10.11.2014 Views

Chapter 2 Some functions and their derivatives

Chapter 2 Some functions and their derivatives

Chapter 2 Some functions and their derivatives

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Chapter</strong> 2<br />

<strong>Some</strong> <strong>functions</strong> <strong>and</strong> <strong>their</strong> <strong>derivatives</strong><br />

2.1 Derivative of x n for integer n<br />

Recall, from eqn (1.6), for y = f (x),<br />

Also recall that, for integer n,<br />

Hence, if y = x n then<br />

dy<br />

dx = lim<br />

δx→0<br />

(a + b) n = a n + na n−1 b +<br />

f(x + δx) ¡ f(x)<br />

.<br />

δx<br />

n (n ¡ 1)<br />

a n−2 b 2 + ...+ b n .<br />

2!<br />

dy<br />

dx = lim (x + δx) n ¡ x n<br />

δx→0<br />

³<br />

δx<br />

´<br />

x n + nx n−1 δx + n(n−1) x n−2 δx 2 + ...<br />

2<br />

= lim<br />

δx→0 δx<br />

nx n−1 δx + n(n−1) x n−2 δx 2 + ...<br />

2<br />

= lim<br />

δx→0<br />

·<br />

= lim nx n−1 +<br />

δx→0<br />

dy<br />

dx = nxn−1 .<br />

2.2 Trigonometric Functions<br />

See Appendix C for further details.<br />

δx<br />

n (n ¡ 1)<br />

x n−2 δx + ...<br />

2<br />

¸<br />

¡ x n<br />

10


2.2.1 Definition <strong>and</strong> Graphs of Sine <strong>and</strong> Cosine<br />

The two basic trigonometric <strong>functions</strong> are the sine <strong>and</strong> cosine. Fromanangleθ, we<br />

may define cos θ <strong>and</strong> sin θ geometrically. Given the point P in the (x, y) plane such that<br />

OP is of length 1 <strong>and</strong> makes an anticlockwise angle θ with the positive x axis, then<br />

cos θ = x-coordinate of P.<br />

sin θ = y-coordinate of P.<br />

In the figure, 0 < θ < π 2<br />

<strong>and</strong>, for the right-angled triangle OAP,<br />

sin θ =<br />

length of side opposite to θ<br />

length of hypotenuse<br />

, cos θ =<br />

length of side adjactent to θ<br />

.<br />

length of hypotenuse<br />

In calculus, <strong>and</strong> THROUGHOUT THIS COURSE, all angles will be measured<br />

in RADIANS. In the picture, the angle θ inradiansisdefined to be the length of the<br />

arc from the point (1, 0) to P of the circle of radius 1 centre O.<br />

Our geometrical definitions of cos θ <strong>and</strong> sin θ make sense not just for 0 < θ < π/2 as<br />

in the picture but for all real values of θ of either sign. The graphs of these two <strong>functions</strong><br />

in the range (¡3π, 3π) are:<br />

11


By considering the limiting cases of the previously illustrated right-angled triangle<br />

when θ =0<strong>and</strong> when θ = π/2, we immediately deduce (in accordance with the graphs<br />

just drawn) that<br />

2.2.2 Inverse Trigonometric Functions<br />

sin 0 = 0, (2.1)<br />

cos π 2<br />

= 0, (2.2)<br />

cos 0 = 1, (2.3)<br />

sin π 2<br />

= 1. (2.4)<br />

From the form of the graph of the sine function, we see that it cannot have an inverse<br />

as it st<strong>and</strong>s, since each horizontal line y = c (with ¡1


sin : £ ¡ π 2 , π 2<br />

¤<br />

! [¡1, 1] has increasing inverse sin −1 =arcsin:[¡1, 1] ! £ ¡ π 2 , π 2<br />

¤<br />

. By<br />

definition, given any y in [¡1, 1], sin −1 y istheuniqueanglebetween¡π/2 <strong>and</strong> π/2 whose<br />

sine is y.<br />

NB. It is totally different from (sin y) −1 =cosec y.<br />

NB The graph of sin −1 y has vertical tangents at y = §1, sotheslope dx<br />

dy<br />

these two points.<br />

is infinite at<br />

Question: Over what restriction will cos have an inverse, arccos?<br />

Answer: We restrict cos to be either increasing or decreasing. It is usual to choose the<br />

decreasing restriction cos : [0, π] ! [¡1, 1], with inverse arccos : [¡1, 1] ! [0, π].<br />

