07.11.2014 Views

Harmonically Excited Vibration

Harmonically Excited Vibration

Harmonically Excited Vibration

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 3


• A mechanical system is said to undergo<br />

forced vibration whenever external energy is<br />

supplied to the system during vibration<br />

• External energy can be supplied to the<br />

system through either an applied force or an<br />

impose displacement excitation<br />

• The applied force or displacement may be<br />

harmonic, nonharmonic but periodic,<br />

nonperiodic, or random


• Harmonic or transient responses<br />

• Dynamic response of a single degree of<br />

freedom under harmonic excitations<br />

• Resonance<br />

• Examples: unbalanced rotating response, the<br />

oscillation of a tall chimney due to vortex<br />

shedding and the vertical motion of an<br />

automobile on a sinusoidal road surface


m x cx<br />

<br />

kx<br />

<br />

Ft<br />

<br />

Homogenous solution;<br />

m<br />

x <br />

cx<br />

<br />

kx<br />

0<br />

The solution;<br />

x h<br />

t<br />

chapter<br />

2<br />

This free vibration dies out with time under each of the three possible<br />

conditions of damping and under all possible initial conditions.


m x cx<br />

<br />

kx<br />

<br />

Ft<br />

<br />

Particular solution;<br />

x p<br />

t<br />

.....<br />

•The general solution<br />

eventually reduces to a<br />

particular solution x p (t), which<br />

represents the steady-state<br />

vibration<br />

•The steady-state motion is<br />

present as long as the forcing<br />

function


x<br />

h<br />

t<br />

<br />

m<br />

x<br />

<br />

C<br />

kx<br />

The homogeneous solution;<br />

<br />

F<br />

0<br />

cos t<br />

cos nt<br />

C2<br />

1<br />

<br />

sin<br />

<br />

n<br />

t<br />

The particular solution;<br />

x p<br />

t<br />

<br />

<br />

X<br />

cos<br />

<br />

t<br />

•The maximum amplitude of x p (t);<br />

X<br />

<br />

k<br />

F<br />

m<br />

0<br />

2<br />

<br />

<br />

<br />

st<br />

<br />

1 <br />

<br />

<br />

n<br />

<br />

2


m<br />

x<br />

kx<br />

<br />

F<br />

0<br />

cos t<br />

The total solution is;<br />

x<br />

h<br />

t<br />

<br />

<br />

C<br />

1<br />

F0<br />

cos nt<br />

C2<br />

sin nt<br />

<br />

2<br />

k m<br />

cos t<br />

Using the initial conditions x(t=0) = x 0 and v(t =0)=v 0<br />

C<br />

1<br />

<br />

x<br />

0<br />

<br />

k<br />

F0<br />

2<br />

m<br />

C<br />

2<br />

x<br />

0<br />

<br />

<br />

n


m<br />

x<br />

kx<br />

<br />

F<br />

0<br />

cos t<br />

The maximum amplitude can be<br />

expressed;<br />

X<br />

<br />

st<br />

<br />

1<br />

<br />

1<br />

<br />

<br />

n<br />

<br />

2<br />

Frequency ratio, r<br />

Magnification factor, amplitude ratio


m<br />

x<br />

kx<br />

<br />

F<br />

0<br />

cos t<br />

The response of the system can be<br />

