poster - International Conference of Agricultural Engineering

poster - International Conference of Agricultural Engineering poster - International Conference of Agricultural Engineering

cigr.ageng2012.org
from cigr.ageng2012.org More from this publisher
10.11.2014 Views

model was introduced to estimate the air flow turbulence. Using the wind velocity predicted by this model, the vapor pressure and air temperature in the vicinity of the soil surface were estimated by the numerical model describing the air heat and vapor transfer in the microadvective condition. The energy budget on the soil surface was estimated using the wind velocity, vapor pressure, and air temperature simulated by these models. The soil water content and temperature were predicted using the simulation model describing the water and heat transfer in the soil. Using the energy budget, the accuracy of this model was verified by a wind tunnel. 2. Methodology 2.1. Analysis of airflow field around an isolated crop The governing equations describing the wind flow around an isolated crop can be written as follows: ∂u ∂v + = 0 ∂x ∂z ∂u ∂u ∂u 1 ∂p ∂ ⎛ + u + v = − + ⎜ K ∂t ∂x ∂z ρ ∂x ∂x ⎝ ∂v ∂v ∂v 1 ∂p ∂ ⎛ + u + v = − + ⎜ K ∂t ∂x ∂z ρ ∂z ∂x ⎝ a a ∂u ⎞ ∂ ⎛ ⎟ + ⎜ K ∂x ⎠ ∂z ⎝ ∂v ⎞ ∂ ⎛ ⎟ + ⎜ K ∂x ⎠ ∂z ⎝ a a ∂u ⎞ ⎟ − C ∂z ⎠ ∂v ⎞ ⎟ − C ∂z ⎠ where u and v are the wind velocity in horizontal and vertical directions (m·s -1 ), ρ is the air density (=1.293kg/m 3 ), p is the air pressure (g·m -1·s -2 ), K a is the eddy diffusion coefficient (m 2·s -1 ), C m is the resistance coefficient by crop canopy, S is the leaf area density(m 2·m -3 ) , t is the time, x is the fetch, and z is the height. Eddy coefficient described in eqs. (2) and (3) can be estimated as follows: K a 2 ∂u = λ m (4) ∂z The parameter λ m , inside and outside of the crop canopy can be represented as the following equations, respectively. 3 2κ λ m in = (5) C m S ( z − ) λ = κ (6) m out d 0 The parameter of inside of the crop canopy λ m in can be estimated as follows: ( z − d ) 0 m in : = κ ( z − ) κ > λ m in d 0 m m S S u u 2 2 + v + v λ (7) 2 2 v u (1) (2) (3) κ z > λ m in : λ = κz (8) m in 2.2. Heat and vapor transfer under micro-scale advection The equations that describe the air heat and vapor transfer in the advective condition can be written as follows:

∂e ∂e ∂e + u + v ∂t ∂x ∂z = ∂ ⎛ ∂e ⎞ ∂ ⎛ ∂e ⎞ ⎜ K a ⎟ + ⎜ K a ⎟ (9) ∂x ⎝ ∂x ⎠ ∂z ⎝ ∂z ⎠ ∂T a ∂t ∂Ta + u ∂x ∂Ta + v ∂z ∂ ⎛ = ⎜ K ∂x ⎝ a ∂Ta ∂x ⎞ ∂ ⎛ ⎟ + ⎜ K ⎠ ∂z ⎝ a ∂T ∂z where, T a is the air temperature(°C), and e is the vapor pressure(hPa). K a can be given using eq. (4). a ⎞ ⎟ ⎠ (10) 2.3. Soil moisture and heat transfer The moisture and heat transfer at the soil surface can be described as follows: ∂θ ∂ ∂θ ∂ ∂θ ∂ ∂T ∂ ∂T ∂K = ( Dw ) + ( Dw ) + ( DT ) + ( DT ) + ∂t ∂x ∂x ∂z ∂z ∂x ∂x ∂z ∂z ∂z C v ∂T ∂t (11) ∂ ∂T ∂ ∂T ⎧ ∂ ∂θ ∂ ∂θ ⎫ = ( λ ) + ( λ ) + Lρ w ⎨ ( Dwv ) + ( Dwv ) ⎬ (12) ∂x ∂x ∂z ∂z ⎩∂x ∂x ∂z ∂z ⎭ where C v is the volumetric heat capacity(J·m -3·ºC -1 ), D θ is the isothermal water diffusivity(m 2·s -1 ), D θv is the isothermal vapor diffusivity(m 2·s -1 ), D T is the thermal water diffusivity(m 2·s -1·ºC -1 ), K is the hydraulic conductivity(m·s -1 ), L is the latent heat of water vaporization(J·kg -1 ), T is the soil temperature(ºC), t is the time(s), λ is the thermal conductivity(W·m -1·ºC -1 ), ρ l is the water density(kg·m -3 ), and θ is the volumetric soil water content(m 3·m -3 ). 2.4. Model structure Figure 1 shows the schematic view of the numerical model used to simulate the air-flow field, vapor, and heat environment around an isolated crop and the moisture and heat transfer in soil. z Above soil surface ∂ ⎛ ⎜ K ∂z ⎝ ∂ ⎛ ⎜ K ∂z ⎝ a a ∂e ⎞ ⎟ = 0 ∂z ⎠ ∂Ta ⎞ ⎟ = 0 ∂z ⎠ 風 Wind e and T a are uniform. ∂Ta ∂Ta ∂Ta ∂ ⎛ ∂Ta ⎞ ∂ ⎛ + u + v = ⎜ K a ⎟ + ⎜ K ∂t ∂x ∂z ∂x ⎝ ∂x ⎠ ∂z ⎝ ∂e ∂e ∂e ∂ ⎛ ∂e ⎞ ∂ ⎛ ∂e ⎞ + u + v = ⎜ K a ⎟ + ⎜ K a ⎟ ∂t ∂x ∂z ∂x ⎝ ∂x ⎠ ∂z ⎝ ∂z ⎠ a ∂Ta ∂z ⎞ ⎟ ⎠ ⎛ ∂θ ∂T ⎞ E = Lρ w ⎜ − D w − D T − K ⎟ ⎝ ∂z ∂z ⎠ ∂T ∂θ G = −λ − Lρ w D wv ∂z ∂z x v u The values of e and T a are the same as the adjacent node. Subsurface ∂θ ∂ ∂θ ∂ ∂θ ∂ ∂T ∂ ∂T ∂K = ( D w ) + ( D w ) + ( DT ) + ( DT ) + ∂t ∂x ∂x ∂z ∂z ∂x ∂x ∂z ∂z ∂z ∂T ∂ ∂T ∂ ∂T ⎧ ∂ ∂θ ∂ ∂θ ⎫ C v = ( λ ) + ( λ ) + Lw ρ w ⎨ ( D wv ) + ( D wv ) ⎬ ∂t ∂x ∂x ∂z ∂z ⎩ ∂x ∂x ∂z ∂z ⎭ Dry Wet Dry θ,T are same value as the adjacent node. FIGURE 1: Schematic view of the numerical model used to simulate the air-flow field, vapor, and heat environment around an isolated crop and the moisture and heat transfer in soil.

∂e<br />

∂e<br />

∂e<br />

+ u + v<br />

∂t<br />

∂x<br />

∂z<br />

=<br />

∂ ⎛ ∂e<br />

⎞ ∂ ⎛ ∂e<br />

⎞<br />

⎜ K<br />

a ⎟ + ⎜ K<br />

a ⎟<br />

(9)<br />

∂x<br />

⎝ ∂x<br />

⎠ ∂z<br />

⎝ ∂z<br />

⎠<br />

∂T<br />

a<br />

∂t<br />

∂Ta<br />

+ u<br />

∂x<br />

∂Ta<br />

+ v<br />

∂z<br />

∂ ⎛<br />

= ⎜ K<br />

∂x<br />

⎝<br />

a<br />

∂Ta<br />

∂x<br />

⎞ ∂ ⎛<br />

⎟ + ⎜ K<br />

⎠ ∂z<br />

⎝<br />

a<br />

∂T<br />

∂z<br />

where, T a is the air temperature(°C), and e is the vapor pressure(hPa).<br />

K a can be given using eq. (4).<br />

a<br />

⎞<br />

⎟<br />

⎠<br />

(10)<br />

2.3. Soil moisture and heat transfer<br />

The moisture and heat transfer at the soil surface can be described as follows:<br />