13


As for arcsin,givenanyy in [¡1, 1], cos −1 (y) = arccos y istheuniqueanglebetween0 <strong>and</strong> π<br />

whose cosine is y.<br />

tan <strong>and</strong> arctan<br />

14


The function tan is increasing over many intervals, but we conventionally take the interval<br />

containing x =0: tan : (¡π/2, π/2) ! R with inverse arctan : R ! (¡π/2, π/2).<br />

15


2.2.3 <strong>Some</strong> identities <strong>and</strong> a useful limit<br />

NB.AnidentityisanequationwhichholdsforALLpermittedvaluesofitsvariables.<br />

See Appendix C for proofs of many trig. identities. Three which will be used in the next<br />

section are<br />

sin(x + y) = sinx cos y +cosx sin y, (2.5)<br />

cos 2x = 1¡ 2sin 2 x (2.6)<br />

cos 2 x +sin 2 x = 1. (2.7)<br />

Appendix C4 also contains the proof of a useful limit:<br />

sin x<br />

lim =1,<br />

x→0 x<br />

(2.8)<br />

i.e. sin x ¼ x for small angles x.<br />

2.2.4 Derivatives of the trigonometric <strong>functions</strong><br />

By definition (see section 1.4), the derivative of sin x is<br />

d<br />

(sin x) = lim<br />

dx δx→0<br />

sin(x + δx) ¡ sin x<br />

δx<br />

sin x cos δx +cosx sin δx ¡ sin x<br />

= lim<br />

δx→0 δx<br />

sin x (cos δx ¡ 1) + cos x sin δx<br />

= lim<br />

δx→0 δx<br />

¡2sinx sin 2 (δx/2) + cos x sin δx<br />

= lim<br />

δx→0 δx<br />

·sin δx/2<br />

δx<br />

= ¡ sin x lim<br />

δx→0 2 δx/2<br />

= cosx using (2.8).<br />

¸2<br />

+cosx lim<br />

δx→0<br />

sin δx<br />

δx<br />

using (2.5)<br />

using (2.6)<br />

This is eqn B.4 of Appendix B. There is a similar proof that<br />

d<br />

(cos x) =¡ sin x.<br />

dx<br />

Derivatives of other trig <strong>functions</strong> may be derived from those of sin <strong>and</strong> cos. e.g,<br />

using the quotient rule:<br />

µ <br />

d<br />

d sin x<br />

(tan x) =<br />

dx dx cos x<br />

cos x (cos x) ¡ sin x(¡ sin x)<br />

=<br />

cos 2 x<br />

= cos2 x +sin 2 x<br />

cos 2 x<br />

1<br />

=<br />

using (2.7)<br />

cos 2 x<br />

= sec 2 x.<br />

One similarly deduces that<br />

d<br />

dx (cot x) =¡cosec2 x.<br />

The remaining <strong>derivatives</strong> are all given in Appendix B.<br />

16


2.2.5 Derivatives of the inverse trigonometric <strong>functions</strong><br />

Derivatives of inverse <strong>functions</strong> To find the <strong>derivatives</strong> of inverse <strong>functions</strong>, we use<br />

the result<br />

dy<br />

dx = ³<br />

1 ´ , provided dx<br />

dx<br />

dy 6=0<br />

which follows directly from the definition of the derivative.<br />

dy<br />

Inverse Sine Set y =sin −1 x <strong>and</strong> x =siny (with ¡π/2 · y · π/2 <strong>and</strong> ¡1


Repeatedly differentiating (2.9), we see that<br />

d 2 y<br />

dx = dy<br />

2 dx = y, <strong>and</strong> more generally dn y<br />

= y for all positive integers n.<br />

dxn It follows (from Taylor’s Theorem - which you haven’t met yet!) that a function satisfies<br />

condition (2.9) if <strong>and</strong> only if<br />

y(x) =y(0)<br />

·1+x ¢¢¢¸<br />

+ x2<br />

2! + x3<br />

3! + = y(0)<br />

∞X<br />

n=0<br />

x n<br />

n!<br />

for all real x, (2.10)<br />

where n! =n(n ¡ 1)(n ¡ 2) ...3.2.1 is the product of the first n positive integers (called<br />

“factorial n”) <strong>and</strong> y(0) is the value of y(x) at x =0.<br />

For now, you can satisfy yourself that (2.10) “works” by differentiating it:<br />

dy<br />

dx = y(0) d<br />

dx<br />

·<br />

= y(0)<br />

= y(0)<br />

·1+x + x2<br />

2! + x3<br />

3! + ¢¢¢¸<br />

¸<br />

¢¢¢<br />

0+1+ 2x<br />

2! + 3x2 + 4x3<br />

3! 4!<br />

·1+x ¢¢¢¸<br />

+ x2<br />

2! + x3<br />

3! + = y(x).<br />

It turns out that the sum of infinitely many terms is nevertheless finite in value for any<br />

real x. [It is an example of a Taylor series, ofwhichmorelateroninthis course.]<br />

