2N6045 NPN Darlington Power Transistor

2N6045 NPN Darlington Power Transistor 2N6045 NPN Darlington Power Transistor

hades.mech.northwestern.edu
from hades.mech.northwestern.edu More from this publisher
07.11.2014 Views

(PNP) 2N6040, 2N6042, (NPN) 2N6043*, 2N6045* *Preferred Device Plastic Medium−Power Complementary Silicon Transistors . . . designed for general−purpose amplifier and low−speed switching applications. • High DC Current Gain − h FE = 2500 (Typ) @ I C = 4.0 Adc • Collector−Emitter Sustaining Voltage − @ 100 mAdc − V CEO(sus) = 60 Vdc (Min) − 2N6040, 2N6043 = 100 Vdc (Min) − 2N6042, 2N6045 • Low Collector−Emitter Saturation Voltage − V CE(sat) = 2.0 Vdc (Max) @ I C = 4.0 Adc − 2N6043,44 = 2.0 Vdc (Max) @ I C = 3.0 Adc − 2N6042, 2N6045 • Monolithic Construction with Built−In Base−Emitter Shunt Resistors • EPOXY MEETS UL 94, V−0 @ 0.125 in • ESD Ratings: Human Body Model, 3B > 8000 V Machine Model, C > 400 V MAXIMUM RATINGS (Note 1) Rating Symbol 2N6040 2N6042 2N6043 2N6045 Unit ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ Collector−Emitter Voltage ÎÎÎ V ÎÎÎÎ ÎÎÎÎ CEO 60 100 Vdc ÎÎ ÎÎÎÎÎÎÎÎÎÎ Collector−Base Voltage ÎÎÎ V ÎÎÎÎ ÎÎÎÎ ÎÎ CB 60 100 Vdc ÎÎÎÎÎÎÎÎÎÎ Emitter−Base Voltage ÎÎÎ V ÎÎÎÎÎÎÎ EB 5.0 Vdc ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Collector Current− Base Current Continuous Peak ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ I C 8.0 16 Total ÎÎÎ Power ÎÎÎÎÎÎÎÎÎÎ Dissipation P D ÎÎÎÎÎÎÎÎ @ T C ÎÎ = 25°C ÎÎÎÎÎÎÎ ÎÎÎ 75 W ÎÎÎÎÎÎÎÎÎÎ Derate above 25°C I B Adc ÎÎ 120 mAdc 0.60 W/°C ÎÎ Operating and Storage ÎÎÎ Junction, ÎÎÎÎÎÎÎÎÎÎT J , T ÎÎÎÎÎÎÎ stg °C ÎÎÎÎÎÎÎÎ ÎÎÎ Temperature Range ÎÎÎÎÎÎÎÎÎÎ THERMAL CHARACTERISTICS Characteristic – 65 to + 150 ÎÎ Max Unit ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ SymbolÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Thermal Resistance, Junction to Case ÎÎ 1.67 °C/W ÎÎ JC ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎ Thermal Resistance, Junction to JA 57 °C/W Ambient 1. Indicates JEDEC Registered Data. ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ 4 1 2 3 TO−220AB CASE 221A−09 Style 1 xxxx A Y WW http://onsemi.com DARLINGTON, 8 A COMPLEMENTARY SILICON POWER TRANSISTORS 60 V − 100 V, 75 W STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR = Specific Device Code: 6040, 6042, 6043, 6045 = Assembly Location = Year = Work Week MARKING DIAGRAM AYWW 2Nxxxx ORDERING INFORMATION Device Package Shipping 2N6040 TO−220AB 50 Units / Rail 2N6042 TO−220AB 50 Units / Rail 2N6043 TO−220AB 50 Units / Rail 2N6045 TO−220AB 50 Units / Rail *Preferred devices are recommended choices for future use and best overall value. ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ © Semiconductor Components Industries, LLC, 2003 August, 2003 − Rev. 5 1 Publication Order Number: 2N6040/D

