09.11.2014 Views

Download (4Mb) - Etheses - Saurashtra University

Download (4Mb) - Etheses - Saurashtra University

Download (4Mb) - Etheses - Saurashtra University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Saurashtra</strong> <strong>University</strong><br />

Re – Accredited Grade ‘B’ by NAAC<br />

(CGPA 2.93)<br />

Vekariya, Nikhil R., 2007, “Synthesis, Characterization and Pharmacological<br />

Study of Some Bioactive Molecules”, thesis PhD, <strong>Saurashtra</strong> <strong>University</strong><br />

http://etheses.saurashtrauniversity.edu/id/eprint/481<br />

Copyright and moral rights for this thesis are retained by the author<br />

A copy can be downloaded for personal non-commercial research or study,<br />

without prior permission or charge.<br />

This thesis cannot be reproduced or quoted extensively from without first<br />

obtaining permission in writing from the Author.<br />

The content must not be changed in any way or sold commercially in any<br />

format or medium without the formal permission of the Author<br />

When referring to this work, full bibliographic details including the author, title,<br />

awarding institution and date of the thesis must be given.<br />

<strong>Saurashtra</strong> <strong>University</strong> Theses Service<br />

http://etheses.saurashtrauniversity.edu<br />

repository@sauuni.ernet.in<br />

© The Author


SYNTHESIS, CHARACTERIZATION AND<br />

PHARMACOLOGICAL STUDY OF<br />

SOME BIOACTIVE MOLECULES<br />

A THESIS SUBMITTED TO<br />

THE SAURASHTRA UNIVERSITY<br />

IN THE FACULTY OF SCIENCE<br />

FOR THE DEGREE OF<br />

DOCTOR OF PHILOSOPHY<br />

IN<br />

CHEMISTRY<br />

By<br />

Nikhil R. Vekariya<br />

UNDER THE GUIDANCE OF<br />

PROF. ANAMIK SHAH<br />

DEPARTMENT OF CHEMISTRY<br />

(DST-FIST Funded & UGC-SAP Sponsored)<br />

SAURASHTRA UNIVERSITY<br />

RAJKOT – 5 (GUJARAT, INDIA)<br />

SEPTEMBER – 2007


Statement under O.Ph.D.7 of <strong>Saurashtra</strong> <strong>University</strong><br />

The work included in the thesis is done by me under the supervision of Prof.<br />

Anamik Shah and the contribution made thereof is my own work.<br />

Date:<br />

Place:<br />

Nikhil R. Vekariya


Certificate<br />

This is to certify that the present work submitted for the Ph.D. degree of<br />

<strong>Saurashtra</strong> <strong>University</strong> by Mr. Nikhil R. Vekariya has been the result of work<br />

carried out under my supervision and is a good contribution in the field of<br />

organic chemistry.<br />

Date:<br />

Place:<br />

Prof. Anamik Shah


To My Family,<br />

With Love


ACKNOWLEDGEMENT<br />

I humbly bow my head before Almighty God for making me capable of<br />

doing all that I propose, the work leading to my Ph.d. thesis<br />

submission is one of that.<br />

At the outset, express my deep sense of gratitude to Prof. Anamik<br />

Shah for his advise during my doctoral research endeavor. As my<br />

supervisor, he constantly forced me to remain focused on achieving<br />

my goal. His observation and comments helped me to establish the<br />

overall direction of the research and to move forward expeditiously<br />

with investigation in depth. I thank him for providing me the<br />

opportunity to work with numerous local and global peers.<br />

My sincere thanks are due to Dr. P.H. Parsania, Prof. and Head,<br />

Department of chemistry for him constant support, valuable<br />

suggestions and making vailable entire infrastructure with all<br />

sophisticated instruments.<br />

I owe my special thanks to Dr. V.H. Shah, Dr. H.S. Joshi, Dr. Y.T.<br />

Naliyapara, Dr.R.C. Khunt and all other faculty members of Department<br />

of Chemistry For their kind support and dynamic cooperation during<br />

my research tenure.<br />

I am equally thankful to all of the non-teaching staff for extending<br />

help and cooperation. I express my grateful acknowledgement to State<br />

Government of Gujarat for Junior research Fellowship which shorted<br />

out my financial worries to some extent.<br />

My sincere thank to Dr. Ranjan A. Shah and Aditya for making me feel<br />

homely throughout my research tenure.<br />

My heartily thanks to my seniors Dr. Manvar Dinesh, Dr. Hrishikesh<br />

Acharya, Dr. Arun Mishra, Dr. Chintan Dholakiya, Dr. Kena Raval, Dr.<br />

Preeti Adlakha. Dr. Pravin Bochiya, Dr. Kuldip Upadhyay, Dr. Bhavin Dr.<br />

Rokad and Dr. Vishal.


I would like to thank my dear lab mates Vijay, Atul, Rupesh, Jitender,<br />

Jalpa, Rajesh, Naval, Vaibhav, Manoj, Paresh (Vasu), Samir (Jimmy),<br />

Chirag, Axay, Nilay, Dhaval, Jyoti, Jignesh, Satish, Pankaj, Nayan,<br />

Surani, Hitesh and Jagdish.<br />

I further cherish the same spirit to my friends Bhakti, Pradip, Hardik,<br />

Dhimant, Rajesh, Gopal, Jitesh, Vipul, Anil, Mathur, Dipak, Jignesh,<br />

Ashutosh, Darshit, Mahendra, Ajay, Paresh, Kishor and Dr. Limbashiya.<br />

At this juncture I am grateful to entire family for encouraging me and<br />

providing every help to fulfill my task especially my father Shri.<br />

Ratibhai Patel, beloved mother Hemiben, My elder brother Ashish and<br />

Ritabhabhi, my brother Kamlesh Patel and uncle Mansukh Patel and<br />

My loving sisters Alpa, shilpa, Maitry, Heer and My fiancée Daksha,<br />

who blessed me with their good wishes relieving all type of distress<br />

from me and for boosting my moral. I am gratified for their eternal<br />

love, trust, support which was my strongest source of motivation and<br />

inspiration. I owe a lifelong indebtness.<br />

I would like to thank regional Sophisticated Instrumentation Centre,<br />

Chandigarh for 1 H-NMR analysis; Department of Chemistry, Rajkot for<br />

GC-MS and IR Facility; Dr. Roberta Loddo and Dr. Paolo La Colla, Italy<br />

for anti viral screening; Dr. Cecil Kwong, TAACF, USA for anti<br />

tubercular screening and Dr. Shailesh Gondaliya for antibacterial<br />

screening.<br />

Nikhil R. Vekariya


CONTENTS<br />

CHAPTER 1<br />

INTRODUCTION, SYNTHESIS AND CHARACTERIZATION OF SUBSTITUTED<br />

ETHYL 3, 5-DIMETHYL-4-[5-(PHENYL)-4,5-DIHYDRO-1H-PYRAZOL-3-YL]-1H-<br />

PYRROLE-2-CARBOXYLATE DERIVATIVES.<br />

Introduction 01<br />

Different methods for synthesis of pyrrole 02<br />

Recent literature survey 04<br />

Biological profile 09<br />

New drugs molecule introduce under clinical trials 18<br />

Synthetic aspects 21<br />

Reaction Scheme 22<br />

Reaction Mechanism 23<br />

Experimental 24<br />

Physical Data table 26<br />

Spectral Analysis 27<br />

Mass Fragmentation 29<br />

Spectral Data 30<br />

IR Spectra 36<br />

1 H NMR Spectral 38<br />

Mass Spectra 42<br />

References 46<br />

CHAPTER-2<br />

INTRODUCTION, SYNTHESIS AND CHARACTERIZATION OF SOME<br />

SYMMETRIC AND UNSYMMETRICAL DIHYDROPYRIMIDINE DERIVATIVES<br />

CONTAINING NAPHTHYL RING.<br />

Biological Profile 49<br />

Recent Literature Survey 54


Synthetic Aspects 55<br />

QSAR Study 59<br />

Reaction Scheme 61<br />

Experimental Observation 63<br />

Experimental 64<br />

Physical Data table 66<br />

Spectral Analysis 68<br />

Mass Fragmentation 71<br />

Spectral Data 71<br />

IR Spectra 78<br />

1 H NMR Spectra 80<br />

Mass Spectra 83<br />

References 84<br />

CHAPTER 3<br />

A MINI REVIEW OF DIHYDROPYRIMIDINE DERIVATIVES<br />

Biginelli reaction 88<br />

Literature Survey 90<br />

Ionic liquid 96<br />

N 3 Acylated dihydropyrimidines 101<br />

Heck Cyclization 102<br />

Thiazines Schaffolds 105<br />

Microwave Assisted Synthesis 111<br />

Name Reaction 113<br />

Rearrangement 116<br />

Solid Phase Synthesis 119<br />

Synthetic Aspects 121


CHAPTER- 4<br />

SYNTHESIS & CHARACTERIZATION OF N-SUBSTITUTED PHENYL-7<br />

METHYL-2,3 DIHYDRO-5H[1,3]THIAZOLO [3,2-A]PYRIMIDINES AND 3,4-<br />

DIHYDRO-2H, 6H-PYRIMIDO [2,1-B] [1,3] THIAZINE-7-CARBOXAMIDES.<br />

Reaction Scheme 124<br />

Reaction Mechanism 127<br />

Experimental Observation 129<br />

Experimental 129<br />

Physical Data table 131<br />

Spectral Analysis 136<br />

Mass Fragmentation 138<br />

Spectral Data 139<br />

IR Spectra 146<br />

1 H NMR Spectra 148<br />

Mass Spectra 154<br />

13 C NMR Spectra 157<br />

CHAPTER-5<br />

SYNTHESIS AND CHARACTERIZATION OF N-ARYL SUBSTITUTED-1-<br />

PHENYL-1,2,3,4-TETRAHYDROPYRIMDINES DERIVATIVES BY BIGINELLI<br />

REACTION.<br />

Reaction Scheme 158<br />

Reaction Mechanism 160<br />

Experimental 161<br />

Physical Data table 163<br />

Spectral Analysis 166<br />

Mass Fragmentation 168<br />

Spectral Data 168<br />

IR Spectra 175<br />

1 H NMR Spectra 178<br />

Mass Spectra 182


CHAPTER-6<br />

MICROWAVE ASSISTED SYNTHESIS OF N-(SUBSTITUTED PHENYL)-6-<br />

METHYL-2-OXO AND THIOXO-4-PROPYL-1,2,3,4-<br />

TETRAHYDROPYRIMIDINE-5-CARBOXAMIDES.<br />

Reaction Scheme 184<br />

Reaction Mechanism 187<br />

Experimental 188<br />

Physical Data table 189<br />

Spectral Analysis 191<br />

Spectral Data 193<br />

IR Spectra 199<br />

1 H NMR Spectra 202<br />

Mass Spectra 203<br />

References 206<br />

CHAPTER-7<br />

BIOLOGICAL ACTIVITY STUDY 213<br />

Summary 234<br />

Presentation of Papers & Conferences/workshops participated 236


General Protocol<br />

1. 1 H NMR spectra were recorded on Bruker avance II 400 MHz NMR<br />

spectrometer using TMS as an internal reference.<br />

2. Mass spectra were recorded on GC-MS QP-2010 spectrometer.<br />

3. IR spectra were recorded on Schimadzu FR-IR-8400 spectrometer using<br />

KBr pellet method.<br />

4. Elemental analysis was carried out on Vario EL III Carlo Erba 1108.<br />

5. Thin layer chromatography was performed on Silica Gel (Merck 60 F254).<br />

6. The chemicals used for the synthesis of compounds were purchased from<br />

Spectrochem, Merck, Thomas-baker and SD fine chemical.<br />

7. MPs were taken in open capillary and are uncorrected.<br />

8. Microwave assisted reaction were carried out in QPro-M microwave<br />

synthesizer.


Chapter-1<br />

Introduction, Synthesis and Characterization of<br />

Ethyl 4-[5-(substituted phenyl)-4, 5-dihydro-<br />

1H-pyrazol-3-yl]-3, 5-dimethyl-1H-pyrrole-2-<br />

carboxylate derivatives<br />

1. Different method for synthesis of pyrrole 2<br />

2. Recent literature survey 4<br />

3. Synthetic aspects 21<br />

4. Reaction scheme 22<br />

5. Physical data table 26<br />

6. Spectral analysis 27<br />

7. Spectral data 30<br />

8. IR spectra 36<br />

9. 1 H NMR spectra 38<br />

10. Mass spectra 42<br />

11. References 46


1<br />

1.1 INTRODUCTION<br />

Though Bayer 1 determined its constitution in 1900, Runge 2 was first to<br />

discovered pyrrole in 1834 as a certain coal tar fraction which was presumably<br />

responsible for this by hydrochloric acid of pine shaving previously dipped in<br />

them.<br />

Anderson 3 characterized the structure of pyrrole in 1857 and was later<br />

synthesized by heating the ammonium salt of music acid.<br />

Pyrrole is an important π-electron excessive aromatic heterocycle. This ring<br />

system is incorporated as a basic structural unit in several natural pigment<br />

porphyrins, porphin (heme), chlorine (chlorophyll), and corrins (vitamin B 12 ).<br />

Moreover the presence of pyrrole ring in porphobolinogen (I) (intermediate in<br />

biosynthesis of porphyrins and vitamin B 12 ) has provided an impetus to the<br />

pyrrole chemistry.<br />

O<br />

O<br />

OH<br />

HO<br />

H 2 N<br />

N<br />

H<br />

(I)<br />

Many alkaloids and amino acids namely, proline and hydroxyl proline also contain<br />

the reduce pyrrole system (pyrrolidine) 4 . Many natural products containing pyrrole<br />

ring are also known 5-8 .<br />

C H 3<br />

N<br />

H<br />

O<br />

O<br />

CH 3<br />

N<br />

CH 3<br />

O<br />

HO<br />

(II) (III) (IV)<br />

H<br />

O<br />

CH 3<br />

CH 3<br />

HO<br />

O<br />

O<br />

CH 3<br />

Cl<br />

O -<br />

N +<br />

O<br />

Cl<br />

N<br />

H<br />

(V)<br />

N<br />

H<br />

(VI)


2<br />

Their biological functions are as varied as are their structures 9-11 . Some natural<br />

pyrrole are pheromones 12-13 , plant hormones 14 , or act as antibiotics 15 . An<br />

important class of pyrrole derived natural products containing more than one<br />

pyrrole ring are Neotropsin (VII) and Distamysin (VIII), which bind to the groove of<br />

DNA 16 .<br />

CH 3<br />

N<br />

NH NH<br />

CH 3<br />

NH<br />

NH 2<br />

N H 2<br />

HN<br />

NH<br />

NH<br />

CH 3<br />

N<br />

CH 3<br />

O<br />

CH 3<br />

N<br />

NH NH<br />

CH 3<br />

H<br />

O<br />

NH<br />

N<br />

CH 3<br />

O<br />

NH<br />

NH<br />

O<br />

N<br />

CH 3<br />

NH 2<br />

1.1.1 Different method for synthesis of pyrrole<br />

Various methods for synthesis of pyrrole are as follows:<br />

1. Knorr Pyrrole synthesis 17 :<br />

This is the most widely used method and involves the cyclizative condensation of<br />

α- amino ketones or α- amino β- keto esters with β- diketones or β-ketones with<br />

formation of N-C 2 and C 3 -C 4 bonds.<br />

H 3 C O<br />

NH 2<br />

R<br />

+<br />

O CH 3<br />

R 1<br />

H +<br />

CH 3<br />

COOH<br />

H 3 C<br />

CH 3<br />

R<br />

R 1<br />

N<br />

H<br />

R=H, CH 3<br />

, COOC 2<br />

H 5 R 1<br />

=COCH 3<br />

, COOC 2<br />

H 5


2. α-amino ketones react with alkynes, undergoes nucleophilic-electrophilic<br />

interaction to provide pyrrole 18 .<br />

3<br />

H 3 C O<br />

R<br />

CH 3<br />

+<br />

O<br />

O<br />

O<br />

CH 3<br />

C H 3<br />

(CH 3<br />

) 3<br />

CO - K + R N<br />

CH H<br />

3<br />

O<br />

O<br />

O<br />

O<br />

CH 3<br />

CH3<br />

O<br />

R=H, CH 3<br />

, C 2<br />

H 5<br />

3. Piloty- Robinson Pyrrole synthesis 19<br />

The condensation of aliphatic aldehyde or ketones with hydrazine under strongly<br />

acidic conditions affords pyrrole. This reaction can also be applied for the<br />

preparation of N-substituted pyrroles by condensing ketones with methyl<br />

hydrazine or N,N-Dimethyle hydrazine.<br />

CH 3<br />

CH 3<br />

H 3 C<br />

CH 3<br />

N<br />

N<br />

CH 3<br />

CH 3<br />

HCl<br />

H3C<br />

N<br />

H<br />

+ NH 3<br />

H 3 C<br />

4. Hantsch Pyrrole synthesis 20<br />

The reaction of β- keto or β- keto esters with α-halo ketones or aldehyde in the<br />

presence of ammonia or primary amine affords pyrroles.<br />

Cl<br />

+<br />

H 3 C<br />

O<br />

O<br />

O<br />

O CH 3<br />

H 3<br />

O CH 3<br />

NH 3<br />

N<br />

C<br />

H<br />

O<br />

CH 3<br />

CH 3


4<br />

5. The reaction of β-amino-α, β-unsaturated esters with nitro alkenes provides<br />

substituted pyrroles 21 .<br />

C H 3<br />

O<br />

O<br />

H 3 C<br />

H<br />

NHR 1<br />

+<br />

O 2<br />

N<br />

R 2<br />

O<br />

H 3 C<br />

O R 2<br />

R 1<br />

C H 3<br />

N<br />

6. Condensation of α- diketones with amines substituted with electronwithdrawing<br />

species at β ’ -position, results in the corresponding pyrrole 22 .<br />

O<br />

O<br />

+<br />

R<br />

N<br />

H<br />

R<br />

R<br />

R<br />

R=CN, COOC 2<br />

H 5<br />

1.1.2 RECENT LETRATURE SURVEY<br />

1. An efficient, solvent-free, microwave-assisted coupling of chloroenones and<br />

amines on the surface of silica gel gave 1,2-disubstituted homochiral pyrroles in<br />

good yields 23 .<br />

NH 2<br />

O SiO 2<br />

R<br />

R<br />

+ Cl<br />

R''<br />

Solvent free,<br />

MW (500 W), 4-6 min<br />

N<br />

R'<br />

R<br />

R'<br />

2. A mild, gold (I)-catalyzed acetylenic Schmidt reaction of homopropargyl azides<br />

gave regiospecific substituted pyrroles. A mechanism in which azides serve as


nucleophiles toward gold (I)-activated alkynes with subsequent gold (I)-aided<br />

expulsion of dinitrogen is proposed 24 .<br />

5<br />

R<br />

N3N3<br />

2.5 mol - % AU 2<br />

Cl 2<br />

5 mol % AgSbF 6<br />

R<br />

H<br />

N<br />

R''<br />

R'<br />

R''<br />

CH 2<br />

Cl 2<br />

35 °C, 20 - 40 min<br />

R'<br />

3. An efficient and regioselective palladium-catalyzed cyclization of internal<br />

alkynes and 2-amino-3-iodoacrylates gave good yields of highly functionalized<br />

pyrroles 25 .<br />

MeO<br />

O<br />

NH<br />

O<br />

CH3<br />

+<br />

R<br />

R'<br />

5 mol % Pd(OAc) 2<br />

LiCl, K 2<br />

CO 3<br />

DMF, 65 °C, 1 - 24 h<br />

H 2<br />

O, DMF<br />

MeO<br />

60 °C, 3 - 6 h N<br />

O H<br />

R<br />

R<br />

4. Silver (I)-promoted oxidative cyclization of homopropargylamines at room<br />

temperature provides pyrroles. Homopropargylamines are readily available by the<br />

addition of a propargyl Grignard reagent to Schiff bases 26 .<br />

R<br />

SiMe 3<br />

AgOAC<br />

R'<br />

N<br />

H<br />

CH 2<br />

Cl 2<br />

, r.t., 14 h<br />

R<br />

N<br />

R'


6<br />

5. A general, highly flexible Cu-catalyzed domino C-N coupling/hydroamination<br />

reaction constitutes a straightforward alternative to existing methodology for the<br />

preparation of pyrroles and pyrazoles 27 .<br />

R<br />

R'<br />

R"<br />

+<br />

NH 2<br />

Boc<br />

5 mol % Cul<br />

Cs 2<br />

CO 3<br />

THF, 80 °C, 4 - 15 h<br />

R<br />

NBoc<br />

R' R"<br />

6. An efficient and highly versatile microwave-assisted Paal-Knorr condensation<br />

of various 1,4-diketones gave furans, pyrroles and thiophenes in good yields. In<br />

addition, transformations of the methoxycarbonyl moiety, such as Curtius<br />

rearrangement, hydrolysis to carboxylic acid, or the conversion into amine by<br />

reaction with a primary amine in the presence of Me 3 Al, are studied 28 .<br />

O CO 2 Me<br />

H 3 C<br />

CH 3 + H 2 N<br />

O<br />

R''<br />

AcOH<br />

MW 150 W, 12 min<br />

170 °C, open vessel<br />

R<br />

N<br />

R''<br />

CO 2 Me<br />

R'<br />

7. The synthesis of N-acylpyrroles from primary aromatic amides and excess 2,5-<br />

dimethoxytetrahydrofuran in presence of one equivalent of thionyl chloride offers<br />

short reaction times, mild reaction conditions, and easy workup 29 .<br />

Ar<br />

O<br />

NH 2<br />

+<br />

O<br />

MeO OMe SOCl 2<br />

50 or 80 °C<br />

10 - 120 min<br />

Ar<br />

N<br />

O


7<br />

8. Propargyl vinyl ethers and aromatic amines are effectively converted into tetraand<br />

pentasubstituted 5-methylpyrroles through a silver(I)-catalyzed propargyl-<br />

Claisen rearrangement, an amine condensation, and a gold(I)- catalyzed 5-exodig<br />

heterocyclization in a convenient one-pot process 30 .<br />

O<br />

R'<br />

R<br />

O<br />

OEt<br />

5 mol %<br />

AGBF 4<br />

CH 2<br />

Cl 2<br />

23 °C, 30 min<br />

O<br />

R'<br />

O<br />

R<br />

OEt<br />

5 mol %<br />

(PPh 3<br />

) AuCl<br />

ArNH 2<br />

38 °C, 0.5 - 4 h<br />

R'<br />

Ar N<br />

C H 3<br />

EtO<br />

R<br />

O<br />

9. Various 2,3,4-trisubstituted pyrroles are easily accessible in one step from<br />

readily available acetylenes and acceptor-substituted methyl isocyanides by<br />

base-mediated or copper-catalyzed cycloadditions. Scope and limitations of both<br />

pyrrole syntheses are discussed 31 .<br />

C H 3<br />

EWG<br />

EWG NC + R EWG'<br />

base<br />

THF, 20 °C, 2 h<br />

EWG<br />

N<br />

H<br />

10. A novel and efficient multicomponent reaction of N-tosylimines, DMAD, and<br />

isocyanides for the synthesis of 2-aminopyrrole systems was uncovered 32 .<br />

Ar NTs+ RN C: +<br />

CO 2 Me<br />

r.t., 14 - 22 h<br />

benzene<br />

Ar<br />

NTs<br />

NH<br />

CH 3<br />

CO 2 Me<br />

MeO2C<br />

CO 2 Me


8<br />

11. A new microwave-assisted rearrangement of 1,3-oxazolidines scaffolds is the<br />

basis for a new, metal-free, direct, and modular construction of tetra substituted<br />

pyrroles from terminal-conjugated alkynes, aldehyde, and primary amines under<br />

very simple and environmental-friendly experimental conditions 33 .<br />

CO 2 R'<br />

O<br />

+ R H<br />

NEt 3<br />

CH 2<br />

Cl 2<br />

O °C, 30 min<br />

CO 2 R'<br />

O<br />

CH 3<br />

CO 2 R'<br />

R''NH 2<br />

MW (900 W)<br />

SiO 2<br />

, neat, 8 min<br />

CO2R'<br />

R''<br />

N<br />

R<br />

CO 2 R<br />

12. Coupling of acetylene, nitrile, and a titanium reagent generated new<br />

azatitanacyclopentadienes in a highly regioselective manner. The subsequent<br />

reaction with sulfonylacetylene and electrophiles gave substituted pyridines<br />

virtually as a single isomer. Alternatively, the reaction of<br />

azatitanacyclopentadienes with an aldehyde or another nitrile gave furans or<br />

pyrroles having four different substituents again in a regioselective manner 34 .<br />

Ph<br />

C 4 H 9<br />

PrMgCl, Et 2<br />

O<br />

OMe<br />

N<br />

C 8 H 17<br />

OMe<br />

N<br />

-50 o C, r.t.<br />

1N HCl<br />

r.t.15 min<br />

MeO<br />

Ph<br />

N<br />

H<br />

C 8 H 17<br />

C 4 H 9<br />

CHO<br />

13. An efficient synthesis of 2,3,4-trisubstituted pyrroles via intermolecular<br />

cyclization of alkylidenecyclopropyl ketones with amines were observed. A<br />

mechanism involving a distal cleavage of the C-C bond of the cyclopropane ring<br />

is discussed 35 .


9<br />

R 2<br />

R 1<br />

R 3<br />

O<br />

R 4<br />

R 5 NH 2<br />

0.5 eq. MgSO 4<br />

MeCN, 80 °C<br />

16 - 63 h<br />

R 1<br />

R 2<br />

R 3<br />

N<br />

R 5<br />

R 4<br />

14. Several aryl-substituted pyrrole derivatives were prepared conveniently in a<br />

microwave-assisted one pot-reaction from but-2-ene-1,4-diones and but-2-yne-1,<br />

4-diones via Pd/C-catalyzed hydrogenation of the carbon-carbon double<br />

bond/triple bond followed by amination-cyclization 36 .<br />

O<br />

Ar<br />

O<br />

Ar<br />

+ R NH 2<br />

MW, 200 W<br />

PEG - 200<br />

5 % Pd/C<br />

0.5 -1 min<br />

Ar<br />

O<br />

HO<br />

Ar<br />

NHR<br />

Ar<br />

N<br />

R<br />

A<br />

1.1.3 Biological profile<br />

Ghassan abdalla 37 and his coworkers has discovered [3,2-b]-pyridine-6-<br />

carboxylic acid from 2-methyl-3-benzoyl-4-amino pyrrole as potential<br />

antimicrobial agents.<br />

CH 3<br />

CH 3<br />

O<br />

N<br />

C H 3<br />

O<br />

H<br />

O<br />

OH


10<br />

Gaetano Dattolo 38 and his research group has proposed a new ring system,<br />

pyrrolo [3,4-d]-1,2,3-trizine synthesized via diazotization of the 3-amino-4-<br />

carboxamides under different conditions through an intramolecular coupling<br />

reaction. This molecule is found to be a potential antineoplastic agent.<br />

N<br />

N<br />

N<br />

HN<br />

O<br />

CH 3<br />

Wilson and group 39 recently synthesized a series of pyrazole oxime ether<br />

derivatives were prepared and examined as cytotoxic agents. In particular, 5-<br />

phenoxypyrazole was comparable to doxorubicin, while exhibiting very potent<br />

cytotoxicity against XF 498 and HCT15.The antimalarial activity of chloroquinepyrazole<br />

analogues, synthesized from the reaction of 1,1,1-trifluoro-4-methoxy-3-<br />

alken-2-ones with 4-hydrazino-7-chloroquinoline, has been evaluated in vitro<br />

against a chloroquine resistant Plasmodium falciparum clone. Parasite growth in<br />

the presence of the test drugs was measured by incorporation of [ 3 H]<br />

hypoxanthine in comparison to controls with number of drugs. Zhong Jin and coworkers<br />

40 prepared novel ferrocene-containing propenones have been<br />

synthesized from acetylferrocene via a Mannich-type intermediate. Sequential<br />

condensation cyclization of these propenones with phenyl hydrazine afforded<br />

highly substituted 4,5-dihydropyrazole derivatives, which structures have been<br />

characterized by spectral data and single crystal X-ray diffraction analysis. In<br />

addition, these new ferrocene-containing derivatives have been evaluated for in<br />

vitro fungicidal activities against five selected fungi.<br />

Jenny L. and coworkers 41 have described Novel Pyrazoles Cannabinoids:<br />

Insights into CB 1 Receptor Recognition and Activation. Synthesis of an antagonist,<br />

SR141716A, that selectively binds to brain cannabinoid (CB 1 ) receptors without<br />

producing cannabimimetic activity in vivo, suggests that recognition and activation


11<br />

of cannabinoid receptors are separable events. In the present study, a series of<br />

SR141716A analogoues were synthesized and were tested for CB 1 binding<br />

affinity and in a battery of in vivo tests, including hypo mobility, antinociception,<br />

and hypothermia in mice. These analogoues retained the central pyrazole<br />

structure of SR141716A with replacement of the 1-, 3-, 4-, and/or 5-substituents<br />

by alkyl side chains or other substituents known to impart potent agonist activity in<br />

traditional tricyclic cannabinoid compounds. Although none of the analogoues<br />

alone produced the profile of cannabimimetic effects seen with full agonists,<br />

several of the 3-substituent analogoues with higher binding affinities showed<br />

partial agonism for one or more measures. Cannabimimetic activity was most<br />

noted when the 3-substituent of SR141716A was replaced with an alkyl amide or<br />

ketone group (B). None of the 3-substituted analogoues produced antagonist<br />

effects when tested in combination with 3 mg/kg 9 -tetrahydrocannabinol (<br />

THC). In contrast, antagonism of<br />

9 -THC's effects without accompanying agonist<br />

or partial agonist effects was observed with substitutions at positions 1, 4, and<br />

5. These results suggest that the structural properties of 1- and 5-substituents are<br />

primarily responsible for the antagonist activity of SR141716A.<br />

9 -<br />

O<br />

C H 3<br />

R<br />

Cl<br />

C H 3<br />

N<br />

R<br />

N<br />

NH<br />

N<br />

Cl<br />

N<br />

N<br />

Cl<br />

B<br />

Cl<br />

SR141716A<br />

Antonello and silvio 42 synthesized 3-(4-Aroyl-1-methyl-1H-2-pyrrolyl)-N-hydroxy-<br />

2-propenamides as a New Class of Synthetic Histone Deacetylase Inhibitors. 2.<br />

Effect of Pyrrole-C2 and/or -C4Substitutions on Biological Activity.


12<br />

-CONHOCH 3<br />

O<br />

-CONHNH 2<br />

Cl<br />

C<br />

N<br />

F<br />

NO 2<br />

CH 3<br />

H 3 C<br />

C<br />

N<br />

H<br />

H 3<br />

OCH 3<br />

N<br />

CH 3<br />

CONHOH<br />

H<br />

CH 3<br />

HNOC- OH<br />

CH 3<br />

O<br />

P<br />

H 5 C 2 O<br />

NH<br />

NH 2<br />

CO NH<br />

OH<br />

OH<br />

O<br />

CH 3<br />

O<br />

CH 3<br />

Chemical manipulations performed on lead compond 1a<br />

O<br />

N<br />

CONHOH<br />

1a<br />

CH 3<br />

O<br />

O<br />

1b<br />

N<br />

CH 3<br />

CONHOH<br />

1c<br />

N<br />

CH 3<br />

CONHOH


13<br />

O<br />

X<br />

N<br />

O<br />

CH 3<br />

Y NHOH<br />

2a,2f<br />

X=none, CH 2<br />

, CH=CH<br />

Y=CH 2<br />

, CH 2<br />

CH 2<br />

, CH=C(CH 3<br />

)<br />

O<br />

X<br />

O<br />

O<br />

N<br />

CH 3<br />

NHOH<br />

X<br />

2b<br />

2g<br />

N<br />

CH 3<br />

X= none, CH 2 X=none, CH 2<br />

COOH<br />

COOH<br />

O<br />

O<br />

R<br />

3a -f<br />

n<br />

N<br />

CH 3<br />

O<br />

NHOH<br />

N<br />

CH 3<br />

O<br />

CH 3<br />

n=2-7<br />

4a-d<br />

R =<br />

CH<br />

CH 3<br />

H 3 C<br />

CH 3<br />

They investigated the effect on anti-HD2 activity of chemical substitutions<br />

performed on the pyrrole-C2 ethene chains of 1a-c, which were replaced with<br />

methylene, ethylene, substituted ethene, and 1,3-butadiene chains (compounds<br />

2). Biological results clearly indicated the unsubstantiated ethene chain as the<br />

best structural motif to get the highest HDAC inhibitory activity, the sole exception<br />

to this rule being the introduction of the 1,3-butadienylmoiety into the 1a chemical<br />

structure (IC50(2f) ) 0.77 íM; IC50(1a) ) 3.8 íM). IC50 values of compounds 3a-3f,<br />

prepared as 1b homologues, revealed that between benzene and carbonyl group<br />

sat the pyrrole-C4 position a hydrocarbon spacer length ranging from two to five<br />

methylenes is well accepted by the APHA template, being that two methylenes<br />

and five methylenes are more potent (2.3- and 1.4-fold, respectively) than 1b,<br />

while the introduction of a higher number of methylene units (see 3e, f)<br />

decreased the inhibitory activities of the derivatives. Particularly, 3a (IC50 ) 0.043<br />

íM) showed the same potency as SAHA in inhibiting HD2 invitro, and it was 3000-<br />

and 2.6-fold more potent than sodium valproate and HC-toxin and was4.3- and 6-<br />

fold less potent than trapoxin and TSA, respectively. Finally, conformational<br />

constrained forms of 1b-1c, prepared with the aim to obtain some information<br />

potentially useful for a future 3D-QSAR study, showed the same (4a, b) or higher<br />

(4c, d) HD2inhibiting activities in comparison with those of the reference drugs.


14<br />

Molecular modeling and docking calculations on the designed compounds<br />

performed in parallel with the chemistry work fully supported the synthetic effort<br />

and gave insights into the binding mode of the more flexible APHA derivatives<br />

(i.e., 3a). Despite the difference of potency between 1b and 3a in the enzyme<br />

assay, the two APHA derivatives showed similar antiproliferative and cyto<br />

differentiating activities in vivo on Friends MEL cells, being that 3a is more potent<br />

than 1b in the differentiation assay only at the highest tested dose (48 íM).<br />

Mark player 43 et al has synthesized 2, 7 disubstituted-5,6-dimethyl-[2,3-d]-1,3<br />

oxazine-4-ones from 2-amino-3-tert-butoxycarbonyl-4,5-dimethyl pyrrole, which<br />

are found to be the antifungal agents.<br />

C H 3<br />

O<br />

O<br />

C H 3<br />

N<br />

N<br />

R 1<br />

R<br />

Said bayomi 44 found that 2-amino-3-cyno-4-(substituted phenyl)-pyrroles acts as<br />

an antimicrobial agents.<br />

H 3 C<br />

N<br />

N<br />

H 3 C<br />

N<br />

NH 2<br />

H<br />

H 3 C<br />

N<br />

NH 2<br />

H<br />

Carsin and John 45 and his group found that pyrrolyl heteroaryl methanones and<br />

methanols are useful as treating or modulating central nervous system disorders.<br />

The preparation of these molecules was carried out by Friedel-Crafts acylation of<br />

(4-choro phenyl, 1-methyl-1H-pyrrole-2-yl) methanones with isonicotinoyl chloride


in the presence of AlCl 3 in dichloro ethane for 16 hrs. This compounds exhibited<br />

anticonvulsant activity on the mouse.<br />

15<br />

R 3<br />

Z<br />

B<br />

Cl<br />

O<br />

N<br />

A<br />

O<br />

R 2<br />

N<br />

R 1<br />

O<br />

CH 3<br />

Z<br />

A<br />

R 3<br />

N<br />

R 1<br />

B<br />

O<br />

R 2<br />

A =(un)substituted aryl, heteroaryl<br />

B =(un)substituted heteroaryl<br />

Z =oxo, hydroxy<br />

R 1<br />

= (un)substituted alkyl, cycloalkyl,aryl<br />

R 2<br />

,R 3<br />

=independently H, alkyl, halogen<br />

Kaizeman 46 et al has discovered potent DNA groove binding antibacterials which<br />

has shown improved tolerability in vivo and in vitro with excellent antibacterial<br />

potency against broad Gram positive pathogens, including drug resistant strains<br />

such as methicillin-resistant Staphylococcus aureus, penicillin-resistant<br />

Streprococcus pneumonia and vancomycin-resistant Enterococcus faecalis.<br />

R<br />

O<br />

NH<br />

N<br />

NH<br />

N<br />

H 3<br />

CH 3 O<br />

C<br />

O<br />

N<br />

NH<br />

N<br />

NH<br />

O<br />

O<br />

CH 3<br />

Pyrrole derivatives and their salts having structure type, shown below are useful<br />

as inhibitors of the human immunodeficiency virus (reverse transcriptase)<br />

enzyme which is involved in viral replication and consequently may be<br />

advantageously used as therapeutics agents for HIV mediated process. 47


16<br />

R 3<br />

R 4<br />

R 1<br />

,R 2<br />

,R 3<br />

,=H, alkyl, cycloalkyl, aryl<br />

R 2<br />

X<br />

R<br />

N 5<br />

R 1<br />

R 4<br />

=H, alkyl, COOH, CN,<br />

R 5<br />

=alkyl, aryl<br />

X=S, SO, SO 2<br />

,O,N etc<br />

Reduced pyrrole derivatives such as pyrrolidine-2-carboxilic acid hydrazide<br />

derivatives for use as metalloprotease inhibitors 48 .<br />

R 1 S<br />

R 3<br />

R 4<br />

R 5<br />

N<br />

XR 2<br />

O<br />

N<br />

Febrizio and group have synthesized 2,4-dicarboxy-pyrroles and tested as<br />

selective non-competitive mGluR1 antagonists 49 .<br />

H3C<br />

CH CH 3 3<br />

H C<br />

O<br />

3<br />

O<br />

CH 3<br />

C H 3<br />

N<br />

H<br />

O<br />

O CH 3<br />

Various reduce pyrrole derivatives such as pyrroline, pyrrolidine are active on the<br />

cardiovascular apparatus and useful for preparation of structurally modified<br />

bioactive peptides 50 .


17<br />

O<br />

OH<br />

HN<br />

OH<br />

Wijngaarden 51 and research group have synthesized a series of 2-phenylpyrrole<br />

Mannich bases and screened in pharmacological models for antipsychotic activity<br />

and extrapyramidal effects. They made structure modification of 5-(4-<br />

flourophenyl)-2-[4-(2-methoxyphenyl)-I-piperazinyl] methyl pyrrole, the prototype<br />

of new class of sodium independent atypical dopamine D-2 anganosits and<br />

resulted in 2-[4-(7-benzofuranyl)-I-piperazinyl] methyl-5-(flouro phenyl) pyrrole,<br />

which was an even more potent and selective D-2 anganosits than the parent<br />

compound. They found excellent oral activity in the apomorphine induced<br />

climbing behavior and the conditioned avoidance response tests and the absence<br />

of catalepsy make this compound particularly promising as a potential<br />

antipsychotic with low propensity to induce acute extrapyramidal side effect.<br />

F<br />

N<br />

H<br />

N<br />

F<br />

N<br />

H<br />

N<br />

N<br />

O<br />

CH3<br />

N<br />

CF 3<br />

(I)<br />

(II)<br />

Demetri 52 has suggest, GIST is the most common mesenchymal cancer of the<br />

gastrointestinal tract. Activating mutations in KIT are common in GIST, and<br />

imatinib, which also inhibits KIT, was found to be the first RTK inhibitors to show<br />

efficacy in this cancer, dramatically improving disease outcome 43 . However,<br />

resistance to imatinib resulting from subsequent mutations in KIT has emerged.


18<br />

CH 3<br />

CH 3<br />

N<br />

C<br />

O<br />

NH<br />

H 3<br />

CH 3<br />

F<br />

N<br />

H<br />

O<br />

N<br />

H<br />

1.1.4 NEW DRUG MOLECULE INTRODUCE UNDER CLINICAL STUDY<br />

New drug molecules which are related to the pyrrole ring structure, are under<br />

study for phase-I to phase- IV clinical trial for different pharmacological action.<br />

Few selected example are showed under.<br />

Drug Name<br />

:<br />

53<br />

A-2545<br />

Chemical Structure :<br />

H 3 C<br />

CH 3<br />

HN<br />

H 3 C<br />

H 3 C<br />

O<br />

NH<br />

N<br />

O<br />

O<br />

Chemical Name<br />

Phase<br />

Activity<br />

HCl<br />

: 2,2,5,5-Tetra Methyl-N-(3-pthalimidopropyl)-2,5-<br />

dihyro-1H-pyrrole-3-carboxamide hydrochloride<br />

: Preclinical<br />

: Antiarrhythnic Drug; Sodium Channel Blockers;<br />

Calcium antagonists<br />

Drug Name<br />

Chemical Structure :<br />

:<br />

54<br />

Anirolac, RS-37326<br />

C H 3<br />

O<br />

O<br />

N<br />

OH<br />

O


19<br />

Chemical Name<br />

Phase<br />

Activity<br />

: (+)-5-(4-methoxybenzoyl)-1,2-dihyro-3Hpyrrolo[1,2-a]pyrrole-1-carboxylic<br />

acid<br />

: Phase II<br />

: Non-steroidal anti-inflammatory Drug<br />

Drug Name<br />

Chemical Structure :<br />

:<br />

55<br />

ketorolac, RC-37619<br />

Chemical Name<br />

Phase<br />

Activity<br />

OH<br />

N<br />

O<br />

O<br />

: (+)-5-Benzoyl-1, 2-dihydro-3H-pyrrolo [1,2-a]<br />

pyrrole -1-carboxylic acid<br />

: Launched-1990<br />

: Non-Opioid Analgesic; Non-steroidal<br />

Antiinflammatory<br />

Drug Name<br />

Chemical Structure :<br />

:<br />

56<br />

OP-2507<br />

O<br />

CH 3<br />

O<br />

N<br />

CH 3<br />

HO<br />

H<br />

OH<br />

Chemical Name<br />

Phase<br />

Activity<br />

: 15-cis-(4-N-propylcyclohexyl)-<br />

16,17,18,19,20-pentanor-9-deoxy-6,9-alphanitrilo<br />

PGF1 methyl ester<br />

: Phase II<br />

: Cognition-enhancing Drug; Cerebral<br />

Antiischemics ; Hepatoprotectants


20<br />

Drug Name<br />

Chemical Structure :<br />

:<br />

57<br />

Medosan-27<br />

CH 3<br />

O<br />

O<br />

H 3 C<br />

N<br />

CH 3<br />

N<br />

O<br />

N<br />

H 3 C<br />

O<br />

O<br />

N<br />

N<br />

Chemical Name<br />

acid-<br />

Phase<br />

Activity<br />

: 1-Methyl-5-(4-methylbenzoyl)pyrrole-2-acetic<br />

2-(thiophylline-7-yl)ethyl ester<br />

: Phase I<br />

: Aantiplatelet Therapy; Bronchodilators;<br />

Thromboxane A2 Antagonists; Non-steroidal<br />

Antiinflammatory Drug; Thromboxane Synthase<br />

Inhibitors; Methylxanthines<br />

Drug Name<br />

:<br />

58<br />

Org-5222<br />

Chemical Structure :<br />

O<br />

H<br />

H<br />

Cl<br />

COOH<br />

N<br />

CH 3<br />

COOH<br />

Chemical Name<br />

Phase<br />

Activity<br />

: Transe-5-chloro-2-methyl-2,3,3a-tetrahydro-<br />

1H-dibenz [2,3:6,7] oxepine[4,5-c]pyrrole<br />

Maleate (1:1)<br />

: Phase II<br />

: Antipsychotic Drugs; 5-HZ2A antagonists;<br />

Dopamine D2 Antagonists<br />

Drug Name : Pamicogrel, KB-3022 59


21<br />

Chemical Structure :<br />

CH 3<br />

N<br />

N<br />

O<br />

H 3 C<br />

O<br />

S<br />

O<br />

H 3 C<br />

O<br />

Chemical Name<br />

Phase<br />

Activity<br />

: 2-[4,5-Bis(4-methoxyphenyl)thiazol-2-yl]<br />

Pyrrole-1-aceticacid ethyl ester<br />

: pre-registered<br />

: Antiplatelet Therapy; Cyclooxygenase<br />

Inhibitors<br />

1.2 SYNTHETIC ASPECT<br />

In the present chapter, the aspect was to develop the molecules of<br />

pharmacological interest, encircled different heterocyclic ring system with pyrrole<br />

ring which is documented as significant pharmacophore for treatment of<br />

tuberculosis, HIV, schizophrenia, anxiety, depression, circadiac rhythm disorders,<br />

diabetes, impaired glucose tolerance tumors, autoimmune disease and many<br />

others.<br />

Serving as an excellent intermediate with other chemical structures leading to<br />

large number of heterocycles, pyrrole it self is very well explored in analytical and<br />

pharmaceutical chemistry and their biological properties are also documented in<br />

last few years. This data promoted us to investigate the biological properties of<br />

this structure class.<br />

Earlier in our laboratory, pyrrole derivatives with oxadiazole ring on side chain are<br />

synthesized and their biological profile showed promising results. In continuation<br />

of this work pyrrole derivatives with pyrazol ring on side chain are synthesized in<br />

current chapter. The physical data and spectral data of synthesized compounds<br />

are given in Section 1.6 and 1.7.


22<br />

1.3 REACTION SCHEMES<br />

1.3.1 Scheme 1<br />

H 3 C O<br />

H 3 C<br />

HNO 2<br />

H 3 C O<br />

H 3 C O<br />

O<br />

O<br />

O<br />

Zn/CH 3<br />

COOH<br />

N<br />

OH<br />

C H 3<br />

O<br />

O<br />

H 3 C O<br />

NH 2<br />

acetyl acetone<br />

O<br />

H 3 C<br />

CH 3<br />

CH 3<br />

O<br />

O<br />

N<br />

H<br />

H 3 C<br />

1.3.2 Scheme 2<br />

R<br />

O<br />

H<br />

H<br />

3 C CH 3<br />

3 C<br />

O<br />

+<br />

O<br />

N<br />

H<br />

CH 3<br />

O<br />

H<br />

R<br />

KOH<br />

CH 3<br />

OH<br />

O<br />

H 3 C<br />

O<br />

H 3 C<br />

CH 3<br />

O<br />

N<br />

H


23<br />

1.3.3 Scheme 3<br />

O<br />

H<br />

H<br />

3 C<br />

3 C<br />

O<br />

NH 2<br />

NH 2<br />

O<br />

N<br />

H<br />

CH 3<br />

C 2<br />

H 5<br />

OH, reflux<br />

R<br />

C H 3<br />

O<br />

H 3 C<br />

CH 3<br />

O<br />

N<br />

H<br />

N<br />

H<br />

N<br />

R<br />

1.3.4 REACTION MECHANISM<br />

H 3<br />

RC<br />

O<br />

+<br />

R 1<br />

+H +<br />

C<br />

O<br />

R 1<br />

+H +<br />

H 3<br />

R<br />

..<br />

NH 2<br />

O<br />

CH 3<br />

-H + +<br />

NH 2<br />

CH 3<br />

-H +<br />

OH<br />

H 3<br />

C<br />

O<br />

H 3<br />

C<br />

O<br />

R<br />

..<br />

NH<br />

OH<br />

R 1<br />

+H +<br />

CH 3<br />

-H + R<br />

..<br />

NH<br />

R 1<br />

-H 2<br />

O<br />

+H 2<br />

O<br />

CH 3<br />

OH 2<br />

+<br />

H 3<br />

C<br />

O<br />

R 1<br />

H 3<br />

C<br />

O<br />

R 1<br />

-H +<br />

+H +<br />

R<br />

NH<br />

+ CH 3<br />

+H +<br />

R<br />

..<br />

NH CH 3<br />

-H +<br />

H 3<br />

HR<br />

OC<br />

H<br />

R<br />

+<br />

N<br />

R 1<br />

H<br />

CH 3<br />

R 1<br />

H 3<br />

-H +<br />

HOC<br />

-H +<br />

+H + H +H<br />

N<br />

CH +<br />

3<br />

R H<br />

H 3 C<br />

R 1<br />

H 2<br />

O +<br />

H ..<br />

N<br />

CH 3<br />

R H<br />

-H 2<br />

O<br />

+H 2<br />

O<br />

H 3 C<br />

R 1<br />

H<br />

N + CH 3<br />

R<br />

H<br />

C<br />

-H + N<br />

R 1<br />

R= COOC 2<br />

H 5<br />

R= COCH 3<br />

1<br />

3<br />

CH<br />

RH<br />

3<br />

H


24<br />

1.4 Experimental Protocols<br />

Commercial ethylacetoacetate was used only after distillation. The zinc dust used<br />

of minimum 80 % pure. Before the reaction mixture is refluxed, enough time<br />

should be allowed for the zinc dust react totally; or else considerable problem<br />

with foaming may be encountered. While addition of zinc is done in small portion<br />

to ensure proper temperature control otherwise foaming will occur and<br />

temperature will shoot up.<br />

Thin layer chromatography<br />

It was carried out on silica Gel-G as a stationary phase. The slurry was prepared<br />

by adding 20 ml distilled water to 10 gm Silica Gel in 250 ml beaker with<br />

continues stirring and the slurry was poured over glass plate and uniform thin<br />

layer was prepared. The plate was kept dried at 105 o C and activated before<br />

used. The reactions of all newly synthesized compounds and intermediate were<br />

monitories and the purity was checked by TLC.<br />

Mobile phase: 1. Ethyl acetate : Hexane<br />

2. Chloroform : Methanol<br />

Melting point<br />

All the melting points were taken in open end capillary by using paraffin bath with<br />

standard Zeal thermometer and they were uncorrected.<br />

1.5 EXPERIMENTAL<br />

1.5.1 Preparation of 1-{5-[ethoxy (hydroxy) methyl]-2, 4-dimethyl-1H-pyrrol-<br />

3-yl} ethanone (Scheme-1)<br />

In 250 ml conical flask provided with magnetic needle and surrounded by an ice<br />

bath are placed 13 ml of ethyl acetoacetate and 40 ml of glacial acetic acid. To<br />

this, then added drop wise with stirring a solution of (0.11 mole) of sodium nitrite<br />

in 13 ml of water. The rate of addition is controlled so that the temperature does<br />

not rise above 10 o C. After the sodium nitrite solution has been added, the<br />

mixture is stirred for 2-3 hrs more. It is then allow to warm up to room


25<br />

temperature and stand about 12 hrs, after which (0.12 mole) of acetyl acetone<br />

added at one time. To the reaction mixture, 15 gm of zinc dust is added in<br />

portions of about 2-3 gm with vigorous stirring. The rate of addition is regulated<br />

so that temperature never rises above 60 o C. After the addition is complete, the<br />

mixture is refluxed for 2-3 hrs on water bath until the unreacted zinc dust<br />

collected in balls. The hot solution is then filtered and poured into ice water. The<br />

creamy white product obtained is filtered and dried. Crude product is crystallized<br />

from alcohol. M.P.-142-144 o C (reported M.P.-143 o C) A , Yield 45-60 %.<br />

1.5.2 Preparation of (2E)-1-{5-[ethoxy (hydroxy) methyl]-2,4-dimethyl-1Hpyrrol-3-yl}-3-phenylprop-2-en-1-one<br />

(Scheme-2)<br />

General method:<br />

In 100 ml conical flask, 1-{5-[ethoxy (hydroxy) methyl]-2,4-dimethyl-1H-pyrrol-3-<br />

yl} ethanone (0.01 mole) and substituted aromatic aldehyde (0.01 mole) were<br />

dissolved in chloroform. The catalytic amount of potassium hydroxide (2-3) drops<br />

was added and the reaction mixture was refluxed for 2 hrs. The reaction progress<br />

was monitored by TLC. After completetion of the reaction, chloroform was<br />

distilled out completely and 10 ml methanol was added. Stirred for 20 min at 25-<br />

30 o C. The product was filtered and dried in air oven. It was recrystallised from<br />

methanol. Yield 50-60 %.<br />

1.5.3 Preparation of [3, 5-dimethyl-4-(5-phenyl-4, 5-dihydro-1H-pyrazol-3-<br />

yl)-1H-pyrrol-2-yl] (ethoxy) methanol (Scheme-3)<br />

General method:<br />

In 100 ml conical flask, 10 ml (0.32 mole) of hydrazine hydrate is added to the<br />

solution of (2E)-1-{5-[ethoxy (hydroxy) methyl]-2,4-dimethyl-1H-pyrrol-3-yl}-3-<br />

phenylprop-2-en-1-one (0.01 mole) in 20 ml ethanol and reflux with stirring in<br />

water bath for 6-8 hrs. Pour the contain into crushed ice with stirring. The solid<br />

obtained was filtered and washed with water. It was dried and recrystallized from<br />

ethanol. Yield 65-70 %.<br />

Physical data of the newly synthesized compounds are given in Table 1.6.<br />

A Raval, K.; Ph.D. Thesis.; <strong>Saurashtra</strong> <strong>University</strong>, Rajkot, 2005.


