacts: 1000°C <strong>for</strong><br />

2 min in vacuum<br />

Area: 0.0078-0.015 cm 2<br />

0.6 μm<br />

8


RESMDD06, Florence, 10-13 October 2006<br />

p + n: CC measurements on reference<br />

3000 e - @ 200 V <strong>and</strong> 3100 e - @ 600 V <strong>for</strong> diode with D=1 mm*<br />

*F. Moscatelli et al., IEEE Transactions on Nuclear Science<br />

Vol. 53, No. 3 (June, 2006) pp. 1557-1563<br />

9


RESMDD06, Florence, 10-13 October 2006<br />

p + n: I - V after irradiation*<br />

Reverse current<br />

density decreases<br />

after irradiation!<br />

Diameter = 1 mm<br />

*F. Moscatelli et al., IEEE Transactions on Nuclear Science<br />

Vol. 53, No. 3 (June, 2006) pp. 1557-1563<br />

10


RESMDD06, Florence, 10-13 October 2006<br />

p + n: C-V after irradiation<br />

Capacitance is<br />

constant. The<br />

material turns to<br />

intrinsic<br />

Diameter = 0.4 mm<br />

11


RESMDD06, Florence, 10-13 October 2006<br />

Diameter = 1 mm<br />

p + n: CC vs fluence<br />

*F. Moscatelli et al., IEEE Transactions on Nuclear Science<br />

Vol. 53, No. 3 (June, 2006) pp. 1557-1563<br />

• CC is high until<br />

some 10 14 n/cm 2<br />

• CC decreases<br />

sharply after 10 15<br />

n/cm 2 . Only 130<br />

e - after 10 16<br />

n/cm 2* .<br />

12


RESMDD06, Florence, 10-13 October 2006<br />

p + n: Annealing analysis<br />

Concentration of some defects produced by<br />

neutrons decreases as a function of the<br />

annealing temperature*. In particular defects:<br />

-E i at E c -0.5 eV (decreases until 400°C then<br />

vanishes)<br />

-Z 1 /Z 2 at E c -0.62 /0.68 eV (decrease until<br />

900°C then vanish)<br />

- Effects on E c -1.16 <strong>and</strong> E c -1.5 eV?<br />

We want to analyze annealing effects on current<br />

<strong>and</strong> charge collection<br />

* X. D. Chen et al. JAP 94 (5) pp. 3004-3010, Sep 2003.<br />

13


RESMDD06, Florence, 10-13 October 2006<br />

p + n: I-V measurements after 80°C annealing<br />

Average reverse current decreases after annealing at 80°C <strong>for</strong><br />