(PNP) 2N6040, 2N6042,<br />

(<strong>NPN</strong>) 2N6043*, <strong>2N6045</strong>*<br />

*Preferred Device<br />

Plastic Medium−<strong>Power</strong><br />

Complementary Silicon<br />

<strong>Transistor</strong>s<br />

. . . designed for general−purpose amplifier and low−speed<br />

switching applications.<br />

• High DC Current Gain −<br />

h FE = 2500 (Typ) @ I C = 4.0 Adc<br />

• Collector−Emitter Sustaining Voltage − @ 100 mAdc −<br />

V CEO(sus) = 60 Vdc (Min) − 2N6040, 2N6043<br />

= 100 Vdc (Min) − 2N6042, <strong>2N6045</strong><br />

• Low Collector−Emitter Saturation Voltage −<br />

V CE(sat) = 2.0 Vdc (Max) @ I C = 4.0 Adc − 2N6043,44<br />

= 2.0 Vdc (Max) @ I C = 3.0 Adc − 2N6042,<br />

<strong>2N6045</strong><br />

• Monolithic Construction with Built−In Base−Emitter Shunt Resistors<br />

• EPOXY MEETS UL 94, V−0 @ 0.125 in<br />

• ESD Ratings: Human Body Model, 3B > 8000 V<br />

Machine Model, C > 400 V<br />

MAXIMUM RATINGS (Note 1)<br />

Rating<br />

Symbol<br />

2N6040 2N6042<br />

2N6043 <strong>2N6045</strong> Unit<br />

ÎÎ ÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎ<br />

Collector−Emitter Voltage<br />

ÎÎÎ<br />

V ÎÎÎÎ<br />

ÎÎÎÎ<br />

CEO 60 100 Vdc<br />

ÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎ<br />

Collector−Base Voltage<br />

ÎÎÎ<br />

V ÎÎÎÎ ÎÎÎÎ<br />

ÎÎ<br />

CB 60 100 Vdc<br />

ÎÎÎÎÎÎÎÎÎÎ<br />

Emitter−Base Voltage<br />

ÎÎÎ<br />

V ÎÎÎÎÎÎÎ<br />

EB 5.0<br />

Vdc<br />

ÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Collector Current−<br />

Base Current<br />

Continuous<br />

Peak<br />

ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ<br />

ÎÎÎ ÎÎ<br />

ÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

I C<br />

8.0<br />

16<br />

Total ÎÎÎ<br />

<strong>Power</strong> ÎÎÎÎÎÎÎÎÎÎ<br />

Dissipation<br />

P D<br />

ÎÎÎÎÎÎÎÎ<br />

@ T C<br />

ÎÎ<br />

= 25°C<br />

ÎÎÎÎÎÎÎ<br />

ÎÎÎ<br />

75<br />

W<br />

ÎÎÎÎÎÎÎÎÎÎ<br />

Derate above 25°C<br />

I B<br />

Adc<br />

ÎÎ<br />

120 mAdc<br />

0.60<br />

W/°C<br />

ÎÎ<br />

Operating and Storage<br />

ÎÎÎ<br />

Junction,<br />

ÎÎÎÎÎÎÎÎÎÎT J , T<br />

ÎÎÎÎÎÎÎ<br />

stg °C<br />

ÎÎÎÎÎÎÎÎ<br />

ÎÎÎ<br />

Temperature Range<br />

ÎÎÎÎÎÎÎÎÎÎ<br />

THERMAL CHARACTERISTICS<br />

Characteristic<br />

– 65 to + 150<br />

ÎÎ<br />

Max<br />

Unit<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

SymbolÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Thermal Resistance, Junction to<br />