identified to be of three types;<br />

Case 1:<br />

<br />

0 1,<br />

n<br />

thedenominator is<br />

positive<br />

The harmonic response is,<br />

x p<br />

t<br />

<br />

<br />

X<br />

cos t


m<br />

x<br />

kx<br />

<br />

F<br />

0<br />

cos t<br />

Case 2:<br />

<br />

1,<br />

n<br />

x p<br />

t<br />

<br />

thedenominator is<br />

The harmonic response is,<br />

X<br />

cos t<br />

negative<br />

X<br />

<br />

<br />

st<br />

2<br />

<br />

<br />

<br />

n<br />

<br />

1


m<br />

x<br />

Case 3:<br />

<br />

1,<br />

n<br />

x<br />

p<br />

t<br />

<br />

kx<br />

<br />

F<br />

0<br />

cos t<br />

theamplitude become infinite<br />

Resonance: the forcing<br />

frequency is equal to the<br />

natural frequency<br />

The harmonic response is,<br />

<br />

<br />

stnt<br />

2<br />

sin t<br />

n


m<br />

x<br />

kx<br />

<br />

F<br />

0<br />

cos t<br />

The response of the system at resonance becomes;<br />

x<br />

t<br />

<br />

<br />

x<br />

x <br />

0<br />

nt<br />

<br />

0<br />

cos sin<br />

nt<br />

<br />

<br />

n<br />

<br />

st<br />

t<br />

2<br />

n<br />

sin t<br />

n


m<br />

x<br />

kx<br />

<br />

F<br />

0<br />

cos t<br />

The total response of the system can also be expressed<br />

<br />

<br />

x( t)<br />

Acos<br />

n<br />

<br />

2<br />

<br />

n<br />

1<br />

<br />

<br />

n<br />

<br />

st<br />

<br />

t <br />

cos t;<br />

for 1<br />

<br />

<br />

x( t)<br />

Acos<br />

n<br />

<br />

2<br />

<br />

n<br />

1<br />

<br />

<br />

n<br />

<br />

st<br />

<br />

t <br />

cos t;<br />

for 1


• A weight of 50 N is suspended from a spring<br />

of stiffness 4000 N/m and is subjected to a<br />

harmonic force of amplitude 60 N and<br />

frequency 6 Hz. Find (a) the extension of the<br />

spring due to the suspended weight, (b) the<br />

static displacement of the spring due to the<br />

maximum applied force, and the amplitude of<br />

forced motion of the weight


• Consider a spring –mass system, with k=4000<br />

N/m and mass, m=10 kg, subject to a<br />

harmonic force F(t) = 400 cos 10 t N. Find the<br />

total response of the system under the<br />

following initial condition;<br />

• x 0 = 0.1m, v 0 = 0


• The spring actuator shown in the figure operates<br />

by using air pressure from a pneumatic<br />

controller (p) as input and providing an output<br />

displacement to a valve (x) proportional to the<br />

input air pressure. The diaphragm, made of a<br />

fabric-base rubber, has an area A and deflects<br />

under the input air pressure against a spring of<br />

stiffness k. Find the response of the valve under<br />

a harmonically fluctuating input air pressure<br />

p(t)=p 0 sinωt for the following data:<br />

• p 0 =10 psi, ω=8 rad/s, A=10 in 2 , k=400 lb/in, weight of<br />

spring = 15 lb, and weight of valve and valve rod = 20<br />

lb.


