11.11.2014 Views

for Heavy Quarks - the School on Flavour Physics 2010

for Heavy Quarks - the School on Flavour Physics 2010

for Heavy Quarks - the School on Flavour Physics 2010

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Effective Field Theories<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Heavy</str<strong>on</strong>g> <str<strong>on</strong>g>Quarks</str<strong>on</strong>g><br />

Part III: <str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong> and<br />

Soft Collinear Effective Theory<br />

Thomas Mannel<br />

Siegen University<br />

FlaviaNet <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>2010</strong>, Uni. Bern<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

What is still missing?<br />

Discussi<strong>on</strong> of inclusive decays:<br />

B → X c l¯ν l , Lifetimes Mixing ...<br />

<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Decays heavy hadr<strong>on</strong>s into light quarks:<br />

Very Energetic light degrees of freedom: E ∼ m b<br />

Soft Collinear Effective Theory<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Literature <str<strong>on</strong>g>for</str<strong>on</strong>g> Part III<br />

A Manohar, M. Wise,<br />

<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark <strong>Physics</strong>, Cambridge UP<br />

T. Mannel, Springer Tracts 2005<br />

SCET Paper series by Bauer, Pirjol, Stewart<br />

SCET Paper series by Beneke, Feldmann<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

C<strong>on</strong>tents Part III<br />

1 <str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Set up<br />

A short look at lifetimes<br />

Spectra of inclusive decays<br />

2 Soft Collinear Effective Theory<br />

The Endpoint Regi<strong>on</strong><br />

A look at SCET<br />

The SCET Lagrangian<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Set up<br />

A short look at lifetimes<br />

Spectra of inclusive decays<br />

<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> Inclusive Decays: Set up<br />

<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong> = Operator Product Expansi<strong>on</strong><br />

(Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar. Wise, Neubert, M,...)<br />

Γ ∝ ∑ (2π) 4 δ 4 (P B − P X )|〈X|H eff |B(v)〉| 2<br />

X<br />

∫<br />

= d 4 x 〈B(v)|H eff (x)H † eff (0)|B(v)〉<br />

∫<br />

= 2 Im d 4 x 〈B(v)|T {H eff (x)H † eff (0)}|B(v)〉<br />

∫<br />

= 2 Im d 4 x e −imbv·x 〈B(v)|T { ˜H eff (x) ˜H † eff (0)}|B(v)〉<br />

Last step: p b = m b v + k,<br />

Expansi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> residual momentum k<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Set up<br />

A short look at lifetimes<br />

Spectra of inclusive decays<br />

Per<str<strong>on</strong>g>for</str<strong>on</strong>g>m an OPE: m b is much larger than any scale<br />

appearing in <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix element<br />

∫<br />

d 4 xe −im bvx T { ˜H eff (x) ˜H † eff (0)}<br />

=<br />

∞∑<br />

n=0<br />

( 1<br />

2m Q<br />

) n<br />

C n+3 (µ)O n+3<br />

→ The rate <str<strong>on</strong>g>for</str<strong>on</strong>g> B → X c l¯ν l can be written as<br />

Γ = Γ 0 + 1 Γ 1 + 1 Γ<br />

m Q mQ<br />

2 2 + 1 Γ<br />

mQ<br />

3 3 + · · ·<br />

The Γ i are power series in α s (m Q ):<br />

→ Perturbati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory!<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Set up<br />

A short look at lifetimes<br />

Spectra of inclusive decays<br />

Γ 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> decay of a free quark (“Part<strong>on</strong> Model”)<br />

Γ 1 vanishes due to <str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Symmetries<br />