Case<br />

ÎÎ<br />

1.67 °C/W<br />

ÎÎ<br />

JC ÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎ<br />

ÎÎÎÎÎÎÎ<br />

ÎÎ<br />

Thermal Resistance, Junction to JA 57<br />

°C/W<br />

Ambient<br />

1. Indicates JEDEC Registered Data.<br />

ÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎ<br />

4<br />

1 2 3<br />

TO−220AB<br />

CASE 221A−09<br />

Style 1<br />

xxxx<br />

A<br />

Y<br />

WW<br />

http://onsemi.com<br />

DARLINGTON, 8 A<br />

COMPLEMENTARY SILICON<br />

POWER TRANSISTORS<br />

60 V − 100 V, 75 W<br />

STYLE 1:<br />

PIN 1. BASE<br />

2. COLLECTOR<br />

3. EMITTER<br />

4. COLLECTOR<br />

= Specific Device Code:<br />

6040, 6042, 6043, 6045<br />

= Assembly Location<br />

= Year<br />

= Work Week<br />

MARKING<br />

DIAGRAM<br />

AYWW<br />

2Nxxxx<br />

ORDERING INFORMATION<br />

Device Package Shipping<br />

2N6040 TO−220AB 50 Units / Rail<br />

2N6042 TO−220AB 50 Units / Rail<br />

2N6043 TO−220AB 50 Units / Rail<br />

<strong>2N6045</strong> TO−220AB 50 Units / Rail<br />

*Preferred devices are recommended choices for future<br />

use and best overall value.<br />

ÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎ<br />

© Semiconductor Components Industries, LLC, 2003<br />

August, 2003 − Rev. 5<br />

1 Publication Order Number:<br />

2N6040/D


(PNP) 2N6040, 2N6042, (<strong>NPN</strong>) 2N6043*, <strong>2N6045</strong>*<br />

T A<br />

T A<br />

T C<br />

4.0<br />

T C<br />

80<br />

PD, POWER DISSIPATION (WATTS)<br />

3.0<br />

2.0<br />

1.0<br />

60<br />

40<br />

20<br />

0<br />

0<br />

0 20 40 60 80 100 120 140 160<br />

T, TEMPERATURE (°C)<br />

Figure 1. <strong>Power</strong> Derating<br />

*ELECTRICAL CHARACTERISTICS (T C = 25°C unless otherwise noted)<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Characteristic<br />

Symbol<br />

Min Max Unit<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

OFF CHARACTERISTICS<br />

Collector−Emitter Sustaining Voltage<br />

(I C = 100 mAdc, I B = 0) 2N6040, 2N6043<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

2N6042, <strong>2N6045</strong><br />

V CEO(sus)<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎ<br />

ÎÎÎÎÎÎ<br />

ÎÎÎ<br />

ÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Collector Cutoff Current<br />

(V CE = 60 Vdc, I B = 0) 2N6040, 2N6043<br />

(V CE = 100 Vdc, I B = 0) 2N6042, <strong>2N6045</strong><br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎ<br />

ÎÎÎ<br />

ÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Collector Cutoff Current<br />

(V CE = 60 Vdc, V BE(off) = 1.5 Vdc) 2N6040, 2N6043<br />

(V CE = 100 Vdc, V BE(off) = 1.5 Vdc) 2N6042, <strong>2N6045</strong><br />

(V CE = 60 Vdc, V BE(off) = 1.5 Vdc, T C = 150°C) 2N6040, 2N6043<br />

(V CE = 80 Vdc, V BE(off) = 1.5 Vdc, T C = 150°C) 2N6041, 2N6044<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎ<br />

ÎÎÎÎÎÎ<br />

ÎÎÎ<br />

ÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

(V CE = 100 Vdc, V BE(off) = 1.5 Vdc, T C = 150°C) 2N6042, <strong>2N6045</strong><br />

ÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

I CBO<br />

A<br />

Collector Cutoff Current<br />

(V CB = 60 Vdc, I E = 0) 2N6040, 2N6043<br />

I CEO<br />

I CEX<br />

60<br />

100<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

20<br />

20<br />

20<br />

20<br />

200<br />

200<br />

200<br />

20<br />

Vdc<br />

A<br />

A<br />

(V CB = 100 Vdc, I E = 0) 2N6042, <strong>2N6045</strong><br />

−<br />

20<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Emitter Cutoff Current (V BE = 5.0 Vdc, I C = 0)<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎ<br />

ÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ON CHARACTERISTICS<br />

DC Current Gain<br />

(I C = 4.0 Adc, V CE = 4.0 Vdc) 2N6040, 2N6043,<br />

(I C = 3.0 Adc, V CE = 4.0 Vdc) 2N6042, <strong>2N6045</strong><br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

(I C = 8.0 Adc, V CE = 4.0 Vdc) All Types<br />

Collector−Emitter Saturation Voltage<br />

(I C = 4.0 Adc, I B = 16 mAdc) 2N6040, 2N6043,<br />

(I C = 3.0 Adc, I B = 12 mAdc) 2N6042, <strong>2N6045</strong><br />

I EBO<br />

−<br />

ÎÎÎ<br />

2.0 mAdc<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎ<br />

ÎÎÎÎÎÎ<br />

ÎÎÎ<br />

ÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

(I C = 8.0 Adc, I B = 80 Adc) All Types<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎ<br />

