process oils

process oils process oils

rubbercenter.org
from rubbercenter.org More from this publisher

INTRODUCTION TO PROCESS OILS<br />

Krisda SUCHIVA<br />

Research and Development Centre for Thai Rubber Industry,<br />

Mahidol University


INTRODUCTION TO PROCESS OILS<br />

Process <strong>oils</strong> are used in the rubber industry to,<br />

• improve the <strong>process</strong>ability of rubbers and rubber<br />

compounds<br />

<strong>process</strong> aids<br />

• increase the bulk of rubber in order to lower cost<br />

oil-extended rubbers<br />

Main application is <strong>process</strong> aid.<br />

2


INTRODUCTION TO PROCESS OILS<br />

Process aids are increasingly important for the rubber<br />

industry due to the following needs,<br />

- improve efficiency and productivity<br />

- lower energy consumption<br />

In total,<br />

- reduce production cost<br />

- improve product quality<br />

3


INTRODUCTION TO PROCESS OILS<br />

Functions of <strong>process</strong> aids,<br />

1. reduce viscosity<br />

2. reduce elasticity<br />

3. aid dispersion of fillers<br />

4. reduce power consumption<br />

Additional requirement<br />

1. do not affect intended properties of finished products<br />

2. act at low dosage level<br />

3. non-toxic<br />

4


INTRODUCTION TO PROCESS OILS<br />

Materials used as <strong>process</strong> aids,<br />

1. chemical peptizers<br />

2. fatty acid soaps<br />

3. fatty acid ester<br />

4. petroleum <strong>oils</strong><br />

5. factice<br />

6. resins<br />

7. partially vulcanised rubber<br />

8. liquid polymers<br />

9. waxes<br />

Process oil is just one of the <strong>process</strong> aids.<br />

5


INTRODUCTION TO PROCESS OILS<br />

How do <strong>process</strong> aids work ?<br />

For reduction of viscosity and elasticity<br />

2 Mechanisms,<br />

1. Lowering molecular weight of polymer<br />

peptizer<br />

• molecular entanglement reduced<br />

• easier flow of molecules<br />

Chemical <strong>process</strong>ing aids<br />

6


INTRODUCTION TO PROCESS OILS<br />

2. Lowering of intermolecular interactions<br />

<strong>process</strong> aid<br />

• flow of molecules become easier<br />

Most <strong>process</strong> aids work on this principle<br />

e.g. fatty acid soaps, fatty acid ester, <strong>oils</strong>, liquid polymers.<br />

No reduction in MW, hence the final properties not affected<br />

7


INTRODUCTION TO PROCESS OILS<br />

Efficiency of physical <strong>process</strong> aids depend on degree of miscibility<br />