F<br />

t<br />

<br />

<br />

F<br />

0<br />

cos t<br />

m x cx<br />

<br />

kx<br />

<br />

F<br />

0<br />

cos t<br />

The particular solution;<br />

x p<br />

( t)<br />

<br />

X<br />

<br />

cos t<br />

<br />

<br />

X<br />

<br />

F<br />

<br />

2<br />

<br />

2 2 2 1/ 2<br />

k m c ]<br />

[ <br />

0<br />

<br />

tan<br />

1<br />

<br />

<br />

<br />

k<br />

c<br />

2<br />

m


Dividing X by k and substituting;<br />

m<br />

k<br />

n <br />

<br />

mk<br />

c<br />

m<br />

c<br />

c<br />

c<br />

n<br />

c 2<br />

2<br />

<br />

<br />

<br />

<br />

<br />

n<br />

m<br />

c<br />

2<br />

n<br />

r<br />

<br />

<br />

<br />

k<br />

F<br />

st<br />

0<br />

<br />

<br />

2<br />

2<br />

2<br />

2<br />

1/<br />

2<br />

2<br />

2<br />

2<br />

1<br />

1<br />

2<br />

1<br />

1<br />

r<br />

r<br />

X<br />

n<br />

st<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

1<br />

2<br />

1<br />

1<br />

2<br />

tan<br />

1<br />

2<br />

tan<br />

r<br />

r<br />

n<br />

n


• Some characteristics of the magnification<br />

factor;<br />

• Any amount of damping reduces the<br />

magnification factor<br />

• For any specified value of r, a higher value of<br />

damping reduces the value of M<br />

• In the degenerate case of a constant force (r=0),<br />

the value of M=1<br />

• The reduction in M in the presence of damping is<br />

very significant at or near resonance


• The amplitude of the forced vibration becomes<br />

smaller with increasing values of the forcing<br />

frequency ( that is M→0 as r → ∞)<br />

• For 0 ≤ ζ≤ 1/√2, the maximum value of M occurs<br />

when<br />

2<br />

2<br />

r 1<br />

2<br />

or 1<br />

2<br />

• The maximum value of X is<br />

n<br />

X<br />

<br />

<br />

st<br />

<br />

<br />

<br />

<br />

1<br />

max 2<br />

1<br />

<br />

2<br />

X<br />

<br />

<br />

st<br />

<br />

<br />

<br />

<br />

2<br />

<br />

n<br />

1


• For ζ= 1/√2, dM/dr =0 when r=0.<br />

• For ζ> 1/√2, the graph of M monotonically<br />

decrease with increasing r


• Some characteristics of the phase angle;<br />

• For an undamped system (ζ=0), the phase angle is<br />

0 for 0< r < 1 and 180° for r > 1. This implies that<br />

the excitation and the response are in phase for<br />

0 < r < 1 and out phase for r > 1<br />

• For ζ > 1 and 0 < r < 1, the phase angle is given by<br />

0 < φ < 90°, implying that the response lags the<br />

excitation<br />

• For ζ > 0 and r > 1, the phase angle is given by<br />

90° < φ < 180°, implying that response leads the<br />

excitation


• For ζ > 0 and r = 1, the<br />

phase angle is given by<br />

φ = 90°, implying that<br />

the phase difference<br />

between the excitation<br />

and the response is 90°<br />

• For ζ > 1 and large<br />

values of r, the phase<br />

angle approaches 180° ,<br />

implying that the<br />

response and excitation<br />

are out of phase


The complete solution, for an underdamped system,<br />

x<br />

<br />

<br />

t<br />

t X e <br />

t <br />

<br />

X t<br />

<br />

n<br />

cos<br />

0<br />

cos<br />

d 0<br />

For the initial condition, xt<br />

0 x0 and x<br />

t<br />

0 x<br />

0<br />

x<br />

x<br />

0<br />

0<br />

<br />

X<br />

0<br />

<br />

X<br />

cos<br />

X cos<br />

n<br />

0<br />

0<br />

cos<br />

<br />

X<br />

0<br />

d<br />

cos<br />

X<br />

sin<br />

X <br />

<br />

<br />

st<br />

2 2<br />

1 r 2r<br />

2<br />

tan<br />

1<br />

2r<br />

<br />

1<br />

r<br />

2<br />

<br />

<br />

<br />

X<br />

<br />

2<br />

2<br />

X cos X <br />

1/ 2<br />

0<br />

<br />

0 0 0<br />

sin<br />

0<br />

tan<br />

0<br />

<br />

X<br />

X<br />

0<br />

0<br />

sin0<br />

cos<br />

0


• For a vibrating system, m = 10 kg, k = 2500<br />

N/m, and c = 45 N-s/m. A harmonic force 180<br />

N and frequency 3.5 Hz acts on the mass. If<br />

the initial displacement and velocity of the<br />

mass are 15mm and 5 m/s, find the complete<br />

solution representing the motion of the mass.