ÎÎÎ<br />

ÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Base−Emitter Saturation Voltage (I C = 8.0 Adc, I B = 80 mAdc)<br />

Base−Emitter On Voltage (I C = 4.0 Adc, V CE = 4.0 Vdc)<br />

h FE<br />

V CE(sat)<br />

V BE(sat)<br />

1000<br />

1000<br />

100<br />

20.000<br />

20,000<br />

−<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎ<br />

ÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

DYNAMIC CHARACTERISTICS<br />

ÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎ<br />

ÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Small Signal Current Gain (I<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

C = 3.0 Adc, V CE = 4.0 Vdc, f = 1.0 MHz)<br />

|h fe | 4.0 −<br />

Output Capacitance<br />

2N6040/2N6042<br />

(V CB = 10 Vdc, I E = 0, f = 0.1 MHz) 2N6043/<strong>2N6045</strong><br />

V BE(on)<br />

C ob<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

2.0<br />

2.0<br />

4.0<br />

−<br />

Vdc<br />

ÎÎÎ<br />

4.5 Vdc<br />

ÎÎÎ<br />

2.8 Vdc<br />

300 pF<br />

200 ÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Small−Signal Current Gain (I C = 3.0 Adc, V CE = 4.0 Vdc, f =<br />

ÎÎÎÎÎÎÎ<br />

1.0 kHz)<br />

300 − −<br />

ÎÎÎ<br />

ÎÎÎÎ<br />

*Indicates JEDEC Registered Data.<br />

h fe<br />

ÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

http://onsemi.com<br />

2


(PNP) 2N6040, 2N6042, (<strong>NPN</strong>) 2N6043*, <strong>2N6045</strong>*<br />

R B & R C VARIED TO OBTAIN DESIRED CURRENT LEVELS<br />

D 1 MUST BE FAST RECOVERY TYPE, eg:<br />

1N5825 USED ABOVE I B ≈ 100 mA<br />

MSD6100 USED BELOW I B ≈ 100 mA<br />

V 2<br />

approx<br />

+8.0 V<br />

0<br />

V 1<br />

approx<br />

−12 V<br />

t r , t f ≤ 10 ns<br />

DUTY CYCLE = 1.0%<br />

25 s<br />

51<br />

Figure 2. Switching Times Equivalent Circuit<br />

R B<br />

D 1<br />

+4.0 V<br />

≈ 8.0 k<br />

R C<br />

TUT<br />

≈120<br />

V CC<br />

−30 V<br />

SCOPE<br />

for t d and t r , D 1 is disconnected<br />

and V 2 = 0<br />

For <strong>NPN</strong> test circuit reverse all polarities and D1.<br />

t, TIME (s) µ<br />

5.0<br />

3.0<br />

2.0<br />

1.0<br />

0.7<br />

0.5<br />

t s<br />

0.3<br />

t r<br />

0.2<br />

V CC = 30 V<br />

I C /I B = 250<br />

I B1 = I B2<br />

0.1 T J = 25°C<br />

0.07<br />

PNP t d @ V BE(off) = 0 V<br />

<strong>NPN</strong><br />

0.05<br />

0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10<br />

I C , COLLECTOR CURRENT (AMP)<br />

Figure 3. Switching Times<br />

t f<br />

r(t), EFFECTIVE TRANSIENT<br />

THERMAL RESISTANCE (NORMALIZED)<br />

1.0<br />

0.7<br />

0.5<br />

0.3<br />

0.2<br />

0.1<br />

0.07<br />

0.05<br />

0.03<br />

0.02<br />

D = 0.5<br />

0.2<br />

0.1<br />

0.05<br />

0.02<br />

SINGLE PULSE 0.01<br />

JC (t) = r(t) JC<br />

JC = 1.67°C/W<br />

D CURVES APPLY FOR POWER<br />

PULSE TRAIN SHOWN<br />

READ TIME AT t 1<br />

T J(pk) − T C = P (pk) JC (t)<br />

P (pk)<br />

t 1<br />

t 2<br />

DUTY CYCLE, D = t 1 /t 2<br />

0.01<br />

0.01<br />

0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 50 100 200 300 500 1000<br />