27<br />

1.7 SPECTRAL ANALYSIS<br />

1.7.1 IR SPECTRAL ANALYSIS<br />

The IR spectral data of newly synthesized pyrrole derivatives have many<br />

significant characteristic IR peaks which are identified.<br />

Looking to the IR spectra of newly synthesized compounds, the carbonyl group of<br />

ester was observed at 1695-1660 cm -1 . Two methyl groups illustrate stretching<br />

vibration at 2975-2950 cm -1 and deformation at 1485-1445 cm -1 . The -C-O<br />

stretching of ester group observed at 1100-1001 cm -1 . The –NH deformation and<br />

C-N stretching of secondary bonded observed at 1205-1310 cm -1 . The –CH<br />

stretching of five member ring observed in the region of 1610-1660 cm -1 . Chloro<br />

group was confirmed due to their frequencies which come out at 800-650 cm -1 .<br />

The –NH stretching of pyrrole ring observed at 3230-3400 cm -1 and bending<br />

vibration suggest itself 1580-1640 cm -1 region.<br />

The informative bands in the spectra due to aromatic moiety occur in the low<br />

frequency range between 900 and 675 cm -1 . These strong absorption bands<br />

consequence from the out-of-plan banding of the ring C-H bonds. In plane<br />

banding emerge in the region of 1300-1000 cm -1 . Skeletal vibration, involving<br />

carbon-carbon stretching with the ring, absorb in the 1600-1585 cm -1 and 1500-<br />

1400 cm -1 regions. Aromatic C-H stretching bands occur between 3100-3000 cm -<br />

1 . IR spectra of the newly synthesized compounds are given on Pages 36-37.<br />

1.7.2 1H NMR SPECTRAL ANALYSIS<br />

Study of the<br />

1 H NMR spectra of newly synthesized compounds shows<br />

characterization pattern of triplet-quartet of CH 3 -CH 2 group, in which quartet of<br />

CH 2 group was observed at 2.50-4.55 δ ppm, while that of triplet of methyl<br />

protons 1.38-2.55 δ ppm. The two methyl groups present at 2 and 5 position of<br />

pyrrole ring explain presence of mostly two distinct singlets at 2.20 – 4.10 δ ppm.<br />

The aromatic protons were observed at 6.99 to 7.75 δ ppm. The –NH group of<br />

pyrrole ring structure and –CO-NH was observed at 6.65 to 10.55 δ ppm<br />

respectively. In case of 5-phenyl-4, 5-dihydro-1H-pyrazole ring own two types of


28<br />

methylenic protons at dissimilar C 4 positions, as these two protons are chemically<br />

equivalent but magnetically non equivalent. Thus these two protons establish<br />

different region in the spectrum. Thereby these protons give multiple signals at<br />

2.50 – 3.70 δ ppm, in place of doublet due to steric hindrance of entire ring<br />

protons. At C 5 position 1H protons offer triplet at 4.52 to 4.68 δ ppm, outstanding<br />

to the neighboaring two protons in the pyrazole ring at C 4 position. Although, in<br />

case of VGM-1, due to attendance of fluorine atom in aromatic ring, nearby two<br />

protons give triplet- triplet at 7.34-7.38 δ ppm. NMR spectra of the newly<br />

synthesized compounds are given on Pages 38-41.<br />

1.7.3 Elemental Analysis<br />

Elemental analysis of the all the synthesized compounds was carried out on<br />

Elemental Vario EL III Carlo Erba 1108 model and the results are in agreements<br />

(within range of theoretical value) with the structures assigned.<br />

1.7.4 Mass spectral Analysis<br />

Molecular ion peak (M+) of the Ethyl 4-[5-(substituted phenyl)-4, 5-dihydro-1Hpyrazol-3-yl]-3,<br />

5-dimethyl-1H-pyrrole-2-carboxylate was in total agreement with<br />

their molecular weight.<br />

In case of VGM-2 and VGM-6, molecular ion peak relevant to its molecular<br />

weight. Base peak observed at 310 m/z due to lost of one methyl group from<br />

pyrrole ring and two oxygen atoms from the nitro group, 207 peak is relevant to<br />

subsequent loss of phenyl ring from the left behind molecular part.<br />

In case of VGM-3 and VGM-5, base peak is observed at 327 m/z with upper limit<br />

intensity owing to loss of one methyl group from the pyrrole ring. An additional<br />

peak is observed at 313 m/z due to loss of second methyl group from pyrrole<br />

nucleus.<br />

For the Mass spectrum of VGM-7, base peak is observed at 147 m/z. M+ peak is<br />

relevant to its molecular weight. While 342 m/e peak is also observed cause of<br />

the loss of the methyl group. In Mass spectrum, 207 peak was observed by loss


29<br />

of phenyl ring from molecule, base peak is observed because of subsequently<br />

loss of ester linkage at C 5 position from the pyrrole ring.<br />

In case of VGM-8, M+ in total agreement with its molecular weight, while base<br />

peak is observed at 299 m/z down due to loss of one methyl group from pyrrole<br />

focus and Cl atom from the aromatic nucleus at C4 position. 283 m/z is moreover<br />

revealed caused by subsequently loss of second methyl group from the pyrrole<br />

ring.<br />

In case of ethyl 3, 5-dimethyl-4-(5-phenyl-4, 5-dihydro-1H-pyrazol-3-yl)-1Hpyrrole-2-carboxylate<br />

base peak observed 148 m/e. 297 m/e and 283 m/e were<br />

observed due to loss of two methyl group from the pyrrole ring. Mass spectra of<br />

the newly synthesized compounds are given on Pages 42-45.<br />

Mass fragmentation of Ethyl 4-[5-(4-methoxyphenyl)-4, 5-dihydro-1Hpyrazol-3-yl]-3,<br />

5-dimethyl-1H-pyrrole-2-carboxylate (VGM-3).<br />

H 3 C<br />

H 3 C<br />

O<br />

O<br />

O<br />

O<br />

N<br />

H<br />

N<br />

H<br />

H3C<br />

O<br />

O<br />

NH<br />

N<br />

CH 3<br />

NH<br />

N<br />

N<br />

H<br />

CH3<br />

N<br />

NH<br />

4<br />

3<br />

OH<br />

5<br />

C H 3<br />

2<br />

H 3 C<br />

O<br />

O<br />

O<br />

O<br />

N<br />

H<br />

O CH 3<br />

H 3 C<br />

CH 3<br />

N<br />

H<br />

6<br />

O CH 3<br />

NH<br />

N<br />

CH 3<br />

1<br />

NH<br />

N<br />

7<br />

10<br />

H 2 C<br />

8<br />

C H 2<br />

9<br />

NH<br />

N<br />

N<br />

H<br />

H 3 C<br />

N<br />

H<br />

NH<br />

N<br />

N<br />

NH<br />

C H 3<br />

O<br />

O<br />

N<br />

H<br />

NH<br />

N<br />

HO<br />

O<br />

N<br />

H<br />

NH<br />

N<br />

O<br />

N<br />

H<br />

NH<br />

N


Mass fragmentation of Ethyl 4-[5-(4-chlorophenyl)-4, 5-dihydro-1H-pyrazol-<br />

3-yl]-3, 5-dimethyl-1H-pyrrole-2-carboxylate (VGM-8):<br />

30<br />

N<br />

H<br />

N<br />

Cl<br />

H 3 C<br />

O<br />

N<br />

H<br />

N<br />

C H 3<br />

CH 3<br />

H 3 C<br />

O<br />

O<br />

N<br />

H<br />

CH 3<br />

H 3<br />

N N H<br />

O<br />

N<br />

H<br />

H 2<br />

CN<br />

H 3 C<br />

O<br />

N<br />

H<br />

N<br />

2<br />

1<br />

1<br />

9<br />

H<br />

N<br />

N<br />

O<br />

N<br />

H<br />

N<br />

H<br />

N<br />

CH 3<br />

3<br />

H 3 C<br />

H<br />

N<br />

Cl<br />

N<br />

H 3 C<br />

O<br />

N CH 3<br />

O H<br />

7<br />

8<br />

N<br />

H<br />

H<br />

N<br />

N<br />

H 3 C<br />

O<br />

O<br />

N<br />

H<br />

4<br />

5<br />

6<br />

O<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N<br />

N H<br />

H 3 C<br />

O<br />

O<br />

N<br />

H<br />

N<br />

H<br />

N<br />

HO<br />

O<br />

N<br />

H<br />

HO<br />

O<br />

N<br />

H<br />

SPECTRAL DATA<br />

Ethyl 4-[5-(4-Fluorophenyl)-4, 5-dihydro-1H-pyrazol-3-yl]-3, 5-dimethyl-1Hpyrrole-2-carboxylate<br />

(VGM-1)<br />

IR (KBr) cm -1 : 3206, 3145 (-NH, str.), 1556 (-NH, def.), 1392 (-C-N, str.), 1681<br />

(-C=O, str.), 1510 (-C=C, str. of pyrrole), 1492 (-CH 2 def.), 1437 (-CH 3 , C-H def.),<br />

2924 (-CH, asym. str. ), 2856 (-CH, sym. str.), 1238 (-CH 2 , ipd.), 796 (-CH 2 ,<br />

oopd.), 1014-1089 (-C-O-C, sym, str.)<br />

1 H NMR (δ ppm): 2.39 (3H,s), 2.46 (3H, s), 2.55 (2H, qt), 2.96 (1H, m), 3.86 (1H,<br />

m), 4.48 (1H, t), 7.0-7.05 (2H, m), 7.34-7.38 (2H, t-t, J= 2.08, 2.08 Hz)<br />

C, H, N (in %): Found: 65.67(C), 6.10(H), 12.72 (N), Cacld: 65.64(C), 6.12(H),<br />

12.76 (N)


31<br />

Ethyl 3,5-dimethyl-4-[5-(3-nitrophenyl)-4, 5-dihydro-1H-pyrazol-3-yl]-1Hpyrrole-2-carboxylate<br />

(VGM-2)<br />

IR (KBr) cm -1 : 3192, 3142 (-NH, str.), 1539 (-NH, def.), 1392 (-C-N, str.), 1681<br />

(-C=O, str.), 1521 (-C=C, str. of pyrrole), 1491 (-CH 2 def.), 1440 (-CH 3 , C-H def.),<br />

2937 (-CH, asym. str. ), 2851, 2835 (-CH, sym. str.), 1240 (-CH 2 , ipd.), 794 (-CH 2 ,<br />

oopd.), 1028-1087 (-C-O-C, sym, str.)<br />

Mass (m/e value): 356 (40), 342 (35), 324 (2), 310 (100), 307 (20, 281 (20), 279<br />

(10), 264 (4), 249 (2), 234 (5), 220 (3), 206 (3), 188 (24), 180 (2), 161 (10), 148<br />

(8), 133 (11), 117 (5), 104 (5), 91 (7), 77 (7), 65 (8), 44 (14), 41 (3).<br />

C, H, N (in %): Found: 60.64(C), 5.68(H), 15.71 (N), Cacld: 60.66(C), 5.66(H),<br />

15.72 (N)<br />

Ethyl 4-[5-(4-methoxyphenyl)-4, 5-dihydro-1H-pyrazol-3-yl]-3, 5-dimethyl-1Hpyrrole-2-carboxylate<br />

(VGM-3)<br />

IR (KBr) cm -1 : 3277, 3255 (-NH, str.), 1398 (-C-N, str.), 1699 (-C=O, str.), 1512<br />

(-C=C, str. of pyrrole), 1491 (-CH 2 def.), 1429 (-CH 3 , C-H def.), 2949, 2916 (-CH,<br />

asym. str. ), 1249 (-CH 2 , ipd.), 771 (-CH 2 , oopd.), 1010 (-C-O-C, sym, str.)<br />

Mass (m/e value): 341 (3), 327 (100), 313 (30), 295 (80), 293 (24), 264 (14), 250<br />

(5), 225 (4), 220 (3), 206 (3), 188 (10), 180 (23), 161 (23), 148 (57), 135 (32), 121<br />

(25), 107 (5), 91 (15), 77 (16), 65 (16), 44 (11), 41 (3).<br />

C, H, N (in %): Found: 66.80(C), 6.76(H), 12.28 (N), Cacld: 66.84(C), 6.79(H),<br />

12.31 (N)<br />

Ethyl 4-[5-(2-chlorophenyl)-4, 5-dihydro-1H-pyrazol-3-yl]-3, 5-dimethyl-1Hpyrrole-2-carboxylate<br />

(VGM-4)<br />

IR (KBr) cm -1 : 3377, 3286 (-NH, str.), 1346 (-C-N, str.), 1685 (-C=O, str.), 1516<br />

(-C=C, str. of pyrrole), 1491 (-CH 2 def.), 2939, 2910 (-CH, asym. str.), 1242 (-<br />

CH 2 , ipd.), 740 (-CH 2 , oopd.), 1101 (-C-O-C, sym, str.)<br />

C, H, N (in %): Found: 62.50 (C), 5.80 (H), 10.21 (N), Cacld: 62.52 (C), 5.83<br />

(H), 10.25 (N)<br />

Ethyl 4-[5-(3-methoxyphenyl)-4, 5-dihydro-1H-pyrazol-3-yl]-3, 5-dimethyl-1Hpyrrole-2-carboxylate<br />

(VGM-5)<br />

IR (KBr) cm -1 : 3245, 3210 (-NH, str.), 1542 (-NH, def.), 1388 (-C-N, str.), 1684<br />

(-C=O, str.), 1530 (-C=C, str. of pyrrole), 1481 (-CH 2 def.), 1435 (-CH 3 , C-H def.),


32<br />

3054 (Ar-CH, str), 2940 (-CH, asym. str. ), 2862, 2810 (-CH, sym. str.), 1244 (-<br />

CH 2 , ipd.), 782 (-CH 2 , oopd.), 1010-1090 (-C-O-C, sym, str.)<br />

Mass (m/e value): 341 (5), 325 (100), 313 (70), 295 (71), 293 (84), 264 (48), 266<br />

(20), 250 (16), 224 (5), 210 (8), 206 (16), 195 (24), 180 (86), 160 (23), 148 (100),<br />

135 (46), 121 (20), 107 (18), 92 (24), 77 (33), 65 (37), 44 (24), 41 (5).<br />

C, H, N (in %): Found: 66.82 (C), 6.83 (H), 12.30 (N), Cacld: 66.84 (C), 6.79<br />

(H), 12.31 (N)<br />

Ethyl 3,5-dimethyl-4-[5-(4-nitrophenyl)-4, 5-dihydro-1H-pyrazol-3-yl]-1Hpyrrole-2-carboxylate<br />

(VGM-6)<br />

IR (KBr) cm -1 : 3312, 3214 (-NH, str.), 1389 (-C-N, str.), 1690 (-C=O, str.), 1520<br />

(-C=C, str. of pyrrole), 1496 (-CH 2 def.), 1440 (-CH 3 , C-H def.), 2965, 2921 (-CH,<br />

asym. str. ), 1251 (-CH 2 , ipd.), 774 (-CH 2 , oopd.), 1010-1086 (-C-O-C, sym, str.)<br />

1 H NMR (δ ppm): 1.34 (3H,s), 2.38 (3H, s), 2.53 (3H, s), 3.50 (1H, m), 4.29 (2H,<br />

qt), 4.92 (1H, t), 6.42 (-NH, s), 7.64 (2H, t, J= 1.92, 8.68 Hz), 8.17 (2H, d, J= 8.72<br />

Hz ), 10.82 (-NH, s)<br />

Mass (m/e value): 356 (100), 342 (14), 326 (7), 310 (100), 294 (3), 281 (39), 279<br />

(10), 264 (10), 250 (2), 235 (8), 220 (2), 207 (3), 188 (37), 178 (3), 161 (20), 146<br />

(10), 133 (22), 119 (8), 106 (8), 91 (11), 77 (8), 65 (12),44 (7), 41 (3).<br />

C, H, N (in %): Found: 60.62 (C), 5.63 (H), 15.70 (N), Cacld: 60.66 (C), 5.66 (H),<br />

15.72 (N)<br />

Ethyl 3,5-dimethyl-4-[5-(2-nitrophenyl)-4, 5-dihydro-1H-pyrazol-3-yl]-1Hpyrrole-2-carboxylate<br />

(VGM-7)<br />

IR (KBr) cm -1 : 3224, 3186 (-NH, str.), 1540 (-NH, def.), 1387 (-C-N, str.), 1686<br />

(-C=O, str.), 1520 (-C=C, str. of pyrrole), 1480 (-CH 2 def.), 1435 (-CH 3 , C-H def.),<br />

2956, 2914 (-CH, asym. str. ), 2851, 2810 (-CH, sym. str.), 1244 (-CH 2 , ipd.), 776<br />

(-CH 2 , oopd.), 1005-1084 (-C-O-C, sym, str.)<br />

1 H NMR (δ ppm): 1.34-1.38 (3H, t), 2.41 (3H, s), 2.98 (1H, m), 3.49 (3H, s), 3.73<br />

(1H, m), 4.30-4.34 (2H, qt), 5.29-5.34 (1H, t), 7.42 – 7.46 (1H, m, 1.40, 7.08 Hz),<br />

7.62 – 7.66 (1H, t-t, J= 1.24, 6.64 Hz), 7.95 -8.00 (2H, t-t, J= 0.96, 1.16 Hz), 8.8<br />

(1H, s)<br />

Mass (m/e value): 356 (69), 342 (74), 322 (5), 307 (14), 292 (5), 275 (69), 263<br />

(300, 247 (27), 235 (60), 221 (32), 207 (29), 188 (22), 180 (14), 167 (18), 147<br />

(100), 131 (20), 119 (30), 104 (20), 91 (26), 77 (25), 65 (28), 44 (15), 41 (4).


33<br />

C, H, N (in %): Found: 60.62(C), 5.67(H), 15.70 (N), Cacld: 60.66(C), 5.66(H),<br />

15.72 (N)<br />

Ethyl 4-[5-(4-chlorophenyl)-4, 5-dihydro-1H-pyrazol-3-yl]-3, 5-dimethyl-1Hpyrrole-2-carboxylate<br />

(VGM-8)<br />

IR (KBr) cm -1 : 3364, 3246 (-NH, str.), 1374 (-C-N, str.), 1684 (-C=O, str.), 1510<br />

(-C=C, str. of pyrrole), 1494 (-CH 2 def.), 2956, 2914 (-CH, asym. str.), 1240 (-<br />

CH 2 , ipd.), 779 (-CH 2 , oopd.), 1080 (-C-O-C, sym, str.)<br />

1 H NMR (δ ppm): 2.46 (3H,t), 2.51 (3H, s), 2.75 (1H, m), 3.69 (1H, m), 3.86<br />

(2H,qt), 4.33 (3H, m), 4.63 (1H, t), 7.24 (1H, t, J= 8.64, 8.04 Hz ), 7.32 (2H, m, J=<br />

2.62 Hz), 7.38-7.40 (1H, m, J= 6.52 , 2.62 Hz), 8.65 (1H, s)<br />

Mass (m/e value): 345 (58), 331 (32), 311 (20), 299 (100), 283 (41), 270 (14),<br />

256 (5), 242 (3), 234 (4), 220 (4), 206 (5), 188 (20), 178 (4), 102 (8), 91 (10), 77<br />

(10), 65 (14), 44 (15), 41 (3).<br />

C, H, N (in %): Found: 62.54(C), 5.80(H), 10.21 (N), Cacld: 62.52(C), 5.83(H),<br />

10.25 (N)<br />

Ethyl 4 - [5 - (4-anthracene) - 4, 5- dihydro- 1H- pyrazol- 3- yl]- 3, 5- dimethyl-<br />

1H-pyrrole-2-carboxylate (VGM-9)<br />

IR (KBr) cm -1 : 3346, 3274 (-NH, str.), 1540 (-NH, def.), 1389 (-C-N, str.), 1686<br />

(-C=O, str.), 1524 (-C=C, str. of pyrrole), 1492 (-CH 2 def.), 1438 (-CH 3 , C-H def.),<br />

3024,3010 (Ar-CH, str.) 2954, 2912 (-CH, asym. str. ), 2860, 2814 (-CH, sym.<br />

str.), 1242 (-CH 2 , ipd.), 778 (-CH 2 , oopd.), 1010-1086 (-C-O-C, sym, str.)<br />

C, H, N (in %): Found: 75.50 (C), 6.54 (H), 10.12 (N), Cacld: 75.52 (C), 6.58 (H),<br />

10.16 (N)<br />

Ethyl 4-(5-cyclohexa-2,5-dien-1-yl-4,5-dihydro-1H-pyrazol-3-yl)-3,5-dimethyl-<br />

1H-pyrrole-2-carboxylate (VGM-10)<br />

IR (KBr) cm -1 : 3264, 3178 (-NH, str.), 1538 (-NH, def.), 1391 (-C-N, str.), 1688<br />

(-C=O, str.), 1521 (-C=C, str. of pyrrole), 1475 (-CH 2 def.), 1436 (-CH 3 , C-H def.),<br />

2940, 2912 (-CH, asym. str. ), 2856, 2814 (-CH, sym. str.), 1240 (-CH 2 , ipd.), 789<br />

(-CH 2 , oopd.), 1014-1096 (-C-O-C, sym, str.)<br />

Mass (m/e value): 311 (5), 297 (92), 283 (54), 266 (24), 265 (92), 251 (20), 236<br />

(20), 222 (15), 206 (19), 188 (26), 180 (61), 160 (20), 148 (100), 133 (17), 122<br />

(19), 105 (47), 91 (28), 77 (57), 65 (37), 51 (21), 41 (6).


34<br />

C, H, N (in %): Found: 69.40 (C), 6.84 (H), 13.45 (N), Cacld: 69.43 (C), 6.80 (H),<br />

13.49 (N)<br />

Ethyl 4-[5-(2-flourophenyl)-4, 5-dihydro-1H-pyrazol-3-yl]-3, 5-dimethyl-1Hpyrrole-2-carboxylate<br />

(VGM-11)<br />

IR (KBr) cm -1 : 3314, 3262 (-NH, str.), 1344 (-C-N, str.), 1686 (-C=O, str.), 1520<br />

(-C=C, str. of pyrrole), 1488 (-CH 2 def.), 2940, 2916 (-CH, asym. str.), 1240 (-<br />

CH 2 , ipd.), 758 (-CH 2 , oopd.), 1089 (-C-O-C, sym, str.)<br />

C, H, N (in %): Found: 65.66 (C), 6.10(H), 12.74 (N), Cacld: 65.64 (C), 6.12 (H),<br />

12.76 (N)<br />

Ethyl 4-[5-(2-methoxyphenyl)-4, 5-dihydro-1H-pyrazol-3-yl]-3, 5-dimethyl-1Hpyrrole-2-carboxylate<br />

(VGM-12)<br />

IR (KBr) cm -1 : 3267, 3186 (-NH, str.), 1390 (-C-N, str.), 1689 (-C=O, str.), 1514<br />

(-C=C, str. of pyrrole), 1490 (-CH 2 def.), 1432 (-CH 3 , C-H def.), 2965 (-CH, asym.<br />

str. ), 1244 (-CH 2 , ipd.), 775 (-CH 2 , oopd.), 1010-1024 (-C-O-C, sym, str.)<br />

C, H, N (in %): Found: 66.82 (C), 6.82(H), 12.28 (N), Cacld: 66.84 (C), 6.79 (H),<br />

12.31 (N)<br />

Ethyl 4-[5-(3-chlorophenyl)-4, 5-dihydro-1H-pyrazol-3-yl]-3, 5-dimethyl-1Hpyrrole-2-carboxylate<br />

(VGM-13)<br />

IR (KBr) cm -1 : 3326, 3240 (-NH, str.), 1364 (-C-N, str.), 1688 (-C=O, str.), 1521<br />

(-C=C, str. of pyrrole), 1490 (-CH 2 def.), 2940, 2911 (-CH, asym. str.), 1238 (-<br />

CH 2 , ipd.), 784 (-CH 2 , oopd.), 1080-1040 (-C-O-C, sym, str.)<br />

C, H, N (in %): Found: 62.54 (C), 5.80 (H), 10.22 (N), Cacld: 62.52 (C), 5.83 (H),<br />

10.25 (N)<br />

Ethyl 4-[5-(2-hydroxycyclohexa-2, 5-dien-1-yl)-4, 5-dihydro-1H-pyrazol-3-yl]-<br />

3, 5-dimethyl-1H-pyrrole-2-carboxylate (VGM-14)<br />

IR (KBr) cm -1 : 3586 (-OH, str, ) 3246, 3174 (-NH, str.), 1541 (-NH, def.), 1387 (-<br />

C-N, str.), 1688 (-C=O, str.), 1524 (-C=C, str. of pyrrole), 1474 (-CH 2 def.), 1423<br />

(-CH 3 , C-H def.), 2954 (-CH, asym. str. ), 2864, 2812 (-CH, sym. str.), 1240 (-<br />

CH 2 , ipd.), 784 (-CH 2 , oopd.), 1010-1098 (-C-O-C, sym, str.)<br />

C, H, N (in %): Found: 66.02 (C), 6.49 (H), 12.80 (N), Cacld: 66.04 (C), 6.47 (H),<br />

12.84 (N)<br />

Ethyl 4-[5-(3-flourophenyl)-4, 5-dihydro-1H-pyrazol-3-yl]-3, 5-dimethyl-1Hpyrrole-2-carboxylate<br />

(VGM-15)


35<br />

IR (KBr) cm -1 : 3320, 3246 (-NH, str.), 1340 (-C-N, str.), 1680 (-C=O, str.), 1516<br />

(-C=C, str. of pyrrole), 1480 (-CH 2 def.), 2974, 2910 (-CH, asym. str.), 1242 (-<br />

CH 2 , ipd.), 762 (-CH 2 , oopd.), 1080-1014 (-C-O-C, sym, str.)<br />

C, H, N (in %): Found: 65.67 (C), 6.10 (H), 12.73 (N), Cacld: 65.64 (C), 6.12 (H),<br />

12.76 (N)<br />

Ethyl 4-[5-(4-hydroxycyclohexa-2, 5-dien-1-yl)-4, 5-dihydro-1H-pyrazol-3-yl]-<br />

3, 5-dimethyl-1H-pyrrole-2-carboxylate (VGM-16)<br />

IR (KBr) cm -1 : 3574 (-OH, str, ) 3346, 3214 (-NH, str.), 1380 (-C-N, str.), 1691 (-<br />

C=O, str.), 1520 (-C=C, str. of pyrrole), 1470 (-CH 2 def.), 1432 (-CH 3 , C-H def.),<br />

3014 (Ar-CH,str.) 2948 (-CH, asym. str. ), 2874, (-CH, sym. str.), 1248 (-CH 2 ,<br />

ipd.), 781 (-CH 2 , oopd.), 1098-1012 (-C-O-C, sym, str.)<br />

C, H, N (in %): Found: 66.05 (C), 6.45 (H), 12.82 (N), Calcld: 66.04 (C), 6.47<br />

(H), 12.84 (N)<br />

Ethyl 4-[5-(4-naphthalene)-4, 5-dihydro-1H-pyrazol-3-yl]-3, 5-dimethyl-1Hpyrrole-2-carboxylate<br />

(VGM-17)<br />

IR (KBr) cm -1 : 3318, 3240 (-NH, str.), 1538 (-NH, def.), 1392 (-C-N, str.), 1679<br />

(-C=O, str.), 1521 (-C=C, str. of pyrrole), 1490 (-CH 2 def.), 1420 (-CH 3 , C-H def.),<br />

3014 (Ar-CH, str.) 2964, 2910 (-CH, asym. str. ), 2864 (-CH, sym. str.), 1242 (-<br />

CH 2 , ipd.), 784 (-CH 2 , oopd.), 1088-1014 (-C-O-C, sym, str.)<br />

C, H, N (in %): Found: 72.72 (C), 6.90 (H), 11.54 (N), Cacld: 72.70 (C), 6.93 (H),<br />

11.56 (N)<br />

Ethyl 4-[5-(3-hydroxycyclohexa-2, 5-dien-1-yl)-4, 5-dihydro-1H-pyrazol-3-yl]-<br />

3, 5-dimethyl-1H-pyrrole-2-carboxylate (VGM-18)<br />

IR (KBr) cm -1 : 3574 (-OH, str, ) 3346, 3214 (-NH, str.), 1540 (-NH, def.), 1384 (-<br />

C-N, str.), 1690 (-C=O, str.), 1531 (-C=C, str. of pyrrole), 1470 (-CH 2 def.), 1430<br />

(-CH 3 , C-H def.), 2917 (-CH, asym. str.), 2874, 2810 (-CH, sym. str.), 1244 (-CH 2 ,<br />

ipd.), 788 (-CH 2 , oopd.), 1098-1024 (-C-O-C, sym, str.)<br />

C, H, N (in %): Found: 66.02 (C), 6.49 (H), 12.81 (N), Cacld: 66.04 (C), 6.47<br />

(H), 12.84 (N)


IR spectrum of Ethyl 4-[5-(4-fluorophenyl)-4, 5-dihydro-1H-pyrazol-3-yl]-3, 5-<br />

dimethyl-1H-pyrrole-2-carboxylate (VGM-1)<br />

36<br />

C H 3<br />

O<br />

O<br />

H<br />

N<br />

F<br />

N<br />

H 3 C<br />

CH 3<br />

N<br />

H<br />

IR spectrum of Ethyl 3, 5-dimethyl-4-[5-(3-nitrophenyl)-4, 5-dihydro-1Hpyrazol-3-yl]-1H-pyrrole-2-carboxylate<br />

(VGM-2)<br />

C H 3<br />

O<br />

N<br />

H<br />

N<br />

H 3 C<br />

N + O<br />

CH 3<br />

O -<br />

O<br />

N<br />

H


IR spectrum of Ethyl 4-[5-(4-methoxycyclohexa-1, 5-dien-1-yl)-4, 5-dihydro-<br />

1H-pyrazol-3-yl]-3, 5-dimethyl-1H-pyrrole-2-carboxylate (VGM-3)<br />

37<br />

C H 3<br />

O<br />

O<br />

CH<br />

H<br />

3<br />

N<br />

O<br />

N<br />

H 3 C<br />

CH 3<br />

N<br />

H<br />

IR spectrum of Ethyl 4-[5-(2-chlorocyclohexa-1, 5-dien-1-yl)-4, 5-dihydro-1Hpyrazol-3-yl]-3,<br />

5-dimethyl-1H-pyrrole-2-carboxylate (VGM-4)<br />

C H 3<br />

O<br />

N<br />

H<br />

N<br />

H 3 C<br />

Cl<br />

CH 3<br />

O<br />

N<br />

H


38<br />

1 H NMR spectrum of Ethyl 4-[5-(4-fluorophenyl)-4, 5-dihydro-1H-pyrazol-3-<br />

yl]-3, 5-dimethyl-1H-pyrrole-2-carboxylate (VGM-1).<br />

C H 3<br />

O<br />

H<br />

N F<br />

N<br />

H 3 C<br />

CH 3<br />

C H 3<br />

O<br />

H 3 C<br />

CH 3<br />

O<br />

N<br />

H<br />

N<br />

H<br />

N<br />

F<br />

O<br />

N<br />

H


39<br />

1 H NMR spectrum of Ethyl 3, 5-dimethyl-4-[5-(2-nitrophenyl)-4, 5-dihydro-<br />

1H-pyrazol-3-yl]-1H-pyrrole-2-carboxylate (VGM-7).<br />

C H 3<br />

N<br />

H<br />

N<br />

H<br />

H 3 C<br />

H<br />

O<br />

N +<br />

H O -<br />

O<br />

N CH 3<br />

O H


40<br />

1 H NMR spectrum of Ethyl 3, 5-dimethyl-4-[5-(4-chlorophenyl)-4, 5-dihydro-<br />

1H-pyrazol-3-yl]-1H-pyrrole-2-carboxylate (VGM-8).<br />

C H 3<br />

O<br />

CH 3<br />

H H<br />

N Cl<br />

H 3 C<br />

H<br />

N<br />

H<br />

O<br />

N<br />

H


41<br />

1 H NMR spectrum of Ethyl 3, 5-dimethyl-4-[5-(4-nitrophenyl)-4, 5-dihydro-<br />

1H-pyrazol-3-yl]-1H-pyrrole-2-carboxylate (VGM-6).<br />

C H 3<br />

O<br />

CH 3<br />

O<br />

H H<br />

N<br />

N<br />

N + O -<br />

H 3 C<br />

H<br />

H<br />

O<br />

N<br />

H


Mass spectrum of Ethyl 3, 5-dimethyl-4-[5-(3-nitrophenyl)-4, 5-dihydro-1Hpyrazol-3-yl]-1H-pyrrole-2-carboxylate<br />

(VGM-2).<br />

42<br />

O<br />

H 3 C<br />

CH 3<br />

O<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N +<br />

O -<br />

O<br />

C H 3<br />

M.W.= 356.37 gm/mole<br />

Mass spectrum of Ethyl 3, 5-dimethyl-4-[5-(4-methoxyphenyl)-4, 5-dihydro-<br />

1H-pyrazol-3-yl]-1H-pyrrole-2-carboxylate (VGM-3)<br />

N<br />

H<br />

N<br />

H 3 C<br />

CH 3<br />

O<br />

CH 3<br />

O<br />

O<br />

N<br />

H<br />

C H 3<br />

M.W.= 341.40 gm/mole


Mass spectrum of Ethyl 3, 5-dimethyl-4-[5-(3-methoxyphenyl)-4, 5-dihydro-<br />

1H-pyrazol-3-yl]-1H-pyrrole-2-carboxylate (VGM-5)<br />

43<br />

O<br />

H 3 C<br />

CH 3<br />

O<br />

N<br />

H<br />

N<br />

H<br />

N<br />

H 3 C<br />

O<br />

C H 3<br />

M.W.= 341.40 gm/mole<br />

Mass spectrum of Ethyl 3, 5-dimethyl-4-[5-(4-nitrophenyl)-4, 5-dihydro-1Hpyrazol-3-yl]-1H-pyrrole-2-carboxylate<br />

(VGM-6).<br />

O<br />

N<br />

H 3 C<br />

CH 3<br />

H N +<br />

N<br />

O -<br />

O<br />

O<br />

N<br />

H<br />

C H 3<br />

M.W.= 356.37 gm/mole


Mass spectrum of Ethyl 3, 5-dimethyl-4-[5-(2-nitrophenyl)-4, 5-dihydro-1Hpyrazol-3-yl]-1H-pyrrole-2-carboxylate<br />

(VGM-7).<br />

44<br />

O<br />

H 3 C<br />

CH 3<br />

O<br />

N<br />

H<br />

N<br />

H<br />

N<br />

O -<br />

N +<br />

O<br />

C H 3<br />

M.W.= 356.37 gm/mole<br />

Mass spectrum of Ethyl 3, 5-dimethyl-4-[5-(4-chlorophenyl)-4, 5-dihydro-1Hpyrazol-3-yl]-1H-pyrrole-2-carboxylate<br />

(VGM-8)<br />

N<br />

H<br />

N<br />

H 3 C<br />

CH 3<br />

Cl<br />

O<br />

O<br />

N<br />

H<br />

C H 3<br />

M.W.= 345.82 gm/mole


45<br />

Mass spectrum of Ethyl 3, 5-dimethyl-4-[5-(phenyl)-4, 5-dihydro-1H-pyrazol-<br />

3-yl]-1H-pyrrole-2-carboxylate (VGM-10)<br />

N<br />

H<br />

N<br />

H 3 C<br />

CH 3<br />

O<br />

O<br />

N<br />

H<br />

C H 3<br />

M.W.= 311.37 gm/mole


46<br />

REFERENCES<br />

1. Bayer A, and Emmerling H.: Ber, 1900, 33, 536.<br />

2. Runge R.: Ann Physic., 1834, 31, 67.<br />

3. Anderson T,: Ann., 1858, 105, 349.<br />

4. Baltazzi, E and Krimen, L. T.,: Chemical review, 1963, 63, 511.<br />

5. Gossauer, A.; Pyrrole als Naturproducate in die Chemie der Pyrrole; Springer: Berlin,<br />

1974, 189-208.<br />

6. Nakanishi, K. Goto, T., Ito, s., Natori, S., Nozoe, S,; In natural products chemistry Eds.;<br />

Academic: New York, 1975, 470.<br />

7. Jackson, A. H. And sammes, P.G.; Pyrroles in Comprehensive Organic Chemistry; 1979,<br />

IV; 311-312, Pergamon Press.; Oxford.<br />

8. Sundberg, R. J.; Pyrrole and their benzo derivatives : (iii) Synthesis and Applications in<br />

Comprehensive Hetrocyclic Chemistry Vol. 4; Bird, C. W., Cheeseman, G. W. H.; 1984,<br />

372, Pergamon Press; Oxford.<br />

9. Tumlinson. J. H., Silverstein, R.M., Moser, J.C., Brownlee, R.G., Ruth J. M.; Nature,<br />

1971, 234, 348.<br />

10. Sharma, G. M., Burkholder, P. R.; J. Chem. Soc., Chem. Commun., 1971, 151.<br />

11. Harri, E., Loeffler, W., Stigg, H. P. Stahelin, H., Stoll, Ch., Tamm, Ch., Wiesinger, D., Helv.<br />

Chim. Acta., 1962, 45, 839.<br />

12. Edgar, J. A. Culvenor, C. C. J., Smith, L. W.; Experientia., 1971, 27, 161.<br />

13. Meinwald, J., Ottenheym, H. C. J., Tetrahydron., 1971, 27, 3307.<br />

14. Lynn, D. G., Jaffe, K., Cornwall, M., Tramontano, W.; J. Am. Chem. Soc., 1987, 109,<br />

5858<br />

15. Imanaka, H., Kousaka, M., Tamura, G., Arima, K.; J. Antibiot. (Tokoyo) Ser. A., 1965, 18,<br />

207.<br />

16. Zimmer, Ch., Prog. Nucleic Acid Res. Mol. Biol., 1975, 15, 285.<br />

17. Knorr,L. Ber., 1884, 17, 1695.; Knorr, L. and Lange, H.; Ber., 35, 2998.<br />

18. Khetan, S. K., hiriyakkanavar, J. G. and Gerorge, M. V.; Tetrahydron, 1902, 24, 1567.<br />

19. Posvic, H., Dombro, R., Ito, H. and Telinski, T.; J. Org. Chem., 1974, 39, 2575.<br />

20. Macdonald, S. F.; Can. J. Chem., 1970, 48, 1689; A. Hantzsch, Ber., 1890, 23, 1474.<br />

21. Khetan, S. K., Hiriyakkanavar, J. G. and George, M. V.; Tetrahydron 24, 1567 (1968).<br />

22. Friedman, M.; J.Org. Chem., 1965, 30, 859.<br />

23. Aydogan F., Demir A. S., Tetrahedron, 2005, 61, 3019-3023.<br />

24. Gorin D. J., Davis N. R., Toste F. D., J. Am. Chem. Soc., 2005, 127, 11260-11261.<br />

25. Crawley M. L., Goljer I., Jenkins D. J., Mehlmann J. F., Nogle L., Dooley R., Mahaney P.<br />

E., Org. Lett., 2006, 8, 5837-5840.<br />

26. Aggarwal S., Knölker H.J., Org. Biomol. Chem., 2004, 2, 3060-3062.<br />

27. Martin R, Rivero M. R., Buchwald S. L., Angew. Chem. Int. Ed., 2006, 45, 7079-7082.<br />

28. Minetto G., Raveglia L. F., Sega A., Taddei M., Eur. J. Org. Chem., 2005, 5277-5288.


47<br />

29. Ekkati A. R., Bates D. K., Synthesis, 2003, 1959-1961.<br />

30. Binder J. T., Kirsch S. F., Org. Lett., 2006, 8, 2151-2153.<br />

31. Larionov O. V., Meijere A. de, Angew. Chem., 2005, 117, 5809-5813.<br />

32. Nair V., Vinod A. U., Rajesh C., J. Org. Chem., 2001, 66, 4427-4429.<br />

33. Tejedor D., González-Cruz D., García-Tellado F., Marrero-Tellado J. J., Rodríguez M. L.,<br />

J. Am. Chem. Soc., 2004, 126, 8390-8391.<br />

34. Suzuki D., Nobe Y. , Tanaka R., Takayama Y, Sato F., Urabe H., J. Am. Chem. Soc.,<br />

2005, 127, 7474-7479.<br />

35. Lu L., Chen G., Ma S., Org. Lett., 2006, 8, 835-838.<br />

36. Rao H. S. P., Jothilingam S. , Scheeren H. W., Tetrahedron, 2004, 60, 1625-1630.<br />

37. Abdalla, G.M., and Sowell, J. W.; J. Hetrocycl. Chem., 1990, 27, 1207.<br />

38. Dattolo, G., Cirrincione, G., Almerico, A. M. and Aiello, E.; J. Hetrocyclic Chem., 1989, 26,<br />

1747.<br />

39. Wilson Cunico, Cleber, A., Cechinel, Helio, G., Bonacorso, Marcos, A. P.<br />

Martins, Nilo Zanatta, Marcus V. N. de Souza, Isabela O., Freitas, Rodrigo P. P. Soares<br />

and Antoniana U. Krettli.; Bioorg Med Chem Lett., 2005, 15 (13), 3307-12.<br />

40. Zhong Jin, Aihong Huo, Tao Liu, Yan Hu, Jianbing Liu and Jianxin<br />

Bioorg. Med. Chem. Lett., 2006, 16, (3), 649-653.<br />

41. Jenny L., et al., Pharmacol Exp Ther., 2005, 296, (3), 1013-1022.<br />

42. Antonello, M., Silvio, M., Ilaria C., Sergio V., Rino R., Patrizia B., Roberto S., Peter L.,<br />

and Gerald, B., J. Med. Chem., 2004, 47, 1098-1109.<br />

43. Player, M. R., Sowell, J. W., Williams, G. R., and Cowley, G. T.; J. Heterocycl. Chem.,<br />

1994, 31, 209.<br />

44. Bayomi, S. M., Rahman, A., Jado, A. J., and Loutfy, E. A.; Ind. J. Chem., 1990, 29B, 47.<br />

45. Carsin, j. R., Codd, E. E., and Pitis, P. M.; US Appl., 2001, PV 343, 768.<br />

46. KaiiZerman, J. A. Gross, M. I., White, S., Ho, W., Johnson, K. W. Baird, E. E., Tanaka, R.<br />

D., and Moser, H. E.,; J. Med. Chem., 2003, 46 (18), 3914.<br />

47. Dymoc, B. W., Jones, P. S.,Merret, J. H., and Perrat, M. J.; GB, 2000, 16, 453.<br />

48. Abi, J.,Dehmlow, H., and Kitas, E. A.; EP Appl., 2000, 114, 948.<br />

49. Fabrizio, M., Romano di, F., Fabio, B., Palmina, C., Paolo, C., Daniele, D., Stefania, F.,<br />

Micaela, M., Fabio, M. S.; Farmaco, 2005, 60, 1, 15-22.<br />

50. Martino, G., Carpraris, P., Abignente, E., and Rimoli, M. G.; J. Heterocycl. Chem. 1990,<br />

27, 507.<br />

51. Wijngaarden, I. V., Kruse, C. G., Van der Heyden., Jan, A. M., and Martin, Th. M.; J. Med.<br />

Chem., 1988, 31, 1934-1940.<br />

52. Demetri, G. D.; Eur. J. Cancer., 2002, 38, S52- S59.<br />

53. Hlder, K., Hankovszky, O. K., Csak, J., Bodi, I. and Frank, L.; US, 1984, 4703056.<br />

54. Prous, J., and Castaner, J.; Drugs Fut, 1986, 011 (06), 0449.<br />

55. Franco, F., Greenhouse, R., and Muchowaski, J. M.; J. Org. Chem., 1985, 12, 3410-3416<br />

56. Synthline data base, Prous Science., 2000.


48<br />

57. Tuvaro, E.; Drugs Fut, 1993, 018(12), 1117.<br />

58. Boer, D. T., Derendsin, c. L., Vos, R. M., and Tonnaer, J. A.; Drugs Fut, 1993, 018 (12),<br />

1117.<br />

59. Prous, J., and Castaner, J.; Drugs Fut, 1991, 016 (02), 0105.


Chapter-2<br />

Introduction, Synthesis and Characterization of<br />

some symmetrical and unsymmetrical<br />

dihydropyridine derivatives containing naphthyl<br />

ring<br />

1. Biological profile 49<br />

2. Synthetic aspects 55<br />

3. QSAR study 59<br />

4. Reaction scheme 61<br />

5. Physical data 66<br />

6. Spectral analysis 68<br />

7. Mass fragmentation 71<br />

8. Spectral data 71<br />

9. IR spectra 78<br />

10. 1H NMR spectra 80<br />

11. Mass spectra 83<br />

12. References 84


49<br />

2.1 INTRODUCTION<br />

1,4-Dihydropyridines is the significant subclass of pyridines, the best known<br />

heterocyclic compounds which are associated with good number of<br />

pharmacological activities. 1,4 dihydropyridines whether symmetrical or<br />

unsymmetrical, are expected for their cardiovascular and other pharmacological<br />

properties.<br />

Many drug molecule bearing 1,4-dihydropyridines nucleus are specifically related<br />

with calcium channel antagonism 1 and antihypertensive 2 . Earlier it was believed<br />

that, the dihydropyridines is useful only as calcium channel antagonism, but later<br />

on QSAR and X-ray crystallography study of new synthetic dihydropyridines<br />

molecules indicates that their therapeutics activities may be broaden to<br />

ionotrophy to secretary stimulation also. Currently these drugs are target for<br />

angina, hypertension, hypertropic cardiomyopathy, cerebral vasospasm and<br />

other smooth muscle disorders.<br />

Beside these, antitumor 3 , vasodilator 4 , coronary vasodilator and cardiopathic 5 ,<br />

antimayocardiac ischemic 6 , antiulcer 7 , antiallergic activity are also reported.<br />

2.1.1 Biological profile<br />

Dihydropyridine (DHP) chemistry began in 1882 when Hantzsch 11-12 published<br />

the synthesis. The simplest form of the synthesis involves heating an aldehyde<br />

1,3-diketone ester and ammonia. The reaction almost certainly involves aldol<br />

condensation to form the benzylidine derivative as the first step. Conjugated<br />

addition of a second mole of 1,3-diketone ester would then afford the 1,5-<br />

diketone. Reaction of the carbonyl group with ammonia will lead to the formation<br />

of the dihydropyridine ring.<br />

The DHP nucleus is common to numerous bioactive compounds which include<br />

various vasodilator, antihypertensive, bronchodilator, antiatherosclerotic,<br />

hepatoprotective, antitumor, antimutagenic, geroprotective, and antidiabetic<br />

agents 13-18 .<br />

Dihydropyridines have found commercial utility as calcium channel blockers, as<br />

exemplified by therapeutic agents such as Nifedipine 16 , Nitrendipine 20 and<br />

Nimodipine 21 . Second-generation calcium antagonists include DHP derivatives


50<br />

with improved bioavailability, tissue selectivity, and/or stability, such as the<br />

antihypertensive/antianginal drugs like Elgodipine 22 , Furnidipine 23-24 ,<br />

Darodipine 25 , Pranidipine 26 , Lemildipine 27 , Dexniguldipine 28 , Lacidipine 29 , and<br />

Benidipine 30 . Number of DHP calcium agonists has been introduced as potential<br />

drug candidates for treatment of congestive heart failure 31, 32 .<br />

The key characteristic of calcium channel blockers is their inhibition of entry of<br />

calcium ions via a subset of channels, thereby leading to impairment of<br />

contraction. There are three main groups of calcium channel blockers, i.e.<br />

dihydropyridines, phenylalkylamines and benzothiazepines, typical examples of<br />

which are nifidepine, verapamil and diltiazem, respectively 33-36 . Each has a<br />

specific receptor on the calcium channel and a different profile of<br />

pharmacological activity. Dihydropyridines have a less negative inotropic effect<br />

than phenylalkylamines and benzothiazepines but can sometimes cause reflex<br />

tachycardia. Dihydropyridines are able to reduce peripheral resistance, generally<br />

without clinically significant cardio depression. Among DHPs with other types of<br />

bioactivity, Cerebrocrast 37 has been recently introduced as a neuroprotectant and<br />

cognition enhancer lacking neuronal-specific calcium antagonist properties. In<br />

addition, a number of DHPs with platelet antiaggregatory activity have also been<br />

discovered 38 . These recent examples highlight the level of ongoing interest<br />

toward new DHP derivatives and have prompted us to explore this<br />

pharmacophoric scaffold to develop a fertile source of bioactive molecules.<br />

1,4- DHPs possess different pharmacological activities such as antitumor 39 ,<br />

vasodilator 40 , coronary vasodilator and cardiopathic 41 , antimayocardiac ischemic,<br />

antiulcer 42 , antiallergic 43 , antiinflammatory 44 and antiarrhythmic 45 , PAF<br />

antagonist 46 , Adenosine A 3 receptor antagonist 47 and MDR reversal activity 48-49 .<br />

In particular, DHP-CA (calcium channel antagonist DHP) are extensively used for<br />

the treatment of hypertension, 50 subarachnoid hemorrhage, 51-52 myocardial<br />

infarction 53-56 and stable 57,58 and unstable angina 59-60 even though recently their<br />

therapeutic efficacy in myocardial infarction and angina has been questioned 61 .<br />

This class of compounds is also under clinical evaluation for the treatment of<br />

heart failure 62 , ischemic brain damage 63 nephropathies, and atherosclerosis 64 .<br />

1,4-Dihydropyridines are now established as heterocycles having numerous<br />

applications and having widened scope from its pronounced drug activity like


51<br />

calcium channel antagonism and antihypertensive action. Many other<br />

cardiovascular activities are associated with such compounds and they can be<br />

presented in the structure as 2,6-dimethyl-3,5-diacetyl or dicarboxylate or<br />

dicarbamoyl or many other homoaryl or heteroaryl carbon chain having C 2 to C 8<br />

1,4-dihydropyridines substituted at 4-position. Some representative Ca 2+<br />

antagonists of Dihydropyridine class are as shown below.<br />

NO 2<br />

Cl<br />

H 3 COOC<br />

COOCH 3<br />

H 3 COOC<br />

COOC 2 H 5<br />

H 3 C N CH 3<br />

H 3 C N<br />

H<br />

H<br />

Nifedipine Amlodipine<br />

O<br />

NH 2<br />

O<br />

N + O -<br />

O<br />

O<br />

CH 3<br />

C H 3<br />

O<br />

C H 3<br />

N<br />

H<br />

CH 3<br />

O<br />

N<br />

Nicarcipine<br />

A startling revelation is found recently in which the imidazolyl moiety is linked to<br />

the phenyl ring by means of a methylene bridge, the activity tends to decrease.<br />

Finally, the replacement of DHP itself by a pyridine ring gives an inactive<br />

compound 65 .<br />

Cozzi and coworkers 66 have synthesized a series of 4-phenyl-1,4-<br />

dihydropyridines bearing imidazol-1-yl or pyridine-3-yl moieties on the phenyl<br />

ring, with the aim of<br />

N<br />

N<br />

N<br />

N<br />

O<br />

H<br />

O<br />

O<br />

O<br />

C H 3<br />

CH 3<br />

H 3 C N CH 3<br />

H<br />

H 3 C<br />

CH 3<br />

H 3 C N CH 3


52<br />

combining Ca 2+ antagonism and thermboxane A 2 (TxA 2 ) synthases inhibition in<br />

the same molecules. Some of the compounds showed significant combined<br />

activity in vitro, while other showed single activity. As far as Ca 2+ antagonism is<br />

concerned, two points deserve comment. First, the SAR, in most cases, does not<br />

differ substantially from that reported for classic DHP-CA, even though the<br />

potency is lower than that found with the most potent drugs of this class as, for<br />

example, reference compound nifidepine. In fact, Ca 2+ antagonism is dramatically<br />

reduced by (a) replacement of DHP by a pyridine ring, (b) substitution of DHP<br />

nitrogen N-1 by a methyl group, (c) Para substitution on the phenyl ring, and (d)<br />

replacement of one ester function by a ketone or carboxy group. All these<br />

variations are also detrimental in classic DHP-CA. 67<br />

Hernandez-Gallegos and coworkers 68 have synthesized new 1,4-dihydropyridines<br />

and evaluated their relaxant ability (rat aorta), antihypertensive activity in<br />

spontaneously hypertensive rats and their microsomal oxidation rate (MOR) was<br />

determined.<br />

O<br />

O<br />

R<br />

R 2<br />

O<br />

O R 1<br />

H 3 C N CH 3<br />

H<br />

R = 3-NO2, 4-F, 3,5-di-F, 3-Br-4-F.<br />

R 1<br />

= R 2<br />

= Me, Et, -CH 2<br />

-CF 3<br />

, -CH 2<br />

CH 2<br />

-OPh, -(CH 2<br />

) 2<br />

-N(CH 3<br />

)-CH 3<br />

-Ph<br />

Christiaans and Timmerman 69 studied new molecules like CV-159 for possible<br />

variation at 3-position.<br />

O<br />

N + O -<br />

H<br />

O<br />

N<br />

H 3<br />

C<br />

H 3 C<br />

N<br />

H<br />

CH 3<br />

N<br />

H<br />

H 3 C<br />

N<br />

CV- 159


53<br />

Carlos et al 70 reported 1,4-DHPs derivatives with a 1,2-benzothiazol-3-one-1-<br />

sulphoxide group, linked through an alkylene bridge to the C 3 carboxylate of the<br />

DHP ring, with both vasoconstricting and vasorelaxant properties were obtained.<br />

In blocking Ca 2+ evoked contractions of K + depolarized rabbit aortic strips. Many<br />

compounds were 10 times more potent than nifidepine. Their vascular versus<br />

cardiac selectivity was very pronounced.<br />

CH 3<br />

O<br />

OH OH<br />

O<br />

O<br />

H 3 C N<br />

H<br />

CH 3<br />

O<br />

O S<br />

N<br />

O<br />

Sonja 76 and group have synthesized a new series of calcium channel agonists<br />

structurally related to Bay K8644, containing NO donor furoxans and the related<br />

furazans unable to release NO. The racemic mixtures were studied for their<br />

action on L-type Ca 2+ channels expressed in cultured rat insulinoma RINm5F<br />

cells. All the products proved to be potent calcium channel agonists<br />

R<br />

C H 3<br />

O<br />

O<br />

H 3 C<br />

N<br />

H<br />

O<br />

NO 2<br />

CH 3<br />

N<br />

N<br />

O<br />

H 3 C<br />

O<br />

O<br />

H 3 C<br />

N<br />

H<br />

CF 3<br />

NO 2<br />

CH 3<br />

Recent reports show that efonidipine, a dihydropyridine Ca 2+ antagonist, has<br />

blocking action on T-type Ca channels, which may produce favorable actions on<br />

cardiovascular systems. However, the effects of other dihydropyridine Ca<br />

antagonists on T-type Ca channels have not been investigated yet. Therefore,<br />

Furukawa and group 77 have examined the effects of dihydropyridine compounds<br />

clinically used for treatment of hypertension on a T-type Ca channel subtype,


54<br />

alpha1G, expressed in Xenopus oocytes. Twelve DHPs (amlodipine, barnidipine,<br />

benidipine, cilnidipine, efonidipine, felodipine, manidipine, nicardipine, nifedipine,<br />

nilvadipine, nimodipine, nitrendipine) and mibefradil were tested. Cilnidipine,<br />

felodipine, nifidipine, nilvadipine, minodipine, and nitrendipine had little effect on<br />

the T-type channel. The blocks by drugs at 10 uM were less than 10% at a<br />

holding potential of -100 mV. The remaining 6 drugs had blocking action on the<br />

T-type channel comparable to that on the L-type channel. These results show<br />

that many dihydropyridine Ca 2+ antagonists have blocking action on the alpha1G<br />

channel subtype.<br />

Labedipinedilol-A (II), a novel dihydropyridine-type calcium antagonist, has been<br />

shown to induce hypotension and vasorelaxation. Liou 78 and co-workers have<br />

studied to investigate the effect of labedipinedilol-A on vascular function of rat<br />

aortic rings and cultured human umbilical vein endothelial cells (HUVECs).<br />

2-Heterosubstituted-4-aryl-l,4-dihydro-6-methyl-5-pyrimidinecarboxylicacid esters<br />

(I), which lack the potential C 3 symmetry of dihydropyridine calcium channel<br />

blockers, were evaluated for biological activity. Biological assays using<br />

potassium-depolarized rabbit aorta and radioligand binding techniques showed<br />

that some of these compounds are potent mimics of dihydropyridine calcium<br />

channel blockers. The combination of a branched ester (e.g. isopropyl, sec-butyl)<br />

and an alkylthio group (e.g. SMe) was found to be optimal for biological activity 79 .<br />

R<br />

NO 2<br />

N<br />

COOR 3<br />

EtOOC<br />

COOEt<br />

R 2 X N<br />

H<br />

CH 3<br />

(I)<br />

RX N CH 3<br />

H<br />

(II)<br />

2.1.2 Recent Literature survey<br />

Synthesis of New Dihydropyridine Glycoconjugates 85 is recently established by in<br />

situ generated HCl as an efficient catalyst for solvent free Hantzsch rection at<br />

room temprarute.