The quality factor, Q, is the value of<br />

the of the amplitude ratio at<br />

resonance.<br />

For small values of damping, (ζ


The difference between the frequencies<br />

associated with the half power points is<br />

called bandwidth<br />

2 2<br />

<br />

1<br />

R1 r1<br />

<br />

1<br />

<br />

<br />

n <br />

2<br />

2<br />

2 2<br />

<br />

2<br />

R2 r2<br />

<br />

1<br />

<br />

<br />

n <br />

2<br />

2<br />

<br />

2 1<br />

2 n<br />

1 n<br />

Q <br />

2<br />

<br />

2<br />

1


The harmonic forcing function can be represented<br />

in complex form as F(t)=F 0 e iωt<br />

mx cx<br />

<br />

kx<br />

<br />

Fe<br />

it<br />

Assuming the particular solution;<br />

x<br />

p<br />

t<br />

<br />

<br />

Xe<br />

it<br />

F0<br />

X <br />

<br />

2<br />

k m ic<br />

<br />

<br />

X<br />

<br />

<br />

2<br />

k m<br />

F<br />

0<br />

<br />

2<br />

1/ 2<br />

<br />

2 2<br />

c <br />

<br />

e<br />

i<br />

<br />

tan<br />

1<br />

<br />

<br />

<br />

k<br />

c<br />

2<br />

m


The steady-state solution;<br />

F<br />

<br />

0<br />

xp<br />

t <br />

1/ 2<br />

2 2 2 2<br />

k m<br />

c <br />

<br />

<br />

<br />

<br />

e<br />

<br />

i t<br />

<br />

The Frequency Response,<br />

F0<br />

X <br />

<br />

2<br />

k m ic<br />

<br />

<br />

kX<br />

F<br />

0<br />

<br />

1<br />

r<br />

2<br />

1<br />

i2r<br />

<br />

H<br />

<br />

i<br />

<br />

Hi<br />

complex frequency response


The Frequency Response,<br />

The absolute value ,<br />

H<br />

F<br />

<br />

<br />

i<br />

<br />

kX<br />

F<br />

<br />

1<br />

<br />

2 2<br />

2<br />

1<br />

r r<br />

1/ 2<br />

0 2<br />

<br />

<br />

<br />

<br />

i t<br />

t H i e<br />

0<br />

xp<br />

k<br />

F0 it<br />

<br />

<br />

velocity x<br />

pt<br />

i<br />

Hi<br />

e<br />

ix<br />

p(<br />

t)<br />

k<br />

2 F0<br />

it<br />

<br />

2<br />

accel. xpt<br />

i<br />

Hi<br />

e<br />

<br />

xp(<br />

t)<br />

k


• The figure shows a simple model of a motor<br />

vehicle that can vibrate in the vertical direction<br />

while traveling over a rough road. The vehicle<br />

has a mass of 1200 kg. The suspension system<br />

has a spring constant of 400 kN/m and a<br />

damping ratio of 0.5. If the vehicle speed is 20<br />

km/hr, determine the displacement amplitude of<br />

the vehicle. The road surface varies sinusoidally<br />

with an amplitude of Y = 0.05 m and a<br />

wavelength of 6m.