t, TIME OR PULSE WIDTH (ms)<br />

Figure 4. Thermal Response<br />

IC, COLLECTOR CURRENT (AMP)<br />

20<br />

10<br />

5.0<br />

2.0<br />

1.0<br />

0.5<br />

0.2<br />

0.1<br />

0.05<br />

0.02<br />

1.0<br />

500 s<br />

1.0ms<br />

dc<br />

T J = 150°C 5.0ms<br />

BONDING WIRE LIMITED<br />

THERMALLY LIMITED @ T C = 25°C<br />

(SINGLE PULSE)<br />

SECOND BREAKDOWN LIMITED<br />

CURVES APPLY BELOW RATED V CEO<br />

2N6040, 2N6043<br />

<strong>2N6045</strong><br />

100 s<br />

2.0 3.0 5.0 7.0 10 20 30 50 70 100<br />

V CE , COLLECTOR−EMITTER VOLTAGE (VOLTS)<br />

Figure 5. Active−Region Safe Operating Area<br />

There are two limitations on the power handling ability of<br />

a transistor: average junction temperature and second<br />

breakdown. Safe operating area curves indicate I C − V CE<br />

limits of the transistor that must be observed for reliable<br />

operation; i.e., the transistor must not be subjected to greater<br />

dissipation than the curves indicate.<br />

The data of Figure 5 is based on T J(pk) = 150°C; T C is<br />

variable depending on conditions. Second breakdown pulse<br />

limits are valid for duty cycles to 10% provided T J(pk)<br />

< 150°C. T J(pk) may be calculated from the data in Figure 4.<br />

At high case temperatures, thermal limitations will reduce<br />

the power that can be handled to values less than the<br />

limitations imposed by second breakdown.<br />

http://onsemi.com<br />

3


(PNP) 2N6040, 2N6042, (<strong>NPN</strong>) 2N6043*, <strong>2N6045</strong>*<br />

hfe, SMALL−SIGNAL CURRENT GAIN<br />

10,000<br />

5000<br />

3000<br />

2000<br />

1000<br />

500<br />

300<br />

200<br />

100<br />

50<br />

30<br />

20<br />

10<br />

1.0<br />

T C = 25°C<br />

V CE = 4.0 Vdc<br />

I C = 3.0 Adc<br />

PNP<br />

<strong>NPN</strong><br />

C, CAPACITANCE (pF)<br />

300<br />

200<br />

100<br />

70<br />

50<br />

T J = 25°C<br />

30<br />

2.0 5.0 10 20 50 100 200 500 1000 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100<br />

f, FREQUENCY (kHz)<br />

V R , REVERSE VOLTAGE (VOLTS)<br />

PNP<br />

<strong>NPN</strong><br />

C ib<br />

C ob<br />

Figure 6. Small−Signal Current Gain<br />

Figure 7. Capacitance<br />

http://onsemi.com<br />

4


(PNP) 2N6040, 2N6042, (<strong>NPN</strong>) 2N6043*, <strong>2N6045</strong>*<br />