30 minutes <strong>and</strong> then remains almost constant.<br />

*F. Moscatelli et al, presented at 8 th RD50 Workshop, Prague<br />

June 25-28, 2006.<br />

14


RESMDD06, Florence, 10-13 October 2006<br />

p + n: CC measurements after 80°C annealing<br />

After annealing at 80°C the collected charge slightly<br />

increases, in the range of the experimental error.<br />

No recovery of the damage at 80°C (neither at RT!)<br />

*F. Moscatelli et al, presented at 8 th RD50 Workshop, Prague<br />

June 25-28, 2006.<br />

15


RESMDD06, Florence, 10-13 October 2006<br />

p + n: I-V <strong>and</strong> CC after annealing at 200°C<br />

• CC is 2200±50 e - . (Be<strong>for</strong>e<br />

annealing CC=1800 e -)<br />

increase of 400 e - of CC.<br />

• J (@ 900 V) is 15 nA/cm 2<br />

(be<strong>for</strong>e ann J= 23 nA/cm 2 )<br />

• After an annealing at<br />

200°C <strong>for</strong> 30 minutes we<br />

have a partial recovery of<br />

the damage.<br />

16


RESMDD06, Florence, 10-13 October 2006<br />

p + n: I-V <strong>and</strong> CC after annealing at 400°C<br />

After 30 min at 400°C the current further decreases <strong>and</strong><br />

the CC increases of 40% (from 1400 e - to 1900 e - )<br />

17


RESMDD06, Florence, 10-13 October 2006<br />

Ultra-Violet (<strong>UV</strong>)<br />

<strong>and</strong> Extreme Ultra-Violet (E<strong>UV</strong>)<br />

<strong>detectors</strong><br />

18


RESMDD06, Florence, 10-13 October 2006<br />

QE <strong>and</strong> responsivity<br />

Quantum efficiency is defined as the number<br />

of carriers generated per incident photon<br />

QE<br />

=η =<br />

J ph<br />

q<br />

Φ<br />

i<br />

J ph = photocurrent density<br />

Responsivity (A/W) is the ratio of the photocurrent to the<br />

incident optical power<br />

Φ i<br />

= incident flux<br />

R<br />

=<br />

J<br />

ph<br />

=<br />

J<br />

ph<br />

q<br />

⋅<br />

q<br />

λ ⋅ =η<br />

q<br />

λ<br />

P<br />

i<br />

Φ<br />

i<br />

hc<br />

hc<br />

19


RESMDD06, Florence, 10-13 October 2006<br />

4H-SIC visible blind <strong>UV</strong> avalanche<br />

photodiode (APD)*<br />

V BD = 96 V<br />

positive temperature<br />

coefficient <strong>for</strong><br />

avalanche<br />

breakdown<br />

*F. Yan, Y. Luo, J. H. Zhao <strong>and</strong> G.H. Olsen,<br />

“4H-SiC visible blind <strong>UV</strong> avalanche<br />

photodiode”, Electron. Lett. 35, 929 (1999).<br />

20


RESMDD06, Florence, 10-13 October 2006<br />

Responsivity of APD*<br />

6H-SiC non-avalanche,<br />

R = 170 mA/W<br />

V = −90V<br />

R max =106 A/W at 270nm,<br />

R drops rapidly with<br />

increasing wavelength <strong>and</strong><br />

is comparable to the AC<br />

noise limit at 370nm.<br />

R 270nm /R 370 nm >20<br />

*F. Yan, Y. Luo, J. H. Zhao <strong>and</strong> G.H. Olsen,<br />

“4H-SiC visible blind <strong>UV</strong> avalanche<br />

photodiode”, Electron. Lett. 35, 929 (1999).<br />

21


RESMDD06, Florence, 10-13 October 2006<br />

Ni/4H-SiC Schottky E<strong>UV</strong> photodiodes (1)*<br />

I–V measurement<br />

I = 0.1 pA at −4 V<br />

Ideality factor = 1.06.<br />

*Jun Hu et al., OPTICS LETTERS , Vol. 31, No.<br />

11 June 1, 2006<br />

22


RESMDD06, Florence, 10-13 October 2006<br />

Ni/4H-SiC Schottky E<strong>UV</strong> photodiodes (2)*<br />

• QE (0 V) > 50% from 230 to 295<br />

nm, QE= 65% at 275 nm,<br />

(internal QE ≈100%).<br />

• The rejection ratio of <strong>UV</strong> to<br />

visible light is higher than 1000.<br />

• QE (E<strong>UV</strong>) > 100% <strong>for</strong> λ< 50<br />

nm,<br />

• QE (E<strong>UV</strong>) > 30 e/photon at 3<br />

nm.<br />

*Jun Hu et al., OPTICS LETTERS ,<br />

Vol. 31, No. 11 June 1, 2006<br />

23


RESMDD06, Florence, 10-13 October 2006<br />

4H-SiC single photon counting<br />

avalanche photodiode SPAPD(1)*<br />

V br ≈ 78 V.<br />

The peak QE ≈ 20%<br />

<strong>for</strong> λ= 270 - 280 nm.<br />

The QE ⇓ when λ⇑<strong>for</strong><br />

λ>280 nm because of the<br />

indirect b<strong>and</strong>gap of 4H-<br />

SiC. At 385 nm, the b<strong>and</strong><br />

edge of 4H-SiC, the photo<br />

current is lower than the<br />

system detection limit.<br />

*X. Xin et al., ELECTRONICS LETTERS<br />

17th February 2005 Vol. 41 No. 4<br />

24


RESMDD06, Florence, 10-13 October 2006<br />

4H-SiC SPAPD (2)<br />

At 350 nm QE=1.6%, flux=280<br />

photons/ μs<br />

photon count rate is about 4.5 MHz<br />

