poster - International Conference of Agricultural Engineering

poster - International Conference of Agricultural Engineering poster - International Conference of Agricultural Engineering

cigr.ageng2012.org
from cigr.ageng2012.org More from this publisher
10.11.2014 Views

accumulated ETo (mm dia -1 ) 5 TABELA 4: Regressions between the daily values of radiation balance in the surfaces studied and radiation balance on horizontal surface (fall-winter). Regression y = a x + b Linear coefficient (b) Angular Coefficient (a) Correlation Coefficient (R 2 ) Q * 10N = a Q * H + b 1.9166 (*) 0.9807 0.9599 Q * 20N = a Q * H + b 3.4966 (*) 0.9299 0.8863 Q * 10E = a Q * H + b 0.6142 (*) 1.0225 0.9915 Q * 20E= a Q * H + b 0.7197 (*) 1.0136 0.9364 y = a x Q * 10S = a Q * H 0.9897 0.9909 Q * 20S = a Q * H 0.8715 0.9624 Q * 10W = a Q * H 1.0463 0.9914 Q * 20W = a Q * H 0.9751 0.9623 Figures 1 and 2 show the estimation of reference evapotranspiration (ETo) accumulated in (mm d -1 ), in the surfaces studied, in the spring-summer and autumn-winter period, respectively. Note that the accumulated ETo on surfaces in the spring-summer periods were 758.6, 781.3, 757.2, 782.9, 741.8, 774.5, 769.6, 760.4 and 752.5 mm, to H, 10N, 10S, 20N, 20S, 10E, 10W, 20E and 20W, respectively. In the fall-winter period the accumulated Eto were 561.9, 643.8, 557.3, 695.8, 504.5, 601.0, 582.6, 602.0 and 550.8 to H, 10N, 10S, 20N, 20S, 10E, 10W, 20E and 20W and 20W, respectively. The results obtained show the importance of such studies, which allow the correction of the Penman-Monteith for surfaces with different expositions and slopes. 900 800 700 600 500 400 300 200 100 0 H spring-summer 10N 10S 20N 20S 10E 10W 20E 20W FIGURA 1: Accumulated ETo on surfaces during spring-summer (2011-2012).

accumulated ETo (mm dia -1 ) 6 900 800 700 600 500 400 300 200 100 0 H fall-winter 10N 10S 20N 20S 10E 10W 20E 20W FIGURA 2: Accumulated ETo on surfaces in the fall-winter period (2012). 4. Conclussions The relationship between the radiation balances obtained will enable the correction of the Penman-Monteith methods for inclined surfaces, being an essential tool for planning projects of water budget of irrigated crops. 5. References Alados, I.; Foyo-Moreno, I.; Olmo, F.J.; Alados-Arboledas, L. 2003. Relationship between net radiation and solar radiation for semi-arid shrub-land. Agricultural and Forest Meteorology, 116, p.221-227. Allen, R. G. et al. 1998. Crop evapotranspiration: guidelines for computing crop water requirements. Rome: FAO, 300 p. (Irrigation and drainage paper, 56). André, R.G.B.; Volpe, C.A. 1988. Estimativa do saldo de radiação em Jaboticabal (SP). Revista de Geografia. v.7, p.1-8. Chang, J.H. 1968. Climate and agriculture: an ecological survey. Chicago, Aldine Publishing Co. 304p. Martin, F.R. et al. 2001. Relações entre saldo de radiação de pomar de lima ácida “tahiti”, saldo de radiação de gramado e radiação solar global. Revista Argentina de Agrometeorologia. Piracicaba, v.1, n.1, p.59-62. Silva, L.D.B.da. et al. 2007. Relações do saldo de radiação em grama batatais e capim tanzânia com a radiação solar global em Piracicaba, SP. Revista Brasileira de Agrometeorologia. v.15, n.3, p.250-256. Smith, M. et al. 1990. Expert consultation on revision of FAO methodologies for crop water requirements. Rome: FAO, 59 p. Turco, J.E.P. et al. 1998. Adequação de um modelo de crescimento da cultura de soja para terrenos com diferentes exposições e declividades. Engenharia Agrícola. v.17, n.4, p.25-34.

accumulated ETo (mm dia -1 )<br />

6<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

H<br />

fall-winter<br />

10N 10S 20N 20S 10E 10W 20E 20W<br />

FIGURA 2: Accumulated ETo on surfaces in the fall-winter period (2012).<br />

4. Conclussions<br />

The relationship between the radiation balances obtained will enable the correction <strong>of</strong> the<br />

Penman-Monteith methods for inclined surfaces, being an essential tool for planning projects <strong>of</strong><br />

water budget <strong>of</strong> irrigated crops.<br />

5. References<br />

Alados, I.; Foyo-Moreno, I.; Olmo, F.J.; Alados-Arboledas, L. 2003. Relationship between net<br />

radiation and solar radiation for semi-arid shrub-land. <strong>Agricultural</strong> and Forest Meteorology,<br />

116, p.221-227.<br />

Allen, R. G. et al. 1998. Crop evapotranspiration: guidelines for computing crop water<br />

requirements. Rome: FAO, 300 p. (Irrigation and drainage paper, 56).<br />

André, R.G.B.; Volpe, C.A. 1988. Estimativa do saldo de radiação em Jaboticabal (SP).<br />

Revista de Geografia. v.7, p.1-8.<br />

Chang, J.H. 1968. Climate and agriculture: an ecological survey. Chicago, Aldine Publishing<br />

Co. 304p.<br />

Martin, F.R. et al. 2001. Relações entre saldo de radiação de pomar de lima ácida “tahiti”,<br />

saldo de radiação de gramado e radiação solar global. Revista Argentina de<br />

Agrometeorologia. Piracicaba, v.1, n.1, p.59-62.<br />

Silva, L.D.B.da. et al. 2007. Relações do saldo de radiação em grama batatais e capim<br />

tanzânia com a radiação solar global em Piracicaba, SP. Revista Brasileira de<br />

Agrometeorologia. v.15, n.3, p.250-256.<br />

Smith, M. et al. 1990. Expert consultation on revision <strong>of</strong> FAO methodologies for crop water<br />

requirements. Rome: FAO, 59 p.<br />

Turco, J.E.P. et al. 1998. Adequação de um modelo de crescimento da cultura de soja para<br />

terrenos com diferentes exposições e declividades. Engenharia Agrícola. v.17, n.4, p.25-34.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!