PNP<br />

2N6040, 2N6042<br />

<strong>NPN</strong><br />

2N6043, <strong>2N6045</strong><br />

hFE, DC CURRENT GAIN<br />

20,000<br />

10,000<br />

7000<br />

5000<br />

3000<br />

2000<br />

1000<br />

700<br />

500<br />

T J = 150°C<br />

25°C<br />

−55°C<br />

V CE = 4.0 V<br />

hFE, DC CURRENT GAIN<br />

20,000<br />

10,000<br />

7000<br />

5000<br />

3000<br />

2000<br />

1000<br />

700<br />

500<br />

T J = 150°C<br />

25°C<br />

−55°C<br />

V CE = 4.0 V<br />

300<br />

200<br />

0.1<br />

0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10<br />

I C , COLLECTOR CURRENT (AMP)<br />

300<br />

200<br />

0.1<br />

Figure 8. DC Current Gain<br />

0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10<br />

I C , COLLECTOR CURRENT (AMP)<br />

V CE , COLLECTOR−EMITTER VOLTAGE (VOLTS)<br />

3.0<br />

2.6<br />

2.2<br />

1.8<br />

1.4<br />

1.0<br />

0.3<br />

I C = 2.0 A<br />

4.0 A<br />

6.0 A<br />

T J = 25°C<br />

0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30<br />

I B , BASE CURRENT (mA)<br />

VCE, COLLECTOR−EMITTER VOLTAGE (VOLTS)<br />

3.0<br />

2.6<br />

2.2<br />

1.8<br />

1.4<br />

1.0<br />

0.3<br />

Figure 9. Collector Saturation Region<br />

I C = 2.0 A 4.0 A 6.0 A<br />

I B , BASE CURRENT (mA)<br />

T J = 25°C<br />

0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30<br />

3.0<br />

T J = 25°C<br />

3.0<br />

T J = 25°C<br />

2.5<br />

2.5<br />

V, VOLTAGE (VOLTS)<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.1<br />

V BE @ V CE = 4.0 V<br />

V BE(sat) @ I C /I B = 250<br />

V CE(sat) @ I C /I B = 250<br />

0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.010<br />

V, VOLTAGE (VOLTS)<br />

2.0<br />

1.5 V BE(sat) @ I C /I B = 250<br />

V BE @ V CE = 4.0 V<br />

1.0<br />

V CE(sat) @ I C /I B = 250<br />

0.5<br />

0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10<br />

I C , COLLECTOR CURRENT (AMP)<br />

I C , COLLECTOR CURRENT (AMP)<br />

Figure 10. “On” Voltages<br />

http://onsemi.com<br />

5


(PNP) 2N6040, 2N6042, (<strong>NPN</strong>) 2N6043*, <strong>2N6045</strong>*<br />

PACKAGE DIMENSIONS<br />

TO−220AB<br />

CASE 221A−09<br />

ISSUE AA<br />

H<br />

Q<br />

Z<br />

L<br />

V<br />

G<br />

B<br />

4<br />

1 2 3<br />

N<br />

D<br />

A<br />

K<br />

F<br />

T<br />

U<br />

S<br />

R<br />

J<br />

C<br />

−T−<br />

STYLE 1:<br />

PIN 1. BASE<br />

2. COLLECTOR<br />

3. EMITTER<br />

4. COLLECTOR<br />

SEATING<br />

PLANE<br />

NOTES:<br />

1. DIMENSIONING AND TOLERANCING PER ANSI<br />

Y14.5M, 1982.<br />

2. CONTROLLING DIMENSION: INCH.<br />

3. DIMENSION Z DEFINES A ZONE WHERE ALL<br />

BODY AND LEAD IRREGULARITIES ARE<br />

ALLOWED.<br />

INCHES MILLIMETERS<br />

DIM MIN MAX MIN MAX<br />

A 0.570 0.620 14.48 15.75<br />

B 0.380 0.405 9.66 10.28<br />

C 0.160 0.190 4.07 4.82<br />

D 0.025 0.035 0.64 0.88<br />

F 0.142 0.147 3.61 3.73<br />

G 0.095 0.105 2.42 2.66<br />

H 0.110 0.155 2.80 3.93<br />

J 0.018 0.025 0.46 0.64<br />

K 0.500 0.562 12.70 14.27<br />

L 0.045 0.060 1.15 1.52<br />

N 0.190 0.210 4.83 5.33<br />

Q 0.100 0.120 2.54 3.04<br />

R 0.080 0.110 2.04 2.79<br />

S 0.045 0.055 1.15 1.39<br />

T 0.235 0.255 5.97 6.47<br />

U 0.000 0.050 0.00 1.27<br />

V 0.045 −−− 1.15 −−−<br />

Z −−− 0.080 −−− 2.04<br />

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make<br />

changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any<br />

particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all<br />

liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or<br />

specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be<br />

validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.<br />

SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications<br />

intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death<br />

may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC<br />

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees<br />

arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that<br />

SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.<br />

PUBLICATION ORDERING INFORMATION<br />

Literature Fulfillment:<br />

Literature Distribution Center for ON Semiconductor<br />

P.O. Box 5163, Denver, Colorado 80217 USA<br />

Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada<br />

Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada<br />

Email: orderlit@onsemi.com<br />

N. American Technical Support: 800−282−9855 Toll Free USA/Canada<br />

JAPAN: ON Semiconductor, Japan Customer Focus Center<br />

2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051<br />

Phone: 81−3−5773−3850<br />

ON Semiconductor Website: http://onsemi.com<br />

For additional information, please contact your local<br />

Sales Representative.<br />

http://onsemi.com<br />

6<br />

2N6040/D

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!