09.11.2014 Views

download the PDF here - Amphibian Specialist Group

download the PDF here - Amphibian Specialist Group

download the PDF here - Amphibian Specialist Group

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

AFDM) and we hypo<strong>the</strong>size that centrolenid<br />

tadpoles may play a role in stimulating<br />

growth of stream fungal communities at<br />

local scales However, leaf mass loss and<br />

temperature-corrected leaf decomposition<br />

rates in control treatments were almost<br />

identical in our stream with frogs (41.01%<br />

AFDM lost, k degree day<br />

= - 0.028 d -1 ) and<br />

<strong>the</strong> frogless stream (41.81% AFDM lost,<br />

k degree day<br />

= - 0.027 d -1 ) and between control<br />

and tadpole exclusion treatments within<br />

each stream. Likewise, <strong>the</strong>re were<br />

no significant differences in leaf pack<br />

bacterial biomass, microbial respiration<br />

rates, or macroinvertebrate abundance<br />

between treatments or streams.<br />

Invertebrate community composition<br />

on leaf packs was similar between<br />

treatments (SIMI = 0.97) and streams<br />

(SIMI = 0.95) and was dominated by<br />

larval Chironomidae, Simuliidae (Diptera),<br />

and larval Anchytarsus spp. (Coleoptera).<br />

Can amphibians take <strong>the</strong> heat?<br />

Vulnerability to climate warming in<br />

subtropical and temperate larval<br />

amphibian communities<br />

By Helder Duarte, Miguel Tejedo, Marco<br />

Katzenberger, Federico Marangoni, Diego Baldo,<br />

Juan Francisco Beltrán, Dardo Andrea Martí,<br />

Alex Richter-Boix, & Alejandro González-Voyer<br />

Predicting <strong>the</strong> biodiversity impacts of<br />

global warming implies that we know<br />

w<strong>here</strong> and with what magnitude <strong>the</strong>se<br />

impacts will be encountered. <strong>Amphibian</strong>s are<br />

currently <strong>the</strong> most threatened vertebrates,<br />

mainly due to habitat loss and to emerging<br />

infectious diseases. Global warming may<br />

fur<strong>the</strong>r exacerbate <strong>the</strong>ir decline in <strong>the</strong><br />

near future, although <strong>the</strong> impact might<br />

vary geographically. We predicted that<br />

subtropical amphibians should be relatively<br />

susceptible to warming-induced extinctions<br />

because <strong>the</strong>ir upper critical <strong>the</strong>rmal limits<br />