Definition of the exponential function We define the exponential function exp(x)<br />

to be the unique function (defined for all real x) satisfying the two conditions<br />

d<br />

[exp(x)]<br />

dx<br />

= exp(x) (for all real x), (2.11)<br />

exp (0) = 1. (2.12)<br />

Theuniquefunctionexp(x) satisfying these is given explicitly by<br />

This definition:<br />

exp(x) =1+x + x2<br />

2! + x3<br />

3! + ¢¢¢= ∞<br />

X<br />

n=0<br />

x n<br />

n! . (2.13)<br />

² allows the numerical evaluation of exp (x) for all real x.<br />

² allows one to show (see Appendix D.1) that:<br />

exp (x + y) = exp(x)exp(y) ,<br />

exp (x) > 0,<br />

exp (¡x) =<br />

1<br />

exp (x)<br />

Given exp (x) > 0 it follows from (2.11) that d [exp(x)] > 0 <strong>and</strong> so<br />

dx<br />

exp (x) is a strictly increasing function, i.e. x>y) exp(x) > exp(y). (2.14)<br />

18


From 2.13 we can see that<br />

<strong>and</strong> so, given exp (¡x) = 1<br />

exp(x) ,<br />

So, the graph of the function exp(x) looks like:<br />

exp(x) ! +1 as x ! +1, (2.15)<br />

exp(x) ! 0 as x !¡1. (2.16)<br />

2.3.2 The Logarithmic Function<br />

Since exp : R ! (0, 1) is a strictly increasing function, it must have a (unique) strictly<br />

increasing inverse ln : (0, 1) ! R called the logarithmic function or natural logarithm.<br />

For x 2 R, y2 (0, 1),<br />

y =exp(x) if <strong>and</strong> only if x =lny. (2.17)<br />

Taking x =0in (2.17) <strong>and</strong> using exp (0) = 1, weseethat<br />

Similarly it follows from (2.15), (2.16) <strong>and</strong> (2.17) that<br />

ln 1 = 0. (2.18)<br />

ln x ! +1 as x ! +1, (2.19)<br />

ln x ! ¡1 as x ! 0. (2.20)<br />

Properties (2.18)—(2.20) all show up clearly on the graph of ln:<br />

19


2.3.3 Definition of an Arbitrary Real Power of a Positive Real<br />

Number<br />

We know<br />

so we see<br />

exp(x 1 + x 2 )=exp(x 1 )exp(x 2 ) (2.21)<br />

exp(x 1 + x 2 + ¢¢¢+ x n )=exp(x 1 )exp(x 2 ) ...exp(x n ), (2.22)<br />

where n is any positive integer <strong>and</strong> x 1 ,x 2 ,...,x n any real numbers. Taking x 1 = x 2 =<br />

¢¢¢= x n =lnx, wherex>0, <strong>and</strong> using (2.17), we get<br />

exp(n ln x) =[exp(lnx)] n = x n ,<br />

for any positive integer n.<br />

We can define an arbitrary real power x α of a positive real number x by<br />

equivalent [by (2.17)] to<br />

x α =exp(α ln x) (x>0, α real), (2.23)<br />

ln(x α )=α ln x (x >0, α real). (2.24)<br />

The definition (2.23) satisfies the st<strong>and</strong>ard rules for multiplication <strong>and</strong> division of<br />

powers:<br />

for all real α <strong>and</strong> β.<br />

x α x β = x α+β ,<br />

x α<br />

x β = x α−β ,<br />

20


2.3.4 The Number e, <strong>and</strong> the Exponential Function as a Power<br />

We define the positive real number e (whose value is approximately 2.718) by<br />

e =exp1, (2.25)<br />

from which<br />

Using (2.23),<br />

i.e.<br />

2.3.5 Derivatives<br />

The exponential function<br />

ln e =1. (2.26)<br />

e x =exp(x ln e) =exp(x)<br />

exp x = e x for all real x. (2.27)<br />

By definition.<br />

d<br />

[exp(x)] = exp(x). (2.28)<br />

dx<br />

The logarithmic function<br />

y =lnx, <strong>and</strong>sox =exp(y) . Then<br />

d<br />

dx [ln(x)] = 1 dx<br />

dy<br />

=<br />

1<br />

exp (y) = 1 x<br />

(for x>0). (2.29)<br />

Arbitrary real powers<br />

From the above definition of x α we have<br />

d<br />

dx (xα ) = d (exp (α ln x))<br />

dx<br />

= exp(α ln x)£ α £ 1 x<br />

(using the chain rule)<br />

= αx α 1 x<br />

= αx α−1 .<br />

Thus<br />

d<br />

dx (xα )=αx α−1 (α real, x>0), (2.30)<br />

NBthereisasimilartrickfor<br />

d<br />

dx (ax )= d (exp (x ln a)) = ...<br />

dx<br />

2.4 The Hyperbolic Functions<br />

These are constructed from the exponential function, but obey identities closely analogous<br />