(89 signal pulses in 20 μs), n p of<br />

photons absorbed per μsby the SPAD<br />

is 6. The probability <strong>for</strong> n p to be<br />

counted is 75%<br />

The average photon counting<br />

efficiency is there<strong>for</strong>e 1.2%.<br />

At the peak λ = 353 nm, the photon<br />

counting efficiency is estimated to be<br />

2.6% (3.5% QE times 75% counting<br />

probability).<br />

25


RESMDD06, Florence, 10-13 October 2006<br />

X-<strong>ray</strong> <strong>detectors</strong><br />

26


RESMDD06, Florence, 10-13 October 2006<br />

Soft X-<strong>ray</strong> Absorption length<br />

10mm<br />

Absorption Length, λ<br />

1mm<br />

100µm<br />

10µm<br />

1µm<br />

Diamond<br />

SiC≡Si<br />

SiC = Si<br />

0.1 1 10 30<br />

Photon Energy [ keV ]<br />

λ SiC ≤λ Si<br />

Can SiC compete with Si Si ? (!)<br />

27


RESMDD06, Florence, 10-13 October 2006<br />

Electron-hole pairs : Signal !<br />

Semiconductor Semiconductor E GAP GAP<br />

εε<br />

e-h e-h pairs pairs<br />

@ 10 10 keV keV<br />

Ge Ge 0.7 0.7 3.0 3.0 3.3 3.3 k<br />

Si Si 1.1 1.1 3.7 3.7 2.7 2.7 k<br />

GaAs GaAs 1.4 1.4 4.2 4.2 2.4 2.4 k<br />

CdTe CdTe 1.5 1.5 4.5 4.5 2.2 2.2 k<br />

4H-SiC 3.3 3.3 7.8 7.8 1.3 1.3 k<br />

What about the SiC detector noise ?<br />

28


RESMDD06, Florence, 10-13 October 2006<br />

Run of SiC X-Ray Detectors<br />

(Technology: Alenia Marconi Systems - Rome)<br />

(SiC wafers: CREE Inc., USA)<br />

Schottky contact - Au<br />

n - epilayer 5x10 14 - 70 μm<br />

n+ buffer 1 μm<br />

n+ substrate - 320 μm<br />

ohmic contact - Ti/Pt/Au<br />

G. Bertuccio, “Prospect <strong>for</strong> energy resolving X-<strong>ray</strong><br />

imaging with compound semiconductor pixel<br />

<strong>detectors</strong>, NIM A 546 (2005) 232-241<br />

29


RESMDD06, Florence, 10-13 October 2006<br />

Leakage Current Density<br />

State of the art <strong>detectors</strong><br />

Current density [ A / cm 2 ]<br />

10 -8<br />

10 -10<br />

10 -12<br />

10 -6 10 -14<br />

CdTe<br />

Room Temperature<br />

GaAs (SI LEC)<br />

CdZnTe<br />

<strong>Silicon</strong><br />

GaAs (VPE)<br />

200<br />

200<br />

4H-SiC (Epi)<br />

10 -6<br />

Si<br />

1 nA/cm 2<br />

10 -8<br />

SiC<br />

5 pA/cm 2<br />

10 -10<br />

10 -12<br />

10 -14<br />

0,1 1 10 100<br />

Mean electric field [ kV / cm ]<br />

G. Bertuccio et al., IEEE Trans. Nucl. Sci. 50 (2003), pp. 175-185<br />

30


RESMDD06, Florence, 10-13 October 2006<br />

Temperature effect: SiC vs. Si<br />

10 -8<br />

10 -9<br />

10 -10<br />

10 -11<br />

10 -7 1000<br />

67 °C<br />

Current density [ A/cm 2 ]<br />

<strong>Silicon</strong><br />

47 °C<br />

27 °C<br />

200<br />

4H-SiC<br />

67 °C<br />

47 °C<br />

27 °C<br />

10 -12<br />

1 10 100<br />

Mean Electric Field [ kV/cm ]<br />

Higher per<strong>for</strong>mance of SiC with respect to <strong>Silicon</strong> is significant above<br />

room temperature, especially <strong>for</strong> relatively large area <strong>detectors</strong> in which the<br />

leakage current constitutes the main noise source*.<br />

*G. Bertuccio et al.,” A new generation of X-<strong>ray</strong><br />

<strong>detectors</strong> based on silicon <strong>carbide</strong>”, NIM A 518 (2004)<br />

433–435<br />

31


RESMDD06, Florence, 10-13 October 2006<br />

Experimental Results on SiC Detectors*<br />

• 4 x 4 matrix<br />

*G. Bertuccio, “Prospect <strong>for</strong> energy resolving X-<br />

<strong>ray</strong> imaging with compound semiconductor pixel<br />

<strong>detectors</strong>, NIMA 546 (2005) 232-241<br />

• Pixel size: 400 μm x 400 μm<br />

Sub-electron noise at RT!!!<br />

32


RESMDD06, Florence, 10-13 October 2006<br />

SiC pixel detector: from 27 °C to 100°C<br />

T = 100°C<br />

797 eV FWHM<br />

13.9 keV<br />

17.8 keV<br />

241 Am<br />

*G. Bertuccio,<br />

NIMA 546<br />

(2005) 232-241<br />

Counts<br />

T = 27°C<br />

315 eV FWHM<br />

26.3 keV<br />

Np L X-<strong>ray</strong>s<br />

0 5 10 15 20 25 30<br />

Photon Energy [ keV ]<br />

At high T the resolution is limited by the<br />

Front-end, NOT by the detector!!!<br />

33


RESMDD06, Florence, 10-13 October 2006<br />

Front-end noise<br />

Necessity of a new<br />

front-end with noise<br />

of few electrons<br />

New CMOS integrated charge<br />

preamplifier with ENC=3.9 e - + 6.2 e - /pF<br />

<strong>for</strong> <strong>detectors</strong> with 0.5 pF capacitance <strong>and</strong><br />

