Extraction, Concentration and Detection of Toxins

Extraction, Concentration and Detection of Toxins Extraction, Concentration and Detection of Toxins

07.11.2014 Views

Extraction, Concentration and Detection of Toxins Mansel W. Griffiths, Keith Warriner, Luba Brovko (Food Science, University of Guelph) Subrrayl Reddy (School of Biomedical and Molecular Sciences, University of Surrey)

<strong>Extraction</strong>, <strong>Concentration</strong> <strong>and</strong><br />

<strong>Detection</strong> <strong>of</strong> <strong>Toxins</strong><br />

Mansel W. Griffiths, Keith Warriner, Luba Brovko<br />

(Food Science, University <strong>of</strong> Guelph)<br />

Subrrayl Reddy (School <strong>of</strong> Biomedical <strong>and</strong> Molecular Sciences,<br />

University <strong>of</strong> Surrey)


Objectives<br />

• Fabricate hydrogel imprinted polymers for concentration<br />

<strong>of</strong> Staphylococcus aureus enterotoxin B<br />

• Construct impedimetric immuno-sensors to detect<br />

enterotoxin B<br />

• Develop a pathogenicity biosensor


Staphylococcal Enterotoxin B<br />

• Bacterial toxin<br />

– Staphylococcus aureus<br />

• Easily soluble in water<br />

• Very resistant to temperature fluctuations<br />

– Withst<strong>and</strong>s boiling for several minutes<br />

– Freeze dried remains active for one year


Enterotoxin B<br />

• Mw 28 kDa<br />

• 240 Amino Acids<br />

• LD 50 30ng/Kg<br />

• <strong>Detection</strong> limits 1ng


Development <strong>of</strong> Hydrogel-based Molecularly<br />

Imprinted Polymers (HydroMIPs) for Protein<br />

Recognition<br />

Dr Sub Reddy <strong>and</strong> Quan Phan<br />

School <strong>of</strong> Biomedical <strong>and</strong> Molecular Sciences<br />

University <strong>of</strong> Surrey, UK


Protein Imprinted Polymers<br />

Polymerisation<br />

Electrostatic <strong>and</strong> hydrogen<br />

bonding interactions between<br />

monomer <strong>and</strong> protein<br />

Loose network<br />

Protein imprinted<br />

polymer<br />

Template<br />

elution<br />

Rebinding


Molecularly Imprinted Polymer Hydrogels:<br />

‘Nano-play-dough!’<br />

TEMED<br />

Polyacrylamide


Retention <strong>of</strong> enterotoxin by polymer<br />

10% AcOH SDS washes after 1mg/40µl enterotoxin B reloaded into<br />

enterotoxin B MIP (10% cross linking)


Points to consider<br />

• Effect <strong>of</strong> crosslinking density on SEB imprinting<br />

• Effect <strong>of</strong> pH <strong>of</strong> imprinting<br />

• Effect <strong>of</strong> co-polymerisation using other functional<br />

monomers (hydroxy-acrylamide;<br />

hydroxyethylmethacrylate (HEMA))<br />

• Optimised method <strong>of</strong> eluting SEB<br />

• Method <strong>of</strong> quantifying eluted SEB from HydroMIP<br />

matrix.


Impedimetric Immuno-assay based on<br />

Modified Conducting Polymer Electrodes<br />

Keith Warriner<br />

University <strong>of</strong> Guelph


Conducting Polymer Electrodes<br />

• Free st<strong>and</strong>ing conducting polymer films<br />

• Low cost (


What are conducting polymers?<br />

Polyconjugated polymers with<br />

high electrical conductivities, low<br />

ionization potentials, high<br />

electronic affinities<br />

Applications<br />

Stealth (Radar Absorbing)<br />

LED display<br />

Fuel cell<br />

Organic computers<br />

Sensors


Formation <strong>of</strong> conducting polymer<br />

electrode<br />

Preconditioning:<br />

Pyrrole(0.5M) & SDS(1mM)0<br />

Microporous polycarbonate membrane<br />

(45mm ,10μm pore size)<br />

Polymerization:<br />

FeCl 3<br />

(0.4M) & lactic acid (0.1M)<br />

Polymer electrode


Electrochemical characterization <strong>of</strong><br />

polypyrrole electrodes<br />

Cyclic voltammetry<br />

Impedance<br />

spectroscopy<br />

H<strong>and</strong>held FRA<br />

Solartron Impedance Analyser


Reusable Electrode assembly<br />

Reaction well<br />

Polymer film<br />

Top plate with<br />

reaction well<br />

(inside view)<br />

Copper connections


Principle<br />

Antibody<br />

Antigen<br />

BSA<br />

Silane<br />

Polypyrrole<br />

Paramagnetic bead


Sensor Response to Salmonella<br />

0<br />

-500<br />

Z"<br />

-1000<br />

-1500<br />

-2000<br />

-2500<br />

Background<br />

Sal Extract<br />

-3000<br />

1 10 100 1000 10000 100000<br />

Frequency


<strong>Detection</strong> Strategy<br />

Silane<br />

Polypyrrole<br />

Antigen<br />

BSA blocking agent<br />

Antibody<br />

Paramagnetic bead


Myoglobin <strong>Detection</strong><br />

• Myoglobin model for SEB<br />

• 100ng Myoglobin<br />

• BSA blocking agent<br />

• Anti-myoglobin dynabeads<br />

-1 00 00<br />

-7500<br />

-5000<br />

Z''<br />

Myoglobin<br />

BSA blocking agent<br />

Dynabeads 7 anti -myogl obin<br />

Dynabeads<br />

BSA<br />

Myoglobin<br />

-2500<br />

0<br />

0 2500 5000 7500 10000<br />

Z'


Future Work<br />

• Further optimize myoglobin detection protocol.<br />

• Repeat experiments with SEB<br />

• Integrate hydrogel MIP with detection platform


Cell-based Biosensors<br />

Mansel W. Griffiths, Luba Brovko, Nidham Jamaldeen<br />

University <strong>of</strong> Guelph


Principle <strong>of</strong> toxicity biosensor<br />

[ATP] [Ca 2+ ]


Expression <strong>of</strong> luciferase <strong>and</strong> aequorin genes in<br />

HeLa cells in the presence <strong>of</strong> human complement<br />

component C9<br />

a) luciferase<br />

b) aequorin


Other luminescent toxicity biosensors


The future looks bright

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!