with polymer or solubility in polymers.<br />

most efficient<br />

completely miscible<br />

or<br />

completely soluble<br />

partially miscible<br />

or<br />

partially soluble<br />

most effective in reducing<br />

viscosity<br />

only small amount is required.<br />

less efficient<br />

less effective in reducing<br />

viscosity<br />

Higher amount is required.<br />

immiscible<br />

or<br />

insoluble<br />

least efficient<br />

least effective in reducing<br />

viscosity<br />

large amount is required. 8


PROCESS OILS<br />

9


PROCESS OILS<br />

Origin and Composition of Process Oils<br />

• PROCESS OILS are derived from petroleum (crude oil) after the<br />

more volatile petrol and heating oil fractions have been removed by<br />

distillation.<br />

• PROCESS OILS are MIXTURES of paraffinic, naphthenic and<br />

aromatic compounds of wide distribution of molecular weight.<br />

Paraffinic <strong>oils</strong><br />

CH 3 CH 2 CH 2 CH 2 CH 2 CH 3 CHCH 2 CHCH 2 CH 3 CH 2<br />

paraffins<br />

isoparaffins<br />

CH 3 CH 3<br />

Naphthenic <strong>oils</strong><br />

Aromatic <strong>oils</strong><br />

derivatives of cyclohexane or decalin<br />

derivatives naphthalene, debenzothiophene,<br />

carbazole, etc.<br />

10


PROCESS OILS<br />

Type of Process Oils<br />

Type<br />

%<br />

paraffinic<br />

%<br />

naphthenic<br />

%<br />

aromatic<br />

VGC<br />

Paraffinic oil 60-74 20-35 0-10 0.790-0.819<br />

Naphthenic oil 35-45 30-45 10-30 0.850-0.899<br />

Aromatic oil 20-35 20-40 35-50 0.950-0.999<br />

11


PROCESS OILS<br />

Important Properties of Process Oils<br />

1. solubility or miscibility or compatibility with rubbers<br />

• Determine efficiency in reducing viscosity/flow characteristics<br />

• Depends on,<br />

- % Aromaticity : the higher, the more efficient<br />

- molecular weights (viscosity) : the smaller, the more<br />

efficient<br />

• High solubility means more oil can be incorporated into the<br />

rubber<br />

higher loading of oil possible.<br />

12


PROCESS OILS<br />

Important Properties of Process Oils<br />

• Level of aromaticity measured by<br />

1) VISCOSITY GRAVITY CONSTANT (VGC)<br />

G<br />

= 1.0752-a<br />

a<br />

specific gravity<br />

VGC<br />

10<br />

log(V+38)<br />

Viscosity (saybolt)<br />

High VGC = high aromaticity<br />

2) ANILINE POINT<br />

Aniline point = temperature at which equal volumes<br />

oil and aniline are mutually soluble.<br />

Low Aniline Point = high aromaticity<br />

note : ● Aniline point can be influenced by MW of oil.<br />

● Can be difficult to determine with very dark and opaque <strong>oils</strong>.<br />

13


PROCESS OILS<br />

Important Properties of Process Oils<br />

Compatibility of <strong>process</strong> <strong>oils</strong> with various rubbers<br />

Oil Type<br />

Rubbers<br />

NR SBR BR NBR CR EPDM IIR<br />

Paraffinic + + + - - + +<br />

Naphthenic + + + 0 0 + 0<br />

Aromatic + + + + + 0 -<br />

+<br />

0<br />

-<br />

compatible<br />

partially compatible<br />

incompatible<br />

14


PROCESS OILS<br />

Important Properties of Process Oils<br />

2. Colour stability/Contact staining<br />

Colour stability (increasing darkness) decreases with<br />

increasing % aromaticity.<br />

paraffinic <strong>oils</strong> > naphthenic <strong>oils</strong> > aromatic <strong>oils</strong><br />

3. Ageing resistance<br />

Ageing resistance decrease with increasing % aromaticity.<br />

paraffinic <strong>oils</strong> > naphthenic <strong>oils</strong> > aromatic <strong>oils</strong><br />

15


PROCESS OILS<br />

4. Loss of oil during high temperature service of rubber<br />

product containing oil.<br />

• Determined by FLASH POINT<br />

5. Toxicity<br />

Important Properties of Process Oils<br />

• Become increasingly important<br />

• Process <strong>oils</strong> contain Polycyclic Aromatic Hydrocarbons (PAHs)<br />

or Polycyclic Aromatic (PCA) which are carcinogen and can<br />

cause mutation.<br />

• Regulations (European Directive 2005/69/EC) imposed ban of<br />

<strong>process</strong> <strong>oils</strong> containing ≥ 10mg/kg (ppm) of PAH since<br />

2010.<br />

16


PROCESS OILS<br />

Important Properties of Process Oils<br />

• Trend towards low PAH (


PROCESS OILS<br />

Polycyclic Aromatic Hydrocarbons<br />

PAH S Chemical Formulas MW (g.mol -1 ) Chemical Structures<br />

18


PROCESS OILS<br />

Polycyclic Aromatic Hydrocarbons<br />

PAH S Chemical Formulas MW (g.mol -1 ) Chemical Structures<br />

19


PROCESS OILS<br />

Comparison of Different Process Oils<br />

Effects on properties of rubber compounds and vulcanisates<br />

Process Oils Compared<br />

Aromatic<br />

Naphthenic<br />

Paraffinic<br />

Sample number Saybolt viscosity VGC<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