Γ 2 is expressed in terms of two parameters<br />

2M H µ 2 π = −〈H(v)| ¯Q v (iD) 2 Q v |H(v)〉<br />

2M H µ 2 G = 〈H(v)| ¯Q v σ µν (iD µ )(iD ν )Q v |H(v)〉<br />

µ π : Kinetic energy and µ G : Chromomagnetic moment<br />

Γ 3 two more parameters<br />

2M H ρ 3 D = −〈H(v)| ¯Q v (iD µ )(ivD)(iD µ )Q v |H(v)〉<br />

2M H ρ 3 LS = 〈H(v)| ¯Q v σ µν (iD µ )(ivD)(iD ν )Q v |H(v)〉<br />

ρ D : Darwin Term and ρ LS : Chromomagnetic moment<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Set up<br />

A short look at lifetimes<br />

Spectra of inclusive decays<br />

Γ 4 : Nine more Parameters At O(1/m 4 )<br />

Dimensi<strong>on</strong> 7 matrix elements = four derivatives<br />

In terms of physical quantities:<br />

Spin-independent<br />

2M B m 1 = 〈 ( (⃗p) 2) 2<br />

〉<br />

2M B m 2 = g 2 〈 E ⃗ 2 〉<br />

2M B m 3 = g 2 〈 B ⃗ 2 〉<br />

2M B m 4 = g〈⃗p · rot B〉 ⃗<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Set up<br />

A short look at lifetimes<br />

Spectra of inclusive decays<br />

Spin-dependent<br />

2M B m 5 = g 2 〈 S ⃗ · ( E ⃗ × E)〉 ⃗<br />

2M B m 6 = g 2 〈 S ⃗ · ( B ⃗ × B)〉 ⃗<br />

2M B m 7 = g〈( S ⃗ · ⃗p)(⃗p · ⃗B)〉<br />

2M B m 8 = g〈( S ⃗ · ⃗B)(⃗p) 2 〉<br />

2M B m 9 = g〈∆(⃗σ · ⃗B)〉<br />

Bey<strong>on</strong>d this <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a real proliferati<strong>on</strong> of parameters!<br />

This becomes useless unless <strong>on</strong>e has a way to<br />

compute <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix elemets<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Set up<br />

A short look at lifetimes<br />

Spectra of inclusive decays<br />

Remarks:<br />

All <str<strong>on</strong>g>the</str<strong>on</strong>g>se parameters are of <str<strong>on</strong>g>the</str<strong>on</strong>g> order (Λ QCD /m b ) n with<br />

appropriate n.<br />

For Λ QCD ∼ 500MeV and m b = 4.6 GeV:<br />

Λ QCD /m b = 0.11<br />

The leading n<strong>on</strong>perturbative Correcti<strong>on</strong>s are of order<br />

(Λ QCD /m b ) 2 = 1%<br />

N<strong>on</strong>perturbative correcti<strong>on</strong>s are expected to be small!<br />

This is an embarrasment:<br />

Significant lifetime difference between D 0 and D +<br />

Even larger lifetime differences between D 0 and Λ c<br />

...<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

A short look at lifetimes<br />

Set up<br />

A short look at lifetimes<br />

Spectra of inclusive decays<br />

Calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> Coefficients ...<br />

Up to Isospin breaking µ π (B + ) = µ π (B 0 )<br />

→ Mes<strong>on</strong> lifetime differences are order (Λ QCD /m b ) 3<br />

Expectati<strong>on</strong>:<br />

τ(M − )<br />

τ(M 0 )<br />

τ(M s )<br />

τ(M 0 )<br />

τ(Λ Q )<br />

τ(M 0 )<br />

= 1 + O(1/m 3 Q ) ,<br />

= 1 + O(1/m 3 Q ) ,<br />

= 1 + O(1/m 2 Q)<br />

This does not look good <str<strong>on</strong>g>for</str<strong>on</strong>g> charm, however ...<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Set up<br />

A short look at lifetimes<br />

Spectra of inclusive decays<br />

Look at <str<strong>on</strong>g>the</str<strong>on</strong>g> diagrams:<br />

These diagrams have <strong>on</strong>e less loop compared to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

leading terms<br />

... yields a relative factor 16π 2 ∼ 158<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Set up<br />