<strong>for</strong> power consumption of 2.3 mW*.<br />

* courtesy of G. Bertuccio <strong>and</strong> S. Caccia, ”Progress in ultra low<br />

noise ASIC’s <strong>for</strong> radiation <strong>detectors</strong>” to be published on NIM<br />

34


RESMDD06, Florence, 10-13 October 2006<br />

Conclusions α <strong>and</strong> β<br />

• Current<br />

– Currents @ 500 V are very low even after fluences of the order of<br />

10 16 n/cm 2 .<br />

– Currents decrease after annealing at 80°C, 200°C <strong>and</strong> 400°C.<br />

• Capacitance<br />

– Capacitance is constant. The material turns to intrinsic<br />

• CC<br />

– CCE is 100% be<strong>for</strong>e irradation. CC is good until fluences of the<br />

order of some 10 14 n/cm 2 . Be<strong>for</strong>e annealing , <strong>for</strong> fluences of the<br />

order of 10 15 -10 16 n/cm 2 the CC <strong>for</strong> α <strong>and</strong> β is very low.<br />

– After annealing at 80°C a slight increase of the collected charge is<br />

observed, in the range of the experimental error. No recovery of the<br />

damage!<br />

– After annealing at 400°C <strong>for</strong> 30 min an increase of the CC of the<br />

order of 40% is obtained.<br />

35


RESMDD06, Florence, 10-13 October 2006<br />

Conclusion <strong>UV</strong> <strong>detectors</strong><br />

• 4H-SiC visible blind <strong>UV</strong> avalanche <strong>detectors</strong> with V BD =96 V<br />

<strong>and</strong> R max =106 A/W at 270nm. At 370 nm R is equal to noise<br />

limit<br />

• E<strong>UV</strong> <strong>detectors</strong>: QE (0 V) > 50% from 230 to 295 nm, QE=<br />

65% at 275 nm, (internal QE ≈100%). The rejection ratio of <strong>UV</strong><br />

to visible light is higher than 1000. QE (E<strong>UV</strong>) > 100% <strong>for</strong> λ<<br />

50 nm, QE (E<strong>UV</strong>) > 30 e/photon at 3 nm.<br />

• SPAPD <strong>detectors</strong>:V br ≈ 78 V. The peak QE ≈ 20% <strong>for</strong> λ= 270 -<br />

280 nm. At 370 nm QE is equal to noise limit. Photon count rate<br />

is about 4.5 MHz (89 signal pulses in 20 μs), n p of photons<br />

absorbed per μs by the SPAD is 6. The average photon counting<br />

efficiency is there<strong>for</strong>e 1.2%. At the peak λ = 353 nm, the photon<br />

counting efficiency is estimated to be 2.6%.<br />

36


RESMDD06, Florence, 10-13 October 2006<br />

Conclusion X-<strong>ray</strong><br />

• SiC has the same absorption length as Si<br />

• SiC can give superior resolution at certain T <strong>and</strong> Areas<br />

• Pixel <strong>and</strong> pad <strong>detectors</strong> have been fabricated<br />

• SiC pixel detector: 315 eV FWHM @ 27 ° C<br />

797 eV FWHM @ 100 °C<br />

(due to Front-end)<br />

• SiC pixel : sub-electron noise at RT<br />

• New front-end with ENC=3.9 e - + 6.2 e - /pF<br />

37


RESMDD06, Florence, 10-13 October 2006<br />

Acknowledgements<br />

• Prof. A. Scorzoni, University of Perugia, Italy<br />

• Dott. R. Nipoti, IMM-CNR of Bologna , Italy<br />

• Dott. A Poggi, IMM-CNR of Bologna , Italy<br />

• Ing. P. Maccagnani, IMM-CNR of Bologna , Italy<br />

• Dott. S. Sciortino, Dipartimento di Energetica <strong>and</strong> INFN of Florence , Italy.<br />

• Dott. S. Lagomarsino, Dipartimento di Energetica <strong>and</strong> INFN of Florence , Italy.<br />

• Prof. Mara Bruzzi, Dipartimento di Energetica <strong>and</strong> INFN of Florence , Italy.<br />

• Prof. G. Bertuccio, Politecnico of Milano , Italy<br />

• IKZ institute of Berlin (Germany) <strong>for</strong> the epilayer growth,<br />

• The clean room staff of “CNR-IMM Sezione di Bologna , Italy” <strong>for</strong> the device<br />

realization<br />

• The Jozef Stefan Institute (Ljubljana, Slovenia) <strong>for</strong> the neutron irradiation.<br />

38


RESMDD06, Florence, 10-13 October 2006<br />

Appendix<br />

AX<strong>UV</strong><br />

Photodiodes ,<br />

International<br />

Radiation<br />

Detectors Inc.<br />

39

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!