09.11.2014 Views

Rheology model - COMSOL.com

Rheology model - COMSOL.com

Rheology model - COMSOL.com

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Comsol Conference, Milano October 14 – 16, 2009<br />

<strong>Rheology</strong> <strong>model</strong>ing of a<br />

Multiphase Detergent Processing<br />

Vincenzo Guida<br />

Pomezia F&HC R&D


Background<br />

5 micron<br />

100 micron


<strong>Rheology</strong> of FP<br />

Equilibrium parameters definition 0Pa 001-0002f<br />

0.1 Pa applied stress<br />

4.500<br />

10.00 10.00<br />

4.000<br />

3.500<br />

viscosity (P Pa.s)<br />

3.000<br />

2500 2.500<br />

2.000<br />

1.500<br />

1 sec-1 constant shear experiment<br />

(lab made unsheared sample)<br />

G' (Pa)<br />

G'' (Pa)<br />

1.000<br />

0.5000<br />

0<br />

0 20.00 40.00 60.00 80.00 100.0 120.0 140.0<br />

time (s)<br />

0 0<br />

1.000 ang. frequency (rad/s)<br />

50.00<br />

Thixotropic Material<br />

Under flow<br />

Weak elastic gel at rest


Detergent processing<br />

Shear<br />

Shear


Industrial problems for detergents<br />

manufacturing<br />

• Predict flow of detergents<br />

– Size pumps and pipelines<br />

– Calculate pressure drop in mixing devices,<br />

packing nozzles, manifold etc…<br />

• Predict finished product properties<br />

– Ahi Achieve a dt determined dmicrostructure<br />

t<br />

– Predict rheology, stability, apperance


Flow problem: <strong>model</strong>ing<br />

thixotropy


Product rheology<br />

Viscosity Curve<br />

100<br />

Viscos sity (Pa.s)<br />

10<br />

1<br />

0.01 0.1 1 10 100<br />

0.1<br />

Shear Rate (sec-1)


Thixotropy<br />

Viscosity evolution versus time at shear<br />

1000<br />

100<br />

Viscosity at 0.1 sec-1<br />

Viscosity at 1 sec-1<br />

Viscosity at 10 sec-1<br />

Viscosity at 100 sec-1<br />

Viscosit ty (Pa*sec)<br />

10<br />

1<br />

01 0.1<br />

0.01<br />

0 2 4 6 8 10 12 14 16<br />

Time (min)


Thixotropy experimental investigation<br />

Viscosity at 0.1 sec-1 after 15 minutes at a given shear stress<br />

60<br />

50<br />

Viscosity (Pa.s)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 20 40 60 80 100 120<br />

Applied Shear stress (Pa)<br />

<br />

<br />

<br />

<br />

0<br />

<br />

<br />

c<br />

eq<br />

<br />

1<br />

<br />

1<br />

<br />

<br />

critic


Thixotropy experimental investigation<br />

Viscosity at 0.1 sec-1 after x minutes at high stress<br />

100<br />

90<br />

80<br />

Viscosit ty (Pa*sec)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

20 Pa<br />

50 Pa<br />

80 Pa<br />

0<br />

0 2 4 6 8 10 12 14 16<br />

Time at high stress (minutes)