A short look at lifetimes<br />

Spectra of inclusive decays<br />

Hence<br />

τ(B − )<br />

τ(B d ) = 1+ 1 m 3 b<br />

[<br />

a 0 + 1 [<br />

a 1 + · · ·<br />

]+ 16π2 b<br />

m b mb<br />

3 0 + 1 ]<br />

b 1 + · · ·<br />

m b<br />

,<br />

Relative enhancement of <str<strong>on</strong>g>the</str<strong>on</strong>g> 1/m 3 Q terms<br />

Satisfactory explanati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> lifetme patterns<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Spectra of Inclusive Decays<br />

Set up<br />

A short look at lifetimes<br />

Spectra of inclusive decays<br />

Calculati<strong>on</strong> proceeds in <str<strong>on</strong>g>the</str<strong>on</strong>g> same way<br />

Denominator of <str<strong>on</strong>g>the</str<strong>on</strong>g> charm propagator:<br />

(m b v + k − q) 2 − m 2 c = m 2 b − m 2 c + 2m b (vq) + q 2 + · · ·<br />

Sbould be large against Λ QCD<br />

... this cannot be in all phase space<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Lept<strong>on</strong> Energy Epectrum<br />

Set up<br />

A short look at lifetimes<br />

Spectra of inclusive decays<br />

2<br />

1.5<br />

1_ dΓ __<br />

Γ dy<br />

b<br />

1<br />

0.5<br />

0.2 0.4 0.6 0.8 1<br />

y<br />

Endpoint regi<strong>on</strong>: ρ = mc/m 2 b 2, y = 2E l/m b<br />

[<br />

( ) 2 {<br />

dΓ<br />

dy ∼ Θ(1−y−ρ) λ 1 ρ<br />

2 +<br />

3 − 4 ρ } ]<br />

(m b (1 − y)) 2 1 − y 1 − y<br />

Break-down of <str<strong>on</strong>g>the</str<strong>on</strong>g> HQE in <str<strong>on</strong>g>the</str<strong>on</strong>g> endpoint regi<strong>on</strong><br />

... but reliable calculati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> moments of specta<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Moments of Spectra<br />

Set up<br />

A short look at lifetimes<br />

Spectra of inclusive decays<br />

Charged lept<strong>on</strong> energy spectrum<br />

Hadr<strong>on</strong>ic invariant mass spectrum<br />

〈MX〉 n = 1 ∫ ∫<br />

dM X MX<br />

n d 2 Γ<br />

dE l<br />

Γ<br />

E cut<br />

dM x dE l<br />

〈El n 〉 = 1 ∫<br />

dM X dE l E<br />

Γ<br />

∫E n d 2 Γ<br />

l<br />

cut<br />

dM x dE l<br />

Moment are sensitive to higher orders of HQE:<br />

[( ) n ] 1<br />

〈MX〉 n ∼ O<br />

m b<br />

May be used to extract <str<strong>on</strong>g>the</str<strong>on</strong>g> HQE parameters!<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Set up<br />

A short look at lifetimes<br />

Spectra of inclusive decays<br />

Hadr<strong>on</strong>ic Invariant Mass Moments (Buchmüller, Flächer)<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Set up<br />

A short look at lifetimes<br />

Spectra of inclusive decays<br />

Lept<strong>on</strong> Energy Moments I (Buchmüller, Flächer)<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Set up<br />

A short look at lifetimes<br />

Spectra of inclusive decays<br />

Lept<strong>on</strong> Energy Moments II (Buchmüller, Flächer)<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Set up<br />

A short look at lifetimes<br />

Spectra of inclusive decays<br />

V cb,incl = (41.54 ± 0.44 ± 0.59 HQE ) × 10 −3<br />

(PDG <strong>2010</strong>)<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Set up<br />

A short look at lifetimes<br />

Spectra of inclusive decays<br />

<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> to light inclusive: B → X u l¯ν<br />

Formulae also apply <str<strong>on</strong>g>for</str<strong>on</strong>g> b → u, taking <str<strong>on</strong>g>the</str<strong>on</strong>g> limit<br />

m c → 0 and V cb → V ub<br />

Useless <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> of V ub !<br />

Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> b → c background.<br />

Phase space cuts ruin <str<strong>on</strong>g>the</str<strong>on</strong>g> stadard OPE<br />