38°C 100°C<br />

4360<br />

3500<br />

-<br />

2520<br />

2206<br />

760<br />

156<br />

-<br />

110<br />

104<br />

2642<br />

500<br />

-<br />

110<br />

-<br />

210<br />

96<br />

81<br />

85.9<br />

84.7<br />

60<br />

41.0<br />

43.5<br />

38.2<br />

38.0<br />

155<br />

63.5<br />

42.3<br />

40.4<br />

38.0<br />

0.991<br />

0.954<br />

0.981<br />

0.883<br />

0.882<br />

0.869<br />

0.878<br />

0.830<br />

0.886<br />

0.871<br />

0.800<br />

0.803<br />

0.805<br />

0.807<br />

0.832<br />

20


PROCESS OILS<br />

Comparison of Different Process Oils<br />

FORMULATION FOR OIL EVALUATION<br />

NR<br />

Zinc oxide<br />

Stearic acid<br />

N-330 carbon black<br />

N- Isopropyl-N’ -phenyl-p-phenylenediamine<br />

Oil<br />

N- Oxydiethylenebenzothiazole-2-sulphenamide<br />

Sulphur<br />

Part by weight<br />

100<br />

5<br />

2.5<br />

45<br />

1.5<br />

10 or 20<br />

0.8<br />

2.5<br />

MIX CYCLE : BR BANBURY<br />

Time (min)<br />

0<br />

0.5<br />

1.0<br />

2.0<br />

3.5<br />

Action<br />

Add rubber.<br />

Add small powders.<br />

Add half black.<br />

Half black plus oil.<br />

Dump.<br />

21


PROCESS OILS<br />

Comparison of Different Process Oils<br />

Effects on Mooney Viscosity<br />

Mooney viscosity, ML 1+4, 100 ° C<br />

Mooney viscosity, ML 1+4, 100 ° C<br />

60<br />

50<br />

50<br />

40<br />

30<br />

20<br />

10<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

Aromatic Oils Naphthenic Oils Paraffinic Oils<br />

10 phr<br />

Naphthenic <strong>oils</strong> tend to give lower<br />

mooney viscosity<br />

40<br />

30<br />

20<br />

10<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

Aromatic Oils Naphthenic Oils Paraffinic Oils<br />

20 phr<br />

Paraffinic <strong>oils</strong> tend to give lower<br />

mooney viscosity<br />

22


PROCESS OILS<br />

Comparison of Different Process Oils<br />

Vulcanisation Characteristics (ODR 100°C)<br />

Oil Type Sample 10 phr oil 20 phr oil<br />

Aromatic<br />

Naphthenic<br />

Paraffinic<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

t s5<br />

(min)<br />

4.12<br />

3.42<br />

4.16<br />

3.58<br />

3.53<br />

5.16<br />

3.52<br />

3.47<br />

3.48<br />

4.15<br />

4.07<br />

3.57<br />

4.04<br />

4.00<br />

4.21<br />

T c (90)<br />

(min)<br />

14.33<br />

13.13<br />

13.47<br />

14.31<br />

13.40<br />

14.51<br />

14.43<br />

14.28<br />

14.21<br />

13.56<br />

14.20<br />

14.22<br />

14.45<br />

13.45<br />

14.06<br />

M HR<br />

(torque<br />

33.0<br />

35.6<br />

32.9<br />

32.5<br />

35.5<br />

30.2<br />

33.5<br />

32.1<br />

35.5<br />

32.7<br />

34.6<br />

33.4<br />

33.9<br />

32.5<br />

35.5<br />

M L<br />

units)<br />

7.35<br />

7.45<br />

8.25<br />

7.39<br />

7.36<br />

9.25<br />

7.41<br />

8.16<br />

7.37<br />

7.58<br />

7.44<br />

7.52<br />

7.57<br />

7.13<br />

7.28<br />

t s5<br />

(min)<br />

4.51<br />

3.58<br />

4.25<br />

4.39<br />

4.28<br />

5.00<br />

4.17<br />

4.25<br />

4.17<br />

4.31<br />

4.26<br />

4.35<br />

4.35<br />

4.29<br />

4.39<br />

T c (90)<br />

(min)<br />

16.00<br />

14.32<br />

14.28<br />

15.18<br />

15.11<br />

16.05<br />

14.50<br />

15.24<br />

16.02<br />

15.18<br />

15.13<br />

14.32<br />

16.28<br />

14.58<br />

15.00<br />

M HR<br />

(torque<br />

24.3<br />

27.2<br />

30.3<br />

28.7<br />

27.4<br />

25.4<br />

30.5<br />

27.8<br />

27.2<br />

27.6<br />

28.0<br />

28.8<br />

26.3<br />

27.2<br />

26.4<br />

M L<br />

units)<br />

8.46<br />

7.08<br />

9.00<br />

8.16<br />

8.25<br />

8.53<br />

7.50<br />

8.42<br />

8.22<br />

7.58<br />

8.07<br />

8.16<br />

8.56<br />

8.28<br />

8.14<br />

Little difference was observed for various oil types at 10 and 20 phr. 23


PROCESS OILS<br />

Hardness, IRHD<br />

70<br />

Comparison of Different Process Oils<br />

Effect on Hardness<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Average Values of Hardness for<br />