55<br />

R<br />

O<br />

H<br />

O<br />

+<br />

O<br />

+<br />

O<br />

O<br />

O<br />

CH 3<br />

5 mol - %Yb(OTf) 3<br />

NH 4<br />

OAc<br />

EtOH, RT<br />

CH 3<br />

R<br />

N<br />

H<br />

O<br />

O<br />

CH 3<br />

Yb(OTf) 3 catalyzed an efficient, operationally simple and environmentally benign<br />

Hantzsch reaction via a four-component coupling reaction of aldehydes,<br />

dimedone, ethyl acetoacetate and ammonium acetate at ambient temperature<br />

also gave polyhydroquinoline derivatives in excellent yield 86 .<br />

R<br />

O<br />

H<br />

+<br />

R'<br />

O<br />

O<br />

OR''<br />

NH 4<br />

OAc<br />

RT, TCT<br />

R''O<br />

O<br />

R'<br />

R<br />

N<br />

H<br />

O<br />

R'<br />

OR''<br />

TCT<br />

Cl<br />

N<br />

Cl<br />

N<br />

N<br />

Cl<br />

2.2 SYNTHETIC ASPECTS<br />

In last few years, 1,4-dihydropyridine skeleton is extensively modified in our<br />

laboratory and very interesting results are obtained with these modification to<br />

various positions of 1,4-dihydropyridine skeleton and can be discussed as below.<br />

3,5-dibenzoyl-1,4-dihydropyridines (BzDHPs) substituted at 4-phenyl ring were<br />

synthesized and compared for their cytotoxic activity and multidrug resistance<br />

reverting activity in in vitro assay systems. Among fifteen BzDHPs, 2-<br />

trifluoromethyl, 2-chloro and 3-chloro derivatives showed the highest cytotoxic<br />

activity 80 .<br />

R<br />

O<br />

O<br />

H 3 C N CH 3<br />

H<br />

R = 2-CF 3 , 3-CF 3 , 4-CF 3 , 2-Cl, 3-Cl, 4-Cl, 2-NO 2 , 3-NO 2 , 3-OPh etc.


56<br />

3,5-Dibenzoyl-4-(3-phenoxyphenyl)-1,4-dihydropyridine-2,6-dimethylpyridine, DP-<br />

7 a dibenzoyl dihydropyridines derivative as mdr inhibitor, was investigated for<br />

cardiac effects in Langendorff-perfused rat heart and compared with nifidepine. It<br />

was found that this molecule represent a lead for development of potent DHP<br />

mdr chemosensitisers devoid of cardiac effect 81 .<br />

Dibenzoyl-DHPs, tested for their mdr reversing activity, were found to show one<br />

or two orders higher tumor-specific cytotoxic activity against human tumor cell<br />

lines than human normal cells 82 . Dihydropyridine derivatives with phenyl<br />

carbamoyl side chain on 3 and 5 positions were synthesized and evaluated for<br />

their anti-tubercular activity. The results of anti-tubercular activity for dicarbamoyl<br />

derivatives were studied for 2D QSAR. The study indicates the presence of<br />

bulkier group on 4-phenyl ring contributes for the activity. The electronic influence<br />

of substituents at carbamoyl phenyl ring is important for activity 8 .<br />

To find out structural requirement of dicarbamoyl DHPs for anti tubercular activity,<br />

CoMFA and CoMSIA methods were applied on a set of 33 dicarbamoyl<br />

derivatives. The QSAR models reveal the importance of spatial properties and<br />

conformational flexibility of side chains for anti tubercular activity 9 .<br />

R 1<br />

R<br />

R 4<br />

R 3 R 5<br />

R 2<br />

O<br />

O<br />

H<br />

NH *<br />

*<br />

* NH<br />

* *<br />

*<br />

H 3 C N CH 3<br />

H<br />

R<br />

R 1<br />

Dihydropyridines with N-phenyl substitution were synthesized and tested for<br />

tumor specific cytotoxicity and mdr reversal activity to find out the effects of N-<br />

phenyl substitution on activity. Asymmetric benzoyl DHPs with different<br />

substitution on benzoyl aromatic ring were synthesized and evaluated for tumor<br />

specific cytotoxicity. In continuation, dihydropyridines with phenyl carbamoyl side<br />

chain on one arm and –CN, -COOEt, -COOMe side chain on other arm were also<br />

synthesized and evaluated as MDR reversal dihydropyridines 83 . In continuation of<br />

skeleton modification,


57<br />

R 1<br />

R<br />

O<br />

R 2<br />

NH<br />

H 3 C N<br />

H<br />

CH 3<br />

R 1<br />

R<br />

O<br />

H 3 C N<br />

H<br />

O<br />

CH 3<br />

R 2<br />

O<br />

O<br />

H 5 C 2 O<br />

OC 2 H 5<br />

H 3 C N CH 3<br />

R 1<br />

dihydropyridines with heterocyclic systems on side chain were synthesized and<br />

evaluated for anti tubercular activity. These derivatives showed moderate activity<br />

and it was found that aromatic heterocyclic systems on side chain do not<br />

enhance anti tubercular activity 84 .<br />

NO 2<br />

N<br />

NO 2<br />

N<br />

R<br />

R<br />

CN<br />

H 3 COOC<br />

O<br />

H 3 COOC<br />

NH 2<br />

H 3 C N CH 3<br />

H<br />

H 3 C N CH 3<br />

H<br />

Schramm and coworker 71 have proved that phenyl carbamoyl moiety in<br />

dihydropyridines affords for cardiovascular selective activity.<br />

O<br />

Cl<br />

O<br />

NH<br />

O<br />

N<br />

H 3 C N CH 3<br />

H<br />

Similarly Kelvin Cooper (Pfitzer, USA) et al 72 found that DHP can be highly<br />

selective as platelet activating factor (PAF) antagonist. They found potent<br />

compounds and prove that platelet aggregating activity (PAF) exhibits a wide<br />

spectrum of biological activities elicited either directly or via the release of other<br />

powerful mediator such as Thromboxane A 2 or the Leukotrienes. In vitro PAF<br />

stimulates the movement and aggregation and the release there from of tissue<br />

damaging enzymes and oxygen radicals. Accordingly compounds like UK-74505,<br />

antagonize the action of PAF and consequently also prevent mediator release by


58<br />

PAF, will have clinical utilities in the treatment of the variety of the allergic,<br />

inflammatory and hypersecretory conditions such as asthama, arthritis, rhinitis,<br />

bronchitis and utricaria 73 in future.<br />

R 1<br />

R 2<br />

N<br />

O<br />

H 3 C<br />

N<br />

H<br />

O<br />

Y<br />

X<br />

Z<br />

O<br />

COOC 2 H<br />

NH<br />

5<br />

H 3 C N<br />

H<br />

N<br />

CH 3<br />

N<br />

UK-74505<br />

N<br />

Reddy and coworkers 74 synthesized 4-aryl hetroaryl-2,6-dimethyl-3,5-bis-N-(2-<br />

methyl phenyl)carbamoyl-1,4-dihydropyridines through one-pot synthesis using<br />

appropriate aromatic aldehydes and liquid ammonia. Pharmacological screening<br />

of the new 1,4-dihyropyridines were also carried out for CNS depressant<br />

(anticonvulsant and analgesic) and cardiovascular (inotropic and blood pressure)<br />

activities by standard methods. They recently tested bronchodilatory acitivity on<br />

2-chlorophenyl substitutents of such compounds 75 .<br />

R<br />

O<br />

O<br />

O<br />

O<br />

NH<br />

NH<br />

CH 3<br />

H 3 C N CH 3<br />

CH 3<br />

H<br />

Cl<br />

NH<br />

NH<br />

H 3 C N CH 3<br />

H<br />

Cl<br />

Neamati and coworkers 75 reported that a 1,4-dihydorpyridine NCS-372643 is<br />

showing anti-HIV activity, which has opened up the synthetic as well as<br />

pharmacological importance in antiviral area also.<br />

O<br />

OH<br />

N + O -<br />

OH<br />

O<br />

O<br />

OH<br />

NH<br />

NH<br />

H 3 C N<br />

H<br />

CH 3<br />

NSC-372643<br />

OH


59<br />

QSAR STUDY<br />

Recently Shah et al 8 synthesized and studied 2D QSAR of substituted phenyl-<br />

2,6-dimethyl-3,5-bis-N-substituted phenyl carbamoyl-1,4-dihyropyridines as<br />

potent antitubercular agents. It was explained that these dihydropyridines may<br />

act as precursors and after penetration into cell wall may lead to the 3,5-<br />

carboxylate anions by enzymatic hydrolysis. All these derivatives were screened<br />

for their antitubercular activity against M. tuberculosis H 37 Rv, among them some<br />

derivatives showed >90% inhibition comparable to Riampicin.<br />

R<br />

R'<br />

O<br />

O<br />

R'<br />

NH<br />

NH<br />

H 3 C N<br />

H<br />

CH 3<br />

R= C 6<br />

H 5<br />

, Cl, NO 2<br />

.....<br />

R'= NO 2<br />

, OCH 3<br />

,Cl.....<br />

The result of QSAR studies of all these derivatives indicates that the presence of<br />

bulkier substituents in the phenyl ring at C 4 position of the dihydropyridines<br />

positively contributes for the antitubercular activity.<br />

The electronic influence of the substituents at the carbamoyl phenyl ring present<br />

at 3 and 5 positions of dihydropyridines are important for antitubercular activity, in<br />

the order of σ m >σ p >σ o . The presence of the electron withdrawing group at meta<br />

and Para position increase activity, while at ortho position decrease the activity.<br />

These electronic effects may influence the enzymatic hydrolysis of the amide<br />

bond present at 3 and 5 position if substituted dihydropyridines to corresponding<br />

acids inside the M. Tuberculosis.<br />

To explore further structural requirements of 1,4 dihydropyridines for<br />

antitubercular activity, 3D QSAR study has been carried out by Shah et al 9 . The<br />

two methods for 3D QSAR study were performed:<br />

1.<br />

2.<br />

Comparative molecular similarity indices analysis (CoMSIA) 10<br />

Comparative molecular field analysis (CoMFA) 10


60<br />

According to the 3D QSAR study, a low electron density in the area of 3 and 4<br />

position of 3,5- disubstituted carbamoyl phenyl moiety, will have a positive effect<br />

on the biological activity. The compound containing electron withdrawing groups<br />

at these positions show more activity. The C 4 position of dihydropyridines<br />

requires aryl group/phenyl group having electron density in the area of C 4<br />

position.<br />

In continuation of work on dihydropyridine skeleton modification, this chapter<br />

reports synthesis of symmetrical 1,4-DHPs with naphthyl ring at C 3 and C 5<br />

positions of dihydropyridines and asymmetrical derivatives with naphthyl<br />

carbamoyl side chain.


61<br />

2.3 REACTION SCHEMES<br />

2.3.1 Scheme 1<br />

NH 2<br />

O<br />

+<br />

CH 3<br />

Toluene,<br />

NH CH 3<br />

O<br />

KOH,reflux<br />

O<br />

O<br />

CH 3<br />

2.3.2 Scheme 2<br />

R<br />

O<br />

NH<br />

H 3 C<br />

O<br />

+ O H<br />

+<br />

O<br />

O CH 3<br />

NH<br />

Liq.NH 3<br />

CH 3<br />

OH<br />

O<br />

R<br />

O<br />

NH<br />

NH<br />

H 3 C N CH 3<br />

H


62<br />

2.3.3 Scheme 3<br />

O<br />

O<br />

R<br />

HN<br />

CH 3<br />

O<br />

H<br />

+<br />

IPA+Gl.HAc<br />

Piperidine<br />

O<br />

NH<br />

R<br />

O<br />

CH 3<br />

2.3.4 Scheme 4<br />

R<br />

H 3 C<br />

O<br />

O<br />

O<br />

CH 3<br />

+<br />

NH<br />

C H 3<br />

O<br />

O<br />

CH 3<br />

CH 3<br />

OH<br />

Liq. NH 3<br />

R<br />

C H 3<br />

O<br />

O<br />

H 3 C<br />

N<br />

H<br />

O<br />

CH 3<br />

NH


63<br />

2.4 Experimental Observation<br />

In the preparation of acetoacetanilides, amount of caustic slurry is critical and<br />

reaction must be refluxed for 15 hrs unless the yield loss is observed. In the last<br />

stage of preparation of acetoacetanilide, toluene is to be distilled out, if the trace<br />

of toluene is not removed, then isolation of product becomes tricky and takes<br />

much time. During distillation, if excess heating done after complete distillation of<br />

toluene then product become charred and whole reaction mass become sticky<br />

and product can not be obtained. Temperature during distillation should be<br />

maintained and between 110-115<br />

o C. During isolation of acetoacetanilide<br />

sufficient amount of ether wash is to be given to get non sticky and impurity free<br />

product.<br />

In the second step preparation of arylidine derivatives, the temperature is kept<br />

between 50-60 o C. The increase in temperature results in charring of products.<br />

Glacial acetic acid and piperidene is added only after dissolving the reactant. In<br />

final stage, mixture of acetoacetanilide and aldehyde heated at 80-90 o C. Only<br />

after complete dissolution, 1-2 ml of liq. ammonia is to be added. The resulting<br />

mass converted into solid after 7-9 hrs reflux time and cooling at room<br />

temperature and treated with chilled methanol to yield light yellow product.


64<br />

2.5 EXPERIMENTAL<br />

2.5.1 N-(naphthalene-5-yl)-3-oxobutanaide (Scheme-1)<br />

A mixture of α-nephthayl amine and ethyl acetoacetate was refluxed at 110 0 C in<br />

40 ml of toluene and catalytic amount of KOH/NaOH. The completion of the<br />

reaction was monitored by TLC. After completion of reaction, toluene was distilled<br />

out. The residue was cooled at room temperature and was treated with ether.<br />

The solid was filtered and dried. (Yield: 65 %)<br />

2.5.2 1,4-dihydro-4-(substituted phenyl)-2,6-dimethyl-N,N-di(naphthalene-1-<br />

yl)pyridine-3,5-dicarboxamide (Scheme-2)<br />

[General method]<br />

A mixture of N-1-naphthyl-3-oxobutanamide (0.02 m) and substituted<br />

benzaldehyde (0.01 m) in 10 ml methanol was refluxed on steam bath for 5-10<br />

hrs. The reaction mixture was cooled and transferred to a beaker. On cooling,<br />

crystalline product separated out which was recrysatllized from hot methanol.<br />

Yield 45-62 %.<br />

Physical data of newly synthesized compounds are given in Table 2.6.1.<br />

2.5.3 Synthesis of substituted arylidene derivatives (Scheme-3)<br />

[General method]<br />

A mixture of substituted acetoacetanilide (0.01 m), substituted benzaldehyde<br />

(0.01 m) in 4-5 ml isopropyl alchohol (IPA) was mechanically stirred in presence<br />

of catalytic amount of glacial acetic acid and piperidene. The reaction time ranges<br />

from 20 min to 12 hrs for different aryl amines. White solid product isolated was<br />

filtered and washed with IPA to remove unreacted aldehyde. The compound was<br />

recrystallized from methanol. The yield of the compounds range from 50-70 %.<br />

2.5.4 Synthesis of substituted unsymmetrical carbamoyl DHP (Scheme-4)<br />

[General method]<br />

A mixture of substituted arylidene derivative (0.01 mole) and acetyl acetone (0.01<br />

mole) was added into 10 ml methanol in a 100 ml conical flask and then 1-2 ml of<br />

liq. ammonia was added. The reaction mixture was refluxed with stirring for 3-10


65<br />

hrs. Pale yellow product comes out, which was isolated and filtered when hot. It<br />

was further washed with methanol to remove the unreacted mass and other<br />

impurities. Recrystallization was carried out in methanol. The yield of title<br />

compounds range from 40-60 %.<br />

Physical data of newly synthesized compounds are given in Table 2.6.2.


66<br />

2.6 PHYSICAL DATA TABLE<br />

2.6.1 Physical data of 1,4- dihydro-4-(substituted phenyl)-2,6-dimethyl-N 3 ,<br />

N 5 - di(naphthalen-1-yl) pyridine-3,5-dicarboxamides (AKS 1-12)<br />

R<br />

O<br />

O<br />

NH<br />

NH<br />

H 3 C N CH 3<br />

H<br />

Code No.<br />

R MW MP in o C<br />

Yield<br />

in %<br />

Rf<br />

value<br />

AKS-1 4-OCH 3 553.64 276-278 62 0.42<br />

AKS-2 3-NO 2 566.62 189-191 69 0.46<br />

AKS-3 2-OCH 3 552.64 256-258 54 0.36<br />

AKS-4 3,4-OCH 3 583.67 156-148 52 0.31<br />

AKS-5 4-NO 2 566.62 178-180 61 0.41<br />

AKS-6 2-Cl 558.06 146-148 52 0.51<br />

AKS-7 2,3-benzo 575.68 177-179 62 *0.42<br />

AKS-8 4-OH 539.62 156-158 54 0.38<br />

AKS-9 3,4,5-tri-OCH 3 612.70 174-176 63 *0.51<br />

AKS-10 3-Cl 558.06 192-194 64 0.43<br />

AKS-11 H 523.62 187-189 60 0.37<br />

AKS-12 2-NO 2 566.62 214-216 59 *0.42<br />

TLC solvent system: Ethyl acetate : Hexane 3.5 ml : 1.5 ml<br />

*Chloroform : Methanol 9.5 ml : 0.5 ml<br />

Visualization: UV light (long)


67<br />

2.6.2 Physical data of Methyl-5-(naphthalen-1-yl-carbamoyl)-1,4-dihydro-4-<br />

(substituted phenyl)-2,6-dimethyl-4-phenylpyridine-3-carboxylate<br />

(AKS 13-20)<br />

R<br />

O<br />

O<br />

C H 3<br />

O<br />

NH<br />

H 3 C N CH 3<br />

H<br />

Code No. R MW MP in o C<br />

Yield Rf<br />

in % value<br />

AKS-13 H 412.48 256-258 61 0.49<br />

AKS-14 2-OCH 3 444.52 196-198 47 0.53<br />

AKS-15 4-Cl 448.94 246-248 54 0.35<br />

AKS-16 4-F 432.48 286-288 58 0.41<br />

AKS-17 4-OCH 3 444.52 242-244 61 0.46<br />

AKS-18 4-NO 2 459.49 174-176 62 0.51<br />

AKS-19 3-NO 2 459.49 212-214 59 0.43<br />

AKS-20 2-Cl 448.94 165-167 46 0.41<br />

TLC solvent system: Ethyl acetate : Hexane (2.5 ml) : (3.0 ml)<br />

Visualization: UV light (long)


68<br />

2.7 SPECTRAL DISCUSSION<br />

2.7.1 IR SPECTRAL ANALYSIS<br />

The infrared spectrum is significant range lies between 4000 and 610 cm -1 .<br />

Absorption bands in the spectrum effect from energy changes arise as a<br />

consequence of molecular vibrations of the bond stretching and bending nature.<br />

The aromaticity of the compounds is determined from the significant absorption<br />

around 1600-1400 cm -1 and 850-660 C=C, C=O show considerable absorption<br />

between 2500-1600 cm -1 . Similarly, assorted function groups demonstrate<br />

specific absorption in the finger print region which become the key point in their<br />

recognition.<br />

Spectral data of the only key transitional and final compounds are included. Using<br />

the instrument, SHIMADZU FT IR-8400, sample technique, KBr disc, frequency<br />

range, 400-4000 cm -1 .<br />

Looking to the spectral learn of the newly synthesized DHPs molecules, the<br />

carbonyl (>C=O) of the amidic functionality stretching was observed at 1650-<br />

1689 cm -1 . The amide (>C-N stretching) is pragmatic at 1300-1400 cm -1 .<br />

The stretching of the secondary amide (>NH) was observed between 3100-3400<br />

cm -1 . In all the compounds two –NH- str vibration observed for two secondary<br />

amine groups. One of them illustrate absorption at inferior frequency due to<br />

carbonyl group attached to it. The stretching C-N appears at 1210-1420 cm -1<br />

which further adds up the evidence of the presence of secondary amine group.<br />

As far as the aromatic skeleton concerned, C-C multiple bonds stretching, C-H in<br />

plan bending and out of plan bending were observed at 1400-1600 cm -1 and 810-<br />

730 cm -1 correspondingly. IR spectra of newly synthesized compounds are given<br />

on Pages 78-79.<br />

2.7.2 NMR SPECTRAL ANALYSIS<br />

Nuclear magnetic resonance (NMR) spectroscopy is dominant instrument for the<br />

organic chemist since instruments are now easily available ever since last<br />

decade. The technique is only relevant to those nuclei which possess a spin<br />

quantum number (I) greater then zero. The most significant of such nuclei as far


69<br />

as the organic chemist is concerned are 1 H and 13 C both of which have spin<br />

quantum number of ½. The basis of the NMR experiment is to focus the nuclei to<br />

radiation which will result in transition from the lower energy state to higher one.<br />

The nuclei which are in the same environment have the same energy dissimilarity<br />

between spin orientations. So these energy differences are detected and<br />

interpreted to know the variety of location of the nuclei in the molecule.<br />

Instrument use for the NMR spectroscopy of the newly synthesized DHP was<br />

BRUKER AC 300 MHz FT-NMR, where TMS was used as the internal reference<br />

and CDCl 3 or DMSO d 6 were used as solvent. In case of AKS-2, two methyl<br />

groups were present at C2 and C5 position of pyridine ring, both methyl group<br />

have same environment therefore, these two methyl group revealed singlet at<br />

2.35 δ ppm. While chiral carbon of the pyridine nucleus at C4 show at 5.72 δ ppm<br />

with a singlet, thereby confirmed dihydropiridine nucleus. In the molecule, two<br />

protons of the amide linkage also show singlet at 9.24 δ ppm. Even as –NH<br />

protons of the pyridine nucleus also give singlet at 8.09 δ ppm, its give sound<br />

evidence of pyridine nucleus. While one protons of the phenyl ring provide triplet<br />

at 8.52 δ ppm with J value 2.06 Hz as a result of Meta coupling with one proton<br />

and it confirmed the meta substitution in phenyl ring. Even as this protons also<br />

give doublet at 7.94 δ ppm with J=7.76 Hz cause of the ortho coupling with<br />

neighboring protons. Other protons also gave triplet- triplet splitting caused by<br />

ortho-meta coupling at 8.14 δ ppm with J=2.08, 7.44 Hz (please refer 1 H NMR<br />

spectra of AKS-2).<br />

The NMR gives the promising evidence for the elucidation of the structure of the<br />

DHP molecules. 1H NMR spectra of newly synthesized compounds are given on<br />

Pages 80-82.<br />

2.7.3 MASS SPECTRAL ANALYSIS<br />

The MASS spectrometry is used for accurate determination of the molecular<br />

weight. It is also provide information concerning the structure of compound by an<br />

examination pattern. Once the organic molecule bombarded with the electrons<br />

under high vacuum, each molecule looses electron by various fission processes<br />

giving rise to ions and neutral fragments. The positive ions are expelled from the


70<br />

ionization chamber and resolved by the means of magnetic field. When these<br />

ions arrive at the detector, they are recorded. The intense of the peak in the<br />

spectrum indicates the abundance of ions. The most intense peak is called base<br />

peak. When a single electron is removed from the molecule it gives rise to<br />

molecular ion peak and has uppermost molecular weight.<br />

For the entire newly synthesized compounds, molecular ion peak are in total<br />

agreement with their molecular weight. In case of AKS-2 and AKS-5 base peak<br />

were observed at 255 m/e value, caused by fragmentation at both carbonyl of<br />

dihydropiridine molecule, which was totally relevant to left behind pyridine<br />

nucleus. For AKS-3 molecular ion peak is observed at 552 m/e, which is also<br />

total agreement with its molecular weight. Base peak is observed at 432 due to<br />

subsequently loss of methyl group at C 6 position and substituted phenyl ring from<br />

C4 position from dihydropiridine ring.<br />

Mass spectra of newly synthesized compounds are given on Page 83.<br />

2.7.4 Elemental Analysis<br />

Elemental analysis of the all the synthesized compounds was carried out on<br />

Elemental Vario EL III Carlo Erba 1108 model and the results are in agreements<br />

(within the range of theoretical value) with the structures assigned.


71<br />

Mass Fragmentation of 1,4- dihydro-4-(4-nitrophenyl)-2,6-dimethyl-N 3 , N 5 -<br />

di(napthalen-1-yl)pyridine-3,5-dicarboxamide (AKS-2)<br />

O<br />

N + O -<br />

NH 2<br />

O<br />

O<br />

O<br />

O<br />

NH<br />

NH<br />

H 3 C N CH 3<br />

H<br />

H 3 C CH 3<br />

H 3 C N CH 3<br />

H<br />

14<br />

O<br />

O<br />

CH 2 CH 3<br />

NH<br />

H 3<br />

C N CH 3<br />

H<br />

3<br />

2<br />

1<br />

O<br />

14<br />

13<br />

C<br />

O<br />

NH<br />

4<br />

O<br />

N + O -<br />

O<br />

12<br />

CH 3<br />

H 3<br />

C<br />

H 3<br />

N CH 3<br />

H<br />

NH 2<br />

O O<br />

H 3 C N CH 3<br />

H<br />

5<br />

base peak<br />

6<br />

7<br />

NH<br />

NH<br />

H 3 C N CH 3<br />

H<br />

8<br />

9<br />

10<br />

11<br />

CH 2<br />

CH 2 CH 2<br />

H 3<br />

C<br />

C<br />

CH 3<br />

H 3 CH 3<br />

N<br />

N<br />

H<br />

N<br />

H<br />

H 3 C CH 3 H<br />

H 3 C N H<br />

SPECTRAL DATA<br />

1, 4 – Dihydro – 4 - (4-methoxy phenyl) – 2, 6 - dimethyl-N 3 , N 5 -di (napthalen-<br />

1-yl)pyridine-3,5-dicarboxamide (AKS-1)<br />

IR (KBr, cm -1 ): 3284 (-NH), 3037-3011 (Ar-CH, str), 2924 (methyl,asym,str),<br />

2868 (methyl,sym,str), 1674 (>C=O,amide),1340 (C-N,str), 1637-1442<br />

(>C=C,ring skeletal vibration), 1516 (-NH Deformation)1219 (C-H, ipd), 813 (C-<br />

H,opd),1089,1024 (C-O-C,sym,str).


72<br />

C, H, N (in %): Found: 78.10 (C), 5.64 (H), 7.59 (N) Cacld: 78.12 (C), 5.63 (H),<br />

7.61 (N)<br />

1,4- Dihydro-4-(3-nitrophenyl)-2,6-dimethyl-N 3 , N 5 -di(napthalen-1-yl)pyridine<br />

-3,5-dicarboxamide (AKS-2)<br />

IR (KBr, cm -1 ): 3273 (-NH), 3051 (Ar-CH, str), 2924 (methyl,asym,str), 2868,2759<br />

(methyl,sym,str), 1662 (>C=O,amide),1340 (C-N,str), 1637-1442 (>C=C,ring<br />

skeletal vibration), 1516 (-NH Deformation)1219 (C-H, ipd), 813 (C-<br />

H,opd),1089,1024 (C-O-C,sym,str).<br />

1 H NMR (In δ ppm): 2.35 (s, 6H, a), 5.72 (s, 1H, b), 7.34 (m, 2H, J=1.04), 7.44<br />

(m, 6H, f 3 , d 3 , d 1 ), 7.60 (2H,d-d, e 4 , f 1, J=7.92, 9.08 ), 7.80 (2H, d, d 2 J=8.16),<br />

7.94 (2H, d,e 3 , J=7.76 ), 8.09 (s, 1H,b 3 ), 8.14-8.16 (t-t, 1H, e 2 , J=2.08, 7.44),<br />

8.52 (t, 1H, e 1 J=2.08), 9.24 (s, 2H, b 1, b 2 )<br />

Mass (m/e value): 566 (4), 424 (6), 418 (2), 397 (35), 367 (3), 281 (8), 255<br />

(100), 239 (3), 225 (18), 209 (33), 182 (13), 169 (74), 143 (53), 135 (39), 102 (5),<br />

89 (9), 77 (8), 63 (12), 44 (54)<br />

C, H, N (in %): Found: 73.93 (C), 4.96 (H), 9.58 (N) Cacld: 73.96 (C), 4.94 (H),<br />

9.60 (N)<br />

1, 4 – dihydro -4- (2-methoxy phenyl) -2,6- dimethyl -N 3 , N 5 -di (napthalen-1-<br />

yl)pyridine-3,5-dicarboxamide (AKS-3)<br />

IR (KBr, cm -1 ): 3306(-NH), 3101-3068 (Ar-CH, str), 2918 (methyl,asym,str),<br />

2868 (methyl,sym,str), 1662 (>C=O,amide),1348 (C-N,str), 1591-1427<br />

(>C=C,ring skeletal vibration), 1591 (-NH Deformation)1247 (C-H, ipd), 773 (C-<br />

H,opd),1069,1012 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 78.10 (C), 5.64 (H), 7.59 (N) Cacld: 78.12 (C), 5.65 (H),<br />

7.62 (N)<br />

1, 4- Dihydro -4- (3,4-dimethoxy phenyl) -2,6-dimethyl-N 3 , N 5 -di (napthalen-1-<br />

yl)pyridine-3,5-dicarboxamide (AKS-4)<br />

IR (KBr, cm -1 ): 3325,3301 (-NH), 3057-3021 (Ar-CH, str), 2936<br />

(methyl,asym,str), 2868-2756 (methyl,sym,str), 1664 (>C=O,amide),1340<br />

(C-N,str), 1637-1442 (>C=C,ring skeletal vibration), 1516 (-NH Deformation)1219<br />

(C-H, ipd), 813 (C-H,opd),1089,1024 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 76.14 (C), 5.70 (H), 7.20 (N) Cacld: 76.12 (C), 5.72 (H),<br />

7.24 (N)


73<br />

1, 4- Dihydro - 4-(4-nitro phenyl) - 2 , 6- dimethyl - N 3 , N 5 - di (napthalen – 1 -<br />

yl)pyridine-3,5-dicarboxamide (AKS-5)<br />

IR (KBr, cm -1 ): 3315,3273 (-NH), 3051,3010 (Ar-CH, str), 2956, 2930<br />

(methyl,asym,str), 2886,2725 (methyl,sym,str), 1672 (>C=O,amide),1352 (C-<br />

N,str), 1650-1437 (>C=C,ring skeletal vibration), 1535 (-NH Deformation)1242<br />

(C-H, ipd), 756 (C-H,opd),1091,1014 (C-O-C,sym,str).<br />

1 H NMR (In δ ppm): 2.36 (s, 6H), 5.65 (s, 1H), 7.33 (t, 2H, J= 8.12, 7.08 Hz),<br />

7.43 (t, 4H, J= 8.32, 7.48 Hz), 7.49 (m, 2H, J= 1.56, 4.36 Hz), 7.58 (t, 2H, J=<br />

10.68, 8.92, 1.48 Hz), 7.68 (d, 2H, J= 8.64 Hz), 7.82 (m, 2H, J= 7.56, 8.36, 8.68<br />

Hz), 8.13 (d, 2H, J= 7.52 Hz), 8.22 (t, 2H, J= 6.84, 1.92 Hz), 8.87 (s, 1H, -NH),<br />

8.94 (s, 2H, -NH)<br />

Mass (m/e value): 566 (4), 424 (7), 397 (32), 382 (6), 367 (3), 312 (2), 281 (8),<br />

277 (2), 255 (100), 251 (4), 225 (18), 210 (5), 209 (15), 182 (9), 169 (75), 154 (4),<br />

143 (57), 139 (20), 115 (37), 102 (4), 89 (9), 70 (10), 63 (12), 44 (23)<br />

C, H, N (in %): Found: 73.93 (C), 4.96 (H), 9.58 (N) Cacld: 73.95 (C), 4.99 (H),<br />

9.60 (N)<br />

1,4-Dihydro-4-(2-chlorophenyl)-2,6-dimethyl-N 3 ,N-di(napthalen-1-yl)pyridine-<br />

3,5-dicarboxamide (AKS-6)<br />

IR (KBr, cm -1 ): 3326,3275 (-NH), 3024 (Ar-CH, str), 2964,2910 (methyl,asym,str),<br />

2870, 2714 (methyl,sym,str), 1654 (>C=O,amide),1346 (C-N,str), 1610-1432<br />

(>C=C,ring skeletal vibration), 1541 (-NH Deformation)1242 (C-H, ipd), 786 (C-<br />

H,opd),1095,1014 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 75.32 (C), 5.06 (H), 7.53 (N) Cacld: 75.31 (C), 5.08 (H),<br />

7.56 (N)<br />

1,4- Dihydro -2,6- dimethyl-N 3 ,N 5 ,4-tri(napthalen-1-yl) pyridine-3,5-<br />

dicarboxamide (AKS-7)<br />

IR (KBr, cm -1 ): 3336,3284 (-NH), 3045 (Ar-CH, str), 2965,2941 (methyl,asym,str),<br />

2878,2710 (methyl,sym,str), 1671 (>C=O,amide),1348 (C-N,str), 1621-1440<br />

(>C=C,ring skeletal vibration), 1518 (-NH Deformation)1235 (C-H, ipd), 801 (C-<br />

H,opd),1090,1034 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 81.65 (C), 5.45 (H), 7.32 (N) Cacld: 81.66 (C), 5.48 (H),<br />

7.34 (N)


74<br />

1,4- Dihydro -4- (4-hydroxy phenyl) -2,6- dimethyl- N 3 , N 5 -di (napthalen-1-yl)<br />

pyridine -3,5- dicarboxamide (AKS-8)<br />

IR (KBr, cm -1 ): 3348,3273 (-NH), 3068,3014 (Ar-CH, str), 2945,2910<br />

(methyl,asym,str), 2878,2749 (methyl,sym,str), 1666 (>C=O,amide),1342 (C-<br />

N,str), 1647-1440 (>C=C,ring skeletal vibration), 1526 (-NH Deformation)1220<br />

(C-H, ipd), 789 (C-H,opd),1099,1021 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 77.90 (C), 5.42 (H), 7.79 (N) Cacld: 77.94 (C), 5.47 (H),<br />

7.84 (N)<br />

1,4- Dihydro-4-(3,4,5-trimethoxyphenyl)-2,6-dimethyl-N 3 , N 5 -di(napthalen-1-<br />

yl)pyridine-3,5-dicarboxamide (AKS-9)<br />

IR (KBr, cm -1 ): 3317,3284 (-NH), 3050,3021 (Ar-CH, str), 2965,2924<br />

(methyl,asym,str), 2868,2724 (methyl,sym,str), 1670 (>C=O,amide),1344 (C-<br />

N,str), 1638-1442 (>C=C,ring skeletal vibration), 1526 (-NH Deformation)1229<br />

(C-H, ipd), 765 (C-H,opd),1097,1010 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 74.37 (C), 5.75 (H), 6.85 (N) Cacld: 74.34 (C), 5.78 (H),<br />

6.89 (N)<br />

1, 4- Dihydro -4- (3-chloro phenyl)- 2,6 –dimethyl -N 3 ,N 5 -di (napthalen-1-<br />

yl)pyridine-3,5-dicarboxamide (AKS-10)<br />

IR (KBr, cm -1 ): 3365,3252 (-NH), 3050 (Ar-CH, str), 2958,2924 (methyl,asym,str),<br />

2874,2740 (methyl,sym,str), 1665 (>C=O,amide),1342 (C-N,str), 1647-1435<br />

(>C=C,ring skeletal vibration), 1530 (-NH Deformation)1222 (C-H, ipd), 745 (C-<br />

H,opd),1093,1013 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 75.32 (C), 5.06 (H), 7.53 (N) Cacld: 75.30 (C), 5.10 (H),<br />

7.55 (N)<br />

1,4- Dihydro - 2,6 – dimethyl - N 3 ,N 5 - di (napthalen-1-yl) -4- phenyl pyridine-<br />

3,5-dicarboxamide (AKS-11)<br />

IR (KBr, cm -1 ): 3405,3387,3294 (-NH), 3084,3023 (Ar-CH, str), 2965,2924<br />

(methyl,asym,str), 2868,2745 (methyl,sym,str), 1671 (>C=O,amide),1352 (C-<br />

N,str), 1631-1452 (>C=C,ring skeletal vibration), 1532 (-NH Deformation)1215<br />

(C-H, ipd), 744 (C-H,opd),1091,1021 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 80.28 (C), 5.58 (H), 8.02 (N), Cacld: 80.26 (C), 5.59 (H),<br />

8.07 (N)


75<br />

1,4- Dihydro – 4 - (2-nitro phenyl) - 2, 6 – dimethyl - N 3 , N 5 - di (napthalen - 1 -<br />

yl)pyridine-3,5-dicarboxamide (AKS-12)<br />

IR (KBr, cm -1 ): 3412, 3374 (-NH), 3042,3014 (Ar-CH, str), 2962-2940-<br />

(methyl,asym,str), 1674 (>C=O,amide), 1721 (-C=O,ester)1352 (C-N,str), 1644-<br />

1438 (>C=C,ring skeletal vibration), 1542 (-NH Deformation)1246 (C-H, ipd), 784<br />

(C-H,opd),1090,1008 (C-O-C,sym,str)<br />

1 H NMR (In δ ppm): 2.32 (s, 6H), 5.66 (s, 1H), 7.32 (t, 2H, J= 7.60, 7.44), 7.42 (t,<br />

4H, J= 7.68, 5.64), 7.49 (d, 2H, J= 7.16 Hz), 7.56 (d, 2H, J= 8.44), 7.67 (d, 2H, J=<br />

8.04), 7.77 (m, 4H, J= 8.16, 8.84), 8.20 (d, 2H, J= 8.56), 9.17 (s, 2H)<br />

C, H, N (in %): Found: 73.91 (C), 4.96 (H), 9.56 (N) Cacld: 73.95 (C), 4.99 (H),<br />

9.60 (N)<br />

Methyl –5-(naphthalene–1– yl - carbamoyl) - 1, 4 – dihydro -2,6-dimethyl-4-<br />

phenylpyridine-3-carboxylate(AKS-13)<br />

IR (KBr, cm -1 ): 3367,3271 (-NH), 3065,3010 (Ar-CH, str), 2974-2946-<br />

(methyl,asym,str), 1671 (>C=O,amide), 1710 (-C=O,ester)1346 (C-N,str), 1640-<br />

1440 (>C=C,ring skeletal vibration), 1556 (-NH Deformation)1240 (C-H, ipd), 796<br />

(C-H,opd),1099,1014 (C-O-C,sym,str)<br />

C, H, N (in %): Found: 75.71 (C), 5.86 (H), 6.79 (N), Cacld: 75.74 (C), 5.85 (H),<br />

6.82 (N)<br />

Methyl-5-(naphthalen-1-yl-carbamoyl)-1,4-dihydro-4-(2-methoxyphenyl)-2,6-<br />

dimethyl-4-phenylpyridine-3-carboxylate(AKS-14)<br />

IR (KBr, cm -1 ): 3345,3283 (-NH), 3070,3026 (Ar-CH, str), 2965-2924-<br />

(methyl,asym,str), 1669 (>C=O,amide), 1714 (-C=O,ester)1352 (C-N,str), 1650-<br />

1436 (>C=C,ring skeletal vibration), 1543 (-NH Deformation)1232 (C-H, ipd), 774<br />

(C-H,opd),1089,1013 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 73.28 (C), 5.92 (H), 6.33 (N), Cacld: 73.26 (C), 5.90 (H),<br />

6.34 (N)<br />

Methyl-5-(naphthalen-1-yl-carbamoyl)-1,4-dihydro-4-(4-chlorophenyl)-2,6-<br />

dimethyl-4-phenylpyridine-3-carboxylate(AKS-15)<br />

IR (KBr, cm -1 ): 3412,3301 (-NH), 3074,3026 (Ar-CH, str), 2965-2946-<br />

(methyl,asym,str), 1664 (>C=O,amide), 1717 (-C=O,ester)1342 (C-N,str), 1636-<br />

1441 (>C=C,ring skeletal vibration), 1535 (-NH Deformation)1240 (C-H, ipd), 796<br />

(C-H,opd),1099,1014 (C-O-C,sym,str).


76<br />

C, H, N (in %): Found: 69.87 (C), 5.19 (H), 6.27 (N), Cacld: 69.89 (C), 5.23 (H),<br />

6.30 (N)<br />

Methyl-5-(naphthalen-1-yl-carbamoyl)-1,4-dihydro-4-(4-flourophenyl)-2,6-<br />

dimethyl-4-phenylpyridine-3-carboxylate(AKS-16)<br />

IR (KBr, cm -1 ): 3367,3271 (-NH), 3065,3010 (Ar-CH, str), 2974-2946-<br />

(methyl,asym,str), 1671 (>C=O,amide), 1710 (-C=O,ester)1346 (C-N,str), 1640-<br />

1440 (>C=C,ring skeletal vibration), 1556 (-NH Deformation)1240 (C-H, ipd), 796<br />

(C-H,opd),1099,1014 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 72.54 (C), 5.39 (H), 4.44 (N), Cacld: 72.55 (C), 5.36 (H),<br />

4.48 (N)<br />

Methyl-5-(naphthalen-1-yl-carbamoyl)-1,4-dihydro-4-(4-methoxyphenyl)-2,6-<br />

dimethyl-4-phenylpyridine-3-carboxylate(AKS-17)<br />

IR (KBr, cm -1 ): 3357,3265 (-NH), 3024 (Ar-CH, str), 2968-2951-<br />

(methyl,asym,str), 1662 (>C=O,amide), 1718(-C=O,ester)1352 (C-N,str), 1645-<br />

1442 (>C=C,ring skeletal vibration), 1531 (-NH Deformation)1219 (C-H, ipd), 889<br />

(C-H,opd),1093 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 73.28 (C), 5.92 (H), 6.32 (N), Cacld: 73.26 (C), 5.97 (H),<br />

6.35 (N)<br />

Methyl -5- (naphthalene-1-yl-carbamoyl)- 1,4-dihydro -4- (4-nitro phenyl)-2,6-<br />

dimethyl-4-phenylpyridine-3-carboxylate(AKS-18)<br />

IR (KBr, cm -1 ): 3371,3302, (-NH), 3037 (Ar-CH, str), 1666 (>C=O,amide), 1718(-<br />

C=O,ester)1334 (C-N,str), 1525-1440 (>C=C,ring skeletal vibration), 1525 (-NH<br />

Deformation)1236 (C-H, ipd), 790 (C-H,opd),1099-1039 (C-O-C,sym,str).<br />

C, H, N (in %): Cacld: 68.26 (C), 5.07 (H), 9.14 (N), Found: 68.24 (C), 5.10 (H),<br />

9.16 (N)<br />

Methyl-5- (naphthalene -1-yl-carbamoyl) -1,4-dihydro -4- (3-nitro phenyl)-2,6-<br />

dimethyl-4-phenylpyridine-3-carboxylate(AKS-19)<br />

IR (KBr, cm -1 ): 3324,3276 (-NH), 3051,3011 (Ar-CH, str), 2975-2930-<br />

(methyl,asym,str), 1666 (>C=O,amide), 1712 (-C=O,ester)1362 (C-N,str), 1640-<br />

1433 (>C=C,ring skeletal vibration), 1534 (-NH Deformation)1240 (C-H, ipd), 786<br />

(C-H,opd),1099,1011 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 68.26 (C), 5.07 (H), 9.14 (N), Cacld: 68.24 (C), 5.10 (H),<br />

9.16 (N)


77<br />

Methyl-5- (naphthalen-1-yl-carbamoyl) -1,4-dihydro -4- (2-chloro phenyl)-2,6-<br />

dimethyl-4-phenylpyridine-3-carboxylate(AKS-20)<br />

IR (KBr, cm -1 ): 3410,3342 (-NH), 3074,3043 (Ar-CH, str), 2970-2945-<br />

(methyl,asym,str), 1668 (>C=O,amide), 1767 (-C=O,ester)1342 (C-N,str), 1644-<br />

1442 (>C=C,ring skeletal vibration), 1550 (-NH Deformation)1251 (C-H, ipd), 801<br />

(C-H,opd),1089,1010 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 69.87 (C), 5.19 (H), 6.27 (N), Cacld: 69.88 (C), 5.24 (H),<br />

6.229 (N)


IR spectrum of 1,4- dihydro-4-(4-methoxyphenyl)-2,6-dimethyl-N 3 , N 5 -<br />

di(napthalen-1-yl)pyridine-3,5-dicarboxamide (AKS-1)<br />

78<br />

O CH 3<br />

O<br />

O<br />

NH<br />

NH<br />

H 3 C N CH 3<br />

H<br />

IR spectrum of 1,4- dihydro-4-(3-nitrophenyl)-2,6-dimethyl-N 3 , N 5 -<br />

di(napthalen-1-yl)pyridine-3,5-dicarboxamide (AKS-2)<br />

O<br />

N + O -<br />

O<br />

O<br />

NH<br />

NH<br />

H 3 C N CH 3<br />

H


IR spectrum of 1,4- dihydro-4-(2-methoxyphenyl)-2,6-dimethyl-N 3 , N 5 -<br />

di(napthalen-1-yl)pyridine-3,5-dicarboxamide (AKS-3)<br />

79<br />

O CH3<br />

O<br />

O<br />

NH<br />

NH<br />

H 3 C N CH 3<br />

H<br />

IR spectrum of Methyl-5-(naphthalen-1-yl-carbamoyl)-1,4-dihydro-2,6-<br />

dimethyl-4-phenylpyridine-3-carboxylate(AKS-13)<br />

C H 3<br />

O<br />

O<br />

O<br />

NH<br />

H 3 C N CH 3<br />

H


1 H NMR spectrum of 1,4- dihydro-4-(4-nitrophenyl)-2,6-dimethyl-N 3 , N 5 -<br />

di(napthalen-1-yl)pyridine-3,5-dicarboxamide (AKS-2)<br />

80<br />

.<br />

e 2<br />

O<br />

N + O -<br />

f 3 f 3<br />

e 3<br />

f 2<br />

f 4<br />

e 4 e<br />

O 1<br />

f<br />

O 4 f 2<br />

f H<br />

1 b<br />

f<br />

NH<br />

1<br />

b NH<br />

d 1<br />

d 3 1 b 2 d3 d1<br />

d2 H 3 C N CH 3 d 2<br />

a Hb 3<br />

a


1 H NMR spectrum of 1,4- dihydro-4-(2-nitrophenyl)-2,6-dimethyl-N 3 , N 5 -<br />

di(napthalen-1-yl)pyridine-3,5-dicarboxamide (AKS-12)<br />

81<br />

O<br />

NH<br />

O<br />

N + OO<br />

-<br />

NH<br />

H 3 C N CH 3<br />

H


1 H NMR spectrum of 1,4- dihydro-4-(4-nitrophenyl)-2,6-dimethyl-N 3 , N 5 -<br />

di(napthalen-1-yl)pyridine-3,5-dicarboxamide (AKS-5)<br />

82<br />

O<br />

N + O-<br />

O<br />

O<br />

NH<br />

NH<br />

H 3 C N CH 3<br />

H


Mass spectrum of 1,4- dihydro-4-(3-nitrophenyl)-2,6-dimethyl-N 3 , N 5 -<br />

di(napthalen-1-yl)pyridine-3,5-dicarboxamide (AKS-2)<br />

83<br />

O<br />

N + O -<br />

O<br />

O<br />

NH<br />

NH<br />

H 3 C N CH 3<br />

H<br />

Mass spectrum of 1,4- dihydro-4-(4-nitrophenyl)-2,6-dimethyl-N 3 , N 5 -<br />

di(napthalen-1-yl)pyridine-3,5-dicarboxamide (AKS-5)<br />

O<br />

N + O-<br />

O<br />

O<br />

NH<br />

NH<br />

H 3 C N CH 3<br />

H


84<br />

REFERENCES<br />

1. Alker, D.; Arrowsmith, J. E.; Cambell, S. E. and Cross, P. E.; Eur. J. Med. Chem. 1991, 26 ,<br />

907<br />

2. Cupka, P.; Czech.; Chemical Communications, 1987, 243, 591; A. 1989, 110, 8051.<br />

3. Zidermane, A.; Duburs, G. and Zilbere, A.; Lat V. PSR Zinat. Akad. Vestic; 1971, 4, 77; C. A.<br />

1971, 75, 97266.<br />

4. Wehinger, W. E.; horst, M.; Andres, K.and Yoshiharu, D.; Ger. Offen DE 1987, 3, 1544, 211.;<br />

C.A., 1987, 107, 217482.<br />

5. Hachiro, S.; Kunizo, H.; Tadao, S., Hideyukim A. and Yashiharu, D.; EP 1986, 197, 488; JP,<br />

1985, 68, 649; C.A., 1987, 106, 32859.<br />

6. Yan, Z. M.; Dong, Y. M. and Xuebao, Y.; EP 1987, 220, 653; JP 1985, 253, 903; C.A. 1992,<br />

116, 173968.<br />

7. Marco, F.; Andrea, Z.; Carmelo, G. and Germini, M.; EP 272, 693 ; C. A. 1988, 109, 190259.<br />

8. Desai, B.; Sureja, D.; Naliapara, Y.; Shah, A. and Saxena, A.; Bioorg. Med. Chem. 2001, 9,<br />

1993-1998.<br />

9. Kharkar, P. S.; Desai, B.; Gaveria, H.; Varu, B.; Loriya, R. and Naliyapara, Y.; Shah, A.;<br />

Kulakarani, V. M.; J. Med. Chem. 2002, 45, 4858-4867.<br />

10. Kleb, G.; Abhram, U.; and Mietzner, T.; J. Med. Chem. 1994, 37, 4130-4146.<br />

11. Hantzsch, A.; Justus Liebigs Ann.Chem. 1882 1, 215,.<br />

12. Hantzsch, A.; Ber. 1884 17, 1515.; Ber. 1885 18, 1774, 2579.<br />

13. Godfraind, T.; Miller, R.; Wibo, M.; Pharmacol. Rev. 1986 38, 321.<br />

14. Janis, R. A.; Silver, P. J.; Triggle, D. J.; Adv. Drug Res. 1987 16, 309.<br />

15. Sausins, A.; Duburs, G.; Heterocycles, 1988 27, 269.<br />

16. Mager, P. P.; Coburn, R. A.; Solo, A. J.; Triggle, D. J.; Rothe, H.; Drug Discovery 1992, 8,<br />

273.<br />

17. Mannhold, R.; Jablonka, B.; Voigdt, W.; Schoenafinger, K.; Schraven, E.; J. Med. Chem.1992<br />

27, 229.<br />

18. Gaudio, A. C.; Korolkovas, A.; Takahata, Y.; J. Pharm. Sci., 1994 83, 1110.<br />

19. Bossert, F.; Vater, W.; U.S. Patent, 1969, 3, 485, 847, Dec 23.<br />

20. Meyer, V. H.; Bossert, F.; Wehinger, K.; Stoepel, K.; Vater, W.; Arzneim.- Forsch 1981 31,<br />

407.<br />

21. Meyer, V. H.; Bossert, F.; Vater, W.; Stoepel, K.; U.S. Patent 1974, 3, 799, 934.<br />

22. Galliano, A.; Drugs Fut. 1995 20, 231.<br />

23. Alajarin, R.; Vaquero, J. J.; Alvarez- Builla, J.; Pastor, M.; Sunkel, C.; de Casa-Juana, M. F.;<br />

Priego, J.; Statkow, P. R.; Sanz-Aparicio, J.; Tetrahedron: Asy smetry, 1993, 4, 617.<br />

24. Alajarin, R.; Alvarez-Builla, J.; Vaquero, J. J.; Sunkel, C.; de Casa-Juana, M. F.; Statkow, P.<br />

R.; Sanz-Aparicio, J.; Fonseka, I.; J. Med. Chem., 1995, 38, 830.<br />

25. Sannita, W. A.; Busico, S.; Di Bon, G.; Ferrari, A. & Riela, S.; Int. J. Clin. Pharmacol. Res.,<br />

1993, 13, 2819.