to those satisfied by the corresponding trigonometric <strong>functions</strong> (obtained by dropping the<br />

final “h”).<br />

21


2.4.1 Definitions<br />

cosh x = 1 2 (ex + e −x ), (2.31)<br />

sinh x = 1 2 (ex ¡ e −x ), (2.32)<br />

tanh x = sinh x<br />

cosh x = ex ¡ e −x 1 ¡ e−2x<br />

=<br />

e x + e−x 1+e = e2x ¡ 1<br />

−2x e 2x +1 , (2.33)<br />

coth x = 1<br />

tanh x = cosh x<br />

sinh x = ex + e −x 1+e−2x<br />

=<br />

e x ¡ e−x 1 ¡ e = e2x +1<br />

−2x e 2x ¡ 1<br />

(x 6= 0),(2.34)<br />

sech x = 1<br />

cosh x = 2<br />

,<br />

e x + e−x (2.35)<br />

cosech x = 1<br />

sinh x = 2<br />

e x ¡ e −x (x 6= 0). (2.36)<br />

2.4.2 The Fundamental Identity<br />

Corresponding to the well-known identity cos 2 x +sin 2 x =1for the trigonometric <strong>functions</strong>,<br />

we have for the hyperbolic <strong>functions</strong> the identity<br />

cosh 2 x ¡ sinh 2 x =1 (2.37)<br />

(holding for all real x). NB the minus sign! To prove (2.37), just substitute the definitions<br />

(2.31) <strong>and</strong> (2.32) into the LHS, to get<br />

1<br />

4 (ex +e −x ) 2 ¡ 1 4 (ex ¡e −x ) 2 = 1 4 (e2x +e −2x +2e x e −x )¡ 1 4 (e2x +e −2x ¡2e x e −x )=e x e −x = e x−x = e 0 =1.<br />

2.4.3 Further Identities<br />

1 ¡ tanh 2 x = sech 2 x, (2.38)<br />

coth 2 x ¡ 1 = cosech 2 x, (2.39)<br />

sinh(x + y) = sinhx cosh y +coshx sinh y, (2.40)<br />

sinh(x ¡ y) = sinhx cosh y ¡ cosh x sinh y, (2.41)<br />

cosh(x + y) = coshx cosh y +sinhx sinh y, (2.42)<br />

cosh(x ¡ y) = coshx cosh y ¡ sinh x sinh y, (2.43)<br />

sinh 2x = 2sinhx cosh x, (2.44)<br />

cosh 2x = sinh 2 x +cosh 2 x, (2.45)<br />

cosh 2 x = 1 (cosh 2x +1),<br />

2<br />

(2.46)<br />

sinh 2 x = 1 (cosh 2x ¡ 1),<br />

2<br />

(2.47)<br />

sinh x cosh y = 1 [sinh (x + y)+sinh(x ¡ y)] ,<br />

2<br />

(2.48)<br />

cosh x cosh y = 1 [cosh (x + y)+cosh(x ¡ y)] ,<br />

2<br />

(2.49)<br />

sinh x sinh y = 1 [cosh (x + y) ¡ cosh (x ¡ y)] .<br />

2<br />

(2.50)<br />

22


Each of these has a trigonometric counterpart (see Appendix C), but there are some<br />

important differences of sign, which should be carefully noted. The identities are all easy<br />

to prove from the definitions above.<br />

2.4.4 The Graphs of cosh, sinh <strong>and</strong> tanh<br />

Using the definitions of the hyperbolic <strong>functions</strong>, <strong>and</strong> our knowledge of the exponential<br />

function, we can sketch the following graphs <strong>and</strong> deduce some properties for the<br />

hyperbolic <strong>functions</strong>.<br />

cosh 0 = 1,<br />

cosh x ! +1 as x !§1,<br />

cosh (¡x) = cosh(x) (i.e. it is an EVEN function).<br />

23


sinh 0 = 0,<br />

sinh x ! +1 as x ! +1,<br />

sinh x ! ¡1 as x !¡1,<br />

sinh (¡x) = ¡ sinh (x) (i.e. it is an ODD function).<br />

24


tanh 0 = 0,<br />

tanh x ! +1 as x ! +1,<br />

tanh x ! ¡1 as x !¡1,<br />

tanh (¡x) = ¡ tanh (x) (i.e. it is an ODD function).<br />

Like all even <strong>functions</strong>, cosh has a a graph which is symmetrical about Oy, i.e. invariant<br />