(at last <str<strong>on</strong>g>for</str<strong>on</strong>g> most of <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed methods)<br />

Partial Resumati<strong>on</strong>: N<strong>on</strong>perturbative input will be a<br />

“shape funct<strong>on</strong>”<br />

Simple way to explain this: BtoX s γ<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

The Endpoint Regi<strong>on</strong><br />

A look at SCET<br />

The SCET Lagrangian<br />

Phot<strong>on</strong> Spectrum in B → X s γ<br />

The phot<strong>on</strong> spectrum becomes (with x = 2E γ /m b )<br />

dΓ<br />

dx = G2 F αm5 b<br />

32π |V tsV 4 tb ∗| 2 |C 7 | 2<br />

(<br />

δ(1 − x) − λ 1 + 3λ 2<br />

δ ′ (1 − x) + λ )<br />

1<br />

δ ′′ (1 − x) + · · ·<br />

2mb<br />

2 6mb<br />

2<br />

General Structure at tree level (no real glu<strong>on</strong>s)<br />

[<br />

dΓ ∑<br />

( ) ]<br />

i 1<br />

dx = Γ 0 a i δ (i) (1 − x) + O((1/m b ) i+1 δ (i) (1 − x)<br />

m b<br />

i<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

The Endpoint Regi<strong>on</strong><br />

A look at SCET<br />

The SCET Lagrangian<br />

The same happens with <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r spectra !<br />

Interpretati<strong>on</strong>: The expansi<strong>on</strong> parameter is not 1/m,<br />

ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r it is 1/[m(1 − x)]: Expansi<strong>on</strong> breaks down in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Endpoint x ∼ 1.<br />

Comparis<strong>on</strong> with experiment: Moments:<br />

M n =<br />

∫ 1<br />

M 0 = Γ M 1 = − λ 1 + 3λ 2<br />

0<br />

2m 2 b<br />

dx (1 − x) n dΓ<br />

dx<br />

M 2 = λ 1<br />

6m 2 b<br />

Power counting <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> moments: M n = O(1/m n )<br />

· · ·<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

The Endpoint Regi<strong>on</strong><br />

A look at SCET<br />

The SCET Lagrangian<br />

Resummati<strong>on</strong> and shape functi<strong>on</strong><br />

Leading terms can be resummed into a shape<br />

functi<strong>on</strong>:<br />

dΓ<br />

dx = G2 F αm5 b<br />

32π 4 |V tsV tb ∗| 2 |C 7 | 2 f (1 − x)<br />

where 2M B f (ω) = 〈B| ¯Q v δ(ω + n · (iD))Q v |B〉<br />

n · (iD): light-c<strong>on</strong>e comp<strong>on</strong>ent of residual momentum.<br />

Fourier trans<str<strong>on</strong>g>for</str<strong>on</strong>g>m of a (light-like) Wils<strong>on</strong> line:<br />

∫<br />

( ∫ dt<br />

t<br />

)<br />

f (ω) =<br />

2π 〈B(v)| ¯Q v (0)P exp −i ds n · A(n · s) Q v (n·t)|B(v)〉<br />

0<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

The Endpoint Regi<strong>on</strong><br />

A look at SCET<br />

The SCET Lagrangian<br />

Shape Functi<strong>on</strong>: Kinematics<br />

Where in phase space is <str<strong>on</strong>g>the</str<strong>on</strong>g> shape functi<strong>on</strong> relevant?<br />

p B = M B v = q + p with q 2 = 0<br />

Light c<strong>on</strong>e vectors n and ¯n with n · ¯n = 2<br />

One of which is q = 1 (n · q)¯n<br />

2<br />

The sec<strong>on</strong>d is from v = 1(n + ¯n)<br />

2<br />

m b v − q = 1 2 [m b n + (m b − n · q)¯n]<br />

Shape functi<strong>on</strong> regi<strong>on</strong>:<br />

Final state invariant mass (p B − q) 2 ∼ O(Λ QCD m b )<br />

Hadr<strong>on</strong>ic energy M B − v · q ∼ O(m b )<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