85<br />

26. Uehar, Y.; Kawabata, Y.; Ohshima, N.; Hirawa, N.; Takada, S.; Numabe, A.; Gata, T.; Goto,<br />

A.; Yagi, S.; Omata, M.; J. Cardiovasc. Pharmacol. 1994, 23, 970.<br />

27. Nakagawa, T.; Yamauchi, Y.; Kondo, S.; Fuji, M.; Yokoo, N.; Jpn. J. Pharmacol., 1994, 64,<br />

260.<br />

28. Boer, R.; Gekeler, V.; Drugs Fut., 1995, 20, 499.<br />

29. Bristol, J. A.; Ed. In Annu. Rep. Med. Chem., 1992, 27, 330.<br />

30. Bristol, J. A.; Ed. In Annu. Rep. Med. Chem., 1992, 27, 322.<br />

31. Sunkel, C. E.; de Casa-Juana, M. F.; Santos, L.; Garcia, A. G.; Artaljero, C. R.;Vilaroya, M.;<br />

Gonzalez-Morales, M. A.; Lopez, M. G.; Cillero, J.; Alonso, S.; Priego, J. G.; J. Med. Chem.,<br />

1992, 35, 2407.<br />

32. Vo, D.; Matowe, W. C.; Ramesh, M.; Iqbal, M.; Wolowyk, M. W.; Howlett, S. E.; Knaus, E. E.;<br />

J. Med. Chem., 1995, 38, 2851.<br />

33. Therapeutic guidelines, cardiovascular, 3rd ed., 1998, Victoria: Therapeutic Guidelines.<br />

34. Robertson, R.M.; Robertson D.; Drugs used for the treatment of myocardial ischemia; editors.<br />

Goodman and Gilman’s, 1996, 32, 759– 78, New York: McGraw-Hill.<br />

35. Calcium channel blocking agents in USP DI. Drug information for the health care professional,<br />

22nd ed., 2002, 727– 42, Colorado: Micromedex.<br />

36. Mycek, M. J, Harvey, R. A. & Chempe, P C, Antihypertensive drugs; editors. Lippincott’s<br />

illustrated reviews; Chapter 19, 179– 92. 2000, Lippincott Williams & Wilkins.<br />

37. Klusa, V.; Drugs Fut., 1995, 20, 135.<br />

38. Cooper, K.; Fray, M. J.; Parry, M. J.; J. Med. Chem., 1992, 35, 3115.<br />

39. Zidermane, A.; Duburs, G.; Zilbere, A.; PSR Zinat. Akad. Vestic; 1971, 4, 77; C.A., 1991 75,<br />

47266, 9.<br />

40. Wehinger, W. E.; Horst, M.; Andres, K.; Yoshiharu; Ger. Offen; C.A., 1987, 107, 217482.<br />

41. Hachiro, S.; Kunizo, H.; Tadao, S.; Hideyuki, A.; Yoshihsru, D.; Eur. Patent; 1986, 197,488;<br />

JP; 1985, 68,649; C.A., 1987, 106, 328559,<br />

42. Yan, Z. M., Dong, Y. M. & Xuebao, Y.; EP, 1987, 220, 653; JP, 1985, 253, 909; C.A., 1992<br />

116, 173968.<br />

43. Marco, F.; Andrea, Z.; Carmelo, G.; Bermini, M.; EP 272, 693; C.A., 1988, 109, 190259.<br />

44. Johnson, R. C.; Taylor, D. J.; Hann Kenneth, V.; Sheng, S.; U.S. Patent, 1988, 4,758,669;<br />

EP, 1987, 653, JP 235 909; C.A.; 1987, 107, 134209.<br />

46. Cooper K.; Fray M. J.; Parry M. J.; Richardson K.; Steele J.; J. Med. Chem., 1992, 35, 3115-<br />

3129.<br />

47. Van Rhee A. M.; Jiang J. L.; Melman N.; Olah M. E.; Stiles G. L.; Jacobson K. A.; J. Med.<br />

Chem., 1996, 39, 2980-2989.<br />

48. Shah A.; Gaveriya H.; Motohashi N.; Kawase M.; Anticancer Res., 2000, 20, 373.<br />

49. Singer, T. P.; Kearney, E. B.; Advan. Enzymol., 1964, 15, 79.<br />

50. Haneeon, L.; Calcium antagonists: An Overview. Am. Heart J. 1991, 122, 308-311.


86<br />

51. Pickard, J. D.; Murray, G. D.; Illingworth, R.; Shaw, M. D. M.; Teasdale, G. M.; Foy, P. M.;<br />

Humphrey, P. R. D.; Lang, D. A.; Nelson, R.; Richards, P.; Sinar, J.;Bailey, S.; Brit.Med. J.,<br />

1989, 298, 636-642.<br />

52. Buchbeit, J. M.; Tremoulet, M.; Neurosurg, 1988, 23,154-167.<br />

53. Loogna, E.; Sylven, C.; Groth, T.; Mogensen, L.; Eur. Heart J., 1986, 6,114-119.<br />

54. SPRINT Study Group. The secondary prevention re-infarction Israeli nifedipine trial (SPRINT)<br />

11: design and methods, results. Eur. Heart. J., 1988, 9, (Suppl. I), 360 A.<br />

55. Myocardial Infarction Study Group. Secondary prevention of ischemic heart disease: a long<br />

term controlled lidoflazine study. Acta Cardiol, 1979, 34 (Suppl. 24), 7-46.<br />

57. Subramanian,V. B.; Excerpta Medica , 1983, 97-116.<br />

58. Mueller, H. S.; Chahine,R. A.; Am. J. Med., 1981, 71, 645-657.<br />

59. Antman, E.; Muller, J.; Goldberg, S.; McAlpin, R.; Rubenfire, M.; Tabatznik, B.; Liang, C.-S.;<br />

Heupler, F.; Achuff, S.; Reichek, N.; Geltman, E.; Kerin, N. Z.; Neff, R. K.; Braunwald, E. N.;<br />

Engl. J. Med., 1980, 302, 1269-1273.<br />

60. Ginsburg, R.; Lamb, I. H.; Schroeder, J. S.; Harrison, M. H.; Harrison, D. C.; Am. Heart. J.,<br />

1982, 103, 44-48.<br />

61. Held, P. H.; Yueuf, S.; Furberg, C. D.; Br. Med. J., 1989, 299, 1187.<br />

62. Reicher-Reiss, H.; Baruch, E.; Drugs Today, 1991, 42, 3, 343-364.<br />

63. Gelmere, H. J.; Henneric, N.; Stroke, 1990, 21 (SUPPI. IV), 81-IV84.<br />

64. Di Bona, G. F.; Epstein, M.; Mann, J.; Nordlander, M.; Kidney Int., 1991 41 (Suppl. 36)<br />

65. Triggle, D. J.; Drugs Today, 1991, 27, 3, 147-155.<br />

66 Cozzi, P.;German, C.; Domenico, F.; Mauro, G.; Maria M.; Vittorio, P.; Roberto, T.;<br />

Fabrizio, V.; Patricia, S.; J. Med. Chem., 1993, 36, 2964-2972.<br />

67. Triggle, D. J.; Langs, D. A.; Janis, R. A.; Med. Res. Rev., 1989, 9, 2, 123-180.<br />

68. Hernandez-Gallegos, Z.; Lehmann, F.; Hong, E.; Posadas, F.; Ernandez-Gallegos, E.; Eur. J.<br />

Med. Chem., 1995, 30, 355-364.<br />

69. Christiaans, J.A.M.; Ph.D. Thesis, 1994, Vrij <strong>University</strong>, Amsterdam.<br />

70. Carlos E.; Sunkel, L.; J . Med. Chem. 1992, 35, 2407-2414.<br />

71. Schramm,M.; Towart, R.; Modulation of Calcicum Channel by Drugs Life Sci., 1985, 37, 1843-<br />

60<br />

72. Kelvin Cooper. et al, US Patent, 1999, 4, 935, 430. EP-A-258033, EP-A-266989.<br />

73. Christiaans J. A. M.; Timmerman, H.; Eur. J. Pharm. Sci., 1996, 4, 1-22.<br />

74. Swamy, S.K.; Reddy, T.M.; Reddy, V.M.; J. Pharm. Sci., 1998, 60, 2, 102-106.<br />

75. Neamati, N.; Hong, H.; Mazumder, A.; Pommier, Y.; J. Med. Chem., 1997, 40, 6, 942-951.<br />

76. Sonja,V.; Barbara, R.; Antonella Di, S.; Roberta, F.; Monica, N.; Emilio, C.; Christian, R.;<br />

Nicolas, V.; Alberto, G.; J. Med. Chem., 2004, 47, 10, 2688 -2693.<br />

77. Furukawa T, Nukada T, Miura R, Ooga K, Honda M, Watanabe S, Koganesawa,S. &<br />

Isshiki T. J Cardiovasc Pharmacol., 2005, 45 (3): 241-246<br />

78. Liou, S.F.; Wu, J.R.; Lai, W.T.; Sheu, S.H.; Chen, I.J.; Yeh, J. L.; J Cardiovasc Pharmacol.<br />

2005, 45, 3, 232-240.


87<br />

79. Karnail, S. A.; George, C .R.; Joseph, S.; Suzanne, M.; Anders, H.; Jack, Z. G.; Mary, F. M.;<br />

David, M. F.; J. Med. Chem., 1990, 33, 1510-1515.<br />

80. Kawase, M.; Shah, A; Gaveriya, H.; Motohashi, N.; Sakagami, H.; Varga, A.; Molnar, J.;<br />

Bioorg. Med. Chem., 2002,10, 1051-55.<br />

81. Saponara, S.; Ferrara, A.; Gorelli, B.; Shah, A.; Kawase, M.; Motohashi, N.; Molnar, J.;<br />

Sgaragli, G.; Fusi, F.; Eur. J. Pharmc., 2007, 563, 160-63<br />

82. Morshed, S.; Hashimoto, K.; Murotani, Y.; Kawase, M.; Shah, A.; Satoh, K.; Kikuchi, H.;<br />

Nishikawa, H.; Maki, J.; Sakagami, H.; Anticancer Research., 2005, 25, 2033-38.<br />

83. Engi, H.; Sakagami, H.; Kawase, M.; Parecha, A.; Manvar, D.; Kothari, H.; Adlakha, P.; Shah,<br />

A.; Motohashi, N.; Ocsovszki, I.; Molnar, J.; In Vivo., 2006, 20, 637-44.<br />

84. Gaveria, H.; Desia, B.; Vora, V.; Shah, A.; Indian J. Pharm. Sci., 2001, 64, 1, 59062.<br />

85. Sharma G.V.M., Reddy K. L., Lakshmi P. S., Krishna P. R., Synthesis, 2006, 55-58.<br />

86. Wang L.M., Sheng J, Zhang L., HanJ.W., FanZ.Y., Tian H., Qian C.T., Tetrahedron, 2005,<br />

61, 1539-1543.


Chapter - 3<br />

A mini review of Dihydropyrimidine Derivatives<br />

1. Biginelli reaction 88<br />

2. Literature survey 90<br />

3. Ionic liquid 96<br />

4. Name reaction 113<br />

5. Rearrangement 116<br />

6. Solid phase synthesis 119<br />

7. Synthetic aspects 121


88<br />

3.1 Biginelli Reaction<br />

P. Biginelli reported the synthesis of functionalized 3,4-dihydropyrimidin-(1H)-<br />

ones (DHPMs) via three-component condensation reaction of an aromatic<br />

aldehyde, urea, and ethyl acetoacetate. In the past decade, this multicomponent<br />

reaction (MCR) has experienced a remarkable revival, mainly due to the<br />

interesting pharmacological properties associated with this dihydropyrimidine<br />

scaffold to generate small libraries of diverse structure 1 .<br />

O<br />

H<br />

EtOH<br />

EtOOC<br />

NH 2<br />

H+<br />

EtOOC<br />

NH<br />

O<br />

H 2 N<br />

O<br />

N<br />

H<br />

O<br />

3.1.1 Dihydropyrimidine Synthesis<br />

Generally the reaction was carried out by heating a mixture of the three<br />

components dissolved in ethanol with a catalytic amount of HCl at reflux<br />

temperature. The product of this one-pot, three-component synthesis that<br />

precipitated on cooling of the reaction mixture was identified correctly by Biginelli<br />

as 3,4-dihydropyrimidin-2(1H)-one. Apart from a series of publications by late<br />

Karl Folkers in the mid 1930s, the “Biginelli reaction” or “Biginelli condensation”<br />

as it was henceforth called was largely ignored in the early part of the 20 th<br />

century. The synthetic potential of this new heterocycle synthesis therefore<br />

remained unexplored for quite some time. In the 1970s and 1980s, interest slowly<br />

increased, and the scope of the original cyclocondensation reaction was<br />

gradually extended by variation of all three building blocks, allowing access to a<br />

large number of multifunctionalized dihydropyrimidines. 2-4<br />

3.1.2 Mechanistic Studies of Biginelli Reaction 5-9<br />

The mechanism of the Biginelli reaction has been the subject of some debate<br />

over the past decades. Early work by Folkers and Johnson 3 suggested that<br />

bisureide, i.e. the primary bimolecular condensation product of benzaldehyde and


urea, is the first intermediate in this reaction. In 1973, Sweet and Fissekis 5<br />

proposed a different pathway and suggested that carbonium ion,<br />

89<br />

C H 3<br />

R<br />

O<br />

O<br />

H<br />

R<br />

+<br />

N H 2<br />

N H 2<br />

O<br />

H<br />

H<br />

H + N +<br />

R<br />

O<br />

H 2 N<br />

[1]<br />

O<br />

H 3 C<br />

O<br />

O<br />

H 3 C<br />

[2]<br />

O<br />

H 3 C<br />

O<br />

H 2 N<br />

[3]<br />

N H<br />

O<br />

C H 3<br />

O<br />

H 3 C<br />

O<br />

C H 3<br />

R<br />

[4]<br />

N<br />

H<br />

O<br />

C H 3<br />

O<br />

R<br />

O<br />

N<br />

C H 3<br />

C H 3<br />

N<br />

H<br />

[5]<br />

O<br />

produced by an acid-catalyzed aldol reaction of benzaldehyde with ethyl<br />

acetoacetate, is formed in the first and limiting step of the Biginelli condensation.<br />

Kappe et al 6 reinvestigated the mechanism in 1997 using<br />

1 H/ 13 C NMR<br />

spectroscopy and trapping experiments and have established that the key step in<br />

this sequence involves the acid-catalyzed formation of an N-acyliminium ion<br />

intermediate [1] from the aldehyde and urea precursors. Interception of the<br />

iminium ion by ethyl acetoacetate [2], presumably through its enol tautomer [3],<br />

produces an open-chain ureide which subsequently cyclized to<br />

hexahydropyrimidine [4]. Acid-catalyzed elimination of water ultimately leads to<br />

the final DHPM product [5]. The reaction mechanism can therefore be classified<br />

as a α-amidoalkylation, or more specifically as a α-ureidoalkylation. The<br />

alternative “carbenium ion mechanism” does not constitute a major pathway;<br />

however, small amounts of enone are sometimes observed as byproduct.<br />

Although the highly reactive N-acyliminium ion species could not be isolated or<br />

directly observed, further evidence for the proposed mechanism was obtained by<br />

isolation of intermediates, employing sterically bulky or electron-deficient<br />

acetoacetates respectively. The relative stereochemistry in hexahydropyrimidine<br />

was established by an X-ray analysis. In fact, a number of hexahydropyrimidines


90<br />

could be synthesized by using perfluorinated 1,3-dicarbonyl compounds or α-keto<br />

esters as building blocks in the Biginelli condensation.<br />

3.2 Literature Survey<br />

Various modifications have been applied to Biginelli reaction to get better yield<br />

and to synthesize biologically active analogues. Different catalysts have been<br />

reported to increase the yield of the reaction. Microwave synthesis strategies are<br />

also applied to shorten the reaction time. Solid phase synthesis and<br />

combinatorial chemistry has made possible to generate library of DHPM<br />

analogues.<br />

3.2.1 Catalyst<br />

Essa H. Hu et al 10 reported Biginelli reaction catalyzed with trifluoroborane<br />

etherate, transition metal salt, and proton source to yield 80-90% Biginelli<br />

product. They proposed a mechanism similar to that of Folkers and Johnson 3 and<br />

to that of Kappe 5 for the Biginelli reaction wherein formation of acyl imines<br />

intermediate formed by reaction of the aldehyde with urea and stabilized by<br />

either trifluoroborane or the transition metal, is the key, rate limiting step.<br />

Subsequent addition of the α-keto ester enolate, followed by cyclization and<br />

dehydration, would afford the dihydropyrimidinone. Brindaban C. Ranu et<br />

al 11 reported Indium Chloride as an efficient catalyst for Biginelli reaction. A wide<br />

range of structurally varied α-dicarbonyl compound, aldehyde and urea were<br />

coupled together by this procedure to produce the corresponding<br />

dihydropyrimidinones.<br />

BF 3<br />

O<br />

+<br />

H 2 N N H 2<br />

M<br />

N<br />

O<br />

N H 2<br />

H<br />

O<br />

BF 3<br />

O +<br />

F 3 B<br />

N<br />

O<br />

N H 2<br />

M<br />

O<br />

O Ar<br />

R 2 OR 1<br />

OR 1<br />

N H<br />

R 2<br />

O<br />

H 2 N<br />

O<br />

O<br />

Ar<br />

OR 1<br />

N H<br />

R 2<br />

N<br />

H<br />

O


91<br />

A variety of substituted aromatic, aliphatic, and heterocyclic aldehydes have been<br />

subjected to this condensation very efficiently. Thiourea has been used with<br />

similar success to provide the corresponding dihydropyrimidin-2(1H)-thiones.<br />

O<br />

R 3<br />

O<br />

O<br />

R 1 R 2<br />

R 3<br />

CHO<br />

O/S<br />

H 2 N NH 2<br />

InCl 3<br />

THF<br />

R 2<br />

R 1<br />

N<br />

H<br />

NH<br />

O/S<br />

Bose et al 12 used cerium (III) chloride as a catalyst and reported solvent free<br />

synthesis of Biginelli compounds using this new catalyst. This procedure provides<br />

higher yield, shorter reaction time and simple work up methods. Solvent free<br />

reactions using this catalyst gave about 70% yield and reaction time was about<br />

10 hrs. If ethanol is used as solvent, 90% yield was obtained with this catalyst. 25<br />

mol % amount of cerium (III) chloride heptahydrate was found to be sufficient to<br />

push the reaction forward. The increased amount did not build further advantage.<br />

R<br />

CHO<br />

O/S<br />

H 2 N NH 2<br />

H<br />

R<br />

N<br />

OH<br />

NH 2<br />

H +<br />

- H 2 O<br />

+3 Ce<br />

R<br />

N<br />

H<br />

NH 2<br />

O<br />

O<br />

O<br />

Ce +3<br />

O<br />

O<br />

R<br />

O<br />

R<br />

OCH 3<br />

H 3 CO<br />

NH<br />

H 3 CO<br />

NH<br />

-<br />

H 2 N<br />

H +<br />

- H 2 O<br />

O<br />

O<br />

N<br />

H<br />

O<br />

Enantioselective one pot synthesis of Biginelli reaction is reported with use of<br />

lanthanide triflates/ytterbium triflates. These catalyst leads to highly<br />

enantioselectivity and up to 99% enantioselective Biginelli reaction can be carried<br />

out. 13


92<br />

EtO 2 C<br />

+<br />

H 3 C O<br />

O<br />

H 2 N NH 2<br />

+<br />

CHO<br />

Ln(OTF 3<br />

)<br />

RT<br />

EtO 2 C<br />

NH<br />

C H 3<br />

N<br />

H<br />

O<br />

Entry Lewis acid Solvent Yield, %<br />

1 La(OTf) 3 THF 83<br />

2 Sm(OTf) 3 THF 81<br />

3 Yb(OTf) 3 THF 87<br />

4 Yb(OTf) 3 CH 2 Cl 2 80<br />

5 Yb(OTf) 3 CH 3 CN 86<br />

6 Yb(OTf) 3 CH 3 OH 88<br />

CHO<br />

Me<br />

O<br />

O<br />

OEt<br />

+<br />

O<br />

+<br />

H2N<br />

NH 2<br />

Ln(OTf 3<br />

)<br />

RT<br />

C H 3<br />

O<br />

NH<br />

C H 3<br />

N<br />

H<br />

O<br />

Very recently, chiral phosphoric acid is reported as highly enantioselective<br />

catalyst for Biginelli reaction. Reaction is reported in presence of 10 mol % of<br />

chiral phosphoric acid to produce desired enantioselective product. This is the


93<br />

first organocatalytic asymmetric Biginelli reaction. The optimal chiral phosphoric<br />

acid afforded the reaction in high yields with excellent enantioselectivities of up to<br />

97%. A wide variety of substrates, including aldehydes and α-keto esters, could<br />

be tolerated. This reaction has an advantage of avoiding the contamination of<br />

transition metals in the manufacture of the medicinally relevant chiral 3,4-<br />

dihydropyrimidin-2-(1H)-ones. 14<br />

O<br />

H 2 N<br />

NH 2<br />

O<br />

O<br />

R 1<br />

R'O<br />

O<br />

P<br />

H<br />

OH<br />

X<br />

R 2 OR 3<br />

HN<br />

X<br />

R 2 COOR 3<br />

R 1<br />

NH<br />

R'O<br />

OR'<br />

O<br />

P<br />

O<br />

R 1 H<br />

N<br />

NH 2<br />

H<br />

O<br />

O<br />

R 2 OR 3<br />

X<br />

HN<br />

NH 2<br />

O<br />

OR'<br />

X<br />

R 2<br />

R 1<br />

O<br />

OR 3<br />

Recently Jiang and Chen 15 reported Yb (III)-Resin catalyzed Biginelli reaction<br />

under solvent-free conditions.<br />

O<br />

R 3<br />

O<br />

O<br />

R 3<br />

CHO<br />

S<br />

SO 3 -3 ] 3 Ln +3<br />

R 2<br />

NH<br />

R 1 R 2<br />

H 2 N NH 2<br />

R 1<br />

N<br />

H<br />

S<br />

Heravi et al 16 recently reported synthesis of dihydropyrimidones using 12-<br />

molybdophosphoric acid in refluxing acetic acid to catalyze this three-component<br />

condensation reaction to afford the corresponding pyrimidinones in good yields.


94<br />

An improved approach has been found to carry out the Biginelli reaction for the<br />

synthesis of 3,4- dihydropyrimidin- 2(1H)-one derivatives. This synthesis was<br />

performed in the presence of hydrochloric acid and β-cyclodextrin in ethanol<br />

solution. Compared with the classical Biginelli reaction conditions, this new<br />

approach has the advantage of excellent yields and short reaction time 17. An<br />

efficient synthesis of 3,4-dihydropyrimidinones from the aldehyde, β-keto ester<br />

and urea in ethanol, using ferric chloride hexahydrate or nickel chloride<br />

hexahydrate as the catalyst, is described 18 . Compared with the classical Biginelli<br />

reaction conditions, this new method has the advantage of excellent yields (53-<br />

97%) and short reaction time (4-5 hours). 5-Alkoxycarbonyl-4-aryl-3,4-<br />

dihydropyrimidin-2-ones are synthesized by the one-pot reactions of aldehydes,<br />

β-ketoesters and urea using a catalytic amount of phosphotungstic acid (PTA) in<br />

ethanol. Thus modified Biginelli cyclocondensation not only shortens the reaction<br />

period and simplifies the operation, but also improves the yields. 19<br />

Ruthenium (III) chloride efficiently catalyzes the three-component Biginelli<br />

reaction of an aldehyde, a β-keto ester, and urea or thiourea under solvent-free<br />

conditions to afford the corresponding 3,4-dihydropyrimidine-2-(1H)-ones in<br />

excellent yields 20. The Biginelli reaction, a one-pot condensation of aldehydes,<br />

urea or thiourea, and -dicarbonyl compounds, is efficiently catalyzed by<br />

samarium diiodide.<br />

Scandium (III) triflate efficiently catalyzes the three-component condensation<br />

reaction of an aldehyde, a β-ketoester, and urea in refluxing acetonitrile to afford<br />

the corresponding 3,4-dihydropyrimidin-2(1H)-ones in excellent yields. The<br />

catalyst can be recovered and reused, making this method friendly and<br />

environmentally acceptable 23.<br />

O<br />

R<br />

R<br />

CHO<br />

O<br />

O<br />

O/S<br />

Sc(OTf) 3<br />

EtO<br />

NH<br />

OEt<br />

H 2 N NH 2<br />

CH 3 CN<br />

N<br />

H<br />

O/S<br />

Shailaja et al 24 have demonstrated experimentally a simple and straightforward<br />

protocol (combination system of SnCl 2 –LiCl) which provides dihydropyrimidin-2-


95<br />

one system in high yield and high purity while retaining the simplicity of the<br />

Biginelli concept. Magnesium bromide efficiently catalyzes the three-component<br />

condensation reaction of aldehyde, β-diketone and urea/thiourea under solvent<br />

free conditions to afford the corresponding dihydropyrimidinones in high yields<br />

and short reaction time. 25 Bismuth nitrate pentahydrate catalyzes the three<br />

O<br />

R 2<br />

R 2<br />

CHO<br />

O<br />

O<br />

O/S<br />

MgBr 2<br />

R 1<br />

NH<br />

R 1<br />

H 2 N<br />

NH<br />

R 3<br />

45 to 90 min<br />

100 C<br />

N<br />

O/S<br />

R 3<br />

component condensation reaction of an aromatic aldehyde, urea and a β-<br />

ketoester or a β-diketone under solvent-free conditions to afford the<br />

corresponding dihydropyrimidinones (DHPMs) in high yields. The method is also<br />

effective for the selective condensation of aryl aldehydes in the presence of<br />

aliphatic aldehydes 26 . The biologically active dihydropyrimidinones are also easily<br />

synthesized in moderate to excellent yields under solvent-free conditions 21.<br />

Hydroxyapatite doped with ZnCl 2 , CuCl 2 , NiCl 2 and CoCl 2 efficiently catalyses the<br />

three components Biginelli reaction between an aldehyde, ethyl acetoacetate and<br />

urea in refluxing toluene to afford the corresponding dihydropyrimidinones in high<br />

yields 22.<br />

NO 2<br />

CHO<br />

Bi(NO 3 ) 3 5 H 2 O (0.1 mmol)<br />

O<br />

O<br />

CHO<br />

urea, ethylacetoacetate, reflux, 35 min<br />

EtO<br />

NH<br />

NO 2<br />

N<br />

H<br />

NH<br />

EtO<br />

N<br />

H<br />

O<br />

O<br />

78% 0%<br />

Sharma et al 27 reported a simple, efficient, mild and green method has been<br />

developed for the synthesis of 3,4-dihydropyrimidin-2-ones employing dodecyl<br />

sulfonic acid as an excellent surfactant-type Bronsted acid catalyst in aqueous<br />

media at room temperature.


96<br />

H 3 C CH 3 +<br />

O O<br />

s<br />

O<br />

H 2<br />

0, RT<br />

+<br />

H 3 C<br />

CH 3 H 2 N NH 2<br />

10 mol % DSA<br />

O<br />

R 2<br />

C H 3<br />

R 1<br />

N<br />

H<br />

NH<br />

O s<br />

Yadav et al 28 reported that Ceric ammonium nitrate efficiently catalyzes the three<br />

component Biginelli reaction in methanol to afford the corresponding<br />

dihydropyrimidinones in excellent yields.<br />

O<br />

O<br />

CeIV<br />

CeIII<br />

O<br />

O<br />

CONH 2<br />

N<br />

OR<br />

OR<br />

R<br />

R<br />

N<br />

CeIII<br />

CeIV<br />

R<br />

H<br />

N<br />

O<br />

CONH 2<br />

N<br />

H<br />

NH<br />

RO<br />

O<br />

RO<br />

CONH 2<br />

O<br />

RO<br />

O<br />

O<br />

O<br />

3.2.2 Ionic liquid<br />

Wang et al 39 reported the Biginelli reaction between an aromatic aldehyde, ethyl<br />

acetoacetate, and urea - catalyzed by polymer-supported, re-usable, roomtemperature<br />

ionic liquids (RTIL) - was shown to efficiently proceed in glacial<br />

AcOH at 100° to afford the corresponding pyrimidine-5-carboxylates in yields up<br />

to 99% within 2 h. The catalyst(s) could be reused at least five times, basically<br />

without loss of activity, which makes this transformation not only straight-forward,<br />

but also considerably less expensive compared to methods involving classical<br />

RTIL catalysts.<br />

3.3 Biologically active dihydropyrimidones<br />

4-Aryl-1,4-dihydropyridines (DHPs, e.g nifedipine, ) are the most studied class of<br />

organic calcium channel modulators. More than 30 years after the introduction of<br />

nifedipine, many DHP analogs have now been synthesized and numerous<br />

second-generation commercial products have appeared on the market 40, 41. In<br />

recent years, interest has also focused on aza-analogs such as<br />

dihydropyrimidines (DHPMs) which show a very similar pharmacological profile to


97<br />

classical dihydropyridine calcium channel modulators 42-49 . Over the past few<br />

years several lead-compounds were developed that are superior in potency and<br />

duration of antihypertensive activity to classical DHP drugs, and compare<br />

favourable with second-generation drugs such as amlodipine and nicardipine 50.<br />

.<br />

MeO 2 C<br />

NO 2<br />

CO 2 Me i-PrO 2 C CONH 2<br />

N<br />

NO 2<br />

N<br />

H<br />

N<br />

NO 2<br />

i-PrO 2 C<br />

O<br />

CO 2 Me<br />

N<br />

H<br />

O<br />

O<br />

Barrow et al 55 reported in vitro and in vivo evaluation of dihydropyrimidinone C-5<br />

amides as potent and selective α 1a Receptor Antagonists for the treatment of<br />

benign prostatic hyperplasia. α 1 adrenergic receptors mediate both vascular and<br />

lower urinary tract tone, and α 1 receptor antagonists such as terazosin are used<br />

to treat both hypertension and benign prostatic hyperplasia (BPH). Recently,<br />

three different subtypes of this receptor have been identified, with the α 1a receptor<br />

being most prevalent in lower urinary tract tissue. 4-aryldihydropyrimidinones<br />

attached to an aminopropyl-4-arylpiperidine via a C-5 amide as selective α 1a<br />

receptor subtype antagonists. In receptor binding assays, these types of<br />

compounds generally display Ki values for the α 1A receptor subtype 20%) and half-life (>6 h) in both rats and<br />

dogs. Due to its selectivity for the α 1a over the α 1b and α 1d receptors as well as its<br />

favourable pharmacokinetic profile, it has the potential to relieve the symptoms of<br />

BPH without eliciting effects on the cardiovascular system. 51-55<br />

F<br />

F<br />

O<br />

N<br />

N<br />

H<br />

NH<br />

R 1<br />

N<br />

H<br />

O<br />

R 3 R 2


98<br />

The 4-aryldihydropyrimidinone heterocycle attached to an aminopropyl-4-<br />

arylpiperidine via a C-5 amide has proved to be an excellent template for<br />

selective α 1a receptor subtype antagonists. These types of compounds are<br />

exceptionally potent in both cloned receptor binding studies as well as in in vivo<br />

pharmacodynamic models of prostatic tone.<br />

Compounds exhibited high binding affinity and subtype selectivity for the cloned<br />

human α 1A receptor. Systematic modifications led to identification of highly potent<br />

and subtype-selective compounds with high binding affinity (Ki =0.2 nM) for α 1a<br />

receptor and greater than 1500-fold selectivity over α 1b and α 1d adrenoceptors.<br />

The compounds were found to be functional antagonists in human, rat, and dog<br />

prostate tissues. They exhibited excellent selectively to inhibit intraurethral<br />

pressure (IUP) as compared to lowering diastolic blood pressure (DBP) in<br />

mongrel dogs (Kb(DBP)/Kb(IUP))suggesting uroselectivity for α 1a -selective<br />

compounds. 56<br />

NO 2<br />

O<br />

O<br />

O<br />

N<br />

N<br />

H<br />

N<br />

Ph<br />

N<br />

H<br />

O<br />

R<br />

Cho et al 57 reported 3-N-substituted-3,4-dihydropyrimidine and 3-N-substituteddihydropyrimidin-2(1H)-ones<br />

as calcium channel antagonist. Compounds<br />

[especially [R 1 =(CH 2 ) 2 N(benzyl)(2-naphthylmethyl),R 2 =i-Pr,X=2-N0 2 ] and [R'=<br />

(CH 2 ) 2 N(benzyl) (3,4-dichlorobenzyl),R 2 =i-Pr, X=2-NO 2 , Y=O/S] exhibited not<br />

only more potent and longer lasting vasodilative action but also a hypertensive<br />

activity with slow onset as compared with dihydropyridines. Moreover, some<br />

dihydropyrimidines[R'= (CH 2 ) 2 N (benzyl) (3-phenylpropyl), R 2 =CH 2 (cyclopropyl),<br />

X=2-NO 2 ] were weaker in blocking atrioventricular conduction in anesthetized<br />

open-chest dogs and less toxic than the dihydropyridines.<br />

X<br />

R 1 OOC<br />

N<br />

COOR 2<br />

Y<br />

N


99<br />

Atwal et al 58 examined a series of novel dihydropyrimidine calcium channel<br />

blockers that contain a basic group attached to either C 5 or N 3 of the heterocyclic<br />

ring. Structure-activity studies show that l-(phenyl methyl)-4-piperidinyl carbamate<br />

moiety at N 3 and sulfur at C 2 are optimal for vmrelaxant activity in vitro and impart<br />

potent and long-acting antihypertensive activity in vivo. One of the compounds<br />

was identified as a lead, and the individual enantiomers were synthesized. Two<br />

key steps of the synthesis were (1) the efficient separation of the diastereomeric<br />

ureido derivatives and (2) the high-yield transformation of 2-methoxy intermediate<br />

to the (p-methoxybenzyl) thio intermediates. Chirality was demonstrated to be a<br />

significant determinant of biological activity, with the dihydropyridine receptor<br />

recognizing the enamino ester moiety but not the carbamate moiety.<br />

Dihydropyrimidine is equipotent to nifidipine and amlodipine in vitro. In the<br />

spontaneously hypertensive rat, dihydropyrimidine is both more potent and longer<br />

acting than nifidipine and compares most favorably with the long-acting<br />

dihydropyridine derivative amlodipine. Dihydropyrimidine has the potential<br />

advantage of being a single enantiomer<br />

.<br />

HCl<br />

i-PrO 2 C<br />

N<br />

CF 3<br />

O 2<br />

C<br />

R i-PrO 2 C<br />

N<br />

N<br />

H<br />

CF 3<br />

O 2<br />

C<br />

F<br />

N<br />

H<br />

S<br />

N<br />

S<br />

N<br />

In order to explain the potent antihypertensive activity of the modestly active (ICw<br />

= 3.2 pM) dihydropyrimidine calcium channel blocker, Atwal et al 59 carried out<br />

drug metabolism studies in the rat and found it is metabolized. Two of the<br />

metabolites (ICw = 16 nM) and (ICw = 12 nM), were found to be responsible for<br />

the antihypertensive activity of compound. Potential metabolism in vivo precluded<br />

interest in pursuing compounds related to it. Structure-activity studies aimed at<br />

identifying additional aryl-substituted analogues led to comparable potential in<br />

vivo, though these compounds were less potent in vitro. To investigate the effects<br />

of absolute stereochemistry on potency, authors resolved via diastereomeric<br />

ureas, prepared by treatment with (R)-α-methylbenzylamine. The results<br />

demonstrate that the active R-(-)-enantiomer is both more potent and longer


100<br />

acting than nifedipine as an antihypertensive agent in the SHR. The in vivo<br />

potency and duration is comparable to the long-acting dihydropyridine<br />

amlodipine. The superior oral antihypertensive activity compared to that of<br />

previously described carbamates could be explained by its improved oral<br />

bioavailability, possibly resulting from increased stability of the urea functionality.<br />

NO 2<br />

NO 2<br />

NO 2<br />

O<br />

O<br />

R<br />

N<br />

N<br />

CO 2 Pr<br />

R<br />

N<br />

N<br />

CO 2 Pr<br />

HN<br />

CO 2 Pr<br />

R<br />

O<br />

N<br />

H<br />

H<br />

O<br />

N<br />

H<br />

O<br />

N<br />

H<br />

Atwal et al 60 modified the structure of previously described dihydropyrimidine i.e.<br />

3-substituted 1,4-dihydropyrimidines. Structure- activity studies using potassiumdepolarized<br />

rabbit aorta show that ortho, meta-disubstituted aryl derivatives are<br />

more potent than either ortho- or meta-monosubstituted compounds. While<br />

vasorelaxant activity was critically dependent on the size of the C 5 ester group,<br />

isopropyl ester being the best, a variety of substituents (carbamate, acyl, sulfonyl,<br />

and alkyl) were tolerated at N 3 . The results show dihydropyrimidines are<br />

significantly more potent than corresponding 2- heteroalkyl-l,4-dihydropyrimidines<br />

and only slightly less potent than similarly substituted 2-heteroalkyl-1-4-<br />

dihydropyridines. Where as dihydropyridine enantiomer usually show 10-15-fold<br />

difference in activity, the enantiomers of dihydropyrimidine show more than a<br />

1000-fold difference in activity. These results strengthen the requirement of an<br />

enamino ester for binding to the dihydropyridine receptor and indicate a<br />

nonspecific role for the N 3 -substituent, 2-Heterosubstituted-4-aryl-l,4-dihydro-6-<br />

methyl-pyrimidinecarbo- axcyildicesters, which lack the potential symmetry of<br />

dihydropyridine- calcium channel blockers, were prepared and evaluated for<br />

NO 2<br />

R 3<br />

R 3<br />

X<br />

N<br />

R 2<br />

COOR 1<br />

N<br />

N<br />

H<br />

R 2<br />

X<br />

N<br />

H<br />

COOR 1<br />

EtOOC<br />

EtX<br />

N<br />

H<br />

COOEt


101<br />

biological activity. Biological assays using potassium-depolarized rabbit aorta and<br />

radio ligand binding techniques showed that some of these compounds are<br />

potent mimics of dihydropyridine calcium channel blockers.<br />

3.3.1 N 3 -Acylated dihydropyrimidines and their biological importance<br />

Kappe et al 61-62 reported that N 3 -acylated DHPMs can be rapidly synthesized in a<br />

high throughput fashion by combining microwave-assisted acylations with<br />

microwave-assisted scavenging techniques. Scavenging experiments can be<br />

carried out employing either supported nucleophilic amine sequestration reagents<br />

or water. N-acylated DHPMs are pharmacologically important N-acylation of<br />

DHPM can be performed as shown below.<br />

R 4<br />

R 4<br />

O<br />

E<br />

NH<br />

(R 3 CO) 2 O, TEA, DMAP<br />

MW, 5-20 min, 100-180 C<br />

E<br />

N<br />

R 3<br />

R 6 N X<br />

R 1<br />

scavenging reagent<br />

MW, 5 min, 80-100 C<br />

SPE<br />

R 6 N X<br />

R 1<br />

N 3 -substituted DHPMs have been identified to possess potent pharmacological<br />

profiles, e.g. following compound exhibited high binding affinity and subtype<br />

selectivity for the cloned human α 1a receptor 63 .<br />

NO 2<br />

O<br />

O<br />

O<br />

N<br />

N<br />

H<br />

N<br />

Ph<br />

N<br />

H<br />

O<br />

R<br />

Systematic modifications of above compounds led to identification of highly<br />

potent and subtype-selective compounds with high binding affinity (Ki = 0.2 nM)<br />

for α 1a receptor and greater than 1500-fold selectivity over α 1b and α 1d<br />

adrenoceptors. The compounds were found to be functional antagonists in<br />

human, rat and dog prostate tissues. Modifications to the C 5 position also play


102<br />

O<br />

R 1<br />

R<br />

NO 2<br />

N<br />

H<br />

N<br />

O<br />

O<br />

NH<br />

N<br />

Ph<br />

CO 2 Me<br />

Important role in potency of DHPM ring. 4-aryldihydropyrimidinones attached to<br />

an aminopropyl-4-arylpiperidine via a C- 5 amide as selective α 1a receptor subtype<br />

antagonists. In receptor binding assays, these types of compounds generally<br />

display Ki values for the α 1a receptor subtype


103<br />

Applying intramolecular Heck reaction, tricyclic ring system can be obtained as<br />

shown below. 66<br />

O<br />

Br<br />

O<br />

Pd 2 (OAc) 2 [P(o-tolyl) 3 ] 2<br />

O<br />

N<br />

H<br />

N<br />

O<br />

O<br />

MW, 150 C, 15 min<br />

O<br />

N<br />

H<br />

N<br />

O<br />

O<br />

The computational experiments reveal that the formation of a tricyclic ring system<br />

did not flatten out the overall geometry. On the contrary, the aryl ring was still<br />

locked in a pseudo axial position, resembling other nonfused 4-aryldihydropyrimidines.<br />

67-68 In fact, here; the intramolecular Heck strategy allows<br />

locking of the aryl ring in the proposed bioactive, that is, the pseudo axial<br />

orientation. 69<br />

3.4.1 N 3 -Arylation DHPMs<br />

N 3 -arylated DHPM analogues cannot be obtained by classical Biginelli<br />

condensation strategies involving N-arylureas. Here, the corresponding N 1 -<br />

substituted derivates will be formed exclusively 70-71 . Wannberg et al 11 reported<br />

protocol using concentrated mixture of 20 mol % of cuprous iodide as catalyst,<br />

1.5 equiv of cesium carbonate as base, and 5 mol equiv of dimethylformamide as<br />

solvent. The reactions were conducted at 180 °C for 40 min with a set of eight<br />

differently substituted aryl iodides.<br />

O<br />

O<br />

NH<br />

A r-I, C uI, C s 2 CO 3 , D M F<br />

M W , 180 C, 40 min<br />

O<br />

O<br />

N<br />

Ar<br />

N<br />

O<br />

N<br />

O<br />

R 1<br />

R 1


104<br />

3.4.2 Fused bicyclic systems resulting from Dihydropyrimidines<br />

Many bicyclic fused systems can be synthesized from DHPM scaffold. Pyrazolo<br />

[4,3-d]pyrimidine derivatives synthesized by reacting sodium azide with N-Methyl,<br />

6-Bromomethyl DHPM. The possible mechanism of this transformation is shown<br />

below and involves decomposition of the diazide to vinyl diazo derivative, which<br />

undergoes spontaneous 1,5-electrocyclization to 3H-pyrazole. Subsequent<br />

migration of the ester substituent from the tetrahedral carbon to N 2 (thermal van<br />

Alphen-Hüttel rearrangement) yields pyrazolo [4,3-d]pyrimidine. The structure<br />

confirming the position of the ester group at N 2 was established by an X-ray<br />

analysis 115 . Use of the 4-chloroacetoacetate building<br />

Ph<br />

Ph<br />

EtO 2 C<br />

NH<br />

DMF<br />

EtO 2 C<br />

N<br />

N<br />

NH<br />

(N 3 ) 2 HC N<br />

O N<br />

O<br />

-2 N 2<br />

Ph<br />

EtO 2 C<br />

Ph<br />

EtO 2 C<br />

NH<br />

N<br />

N<br />

NH<br />

N 2<br />

N<br />

O<br />

N<br />

O<br />

block in a Biginelli-type condensation is very useful to get variety of bicyclic<br />

systems. The resulting functionalized DHPM appeared to be an ideal common<br />

chemical template for the generation of a variety of interesting bicyclic scaffolds<br />

such as furo[3,4-d]- pyrimidines, pyrrolo[3,4-d]pyrimidines, and pyrimido-[4,5-<br />

d]pyridazines. Solid-phase and solution-phase protocols for the synthesis of<br />

O<br />

H<br />

R 1<br />

O<br />

R 1<br />

RO<br />

Cl<br />

O<br />

O<br />

RO<br />

NH<br />

Cl<br />

H 2 N NH 2<br />

N<br />

H<br />

O<br />

O<br />

R 2 -NH 2<br />

R 3 -NH-NH 2<br />

O<br />

R 1<br />

O<br />

R 1<br />

O<br />

R 1<br />

O<br />

N<br />

H<br />

NH<br />

O<br />

NH<br />

HN<br />

NH<br />

R 2 N<br />

N<br />

H<br />

N<br />

H<br />

O<br />

R 3<br />

N<br />

O


105<br />

furo[3,4-d]pyrimidines, pyrrolo[3,4-d]-pyrimidines, and pyrimido[4,5-d]pyridazines<br />

are reported. The multistep solid-phase sequence involves the initial high-speed,<br />

microwave-promoted acetoacetylation of hydroxymethylpolystyrene resin with<br />

methyl 4-chloroacetoacetate. The immobilized 4-chloroacetoacetate precursor<br />

was subsequently subjected to three component Biginelli-type condensations<br />

employing urea and a variety of aromatic aldehydes. The resulting 6-<br />

chloromethyl-functionalized resin-bound dihydropyrimidones served as common<br />

chemical platforms for the generation of the desired heterobicyclic scaffolds using<br />

three different traceless cyclative cleavage strategies. The corresponding<br />

furo[3,4-d]pyrimidines were obtained by microwave flash heating in a rapid,<br />

thermally triggered, cyclative release. Treatment of the chloromethyl<br />

dihydropyrimidone intermediates with a variety of primary amines followed by<br />

high-temperature microwave heating furnished the anticipated pyrrolo[3,4-<br />

d]pyrimidine scaffolds via nucleophilic cyclative cleavage. In a similar way,<br />

reaction with monosubstituted hydrazines resulted in the formation of pyrimido<br />

[4,5-d]pyridazines. All compounds were obtained in moderate to good overall<br />

yields and purities 116 .<br />

O<br />

OH<br />

O<br />

O<br />

R 1<br />

O<br />

O<br />

R 1<br />

N<br />

NH<br />

Cl<br />

O<br />

NH<br />

N<br />

H<br />

O<br />

O<br />

R 1<br />

O<br />

R 1<br />

O<br />

NH<br />

R 2<br />

N<br />

H<br />

NH<br />

N<br />

H<br />

O<br />

O<br />

R 1<br />

HN<br />

R 2<br />

O<br />

NH<br />

HN<br />

N<br />

N<br />

H<br />

O<br />

N<br />

H<br />

O<br />

O<br />

R 1<br />

R 3<br />

O<br />

Cl<br />

O<br />

NH<br />

N<br />

H<br />

O<br />

H 2M<br />

N<br />

R 3<br />

3.5 Chemistry and biological importance of thaizolo[3,2-a]pyrimidine and<br />

pyrimido[2,1-b][1,3]thiazines scaffolds<br />

Preparation of thiazolo [3,2-a]pyrimidine derivatives is very well reported in<br />

literature. Two approaches is generally employed for synthesis. Literature survey<br />

on synthetic methodology for thiazolo [3,2-a]pyrimidine derivatives can be


106<br />

summarized in Chart 1 & 2 where various methods are illustrated for synthesis of<br />

this class of compounds.<br />

Figure 1: Thiazolo [3,2-a] pyrimidine 2 was prepared in 30% yield by the reaction<br />

of 2-aminothiazole 1 with ethyl cyanoacetate in a sodium ethoxide/ethanol<br />

mixture or using polyphosphoric acid or acetic acid. However,<br />

oxothiazolopyrimidine 3 was obtained upon treatment with phosphorous<br />

pentoxide and methanesulfonic acid. The reaction of 1 with ethyl acetoactate at<br />

140-150°C resulted in the formation of compound that was then converted to the<br />

Z-isomer upon heating at 250°C and cyclized to give 4. 2-Aminothiazole 5<br />

cyclized with acetylacetone at 100°C, in the presence of methanesulfonic acidphosphorus<br />

pentoxide or formic acid-phosphorus pentoxide, followed by<br />

treatment with 70% perchloric acid, to give the thiazolopyrimidin-4-ium salt 5. The<br />

ester 6 was obtained from 2-aminothiazole 1 with an excess of methyl<br />

methanetricarboxylate in 61 % yield. Cyclocondensation of 1 with diethyl<br />

ethoxymethylene malonate in acetic acid followed by hydrolysis of the ester gave<br />

7. Similarly, 2-aminothiazole 1 reacted with benzylidine in ethanol to give 8.<br />

Stanovink et al reported the synthesis of a series of thiazolopyrimidine derivatives<br />

upon reacting 2-aminothiazole with a variety of different reagents. Thus,<br />

dimethylaminobut- 2-enoate (or pentenoate), reacted with 1 to give<br />

thiazolopyrimidines. 72-85<br />

S<br />

N<br />

R 2<br />

EtOOC<br />

N<br />

Ar<br />

8<br />

N<br />

R<br />

S<br />

R 1<br />

N<br />

R 1<br />

O<br />

9<br />

R<br />

Ar<br />

EtOOC<br />

N<br />

H<br />

COOEt<br />

COMe<br />

H 2N<br />

R 4<br />

R 4<br />

NMe 2<br />

R 2<br />

R 3OOC<br />

N<br />

S<br />

H<br />

NH<br />

R 4<br />

R 4<br />

O<br />

NC<br />

NH<br />

N<br />

N<br />

2<br />

COOEt<br />

P 2S 5<br />

SO 3H<br />

H 3C<br />

S<br />

R 1<br />

HN<br />

R<br />

O<br />

N<br />

N<br />

3<br />

S<br />

R 1<br />

R<br />

EtO<br />

COOEt<br />

1<br />

O<br />

R<br />

R 1<br />

S<br />

N<br />

O<br />

N<br />

COOH<br />

MeOOC<br />

COOMe<br />

COOMe<br />

O<br />

COMe<br />

COOEt<br />

R 1<br />

H<br />

N<br />

O<br />

N<br />

S<br />

4 R 1<br />

7<br />

Figure-1<br />

R<br />

S<br />

R 1<br />

N<br />

N<br />

O<br />

OH<br />

COOMe<br />

N<br />

N<br />

5<br />

S<br />

R<br />

ClO 4<br />

6


107<br />

Figure 2: The reaction of 2-aminothiazole 1 with 2-hydropolyfluoroalk-2-enoate in<br />

basic medium gave two isomers, 7-oxo 2 and its isomeric 5-0x0 3. The structure<br />

of both 2 and 3 was established through 1 H NMR, 19 F NMR and mass spectra 86 .<br />

2-Aminothiazole derivatives, (R' = H, C0 2 Et; R2 = Ph, aryl, Me), reacted with the<br />

acetylenic derivative and ester derivative in ethanol and polyphosphoric acid,<br />

respectively, to give the isomeric oxothiazolopyrimidine derivatives 4 and 5, in 5-<br />

32% and 8-97 % yield, respectively 87 . Condensation of 2-aminothiazole 1 in<br />

absolute ethanol with the sodium salt of ethyl oximinocyanoacetate gave after<br />

acidification (pH 6) with diluted hydrochloric acid, the nitroso derivative 6 in 92%<br />

yield 88 . Treatment of the 2-aminothiazaole derivatives 5 with the hydrazone<br />

derivatives gave the oxothiazolo [3,2-a] pyrimidine derivatives 7. 89 2-Amino-2-<br />

thiazoline reacted with 2-acylamino-3- dimethylamino -propenoates in acetic acid<br />

O<br />

COOEt<br />

Ar<br />

N<br />

N<br />

N<br />

R 1<br />

N<br />

S<br />

R 2<br />

N<br />

7<br />

S<br />

R 2<br />

R 3<br />

O<br />

N<br />

F<br />

2<br />

COMe<br />

COOEt<br />

EtOOC<br />

NHAr<br />

R 3<br />

O<br />

N<br />

S<br />

NC<br />

HO<br />

N<br />

R 2<br />

R 1<br />

S<br />

N<br />

1<br />

NH 2<br />

Cl<br />

N<br />

R 2<br />

R 1<br />

COOMe<br />

Cl<br />

COOEt<br />

4<br />

Cl<br />

N O<br />

S<br />

R 2<br />

R 1<br />

N<br />

NO<br />

O<br />

O<br />

Cl<br />

OEt<br />

N<br />

S<br />

Figure-2<br />

6<br />

NH 2<br />

O<br />

N<br />

R 2<br />

R 1<br />

5<br />

to yield 6-acylamino-5-oxo-2,3-dihydro-5-thiazolo[3,2-a]pyrimidines in 73 and<br />

12% yields, respectively 90 .<br />

S<br />

Me 2 N<br />

NHCOR<br />

S<br />

N<br />

NH 2<br />

N<br />

H<br />

CO 2 Me<br />

N<br />

NHCOR<br />

O


108<br />

Moreover, 2-amino-2-thiazoline reacted with an aromatic aldehyde and diethyl<br />

malonate, to give a mixture of thiazolidino[3,2-a]pyrimidines. Furthermore,<br />

malononitrile reacted to give following product 91-92 .<br />

S<br />

N<br />

NH 2<br />

Ar-CHO<br />

CH 2 (CO 2 Et) 2<br />

EtOH/piperidine<br />

O<br />

EtO 2C<br />

N<br />

N<br />

S<br />

Ar<br />

EtO 2C<br />

N<br />

N<br />

S<br />

Ar<br />

O<br />

CH 2 (CN) 2<br />

C 6H 4-R<br />

N<br />

S<br />

NC<br />

N<br />

NH 2<br />

2-Amino-thiazoline reacted with potassium 2-ethoxycarbonyl-2-fluorovinyl<br />

alcoholate in a sodium methoxide/methanol mixture to give 6-fluoro-2,3-dihydro-<br />

5-oxothiazolo[3,2-a]pyrimidine 93 .<br />

S<br />

H<br />

OK<br />

H<br />

N<br />

S<br />

N<br />

NH 2<br />

F<br />

CO 2 Et<br />

F<br />

N<br />

2-(Methylthio)-24hiazoline reacted with /3-alanine to give a 5-oxothiazolo [3,2-a]-<br />

pyrimidine derivative in 23% yield 94 .<br />

O<br />

O<br />

N<br />

H 2 N<br />

N<br />

MeS<br />

S<br />

COOH<br />

N<br />

S<br />

Pyrmidinethione derivatives were alkylated with monochloroacetic acid or<br />

chloroacetyl chloride and then cyclized to give thiazolopyrimidine derivatives. 95-105<br />

thus; pyrimidinethione reacted in dimethylformamide 95 or in an acetic<br />

anhydride/pyridine mixture 37 to give thiazolo-pyrimidines. Alkylation in the<br />

presence of an aromatic aldehyde gave the ylidene. Similarly, pyrimidinethione<br />

derivatives reacted with monochloroacetic acid in acetic acid/acetic<br />

anhydride/sodium acetate mixture or with chloroacetyl chloride in dry dioxane to<br />

give the corresponding thiazolopyrimidines 99-100 .