(CTmax) might be only slightly higher than<br />

maximum pond temperatures (Tmax). We<br />

tested this prediction by measuring CTmax<br />

and Tmax for 47 larval amphibian species<br />

from two <strong>the</strong>rmally distinct subtropical<br />

communities (<strong>the</strong> warm community of<br />

<strong>the</strong> Gran Chaco and <strong>the</strong> cool community<br />

of Atlantic Forest, nor<strong>the</strong>rn Argentina),<br />

as well as from one European temperate<br />

community. Upper <strong>the</strong>rmal tolerances<br />

of tadpoles were positively correlated<br />

(controlling for phylogeny) with maximum<br />

pond temperatures, although <strong>the</strong> slope was<br />

steeper in subtropical than in temperate<br />

species. CTmax values were lowest in<br />

temperate species and highest in <strong>the</strong><br />

subtropical warm community, which<br />

paradoxically, had very low warming<br />

tolerance (CTmax– Tmax) and <strong>the</strong>refore<br />

may be prone to future local extinction<br />

from acute <strong>the</strong>rmal stress if rising pond<br />

Tmax soon exceeds <strong>the</strong>ir CTmax. Canopyprotected<br />

subtropical cool species have<br />

larger warming tolerance and thus should<br />

be less impacted by peak temperatures.<br />

Temperate species are relatively secure<br />

to warming impacts, except for late<br />

breeders with low <strong>the</strong>rmal tolerance,<br />

which may be exposed to physiological<br />

<strong>the</strong>rmal stress in <strong>the</strong> coming years.<br />

Full article: Duarte, H., Tejedo,<br />

M., Katzenberger, M., Marangoni,<br />

F., Baldo, D., Beltrán, J.F., Martí,<br />

D.A., Richter-Boix, A., Gonzalez-<br />

Voyer, A. (2011) Can amphibians<br />

take <strong>the</strong> heat? Vulnerability to<br />

climate warming in subtropical<br />

and temperate larval amphibian<br />

communities. Global Change<br />

Biology (2011), doi: 10.1111/j.1365-<br />

2486.2011.02518.x<br />

Glass frogs eggs, ready to hatch, overhanging stream<br />

in El Cope, Panama. Photo: Scott Connelly<br />

In contrast to <strong>the</strong> dramatic effects of grazing<br />

tadpoles on algal communities reported in<br />

our previous studies, tadpoles had largely<br />

insignificant effects on decomposition.<br />

While centrolenid tadpoles were common in<br />

<strong>the</strong> stream with frogs, patchy distributions<br />

in both experimental and natural leaf packs<br />

suggest that <strong>the</strong>ir effects on detrital dynamics<br />

and microbes are likely more localized<br />

than those of grazing tadpoles on algae.<br />

Full article: Connelly, S. et al. Do<br />

tadpoles affect leaf decomposition<br />

in Neotropical streams? (2011)<br />

Freshwater Biology 56, 1863–1875<br />

doi:10.1111/j.1365-2427.2011.02626.x<br />

Warming Tolerance (WT, WT = CTmax-Tmax) for different amphibian larvae communities. The average for each<br />

species is represented by <strong>the</strong> middle line of boxplots, box height indicates upper and lower CI 95%. Dashed and<br />

dotted lines indicate <strong>the</strong> average WT and 95 % confidence intervals, respectively, for <strong>the</strong> overall community.<br />

Species codes appear ordered phylogenetically within community. Subtropical warm: Ebi: Elachistocleis bicolor;<br />

Dmu: Dermatonotus muelleri; Psa: Phyllomedusa sauvagii; Sna: Scinax nasicus; Sac: Scinax acuminatus;<br />

Hra: Hypsiboas raniceps; Tve: Trachycephalus venulosus; Ppl: Pseudis platensis; Pli: Pseudis limellum; Pal:<br />

Physalaemus albonotatus; Lpo: Leptodactylus podicipinus; Lla: Leptodactylus latinasus; Lbu: Leptodactylus<br />

bufonius; Lll: Lepidobatrachus llanensis; Ccr: Ceratophrys cranwelli; Rsc: Rhinella schneideri. Subtropical cool:<br />

Pte: Phyllomedusa tetraploidea; Sfu: Scinax fuscovarius; Hcu: Hypsiboas curupi; Dmi: Dendropsophus minutus;<br />

Llt: Leptodactylus latrans; Lma: Limnomedusa macroglossa; Csc: Crossodactylus schmidti; Mkr: Melanophryniscus<br />

krauczuki; Mde: Melanophryniscus devincenzii; Raz: Rhinella azarai; Ror: Rhinella ornata. Temperate: Ssa:<br />

Salamandra salamandra; Pwa: Pleurodeles waltl; Tpy: Triturus pygmaeus; Tcr: Triturus cristatus; Lbo: Lissotriton<br />

boscai; Rib: Rana iberica; Rte: Rana temporaria; Rar: Rana arvalis; Ple: Pelophylax lessonae; Ppe: Pelophylax<br />

perezi; Hme: Hyla meridionalis; Har: Hyla arborea; Eca: Epidalea calamita; Bbu: Bufo bufo; Pib: Pelodytes ibericus;<br />

Pcu: Pelobates cultripes; Dga: Discoglossus galganoi; Amu: Alytes muletensis; Adi: Alytes dickhilleni; Aci: Alytes<br />

cisternasii.<br />

44 | FrogLog Vol. 98 | September 2011

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!