<strong>Rheology</strong> <strong>model</strong><br />

<br />

<br />

K <br />

<br />

K K c<br />

<br />

K0<br />

K<br />

dc<br />

<br />

( a b <br />

) <br />

dt<br />

<br />

<br />

1<br />

ceq<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

1<br />

<br />

crit <br />

n<br />

<br />

<br />

n<br />

<br />

c<br />

<br />

c eq<br />

<br />

<br />

<br />

Modification of Moore’s <strong>model</strong>


3D implementation in Comsol<br />

Momentum balance<br />

<strong>Rheology</strong> constitutive equation<br />

Conservation law for connectivity<br />

i<br />

<br />

<br />

<br />

k <br />

<br />

1<br />

2<br />

2 2 2<br />

2<br />

2<br />

4u<br />

4v<br />

4w<br />

<br />

2u<br />

v 2u<br />

w 2v<br />

w <br />

x<br />

y<br />

R (<br />

a b<br />

)<br />

z<br />

y<br />

x<br />

<br />

<br />

<br />

<br />

<br />

c <br />

ceq<br />

z<br />

<br />

<br />

<br />

x<br />

z<br />

y<br />

2<br />

n


Fluid dynamics simulation


Simulation Results


Microstructure problem:<br />

<strong>model</strong>ing gelation


After Processing<br />

25.00<br />

22.50<br />

20.00<br />

17.50<br />

25.00<br />

22.50<br />

20.00<br />

17.50<br />

Gelation<br />

happens<br />

G' (P Pa)<br />

15.00<br />

12.50<br />

10.00<br />

7.500<br />

5.000<br />

2.500<br />

0<br />

Time sweep oscillation 10 Hz 0.1 Pa<br />

Lab made Product sheared 30 seconds at 100 Pa<br />

0<br />

0 25.00 50.00 75.00 100.0 125.0 150.0 175.0 200.0<br />

time (s)<br />

15.00<br />

12.50<br />

10.00<br />

7.500<br />

5.000<br />

2.500<br />

G'' (Pa)<br />

Destructuring rate 30Pa Destructuring 10min 001-0002o rate 30Pa 10min 001-0002o, Time sweep step<br />

100.0 100.0<br />

G' (Pa)<br />

10.00<br />

10.00<br />

G'' (Pa)<br />

Time sweep oscillation 10 rad/sec 0.1 Pa<br />

Gelation<br />

Does not happen<br />

Lab made Product sheared 600 seconds at 30Pa<br />

1.000 1.000<br />

0 200.0 400.0 600.0 800.0 1000<br />

time (s)


Rheological Characterization<br />

Constant Stress Flow<br />

Time Sweep Oscillation<br />

= 5, 10, 30. 50 100 Pa<br />

t =, 30, 60, 180, 600 sec<br />

= 0 -900 sec<br />

25<br />

G' versus applied shear stress (10 Minutes) before and after<br />

recovery<br />

25<br />

23<br />

G' after recovery versus time for different applied shear stress<br />

10 Pa<br />

30 Pa<br />

50 Pa<br />

100 Pa<br />

20<br />

Lab G'<br />

Lab G' after 15 minutes<br />

21<br />

G'<br />

15<br />

G' (Pa)<br />

19<br />

17<br />

10<br />

15<br />

5<br />

13<br />

11<br />

0<br />

0 20 40 60 80 100 120<br />

Applied Stress<br />

9<br />

0 10 20 30 40 50 60 70<br />

Shear Time


Empirical <strong>model</strong>ing<br />

X1<br />

Fraction of<br />

t d<br />

X2<br />

Fraction of<br />

X3<br />

Fraction of<br />

connected<br />

rods<br />

not connected<br />

rods<br />

nematic<br />

rods<br />

1 )<br />

( X<br />

X<br />

b<br />

dX<br />

2<br />

2<br />

2<br />

1<br />

1<br />

1<br />

1<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

X<br />

b<br />

a<br />

X<br />

a<br />

X<br />

b<br />

a<br />

dX<br />

X<br />

a<br />

X<br />

b<br />

a<br />

dt<br />

d<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

1<br />

3<br />

2<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

1<br />

1<br />

)<br />

(<br />

)<br />

(<br />

X<br />

X<br />

X<br />

X<br />

b<br />

a<br />

X<br />

a<br />

X<br />

b<br />

a<br />

dt


Estimating Kinetics from <strong>Rheology</strong><br />

2 simple rules:<br />

• Elastic modulus depends only on phase 1<br />

G’=G’0 G0 * X1<br />

• After 15 minutes time sweep X2 =0<br />

As flow stops:<br />

X1 = b/a, X2, = d/a<br />

After recovery:<br />

X1 = c/a, X2 = 0


Model fitting: maximum likelihood parameter estimation<br />

10 Pa 30 Pa<br />

50 Pa<br />

100 Pa


Gelification prediction<br />

TanDelta<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2<br />

X1<br />

TanDelta<br />

Area of interest for manufacturing


Conclusions<br />

• Comsol is a very flexible platform, ideal to<br />

<strong>model</strong> rheology modification under flow<br />

• Analogy with reactive flows allows<br />

<strong>model</strong>ing of both thixotropy and gelation<br />

with decent level of accuracy and<br />

predictability<br />

• It is possible, a certain extent, t to use 1 D<br />

rheology to extrapolate 3D behavior


Not all that glitters is gold<br />

• Not everything scales with total shear rate!<br />

• Need at least to distinguish the extensional and<br />

the pure shear <strong>com</strong>ponents<br />

• Single or double step reaction <strong>model</strong> are too<br />

crude, need to move to population p balance<br />

• Need to move from General viscous to Viscoelastic<br />

• Need to describe the rods incorporation process<br />

(mixing + aggregates break up)


Thank You!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!