109<br />

O<br />

O<br />

O<br />

R 1<br />

NH<br />

ClCH 2 COOH<br />

R 1<br />

N<br />

R 2 N<br />

S R 2<br />

N<br />

H<br />

ClCH 2 COCl<br />

S<br />

O<br />

Ar-CHO<br />

R 1<br />

N<br />

O<br />

R 2<br />

N<br />

S<br />

O<br />

O<br />

R 1<br />

N<br />

Ar<br />

R 2<br />

N<br />

S<br />

Treatment of mercaptopyrimidine derivative with 2-chloroethanol in<br />

dimethylformamide gave the asymmetrical thioether which underwent cyclization<br />

on refluxing with a mixture of acetic anhydride-pyridine, to give the<br />

oxothiazolopyrimidine 109 .<br />

O<br />

O<br />

O<br />

NC<br />

NH<br />

Cl<br />

OH<br />

NC<br />

NH<br />

HO<br />

NC<br />

N<br />

Ar<br />

N<br />

SH<br />

Ar<br />

N<br />

S<br />

Ar<br />

N<br />

S<br />

1,3-Dibromopropan-2-ol reacted with mercaptopyrimidine derivative to give<br />

product through the non isolated intermediates. The same reaction product was<br />

obtained by reacting with I-bromomethyloxirane. 110<br />

O<br />

OH<br />

O<br />

R<br />

NH<br />

Br<br />

Br<br />

R<br />

NH<br />

H 2 N<br />

N<br />

SH<br />

H 2 N<br />

N<br />

S<br />

Br<br />

OH<br />

Br<br />

O<br />

R<br />

O<br />

N<br />

CH 2 OH<br />

R<br />

O<br />

NH<br />

O<br />

H 2 N<br />

N<br />

S<br />

H 2 N<br />

N<br />

S


110<br />

Several derivatives of 4,5-disubstituted imidazole, 2,4,5-trisubstituted pyrimidine,<br />

2-substituted purine, thiazolo[3,2-a]purine, [1,3]thiazino[3,2-a]purine, thiazolo[2,3-<br />

i]purine, [1,3]thiazino-[2,3-i]purine, and 6-substituted pyrazolo[3,4-d]pyrimidine<br />

were synthesized and tested as inhibitors of the xanthine oxidase enzyme 111 .<br />

Dihydropyrimidines are now known for calcium<br />

O<br />

O<br />

S<br />

R<br />

N<br />

1<br />

N<br />

R 2<br />

HO<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

H<br />

N<br />

S<br />

n<br />

N<br />

H<br />

N<br />

S<br />

O2<br />

N<br />

H<br />

N<br />

O<br />

Channel blockers property. According to the literature, analogous derivatives are<br />

anti-inflammatory. Bo´szing and co-workers 112 reported the synthesis of the<br />

pyrimidothiazines and assay these compounds for the same profile. Acute antiinflammatory<br />

activity was tested by inhibition of the carrageen an-induced paw<br />

edema in rats.<br />

Adam et al 113 filed US patent for phenyl substituted thiazolo pyrimidine<br />

derivatives synthesized from DHPM. These compounds are novel and are<br />

distinguished by valuable therapeutic properties. Specifically, it has been found<br />

that the compounds of general formula given below are metabotropic glutamate<br />

receptor antagonists. These compounds are capable of high affinity binding to<br />

group II mGlu α receptors.<br />

R 1<br />

O<br />

N<br />

R 2<br />

R 3<br />

R 4<br />

N<br />

S<br />

R 8<br />

R 7<br />

R 5<br />

R 6<br />

R 12 R 9<br />

R 11 R 10<br />

Compounds displayed by general formulae given below exhibit excellent<br />

adenosine α 3 receptor antagonism where A is an optionally substituted benzene<br />

ring. B may be substituted and R 1 is optionally substituted cyclic group 114 .


111<br />

A<br />

N<br />

B<br />

N<br />

O<br />

S<br />

R 1<br />

3.6 Biginelli Reaction and problems associated with conventional<br />

methods<br />

The major limitations of Biginelli reaction are lower yield and longer reaction time.<br />

When thiourea is used for synthesis, yield obtained is very low and reaction<br />

completion takes longer time. Similar disadvantages are observed when different<br />

1,3-diketone and aldehyde other than aromatic are used for the synthesis of<br />

designed molecules. Moreover, product separation and work up also cause<br />

problem and needed special techniques. Thus, three main disadvantages are<br />

lower yield, longer reaction time and work up in Biginelli reaction when different<br />

building blocks are used to synthesize library of compound.<br />

3.7 Microwave assisted reaction<br />

The use of microwave as energy source in organic synthesis for better yield and<br />

shorter reaction time has been extensively investigated 117-122 . Most of the early<br />

pioneering experiments in MAOS were performed in domestic, sometimes<br />

modified, kitchen microwave ovens; the current trend is to use dedicated<br />

instruments which have only become available in the last few years for chemical<br />

synthesis. The number of publications related to MAOS has therefore increased<br />

dramatically since the late 1990s to a point where it might be assumed that, in a<br />

few years, most chemists will probably use microwave energy to heat chemical<br />

reactions on a laboratory scale. Not only is direct microwave heating able to<br />

reduce chemical reaction times from hours to minutes, but it is also known to<br />

reduce side reactions, increase yields, and improve reproducibility. Therefore,<br />

many academic and industrial research groups are already using MAOS as a<br />

forefront technology for rapid optimization of reactions, for the efficient synthesis<br />

of new chemical entities, and for discovering and probing new chemical reactivity.<br />

A large numbers of review articles provide extensive coverage of the subject 123-


112<br />

128 .Microwave-enhanced chemistry is based on the efficient heating of materials<br />

by “microwave dielectric heating” effects. This phenomenon is dependent on the<br />

ability of a specific material (solvent or reagent) to absorb microwave energy and<br />

convert it into heat. The electric component of an electromagnetic field causes<br />

heating by two main mechanisms: dipolar polarization and ionic conduction.<br />

Irradiation of the sample at microwave frequencies results in the dipoles or ions<br />

aligning in the applied electric field. As the applied field oscillates, the dipole or<br />

ion field attempts to realign itself with the alternating electric field and, in the<br />

process, energy is lost in the form of heat through molecular friction and dielectric<br />

loss. The amount of heat generated by this process is directly related to the<br />

ability of the matrix to align itself with the frequency of the applied field. If the<br />

dipole does not have enough time to realign, or reorients too quickly with the<br />

applied field, no heating occurs. The allocated frequency of 2.45 GHz used in all<br />

commercial systems lies between these two extremes and gives the molecular<br />

dipole time to align in the field, but not to follow the alternating field precisely 129-<br />

130 .<br />

The heating characteristics of a particular material (for example, a solvent) under<br />

microwave irradiation conditions are dependent on its dielectric properties. The<br />

ability of a specific substance to convert electromagnetic energy into heat at a<br />

given frequency and temperature is determined by the so-called loss factor tanδ.<br />

This loss factor is expressed as the quotient tanδ=e’’/e’, where e’’ is the dielectric<br />

loss, which is indicative of the efficiency with which electromagnetic radiation is<br />

converted into heat, and e’ is the dielectric constant describing the ability of<br />

molecules to be polarized by the electric field. A reaction medium with a high tanδ<br />

value is required for efficient absorption and, consequently, for rapid heating 131 .<br />

Solvent tanδ Solvent tanδ<br />

Toluene 0.040 Dichlorobenzene 0.280<br />

Acetone 0.054 Nitrobenzene 0.589<br />

Chloroform 0.091 Formic acid 0.722<br />

Water 0.123 DMSO 0.825<br />

Dichloroethane 0.127 Ethanol 0.941<br />

DMf 0.161 Ethylene glycol 1.350


113<br />

3.7.1 Name reactions<br />

Following scheme shows an example of a standard Heck reaction involving aryl<br />

bromides and acrylic acid to furnish the corresponding cinnamic acids.<br />

Optimization of the reaction conditions under small-scale (2 mmol) single-mode<br />

microwave conditions led to a protocol that employed acetonitrile as the solvent,<br />

1 mol% palladium acetae/p-tolyl phosphine as the catalyst system, and<br />

triethylamine as the base. The reaction time was 15 minutes at a reaction<br />

temperature of 180ºC.<br />

NC<br />

Br<br />

COOH<br />

Pd(OAc) 2 /P(o-tolyl) 3<br />

NEt 3 , MeCN<br />

NC<br />

COOH<br />

X<br />

MW, 180 C, 15 min<br />

X<br />

The Suzuki reaction (the palladium-catalyzed cross-coupling of aryl halides with<br />

boronic acids) is arguably one of the most versatile and at the same time also<br />

one of the most often used cross-coupling reactions in modern organic synthesis.<br />

Carrying out high-speed Suzuki reactions under controlled microwave conditions<br />

can be considered almost a routine synthetic procedure today, given the<br />

enormous literature precedent for this transformation. Recent examples include<br />

the use of the Suzuki protocol for the high-speed modification of various<br />

heterocyclic scaffolds of pharmacological interest 132-140 . A significant advance in<br />

Suzuki chemistry has been the observation that Suzuki couplings can be readily<br />

carried out using water as the solvent in conjunction with microwave heating 141-<br />

144 .<br />

X<br />

(HO) 2 B<br />

Pd(OAc) 2 , TBAB, Na 2 CO 3 , H 2 O<br />

MW, 150-175 C, 5 min<br />

R 1<br />

R 2<br />

R 1 R 2<br />

General protocols for microwave-assisted Sonogashira reactions under controlled<br />

conditions were first reported in 2001 by ErdMlyi and Gogoll 151-152 . Many more<br />

examples can be cited for different name reaction.


114<br />

I H SiMe 3<br />

[PdCl 2 (PPh 3 ) 2 ], CuI, DMF, Et 3 NH<br />

MW, 120 C, 5 min<br />

NH 2<br />

SMe 3<br />

KF.2H 2 O, MeOH, RT, 7 h<br />

[PdCl 2 (PPh 3 ) 2 ], CuI, DMF, Et 3 NH<br />

MW, 120 C, 5 min<br />

MeOOC<br />

NH 2<br />

I<br />

NH 2<br />

COOMe<br />

3.7.2 Some additional chemistry on Biginelli reaction<br />

Kappe et al 32 recently described a high yielding and rapid microwave-assisted<br />

protocol that allows the synthesis of gram quantities of DHPMs utilizing controlled<br />

single-mode microwave irradiation. As the first model reaction for scale-up<br />

experiments, they selected the standard Biginelli cyclocondensation, where in a<br />

one-pot process equimolar amounts of benzaldehyde, ethyl acetoacetate, and<br />

urea react under Lewis acid (FeCl 3 ) catalysis to the corresponding<br />

dihydropyrimidine. Utilizing single-mode microwave irradiation, the reaction can<br />

be carried out on a 4.0 mmol scale in AcOH/EtOH 3:1 at 120 o C within 10 min,<br />

compared to 3-4 h using conventional thermal heating, providing DHPM in 88%<br />

isolated yield and high purity (>98%).<br />

X<br />

X<br />

ROOC<br />

O<br />

H<br />

AcOH/EtOH 3:1, FeCl3<br />

EtOH /HCl<br />

MW, 10-20 min<br />

NH 2<br />

ROOC<br />

NH<br />

O<br />

H 2 N<br />

O<br />

N<br />

H<br />

O<br />

Dihydropyrimidines were synthesised in high yields by one-pot cyclocondensation<br />

reaction of aldehydes, acetoacetates and urea using various acid catalysts like<br />

Amberlyst-15, Nafion-H, KSF clay and dry acetic acid under microwave<br />

irradiation. 33<br />

The antimony (III) chloride impregnated on alumina efficiently catalyses a onepot,<br />

three-component condensation reaction among an aldehyde, a β-ketoester,


115<br />

and urea or thiourea to afford the corresponding dihydropyrimidinones in good to<br />

excellent yields. The reactions are probed in microwave (MW), ultrasonic, and<br />

thermal conditions and the best results are found using MW under solvent-free<br />

conditions 34. Cupric chloride dihydrate catalyzes the three-component Biginelli<br />

condensation between an aldehyde, a β-ketoester and urea or thiourea under<br />

microwave irradiation in the absence of solvent to yield various substituted 3,4-<br />

dihydropyrimidin-2(1H)-ones. The reaction is also effective when performed at<br />

room temperature in acetonitrile or at 100 °C in a solvent free approach, without<br />

any side reactions as observed by Biginelli and others. 35<br />

The publications by Gupta 36 and Dandia 37 describe 26 examples of microwaveenhanced<br />

solution-phase Biginelli reactions employing ethyl acetoacetate, (thio)<br />

ureas, and a wide variety of aromatic aldehydes as building blocks. Upon<br />

irradiation of the individual reaction mixtures (ethanol, catalytic HCl) in an open<br />

glass beaker inside the cavity of a domestic microwave oven the reaction times<br />

were reduced from 2–24 hours of conventional heating (80 ºC, reflux) to 3–11<br />

minutes under microwave activation (ca. 200–300 W). At the same time, the<br />

yields of DHPM obtained by the authors were markedly improved compared to<br />

those reported earlier using conventional conditions.<br />

Kappe 38 reinvestigated above reactions using a purpose-built commercial<br />

microwave reactor with on-line temperature, pressure, and microwave power<br />

control. Transformations carried out under microwave heating at atmospheric<br />

pressure in ethanol solution show no rate or yield increase when the temperature<br />

is identical to conventional thermal heating. In the case of superheating by<br />

microwave irradiation at atmospheric pressure the observed yield and rate<br />

increase phenomenon are rationalized as a consequence of a thermal (kinetic)<br />

effect. Under sealed vessel conditions (20 bar, 180 ºC) the yield of products is<br />

decreased and formation of various byproducts observed. The only significant<br />

rate and yield enhancements are found when the reaction is performed under<br />

“open system” conditions where the solvent is allowed to rapidly evaporate during<br />

microwave irradiation. However, the observed rate and yield enhancements in<br />

these experiments are a consequence of the solvent-free conditions rather than<br />

caused specifically by microwave irradiation. This was confirmed by control<br />

experiments of the solvent less Biginelli reaction under microwave and thermal


116<br />

heating. Various heterocyclic systems can be synthesized in short time with high<br />

yield. Heterocyclic systems like dihydroquinolone, triazine, dihydropyridines and<br />

other bicyclic systems are reported in literature synthesized using microwave 145-<br />

149 . Few examples are shown below.<br />

R 1<br />

NH 2<br />

O<br />

Sc(OTf) 3 , MeCN<br />

R 1<br />

N<br />

H<br />

R 2<br />

R 2<br />

R 2<br />

MW, 140-50 C<br />

50-60 min<br />

N<br />

H<br />

R 1<br />

NH 2<br />

R 2 CHO<br />

R 1<br />

NH<br />

Sc(OTf) 3 , (bmim)Cl-AlCl 3<br />

MW, 100-20 C<br />

30-60 min N R 2<br />

H<br />

R 1<br />

R 2<br />

COOMe CN<br />

H<br />

G 2 N<br />

G=CN, COOMe<br />

NH<br />

R 4<br />

NaOMe/MeOH<br />

MW, 100-140 C, 10 min<br />

O<br />

H<br />

N<br />

R 4<br />

N<br />

R 1<br />

R 2<br />

N<br />

R 3<br />

R 3 =NH 2 , OH<br />

3.8 Rearrangements<br />

Ley and co-workers 150 have described the microwave assisted Claisen<br />

rearrangement of allyl ether in their synthesis of the natural product carpanone. A<br />

97% yield of the rearranged product could be obtained by three successive 15-<br />

minute irradiations at 220 ºC. This is an example of microwave assisted reaction<br />

clubbed with ionic liquid.<br />

O<br />

O<br />

O<br />

Toluene<br />

CH 2<br />

MW, 220 °C, 3 - 15 min<br />

O<br />

O<br />

CH 3<br />

CH 2


117<br />

3.8.1 Cycloaddition reaction<br />

Reaction scheme display microwave assisted Diels Alder reaction in neat<br />

condition without using any solvent. First process gave 97% yield in 20 min. In<br />

second process, diastereomers were obtained. 153-154<br />

neat, MW, 165 C, 20 min<br />

O<br />

H<br />

H<br />

O<br />

O<br />

O<br />

H<br />

O<br />

O<br />

H<br />

O<br />

O<br />

N<br />

R<br />

O<br />

N<br />

R<br />

O<br />

H<br />

H<br />

H<br />

O<br />

Ar<br />

O<br />

neat, MW, 165-200 C, 30 min<br />

O<br />

Ar<br />

O<br />

3.8.2 Oxidation<br />

The osmium-catalyzed dihydroxylation reaction, the addition of osmium tetroxide<br />

to olefins to produce a vicinal diol, is one of the most selective and reliable<br />

organic transformations. Recent work by Sharpless, Fokin, and coworkers 155 has<br />

uncovered that electron-deficient olefins can be converted into the corresponding<br />

diols much more efficiently when the reaction medium is kept acidic.<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F K 2 OsO 2 (OH) 4 , citric acid<br />

Water, MW, 120 °C, 150 min<br />

F<br />

F<br />

F<br />

F<br />

O H<br />

O H<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

3.8.3 Multicomponent Reaction (MCR)<br />

The Mannich reaction has been known since the early 1900s and has since then<br />

been one of the most important transformations to produce β-amino ketones.<br />

Although the reaction is powerful, it suffers from some disadvantages, such as<br />

the need for drastic reaction conditions, long reaction times, and sometimes low


118<br />

yields of products. Luthman and coworkers 156 have reported microwave-assisted<br />

Mannich reactions as MCR that employed paraformaldehyde as a source of<br />

formaldehyde, a secondary amine in the form of its hydrochloride salt, and a<br />

substituted acetophenone.<br />

O<br />

H<br />

O<br />

dioxane, MW, 180 C, 10 min<br />

O<br />

N<br />

H<br />

H<br />

R 1<br />

R 2<br />

Ar<br />

Ar<br />

R 1<br />

N<br />

R 2<br />

O<br />

H<br />

N<br />

N<br />

PF 6<br />

-<br />

R 4<br />

R 1<br />

N<br />

R 4<br />

H<br />

H R 1<br />

R 3<br />

R 2<br />

CuCl, dioxane, MW, 150 C, 6-10 min<br />

R 3<br />

R 2<br />

3.8.4 Nucleophilic Aromatic Substitution<br />

A number of publications report efficient nucleophilic aromatic substitutions driven<br />

by microwave heating involving either halogen substituted aromatic or<br />

heteroaromatic systems. Scheme given below summarizes some heteroaromatic<br />

systems and nucleophiles along with the reaction conditions that have been<br />

developed by Cherng for microwave-assisted nucleophilic substitution reactions.<br />

In general, the microwave-driven processes provide significantly higher yields of<br />

the desired products in much shorter reaction times 157-161 .<br />

Hetaryl - X<br />

nucleophile<br />

neat or NMP, HMPA, DMPU<br />

MW, 70-110 C, 1-20 min<br />

Hetaryl - Nu<br />

I<br />

X<br />

N<br />

N<br />

N X N N N<br />

X<br />

N<br />

Cl<br />

Br<br />

Br<br />

N Cl N N


119<br />

3.8.5 Solid Phase Organic Synthesis<br />

Solid-phase organic synthesis (SPOS) exhibits several advantages compared<br />

with classical protocols in solution. Reactions can be accelerated and driven to<br />

completion by using a large excess of reagents, as these can easily be removed<br />

by filtration and subsequent washing of the solid support. In addition, SPOS can<br />

easily be automated by using appropriate robotics and applied to “split-and-mix”<br />

strategies, useful for the synthesis of large combinatorial libraries 162-163<br />

A study published in 2001 demonstrated that high temperature microwave<br />

heating (200 8C) can be effectively employed to attach aromatic carboxylic acids<br />

to chloromethylated polystyrene resins (Merrifield and Wang) by the cesium<br />

carbonate method. Significant rate accelerations and higher loadings were<br />

observed when the microwave-assisted protocol was compared to the<br />

conventional thermal method. Reaction times were reduced from 12–48 hours<br />

with conventional heating at 80 ºC to 3–15 minutes with microwave heating at<br />

200 ºC in NMP in open glass vessels 164-165 .<br />

O<br />

Cl<br />

O<br />

R<br />

R-COOH, Cs 2 CO 3 , NMP<br />

O<br />

MW, 200, 3-15 min<br />

O<br />

Kappe et al 166 have reported microwave assisted synthesis of bicyclic systems<br />

derived from Biginelli DHPM derivatives.<br />

O<br />

MeO<br />

O<br />

Cl<br />

OH<br />

DCB<br />

O<br />

O<br />

MW , 170 C, 15 min<br />

Cl<br />

O<br />

R 1 -CHO, urea<br />

O<br />

R 1<br />

dioxane, HCl<br />

70 C, 18 h<br />

R 2<br />

N<br />

NH<br />

O<br />

O<br />

R 1<br />

NH<br />

DMF, MW, 150 C, 10 min<br />

O<br />

O<br />

R 1<br />

NH<br />

R 2 -N H 2 , D M F, 70 C , 18 h<br />

N<br />

H<br />

O<br />

N<br />

H<br />

O<br />

Cl<br />

N<br />

H<br />

O<br />

DMF, MW , 150-200 C, 10 min<br />

R 3 -NH-NH 2, D M F, R T, 30 m in<br />

DMF, MW , 150 C, 10 min<br />

O<br />

R 1<br />

HN<br />

NH<br />

N<br />

R 3<br />

N<br />

H<br />

O


120<br />

In recent years, various methods have been examined for the synthesis of DHPM<br />

on solid phase. Li and Lam 29 describe a convenient traceless solid-phase<br />

approach to synthesize3,4-dihydropyrimidine-2-ones. Key steps in the synthesis<br />

are (i) sulfinate acidification, (ii) condensation of urea or thiourea with aldehydes<br />

and sulfinic acid, and (iii) traceless product release by a one-pot cyclizationdehydration<br />

process. Since a variety of reagents can be used in steps (ii) and (iii),<br />

the overall strategy appears to be applicable to library generation.<br />

HCl<br />

SO 2 Na<br />

DMF-H2O<br />

R 1 O<br />

O<br />

R 3<br />

O<br />

R1-CHO<br />

SO 2 H<br />

X<br />

H 2 N NH 2<br />

HN<br />

R 2<br />

R 3<br />

R 2<br />

SO 2<br />

X<br />

N<br />

H<br />

TsOH<br />

NH<br />

R 1 NH 2<br />

X<br />

R 1<br />

O<br />

HN<br />

R 2<br />

TsOH<br />

OH<br />

X<br />

N<br />

H<br />

OH<br />

R 2<br />

O<br />

O<br />

Very recently, Gross et al 30 developed a protocol based on immobilized α-<br />

ketoamides to increase the diversity of DHPM. The resulting synthetic protocol<br />

proved to be suitable for the preparation of a small library using different building<br />

blocks. They found that the expected DHPM derivatives were formed in high<br />

purity and yield if aromatic aldehyde- and α-ketoamide building blocks were used.<br />

The usage of an aliphatic aldehyde leads to an isomeric DHPM mixture. Purities<br />

and yields were not affected if thiourea was used instead of urea.<br />

Polymer<br />

O<br />

R<br />

Polymer<br />

O<br />

R<br />

O<br />

O<br />

O<br />

HN<br />

O<br />

HN<br />

O<br />

O<br />

NH 2 Cl<br />

R 1<br />

R<br />

O<br />

H 2 N<br />

S<br />

Polymer<br />

O<br />

NH<br />

O<br />

R<br />

N<br />

S


121<br />

Lusch and Tallarico 31 reported a direct, Lewis acid-catalyzed Biginelli synthesis of<br />

3,4-dihydropyrimidinones on high-capacity polystyrene macrobeads with a<br />

polymer O-silyl-attached N-(3-hydroxypropyl)urea.<br />

1) ArCHO, LiTf<br />

CH 3 CH 3<br />

H 3 C<br />

Si<br />

CH 3<br />

O HN<br />

O<br />

NH 2<br />

HO<br />

R1<br />

N<br />

O<br />

O<br />

NH<br />

OR 3 Ar<br />

CH 3<br />

CN, 80 o C 2) LiOTf, CH 3<br />

CN, 80 o C, 3) HF / Pyridine<br />

O<br />

R 1 CO 2 R 3<br />

4) TMSOEt<br />

Resin-urea was first reacted separately with either 4-bromo- or 4-<br />

chlorobenzaldehyde or lithium trifluoromethanesulfonate in acetonitrile at 80 °C.<br />

After washing, the beads were pooled and reacted with ethyl acetoacetate and<br />

lithium trifluoromethanesulfonate in acetonitrile at 80 °C. Formation of only one<br />

kind of Biginelli product per bead demonstrated the feasibility of a solid-phase<br />

non-Atwal two-step split-and-pool synthesis of 3,4-dihydropyrimidinones.<br />

3.9 Synthetic Aspects.<br />

Scheme- 4<br />

Thiazolo pyrimidine and pyrimido thiazine are very important bicyclic system in<br />

medicinal chemistry. Various synthetic routes have been reported in literature to<br />

synthesize these bicyclic systems. Utility of dihydropyrimidine ring to synthesize<br />

such bicyclic system can be used to obtain derivatives with phenyl carbamoyl as<br />

side chain on pyrimidine ring of bicyclic system.<br />

Dihydropyrimidine ring, substituted with phenyl carbamoyl side chain at C 5<br />

position, was synthesized by reacting acetoacetanilide, thiourea and aldehyde.<br />

This dihydropyrimidine ring was reacted with dihalo alkane to get fused bicyclic<br />

systems. In synthesis of thiazolo pyrimidine system, 1,2-dibromo ethane was<br />

reacted with 2-thiodihydropyrimidine derivatives. Pyrimido-thiazine systems can<br />

be synthesized using 1,3-dibromo propane in place of 1,2-dibromo ethane with


122<br />

shorter reaction time and better yields as compared with synthesis of thiazolo<br />

pyrimidine systems.<br />

Scheme -5<br />

N-substitution in dihydropyrimidine ring is reported to enhance activity profile.<br />

Similarly, substitutions at C 5 position also plays key role in activity profile. N-<br />

phenyl substituted dihydropyridines were also synthesized by our group and it<br />

also showed interesting biological profile. Results obtained in dihydropyridine<br />

modification, inspired to introduce phenyl carbamoyl moiety at C-5 position of<br />

dihydropyrimidine skeleton. This modification to dihydropyrimidine skeleton<br />

exhibited moderate biological profile. Moderate anti tubercular activity was<br />

observed for these derivatives against Mycobacterium H 37 Rv.<br />

Our laboratory is involved in the synthesis of modified 1,4-dihydropyridine and<br />

dihydropyrimidine skeleton derivatives for last few years. Introduction of phenyl<br />

carbamoyl moiety at C-3 and/or C-5 position in dihydropyridine skeleton has<br />

showed diverse activity profile. Very promising results obtained with these<br />

modifications to dihydropyridine skeleton. For the synthesis of N-phenyl<br />

dihydropyrimidines we used different N-phenyl ureas with methyl substitution (-<br />

Phenyl, -3-methylphenyl, 2,4-dimethylphenyl) were synthesized.<br />

Acetoacetanilides were synthesized with different halogen substitutions (4-chloro,<br />

4-flouro, 3-chloro-4-flouro). Scheme 3 is synthesis of N-phenyl substituted DHPM<br />

derivatives by reacting N-(phenyl/3-methylphenyl/ 2,4-dimethyl) urea, (4-chloro,<br />

4-flouro, 3-chloro-4-flouro) acetoacetanilide and aromatic aldehyde. The reaction<br />

time was observed 8-12 hours depending on the substitution on substitutions on<br />

4-phenyl and N-phenyl ring. The synthesized compounds are characterized by<br />

IR, NMR and Mass spectral analysis and are under screening against<br />

Mycobacterium H 37 Rv for anti tubercular activity.<br />

Scheme 6<br />

Work done earlier in our lab on 1,4-dihydropyridine and interesting results<br />

obtained for this structural class inspire to modify aza analogs of 1,4-<br />

dihydropyridine i.e. dihydropyrimidine. Earlier library of compounds was<br />

generated of dihydropyrimidine derivatives with phenyl carbamoyl moiety at C 5<br />

position. Moderate pharmacological profile obtained for this library. In


123<br />

continuation of this work, it was planned to develop various modified compounds<br />

associated with aliphatic chain at C4 position of dihydropyrimidines. Phenyl ring<br />

at C 4 position of classical dihydropyrimidine is replaced with aliphatic chain. Work<br />

deals with an aliphatic aldehyde (butyraldehyde) as a substrate to obtain a<br />

dihydropyrimidine skeleton without phenyl or heteroaryl ring at C 4 . The aim of this<br />

work was to develop small library of novel DHPM compounds which give diversity<br />

from earlier ones. When the reactions carried out by conventional methods, long<br />

reaction time (10-12 hours) was observed. To overcome these problems,<br />

microwave irradiation technique was utilized reduce reaction time (10-15 minutes.<br />

Different solvent were used (methanol, ethanol, THF, acetonitrile, DMF) but<br />

methanol was found to be most suitable.


Chapter- 4<br />

Synthesis & Characterization of N-substituted<br />

phenyl-7 methyl-2,3 dihydro-5H[1,3]thiazolo<br />

[3,2-a]pyrimidines and 3,4-dihydro-2h,.6Hpyrimido<br />

[2,1-b] [1,3] thiazine-7-carboxamides.<br />

1. Reaction scheme 124<br />

2. Experimental observation 129<br />

3. Physical data table 131<br />

4. Spectral analysis 136<br />

5. MASS fragmentation 138<br />

6. Spectral data 139<br />

7. IR spectra 146<br />

8. 1 H NMR spectra 148<br />

9. Mass spectra 154<br />

10. 13 C spectra 157


124<br />

INTRODUCTION<br />

A general introduction of Chemistry of Pyrimidines and their biological activities<br />

and related structure modifications are already mentioned as a separate Chapter<br />

3 earlier.<br />

The current chapter deals with the synthesis of N-(substituted phenyl)-7-methyl- 2,<br />

3- dihydro - 5H -[1,3] thiazolo [3,2-a] pyrimidines and 3, 4- dihydro -2H, 6Hpyrimido[2,1-b][1,3]thiazine-7-carboxamides.<br />

The title compounds are prepared by (i) Preparation of respective<br />

acetoacetanelides [AA] (ii) Multicomponent reaction of AA with aromatic aldehyde<br />

and thiourea leading to thiopyrimidines (iii) Cyclization of thipyrimidines into final<br />

fused pyrimidine derivatives.<br />

The chemistry, reaction mechanism, experimental protocols, spectral and<br />

physical data and interpretation are given in subsequent pages.


125<br />

4.1 REACTION SCHEMES<br />

4.1.1 Scheme-1<br />

NH 2<br />

R 1 +<br />

C H 3<br />

O<br />

O<br />

COC 2<br />

H 5<br />

KOH/NaOH<br />

Toluene,115 0 c<br />

O<br />

R 1 H 2 N<br />

NH +<br />

R 2<br />

+ S<br />

H 2 N<br />

H 3 C O<br />

H O<br />

HCl<br />

CH 3<br />

OH<br />

Reflux<br />

R 2<br />

O<br />

R 1<br />

NH<br />

NH<br />

C H 3<br />

N<br />

H<br />

S


126<br />

4.1.2 Scheme-2<br />

R 2<br />

O<br />

R 1<br />

NH<br />

NH<br />

+<br />

Br<br />

DMF, 140 0 C<br />

C H 3<br />

N<br />

H<br />

S<br />

Br<br />

K 2<br />

CO 3<br />

R 2<br />

O<br />

R 1<br />

NH<br />

N<br />

C H 3<br />

N<br />

S<br />

Where R 1<br />

= Cl,F<br />

R 2<br />

= OH,Cl,OCH 3<br />

, etc..<br />

4.1.3 Scheme-3<br />

R<br />

Br<br />

O<br />

NH<br />

NH<br />

+<br />

DMF, 140 0 C<br />

C H 3<br />

N<br />

H<br />

S<br />

Br<br />

K 2<br />

CO 3<br />

Cl<br />

O<br />

R<br />

NH<br />

N<br />

C H 3<br />

N<br />

S<br />

Where R= Cl,OH,etc...


127<br />

4.1.4 Reaction Mechanism<br />

H +<br />

-H 2<br />

O<br />

H O H N + H<br />

NH 2<br />

H 2 N S<br />

H 2 N S<br />

O<br />

-H +<br />

NH<br />

H N + H<br />

H 3 C O<br />

H 2 N S<br />

-H 2<br />

O<br />

O<br />

NH N H<br />

H 3 C N S<br />

H<br />

NH<br />

O<br />

C H 3<br />

O<br />

O<br />

N<br />

NH 2<br />

NH N H<br />

HO<br />

N S<br />

H 3 C<br />

H<br />

H S


128<br />

4.1.5 Reaction Mechanism<br />

O<br />

NH N H +<br />

H 3 C N SH<br />

Br<br />

-HBr<br />

Br<br />

O<br />

NH N H<br />

H 3 C N S<br />

Br<br />

-HBr<br />

O<br />

NH<br />

N<br />

C H 3<br />

N<br />

H<br />

S


129<br />

4.2 Experimental Observations<br />

The mixture of aldehyde, thiourea, and acetoacetanilide refluxed at 65-70 o C for 5<br />

hours to give crystalline product directly.<br />

During reaction, the quantity of Con. HCl is very significant. The permanent<br />

monitoring of reaction is necessary, if not, an arylidene product is isolated and<br />

cyclocondensation leftovers incomplete. The colours of crystalline products are<br />

light yellow to orange.<br />

Thin layer chromatography<br />

It was approved on silica Gel-G as a stationary phase. The slurry was primed by<br />

adding up 20 ml distilled water to 10 gm Silica Gel in 250 ml beaker with constant<br />

stirring and the slurry was poured over glass plate and unvarying thin layer was<br />

prepared. The plate was held in reserve dried at 105 o C in an oven and activated<br />

before used.<br />

The reactions of all newly synthesized compounds and intermediate were<br />

supervised and the purity was checked by TLC.<br />

Mobile phase: 1. Ethyl acetate : Hexane<br />

2. Chloroform : Methanol<br />

Melting point<br />

All the melting points were taken in open end capillary by means of paraffin bath<br />

with standard Zeal thermometer and they were uncorrected.<br />

4.3 Experimental<br />

4.3.1 4-Chloro/flouro acetoacetanilide<br />

4-chloro/flouro aniline (0.1M) and ethyl acetoacetate (0.1 M) was refluxed at 110°<br />

C in 40 ml of toluene and catalytic amount of KOH/NaOH. The completion of<br />

reaction was monitored with TLC. After completion of reaction, toluene was<br />

distilled out. The residue was cooled at room temperature and was treated with<br />

ether. The solid was filtrated and dried. (Yield: 4-chloroacetoacetanilide – 62%, 4-<br />

flouroacetoacetanilide – 56%. M.P.; 4-chloroacetoacetanilide - 114° C<br />

(Reported * -115 0 C.), 4-fluoroacetoacetanilide - 129° C (Reported * – 128 o C).


130<br />

4.3.2 N - (Substituted phenyl)- 1, 2, 3, 4 - tetrahydro-6-methyl-4-(substituted<br />

phenyl)-2-thioxopyrimidine-5-carboxamides (Scheme-1)<br />

[General method]<br />

Acetoacetanilide (0.01M), aldehyde (0.01M) and thiourea (0.015M) were<br />

dissolved in minimum quantity of methanol. It was heated for 5-10 minutes to get<br />

the clear solution. Few drops of Con. HCl were added to the reaction mixture as a<br />

catalyst. The reaction mixture was then refluxed in water bath for 6-10 hrs. The<br />

progress of reaction was monitored by TLC. The reaction mixture was allowed to<br />

cool at room temperature. The solid separated was filtered, washed with hot<br />

methanol and dried. (2a-p) (Yield: 45-60%).<br />

Physical data of newly synthesized compounds are given in Table 4.1.1.<br />

4.3.3 N - (4-Chloro phenyl) – 3, 5, 8, 8a - tetrahydro-7-methyl-5-phenyl-2Hthiazolo<br />

[3, 2-a] pyrimidine-6-carboxamide (Scheme-2 & 3)<br />

[General method]<br />

N-(substituted phenyl)-1,2,3,4-tetrahydro-6-methyl-4-(substituted phenyl)-2-<br />

thioxopyrimidine-5-carboxamide (0.01M) and dibromo ethane (or dibromo<br />

propane) were dissolved in DMF and heated at 140° C for 2-2.5 hrs. The reaction<br />

mixture was poured on crushed ice and was extracted with chloroform. The<br />

chloroform was removed under vacuum. (Yield: 55-65%).<br />

Physical data of newly synthesized compounds are given in Table 4.1.2 and 4.1.3.<br />

* Naliapara, Y. T.; Ph.D. Thesis., <strong>Saurashtra</strong> <strong>University</strong>, Rajkot (1998)


131<br />

4.4 PHYSICAL DATA<br />

4.4.1 Physical data of N-(substituted phenyl)-6-methyl-4-(substituted<br />

phenyl)-2-thioxo-1,2,3,4-tetrahydropyrimidine -5-carboxamides (AKS<br />

551-567)<br />

R 2<br />

O<br />

R 1<br />

NH<br />

NH<br />

C H 3<br />

N<br />

H<br />

S<br />

No. Code R 1 R 2 MW Yield<br />

in %<br />

R f<br />

value<br />

1. AKS- 551 4-Cl 4-OH 373.85 63 0.38<br />

2. AKS- 552 4-Cl 4-N(CH 3 ) 2 400.92 51 0.51<br />

3. AKS- 553 4-Cl 4-CL 392.303 68 0.45<br />

4. AKS- 554 4-Cl 2-OCH 3 387.88 49 0.53<br />

5. AKS- 554 4-Cl 2,3,5,6- 457.97 56 035<br />

dibenzo<br />

6. AKS- 555 4-Cl 2,3 benzo 407.91 53 0.46<br />

7. AKS- 556 4-Cl 3-NO 2 402.89 58 0.54<br />

8. AKS- 557 4-Cl 4-NO 2 402.89 61 0..36<br />

9. AKS- 558 4-F 3-NO 2 386.40 55 *0.52<br />

10. AKS- 559 4-F 2-OH 357.40 59 *0.40<br />

11. AKS- 560 4-F 4-Cl 375.88 61 *0.38<br />

12. AKS- 561 4-F 2-OCH 3 371.47 48 *0.45


132<br />

13. AKS- 562 4-F 2,3,5,6- 441.51 62 *0.39<br />

dibenzo<br />

14. AKS- 563 4-F H 341.40 52 *0.41<br />

15. AKS- 564 2,3-benzo 4-Cl 407.95 44 *0.35<br />

16. AKS-565 2,3-benzo 4-OH 389.51 48 *0.54<br />

17. AKS-566 2,3-benzo 4-NO 2 418.46 62 *0.51<br />

18. AKS-567 2,3-benzo 2-NO 2 418.46 56 *0..37<br />

TLC solvent system: Ethyl acetate : Hexane 3.5 ml : 6.5 ml<br />

*CH 2 Cl 2 : MeOH 9.5 ml : 0.5 ml<br />

Visualization: UV light (long)


133<br />

4.4.2 Physical data of N-(substituted phenyl)-7-methyl-5-(substituted<br />

phenyl)-2,3-dihydro-5H-1,3]thiazolo[3,2-a]pyrimidine-6-carboxamides<br />

(AKS 570-587)<br />

R 2<br />

O<br />

R 1<br />

NH<br />

N<br />

C H 3<br />

N<br />

S<br />

No. Code R 1 R 2 MW MP° C Yield<br />

Rf value<br />

in %<br />

1 AKS-570 4-Cl 2-OH 399.89 140-142 57 0.41<br />

2 AKS-571 4-Cl 4-N(CH 3 ) 2 426.95 210-212 69 0.49<br />

3 AKS-572 4-Cl 3,4-Di OH 415.89 174-176 77 0.36<br />

4 AKS-573 4-Cl 4-Cl 418.33 210-212 65 0.42<br />

5 AKS-574 4-Cl 2-OCH 3 413.92 160-162 66 0.62<br />

6 AKS-575 4-Cl 2-Cl 418.34 177-178 60 0.56<br />

7 AKS-576 4-Cl 3-NO 2 428.89 214-17 59 0.58<br />

8 AKS-577 4-F H 367.43 220-224 65 0.45<br />

9 AKS-578 4-F 2-OCH 3 397.46 246-248 61 0.54<br />

10 AKS-579 4-F 3-NO 2 412.43 198-200 71 *0.46<br />

11 AKS-580 4-F 3-Cl 401.88 146-148 56 *0.39<br />

12 AKS-581 4-F 4-Cl 401.88 174-176 75 0.41<br />

13 AKS-582 4-F 2-NO 2 412.43 222-224 62 0.51


134<br />

14 AKS-583 4-F 3-OCH 3 397.46 165-167 74 *0.35<br />

15 AKS-584 4-F 4-OCH 3 397.46 212-214 53 *0.48<br />

16 AKS-585 4-F 2-Cl 401.88 189-191 62 *0.53<br />

17 AKS-586 2,3-Benzo 4-OCH 3 431.54 234-236 56 *0.51<br />

18 AKS-587 2,3 -Benzo 2-Cl 433.95 184-186 53 *0.46<br />

TLC solvent system: EA: Hexane 4 ml : 6 ml<br />

* CH 2 Cl 2 : MeOH 9 ml : 1 ml<br />

Visualization: UV light (long)


135<br />

4.4.3 Physical data of compounds N-(4-chlorophenyl)-6-(substituted<br />

phenyl)-8-methyl-3,4-dihydro-2H,6H-pyrimido[2,1-b][1,3]thiazine-7-<br />

carboxamide (AKS-588-593)<br />

O<br />

R<br />

NH<br />

N<br />

Cl<br />

C H 3<br />

N<br />

S<br />

No. Code R MW MP° C Yield<br />

Rf value<br />

in %<br />

19 AKS-588 4-Cl 432.36 189-193 68 0.42<br />

20 AKS-589 2-OCH 3 427.94 222-224 74 0.51<br />

21 AKS-590 2- OH 413.92 174-176 56 0.36<br />

22 AKS-591 4-NO 2 442.91 256-257 63 0.48<br />

23 AKS-592 3-NO 2 442.91 185-187 71 0.41<br />

24 AKS-593 2-Cl 432.36 212-214 47 0.35<br />

TLC solvent system: CH 2 Cl 2 : MeOH 9 ml : 1 ml<br />

Visualization: UV light (long)


136<br />

4.5 SPECTRAL ANALYSIS<br />

Spectral data of only key intermediate and final compounds are included.<br />

Elemental analysis of the compounds was in agreements (within 0.4% of the<br />

theoretical value) with the structures assigned. The constitution of newly<br />

synthesized compounds was supported by IR, NMR, and MASS spectral study.<br />

The details are as under.<br />

4.5.1 MASS SPECTRAL ANALYSIS<br />

Systematic fragmentation pattern was observed in mass spectral investigation.<br />

Peaks for specific fragments were recognized in each mass spectrum. Molecular<br />

ion peaks observed were in harmony with molecular weight of compounds.<br />

Molecular ion peak (M + ) of the compounds were in total conformity with its<br />

molecular weight. In presence of halogen respective M +1 peak was observed. M/e<br />

value were obtained at 442, 431, 431, 401, and 433 in mass spectrum of<br />

compounds AKS-592, AKS-588, AKS- 593, AKS-585 ASK-587 correspondingly.<br />

A base peak in each spectrum was obtained as a consequence of specific<br />

fragmentation in each molecule. Fragment obtained caused by cleavage of bond<br />

adjacent to carbonyl double bond in the phenyl carbamoyl side chain at C 5<br />

location gave base peak in each spectrum. Base peak obtained at 316, 305, 305,<br />

255 and 291 m/e values in mass spectrum of compound AKS-592, AKS-588,<br />

AKS-593, AKS-585 and AKS-587 respectively were due to precise fragmentation<br />

pattern observed in this series.<br />

The second characteristic peak observed in each spectrum as a result of cleave<br />

adjacent bond to carbonyl double bond at the additional elevation. Peaks were<br />

pragmatic at 288, 277, 277, 264 and 264 m/e values in relevant spectrum for<br />

these fragments. Mass spectra of the synthesized compounds are given on<br />

Pages 153-155.<br />

4.5.2 IR SPECTRAL ANALYSIS<br />

IR spectral study of newly synthesized compounds reveals following details.<br />

Amide Carbonyl was observed at 1680-1645 cm -1 .The stretching of secondary<br />

amine (>NH) appeared in the region of ~3119-3300cm -1 , its bending and C-N<br />

stretching appears at 1345 cm -1 to 1370 cm -1 respectively. The aromatic moiety


137<br />

show distinctive absorptions in several region of the spectrum. Absorption owing<br />

to the C-H stretching vibration of aromatic compounds occurs near 3030 cm -1 .<br />

There are four absorption bands in the (1667-1429 cm -1 ) region that are<br />

particularly diagnostic of aromatic structure. These happens near ~1600, 1580,<br />

1500, 1440 cm -1 and are caused by C=C skeletal in plan vibrations. The other<br />

frequencies were due to aromatic moieties o.o.p. appears around at ~1085 cm -1 .<br />

The C-H stretching of methyl group observed at 2850 cm -1 (sym.) and ~2900<br />

(asym.) and its bending observed at ~1384 cm -1 . The numbers of absorption<br />

bands of variable intensity appear in the 1000-670 cm -1 region that is caused by<br />

C-H bending vibrations. This absorption depends on the number of adjacent free<br />

hydrogen atoms aromatic nucleus contains. An aromatic compound containing<br />

five closest hydrogen atoms absorbs in both the 750-700 cm -1 regions. If the<br />

compound contains four hydrogen atoms, its absorbs robustly only near 750 cm -<br />

1 . Superior degrees of substitution on the aromatic focus are usually weak and<br />

not easily assigned. Representative IR Spectra are given Pages 145-146. The IR<br />

data of all synthesized compounds are specified for individual compounds<br />

separately.<br />

4.5.3 1 H NMR SPECTRAL ANALYSIS<br />

Following representative signals were observed in all the NMR spectra of this<br />

series.<br />

Looking to NMR spectra of the title compounds, methyl (CH 3 ) protons were<br />

observed as a singlet at 2.2 -2.8 δ ppm. In most of derivatives –NH proton were<br />

observed 7.0 -9.2 δ ppm. The aromatic protons are pragmatic between around<br />

6.60- 8.30 δ ppm. For splitting patterns of meta phenyl functionality, two triplets<br />

are observed in the aromatic region due to ortho/Meta dicoupling of phenyl<br />

protons. For ortho substituted phenyl ring, three doublets are observed due to diortho/meta<br />

coupling of phenyl protons. In NMR spectrum, we observed four to six<br />

multiplet splitting pattern in aliphatic region as a result of the presence of 1,3 -<br />

thiazolidine and 1,3- thiazine nucleus, where all of the protons are chemically<br />

equivalent but magnetically nonequivalent, therefore all of these protons show<br />

multiplet splitting pattern instead of triplet. In case of, 1, 3- thiazine nucleus, at C 5<br />

position, two protons were shown in highly defensive region, thereby both protons


gave multiplet signal at similar region. 1 H NMR spectra of the representative<br />

compounds are given on Pages 147-152.<br />

138<br />

4.5.3 ELEMENTAL ANALYSIS<br />

Elemental analysis of the all the synthesized compounds was carried out on<br />

Elemental Vario EL III Carlo Erba 1108 model and the results are in agreements<br />

(within the range of theoretical value) with the structures assigned.<br />

Mass fragmentation of N-(4-chlorophenyl)-8-methyl-6-(3-nitrophenyl)-3,4-<br />

dihydro-2H,6H-pyrimido[2,1-b][1,3]thiazine-7-carboxamide(AKS-592)<br />

O<br />

N + O -<br />

O<br />

O<br />

H 3 C<br />

NH<br />

N + O -<br />

N<br />

CH 3<br />

H 3 C<br />

N<br />

S<br />

N<br />

H 3 C<br />

N<br />

S<br />

CH 3<br />

NH<br />

SH<br />

H 3 C<br />

N<br />

N<br />

S<br />

3<br />

2<br />

1<br />

O<br />

13<br />

12<br />

CH 2<br />

NH<br />

4<br />

Cl<br />

O<br />

N + O -<br />

11<br />

SH<br />

CH 3<br />

H 3 C<br />

N<br />

N<br />

S<br />

NH<br />

N<br />

10<br />

5<br />

C H 3<br />

N<br />

S<br />

9<br />

NH<br />

SH<br />

H 3 C<br />

N<br />

6<br />

7<br />

8<br />

HN<br />

S<br />

CH 2<br />

NH<br />

SH<br />

N<br />

S<br />

NH<br />

SH<br />

NH<br />

S<br />

CH 3


139<br />

SPECTRAL DATA<br />

N - (4-Chloro phenyl) – 5 - (2-hydroxy phenyl) – 7- methyl – 2 , 3 – dihydro -<br />

5H - [1,3] thiazolo [3,2-a] pyrimidine – 6 - carboxamide (AKS-570).<br />

IR(KBr) cm -1 : 3243 (-NH, str), 3019 (-CH=CH), 2928 (Ar-CH,asym), 2858 (Ar-<br />

CH,sym),1679 (-C=O),1526 (-C-C skeletal vibration),1282 (C-S, str),1190(C-H<br />

IPD),1089(C-O-C),758(C-H, OPD).<br />

C, H, N (In %): Found: 60.07 (C), 4.54 (H), 10.51 (N), Cacld: 60.10 (C), 4.52 (H),<br />

10.54 (N)<br />

N - (4-Chlorophenyl) – 5 - (4,N,N-dimethyl) – 7 – methyl – 2 , 3 – dihydro - 5H<br />

-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxamide (AKS-571).<br />

IR(KBr) cm -1 : 3189 (-NH, str), 3040 (-CH=CH), 2949 (Ar-CH,asym), 2869 Ar-<br />

CH,sym),1646 (-C=O),1563 (-C-C skeletal vibration),1245 (C-S, str),1176 (C-H<br />

IPD),1070 (C-O-C),768 (C-H, OPD)<br />

C, H, N (In %): Found: 61.89 (C), 5.43 (H), 13.12 (N), Cacld: 61.85 (C), 5.41 (H),<br />

13.14 (N)<br />

N - (4-Chloro phenyl) – 5 - (3,4-dihydroxy phenyl) – 7 – methyl – 2, 3 -<br />

dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxamide (AKS-572).<br />

IR(KBr)cm -1 : 3562 (-OH),3213 (-NH, str), 3023 (-CH=CH), 2910 (Ar-<br />

CH,asym),2846 (Ar-CH,sym),1668 (-C=O),1523 (-C-C skeletal vibration),1274 (C-<br />

S, str),1174 (C-H IPD),1083 (C-O-C),768 (C-H, OPD).<br />

C, H, N (In %): Found: 57.76 (C), 4.36 (H), 10.10 (N), Cacld: 57.77 (C), 4.34 (H),<br />

10.14 (N)<br />

N , 5 – bis (4-Chloro phenyl) – 7 – methyl – 2 , 3 – dihydro - 5H -[1,3] thiazolo<br />

[3,2-a ] pyrimidine -6 - carboxamide (AKS-573).<br />

IR(KBR)cm -1 : 3273 (-NH, str), 3051 (-CH=CH), 2924 (Ar-CH,asym), 2868,2769<br />

(Ar-CH,sym),1662 (-C=O),1442,1456 (-C-C skeletal vibration),1240,1269 (C-S,<br />

str),1190 (C-H IPD),1016,1107 (C-O-C),707 (C-H, OPD).<br />

C, H, N (In %): Found: 57.42 (C), 4.10 (H), 10.04 (N), Cacld: 57.43 (C), 4.12 (H),<br />

10.09 (N)<br />

N - (4-Chloro phenyl) – 5 - (2-methoxy phenyl) – 7 – methyl – 2 ,3 – dihydro -<br />

5H - [1,3]thiazolo[ 3 , 2 – a ]pyrimidine – 6 - c arboxamide (AKS-574).