Examples<br />

<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

The Endpoint Regi<strong>on</strong><br />

A look at SCET<br />

The SCET Lagrangian<br />

B → X s γ<br />

q 2 γ = 0 and q = E γ ¯n<br />

E γ = M B<br />

2<br />

− O(Λ QCD )<br />

→ Endpoint of <str<strong>on</strong>g>the</str<strong>on</strong>g> Phot<strong>on</strong> Energy Spectrum (2E γ → M B )<br />

B → X u l¯ν l<br />

m l = 0 and q = E l¯n<br />

E l = M B<br />

2<br />

− O(Λ QCD )<br />

→ Endpoint of <str<strong>on</strong>g>the</str<strong>on</strong>g> Lept<strong>on</strong> Energy Spectrum (2E l → M B )<br />

The same n<strong>on</strong>-perturbative input !<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

The Endpoint Regi<strong>on</strong><br />

A look at SCET<br />

The SCET Lagrangian<br />

Simple (tree level) derivati<strong>on</strong><br />

We start from:<br />

∫<br />

d 4 xe −i(m bv−q)·x 〈B(v)|T {b v (x)Γq(x)¯q(0)Γb v (0)}|B(v)〉<br />

and c<strong>on</strong>tract <str<strong>on</strong>g>the</str<strong>on</strong>g> light quark<br />

〈B(v)|T {b v (x)Γq(x)¯q(0)Γb v (0)}|B(v)〉<br />

= 〈B(v)|h v (x)Γ 〈0|T {q(x)¯q(0)}|0〉 Γb v (0)|B(v)〉<br />

expand <str<strong>on</strong>g>the</str<strong>on</strong>g> light (massless) Propagator (in external field)<br />

〈0|T {q(x)¯q(0)}|0〉 F =<br />

.T .<br />

m b /v − /q + i /D<br />

(m b − q) 2 + 2(m b − q) · (iD) + (i /D) 2 + iɛ<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

The Endpoint Regi<strong>on</strong><br />

A look at SCET<br />

The SCET Lagrangian<br />

Numerator: m b /v − /q + i /D = m b<br />

2 /n + O(Λ QCD)<br />

Denominator:<br />

(m b − q) 2 + 2(m b − q) · (iD) + (i /D) 2<br />

= m b [m b − n · q + n · (iD) + iɛ] + O(Λ 2 QCD)<br />

Collect everything:<br />

∫<br />

d 4 xe −i(mbv−q)·x 〈B(v)|T {b v (x)Γq(x)¯q(0)Γb v (0)}|B(v)〉<br />

= 〈B(v)|h v Γ 1 (<br />

)<br />

2 /nΓ 1<br />

h v |B(v)〉<br />

m b − n · q + n · (iD) + iɛ<br />

+ · · ·<br />

→ Leads to a c<strong>on</strong>voluti<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> shape functi<strong>on</strong><br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Why and where SCET?<br />

The Endpoint Regi<strong>on</strong><br />

A look at SCET<br />

The SCET Lagrangian<br />

Power Counting: (p fin : light final state)<br />

p fin = 1 2 (n · p fin)¯n and v = 1 2 (n + ¯n)<br />

Momentum of a light quark in such a mes<strong>on</strong>:<br />

p light = 1 2 [(n · p light)¯n + (¯n · p light )n] + p ⊥ light<br />

The light quark invariant mass (or virtuality) is<br />

assumed to be<br />

p 2 light = (n · p light )(¯n · p light ) + (p ⊥ light) 2 ∼ λ 2 m 2 b<br />

Quark momentum has to scale as<br />

(n · p light ) ∼ m b (¯n · p light ) ∼ λ 2 m b p ⊥ light ∼ λm b<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