0<br />

)<br />

(<br />

)<br />

( <br />

<br />

<br />

<br />

<br />

y<br />

x<br />

k<br />

y<br />

x<br />

c<br />

x<br />

m<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

y<br />

c<br />

ky<br />

kx<br />

cx<br />

x<br />

m<br />

<br />

<br />

<br />

2<br />

2<br />

c<br />

k<br />

Y<br />

A<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

c<br />

<br />

1<br />

tan<br />

t<br />

Y<br />

t<br />

y<br />

<br />

sin<br />

)<br />

(<br />

if<br />

<br />

<br />

<br />

t<br />

Y<br />

c<br />

t<br />

kY<br />

<br />

<br />

sin cos<br />

<br />

<br />

<br />

<br />

t<br />

Asin


The steady state response of the mass,<br />

x p<br />

<br />

<br />

2<br />

<br />

2<br />

k m<br />

c<br />

<br />

<br />

2<br />

Y k c<br />

( t)<br />

sint<br />

1<br />

<br />

<br />

2 1/ 2<br />

[<br />

]<br />

2<br />

1 tan<br />

1<br />

<br />

<br />

<br />

k<br />

c<br />

2<br />

m<br />

<br />

<br />

<br />

tan<br />

1<br />

c <br />

<br />

k


The response can be rewritten as,<br />

x p<br />

( t)<br />

<br />

Asin<br />

<br />

t<br />

<br />

<br />

Displacement transmissibility,<br />

X<br />

Y<br />

<br />

<br />

<br />

<br />

k<br />

2<br />

<br />

2 2<br />

k<br />

m<br />

c<br />

<br />

<br />

c<br />

<br />

2<br />

2<br />

<br />

<br />

<br />

1<br />

2<br />

<br />

<br />

<br />

<br />

1<br />

<br />

2r<br />

<br />

2 2<br />

1<br />

r 2r<br />

<br />

2<br />

2<br />

<br />

<br />

<br />

1/ 2<br />

<br />

tan<br />

1<br />

<br />

<br />

<br />

k<br />

<br />

3<br />

3<br />

mc<br />

<br />

<br />

<br />

<br />

1<br />

2r<br />

tan<br />

2 2<br />

2 2<br />

k m<br />

c<br />

1<br />

4<br />

1r


The harmonic excitation of the base expressed in complex<br />

form as<br />

y(<br />

t)<br />

The response of the system ,<br />

Re( Ye<br />

it<br />

)<br />

x<br />

<br />

1<br />

i2r<br />

Re<br />

1<br />

r i2r<br />

p( t)<br />

2<br />

<br />

Ye<br />

<br />

it<br />

<br />

<br />

<br />

X<br />

Y<br />

<br />

T<br />

d<br />

<br />

<br />

2 1/ 2<br />

1 2r<br />

Hi


• Some characteristics of the displacement<br />

transmissibility;<br />

• The value of T d is unity at r=0 and close to unity for<br />

small value of r<br />

• For an undamped system (ζ=0), T d →∞ at<br />

resonance (r=1)<br />

• The value of T d is less than unity for values r > √2<br />

• The value of T d =1 for all values of ζ at r= √2<br />

• For r< √2, smaller damping ratio lead to larger<br />

values of T d .


• Some characteristics of the displacement<br />

transmissibility;<br />

• For r> √2, smaller damping ratio lead to smaller<br />

values of T d<br />

• T d attains a maximum for 0


A force is transmitted to the base<br />

or support due to the reaction from<br />

the spring and the dashpot,<br />

F<br />

<br />

k<br />

x<br />

y<br />

cx<br />

y<br />

mx<br />

2<br />

F m<br />

X<br />

sin<br />

Force transmissibility,<br />

t<br />

F t<br />

<br />

T sin<br />

F T<br />

kY<br />

<br />

r<br />

2<br />

<br />

<br />

<br />

1<br />

<br />

2r<br />

<br />

<br />

2<br />

<br />

2<br />

1<br />

r 2r<br />

<br />

2<br />

2<br />

<br />

<br />

<br />

1/ 2


Force transmissibility,<br />

F T<br />

kY<br />

<br />

r<br />

2<br />

<br />

<br />

<br />

1<br />

<br />

2r<br />

<br />

<br />

2<br />

<br />

2<br />

1<br />

r 2r<br />

<br />

2<br />

2<br />

<br />

<br />

<br />

1/ 2


Relative Motion, z = x – y,<br />

m<br />

x cz<br />

<br />

kz<br />

my<br />

<br />

<br />

2<br />

m<br />

Y<br />

sint<br />

z<br />

t<br />

<br />

<br />

<br />

2<br />

m<br />

Y<br />

2<br />

<br />

2<br />

k m<br />

c<br />

<br />

Z<br />

sin<br />

<br />

sin<br />

t<br />

<br />

<br />

1<br />

t<br />

<br />

<br />

2<br />

<br />

<br />

1/ 2


Relative Motion, z = x – y,<br />

Z <br />

2<br />

m<br />

Y<br />

Y<br />

2 2 2<br />

2 2<br />

k<br />

m<br />

c<br />

1 r 2r<br />

2<br />

r<br />

2<br />

<br />

1<br />

tan<br />

1<br />

<br />

<br />

<br />

k<br />

c<br />

2<br />

m<br />

<br />

<br />

<br />

<br />

tan<br />

1<br />

2r<br />

<br />

1<br />

r<br />

2


• The figure shows a simple model of a motor<br />

vehicle that can vibrate in the vertical direction<br />

while traveling over a rough road. The vehicle<br />

has a mass of 1200 kg. The suspension system<br />

has a spring constant of 400 kN/m and a<br />

damping ratio of 0.5. If the vehicle speed is 20<br />

km/hr, determine the displacement amplitude of<br />

the vehicle. The road surface varies sinusoidally<br />

with an amplitude of Y = 0.05 m and a<br />

wavelength of 6m.