140<br />

IR(KBr)cm -1 :3192 (-NH,str),3142 (-CH=CH),2937 (Ar-CH,asym), 2881,2835 (Ar-<br />

CH,sym),1681 (-C=O),1460,1417 (-C-Cskeletal vibration),1240,1285 (C-S,<br />

str),1188 (C-H IPD),1049,1026 (C-O-C),794 (C-H, OPD).<br />

C, H, N (In %): Found: 60.94 (C), 4.87 (H), 10.15 (N), Cacld: 60.98 (C), 4.84 (H),<br />

10.20 (N)<br />

5 - (2-Chloro phenyl) – N - (4-chloro phenyl) – 7 – methyl - 2,3 – dihydro - 5H<br />

- [1,3] thiazolo [3,2-a] pyrimidine – 6 – carboxamide (AKS-575).<br />

IR(KBr) cm -1 : 3221 (-NH, str), 3036 (-CH=CH), 2925 (Ar-CH,asym), 2834 (Ar-<br />

CH,sym),1674 (-C=O),1552 (-C-C skeletal vibration),1289 (C-S, str),1158 (C-H<br />

IPD),1065 (C-O-C),759 (C-H, OPD).<br />

C, H, N (In %): Found: 57.42 (C), 4.10 (H), 10.04 (N), Cacld: 57.44 (C), 4.12 (H),<br />

10.07 (N)<br />

N - (4-Chloro phenyl) – 7 – methyl – 5 - (3-nitro phenyl)-2,3-dihydro-5H-<br />

1,3]thiazolo[3,2-a]pyrimidine-6-carboxamide (AKS-576).<br />

IR(KBr) cm -1 : 3174 (-NH, str), 3021 (-CH=CH), 2926 (Ar-CH,asym), 2845 (Ar-<br />

CH,sym),1675 (-C=O),1532 (-C-C skeletal vibration),1270 (C-S, str),1175 (C-H<br />

IPD),1083 (C-O-C),781 (C-H, OPD).<br />

1H NMR (CDCl 3 , δ ppm): 2.17 (3H,s,1), 3.20 (2H,m,4,5), 3.39 (1H,m,3), 3.68<br />

(1H,2), 5.71 (1H,s,6), 7.19 (2H,m,13,14, J= 2.84, 2.92 Hz), 7.42 (2H,m,11,12, J=<br />

2.00, 2.96 Hz), 7.53 (1H,t,8, J= 7.92, 7.88 Hz), 7.72 (1H,d,9, J= 7.64 Hz), 8.15<br />

(1H,m,7, J= 0.64, 0.84 Hz), 8.24 (1H,t,10, J= 1.84 Hz), 8.64 (1H,s,15)<br />

C, H, N (In %): Found: 56.01 (C), 4.00 (H), 13.06 (N), Cacld: 56.05 (C), 4.04 (H),<br />

13.07 (N),<br />

N-(4-Fluoro phenyl) -7-methyl- 5-phenyl- 2,3-dihydro- 5H-[1,3] thiazolo [3,2-<br />

a]pyrimidine -6-carboxamide (AKS-577).<br />

IR(KBr) cm -1 : 3186 (-NH, str), 3010 (-CH=CH), 2915 (Ar-CH,asym), 2834 (Ar-<br />

CH,sym),1676 (-C=O),1526 (-C-C skeletal vibration),1276 (C-S, str),1191 (C-H<br />

IPD),1078 (C-O-C),774 (C-H, OPD).<br />

C, H, N (In %): Found: 65.38 (C), 4.94 (H), 11.44 (N), Cacld: 65.40 (C), 4.89 (H),<br />

11.47 (N)<br />

N - (4-Fluorophenyl) – 5 - (2-methoxyphenyl) – 7 - methyl - 2,3 – dihydro - 5H<br />

-[1,3] thiazolo [3,2-a] pyrimidine – 6 - carboxamide (AKS-578).


141<br />

IR(KBr) cm -1 : 3224 (-NH, str), 3023 (-CH=CH), 2915 (Ar-CH,asym), 2842 (Ar-<br />

CH,sym),1663 (-C=O),1522 (-C-C skeletal vibration),1276 (C-S, str),1184 (C-H<br />

IPD),1090 (C-O-C),765 (C-H, OPD).<br />

C, H, N (In %): Found: 63.46 (C), 5.07 (H), 10.57 (N), Cacld: 63.48 (C), 5.08 (H),<br />

10.60 (N)<br />

N - (4-Fluoro phenyl) – 7 - methyl – 5 - (3-nitro phenyl)- 2,3 – dihydro - 5H -<br />

[1,3] thiazolo [3,2-a] pyrimidine - 6- carboxamide (AKS-579).<br />

IR(KBr) cm -1 : 3210 (-NH, str), 3036 (-CH=CH), 2916 (Ar-CH,asym), 2845 (Ar-<br />

CH,sym),1674 (-C=O),1556 (-C-C skeletal vibration),1280 (C-S, str),1145 (C-H<br />

IPD),1069 (C-O-C),774 (C-H, OPD).<br />

C, H, N (In %): Found: 58.24 (C), 4.15 (H), 13.58 (N), Cacld: 58.21 (C), 4.17 (H),<br />

13.60 (N)<br />

5 - (3-Chloro phenyl) – N - (4-fluorophenyl) – 7 – methyl - 2,3 – dihydro - 5H -<br />

[1,3] thiazolo [3,2-a] pyrimidine –6- carboxamide (AKS-580).<br />

IR(KBr) cm -1 : 3174 (-NH, str), 3021 (-CH=CH), 2926 (Ar-CH,asym), 2845 (Ar-<br />

CH,sym),1675 (-C=O),1532 (-C-C skeletal vibration),1270 (C-S, str),1175 (C-H<br />

IPD),1083 (C-O-C),781 (C-H, OPD).<br />

C, H, N (In %): Found: 59.77 (C), 4.26 (H), 10.46 (N), Cacld: 59.74 (C), 4.224<br />

(H), 10.49 (N)<br />

5 - (4-Chloro phenyl) – N - (4-fluorophenyl) – 7 – methyl - 2,3 – dihydro - 5H -<br />

[1,3] thiazolo [3,2-a] pyrimidine -6- carboxamide (AKS-581).<br />

IR(KBr) cm -1 : 3216 (-NH, str), 3010 (-CH=CH), 2915 (Ar-CH,asym), 2852 (Ar-<br />

CH,sym),1668 (-C=O),1540 (-C-C skeletal vibration),1263 (C-S, str),1163 (C-H<br />

IPD),1075 (C-O-C),768 (C-H, OPD).<br />

C, H, N (In %): Found: 59.77 (C), 4.26 (H), 10.46 (N), Cacld: 59.79 (C), 4.29 (H),<br />

10.47 (N)<br />

N - (4-Fluoro phenyl) -7- methyl -5- (3-nitro phenyl) -2,3- dihydro -5H- [1,3]<br />

thiazolo [3,2-a] pyrimidine -6- carboxamide (AKS-582).<br />

IR(KBr) cm -1 : 3213 (-NH, str), 3023 (-CH=CH), 2923 (Ar-CH,asym), 2842 (Ar-<br />

CH,sym),1662 (-C=O),1522 (-C-C skeletal vibration),1276 (C-S, str),1184 (C-H<br />

IPD),1090 (C-O-C),752 (C-H, OPD).<br />

C, H, N (In %): Found: 58.24 (C), 4.15 (H), 13.58 (N), Cacld: 58.21 (C), 4.17<br />

(H), 13.61 (N)


142<br />

N - (4-Fluoro phenyl) -5- (3-methoxy phenyl) -7- methyl -2,3- dihydro -5H-[1,3]<br />

thiazolo [3,2-a] pyrimidine -6- carboxamide (AKS-583).<br />

IR(KBr) cm -1 : 3145 (-NH, str), 3021 (-CH=CH), 2918 (Ar-CH,asym), 2834 (Ar-<br />

CH,sym),1665 (-C=O),1526 (-C-C skeletal vibration),1276 (C-S, str),1191 (C-H<br />

IPD),1078 (C-O-C),771 (C-H, OPD).<br />

C, H, N (In %): Found: 63.46 (C), 5.07 (H), 10.57 (N), Cacld: 63.44 (C), 5.10 (H),<br />

10.60 (N)<br />

N - (4-Fluoro phenyl) -5- (4-methoxyphenyl) -7- methyl -2,3- dihydro -5H- [1,3]<br />

thiazolo [3,2-a] pyrimidine -6- carboxamide (AKS-584).<br />

IR(KBr) cm -1 : 3223 (-NH, str), 3025 (-CH=CH), 2932 (Ar-CH,asym), 2842 (Ar-<br />

CH,sym),1673 (-C=O),1540 (-C-C skeletal vibration),1263 (C-S, str),1163 (C-H<br />

IPD),1080 (C-O-C),753 (C-H, OPD).<br />

C, H, N (In %): Found: 63.46 (C), 5.07 (H), 10.57 (N), Cacld: 63.44 (C), 5.10 (H),<br />

10.60 (N)<br />

5 - (2-Chloro phenyl) -N- (4-fluoro phenyl) -7- methyl -2,3- dihydro -5H-[1,3]<br />

thiazolo [3,2-a] pyrimidine -6- carboxamide (AKS-585).<br />

IR(KBr) cm -1 : 3214 (-NH, str), 3010 (-CH=CH), 2915 (Ar-CH,asym), 2852 (Ar-<br />

CH,sym),1662 (-C=O),1546 (-C-C skeletal vibration),1274 (C-S, str),1168 (C-H<br />

IPD),1075 (C-O-C),768 (C-H, OPD).<br />

1H NMR (CDCl 3 , δ ppm): 2.17 (s,3H,1), 3.11 (m,1H,4), 3.25 (m,1H,5), 3.35<br />

(m,1H,3) 3.74 (m,1H,2), 6.11 (s,1H,6), 6.92 (t-t,2H,7,9, J= 3.32, 2.04 Hz ), 7.25 (tt,1H,8,<br />

J= 1.64, 2.04 Hz), 7.33 (qt-qt ,2H,13,14, J= 1.04, 3.04 Hz), 7.46<br />

(m,2H,11,12, J= 2.04, 3.24, 4.92 Hz), 9.01 (s,1H,15), 7.60 (t,1H,10, J= 0.92, 7.00<br />

Hz).<br />

Mass (m/z value) : 401 (12), 386 (10), 366 (5), 295 (3), 291 (100), 255 (2), 228<br />

(22), 213 (4), 197 (4), 187 (8), 179 (12), 163 (4), 151 (10), 127 (23), 115 (4), 110<br />

(11), 86 (24), 83 (14), 67 (17), 42 (8), 41 (3).<br />

C, H, N (in %): Found: 59.77 (C), 4.26 (H), 10.46 (N), Cacld: 59.74 (C), 4.224<br />

(H), 10.49 (N)<br />

5 - (4-Methoxy phenyl) -7- methyl - N- 1-naphthyl -2,3- dihydro -5H-[1,3]<br />

thiazolo [3,2-a] pyrimidine -6- carboxamide (AKS-586).


143<br />

IR(KBr) cm -1 : 3186 (-NH, str), 3025 (-CH=CH), 2916 (Ar-CH,asym), 2834 (Ar-<br />

CH,sym),1670 (-C=O),1526 (-C-C skeletal vibration),1276 (C-S, str),1191 (C-H<br />

IPD),1069 (C-O-C), 768 (C-H, OPD).<br />

1H NMR(CDCl 3 ,δppm): 2.31(s,3H,1),3.10(m,1H,3),3.20(m,1H,2),3.44<br />

(m,1H,5),3.56 (m,1H,4),3.82 (s,1H,11),5.44 (s,1H,6),7.77 ,2H,16,18,J=9.2,9.2 Hz),<br />

7.38 (d,1H,17,J=8.2 Hz), 6.91-7.29 (m,4H,7,8,9,10,J=8.76,7.02 Hz),7.34-7.43<br />

(m,5H,12,13,14,15,19)<br />

13 CNMR(δppm):14.73 (C1), 22.34 (C2), 25.75 (C3), 51.12 (C4), 57.10 (C5), 107.73<br />

(C6), 120.54 (C7), 121.16 (C8), 125.71 (C9), 125.91 (C10), 126.19 (C11), 127.34 (C12),<br />

128.50 (C13), 128.68 (C14), 130.08 (C15), 130.31 (C16), 130.96 (C17), 132.17 (C18),<br />

133.03 (C19), 134.08 (C20), 137.34 (C21), 146.95 (C22), 157.02 (C23), 164.95 (C24),<br />

166.70 (C25).<br />

C, H, N (In %): Found: 66.43 (C), 4.65 (H), 9.68 (N), Cacld: 66.44 (C), 4.67 (H),<br />

9.70 (N)<br />

5 - (2-Chloro phenyl) -7- methyl -N- 1-naphthyl- 2,3- dihydro -5H- [1,3]<br />

thiazolo [3,2-a] pyrimidine -6- carboxamide (AKS-587).<br />

IR(KBr) cm -1 : 3186 (-NH, str), 3018 (-CH=CH), 2926 (Ar-CH,asym), 2823 (Ar-<br />

CH,sym),1671 (-C=O),1522 (-C-C skeletal vibration),1272 (C-S, str),1195 (C-H<br />

IPD),1072 (C-O-C),765 (C-H, OPD).<br />

Mass (m/z value) : 435 (5), 433 (10), 322 (2), 295 (3), 291 (100), 255 (85), 228<br />

(18), 213 (4), 196 (5), 187 (5), 170 (5), 161 (4), 153 (7), 127 (17), 115 (22), 101<br />

(4), 86 (18), 77 (4), 67 (11), 42 (5), 41 (1).<br />

C, H, N (In %): Found: 69.91 (C), 5.40 (H), 9.78 (N), Cacld: 69.87 (C), 5.44 (H),<br />

9.80 (N),<br />

N- 6- Bis (4-chloro phenyl) -8- methyl -3,4- dihydro -2H ,6H- pyrimido [2,1-b]<br />

[1,3] thiazine -7- carboxamide (AKS-588).<br />

IR(KBr) cm -1 : 3284 (-NH, str), 3012 (-CH=CH), 2924 (Ar-CH,asym), 2868 (Ar-<br />

CH,sym),1674 (-C=O),1516 (-C-C skeletal vibration),1263 (C-S, str),1190 (C-H<br />

IPD),1089 (C-O-C),813 (C-H, OPD).<br />

1H NMR (CDCl 3 , δ ppm): 2.15 (m,1H,17), 2.23 (m,1H,16), 2.23 (m,3H,1), 2.90<br />

(m,1H,5), 2.98 (m,1H,4), 3.21 (m,1H,3), 3.33 (m,1H,2), 5.21 (s,1H,6), 7.07<br />

(s,1H,15),7.21-7.24(t-t,2H,13,14,J=2.04,2.88HZ),7.29-7.37 (m,6H,7,8,910,11,12)


144<br />

Mass: 435 (2), 431 (10), 416 (3), 329 (10), 323 (2), 305 (100), 290 (4), 277 (18),<br />

263 (2), 250 (3), 237 (2), 214 (3), 204 (2), 189 (10), 167 (18), 143 (14), 127 (17),<br />

125 (13), 100 (38), 90 (4), 72 (24), 67 (18), 42 (7), 41 (44).<br />

C, H, N (In %): Found: 58.34 (C), 4.43 (H), 9.72 (N), Cacld: 58.31 (C), 4.41 (H),<br />

9.74 (N),<br />

N - (4-Chloro phenyl) -8- methyl -6- (2-methoxyphenyl) -3,4- dihydro -2H, 6Hpyrimido<br />

[2,1-b] [1,3] thiazine -7- carboxamide (AKS-589).<br />

IR(KBr) cm -1 : 3256 (-NH, str), 3018 (-CH=CH), 2965 (Ar-CH,asym), 2829 (Ar-<br />

CH,sym),1668 (-C=O),1570 (-C-C skeletal vibration),1253 (C-S, str),1168 (C-H<br />

IPD),1072 (C-O-C),786 (C-H, OPD).<br />

1H NMR (CDCl 3 , δ ppm): 2.07-2.13 (m,1H,5), 2.16-2.29 (m,1H,4), 2.29 (s,1H,1),<br />

2.82-2.95 (m,2H,6,7), 3.17-3.24 (m,1H,3), 3.41-3.45 (m,1H,2), 3.47 (s,3H,17),<br />

5.80 (s,1H,12), 7.66 (d-d,1H,9,J=1.72,7.68 Hz), 7.26-7.37 (m,5H,8,10,11,13,14),<br />

7.18-7.22 (t-t,2H,15,16, J=2.92 Hz), 7.04 (s,1H,18).<br />

C, H, N (In %): Found: 61.74 (C), 5.18 (H), 9.82 (N), Cacld: 61.77 (C), 5.14 (H),<br />

9.86 (N),<br />

N - (4-Chloro phenyl) -6- (2-hydroxy phenyl) -8- methyl -3,4- dihydro -2H, 6Hpyrimido<br />

[2,1-b] [1,3] thiazine -7- carboxamide (AKS-590).<br />

IR(KBr) cm -1 : 3196 (-NH, str), 3034 (-CH=CH), 2945 (Ar-CH,asym), 2852 (Ar-<br />

CH,sym),1662 (-C=O),1546 (-C-C skeletal vibration),1270 (C-S, str),1190 (C-H<br />

IPD),1062 (C-O-C),765 (C-H, OPD).<br />

C, H, N (In %): Found: 60.94 (C), 4.87 (H), 10.15 (N), Cacld: 60.96 (C), 4.88 (H),<br />

10.20 (N)<br />

N - (4-Chloro phenyl) -8- methyl -6- (4-nitro phenyl) -3,4- dihydro -2H, 6Hpyrimido<br />

[2,1-b] [1,3] thiazine -7- carboxamide (AKS-591).<br />

IR(KBr) cm -1 : 3292 (-NH, str), 3026 (-CH=CH), 2941,2942 (Ar-CH,asym),<br />

2847,2866 (Ar-CH,sym),1689 (-C=O),1498,1462 (-C-C skeletal vibration),1247<br />

(C-S, str),1188 (C-H IPD),1091 (C-O-C),775 (C-H, OPD).<br />

C, H, N (In %): Found: 56.95 (C), 4.32 (H), 12.65 (N), Cacld: 56.92 (C), 4.36 (H),<br />

12.67 (N),<br />

N - (4-Chloro phenyl) -8- methyl -6- (3-nitro phenyl) -3,4- dihydro -2H, 6Hpyrimido<br />

[2,1-b] [1,3] thiazine -7- carboxamide (AKS-592).


145<br />

IR(KBr) cm -1 : 3216 (-NH, str), 3015 (-CH=CH), 2968 (Ar-CH,asym), 2842 (Ar-<br />

CH,sym),1677 (-C=O),1570 (-C-C skeletal vibration),1290 (C-S, str),1182 (C-H<br />

IPD),1075 (C-O-C),771 (C-H, OPD).<br />

1H NMR (CDCl 3 , δ ppm): 2.25 (m,3H,1), 2.19 (m,1H,16), 2.25 (m,1H,17), 2.93<br />

(m,1H,4), 3.02 (m,1H,15), 3.2 (m,1H,3), 3.42 (m,1H,2), 5.39 (s,1H,6), 7.23 (t-t,<br />

2H,13,14, J= 2.92, 1.96 Hz), 7.37 (m,3H,11,12,15), 7.53 (t,1H,8, J= 7.88, 7.96<br />

Hz), 7.76 (t,1H,9, J=1.32, 6.44 Hz), 8.15 (qt-qt,1H,10,J=1.86,1.86 Hz), 8.20<br />

(t,1H,7, J= 1.92 Hz )<br />

Mass: 442 (9), 425 (14), 316 (100), 288 (7), 270 (20), 242 (6), 223 (1), 200 (2),<br />

193 (7), 168 (3), 167 (20), 153 (9), 127 (14), 115 (8), 100 (27), 90 (9), 72 (22), 67<br />

(15), 44 (12).<br />

C, H, N (In %): Found: 56.95 (C), 4.32 (N), 12.65 (N), Cacld: 56.98 (C), 4.34 (N),<br />

12.67 (N)<br />

6 - (2-Chlorophenyl) -N- (4-chloro phenyl) -8- methyl -3,4- dihydro -2H, 6Hpyrimido<br />

[2,1-b] [1,3] thiazine -7- carboxamide (AKS-593).<br />

IR(KBr) cm -1 : 3189 (-NH, str), 3046 (-CH=CH), 2972 (Ar-CH,asym), 2874 (Ar-<br />

CH,sym),1686 (-C=O),1562 (-C-C skeletal vibration),1274 (C-S, str),1189 (C-H<br />

IPD),1092 (C-O-C),768 (C-H, OPD).<br />

Mass: 431 (8), 416 (3), 305 (100), 269 (76), 242 (5), 193 (8), 170 (5), 167 (8),<br />

153 (4), 128 (14), 125 (7), 100 (14), 90 (4), 72 (18), 67 (16), 42 (7).<br />

C, H, N (In %): Found: 58.34 (C), 4.43 (H), 9.72 (N), Cacld: 58.33 (C), 4.46 (H),<br />

9.75 (N),


IR spectrum of N,6-Bis(4-chlorophenyl)-8-methyl-3,4-dihydro-2H,6Hpyrimido[2,1-b][1,3]thiazine-7-carboxamide(AKS-588).<br />

146<br />

Cl<br />

Cl<br />

O<br />

NH<br />

N<br />

C H 3<br />

N<br />

S<br />

IR Spectrum of N-(4-Chlorophenyl)-8-methyl-6-(4-nitrophenyl)-3,4-dihydro-<br />

2H,6H-pyrimido[2,1-b][1,3]thiazine-7-carboxamide(AKS-591).<br />

O<br />

N + O-<br />

Cl<br />

O<br />

NH<br />

N<br />

C H 3<br />

N<br />

S


IR Spectrum of N,5-Bis(4-chlorophenyl)-7-methyl-2,3-dihydro-5H-<br />

[1,3]thiazolo[3,2-a]pyrimidine-6-carboxamide(AKS-573).<br />

147<br />

Cl<br />

Cl<br />

O<br />

NH<br />

N<br />

C H 3<br />

N<br />

S<br />

IR spectrum of N-(4-Chlorophenyl)-5-(2-methoxyphenyl)-7-methyl-2,3-<br />

dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxamide(AKS-574).<br />

Cl<br />

O<br />

O CH 3<br />

NH<br />

N<br />

C H 3<br />

N<br />

S


1 H NMR Spectrum of 5-(2-Chlorophenyl)-N-(4-chlorophenyl)-7-methyl-2,3-<br />

dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxamide(AKS-585)<br />

148<br />

9<br />

AKS-585<br />

8 10<br />

O 7<br />

Cl<br />

14 H H<br />

5<br />

H<br />

11<br />

6 4<br />

N<br />

NH<br />

H<br />

3<br />

F 13 15<br />

H 3 C N S H<br />

12<br />

2<br />

1


1 H NMR Spectrum of N-(4-Chlorophenyl)-7-methyl-5-(3-nitrophenyl)-2,3-<br />

dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxamide(AKS-576).<br />

149<br />

AKS-576<br />

14<br />

11<br />

NH<br />

Cl 13 15<br />

12<br />

O<br />

H 3 C<br />

1<br />

O<br />

9<br />

N +<br />

8 O -<br />

7 10<br />

H H<br />

5<br />

6 H<br />

4<br />

N<br />

H<br />

3<br />

N S H<br />

2


150<br />

1 H NMR Spectrum of N-(4-Chlorophenyl)-8-methyl-6-(3-nitrophenyl)-3,4-<br />

dihydro-2H,6H-pyrimido[2,1-b][1,3]thiazine-7-carboxamide(AKS-592)<br />

AKS-592<br />

14<br />

11<br />

NH<br />

Cl 13 15<br />

12<br />

O<br />

H 3 C<br />

1<br />

8<br />

7<br />

H<br />

6<br />

9<br />

O<br />

N + O -<br />

10 5<br />

H<br />

H H17<br />

4<br />

N<br />

H<br />

16<br />

N S H<br />

H 3<br />

2


151<br />

1 H NMR Spectrum of N,6-Bis(4-chlorophenyl)-8-methyl-3,4-dihydro-2H,6Hpyrimido[2,1-b][1,3]thiazine-7-carboxamide(AKS-588).<br />

Cl<br />

AKS-588<br />

14<br />

11<br />

NH<br />

Cl 13 15<br />

12<br />

O<br />

H 3 C<br />

1<br />

8<br />

7<br />

H<br />

6<br />

9<br />

10 5<br />

H<br />

H4<br />

H17<br />

N<br />

H<br />

16<br />

N S H<br />

H 3<br />

2


152<br />

1 H NMR Spectrum of N,6-Bis(1-naphthyl)-8-methyl-3,4-dihydro-2H,6Hpyrimido[2,1-b][1,3]thiazine-7-carboxamide(AKS-586).<br />

AKS-586<br />

13<br />

14 12<br />

15<br />

16 18<br />

17<br />

19<br />

NH<br />

11<br />

O CH 3<br />

8 9<br />

7<br />

O 10<br />

H H<br />

6 2 H 3<br />

N H<br />

5<br />

H 3 C N S H<br />

1<br />

4


153<br />

1 H NMR Spectrum of N-(4-Chlorophenyl)-7-methyl-5-(3-methoxy phenyl)-2,3-<br />

dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxamide(AKS-589).<br />

AKS-589<br />

16<br />

13<br />

NH<br />

Cl<br />

14 15 18<br />

O<br />

H 3 C<br />

1<br />

11<br />

8 9<br />

10<br />

H<br />

12<br />

N<br />

CH 3<br />

H O H<br />

7 6 H5<br />

N<br />

S<br />

H<br />

2<br />

17<br />

H4<br />

H<br />

3


Mass Spectrum of N-(4-Chlorophenyl)-8-methyl-6-(3-nitrophenyl)-3,4-<br />

dihydro-2H,6H-pyrimido[2,1-b][1,3]thiazine-7-carboxamide (AKS-592)<br />

154<br />

O<br />

N + O -<br />

Cl<br />

O<br />

NH<br />

N<br />

C H 3<br />

N<br />

S<br />

M.W.= 442.91 gm/mole<br />

Mass Spectrum of N,6-Bis(4-chlorophenyl)-8-methyl-3,4-dihydro-2H,6Hpyrimido[2,1-b][1,3]thiazine-7-carboxamide<br />

(AKS-588)<br />

Cl<br />

Cl<br />

O<br />

NH<br />

N<br />

C H 3<br />

N<br />

S<br />

M.W.= 432.36 gm/mole


Mass Spectrum of 6-(2-Chlorophenyl)-N-(4-chlorophenyl)-8-methyl-3,4-<br />

dihydro-2H,6H-pyrimido[2,1-b][1,3]thiazine-7-carboxamide (AKS-593)<br />

155<br />

Cl<br />

O<br />

Cl<br />

NH<br />

N<br />

C H 3<br />

N<br />

S<br />

M.W.= 432.36 gm/mole<br />

Mass Spectrum of 5-(2-Chlorophenyl)-N-(4-fluorophenyl)-7-methyl-2,3-<br />

dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxamide (AKS-585).<br />

O<br />

Cl<br />

NH<br />

N<br />

F<br />

C H 3<br />

N<br />

S<br />

M.W.= 401 gm/mole


Mass Spectrum of 5-(2-Chlorophenyl)-7-methyl-N-1-naphthyl-2,3-dihydro-<br />

5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxamide (AKS-587).<br />

156<br />

O<br />

Cl<br />

NH<br />

N<br />

C H 3<br />

N<br />

S<br />

M.W.= 433.95 gm/mole


13 C Spectra of 5-(4-methoxyphenyl)-7-methyl-N-1-naphthyl-2,3-dihydro-5H-<br />

[1,3]thiazolo[3,2-a]pyrimidine-6-carboxamide(AKS-586)<br />

157<br />

4<br />

O CH 3<br />

22<br />

6 7<br />

16<br />

10 18<br />

11<br />

19<br />

17<br />

14<br />

21<br />

15<br />

9<br />

NH<br />

13 12<br />

O<br />

20<br />

2<br />

24 N<br />

8<br />

3<br />

H 3 C 23 N 25 S<br />

1


Chapter-5<br />

Synthesis and Characterization of N-aryl<br />

substituted-1-phenyl-1, 2, 3, 4 - tetrahydro<br />

pyrimidine derivatives by Biginelli reaction.<br />

1. Reaction scheme 158<br />

2. Experimental 161<br />

3. Physical data table 163<br />

4. Spectral analysis 166<br />

5. Mass fragmentation 168<br />

6. Spectral data 168<br />

7. IR spectra 175<br />

8. 1H NMR spectra 178<br />

9. Mass spectra 182


158<br />

INTRODUCTION<br />

In earlier Chapter, a synthesis of thazolo fused pyrimidine system was developed.<br />

Though Biginelli is well explored as multicomponent rection (MCR), very few work<br />

is reported to use this facile reaction for N-substituted Biginelli products.<br />

On basis of previous work on N-substituted 1,4-dihydropyridines, the current<br />

approach was to use same approach to synthesize practically N-substituted<br />

carbamoyl bearing compounds.<br />

The current Chapter deals with reaction scheme, plausible mechanism, physical<br />

data, spectral data and interpretation of this newly synthesized compounds.


159<br />

5.1 REACTOIN SCHEMES<br />

5.1.1 Scheme-1<br />

+ -<br />

NH 3<br />

Cl<br />

R<br />

O<br />

+ H 2 N NH 2<br />

gla.CH 3<br />

COOH<br />

Con.HCl<br />

R<br />

NH<br />

O<br />

NH 2<br />

5.1.2 Scheme-2<br />

NH 2<br />

R 1<br />

O O<br />

+ H3C<br />

O CH 3<br />

KOH<br />

Toluene,115 0 c<br />

NH<br />

R 1<br />

CH 3<br />

O<br />

O<br />

5.1.3 Scheme-3<br />

O<br />

O<br />

HN<br />

NH 2<br />

R 1<br />

+<br />

NH<br />

H 3 C O<br />

R 2<br />

H<br />

NH<br />

O<br />

+<br />

R<br />

CH 3<br />

OH<br />

Con.HCl,Reflux<br />

R 2<br />

O<br />

R 1<br />

NH<br />

H 3 C<br />

N<br />

O<br />

R


160<br />

5.1.4 REACTION MECHANISM<br />

H<br />

O<br />

HN<br />

NH 2<br />

O<br />

H +<br />

-H 2<br />

O<br />

H<br />

HN<br />

H<br />

N + O<br />

NH<br />

O<br />

H 3 C<br />

H<br />

H<br />

O<br />

H<br />

HN<br />

H<br />

N + O<br />

O<br />

NH<br />

N H<br />

HO<br />

N<br />

O<br />

H 3 C<br />

-H + -H 2<br />

O<br />

O<br />

NH<br />

N H<br />

H 3 C N O


161<br />

5.2 Experimental<br />

5.2.1 N-Substituted phenylurea A (Scheme-1)<br />

The base used are aniline, meta toluidine and 2,4 dimethyl aniline, they were first<br />

converted into respective hydrochloride salts form.<br />

Aniline (3-methyl/2,4-dimethylaniline) hydrochloride (0.2M) and urea (0.2M) were<br />

dissolved in 100 ml of water. 2 ml of glacial acetic acid and 2 ml of conc. HCl was<br />

added to this solution. The reaction mixture was refluxed and white crystals<br />

appeared after 30-40 minutes. The reflux was continued for another 30 minutes.<br />

The reaction mixture was cooled and filtered. The solid product was taken into<br />

300 ml of water and boiled. It was filtered, and the filtrate was concentrated and<br />

allowed to cool. The crystal of phenyl urea was filtered and dried. (Mp: 1-<br />

phenylurea – 146-47° (Reported 147 o C) C; 1-(3-methylphenyl)-urea - 159° C<br />

(Reported 161 o C); 1-(2,4-dimethylphenyl)-urea – 168-69° C) (Reported 166 o C).<br />

Physical data of the synthesized compounds are specified in Table 5.3.1<br />

5.2.2 4-Chloro/Flouro acetoacetanilide B (scheme-2)<br />

4-chloro/flouro aniline (0.1M) and ethyl acetoacetate was refluxed at 110° C in 40<br />

ml of toluene and catalytic amount of KOH/NaOH. The completion of reaction<br />

was monitored with TLC. After completion of reaction, toluene was distilled out.<br />

The residue was cooled at room temperature and was treated with ether. The<br />

solid was filtrated and dried. (Yield: 4-chloroacetoacetanilide – 62%, 4-<br />

flouroacetoacetanilide – 56%. Mp: 4-chloroacetoacetanilide - 114° C<br />

(Reported115 o C), 4-fluoroacetoacetanilide - 129° C (Reported 128 o C).<br />

Physical data of the synthesized compounds are specified in Table 5.3.2


162<br />

5.2.3 4-(Substituted phenyl)-N-(substitutedphenyl) - 1, 2, 3, 4- tetrahydro- 6-<br />

methyl-2-oxo-1-(substitutedphenyl) pyrimidine-5-carboxamides (Scheme-3)<br />

[General method]<br />

Acetoacetanilide (0.01M), aldehyde (0.01M) and N-phenyl urea (0.015M) were<br />

dissolved in methanol and refluxed until clear solution is obtained. Few drops of<br />

Con. HCl was added to reaction mixture and was refluxed for 8-12 hrs. The<br />

reaction was monitored with TLC and after completion; the reaction mixture was<br />

allowed to cool. The solid separated was filtered, washed with hot methanol and<br />

dried. (Yield – 45-60%).<br />

Similarly other compounds were prepared by adopting this process.<br />

Physical data of newly synthesized compounds are specified in Table 5.3.3<br />

A<br />

Vogel’s text book of practical organic chemistry, 5 th Edition, Page no. 965<br />

B Naliapara, Y. T.; Ph.D. Thesis., <strong>Saurashtra</strong> <strong>University</strong>, 1998


163<br />

5.3 PHYSICAL DATA<br />

5.3.1 Physical data of N-(substituted phenyl)-3-oxobutanamide (1a-1b)<br />

H<br />

N<br />

R 1<br />

N<br />

H<br />

NH 2<br />

O<br />

O<br />

No. R 1 MW Yield in MP in o C R f value<br />

%<br />

1a 4-Cl 211.64 58 184-186 0.64<br />

1b 4-F 195.19 52 165-167 0.69<br />

5.3.2 Physical data of 1-(substituted phenyl) urea (2a-2c)<br />

R<br />

O<br />

No. R 1 MW Yield in MP in o C R f value<br />

%<br />

2a H 136.15 55 146-148 0.41*<br />

2b 3-CH 3 150.18 65 186-188 0.37<br />

2c 2,4-di-CH 3 164.20 60 212-214 0.30*<br />

TLC solvent system : Ethyl acetate : Hexane 3.0 ml : 7.0 ml<br />

Visualization: UV light (long)<br />

: *CH 2 Cl 2 : MeOH 9.4 ml :0.6 ml


164<br />

5.3.3 Physical data of N-(substituted phenyl)-N-(substituted phenyl)-6-<br />

methyl-2-oxo-4(substituted phenyl)-1, 2, 3, 4-tetrahydropyrimidine-5-<br />

carboxamides (AKS 901-920)<br />

R 2<br />

O<br />

R 1<br />

NH<br />

NH<br />

H 3 C<br />

N<br />

O<br />

R<br />

Code<br />

No.<br />

R R 1 R 2 MW Melting<br />

Point<br />

Yield<br />

in %<br />

Rf<br />

Value<br />

In o C<br />

AKS-901 H 4-Cl H 417.88 256-258 59 0.36<br />

AKS-902 H 4-Cl 3-NO 2 462.88 241-243 53 0.42<br />

AKS-903 H 4-Cl 2-NO 2 462.88 196-198 48 0.39<br />

AKS-904 H 4-CL 2-Cl 452.33 214-216 58 0.50<br />

AKS-905 H 4-CL 4-F 435.87 174-176 53 0.43<br />

AKS-906 H 4-Cl 2,3- benzo 467.94 245-246 48 0.48<br />

AKS-907 H 4-Cl 2-OH 433.88 194-196 47 0.52<br />

AKS-908 H 4-F 2,3-benzo 451.49 176-178 58 0.47<br />

AKS-909 3-CH 3 4-Cl 3-Cl 466.35 189-191 51 0.39<br />

AKS-910 3 -CH 3 4-Cl 2,3- benzo 481.97 165-167 55 0.41<br />

AKS-911 3- CH 3 4-Cl 4-OCH 3 461.94 185-187 57 0.43*<br />

AKS-912 3 -CH 3 4-Cl 2,3.5,6- 532.03 244-246 48 0.36*<br />

dibenzo<br />

AKS-913 3- CH 3 4-Cl 3-NO 2 476.91 221-223 59 0.33*<br />

AKS-914 2,4diCH 3 4-Cl H 445.94 274-276 57 0.46<br />

AKS-915 2,4diCH 3 4-Cl 3-NO 2 490.93 256-258 46 0.42*


165<br />

AKS-916 2,4diCH 3 4-Cl 3,4,5-tri<br />

OCH 2<br />

536.01 246-248 49 0.46<br />

AKS-917 2,4diCH 3 4-Cl 3-Cl 480.38 185-187 61 0.52<br />

AKS-918 H 4-F 4-OH 417.43 249-251 53 0.35*<br />

AKS-919 H 4-F H 401.43 286-288 46 0.41<br />

AKS-920 H 4-F 3-NO 2 446.43 196-198 56 0.52<br />

TLC solvent system : Ethyl acetate : Hexane 3.0 ml : 7.0 ml<br />

: *CH 2 Cl 2 : MeOH 9.4 ml : 0.6 ml<br />

Visualization: UV light (long)


166<br />

5.4 SPECTRAL ANALYSIS<br />

5.4.1 MASS SPECTRAL ANALYSIS<br />

Mass spectra were recorded on Shimadzu GC-MS-QP-2010 model using Direct<br />

Injection Probe technique. The molecular ion peak was found in concordance<br />

with molecular weight of the individual compound. Characteristic M +2 ion peaks<br />

with one-third intensity of molecular ion peak were observed in case of<br />

compounds having chlorine atom. The DHPMs made of 4-chloro acetoacetanilide<br />

showed this characteristic peak. Various fragmentation details are obtained for<br />

each compound in this series which are as under.<br />

Cleavage of α-bond to double bond is predictable to give peak in mass spectrum.<br />

Cleave of C-N bond (α-bond to >C=O bond at carbomoyl side chain at C 5<br />

position) gave intense peak in each one spectrum. Cleavage of second α-bond to<br />

>C=O bond of carbamoyl moiety gives an additional characteristic peak which is<br />

observed in every mass spectra. Cleavage of methyl (-CH 3 ) group at C 6 site from<br />

above fragment gave distinguishing peak at m/e value less than 15.Cleavage to<br />

both α-bonds to C=O bond of DHPM ring, gives another distinctive peak for this<br />

progression of compounds. Thus, molecular ion peak, one-third strength M +2<br />

peak for chloro derivatives and further than characteristic peaks observed for this<br />

series were in support to assigned structure to these compounds. Mass spectra<br />

of the recently synthesized compounds are given on Pages 182-183.<br />

5.4.2 IR SPECTRAL ANALYSIS<br />

As per spectral data of newly synthesized dihydropyrimidine molecules,<br />

mainstream of the carbonyl (>C=O) stretching observed at ~1640-1700cm -1 due<br />

to amide carbonyl functionality. The additional conformation of the amide group is<br />

revealed by >C-N stretching in range of 1501-1592. The stretching of secondary<br />

amine (>NH) come forward around ~3428-3432 cm -1 , its bending and C-N<br />

stretching come out at 1501-1592 cm -1 correspondingly. The C-H stretching of<br />

aromatic moiety was observed at ~3030 cm -1 .


167<br />

The supplementary characterization owing to aromatics moiety C-C multiple bond<br />

stretching, C-H in plane bending and out of plane bending emerge around at<br />

~1501-1592 cm -1 , ~1080 cm -1 and ~680-790 cm -1 . The C-H stretching of methyl<br />

group observed at ~2920-2923 cm -1 (asym) and ~2831-2851(sym) and its bending<br />

was observed at ~1383 cm -1 . IR spectra of the newly synthesized compounds are<br />

given on Pages 175-177.<br />

5.4.3 1 H NMR SPECTRAL ANALYSIS<br />

It was observed during study of 1 H NMR spectra of the title compounds that<br />

methyl protons are observed as singlet at 2.10-2.16 δ ppm. Asymmetric carbon<br />

protons (>CH) in all compounds were observed between 5.0-5.9 δ ppm. The<br />

amide (>NH) protons gave singlet between 7.0-9.8 δ ppm. The aromatic protons<br />

were observed at close to 6.60-8.30 δ ppm.<br />

Two triplets are evidently observed in the aromatic region as a result of ortho/dimeta<br />

coupling of meta nitro phenyl protons. For the ortho substituted phenyl ring,<br />

three doublets is observed due to di-ortho/meta coupling of phenyl protons and<br />

for para substitution, doublet of doublet was observed in the spectrum. In case of<br />

N-(4-chlorophenyl)-4-(4-fluorophenyl)-6-methyl-2-oxo-1-phenyl-1,2,3,4-<br />

tetrahydropyrimidine-5-carboxamide spectrum owing to ortho di coupling, triplet<br />

–triplet splitting pattern in place of doublet- doublet, caused by the attendance of<br />

neighboring fluorine atom.<br />

1H NMR spectra of the recently synthesized<br />

compounds are given on Pages 178-181.<br />

5.4.4 ELEMENTAL ANALYSIS<br />

Elemental analysis of the all the synthesized compounds was carried out on<br />

Elemental Vario EL III Carlo Erba 1108 model and the results are in agreements<br />

(within the range of theoretical value) with the structures assigned.


168<br />

Mass fragmentation of mass spectrum of N-(3-methylphenyl)-N-(4-<br />

chlorophenyl)-6-methyl-2-oxo-4(4-methoxyphenyl)-1,2,3,4-<br />

tetrahydropyrimidine-5-carboxamide (AKS-911).<br />

O<br />

C H 3<br />

O<br />

CH 3<br />

NH<br />

H 3<br />

OC<br />

N<br />

O<br />

CH<br />

H 3 C<br />

3<br />

NH<br />

H 3 C<br />

N<br />

O<br />

CH 3<br />

CH 3<br />

OH<br />

2<br />

1<br />

11<br />

CH 2 CH 3<br />

H 3 C<br />

N<br />

NH<br />

O<br />

3<br />

O<br />

10<br />

NH<br />

NH<br />

4<br />

Cl<br />

H 3<br />

OC<br />

N<br />

CH 3<br />

CH 3<br />

CH 3<br />

9<br />

OH<br />

O<br />

NH<br />

8<br />

N<br />

O<br />

5<br />

7<br />

OH<br />

NH<br />

NH 2<br />

6<br />

CH 3<br />

H 3 C<br />

CH 2<br />

SPECTRAL DATA<br />

4-(Phenyl) N-(4-chloro phenyl) -6- methyl -2 -oxo- 1, 4 –diphenyl - 1, 2, 3, 4 -<br />

tetrahydropyrimidine-5-carboxamide (AKS-901).<br />

IR(KBr,cm -1 ): 3363-3286 (-NH),3049 (Ar-CH,str), 2916 (methyl,asym,str), 2870<br />

(methyl, sym,str), 1720(>C=O, cyclic), 1685 (>C=O,amide),1523 (C-N,str), 1597-<br />

1491 (>C=C,ring skeletal vibration), 1170 (C-H, ipd), 798-771 (C-H,opd),1087-<br />

1058 (C-O-C,sym,str),1242(C-O-C, asym,str). 667 (-C=C-,opd,bend).<br />

C, H, N (in %): Found: 68.98 (C), 4.82 (H), 10.06 (N), Cacld: 68.94 (C), 4.80 (H),<br />

10.07 (N)<br />

4-(3-Nitro phenyl) -N- (4-chloro phenyl) -6- methyl -2-oxo- 1-phenyl -1, 2, 3,4-<br />

tetrahydropyrimidine-5-carboxamide (AKS-902).