∂θ<br />

∂ ∂θ<br />

∂ ∂θ<br />

∂ ∂T<br />

∂ ∂T<br />

∂K<br />

= ( Dw<br />

) + ( Dw<br />

) + ( DT<br />

) + ( DT<br />

) +<br />

∂t<br />

∂x<br />

∂x<br />

∂z<br />

∂z<br />

∂x<br />

∂x<br />

∂z<br />

∂z<br />

∂z<br />

C<br />

v<br />

∂T<br />

∂t<br />

(11)<br />

∂ ∂T<br />

∂ ∂T<br />

⎧ ∂ ∂θ<br />

∂ ∂θ<br />

⎫<br />

= ( λ ) + ( λ ) + Lρ<br />

w ⎨ ( Dwv<br />

) + ( Dwv<br />

) ⎬<br />

(12)<br />

∂x<br />

∂x<br />

∂z<br />

∂z<br />

⎩∂x<br />

∂x<br />

∂z<br />

∂z<br />

⎭<br />

where C v is the volumetric heat capacity(J·m -3·ºC -1 ), D θ is the isothermal water<br />

diffusivity(m 2·s -1 ), D θv is the isothermal vapor diffusivity(m 2·s -1 ), D T is the thermal water<br />

diffusivity(m 2·s -1·ºC -1 ), K is the hydraulic conductivity(m·s -1 ), L is the latent heat <strong>of</strong> water<br />

vaporization(J·kg -1 ), T is the soil temperature(ºC), t is the time(s), λ is the thermal<br />

conductivity(W·m -1·ºC -1 ), ρ l is the water density(kg·m -3 ), and θ is the volumetric soil water<br />

content(m 3·m -3 ).<br />

2.4. Model structure<br />

Figure 1 shows the schematic view <strong>of</strong> the numerical model used to simulate the air-flow field,<br />

vapor, and heat environment around an isolated crop and the moisture and heat transfer in<br />

soil.<br />

z<br />

Above soil<br />

surface<br />

∂ ⎛<br />

⎜ K<br />

∂z<br />

⎝<br />

∂ ⎛<br />

⎜ K<br />

∂z<br />

⎝<br />

a<br />

a<br />

∂e<br />

⎞<br />

⎟ = 0<br />

∂z<br />

⎠<br />

∂Ta<br />

⎞<br />

⎟ = 0<br />

∂z<br />

⎠<br />

風 Wind<br />

e and T a are uniform.<br />

∂Ta<br />

∂Ta<br />

∂Ta<br />

∂ ⎛ ∂Ta<br />

⎞ ∂ ⎛<br />

+ u + v = ⎜ K<br />

a ⎟ + ⎜ K<br />

∂t<br />

∂x<br />

∂z<br />

∂x<br />

⎝ ∂x<br />

⎠ ∂z<br />

⎝<br />

∂e<br />

∂e<br />

∂e<br />

∂ ⎛ ∂e<br />

⎞ ∂ ⎛ ∂e<br />

⎞<br />

+ u + v = ⎜ K<br />

a ⎟ + ⎜ K<br />

a ⎟<br />

∂t<br />

∂x<br />

∂z<br />

∂x<br />

⎝ ∂x<br />

⎠ ∂z<br />

⎝ ∂z<br />

⎠<br />

a<br />

∂Ta<br />

∂z<br />

⎞<br />

⎟<br />

⎠<br />

⎛ ∂θ<br />

∂T<br />

⎞<br />

E = Lρ<br />

w ⎜ − D<br />

w<br />

− D<br />

T<br />

− K ⎟<br />

⎝ ∂z<br />

∂z<br />

⎠<br />

∂T<br />

∂θ<br />

G = −λ<br />

− Lρ<br />

w<br />

D<br />

wv<br />

∂z<br />

∂z<br />

x<br />

v<br />

u<br />

The values <strong>of</strong> e and<br />

T a are the same as<br />

the adjacent node.<br />

Subsurface<br />

∂θ<br />

∂ ∂θ<br />

∂ ∂θ<br />

∂ ∂T<br />

∂ ∂T<br />

∂K<br />

= ( D<br />

w<br />

) + ( D<br />

w<br />

) + ( DT<br />

) + ( DT<br />

) +<br />

∂t<br />

∂x<br />

∂x<br />

∂z<br />

∂z<br />

∂x<br />

∂x<br />

∂z<br />

∂z<br />

∂z<br />

∂T<br />

∂ ∂T<br />

∂ ∂T<br />

⎧ ∂ ∂θ<br />

∂ ∂θ<br />

⎫<br />

C<br />

v<br />

= ( λ ) + ( λ ) + Lw<br />

ρ<br />

w ⎨ ( D<br />

wv<br />

) + ( D<br />

wv<br />

) ⎬<br />

∂t<br />

∂x<br />

∂x<br />

∂z<br />

∂z<br />

⎩ ∂x<br />

∂x<br />

∂z<br />

∂z<br />

⎭<br />

Dry<br />

Wet<br />

Dry<br />

θ,T are same value as<br />

the adjacent node.<br />

FIGURE 1: Schematic view <strong>of</strong> the numerical model used to simulate the air-flow field, vapor,<br />

and heat environment around an isolated crop and the moisture and heat transfer in soil.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!