• A heavy machine, weighing 3000 N supported<br />

on a resilient foundation. The static deflection of<br />

the foundation due to the weight of the machine<br />

is found to be 7.5 cm. It is observed that the<br />

machine vibrates with an amplitude of 1 cm<br />

when the base of the foundation is subjected to<br />

harmonic oscillation at the undamped natural<br />

frequency of the system with an amplitude of<br />

0.25 cm. Find (a) the damping constant of the<br />

foundation, (b) the dynamic force amplitude on<br />

the base, and (c) the amplitude of the of the<br />

machine relative to the base.


• A precision grinding machine is supported on an<br />

isolator that has a stiffness of 1 MN/m and a<br />

viscous damping constant of 1 kN-s/m. The floor<br />

on which the machine is mounted is subjected to<br />

a harmonic disturbance due to the operation of<br />

an unbalanced engine in the vicinity of the<br />

grinding machine. Find the maximum<br />

acceptable displacement amplitude of the floor<br />

if the resulting amplitude of vibration of the<br />

grinding wheel is to be restricted to 10 -6 m.<br />

Assume that the grinding machine and the<br />

wheel are a rigid body of weight 5000 N


• One of the tail rotor blades of a helicopter has<br />

an unbalanced mass of m=0.5 kg at a distance<br />

of e = 0.15 m from the axis of rotation , as<br />

shown in the figure. The tail section has a<br />

length of 4 m, a mass of 240 kg, a flexural<br />

stiffness (EI) of 2.5 MN – m 2 , and a damping<br />

ratio of 0.15. The mass of the tail rotor blades,<br />

including their drive system, is 20 kg.<br />

Determine the forced response of the tail<br />

section when the blades rotate at 1500 rpm


F<br />

t<br />

<br />

<br />

2<br />

me sin t<br />

2<br />

M x cx<br />

kx<br />

me sint<br />

The particular solution;<br />

x<br />

p<br />

( t)<br />

<br />

X<br />

<br />

Im<br />

<br />

sin<br />

<br />

me<br />

M<br />

t<br />

<br />

<br />

<br />

<br />

n<br />

<br />

<br />

2<br />

H<br />

<br />

it<br />

<br />

i<br />

e


i<br />

H<br />

M<br />

me<br />

c<br />

M<br />

k<br />

me<br />

X<br />

n<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

1/<br />

2<br />

2<br />

2<br />

2<br />

2<br />

]<br />

[<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

1<br />

tan<br />

<br />

<br />

<br />

M<br />

k<br />

c<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

i<br />

H<br />

r<br />

r<br />

r<br />

r<br />

me<br />

MX 2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

1<br />

1<br />

2<br />

tan<br />

r<br />

r


• The following observation can be made from<br />

the equations;<br />

• All the curves begin at zero amplitude. The<br />

amplitude near resonance is markedly affected by<br />

damping. Thus if the machine is to be run near<br />

resonance, damping should be introduced<br />

purposefully to avoid dangerous amplitudes.<br />

• At very high speeds(ω large), MX/me is almost<br />

unity, and the effect of damping is negligible.


• The following observation can be made from<br />

the equations;<br />

• For 0 < ζ < 1 /√2, the maximum of MX/me is<br />

<br />

<br />

<br />

MX<br />

me<br />

<br />

<br />

<br />

<br />

1<br />

max 2 1<br />

<br />

2<br />

▪ The peaks occur to the right of the resonance value r=1<br />

• Forζ > 1 /√2, MX/me does not attain a maximum.<br />

Its value grows from 0 at r=0 to 1 at r→∞.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!