169<br />

IR(KBr,cm -1 ): 3292-3228 (-NH), 3101 (Ar-CH, str), 2924, (methyl,asym,str),<br />

2870(methyl, sym,str), 1701 (>C=O, cyclic), 1685 (>C=O,amide),1525 (C-N,str),<br />

1591-1492 (>C=C,ring skeletal vibration), 1176(C-H, ipd), 775 (C-H,opd),1010-<br />

1089 (C-O-C,sym,str),1244 (C-O-C, asym,str). 682 (-C=C-,opd,bend).<br />

1 H NMR(δ ppm): 1.85 (s, 3H, a), 5.57 (d, 1H, b), 7.21 (m, 4H, c 1 , c 2 , b 3 , b 4 ), 7.39<br />

(t, 1H, b 5 , J=1.16, 7.24 Hz), 7.46 (d-d, 2H, b 1 , b 2 , J=7.88, 1.08 Hz), 7.57 (m, 3H,<br />

c 3 , c 4 , a 4 ), 8.07 (d, 1H, a 3 , J=3.24 Hz), 8.13 (t-t, 1H, a 2 , J=2.20 Hz), 8.39 (t, 1H,<br />

a 1 , J=1.92 Hz), 9.90 (s, 1H, e 1 )<br />

C, H, N (in %): Found: 62.27 (C), 4.14 (H), 12.10 (N), Cacld: 62.24 (C), 4.10 (H),<br />

12.13 (N)<br />

4-(2-Nitro phenyl) -N- (4-chloro phenyl) -6- methyl -2-oxo- 1-phenyl -1, 2, 3,4-<br />

tetrahydropyrimidine-5-carboxamide (AKS-903).<br />

IR(KBr,cm -1 ): 3315-3227 (-NH), 3093-3070 (Ar-CH, str), 2924 (methyl,asym,str),<br />

1701 (>C=O, cyclic), 1662 (>C=O,amide),1529 (C-N,str), 1529-1475 (>C=C,ring<br />

skeletal vibration), 1174-1130 (C-H, ipd), 790 (C-H,opd),1010-1080 (C-O-<br />

C,sym,str),1244 (C-O-C, asym,str). 624 (-C=C-,opd,bend).<br />

C, H, N (in %): Found: 62.27 (C), 4.14 (H), 12.10 (N), Cacld: 62.27 (C), 4.14 (H),<br />

1.10 (N)<br />

4-(2-Chloro phenyl) -N- (4-chloro phenyl) -6- methyl-2-oxo-1-phenyl-1, 2, 3, 4<br />

-tetrahydropyrimidine-5-carboxamide (AKS-904).<br />

IR(KBr,cm -1 ): 3377-3286 (-NH), 3055 (Ar-CH, str), 2949 (methyl,asym,str),<br />

1716(>C=O, cyclic), 1666 (>C=O,amide),1548 (C-N,str), 1593-1467 (>C=C,ring<br />

skeletal vibration), 1176-1122(C-H, ipd), 775 (C-H,opd),1093 (C-O-<br />

C,sym,str),1253 (C-O-C, asym,str). 501 (-C=C-,opd,bend).<br />

C, H, N (in %): Found: 63.72 (C), 4.42 (H), 9.25 (N), Cacld: 63.74 (C), 4.39 (H),<br />

9.29 (N)<br />

4-(4-Fluoro phenyl) -N- (4-chloro phenyl) -6-methyl-2-oxo- 1-phenyl-1, 2, 3, 4<br />

-tetrahydropyrimidine-5-carboxamide (AKS-905).<br />

IR(KBr,cm -1 ): 3319-3290 (-NH), 3037-3011 (Ar-CH, str), 2953-2916<br />

(methyl,asym,str), 2854-2779 (methyl,sym,str) 1724 (>C=O, cyclic), 1654<br />

(>C=O,amide),1531 (C-N,str), 1593-1491 (>C=C,ring skeletal vibration), 1159 (C-<br />

H, ipd), 767 (C-H,opd),1095 (C-O-C,sym,str),1259 (C-O-C, asym,str). 505(-C=C-<br />

,opd,bend).


170<br />

1 H NMR(δ ppm): 1.81 (3H,s), 5.48 (1H,s), 7.21 (4H,m), 7.34 (2H,dd,J=8.52Hz,1.96Hz),<br />

7.38 (1H,d,J=7.20Hz), 7.43 (4H,m,), 7.57 (2H,d,J=8.88Hz<br />

,2.08Hz)<br />

C, H, N (in %): Found: 66.11 (C), 4.34 (H), 9.61 (N), Cacld: 66.13 (C), 4.39 (H),<br />

9.64 (N)<br />

4- (Naphthyl) - N - (4-chloro phenyl) -6- methyl -2- oxo- 1-phenyl-1, 2, 3, 4 -<br />

tetrahydropyrimidine-5-carboxamide (AKS-906).<br />

IR(KBr,cm -1 ): 3325-3236 (-NH), 3176-3039 (Ar-CH, str), 2951-2920,<br />

(methyl,asym,str), 2854-2783 (methyl,sym,str) 1724 (>C=O, cyclic), 1637<br />

(>C=O,amide),1518 (C-N,str), 1637-2000(overtone combination region) 1593-<br />

1491 (>C=C,ring skeletal vibration), 1136 (C-H, ipd), 794-773(C-H,opd),1078 (C-<br />

O-C,sym,str),1282-1242 (C-O-C, asym,str). 509-435 (-C=C-,opd,bend).<br />

Mass (m/z value): 468 (2), 392 (1), 376 (1), 305 (1), 265 (1), 249 (10, 232 (52),<br />

218 (2), 203 (4), 188 (28), 174 (8), 161 (100), 146 (4), 133 (90), 118 (10), 104<br />

(31), 89 (14), 77 (54), 63 (14), 51 (37)<br />

C, H, N (in %): Found: 71.84 (C), 4.78 (H), 8.94 (N), Cacld: 71.87 (C), 4.74 (H),<br />

8.98 (N)<br />

4-(2-Hydroxy phenyl)-N-(4-chloro phenyl)-6-methyl-2-oxo-1-phenyl-1, 2, 3, 4-<br />

tetrahydropyrimidine-5-carboxamide (AKS-907).<br />

IR(KBr,cm -1 ): 3524-3612 (OH,str) 3343-3256 (-NH), 3089-3020 (Ar-CH, str),<br />

2978-2948, (methyl,asym,str), 2866-2754 (methyl,sym,str) 1721 (>C=O, cyclic),<br />

1686 (>C=O,amide),1545 (C-N,str), 1589-1486 (>C=C,ring skeletal vibration),<br />

1168(C-H, ipd), 778 (C-H,opd),1082 (C-O-C,sym,str),1252 (C-O-C, asym,str).<br />

602 (-C=C-,opd,bend).<br />

Mass (m/z value): 434 (6), 432 (100), 415 (4), 401 (1), 388 (1), 371 (1), 355 (2),<br />

342 (2), 326 (16), 313 (5), 298 (3), 285 (5), 270 (5), 253 (2), 242 (5), 227 (2), 214<br />

(3), 200 (1), 188 (11), 164 (1), 151 (1), 127 (1), 114 (1), 100 (1), 91 (100), 77 (1),<br />

65 (20), 44 (4).<br />

C, H, N (in %): Found: 66.46 (C), 4.66 (H), 9.68 (N), Cacld: 66.41 (C), 4.65 (H),<br />

9.68 (N)<br />

4- (Napthyl) – N - (4-fluoro phenyl) -6- methyl -2 -oxo -1-phenyl -1, 2, 3, 4 -<br />

tetrahydropyrimidine-5-carboxamide (AKS-908).


171<br />

IR(KBr,cm -1 ): 3312-3215 (-NH), 3171-3026 (Ar-CH, str), 2954-2932,<br />

(methyl,asym,str), 2858-2778 (methyl,sym,str) 1724 (>C=O, cyclic), 1645<br />

(>C=O,amide),1519 (C-N,str), 1632-2000 (overtone combination region)1585-<br />

1495 (>C=C,ring skeletal vibration), 1139 (C-H, ipd), 798-775(C-H,opd),1074 (C-<br />

O-C,sym,str),1287-1249 (C-O-C, asym,str). 515-431 (-C=C-,opd,bend).<br />

C, H, N (in %): Found: 74.47 (C), 4.94 (H), 9.30 (N), Cacld: 74.49 (C), 4.91 (H),<br />

9.31 (N)<br />

1-(3-Methyl phenyl) -N- (4-chloro phenyl) -6- methyl -2-oxo-4(3-clorophenyl)-<br />

1,2,3,4-tetrahydropyrimidine-5-carboxamide (AKS-909).<br />

IR(KBr,cm -1 ): 3325-3218 (-NH), 3085-3070 (Ar-CH, str), 2956, (methyl,asym,str),<br />

1710 (>C=O, cyclic), 1665 (>C=O,amide),1522C-N,str), 1529-1474 (>C=C,ring<br />

skeletal vibration), 1174-1130 (C-H, ipd), 795 (C-H,opd),1080-1012 (C-O-<br />

C,sym,str),1254(C-O-C, asym,str). 633 (-C=C-,opd,bend).<br />

C, H, N (in %): Found: 64.41 (C), 4.52 (H), 9.00 (N), Cacld: 64.39 (C), 4.54 (H),<br />

9.01 (N)<br />

N-(3-Methyl phenyl)-N-(4-chloro phenyl)-6-methyl-2-oxo-4(nepthyl)-1, 2, 3, 4<br />

-tetrahydropyrimidine-5-carboxamide (AKS-910).<br />

IR(KBr,cm -1 ): 3323-3217 (-NH), 3185-3020 (Ar-CH, str), 2966-2941,<br />

(methyl,asym,str), 2846-2765 (methyl,sym,str) 1712(>C=O, cyclic), 1668<br />

(>C=O,amide),1520 (C-N,str), 2000-1637 (overtone combination region) 1584-<br />

1491 (>C=C,ring skeletal vibration), 1145 (C-H, ipd), 775 (C- H,opd),1077 (C-O-<br />

C,sym,str),1283-1242 (C-O-C, asym,str). 431 (-C=C-,opd,bend).<br />

C, H, N (in %): Found: 72.24 (C), 5.01 (H), 8.69 (N), Cacld: 72.27 (C), 5.02 (H),<br />

8.72 (N)<br />

N-(3-Methyl phenyl)-N-(4-chlorophenyl)-6-methyl-2-oxo-4(4-methoxyphenyl)-<br />

1,2,3,4-tetrahydropyrimidine-5-carboxamide (AKS-911).<br />

IR(KBr,cm -1 ): 3320-3214 (-NH), 3077-3062 (Ar-CH, str), 2956 ,(methyl,asym,str),<br />

1711 (>C=O, cyclic), 1670 (>C=O,amide),1536 (C-N,str), 1529-1477 (>C=C,ring<br />

skeletal vibration), 1188-1110 (C-H, ipd), 786 (C-H,opd),1085-1023 (C-O-<br />

C,sym,str),1242(C-O-C, asym,str). 602 (-C=C-,opd,bend).<br />

Mass (m/e): 462 (5), 448 (1), 445 (10), 411 (1), 336 (78), 334 (10), 308 (3), 294<br />

(4), 293 (8), 265 (2), 245 (1), 213 (3), 204 (2), 187 (4), 177 (4), 153 (7), 155 (1),<br />

127 (22), 118 (100), 103 (4), 91 (4), 77 (67), 67 (10), 44 (74).


172<br />

C, H, N (in %): Found: 67.62 (C), 5.26 (H), 9.08 (N), Cacld: 67.60 (C), 5.24 (H),<br />

9.10 (N)<br />

N-(3-Methyl phenyl)-N-(4-chloro phenyl)-6-methyl-2-oxo-4(4-anthryl)-1, 2,3,4-<br />

tetrahydropyrimidine-5-carboxamide(AKS-912).<br />

IR(KBr,cm -1 ): 3336-3221 (-NH), 3166-3042 (Ar-CH, str), 2965-2910,<br />

(methyl,asym,str), 2862-2784 (methyl,sym,str) 1701 (>C=O, cyclic), 1674<br />

(>C=O,amide),1523 (C-N,str), 1630-2000 (overtone combination region) 1594-<br />

1494 (>C=C,ring skeletal vibration), 1133(C-H, ipd), 794-763 (C-H,opd), 1078-<br />

1025 (C-O-C,sym,str),1286-1241 (C-O-C, asym,str). 525-447 (-C=C-,opd,bend).<br />

C, H, N (in %): Found: 74.53 (C), 4.91 (H), 7.87 (N), Cacld: 74.50 (C), 4.93 (H),<br />

7.90 (N)<br />

N-(3-Methyl phenyl)-N-(4-chloro phenyl) -6- methyl -2- oxo-4 (4-nitro phenyl)-<br />

1,2,3,4-tetrahydropyrimidine-5-carboxamide(AKS-913).<br />

IR(KBr,cm -1 ): 3324-3217 (-NH), 3110(Ar-CH, str), 2924-2865, (methyl,asym,str),<br />

2876-2789 (methyl, sym,str), 1701 (>C=O, cyclic), 1680 (>C=O,amide),1522 (C-<br />

N,str), 1590-1498 (>C=C,ring skeletal vibration), 1169 (C-H, ipd), 762 (C-<br />

H,opd),1089-1025 (C-O-C,sym,str),1254 (C-O-C, asym,str). 677 (-C=C-<br />

,opd,bend).<br />

1 H NMR(δ ppm): 1.88 (s, 3H, a), 2.38 (s, 1H, b 4 ), 5.60 (d, 1H, b), 7.05 (d,1H, b 3<br />

J=11.76 Hz), 7.19 (m, 3H, a 4 , c 3 , c 4 ), 7.33 (t, 1H, a 3 , J=7.72, 7.76 Hz), 7.54 (m,<br />

3H, c 1 , c 2 , b 1 ), 7.75 (d, 1H, b 2 , J=3.04 Hz), 7.83 (t, 1H, b 5 , J=7.66, 1.20 Hz), 8.14<br />

(t-t, 1H, a 2 , J=2.20 Hz), 8.43 (t, 1H, a 1 , J= 1.96 Hz), 9.67 (s, 1H, e 1 )<br />

C, H, N (in %): Found: 62.98 (C), 4.41 (H), 11.72 (N), Cacld: 62.96 (C), 4.44 (H),<br />

11.75 (N)<br />

N-(2, 4-Di-methyl phenyl)-N-(4-chloro phenyl)-6-methyl-2-oxo-4-(phenyl)-1, 2,<br />

3, 4-tetrahydropyrimidine-5-carboxamide (AKS-914).<br />

IR(KBr,cm -1 ): 3320-3211 (-NH), 3110-3025 (Ar-CH, str), 2922-2889,<br />

(methyl,asym,str), 2865-2781 (methyl, sym,str), 1711 (>C=O, cyclic), 1675<br />

(>C=O,amide),1544 (C-N,str), 1592-1485 (>C=C,ring skeletal vibration), 1165 (C-<br />

H, ipd), 752 (C-H,opd),1094-1021 (C-O-C,sym,str),1265 (C-O-C, asym,str). 656 (-<br />

C=C-,opd,bend).<br />

C, H, N (in %): Found: 70.06 (C), 5.40 (H), 9.40 (N), Cacld: 70.03 (C), 5.42 (H),<br />

9.42(N)


173<br />

N-(2,4-Di-methylphenyl)-N-(4-chlorophenyl)-6-methyl-2-oxo-4(3-nitrophenyl)-<br />

1, 2, 3, 4-tetrahydropyrimidine-5-carboxamide(AKS-915).<br />

IR(KBr,cm -1 ): 3296-3210 (-NH), 3101(Ar-CH, str), 2924, (methyl,asym,str), 2870<br />

(methyl, sym,str), 1701 (>C=O, cyclic), 1680 (>C=O,amide),1525 (C-N,str), 1492-<br />

1591 (>C=C,ring skeletal vibration), 1176 (C-H, ipd), 775 (C-H,opd),1010-1089<br />

(C-O-C,sym,str),1244 (C-O-C, asym,str). 676 (-C=C-,opd,bend).<br />

C, H, N (in %): Found: 63.63 (C), 4.74 (H), 7.19 (N), Cacld: 63.61 (C), 4.72 (H),<br />

7.22 (N)<br />

N- (2,4-Di-methylphenyl) -N- (4-chlorophenyl) -6- methyl -2- oxo -4 (3,4,5-trimethoxyphenyl)-1,<br />

2, 3, 4- tetrahydropyrimidine -5- carboxamide (AKS-916).<br />

IR(KBr,cm -1 ): 3322-3225 (-NH), 3088-3062 (Ar-CH, str), 2956-2932,<br />

(methyl,asym,str),2868-2755 (methyl,str,sym) 1711 (>C=O, cyclic), 1675<br />

(>C=O,amide),1531C-N,str), 1529-1457 (>C=C,ring skeletal vibration), 1190-<br />

1120 (C-H, ipd), 776 (C-H,opd),1085-1023 (C-O-C,sym,str),1232 (C-O-C,<br />

asym,str). 665 (-C=C-,opd,bend).<br />

C, H, N (in %): Found: 64.96 (C), 5.60 (H), 7.82 (N), Cacld: 64.98 (C), 5.64 (H),<br />

7.84 (N),<br />

N- (2,4-Di-methylphenyl) -N- (4-chlorophenyl) -6- methyl- 2- oxo- 4 (3-<br />

clorophenyl) -1, 2, 3, 4- tetrahydropyrimidine - 5- carboxamide (AKS-917).<br />

IR(KBr,cm -1 ): 3322-3214 (-NH), 3075-3010 (Ar-CH, str), 2966 ,(methyl,asym,str),<br />

1712 (>C=O, cyclic), 1662 (>C=O,amide),1533 (C-N,str), 1533-1484 (>C=C,ring<br />

skeletal vibration), 1175-1122 (C-H, ipd), 789(C-H,opd),1090-1033 (C-O-<br />

C,sym,str),1244 (C-O-C, asym,str). 656 (-C=C-,opd,bend).<br />

C, H, N (in %): Found: 65.04 (C), 4.85 (H), 8.72 (N), Calcd: 65.01 (C), 4.83 (H),<br />

8.75 (N),<br />

4-(4-Hydroxy phenyl)-N-(4-fluoro phenyl)-6-methyl-2-oxo-1-phenyl-1, 2, 3, 4 -<br />

tetrahydropyrimidine-5-carboxamide (AKS-918).<br />

IR(KBr,cm -1 ): 3565-3622 (OH,str) 3310-3244 (-NH), 3101-3020 (Ar-CH, str),<br />

2965-2928, (methyl,asym,str), 2877-2744 (methyl,sym,str) 1718 (>C=O, cyclic),<br />

1680 (>C=O,amide),1542 (C-N,str), 1592-1475 (>C=C,ring skeletal vibration),<br />

1162 (C-H, ipd), 770 (C-H,opd),1080 (C-O-C,sym,str),1256 (C-O-C, asym,str).<br />

601 (-C=C-,opd,bend).


174<br />

1 H NMR (δ ppm): 1.68 (3H,s), 5.48 (1H,s), 6.53 (1H,d,J=8.8), 6.87 (3H,m), 7.18<br />

(5H,m), 7.32 (3H,t,J=8.32Hz, 9.87Hz), 7.64 (2H,d,J=8.80), 8.35 (1H,s) 9.59<br />

(1H,s)<br />

C,H,N(in %) : Found: 69.07 (C), 4.81 (H), 10.05 (N), Cacld: 69.05 (C), 4.83 (H),<br />

10.07 (N<br />

N - (4-Fluoro phenyl) - 6- methyl -2- oxo- 1, 4- diphenyl -1, 2, 3, 4<br />

tetrahydropyrimidine -5- carboxamide (AKS-919).<br />

IR(KBr,cm -1 ): 3356-3276(-NH),3044-2986(Ar-CH, str), 2924,(methyl,asym,str),<br />

2856(methyl, sym,str), 17210(>C=O, cyclic), 1678(>C=O,amide),1521(C-N,str),<br />

1593-1496(>C=C,ring skeletal vibration), 1174( C-H, ipd), 796-774 (C-<br />

H,opd),1084-1057 (C-O-C,sym,str),1252 (C-O-C, asym,str). 645 (-C=C-<br />

,opd,bend)<br />

C, H, N (in %): Found: 71.84 (C), 5.06 (H), 10.44 (N), Cacld: 71.81 (C), 5.02 (H),<br />

10.47 (N),<br />

4-(3-Nitro phenyl)-N- (4-fluoro phenyl)- 6-methyl -2- oxo -1- phenyl-1, 2, 3, 4 -<br />

tetrahydropyrimidine-5-carboxamide(AKS-920).<br />

IR(KBr,cm -1 ): 3292-3210 (-NH), 3115-2986 (Ar-CH, str), 2924, (methyl,asym,str),<br />

2877-2796 (methyl, sym,str), 1701 (>C=O, cyclic), 1680 (>C=O,amide),1525 (C-<br />

N,str), 1593-1496 (>C=C,ring skeletal vibration), 1180 (C-H, ipd), 765 (C-<br />

H,opd),1089-1020 (C-O-C,sym,str),1258 (C-O-C, asym,str). 680 (-C=C-<br />

,opd,bend).<br />

Mass (m/e): 447 (25), 321 (100), 293 (10), 278 (20), 265 (2), 250 (28), 187 (4),<br />

177 (4), 153 (8), 127 (44), 91 (4), 77 (27), 67 (5), 44 (17).<br />

C, H, N (in %): Found: 64.60 (C), 4.25 (H), 12.53 (N), Cacld: 64.57 (C), 4.29 (H),<br />

12.55 (N),


IR spectrum of 4-(phenyl)-N-(4-chlorophenyl)-6-methyl-2-oxo-1-phenyl-<br />

1,2,3,4-tetrahydropyrimidine-5-carboxamide(AKS-901)<br />

175<br />

Cl<br />

O<br />

NH<br />

NH<br />

H 3 C<br />

N<br />

O<br />

IR spectrum of 4-(3-nitro phenyl)-N-(4-chloro phenyl)- 6- methyl- 2- oxo -1-<br />

phenyl-1, 2, 3, 4- tetrahydropyrimidine-5-carboxamide (AKS-902)<br />

O<br />

N + O -<br />

Cl<br />

O<br />

NH<br />

NH<br />

H 3 C<br />

N<br />

O


IR spectrum of 4-(2-nitrophenyl)-N-(4-chlorophenyl)-6-methyl-2-oxo-1-<br />

phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide (AKS-903)<br />

176<br />

Cl<br />

NH<br />

O<br />

N + O<br />

O -<br />

NH<br />

H 3 C<br />

N<br />

O<br />

IR spectrum of 4-(2-chlorophenyl)-N-(4-chlorophenyl)-6-methyl-2-oxo-1-<br />

phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide (AKS-904)<br />

Cl<br />

O<br />

Cl<br />

NH<br />

NH<br />

H 3 C<br />

N<br />

O


IR spectrum of 4-(4-flourophenyl)-N-(4-chlorophenyl)-6-methyl-2-oxo-1-<br />

phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide (AKS-905)<br />

177<br />

F<br />

Cl<br />

O<br />

NH<br />

NH<br />

H 3 C<br />

N<br />

O<br />

IR spectrum of 4-(2,3-benzophenyl)-N-(4-chlorophenyl)-6-methyl-2-oxo-1-<br />

phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide.<br />

Cl<br />

O<br />

NH<br />

NH<br />

H 3 C<br />

N<br />

O


1 H NMR spectrum of N-(4-chlorophenyl)-4-(4-fluorophenyl)-6-methyl-2-oxo-<br />

1-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide (AKS-905).<br />

178<br />

F<br />

Cl<br />

O<br />

NH<br />

NH<br />

H 3 C<br />

N<br />

O


1 H NMR spectrum of 4-(4-hydroxyphenyl)-N-(4-fluorophenyl)-6-methyl-2-<br />

oxo-1-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide (AKS-918).<br />

179<br />

OH<br />

F<br />

O<br />

NH<br />

NH<br />

H 3 C<br />

N<br />

O


1 H NMR spectrum of 4-(3-nitrophenyl)-N-(4-chlorophenyl)-6-methyl-2-oxo-1-<br />

phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide (AKS-902)<br />

180<br />

N + O -<br />

O<br />

a 2<br />

a 3<br />

H 3 C N O<br />

c Cl a<br />

c 4 a 1<br />

1 O<br />

H<br />

b<br />

NH<br />

NH<br />

c 2 a<br />

b 1 b 2<br />

b 3 b 4<br />

b 5


1 H NMR spectrum of N-(3-methylphenyl)-N-(4-chlorophenyl)-6-methyl-2-oxo-<br />

4(4-nitroyphenyl)-1,2,3,4-tetrahydropyrimidine-5-carboxamide (AKS-913).<br />

181<br />

Cl<br />

c 2<br />

O<br />

a 3<br />

a 2<br />

N + O -<br />

H 3 C N O<br />

c 1<br />

a 4<br />

O<br />

H<br />

b<br />

a 1<br />

NH NH<br />

a<br />

c 3<br />

c 4<br />

e 1<br />

e 2<br />

b 4<br />

b 1 b 2<br />

b 3<br />

b 5<br />

CH 3


Mass spectrum of N-(3-methylphenyl)-N-(4-chlorophenyl)-6-methyl-2-oxo-<br />

4(4-methoxyphenyl)-1,2,3,4-tetrahydropyrimidine-5-carboxamide (AKS-911).<br />

182<br />

O CH 3<br />

Cl<br />

NH<br />

H 3<br />

OC<br />

N<br />

NH<br />

O<br />

CH 3<br />

M.W.=461.94 gm/mole<br />

Mass spectrum of 4-(3-nitrophenyl)-N-(4-fluorophenyl)-6-methyl-2-oxo-1-<br />

phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide (AKS-920)<br />

O<br />

N + O -<br />

F<br />

NH<br />

H 3<br />

OC<br />

N<br />

NH<br />

O<br />

M.W.= 446.43 gm/mole


Mass spectrum of 4-(2,3-benzophenyl)-N-(4-chlorophenyl)-6-methyl-2-oxo-1-<br />

phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide(AKS-906).<br />

183<br />

Cl<br />

O<br />

NH<br />

NH<br />

C H 3<br />

N<br />

O<br />

M.W.= 467.94 gm/mole<br />

Mass spectrum of 4-(2-hydroxyphenyl)-N-(4-chlorophenyl)-6-methyl-2-oxo-<br />

1-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide (AKS-907).<br />

Cl<br />

O<br />

OH<br />

NH<br />

NH<br />

C H 3<br />

N<br />

O<br />

M.W.= 433.88 gm/mole


Chapter-6<br />

Microwave assisted synthesis of N-(substituted<br />

phenyl)-6-methyl-2-oxo and thioxo-4-propyl-<br />

1,2,3,4-tetrahydropyrimidine-5-carboxamides.<br />

1. Reaction scheme 184<br />

2. Experimental 188<br />

3. Physical data table 189<br />

4. Spectral analysis 191<br />

5. Spectral data 193<br />

6. IR spectra 199<br />

7. 1H NMR spectra 202<br />

8. Mass spectra 203<br />

9. References 206


184<br />

INTRODUCTION<br />

The current chapter is in a sequential study of multicomponent reaction mentioned in<br />

earlier two chapters. The introductory chapter reveals the importance of Microwave<br />

assisted organic synthesis explored recently various scientist world over. The<br />

current chapter is an add on study of such synthetic efforts to obtain successfully the<br />

title compounds.<br />

In this chapter, C 4 aromatic or heteroaromatic skeleton is removed to obtain novel<br />

alkylated dihydropyrimidines as final products.


185<br />

6.1 REACTION SCHEMES<br />

6.1.1 Scheme-1<br />

R<br />

NH 2 NH CH3<br />

KOH<br />

R<br />

O O<br />

Toluene,115 0 c<br />

6.1.2 Scheme-2<br />

CH 3<br />

R<br />

NH<br />

O<br />

H 3 C<br />

O<br />

+<br />

O H<br />

+<br />

N H 2<br />

NH 2<br />

O<br />

Con. HCl<br />

M.W.<br />

200W<br />

CH 3<br />

OH<br />

90 o C<br />

CH 3<br />

R<br />

O<br />

NH<br />

NH<br />

C H 3<br />

N<br />

H<br />

O


186<br />

6.1.3 Scheme-3<br />

CH 3<br />

R<br />

NH<br />

O<br />

H 3 C<br />

O<br />

+<br />

O<br />

H<br />

+<br />

N H 2<br />

NH 2<br />

S<br />

Con. HCl<br />

CH 3<br />

OH<br />

90 o C M.W. 200 W<br />

CH 3<br />

R<br />

NH<br />

O<br />

H 3 C<br />

N<br />

H<br />

NH<br />

S


187<br />

6.1.4 REACTION MECHANISM<br />

C H 3<br />

..<br />

N H O<br />

-H O<br />

2<br />

O<br />

O<br />

NH<br />

NH N H HO<br />

N<br />

H C<br />

H 3 3 C N O<br />

H<br />

CH 3<br />

H +<br />

-H 2<br />

O<br />

H O<br />

NH 2<br />

H N + H<br />

H 2 N O<br />

H 2 N O<br />

CH 3<br />

CH 3<br />

O<br />

O<br />

-H +<br />

NH N<br />

H NH<br />

H N + H<br />

H 3 C O<br />

H 3 C O O<br />

H 2 N O<br />

..<br />

..<br />

NH 2<br />

CH 3<br />

H<br />

CH 3


188<br />

6.2 EXPERIMENTAL<br />

N- (Substitutedphenyl)–6–methyl - 2-oxo–4 -1,2 3, 4–tetrahydro pyrimidine- 5 -<br />

carboxamides (Scheme-2)<br />

[General method]<br />

Substituted acetanilide, butyraldehyde and urea were dissolved in methanol and few<br />

drops of Con.HCl was added. The reaction mixture was irradiated under microwave<br />

(200W) power at 90 o C for 10-12 minutes. Completion of reaction was monitored by<br />

TLC. The reaction mixture was allowed to stand at room temprature. The solid<br />

separated was filtered and recrystallized from dimethyl formamide (Yield 45-65 %).<br />

Physical data of newly synthesized compounds are given in Table 6.3.1<br />

N- (Substituted phenyl) – 6 – propyl – 2 – thioxo - 1,2,3,4 – tetrahyropyrimidine<br />

- 5 - carboxamides (Scheme-3)<br />

[General method]<br />

Substituted acetanilide, butyraldehyde and thiourea were dissolved in methanol and<br />

few drops of con. HCl added. The reaction mixture was irradiated with microwave<br />

(200W) at 90 o C for 10-12 minutes. Completion of reaction was monitored by TLC.<br />

The reaction mixture was allowed to stand at room temprature. The solid separated<br />

was filtered and recrystallized from dimtheyl formamide (Yield 40-68 %).<br />

Physical data of newly synthesized compounds are given in Table 6.3.2<br />

Microwave apparatus used was QPRo-M Microwave synthesizer.


189<br />

6.3 PHYSICAL DATA<br />

6.3.1 Physical data of N-(2-methylphenyl)-6-methyl-2-oxo-4-propyl-1,2,3,4-<br />

tetrahydropyrimidine-5-carboxamides (AKS 921-931)<br />

CH 3<br />

R<br />

O<br />

NH<br />

NH<br />

C H 3<br />

N<br />

H<br />

O<br />

Code No. R MW MP in o C Yield<br />

in %<br />

RF<br />

Value<br />

AKS-921 H 273.33 165-167 68 0.32<br />

AKS-922 4-Cl 307.77 184-186 66 0.51*<br />

AKS-923 4-F 291.32 154-156 67 0.52<br />

AKS-924 4-CH 3 287.35 198-200 63 0.48<br />

AKS-925 2-CH 3 287.35 274-276 48 0.39<br />

AKS-926 3-CH 3 287.35 178-180 56 0.47*<br />

AKS-927 2,3-di-CH 3 302.38 168-170 51 0.36<br />

AKS-928 3-NO 2 319.32 224-226 61 0.42*<br />

AKS-929 2,4-di-CH 3 302.38 147-149 49 0.41<br />

AKS-930 2-Cl 307.77 186-188 53 0.39<br />

AKS-931 3,4-di benzo 323.38 245-247 61 0.42<br />

TLC solvent system Ethyl acetate : Hexane 3.0 ml : 7.0 ml<br />

Visualization: UV light (long)<br />

*CH 2 Cl 2 : MeOH 9.5 ml : 0.5 ml


190<br />

6.3.2 Physical data of 6-methyl-N-(substituted phenyl)-4-propyl-2-thioxo-<br />

1,2,3,4-tetrahydropyrimidine-5-carboxamides (AKS 912-920)<br />

CH 3<br />

R<br />

NH<br />

O<br />

H 3 C<br />

N<br />

H<br />

NH<br />

S<br />

Code No. R MW MP in o C Yield<br />

in %<br />

Rf<br />

Value<br />

AKS-932 H 289.39 286-288 69 0.37<br />

AKS-933 2-CH 3 303.42 245-247 58 0.41<br />

AKS-934 3-CH 3 303.42 189-191 64 0.42<br />

AKS-935 4-Cl 323.84 246-248 68 0.36<br />

AKS-936 4-F 307.38 174-176 56 0.43*<br />

AKS-937 2,3-di-CH 3 317.44 197-199 63 0.33*<br />

AKS-938 2,4-di-CH 3 317.44 165-167 65 0.42<br />

AKS-939 2,3 -di- bezo 339.45 186-188 68 0.51<br />

AKS-940 3,4-di-benzo 339.45 145-146 70 0.53*<br />

TLC solvent system Ethyl acetate : Hexane 3.0 ml : 7.0 ml<br />

Visualization UV light (long)<br />

*CH 2 Cl 2 : MeOH 9.4 ml : 0.6 ml


191<br />

6.3 SPECTRAL ANALYSIS<br />

6.3.1 IR SPECTRAL ANALYSIS<br />

Spectral data of key intermediate and compounds are included. Instrument used;<br />

SHIMADZU FT IR-8400, sample technique, KBr disc, frequency assortment, 400-<br />

4000 cm -1 . Looking to the spectral data of recently synthesized<br />

(dihydropyrimidines) molecules, the carbonyl (>C=O) of the amidic functionality<br />

stretching was observed at 1655-1695 cm -1 and an extra ketonic group (-NH-CO-<br />

NH) was observed at in the area of at 1700 cm -1 -1720 cm -1 owing to amidic<br />

functionality. The conformation of the amide group (>C-N, str) was establish in<br />

range of 1495-1525 cm -1 . The stretching of amine (-NH) come out approximately<br />

close to 3150-3400 cm -1 . The stretching of C-N emerge at 1501-1596 cm -1 .The<br />

C-O-C str (symmetric vibration) was established between 1001-1090 cm -1 .C-S str<br />

and bending vibration at 1275-1030 cm -1 , and 650-700 cm -1 correspondingly. The<br />

C-H str of aromatic moiety was observed at just about 2900-3040 cm -1 C-H in<br />

plane bending and, out of plane bending was pragmatic at 1400-1630 cm -1 and<br />

710-860 cm -1 .<br />

IR spectra of the newly synthesized compounds are given on Pages 199-201.<br />

6.3.2 1 H NMR SPECTRAL ANALYSIS<br />

1 H NMR Spectrum of the N-(substituted phenyl)-6-methyl-2-oxo-4-propyl-1,2,3,4-<br />

tetrahydropyrimidine-5-carboxamide demonstrate signals relevant to the number<br />

of protons and their electronic location known as chemical shift. Chemical shift<br />

progress to either up field (shielding) or down field (dishelding), according to the<br />

electronic locality of the consequent proton. In addition to this, each one 1 H NMR<br />

signal supporting splitted into number of associate peaks according to the<br />

number of neighbouring protons nearby in the skeleton of molecule. The splitting<br />

of the NMR signal promoted significant information concerning to the degree of<br />

interface between neighboring protons by way of spin- spin coupling constant.<br />

1 H NMR spectra of AKS-903, shows a singlet because of the existence of three<br />

amino groups. Both –NH proton of the dihyropirimidine ring illustrate singlet at<br />

9.57 and 10.44 δ ppm. Even though other proton of the –NH-C=O linkage make<br />

clear singlet at 6.87 δ ppm. Two protons of phenyl residue (d 2 , d 2 ) show a doublet


192<br />

at 7.59 δ ppm with J value 8.81 Hz. Other two protons of the phenyl residue (d 1,<br />

d 1 ) gave triplet-triplet at 7.19-7.23 with J value 9.84, 8.84 (Ortho coupling with d 2<br />

protons) in place of doublet of doublet because of the being there fluorine atom at<br />

ortho position. H c proton of the dihyropyrimidine sphere show singlet at 4.98 δ<br />

ppm. In this molecule, alkyl chain is close to C 4 carbon of dihyropyrimidine ring<br />

and have seven protons, even as methyl protons (3H) which is extremely<br />

shielded show triplet at 0.95 δ ppm. Left behind four protons are chemically<br />

correspondent but magnetically dissimilar, hence each and every one of the four<br />

protons show diverse δ ppm. Methyl protons of dihyropyrimidine ring at C 6 should<br />

be give singlet, but the existence of methylenic protons of an alkyl side a singlet<br />

will join together with Hc 2 signal, consequently it shows multiplet at 1.43 δ ppm.<br />

From the alkyl side chain, Hc 1 , Hc 2 , Hb 1 , Hb 2 demonstrate multiplet at 2.33, 1.52,<br />

3.31 and 2.58 δ ppm correspondingly.<br />

1 H NMR spectra of newly synthesized compounds are given on Page 202.<br />

6.3.3 MASS SPECTRAL ANALYSIS<br />

As EI-MS spectrum of the N-(substituted phenyl)-6-methyl-2-oxo-4-propyl-<br />

1,2,3,4-tetrahydropyrimidine-5-carboxamide exhibited special feature like<br />

molecular ion peak and fragmentation pattern relevant to the nature of molecule,<br />

it become one of the most important tool for characterization of the structure of<br />

molecule.<br />

In the EI-MS spectrum of 6-methyl-2-oxo-N-phenyl-4-propyl-1,2,3,4-<br />

tetrahydropyrimidine-5-carboxamide, the appearance of an intense molecular ion<br />

peak at m/z at 273. A fragmentation at 259 relevant to tetrahydropyrimidine<br />

suggests that loss of methyl from the pyrimidine ring at C 5 position. Loss of two –<br />

CH 3 and CH 2 from the alkyl chain, mass peaks observed at 245 and 231<br />

respectively. Then cleavage from the carbonyl carbon, peak is observed at 127<br />

due to loss of aromatic amine radical. For AKS- 917 loss of methyl group<br />

subsequently from the pyrimide ring, alkyl side chain, and phenyl ring peak will<br />

observed at 303, 289, 275 respectively. A peak at 231, is relevant to loss of sulfur<br />

atom from the pyrimidine ring. Moreover, m/z 215 suggests that loss of two<br />

hydrogen from C 2 and relevant nitrogen of pyrimidine ring. For AKS-908, a peak


193<br />

is observed at 291 due to loss of two methyl group from pyrimidine ring at C 6 and<br />

alkyl side chain at C 4 . For AKS-906, a peak at 259 (m/z) relevant to loss of two<br />

methyl from the pyrimidine rings at C 6 position and second methyl from the<br />

phenyl residue. Similarly other compounds can be interpreted for their mass<br />

fragmentation pattern.<br />

Mass spectra of newly synthesized compounds are given on Pages 203-205.<br />

6.3.4 ELEMENTAL ANALYSIS<br />

Elemental analysis of the all the synthesized compounds was carried out on<br />

Elemental Vario EL III Carlo Erba 1108 model and the results are in agreements<br />

(within the range of theoretical value) with the structures assigned.<br />

SPECTRAL DATA<br />

6- Methyl -2-oxo – N - phenyl -4- propyl -1, 2, 3, 4 – tetrahydropyrimidine - 5 -<br />

carboxamide (AKS-921)<br />

IR (KBr, cm -1 ): 3440 (-NH), 2923 (methyl,asym,str), 2852 (methyl,sym,str), 1676<br />

(>C=O,amide), 1739 (-NH-CO-NH) 1350 (C-N,str), 1614-1444 (>C=C,ring<br />

skeletone vibration), 1550 (-NH Deformation)1244 (C-H, ipd), 765 (C-<br />

H,opd),1091,1018 (C-O-C,sym,str).<br />

MASS (m/e value): 273 (100), 258 (8), 245 (49), 231 (13), 213 (8), 203 (3), 185<br />

(7), 171 (23), 155 (8), 153 (39), 127 (42), 115 (12), 99 (8), 86 (32), 77 (6), 67<br />

(22), 44 (18)<br />

C, H, N (in %): Found: 70.33 (C), 8.48 (H), 15.37 (N), Cacld: 70.35 (C), 8.46 (H),<br />

15.40 (N)<br />

N-(4-Chlorophenyl)-6-methyl-2-oxo-4-propyl-1,2,3,4-tetrahydropyrimidine-5-<br />

carboxamide (AKS-922)<br />

IR (KBr, cm -1 ): 3440 (-NH), 2908 (methyl,asym,str), 2887 (methyl,sym,str),<br />

1706(>C=O,amide), 1731 (-NH-CO-NH) 1368 (C-N,str), 1610-1466 (>C=C,ring<br />

skeletone vibration), 1522 (-NH Deformation)1242 (C-H, ipd), 757 (C-<br />

H,opd),1087,1010 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 62.43 (C), 7.20 (H), 13.66 (N), Cacld: 62.40 (C), 7.23 (H),<br />

13.68 (N)


194<br />

N-(4-Flourophenyl)-6-methyl-2-oxo-4-propyl-1,2,3,4-tetrahydropyrimidine-5-<br />

carboxamide (AKS-923)<br />

IR (KBr, cm -1 ): 3423,3224 (-NH), 3062(Ar-CH,str) 2929 (methyl,asym,str), 2854<br />

(methyl,sym,str), 1652 (>C=O,amide), 1718 (-NH-CO-NH) 1331 (C-N,str), 1604-<br />

1425 (>C=C,ring skeletone vibration), 1535 (-NH Deformation)1222 (C-H, ipd),<br />

759 (C-H,opd),1022 (C-O-C,sym,str).<br />

1 H NMR (δ ppm): 0.95 (t, 3Hb), 1.43 (m, 3Ha), 1.52(m, Hc 1 ), 2.33 (m,Hc 2 ), 2.58<br />

(m,Hd 1 ), 3.31 (m,Hd 2 ), 4.95 (s,He), 6.87 (s, Hf 1 ), 9.57 (s, Hf 2 ), 10.44 (s,Hf 3 ), 7.59<br />

(d, Hg 2 ), 7.19-7.23 (t-t, Hg 1 ).<br />

C, H, N (in %): Found: 65.96 (C), 7.61 (H), 14.42 (N), Cacld: 65.93 (C), 7.58<br />

(H), 14.44 (N)<br />

N-(4-Methylphenyl)-6-methyl-2-oxo-4-propyl-1,2,3,4-tetrahydropyrimidine-5-<br />

carboxamide (AKS-924)<br />

IR (KBr, cm -1 ): 3423, 3353 (-NH), 2929 (methyl,asym,str), 2871,2736<br />

(methyl,sym,str), 1654 (>C=O,amide), 1735 (-NH-CO-NH) 1334,1375 (C-N,str),<br />

1625-1461 (>C=C,ring skeletone vibration), 1571 (-NH Deformation)1242 (C-H,<br />

ipd), 734 (C-H,opd),1101,1024 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 71.04 (C), 8.77 (H), 14.62 (N), Cacld: 71.01 (C), 8.79<br />

(H), 14.66 (N)<br />

N-(2-Methylphenyl)-6-methyl-2-oxo-4-propyl-1,2,3,4-tetrahydropyrimidine-5-<br />

carboxamide (AKS-925)<br />

IR (KBr, cm -1 ): 3414, 3314 (-NH), 3040(Ar-CH, str) 2968, 2910 (methyl,asym,str),<br />

2864,2745 (methyl,sym,str), 1666 (>C=O,amide), 1718 (-NH-CO-NH) ,1365 (C-<br />

N,str), 1640-1442 (>C=C,ring skeletone vibration), 1561 (-NH Deformation)1246<br />

(C-H, ipd), 778 (C-H,opd),1096,1011 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 71.01 (C), 8.75 (H), 14.61 (N), Cacld: 71.01 (C), 8.79<br />

(H), 14.66 (N)<br />

N-(3-Methylphenyl)-6-methyl-2-oxo-4-propyl-1,2,3,4-tetrahydropyrimidine-5-<br />

carboxamide (AKS-926)<br />

IR (KBr, cm -1 ): 3368 (-NH), 3064, 3012(Ar-CH, str) 2975, 2924<br />

(methyl,asym,str), 2854,2776 (methyl,sym,str), 1680 (>C=O,amide), 1710 (-NH-<br />

CO-NH) ,1354 (C-N,str), 1656-1443 (>C=C,ring skeletone vibration), 1555 (-NH<br />

Deformation)1261 (C-H, ipd), 801 (C-H,opd),1099,1010 (C-O-C,sym,str).


195<br />

C, H, N (in %): Found: 71.02 (C), 8.74 (H), 14.61 (N), Cacld: 71.01 (C), 8.79 (H),<br />

14.66 (N)<br />

MASS (m/e): 287 (100), 270 (18), 259 (83), 240 (18), 230 (16), 215 (23), 202<br />

(15), 189 (15), 176 (3), 156 (5), 144 (5), 128 (14), 115 (14), 102 (17), 89 (8), 77<br />

(19), 63 (9), 44 (32)<br />

N - (2,3-Dimethyl phenyl) -6- methyl -2 -oxo- 4 - propyl -1, 2, 3, 4- tetrahydropyrimidine-5-carboxamide<br />

(AKS-927)<br />

IR (KBr, cm -1 ): 3424, 3362 (-NH), 3026 (Ar-CH, str) 2989, 2956<br />

(methyl,asym,str), 2888,2744 (methyl,sym,str), 1674 (>C=O,amide), 1720 (-NH-<br />

CO-NH) ,1363 (C-N,str), 1641-1448 (>C=C,ring skeletone vibration), 1551 (-NH<br />

Deformation)1247 (C-H, ipd), 762 (C-H,opd),1078,1020 (C-O-C,sym,str).<br />

MASS (m/e): 302 (100), 274 (1), 256 (23), 243 (1), 228 (19), 200 (17), 179 (4),<br />

153 (23), 127 (47), 115 (12), 110 (31), 86 (65), 83 (49), 60 (52), 44 (63)<br />

C, H, N (in %): Found: 71.72 (C), 9.03 (H), 13.94 (N), Cacld: 71.70 (C), 9.09<br />

(H), 13.96 (N)<br />

N-(3-Nitro phenyl) -6-methyl -2- oxo-4-propyl-1,2,3,4-tetrahydropyrimidine-5-<br />

carboxamide (AKS-928)<br />

IR (KBr, cm -1 ): 3456, 3314 (-NH), 3040, 3012 (Ar-CH, str) 2974, 2932<br />

(methyl,asym,str), 2856,2755 (methyl,sym,str), 1682 (>C=O,amide), 1712 (-NH-<br />

CO-NH) ,1362 (C-N,str), 1640-1442 (>C=C,ring skeletone vibration), 1561 (-NH<br />

Deformation)1259 (C-H, ipd), 778 (C-H,opd),1096,1018 (C-O-C,sym,str).<br />

MASS (m/e): 319 (57), 291 (40) 248 (13), 214 (6), 208 (4), 183 (5), 170 (18), 165<br />

(1), 141 (13), 130 (4), 116 (7), 104 (7), 91 (100), 77 (22), 65 (39), 46 (40)<br />

C, H, N (in %):Found: 60.36 (C), 6.97 (H), 17.60 (N), Cacld: : 60.40 (C), 6.93<br />

(H), 17.64 (N)<br />

N - (2,4-Dimethyl phenyl) -6- methyl -2- oxo -4- propyl - 1, 2, 3, 4-tetrahydropyrimidine-5-carboxamide<br />

(AKS-929)<br />

IR (KBr, cm -1 ): 3414, 3314 (-NH), 3040(Ar-CH, str) 2968, 2910 (methyl,asym,str),<br />

2864,2745 (methyl,sym,str), 1666 (>C=O,amide), 1718 (-NH-CO-NH) ,1365 (C-<br />

N,str), 1640-1442 (>C=C,ring skeletone vibration), 1561 (-NH Deformation)1246<br />

(C-H, ipd), 778 (C-H,opd),1096,1011 (C-O-C,sym,str).