the Three Oil Types<br />

Dosage<br />

(phr)<br />

A N P<br />

10 62 61.5 62<br />

20 56.5 56 54.5<br />

10<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

Aromatic Naphthenic Paraffinic<br />

20 phr<br />

Some effects on hardness<br />

• Almost no effect on hardness at<br />

10 phr.<br />

• At 20 phr. paraffinic <strong>oils</strong> show<br />

slightly greater softening effect.<br />

24


PROCESS OILS<br />

Comparison of Different Process Oils<br />

Tensile strength, MPa<br />

Effect on Tensile Strength<br />

30<br />

8<br />

25 2<br />

6 7 9<br />

3<br />

11<br />

10<br />

12 13 14 15<br />

1<br />

4 5<br />

20<br />

unaged<br />

15<br />

10<br />

5<br />

aged 28 days 70 ° C<br />

aged 3 days 100 ° C<br />

Aromatic Naphthenic Paraffinic<br />

20 phr of oil<br />

aged 7 days 100 ° C<br />

• Individual <strong>oils</strong> gave widely different values of T.S<br />

• Effect of different types of <strong>oils</strong> on unaged, 70 ° C aged or<br />

100 ° C aged are slight. 25


PROCESS OILS<br />

Comparison of Different Process Oils<br />

Compression set, %<br />

60<br />

Effect on Compression Set<br />

50<br />

1 day 100 ° C<br />

40<br />

30<br />

7 days 70 ° C<br />

20<br />

10<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

Aromatic Naphthenic Paraffinic<br />

20 phr of oil/25% initial compression<br />

Paraffinic and naphthenic <strong>oils</strong> tend to give lower<br />

compression set values than aromatic oil. 26


PROCESS OILS<br />

Comparison of Different Process Oils<br />

Effect on Dunlop Resilience<br />

Dunlop resilience, 23 ° C, %<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

Aromatic Naphthenic Paraffinic<br />

20 phr of oil<br />

• Aromatic oil gave lower resilience<br />

• Higher viscosity <strong>oils</strong> gave lower resilience<br />

27


PROCESS OILS<br />

Performance of Low PAH/PCA Oils<br />

Rolling Resistance<br />

110<br />

108<br />

106<br />

104<br />

102<br />

Wet Grip<br />

+<br />

TDAE<br />

MES<br />

NAP<br />

RAE<br />

100<br />

98<br />

96<br />

94<br />

92<br />

90<br />

DAE TDAE MES NAP RAE<br />

-<br />

-<br />

Rolling Resistance<br />

+<br />

28


PROCESS OILS<br />

SUMMARY<br />

1. Process <strong>oils</strong> are used to improve the <strong>process</strong>ability of rubber<br />

compounds or to increase the bulk of rubber in order to lower cost.<br />

2. Although <strong>process</strong> <strong>oils</strong> are classified as paraffinic (CP) naphthenic<br />

(CN) or aromatic (CA), they are mixtures of CP/CN/CA.<br />

3. The efficiency of oil in reducing viscosity and elasticity depends on<br />

its compatibility with rubber or its solubility in rubber.<br />

- good compatibility/solubility efficient<br />

- smaller quantity may be used.<br />

4. Compatibility or efficiency depends on<br />

- % aromaticity : the higher, the more efficient<br />

- MW or viscosity : the smaller, the more efficient<br />

29


PROCESS OILS<br />

SUMMARY<br />

5. Study on NR compounds showed that the vulcanisation properties<br />

and vulcanisate properties, unaged and aged, are not greatly<br />

affected by type of <strong>process</strong> oil.<br />

6. Toxicity of <strong>process</strong> <strong>oils</strong> is of major concern at present.<br />

- Polycyclic Aromatic Hydrocarbon (PAH) is carcinogen and<br />

may cause mutation.<br />

7. European Directive 2005/69/EC imposed ban on <strong>process</strong> <strong>oils</strong><br />

containing ≥10 ppm of PAH since 2010.<br />

8. The developing trend in <strong>process</strong> oil is towards low PAH <strong>oils</strong>.<br />

- TDAE<br />

- MES<br />

- NAP<br />

- RAE<br />

- Vegetable <strong>oils</strong> 30


Q & A<br />

31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!