under reflection in Oy. It has a minimum value of 1 at x =0, where its derivative<br />

sinh x is zero. On the other h<strong>and</strong>, the graphs of the <strong>functions</strong> sinh <strong>and</strong> tanh, like those of<br />

all odd <strong>functions</strong>, are invariant under rotation through 180 ◦ about O. Notethatsinh<strong>and</strong><br />

tanh are both increasing <strong>functions</strong> <strong>and</strong> that the graph of tanh has horizontal asymptotes<br />

y = §1 approached as x !§1respectively.<br />

2.4.5 Symmetry <strong>and</strong> Asymptotic Properties of other hyperbolic<br />

<strong>functions</strong><br />

Similarly, we can deduce the following properties of coth, sech <strong>and</strong> cosech:<br />

coth(¡x) =¡ coth x, sech (¡x) =sechx, cosech (¡x) =¡cosechx.<br />

coth x ! 1 as x ! +1, coth x !¡1 as x !¡1,<br />

coth x ! +1 as x ! 0 from above , coth x !¡1as x ! 0, from below,<br />

sech x ! 0 as x !§1,<br />

cosech x ! 0 as x !§1,<br />

sech 0=1<br />

cosech x ! +1 as x ! 0 from above, cosech x !¡1as x ! 0 from below.<br />

2.4.6 Inverse Hyperbolic Functions<br />

cosh<br />

We restrict cosh x to the interval [0, 1), on which it is an increasing function with<br />

increasing inverse cosh −1 :[1, 1) ! [0, 1). Fory ¸ 0, x¸ 1, wehavey =cosh −1 x ,<br />

x =coshy. cosh −1 x may be expressed in terms of logarithms as follows.<br />

If y =cosh −1 x (x ¸ 1) then y is the positive solution of the equation x =coshy,<br />

that is<br />

x = 1 ¡<br />

e y + e −y¢ .<br />

2<br />

Multiplying through by 2e y gives<br />

a quadratic for e y ,withroots<br />

2xe y = e 2y +1<br />

e 2y ¡ 2xe y +1 = 0<br />

(e y ) 2 ¡ 2xe y +1 = 0<br />

e y = 2x § p 4x 2 ¡ 4<br />

= x § p x<br />

2<br />

2 ¡ 1.<br />

³<br />

so, y = ln x § p ´<br />

x 2 ¡ 1 .<br />

25


But we want y>0, so we choose the + sign, i.e.<br />

³<br />

y =cosh −1 x =ln x + p ´<br />

x 2 ¡ 1<br />

for x ¸ 1. (2.51)<br />

sinh<br />

sinh: R ! R is an increasing function, so there is no need for restriction. By similar<br />

arguments to those used for cosh, one shows that, for any x,<br />

sinh −1 x =ln<br />

³x + p ´<br />

1+x 2 . (2.52)<br />

tanh<br />

tanh : R ! (¡1, 1) is an increasing function, so there is no need for restriction. It is easy<br />

to show that<br />

tanh −1 x = 1 µ 1+x<br />

2 ln for ¡ 1


Inverse Cosh Recall y =cosh −1 x , x =coshy with y ¸ 0, x¸ 1. So,sinh y ¸ 0<br />

<strong>and</strong> hence<br />

Then<br />

i.e.<br />

sinh 2 y = cosh 2 y ¡ 1<br />

q<br />

sinh y = + cosh 2 y ¡ 1=+ p x 2 ¡ 1.<br />

dy<br />

dx = 1 dx<br />

dy<br />

d<br />

dx (cosh−1 x)=<br />

= 1<br />

sinh y =+ 1<br />

p<br />

x2 ¡ 1<br />

1<br />

p for x>1.<br />

x2 ¡ 1<br />

You can also prove this by differentiating eqn (2.51) directly.<br />

Inverse Sinh<br />

Similarly<br />

d<br />

dx (sinh−1 x)=<br />

1<br />

p<br />

1+x<br />

2 .<br />

Inverse Tanh<br />

y =tanh −1 x ) x =tanhy, sowehave<br />

so<br />

dx<br />

dy = sech2 x =1¡ tanh 2 x =1¡ y 2 ,<br />

d<br />

dx (tanh−1 x)= 1 dx<br />

dy<br />

= 1 for ¡ 1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!