196<br />

C, H, N (in %): Found: 71.72 (C), 9.03 (H), 13.94 (N), Cacld: 71.74 (C), 9.01 (H),<br />

13.96 (N)<br />

N-(2-Chlorophenyl)-6-methyl-2-oxo-4-propyl-1,2,3,4-tetrahydropyrimidine-5-<br />

carboxamide(AKS-930)<br />

IR (KBr, cm -1 ): 3424, 3310 (-NH), 3042, 3010(Ar-CH, str) 2989, 2926<br />

(methyl,asym,str), 2874,2754 (methyl,sym,str), 1676 (>C=O,amide), 1728 (-NH-<br />

CO-NH) ,1356 (C-N,str), 1624-1450 (>C=C,ring skeletone vibration), 1552 (-NH<br />

Deformation)1258 (C-H, ipd), 786 (C-H,opd),1098,1022 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 62.43 (C), 7.20 (H), 13.65 (N), Cacld: 62.46 (C), 7.24<br />

(H), 13.69 (N)<br />

6-Methyl- N -1- naphthyl -2- oxo -4- propyl-1, 2, 3, 4 -tetrahydro pyrimidine-5-<br />

carboxamide (AKS-931)<br />

IR (KBr, cm -1 ): 3423, 3354 (-NH), 3024(Ar-CH, str) 2968, 2910 (methyl,asym,str),<br />

2864,2745 (methyl,sym,str), 1666 (>C=O,amide), 1718 (-NH-CO-NH) ,1365 (C-<br />

N,str), 1640-1442 (>C=C,ring skeletone vibration), 1540 (-NH Deformation)1254<br />

(C-H, ipd), 788 (C-H,opd),1088,1014 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 74.27 (C), 7.79 (H), 12.99 (N), Cacld: 74.24 (C), 7.81 (H),<br />

12.99 (N)<br />

6 - Methyl -N- phenyl -4- propyl -2- thioxo- 1, 2, 3, 4- tetrahydropyrimidine -5-<br />

carboxamide (AKS-932)<br />

IR (KBr, cm -1 ): 3456, 3324 (-NH), 3010(Ar-CH, str) 2958, 2910 (methyl,asym,str),<br />

2874 (methyl,sym,str), 1674 (>C=O,amide), 1710 (-NH-CO-NH) ,1346 (C-N,str),<br />

1644-1432 (>C=C,ring skeletone vibration), 1554 (-NH Deformation)1262 (C-H,<br />

ipd), 803 (C-H,opd),1094,1010 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 66.39 (C), 8.01 (H), 14.52 (N), Cacld: 66.42 (C), 8.00<br />

(H), 14.56 (N),<br />

6-Methyl-N-(2-methylphenyl)-4-propyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-<br />

5-carboxamide (AKS-933)<br />

IR (KBr, cm -1 ): 3417 (-NH), 2864, 1660 (>C=O,amide), ,1321 (C-N,str), 1598-<br />

1469 (>C=C,ring skeletone vibration), 1055, 1205(C=S, str) 1598 (-NH<br />

Deformation)1299 (C-H, ipd), 781 (C-H,opd),1020,1055 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 67.28 (C), 8.30 (H), 13.85 (N), Cacld: 67.30 (C), 8.34 (H),<br />

13.88 (N)


197<br />

6-Methyl-N-(3-methylphenyl)-4-propyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-<br />

5-carboxamide (AKS-934)<br />

IR (KBr, cm -1 ): 3414, 3354 (-NH), 3054 (Ar-CH, str) 2986, 2924<br />

(methyl,asym,str), 2870,2765 (methyl,sym,str), 1671 (>C=O,amide) ,1374 (C-<br />

N,str), 1650-1441 (>C=C,ring skeletone vibration), 1551 (-NH Deformation)1244<br />

(C-H, ipd), 778 (C-H,opd),1094,1020 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 67.28 (C), 8.30 (H), 13.85 (N), Cacld: 67.30 (C), 8.34<br />

(H), 13.88 (N)<br />

6-Methyl-N-(4-chlorophenyl)-4-propyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-<br />

5-carboxamide (AKS-935)<br />

IR (KBr, cm -1 ): 3378 (-NH), 3065, 3014 (Ar-CH, str) 2954, (methyl,asym,str),<br />

2877,2774 (methyl,sym,str), 1668 (>C=O,amide) ,1365 (C-N,str), 1640-1452<br />

(>C=C,ring skeletone vibration), 1548 (-NH Deformation)1264 (C-H, ipd), 768 (C-<br />

H,opd),1084,1011 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 59.33 (C), 6.85 (H), 12.97 (N), Cacld: 59.36 (C), 6.82 (H),<br />

12.99 (N)<br />

6-Methyl-N-(4-flourophenyl)-4-propyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-<br />

5-carboxamide (AKS-936)<br />

IR (KBr, cm -1 ): 3425, 3378 (-NH), 3054 (Ar-CH, str) 2954, 2910<br />

(methyl,asym,str), 2868,2743 (methyl,sym,str), 1678 (>C=O,amide) ,1361 (C-<br />

N,str), 1641-1440 (>C=C,ring skeletone vibration), 1555 (-NH Deformation)1244<br />

(C-H, ipd), 789 (C-H,opd),1098,1014 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 62.51 (C), 7.21 (H), 13.67 (N),Cacld: 62.49 (C), 7.24 (H),<br />

13.69 (N)<br />

6- Methyl -N- (2,3-dimethyl phenyl) -4- propyl -2- thioxo- 1, 2, 3, 4 -tetrahydro<br />

pyrimidine-5-carboxamide (AKS-937)<br />

IR (KBr, cm -1 ): 3425, 3378 (-NH), 3054 (Ar-CH, str) 2954, 2910<br />

(methyl,asym,str), 2868,2743 (methyl,sym,str), 1678 (>C=O,amide) ,1361 (C-<br />

N,str), 1641-1440 (>C=C,ring skeletone vibration), 1555 (-NH Deformation)1244<br />

(C-H, ipd), 789 (C-H,opd),1098,1014 (C-O-C,sym,str).<br />

MASS (m/e): 317 (100), 303 (30), 289 (39), 273 (17), 257 (18), 245 (7), 230 (16),<br />

215 (23), 202 (15), 189 (15), 176 (3), 156 (5), 144 (5), 128 (14), 115 (14), 102<br />

(17), 89 (8), 77 (19), 63 (9), 44 (32)


198<br />

C, H, N (in %): Found: 68.09 (C), 8.57 (H), 13.24 (N), Cacld: 68.12 (C), 8.55<br />

(H), 13.28 (N)<br />

6- Methyl -N- (2,4-dimethyl phenyl) -4- propyl -2- thioxo- 1, 2, 3, 4-tetrahydro<br />

pyrimidine-5-carboxamide (AKS-938)<br />

IR (KBr, cm -1 ): 3464, 3314 (-NH), 3054, 3012 (Ar-CH, str) 2978, 2920<br />

(methyl,asym,str), 2878,2784 (methyl,sym,str), 1680 (>C=O,amide) ,1350 (C-<br />

N,str), 1638-1438 (>C=C,ring skeletone vibration), 1535 (-NH Deformation)1258<br />

(C-H, ipd), 789 (C-H,opd),1078,1011 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 68.08 (C), 8.55 (H), 13.22 (N), Cacld: 68.12 (C), 8.55<br />

(H), 13.28 (N)<br />

6-Methyl-N-1- naphthyl -4- propyl- 2- hioxo-1, 2, 3, 4 -tetrahydropyrimidine-5-<br />

carboxamide (AKS-939)<br />

IR (KBr, cm -1 ): 3451 (-NH), 3064, 3010 (Ar-CH, str) 2968, 2924<br />

(methyl,asym,str), 2864,2780 (methyl,sym,str), 1671 (>C=O,amide) ,1354 (C-<br />

N,str), 1640-1454 (>C=C,ring skeletone vibration), 1551 (-NH Deformation)1242<br />

(C-H, ipd), 794 (C-H,opd),1084,1010 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 70.76 (C), 7.42 (H), 12.38 (N), Cacld: 70.72 (C), 7.40<br />

(H), 12.46 (N)<br />

6-Methyl-N-2-naphthyl-4-propyl -2- thioxo- 1, 2 ,3, 4 -tetrahydropyrimidine-5-<br />

carboxamide (AKS-940)<br />

IR (KBr, cm -1 ): 3389 (-NH), 3068, 3024 (Ar-CH, str) 2974, 2910<br />

(methyl,asym,str), 2874,2756 (methyl,sym,str), 1668 (>C=O,amide) ,1348 (C-<br />

N,str), 1651-1442 (>C=C,ring skeletone vibration), 1546 (-NH Deformation)1252<br />

(C-H, ipd), 782 (C-H,opd),1080,1015 (C-O-C,sym,str).<br />

C, H, N (in %): Found: 70.76 (C), 7.42 H), 12.38 (N), Cacld: 70.77 (C), 7.46 H),<br />

12.40 (N)


IR spectrum of 6- Methyl -2-oxo- N- phenyl-4-propyl-1, 2, 3, 4-tetrahydropyrimidine-5-carboxamide<br />

(AKS-921)<br />

199<br />

CH 3<br />

O<br />

NH<br />

NH<br />

C H 3<br />

N<br />

H<br />

O<br />

IR spectrum of N-(4-Chloro phenyl) -6- methyl -2- oxo- 4- propyl-1, 2 3, 4-<br />

tetrahydropyrimidine-5-carboxamide (AKS-922)<br />

CH 3<br />

Cl<br />

O<br />

NH<br />

NH<br />

C H 3<br />

N<br />

H<br />

O


IR spectrum of N-( 4-Flouro phenyl)- 6- methyl - 2-oxo -4- propyl-1, 2, 3, 4-<br />

tetrahydropyrimidine-5-carboxamide (AKS-923)<br />

200<br />

CH 3<br />

F<br />

O<br />

NH<br />

NH<br />

C H 3<br />

N<br />

H<br />

O<br />

IR spectrum of N-(4-Methylphenyl)-6-methyl-2-oxo-4-propyl-1,2,3,4-<br />

tetrahydropyrimidine-5-carboxamide (AKS-924)<br />

CH 3<br />

H 3 C<br />

O<br />

NH<br />

NH<br />

C H 3<br />

N<br />

H<br />

O


IR spectrum of 6-Methyl-N-(2-methylphenyl)-4-propyl-2-thioxo-1,2,3,4-<br />

tetrahydropyrimidine-5-carboxamide (AKS-933)<br />

201<br />

CH 3<br />

O<br />

NH<br />

NH<br />

CH 3<br />

C H 3<br />

N<br />

H<br />

S


1 H NMR spectrum of N-(4-Fluorophenyl)-6-methyl-2-oxo-4-propyl-1,2,3,4-<br />

tetrahydropyrimidine-5-carboxamide (AKS-923)<br />

202<br />

c 2 CH 3<br />

H<br />

b<br />

g<br />

F 1<br />

d 2<br />

g<br />

H<br />

2 O Hc H 1<br />

e d<br />

g 1<br />

1<br />

g2<br />

NH NH<br />

f 1<br />

f 3<br />

f 2<br />

H 3 C<br />

a<br />

N<br />

H<br />

O


Mass spectrum of 6-Methyl-N-(3-nitrophenyl)-2-oxo-4-propyl-1,2,3,4-<br />

tetrahydropyrimidine-5-carboxamide (AKS-928)<br />

203<br />

CH 3<br />

O<br />

N + O - O<br />

NH<br />

NH<br />

C H 3<br />

N<br />

H<br />

O<br />

Mass spectrum of 6-Methyl-N-(3-methylphenyl)-2-oxo-4-propyl-1,2,3,4-<br />

tetrahydropyrimidine-5-carboxamide (AKS-926)<br />

CH 3<br />

O<br />

H 3 C<br />

NH<br />

NH<br />

C H 3<br />

N<br />

H<br />

O


Mass spectrum of N-(2,3-Dimethylphenyl)-6-methyl-4-propyl-2-thioxo-<br />

1,2,3,4-tetrahydropyrimidine-5-carboxamide (AKS-937)<br />

204<br />

CH 3<br />

O<br />

H 3 C<br />

CH 3<br />

NH<br />

NH<br />

C H 3<br />

N<br />

H<br />

S<br />

Mass spectrum of - 6- Methyl -2- oxo- N- phenyl -4- propyl- 1,2,3,4 -<br />

tetrahydropyrimidine-5-carboxamide (AKS-921)<br />

CH 3<br />

O<br />

NH<br />

NH<br />

CH 3<br />

C H 3<br />

N<br />

H<br />

O


Mass spectrum of N-(2,3-Dimethylphenyl)-6-methyl-2-oxo-4-propyl-1,2,3,4-<br />

tetrahydropyrimidine-5-carboxamide (AKS-927)<br />

205<br />

CH 3<br />

O<br />

H 3 C<br />

NH<br />

NH<br />

CH 3<br />

C H 3<br />

N<br />

H<br />

O


206<br />

References<br />

1. Kappe, C. O.; Acc. Chem. Res. 2000, 33, 879-888.<br />

2. Biginelli, P.; Gazz. Chim. Ital. 1893, 23, 360-413.<br />

3. Folkers, K.; Johnson, T. B.; J. Am. Chem. Soc. 1933, 55, 3781-3791.<br />

4. Kappe, C. O.; Tetrahedron 1993, 49, 6937-6963.<br />

5. Sweet, F. S.; Fissekis, J. D.; J. Am. Chem. Soc. 1973, 95, 8741-8749.<br />

6. Kappe, C. O.; J. Org. Chem. 1997, 62, 7201-7204.<br />

7. Hu, E. H.; Sidler, D. R.; Dolling, U.-H.; J. Org. Chem. 1998, 63, 3454-3457.<br />

8. Kappe, C. O.; Falsone, F.; Fabian, W. M. F.; Belaj, F.; Heterocycles 1999, 51, 77-84.<br />

9. Saloutin, V. I.; Burgat, Ya. V.; Kuzueva, O. G.; Kappe, C. O.; Chupakhin, O. N.; J.<br />

Fluorine Chem. 2000, 103, 17-23.<br />

10. Hu, E. H.; Sidler, D. R. and Dolling, U.; J. Org. Chem. 1998, 63, 3454-3457.<br />

11. Ranu, B. C.; Hajra, A. and Jana, U.; J. Org. Chem. 2000, 65, 6270-6272.<br />

12. Bose, D. S.; Liyakat, F. and Mereyala, H. B.; J. Org. Chem. 2003, 68, 587-590.<br />

13. Yijun, H; Fengyue, Y.; and Chengjian, Z.; J. Am. Chem. Soc. 2005, 127, 16386-16387.<br />

14. Xiao-Hua Chen,Xiao-Ying Xu, Hua Liu, Lin-Feng Cun, and Liu-Zhu Gong; J. Am. Chem.<br />

Soc. 2006, 128, 14802-14803.<br />

15. Zhidong, J. and Ruifang, C.; Syn Comm, 2005, 35: 503–509.<br />

16. Majid, M. H.; Khadijeh, B. and Fatemeh, F. B.; Catalysis Communications. 2006, 7(6),<br />

373-376.<br />

17. Zhou, H.; He, M.; Liu, C.; Luo, G.; Letters in Organic Chemistry 2006, 3(3), 225-227.<br />

18. Jun, L., Yinjuan B.; Synthesis, 2002, 0466-0470.<br />

19. Jin, Tong-Shou; Xiao,Jin-Chong; Chen,Yan-Xue; Li,Tong-Shuang; Journal of Chemical<br />

Research 2004, 3, 190-191.<br />

20. De, S. K.; Gibbs, R. A.; Synthesis 2005, 1748-1750.<br />

21. Xiaoyan Han, Fan Xu, Yiqin Luo, Qi Shen ; Eur. J. Org. Chem., 2005, 8, 1500-1503.<br />

22. Badaoui, H.; Bazi, F.; Sokori, S.; Boulaajaj, S.; Lazrek, H. B.; Sebti, S; Letters in Organic<br />

Chemistry. 2005, 2(6), 561-565.<br />

23. De, S. K. and Gibbs, R. A.; Syn Comm, 2005 35: 2645–2651.<br />

24. Shailaja, M.; Manjula, A.; Rao, B. V. and Parvathi, N.; Syn Comm, 2004, 34, 1559–1564.<br />

25. Hojatollah Salehi and Qing-Xiang Guo; Syn Comm., 2004, 34, 171–179.<br />

26. Khodaei, M. M.; Khosropour, A. R. and Beygzadeh, M.; Syn Comm., 2004 34, 1551–<br />

1557.<br />

27. Sharma, S. D.; Gogoi, P. and Konwar, D.; Green Chem., 2007, 9, 153–157.<br />

28. Yadav, J. S.; Reddy, B. V. S.; Reddy, K. B.; Raj, K. S. and Prasad, A. R.; J. Chem. Soc.,<br />

Perkin Trans. 1, 2001, 1939–1941.<br />

29. Weiwei Li and Yulin Lam; J. Comb. Chem 2005, 7, 721-725.<br />

30. Gross, G. A.; Wurziger, H. and Schober, A.; J. Comb. Chem 2006, 8, 153-155.<br />

31. Lusch, M. J. and Tallarico, J. A.; Org. Lett, 2004, 6, 19.


207<br />

32. Stadler, A.; Yousefi, B. H.; Dallinger, D.; Walla, P.; Van der Eycken, E.; Kaval, N. and<br />

Kappe, C. O.; Organic Process Research & Development, 2003, 7, 707-716<br />

33. Yadav J. S.; Reddy B.V.S.; Reddy E.J.; Ramalingam T.; Journal of Chemical Research.,<br />

2000, 7, 354-355.<br />

34. Kapoor, K. K.; Ganai, B. A.; Kumar, S. and Andotra, C. S.; Can. J. Chem./Rev. can. chim.<br />

2006, 84(3): 433-437.<br />

35. Gohain, M.; Prajapati, D.; Sandhu; J. S.; Synlett, 2004: 0235-0238.<br />

36. Gupta, R.; Gupta, A. K.; Paul S. and Kachroo, P. L.; Ind. J. Chem., 1995, 34B, 151.<br />

37. Dandia, A.; Saha, M.and Taneja, H.; J. Fluorine Chem., 1998, 90, 17.<br />

38. Stadler , A. and Kappe, C. O.; J. Chem. Soc., Perkin Trans., 2000, 1363–1368<br />

39. Zong-Ting Wang , Shu-Chao Wang , Li-Wen Xu ; Helvetica Chemica Acta., 2005, 88, 986-<br />

989.<br />

40. Janis, R. A.; Silver, P. J.; Triggle, D. J. Adv. Drug Res., 1987, 16, 309.<br />

41. Bossert, F.; Vater, W. Med. Res. Rev., 1989, 9, 291.<br />

42. Cho, H.; Ueda, M.; Shima, K.; Mizuno, A.; Hayashimatsu, M.; Ohnaka, Y.; Takeuchi, Y.;<br />

Hamaguchi, M.; Aisaka, K.; Hidaka, T.; Kawai, M.; Takeda, M.; Ishihara, T.; Funahashi,<br />

K.; Satah, F.; Morita, M.; Noguchi, T. J. Med. Chem., 1989, 32, 2399.<br />

43. Atwal, K.; Rovnyak, G. C.; Schwartz, J.; Moreland, S.; Hedberg, A.; Gougoutas, J. Z.;<br />

Malley, M. F.; Floyd, D. M. J. Med. Chem., 1990, 33, 1510.<br />

44. Atwal, K. S.; Rovnyak, G. C.; Kimball, S. D.; Floyd, D. M.; Moreland, S.; Swanson, B. N.;<br />

Gougoutas, J. Z.; Schwartz, J.; Smillie, K. M.; Malley, M. F. J. Med. Chem., 1990, 33,<br />

2629.<br />

45. Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.; Moreland, S.; Hedberg, A.;<br />

O´Reilly, B. C. J. Med. Chem., 1991, 34, 806.<br />

46. Rovnyak, G. C.; Atwal, K. S.; Hedberg, A.; Kimball, S. D.; Moreland, S.; Gougoutas, J. Z.;<br />

O´Reilly, B. C.; Schwartz, J.; Malley, M. F. J. Med. Chem., 1992, 35, 3254.<br />

47. Grover, G. J.; Dzwonczyk, S.; McMullen, D. M.; Normadinam, C. S.; Sleph, P. G.;<br />

Moreland, S. J. J. Cardiovasc. Pharmacol., 1995, 26, 289.<br />

48. Rovnyak, G. C.; Kimball, S. D.; Beyer, B.; Cucinotta, G.; DiMarco, J. D.; Gougoutas, J.;<br />

Hedberg, A.; Malley, M.; McCarthy, J. P.; Zhang, R.; Moreland, S. J. Med. Chem., 1995,<br />

38, 119<br />

49. Triggle, D. J.; Padmanabhan, S. Chemtracts: Org. Chem., 1995, 8, 191.<br />

50. Birgit Jauk, Tetiana Pernat and C. Oliver Kappe; Molecules, 2000, 5, 227-239.<br />

51. McConnell, J. D.; Bruskewitz, R.; Walsh, P.; Andriole, G.; Lieber, M.; Holtgrewe, H. L.;<br />

Albertsen, P.; Roehrborn, C. G.; Nickel, J. C.; Wang, D. Z.; Taylor, A. M.; Waldstreicher,<br />

J.; N. Engl. J. Med., 1998, 338, 557-563.<br />

52. Roehrborn, C. G.; Oesterling, J. E.; Auerbach, S.; Kaplan, S. A.; Lloyd, L. K.; Milam, D.<br />

F.; Padley, R. J.; Urology, 1996, 47, 159-168.<br />

53. Heible, J. P.; Bylund, D. B.; Clarke, D. E.; Eikenburg, D. C.; Langer, S. Z.; Lefkowitz, R.<br />

J.; Minneman, K. P.; Ruffolo, R. R.; Pharmacol.Rev., 1995, 47, 267-270.


208<br />

54. Forray, C.; Bard, J. A.; Wetzel, J. M.; Chiu, G.; Shapiro, E.; Tang, R.; Lepor, H.; Hartig, P.<br />

R.; Weinshank, R. L.; Branchek, T. A.; Gluchowski, C.; Mol.Pharmacol., 1994, 45, 703-<br />

708.<br />

55. Barrow, J. C.; Nantermet, P. G.; Selnick, H. G.; Glass, K. L.; Rittle, K. E.; Gilbert, K. F.;<br />

Steele, T. G.; Homnick, C. F.; Freidinger, R. M.; Ransom, R. W.; Kling, P.; Reiss, D.;<br />

Broten, T. P.; Schorn, T. W.; Chang, R. S. L.; O’Malley, S. S.; Olah, T. V.; Ellis, J. D.;<br />

Barrish, A.; Kassahun, K.; Leppert, P.; Nagarathnam, D. and Forray, C.; J. Med. Chem.,<br />

2000, 43, 2703-2718<br />

56. Nagarathnam, D.; Miao, S. W.; Lagu,, B.; Chiu, G.; Fang, J.; Murali Dhar, T. G.; Zhang,<br />

J.; Tyagarajan, S.; Marzabadi, M. R.; Zhang, F.; Wong, W. C.; Sun, W.; Tian, D.; Wetzel,<br />

J. M.; Forray, C.; Chang, R. S. L.; Broten, T. P.; Ransom, R. W.; Schorn, T. W.; Chen, T.<br />

B.; O’Malley, S.; Kling, P.; Schneck, K.; Bendesky, R.; Harrell, C. M.; Vyas, K. P. and<br />

Gluchowski, C.; J. Med. Chem., 1999, 42, 4764-4777.<br />

57. Cho, H.; Ueda, M.; Shima, K.; Mizuno, A.; Hayashimatsu, M.; Ohnaka, Y.; Takeuchi, Y.;<br />

Hamaguchi, M.; Aisaka, K.; Hidaka, T.; Kawai, M.; Takeda, M.; Ishihara, T.; Funahashi,<br />

T.; Satoh, F.; Morita, M. and Noguchi, T.; J. Med. Chem., 1989, 32, 2399-2406.<br />

58. Rovnyak, G. C.; Atwal, K. S.; Hedberg: A.; Kimball, S. D.; Moreland, S.; Gougoutas, J. Z.;<br />

O'Reilly, B. C.; Schwartz, J.; and Malleys; M. F.; J. Med. Chem., 1992,35,3254-3263.<br />

59. Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.; Moreland, S.; Hedberg, A. and<br />

O'Reilly, B. C.; J. Med. Chem., 1991, 34, 806-811.<br />

60. Atwal, K. S.; Rovnyak, G. C.; Kimball, S. D.; Floyd, D. M.; Moreland, S.; Swanson, B. N.;<br />

Gougoutas, J. Z.; Schwartz, J.; Smillie, K. M. and Malley, M. F.; J. Med. Chem., 1990,<br />

33, 2629-2635.<br />

61. Dallinger, D.; Stadler, A. and Kappe, C. O.; Pure Appl. Chem., 2004, 76, 1017-1024.<br />

62. Dallinger, D.; Gorobets, N. Y. and Kappe, C. O.; Org. Lett., 2003, 5, 1205-1208.<br />

63. Nagarathnam, D.; Miao, S. W.; Lagu, B.; Chiu, G.; Fang, J.; Dhar, T. G. M.; Zhang, J.;<br />

Tyagarajan, S.; Marzabadi, M. R.; Zhang, F. Q.; Wong, W. C.; Sun, W. Y.; Tian, D.;<br />

Wetzel, J. M.; Forray, C.; Chang, R. S. L.; Broten, T. P.; Ransom, R. W.; Schorn, T. W.;<br />

Chen, T. B.; O’Malley, S.; Kling, P.; Schneck, K.; Benedesky, R.; Harrell, C. M.; Vyas, K.<br />

P.; Gluchowski, C. J. Med. Chem., 1999, 42, 4764-4777.<br />

64. Barrow, J. C.; Nantermet, P. G.; Selnick, H. G.; Glass, K. L.; Rittle, K. E.; Gilbert, K. F.;<br />

Steele, T. G.; Homnick, C, F.; Freidinger, R. M.; Ransom, R. W.; Kling, P.; Reiss, D.;<br />

Broten, T. P.; Schorn, T. W.; Chang, R. S. L.; O’Malley, S. S.; Olah, T. V.; Ellis, J. D.;<br />

Barrish, A.; Kassahun, K.; Leppert, P.; Nagarathnam, D.; Forray, C. J. Med. Chem., 2000,<br />

43, 2703-2718.<br />

65. Dallinger, D.; Gorobets, N. Y.; Kappe, C. O. Mol. Diversity, 2003, 7, 229-245.<br />

66. Wannberg, J.; Dallinger, D.; Kappe, O. and Larhed. M.; J. Comb. Chem., 2005, 7, 574-<br />

583.<br />

67. Kappe, C. O.; Fabian, W. M. F.; Semones, M. A. Tetrahedron, 1997, 53, 2803-2816.<br />

68. Kappe, C. O.; Shishkin, O. V.; Uray, G.; Verdino, P. Tetrahedron, 2000, 56, 1859-1862.


209<br />

69. Rovnyak, G. C.; Kimball, S. D.; Beyer, B.; Cucinotta, G.; DiMarco, J. D.; Gougoutas, J.;<br />

Hedberg, A.; Malley, M.; McCarthy, J. P.; Zhang, R.; Moreland, S. J. Med. Chem.,1995,<br />

38, 119-127.<br />

70. Namazi, H.; Mirzaei, Y. R.; Azamat, H. J. Heterocycl. Chem., 2001, 38, 1051-1054.<br />

71. Lewandowski, K.; Murer, P.; Svec, F.; Frechet, J. M. J. J.Comb. Chem., 1999, 1, 105-112.<br />

72. Tsuji, T.; J. Heterocycl. Chem., 1991, 28, 489.<br />

73. Jacobson, M.A. and Norton, R.; PCT Int. Appl. WO, 1997, 97 33,879; Chem. Abstr.,<br />

127,293241.<br />

74. El-kerdawy, M.M.; Moustafa, M.A.; Gad, L.M. and Badr, S.M.E.; Bull Fac. Pharm. (Cairo<br />

Univ.), 1993 , 31(1), 67; Chem. Abstr., 1994 , 121, 57472b.<br />

75. Sharma, S; Khanna, M.S.; Garg, C.P.; Kapoor, R.P.; Kapil A. Indian J. Chem., 1993, B,<br />

146-149.<br />

76. Takenaka, K. and Tsuji, T.; J. Heterocycl. Chem., 1996, 33, 1367.<br />

77. Kutyrev, A. and Kappe, T.; J. Heterocycl. Chem., 1999, 36, 237.<br />

78. Shridhar, D.R.; Jogibhukta, M. and Krishnan, V.S. Indian J. Chem. See., 1986 B, 25B (3),<br />

345.<br />

79. Shioiri, T.; Ninomija, K.and Yamada, S.; J. Am. Chem. Soc., 1972, 94, 6203.<br />

80. Mishina, T.; Tsuda, N.; Inui, A. and Miura, Y. Jpn. Kokai Tokkyo Koho JP, 1987,<br />

62,169,793; Chem. Abstr., 1988, 108, 56120e.<br />

81. Selic, L.; Grdadolnik, S.G. and Stanovnik, B.; Heterocycles, 1997, 45(12), 2349.<br />

82. Sorsak, G.; Grdadolnik, S.G.and Stanovnik, B.; J. Heterocycl. Chem., 1998, 35, 1275.<br />

83. Selic, L. and Stanovnik, B.; J. Heterocycl. Chem., 1997, 34, 813.<br />

84. Sorsak, G.; Sinur, A.; Colic, L. and Stanovnik, B.; J. Heterocycl. Chem., 1995, 32, 921.<br />

85. Stanovnik, B.; Bovenkamp, H. Van de; Svete, J.; Hvala, A.; Simonic, I. and Tisher, M.; J.<br />

Heterocycl. Chem., 1990, 21, 359.<br />

86. Liu, Y.S. and Uang , W. H.; J. Chem. Soc. Perkin Trans., 1997, 1(6), 981.<br />

87. Janietz, D.; Goldmann, B. and Rudorf, W.D.; J. Prakt. Chem., 1988, 330(4), 607.<br />

88. Giudice, M.R.D.; Borioni, A.; Mustazza, C.; Gatta, F.; and Stanovnik, B.; J. Heterocycl.<br />

Chem., 1995, 32, 1725.<br />

89. Metwally, M.A.; Ismaiel, A.M.; Yousif, Y.M.and Eid, F.; J. Indian Chem. Soc. 1989, 66,3,<br />

179.<br />

90. Malesic, M.; Krbavcic, A. and Stanovnik, B.; J. Heterocycl. Chem., 1997, 34, 49.<br />

91. Sauter, F.; Frohlich, J.; Chowdhury, A.Z.M.S. and Hametner, C.; Monatsh. Chem, 1997,<br />

128, 503.<br />

92. Giandinoto, S.; Mbagwu, G.O.; Robinson, T.A.; Ferguson, C. and Nunez, J.; J.<br />

Heterocycl. Chem., 1996 33, 1839.<br />

93. Melo, S.J. De and Luu-Duc, C.; J. Chem. Res., 1992, 286.<br />

94. Sauter, F.; Frohlich, J.; Chowdhury, A.Z.M.S. and Hametner, C.; Monatsh. Chem., 1997,<br />

128, 503.<br />

95. Abdel-Aziz, S.A.; Phosphorus. Sulfur Silicon Relat. Elem., 1996, 116, 39.


210<br />

96. Manhi, M. and Abdel-Fattah, A.M.; Egypt. J. Pharm., 1992, 33, 825; Chem. Abstr., 1994,<br />

121,83254b.<br />

97. Ghorab, M.; Mohamed, Y.A.; Mohamed, S.A. and Ammar, Y.A.; Phosphorus, Sulfur<br />

Silicon Relat. Elem., 1996, 108(1-4), 249.<br />

98. Ghoneim, K.M.; Essawi, M.Y.H.; Mohamed, M.S. and Kamal, A.M.; Pol. J. Chem., 1998,<br />

72(7), 1173.<br />

99. Mohamoud, M.R.; Soliman A.Y. and Bakeer, H.M.; Indian J. Chem. Sec. B, 1990, 29B (9),<br />

830.<br />

100. Champaneri, H.R.; Modi, S.R.; and Naik, H.B.; Asian J. Chem., 1994, 6(3), 737; Chem.<br />

Abstr., 1994, 121, 300842.<br />

101. Moustafa, H.Y.; Indian J. Heterocycl. Chem., 1998, 7(4), 273.<br />

102. Salama, M.A.; Mousa, H.H. and Al-Shaikh, M.; Orient. J. Chem., 1991, 7(4), 185; Chem.<br />

Abstr., 1992, 116, 151713.<br />

103. Sharaf, M.A.F.; Abdel Aal, F.A.; Abdel Fattah, A.M. and Khalik, A.M.R.; J. Chem. Res.,<br />

1996, 354.<br />

104. Tozkoparan, B.; Ertan, M.; Kelicen, P. and Demirdamar, R.; Farmaco, 1999, 54 (9), 588.<br />

105. Akhtar, M.S.; Seth, M. and Bhaduri, A.P.; Indian J. Chem. Sec. B, 1987, 26B (6), 556.<br />

106. Salama, M.A.; Mousa, H.H.A.; and El-Essa, S.A.; Orient. J. Chem., 1991, 7(3), 128;<br />

Chem. Abstr, 1992, 116, 41405t.<br />

107. Abdel-Rahman, R.M.; Fawzy, M. and El-Baz, I.; Pharmazie, 1994, 49, 729.<br />

108. Kappe, C.O. and Roschger, P.; J. Heterocycl. Chem., 1989, 26, 55.<br />

109. Abdel-Aziz, S.A.; Allimony, H.A.; El-Shaaer, H.M.; Ali, U.F. and Abdel-Rahman, R.M.;<br />

Phosphorus, Sulfur Silicon Relat. Elem., 1996, 113, 67.<br />

110. Pecoran, P.; Rinaldi, M.; Costi, M.P. and Antolini, L.; J. Heterocycl. Chem., 1991, 28, 891.<br />

111. Biagi, G.; Costantini, A.; Costantino, L.; Giorgi, I.; Livi, O.; Pecorari, P.; Rinaldi, M. and<br />

Scartoni, V.; J. Med. Chem., 1996, 39, 2529-2535.<br />

112. Bo´szing, D.; Soha´r, P.; Gigler, G.; Kova´ cs, G. Eur. J. Med. Chem., 1996, 31, 663.<br />

113. Geo, A.; Sabine, K.; Vincent, M.; Jurgen, W.; US patent, 1999, 5958931.<br />

114. Shigenori, O.; Naoyuki, K.; Seiji, M.; US patent, 2003, 6583146.<br />

115. Kappe, C. O.; Färber, G. J. Chem. Soc., Perkin Trans.1, 1991, 1342.<br />

116. Pe´rez, R.; Beryozkina, T.; Zbruyev, O. I.; Haas, W. and Kappe, C. O.; J. Comb. Chem.,<br />

2002, 4, 501-510<br />

117. Westaway, K. C. and Gedye, R. N.; J. Microwave PowerElectromagn. Energy, 1995, 30,<br />

219.<br />

118. Caddick, S.; Tetrahedron, 1995, 51, 10403.<br />

119. Varma, R. S.; Green Chem., 1999, 1, 43.<br />

120. Lidström, P.; Tieney, J.; Wathey, B.and Westmann, J.; Tetrahedron, 2001, 57, 9225.<br />

121. Larhed, M.; Moberg, Ch. and Hallberg, A.; Acc. Chem. Res., 2002, 35, 717.<br />

122. Trotzki, R.; Nüchter, M. and Ondruschka, B.; Green Chem., 2003, 5, 285.<br />

123. Strauss, C. R.; Trainor, R.W.; Aust. J. Chem., 1995, 48, 1665 –1692.


211<br />

124. Larhed, M.; Moberg, C.; Hallberg, A.; Acc. Chem. Res., 2002, 35, 717 – 727.<br />

125. Krstenansky, J. L.; Cotterill, I.; Curr. Opin. Drug Discovery Dev., 2000, 3, 454 – 461.<br />

126. Swamy, K. M. K., Yeh, W.B.; Lin, M.J.; Sun, C.M.; Curr. Med. Chem., 2003, 10, 2403 –<br />

2423.<br />

127. Microwaves in Combinatorial and High-Throughput Synthesis (Ed.: Kappe, C. O.),<br />

Kluwer, Dordrecht, 2003 (a special issue of Mol. Diversity, 2003, 7, pp. 95–307.<br />

128. Online resources on microwave-assisted organic synthesis (MAOS), see: www.maos.net.<br />

129. Baghurst, D. R.; Mingos, D. M. P.; Chem. Soc. Rev., 1991, 20, 1–47.<br />

130. Gabriel, C., Gabriel, S.; Grant, E. H.; Halstead, B. S.; Mingos, D. M. P.; Chem. Soc. Rev.,<br />

1998, 27, 213 – 223.<br />

131. Hayes, B. L.; Microwave Synthesis: Chemistry at the Speed of Light, CEM Publishing,<br />

2002, Matthews NC,.<br />

132. Miyaura, N.; Suzuki, A.; Chem. Rev., 1995, 95, 2457 – 2483.<br />

133. Li, C. J.; Angew. Chem. 2003, 115, 5004 – 5006; Angew. Chem. Int. Ed., 2003, 42, 4856<br />

– 4858.<br />

134. Gong, Y.; He, W.; Org. Lett., 2002, 4, 3803 – 3805.<br />

135. Nuteberg, D.; Schaal, W.; Hamelink, E.; Vrang, L.; Larhed, M.; J. Comb. Chem., 2003, 5,<br />

456 – 464.<br />

136. Miller, S. P.; Morgan, J. B.; Nepveux, F. J.; Morken, J. P. ; Org. Lett., 2004, 6, 131 – 133.<br />

137. Kaval, N.; Bisztray, K.; Dehaen, W.; Kappe C. O.,; Van der -Eycken, E.; Mol. Diversity,<br />

2003, 7, 125 – 134.<br />

138. Luo, G.; Chen, L.; Pointdexter, G. S.; Tetrahedron Lett., 2002, 43, 5739 – 5742.<br />

139. Wu, T. Y. H.; Schultz, P. G.; Ding, S.; Org. Lett., 2003, 5, 3587 – 3590.<br />

140. Han, J. W.; Castro, J. C.; Burgess, K.; Tetrahedron Lett., 2003, 44, 9359 – 9362.<br />

141. Leadbeater, N. E.; Marco, M.; Org. Lett., 2002, 4, 2973 – 2976.<br />

142. Leadbeater, N. E.; Marco, M.; J. Org. Chem., 2003, 68, 888 – 892.<br />

143. Leadbeater, N. E.; Marco, M.; Angew. Chem., 2003, 115, 1445 – 1447; Angew. Chem.<br />

Int. Ed., 2003, 42, 1407 – 1409.<br />

144. Leadbeater, N. E.; Marco, M.; J. Org. Chem., 2003, 68, 5660 – 5667.<br />

145. Theoclitou, M.-E.; Robinson, L. A.; Tetrahedron Lett., 2002, 43, 3907 – 3910.<br />

146. Hberg, L., Westman, J.; Synlett, 2001, 1296 – 1298.<br />

147. Zhao, Z.; Leister, W. H.; Strauss, K. A.; Wisnoski, D. D.; Lindsley, C. W.; Tetrahedron<br />

Lett., 2003, 44, 1123 – 1128<br />

148. Lindsley, C. W.; Wisnoski, D. D.; Wang, Y.; Leister, W. H.; Zhao, Z.; Tetrahedron Lett.,<br />

2003, 44, 4495 – 4498.<br />

149. Mont, N.; Teixid, J.; Borrell, J. I.; Kappe, C. O.; Tetrahedron Lett, 2003, 44, 5385 – 5388;<br />

Mont, N.; Teixid, J.; Borrell, J. I.; Kappe, C. O.; Mol. Diversity, 2003, 7, 153 – 159.<br />

150. Baxendale, I. R.; Lee, A.I.; Ley, S. V.; J. Chem. Soc. Perkin Trans., 2002, 1850 – 1857.<br />

151. ErdMlyi, M.; Gogoll, A.; J. Org. Chem., 2001, 66, 4165 – 4169.<br />

152. ErdMlyi, M.; Langer, V.; KarlMn, A.; Gogoll, A.; New. J. Chem., 2002, 26, 834 – 843.


212<br />

153. Trost, B. M.; Crawley, M. L.; J. Am. Chem. Soc,. 2002, 124, 9328 – 9329.<br />

154. Pinto, D. C. G. A.; Silva, A. M. S.; Almeida, L. M. P. M.; Carrillo, J. R.; Waz-Ortiz, A. D.;<br />

de la Hoz, A.; Cavaleiro, J. A. S.; Synlett, 2003, 1415 – 1418.<br />

155. Dupau, P.; Epple, R.; Thomas, A. A.; Fokin, V. V.; Sharpless, K. B.; Adv. Synth. Catal.,<br />

2002, 344, 421 – 433.<br />

156. Lehmann, F.; Pilotti, K. Luthman, Mol. Diversity, 2003, 7, 145 – 152.<br />

157. Cherng, Y.J.; Tetrahedron, 2000, 56, 8287 – 8289.<br />

158. Brown, G. R.; Foubister, A. J.; Roberts, C. A.; Wells, S. L.; Wood, R.; Tetrahedron Lett.,<br />

2001, 42, 3917 – 3919.<br />

159. Cherng, Y.J.; Tetrahedron, 2002, 58, 887 – 890.<br />

160. Cherng, Y.J.; Tetrahedron, 2002, 58, 1125 – 1129.<br />

161. Cherng, Y.J.; Tetrahedron, 2002, 58, 4931 – 4935.<br />

162. Zaragoza, F.; Organic Synthesis on Solid Phase, Wiley-VCH, 2002, Weinheim.<br />

163. Handbook of Combinatorial Chemistry (Eds.: Nicolaou, K. C.; Hanko, R.; Hartwig, W.),<br />

Wiley-VCH, 2002, Weinheim,.<br />

164. Stadler, A.; Kappe, C. O. ; Eur. J. Org. Chem., 2001, 919 – 925.<br />

165. Stadler, A.; Kappe, C. O.; Tetrahedron, 2001, 57, 3915 – 3920.<br />

166. Mrez, R. P.; Beryozkina, T.; Zbruyev, O. I.; Haas, W.; Kappe, C. O.; J. Comb. Chem.,<br />

2002, 4, 501 – 510.


Chapter-7<br />

Biological Activity Study


213<br />

Biological Activity Study<br />

The present work deals with the antimicrobial screening of the compounds (AKS<br />

and VGM series) synthesized in earlier Chapters.<br />

The minimum inhibition concentration (MIC) values were determined in the<br />

present study.<br />

Protocol<br />

Determination of MIC by Agar-dilution method was carried out as per the NCCLS<br />

guidelines M7-A5<br />

Preparation of plates containing the antimicrobial agent<br />

To Mueller-Hinton agar (19 ml) medium (Hi Media), cooled to approximately<br />

500C, 1 ml of antimicrobial agent, dissolved in DMSO is added. The<br />

antimicrobial agent is mixed thoroughly into the medium and poured into Borosil<br />

glass petriplates of 9 cm diameter and allowed to solidify. The 7 test cultures<br />

selected for the determination of MIC are spot-inoculated<br />

(2 ml/spot) on a single plate prepared.<br />

Preparation of solutions of antimicrobial agents to be incorporated into the agarbased<br />

medium<br />

10mg of the antimicrobial agent is dissolved in 5ml of DMSO to prepare the main<br />

stock of the compound to be tested. 1ml of this main stock is added to 19 ml of<br />

Mueller Hinton agar medium to make the final concentration of 100 mg/ml in the<br />

agar medium. The main stock solution is further diluted in DMSO by two-fold<br />

dilution procedure to obtain the desired concentration in the agar medium.<br />

Preparation of inoculum of the test cultures<br />

For all cultures other than M.smegmatis strains<br />

One loopful of culture from slant is inoculated into 5mL Muellar Hinton broth<br />

(HiMedia) in a test tube. The tube is incubated at 37 0C till the absorbance at<br />

625nm equals that of 0.5 Mc. Farland standard (Section 5). The absorbance<br />

readings are taken against a sterile Mueller Hinton broth blank. The cultures are<br />

then transferred to 2-8oC temperature and maintained this temperature till the<br />

time of inoculating the plates. Appropriate dilutions of the cultures (either 10 or


214<br />

100 fold, depending on the culture) are made based on the viable count of the<br />

cultures, previously done to establish the relationship between absorbance at<br />

625mn and viable count, before inoculating the plates containing the antimicrobial<br />

test agents. 2ml of this diluted culture is used to spot-inoculate the plates with<br />

antimicrobial test agents.<br />

For M.smegmatis strains<br />

One loopful of the culture from slant is used to inoculate 25 ml Mycoseed brotha<br />

with 2-3 glass beads. The broth is incubated at 35 0C for 5 days on 250rpm<br />

shaker. 2 ml of undiluted, 1:10 and 1:100 fold diluted culture is spot-inoculated<br />

on a Mueller Hinton agar control plate (section 6) and the spots are observed for<br />

confluent growth. The maximum dilution of the culture that gives a confluent<br />

growth of the spot on the Mueller Hinton agar control plates is selected for spot<br />

inoculation of the plates containing the antimicrobial test agents.<br />

Preparation of 0.5 Mc. Farland standard<br />

The 0.5 Mc. Farland standard solution as a reference for turbidity measurement<br />

is prepared as per the NCCLS guidelines M7-A5.<br />

Briefly, 0.5mL of 1.175% w/v BaCl2 solution is added to 99.5 ml of 1% v/v H2SO4<br />

solution with constant stirring. The absorbance of the solution is measured at<br />

625nm against a D.M.water blank by a uv-visible spectrophotometer. The<br />

absorbance lies in the range of 0.08 to 0.1. The Mc. Farland standard solution is<br />

stored in dark at room temperature and vortexed vigorously prior to use.<br />

Controls<br />

Two control plates (i.e.plates without any antimicrobial agent incorporated into<br />

the agar medium) with 1ml DMSO in 19mL Mueller Hinton agar medium are kept<br />

with each MIC experiment to check the growth of the cultures inoculated on the<br />

plates and the effect of the solvent (DMSO) on the cultures. 2 ml of all the test<br />

cultures are spot-inoculated onto these two plates.


215<br />

Incubation time and temperature<br />

The plates are incubated at 35oC for 48 hours for M.smegmatis and 24 hours for<br />

all other cultures before taking the results of MIC.<br />

Evaluation of the results<br />

The antimicrobial test compounds that show the growth of all the cultures at a<br />

concentration of 100 mg/ml are not tested further for the determination of the MIC.<br />

The compounds that show no growth of any of the culture at 100 mg/ml<br />

concentration are further tested with lower doses of the test compounds for the<br />

determination of the MIC values.<br />

If the test culture that show 1-5 colonies per spot instead of the confluent growth<br />

as in the control plate, it is considered to be inhibited by the test compound.<br />

1. F. Simoncini et al.; Farmaco, 23, 559 (1968); C. A. 69, 109851 (1968).<br />

2. Bhatt, S., Deo, K., Kundu, P., Chavda, M. & Shah, A.; Indian J. Chem., Sect 42B, 1502 (2003).<br />

3. Chavda, M., Shah, A., Bhatt, S., Deo, K. & Kundu, P.; Arzneim-Forsch, Drug,<br />

Res., 53, 196 (2003).


216<br />

7.1 Antimicrobial Activity (as per protocol)<br />

Microorganism (MIC, µg/ml)<br />

Sr. No<br />

Code<br />

S.coccus<br />

Pypgens<br />

A77<br />

S.aureus<br />

SG511<br />

S.aureus<br />

E710<br />

E.coccus<br />

Faecalis<br />

M.smegmatis<br />

(MY-1)<br />

M.smegmatis<br />

(MY-1)<br />

1. VGM-1 2.5 5.0 5.0 10.0 5.0 5.0<br />

2. VGM-2 2.5 5.0 5.0 10.0 5.0 5.0<br />

3. VGM-3 1.25 5.0 5.0 - 5.0 5.0<br />

4. VGM-4 100 - - - - 50<br />

5. VGM-5 100 - - - - 100<br />

6. VGM-6 2.5 - - - 12.5 10<br />

7. VGM-7 5.0 - - - 12.5 12.5<br />

8. VGM-8 1.25 2.5 2.5 5.0 5.0 5.0<br />

9. VGM-9 25 - 50 - 100 50<br />

10. AKS-921 2.5 - - - 12.5 10<br />

11. AKS-922 12.5 - - - 100 12.5<br />

12. AKS-923 -- - - - - -<br />

13. AKS-924 2.5 -- - - - 50<br />

14. AKS-925 - - - - - -<br />

15. AKS-926 - - - - 100 100<br />

16. AKS-575 - - - - 50 -<br />

17. AKS-576 - - - - - -<br />

18. AKS-577 - - - - 100 100<br />

19. AKS-578 - - - - - -<br />

20. AKS-579 - - - - - -<br />

21. AKS-580 - - - - - -<br />

22. AKS-581 - - - - - -<br />

23. AKS-582 - - - - - -<br />

24. AKS-583 25.0 - - - 100 -<br />

25. AKS-584 5.0 - - - 12.5 12.5<br />

26. AKS-585 5.0 - - - 100 100<br />

27. AKS-586 2.5 - - - 50 -<br />

28. AKS-587 12.5 - - - - -<br />

29. AKS-589 2.5 - -- - - -<br />

30. AKS-590 --- - - - -<br />

31. AKS-901 5.0 - - - - 12.5<br />

32. AKS-902 -- - - - - -<br />

33. AKS-903 100 - - - - -


217<br />

34. AKS-904 -- - - - 100 100<br />

35. AKS-905 100 - - - 100 -<br />

36. AKS-906 -- - - - - -<br />

37. AKS-907 100 - - - - -<br />

38. AKS-908 100 - - - - -<br />

39. AKS-909 -- - - - 100 -<br />

7.2 Antimicrobial Activity data<br />

Compound<br />

1 mg/100ml<br />

Gram Positive<br />

S. aureus<br />

Gram Negative<br />

E. coli<br />

VGM-12 15 -<br />

VGM-13 14 -<br />

VGM-14 29 -<br />

VGM-15 25 -<br />

AKS-910 16 -<br />

AKS-912 - -<br />

AKS-913 26 -<br />

AKS-914 11 -<br />

AKS-915 - -<br />

* Diameter zones of growth of inhibition in mm.


218<br />

Conclusion<br />

Three types of antimicrobial studies were carried out.<br />

In the first study, Protocol was followed and the minimum inhibition concentration<br />

were determined of 40 compounds against Streptococcus pyogens A77,<br />

S.aureus SG511, S.aureus E710, Enterococcus Faecalis,M. Smegmatis MY-1<br />

and M. Smegmatis MY-2.<br />

Many compounds have shown very proming MIC at 1.25 mg/ml, 2.5 mg/ml, 5<br />

mg/ml and 10 mg/ml against some of the species discussed above.


234<br />

SUMMARY OF WORK<br />

The work presented in the thesis entitled “Synthesis, Characterization and<br />

Pharmacological Study of some Bioactive Molecules” can be summarized below.<br />

Chapter 1 covers synthesis of pyrazolo derivatives. Initially, 2, 4 dimethyl 3-acetyl<br />

pyrrole are synthesized by Knorr Pyrrole synthesis. Further Chalcone derivatives<br />

are synthesized from 3-acetyl pyrrole and substituted aromatic aldehyde. Target<br />

molecules were synthesized from chalcone and hydrazine hydrate using KOH as<br />

catalyst. In prologue part, various methods for synthesis of pyrrole and biological<br />

profile were described. The synthesized molecules are well characterized by IR,<br />

1 H NMR and Mass analysis.<br />

In Chapter 2, extension of work on dihydropyridine skeleton modification, carried<br />

out by synthesis of symmetrical 1, 4-DHPs with naphthyl ring at C 3 and C 5 site of<br />

dihydropyridines and asymmetrical derivatives with naphthyl carbamoyl side<br />

chain. Symmetrical dihydropyridines have been synthesized using<br />

acetoacetanilide of α-naphthayl amine and substituted aromatic aldehyde with liq.<br />

ammonia. Total twenty compounds (AKS 1-20) were synthesized and well<br />

characterized by IR, 1 H NMR and Mass technique.<br />

In Chapter 3, a mini review of pyrimidines derivatives containing thiazolo and<br />

thiazine ring is given. Literature survey included for microwave assisted synthesis<br />

of 2-oxo and thioxo tetrahydropyrimide derivatives. Biginelli dihydropyrimidine<br />

synthesis and Intramolecular Heck cyclization in DHPMs skeleton were<br />

documented. Many bicyclic fused systems synthesized from dihydropyrimidines<br />

scaffold are discussed. Chemistry and biological importance of thiazolo<br />

pyrimidine and thiazine pyrimidine scaffold are included in this Chapter.<br />

In Chapter 4, thiazolo and thiazine bicyclic systems are synthezied from Biginelli<br />

DHPMs derivatives. Thiazolo and thiazine bicyclic scheme are synthesized from<br />

dihydropyrimidine derivatives and dibromo ethane or dibromo propane


235<br />

correspondingly in the presence of potassium bicarbonate as a catalyst. Total<br />

eighteen compounds are synthesized with thiazolo bicyclic system and 5<br />

compounds as thiazine system. The synthesized compounds (AKS 551--582) are<br />

well characterized by IR, 1 HNMR and Mass study and also by 13 C technique.<br />

Chapter 5 covers synthesis and characterization of N-aryl tetrahydropyrimidine<br />

derivatives by Biginelli reaction. Introduction of phenyl carbamoyl moiety at C-3<br />

and/or C-5 position in dihydropyridine skeleton has showed diverse activity<br />

profile. For the synthesis of N-phenyl dihydropyrimidines, different N-phenyl<br />

ureas with substitutions (Phenyl, 3-methylphenyl, 2,4-dimethylphenyl) were<br />

synthesized. Acetoacetanilides with different halogen substitutions (4-chloro, 4-<br />

flouro, 3-chloro-4-flouro) were synthesized. N-phenyl substituted DHPM<br />

derivatives were obtained by reacting N -(phenyl/3-methylphenyl/2,4-dimethyl)<br />

urea, (4-chloro, 4-flouro, 3-chloro-4-flouro)acetoacetanilide and substituted<br />

aromatic aldehyde. All newly synthesized compounds (AKS 901--920) are<br />

characterized by IR, 1 H NMR and Mass spectral analysis.<br />

In Chapter 6, microwave assisted synthesis of oxo and a thioxo<br />

tetrahydropyrimidine derivative is covered. It was planned to develop various<br />

modified compounds associated with aliphatic chain at C 4 position of<br />

dihydropyrimidines. Phenyl ring at C 4 position of classical dihydropyrimidine was<br />

replaced with aliphatic chain. Present work deals with an aliphatic aldehyde<br />

(butyraldehyde) as a substrate to obtain a dihydropyrimidine skeleton without<br />

phenyl or heteroaryl ring at C 4 . Microwave irradiation technique was utilized and<br />

higher yields within shorter reaction time (10-15 minutes) were obtained. Ten new<br />

oxopyrimidines (AKS. 921-931) and eighteen thioxopyrimidine derivatives (AKS.<br />

923-940) are synthesized and characterized.<br />

Total 96 compounds are synthesized and characterized in the entire work.<br />

Representive Synthesized compounds are tested for anti microbial activity and<br />

further screening for antitubercular and anti viral activity is under investigation.<br />

The antimicrobial activity data are shown in last chapter


236<br />

Presentation of Paper & Conferences/Workshop Participated<br />

<br />

Participated and presented a poster at 9 th International Conference on”<br />

Bioactive Heterocycles and Drug Discovery Paradigm” held at Rajkot<br />

organized by Indian Society of Chemist & Biologist (ISCB) and Department<br />

of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot, Gujarat (India), January 8-10,<br />

2005<br />

<br />

Participated in UGC Recognized state level seminar on “Innovative Trends<br />

in Research an Process Development in Chemical Industries: Perspective”<br />

held at Yogidham Educational Campus, Rajkot, Gujarat, February 20,<br />

2003<br />

<br />

Participated and presented poster at 10 th International Conference of ISCB<br />

on “Drug Discovery: Perspectives and Challenges jointly organized” by<br />

<strong>University</strong> of Toronto, and CDRI, Lucknow, India, February 26, 2006.<br />

<br />

Gujcost sponsored One Day Workshop on “Current Drug Patent Regime”,<br />

S.J. Thakkar Pharmacy College, Rajkot, Gujarat, March 5 , 2006.<br />

<br />

Participated and presented a poster at “International Conference on<br />

Advance in Drug Research Discovery Research” held at Aurangabad,<br />

India, February 24-26, 2007.<br />

<br />

DST Workshop on “Green Chemistry” organized by Institute of pharmacy,<br />

Nirma <strong>University</strong> of Science and Technology, Ahmedabad, Gujarat,<br />

November 25-26, 2005.<br />

<br />

National Workshop on “Spectroscopy and Theoretical Chemistry”<br />

organized by Department of Chemistry, M.S. <strong>University</strong> of Baroda,<br />

Gujarat, February 8-12, 2005.


237<br />

Participated and presented a poster at Joint international conference on<br />

“Building Bridges, Forging Bonds for 21 st century organic chemistry and<br />

Chemical biology” organized by American Chemical Society, USA and<br />

National Chemical Laboratory, Pune (India), January 6 – 9, 2006.<br />

Participated and presented a poster at Joint International Conference on<br />

“Advances in Organic Chemistry and Chemical Biology” organized by the<br />

American Chemical Society, USA and Indian institute of Chemical<br />

Technology, Hyderabad (India), January 11-12, 2006.<br />

Participated in National workshop on “Recent advances in Chemical<br />

Science and an Approach to Green Chemistry” held at <strong>Saurashtra</strong> <strong>University</strong><br />

jointly organized by Department of Chemistry and GUJCOST, Rajkot,<br />

Gujarat, October 11-13, 2006.<br />

Participated and presented a poster at 3 rd International conference on<br />

“Heterocyclic Chemistry” organized by department of Chemistry, Jaipur,<br />

India.Dec, 2006.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!