The Lagrangian of SCET<br />

The Endpoint Regi<strong>on</strong><br />

A look at SCET<br />

The SCET Lagrangian<br />

Analogous to HQET:<br />

Pick <str<strong>on</strong>g>the</str<strong>on</strong>g> O(λ) and O(λ 2 ) of <str<strong>on</strong>g>the</str<strong>on</strong>g> quark momentum:<br />

Q = 1 2 (n · p light)¯n + p ⊥ light<br />

Rephase <str<strong>on</strong>g>the</str<strong>on</strong>g> quark fields: ψ(x) = ∑ Q<br />

e −iQ·x ψ n,Q (x)<br />

Project out <str<strong>on</strong>g>the</str<strong>on</strong>g> “large” and “small” comp<strong>on</strong>ents using<br />

ξ n,Q (x) = Pψ n,Q (x) with P = 1 4 /n/¯n<br />

and<br />

η n,Q (x) = Qψ n,Q (x) with Q = 1 4 /¯n/n<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

The Endpoint Regi<strong>on</strong><br />

A look at SCET<br />

The SCET Lagrangian<br />

The Lagrangian becomes<br />

L = ∑ [<br />

e −ix(p−p′ ) /n<br />

¯ξ n,p ′<br />

2 (in · D)ξ /n<br />

n,p + ¯η n,p ′<br />

2 [¯n · p + (i ¯n · D)]η n,p<br />

p,p ′ ]<br />

+ ¯ξ n,p ′ (/p ⊥ + i /D ⊥ ) η n,p + ¯η n,p ′ (/p ⊥ + i /D ⊥ ) ξ n,p<br />

Integrate out <str<strong>on</strong>g>the</str<strong>on</strong>g> “heavy”degree of freedom η<br />

→ use <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s of moti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> η<br />

L = ∑ [<br />

e −ix(p−p′ ) /n<br />

¯ξ n,p ′<br />

2 (in · D)ξ n,p +<br />

p,p ′<br />

¯ξ n,p ′ (/p ⊥ + i /D ⊥ )<br />

1<br />

¯n · p + (i ¯n · D) η n,p (/p ⊥ + i /D ⊥ ) /n ]<br />

2 ξ n,p<br />

Similarly <str<strong>on</strong>g>for</str<strong>on</strong>g> Glu<strong>on</strong>s ...<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

The Endpoint Regi<strong>on</strong><br />

A look at SCET<br />

The SCET Lagrangian<br />

Matching of <str<strong>on</strong>g>Heavy</str<strong>on</strong>g>-Light Currents<br />

¯qΓQ −→ ¯ξ n,p ′W(0)Γh v : W: Resummati<strong>on</strong> of<br />

collinear glu<strong>on</strong>s<br />

p<br />

p<br />

q m<br />

+ perms !<br />

q 2<br />

q<br />

p b<br />

q 1<br />

q 2<br />

SCET c<strong>on</strong>tains n<strong>on</strong>-localities, expressed in terms of<br />

Wils<strong>on</strong>-lines<br />

( ∫ 0<br />

)<br />

W(x) = P exp −i ds ¯n · A c (x + s¯n)<br />

−∞<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

The Endpoint Regi<strong>on</strong><br />

A look at SCET<br />

The SCET Lagrangian<br />

Radiative correcti<strong>on</strong>s in heavy-to-light inclusive decays<br />

Matching proceeds in two steps:<br />

(a) Matching QCD → SCET<br />

T [ ¯Q(x)Γq(x)¯q(0)¯ΓQ(0) ] −→<br />

T [¯hv (x)ΓW † (x)ξ n,p ′(x)¯ξ n,p ′W(0)¯Γh v (0) ]<br />

(b) Matching SCET → N<strong>on</strong>local operators<br />

T [¯hv (x)ΓW † (x)ξ n,p ′(x)¯ξ n,p ′W(0)¯Γh v (0) ] −→<br />

∫<br />

dω C(ω)h v δ(ω + in · D)h v<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

The Endpoint Regi<strong>on</strong><br />

A look at SCET<br />

The SCET Lagrangian<br />

Leads to a c<strong>on</strong>voluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> structure<br />

dΓ = H ∗ J ∗ f<br />

H: Hard C<strong>on</strong>tibuti<strong>on</strong><br />

J: Jet Functi<strong>on</strong>:<br />

collinear modes (c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> Sudakov Logs.)<br />

f : Shape Functi<strong>on</strong>:<br />

soft c<strong>on</strong>tributi<strong>on</strong>s, n<strong>on</strong>perturbative<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

The Endpoint Regi<strong>on</strong><br />

A look at SCET<br />

The SCET Lagrangian<br />

This has numerous applicati<strong>on</strong>s:<br />

Semilept<strong>on</strong>ic Decays: Precisi<strong>on</strong> determinati<strong>on</strong> of V ub<br />

Precise predicti<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> B → X s γ<br />

Applies also <str<strong>on</strong>g>for</str<strong>on</strong>g> exclusive (n<strong>on</strong>-lept<strong>on</strong>ic) decays:<br />

QCD Factorizati<strong>on</strong>, SCET ...<br />

<strong>on</strong>going debate with <str<strong>on</strong>g>the</str<strong>on</strong>g> PQCD group<br />

seems to have problems to explain some of <str<strong>on</strong>g>the</str<strong>on</strong>g> data<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Summary of Part III<br />

The Endpoint Regi<strong>on</strong><br />

A look at SCET<br />

The SCET Lagrangian<br />

Inclusive decays can be described also in a HQE<br />

Make use of <str<strong>on</strong>g>the</str<strong>on</strong>g> optical <str<strong>on</strong>g>the</str<strong>on</strong>g>orem<br />

Standard OPE has a certain set of n<strong>on</strong>-perturbative<br />

parameters: µ π , µ G , , ρ D , ρ LS ...<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> standard approach: Light degrees of freedom<br />

have to be “slow”: (vp) 2 ∼ p 2 ∼ Λ 2 QCD<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r extreme can also be handled:<br />

vp ∼ m b but p 2 ∼ Λ 2 QCD<br />

energetic light degrees of freedom: SCET<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

Summary of “Everything”<br />

The Endpoint Regi<strong>on</strong><br />

A look at SCET<br />

The SCET Lagrangian<br />

After approx 20 Years of 1/m Q expansi<strong>on</strong><br />

... we are able to perfome QCD-based appraoches<br />

... many models have been superseeded<br />

... and <str<strong>on</strong>g>the</str<strong>on</strong>g> model dependence has been pushed back<br />

into subleading terms<br />

... we entered an era of precisi<strong>on</strong> flavour physics,<br />

... at least <str<strong>on</strong>g>for</str<strong>on</strong>g> many quantities<br />

Fruitful overlapp with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r QCD based methods<br />

QCD Sum Rules<br />

Lattice QCD<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET


<str<strong>on</strong>g>Heavy</str<strong>on</strong>g> Quark Expansi<strong>on</strong><br />

Soft Collinear Effective Theory<br />

The Endpoint Regi<strong>on</strong><br />

A look at SCET<br />

The SCET Lagrangian<br />

Of course, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are problems ...<br />

Exclusive N<strong>on</strong>-Lept<strong>on</strong>ic Decays<br />

Important <str<strong>on</strong>g>for</str<strong>on</strong>g> CP violati<strong>on</strong> and searches <str<strong>on</strong>g>for</str<strong>on</strong>g> “New<br />

<strong>Physics</strong>”<br />

Tensi<strong>on</strong>s between exclusive and inclusive<br />

determinati<strong>on</strong>s of CKM parameters<br />

Proliferati<strong>on</strong> of parameters in higher orders 1/m b<br />

Limits our ability to compute<br />

Higher orders in α s are a real technical challenge<br />

More data may clarify a few of <str<strong>on</strong>g>the</str<strong>on</strong>g>se things:<br />

LHCb and Superflavour ...<br />

Thomas Mannel, Uni. Siegen<br />

Part III: HQE and SCET

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!