07.11.2014 Views

MTR 912.pdf - Mote Marine Laboratory

MTR 912.pdf - Mote Marine Laboratory

MTR 912.pdf - Mote Marine Laboratory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MOTE MARINE LABORATORY TECHNICAL REpORT No. 912<br />

This document printed on recycled paper with non-destmctive ink ..


DRAFT FINAL REpORT FOR<br />

AN INVESTIGATION OF RELATIONSHIPS<br />

BETWEEN<br />

FRESHWATER INFLOWS AND<br />

BENTHIC MACROINVERTEBRATES IN THE<br />

ALAFIA RIVER ESTUARY<br />

Submitted to:<br />

Contract Administration, Building No. 2<br />

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT<br />

2379 Broad Street<br />

Brooksville, Florida 34609-6899<br />

Submitted By:<br />

Center for Coastal Ecology<br />

MOTE MARINE LABORATORY<br />

1600 Ken Thompson Parkway<br />

Sarasota, Florida 34236<br />

(941) 388-4441<br />

MARINE LABORATORY<br />

June 2003<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> Technical Report No. 912<br />

This document printed on recycled paper with non-destructive ink ..


T ABLE OF CONTENTS<br />

Page No.<br />

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. i<br />

List of Tables . .................. .. .. ......... .. . .... . .. . .. ............ . .. .... iii<br />

List of Figures ........... .. ........... . ..................... . ....... . . .. . .... iv<br />

List of Appendices Tables ...................................................... xi<br />

List of Appendices Figures .................................................... xii<br />

Project Participants and Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xvii<br />

PREFACE ............. . ...................................................... 1<br />

I. INTRODUCTION ............................. ... ................. . . ...... 5<br />

1.1 Study Rationale .... ..... ..... . . ..... ............... .. . .. ........ . . 5<br />

1.2 Study Period Climate Conditions ...................................... 6<br />

1.2.1 Rainfall .................................................... 6<br />

1.2.2 River Flows . ........ ... ..... .......... ... . . .. . ............. 7<br />

II. MORPHOMETRY, HABITATS, SEDIMENT AND MACROINFAUNA ........... . .. . . .. 14<br />

IT. 1 Sampling Locations ............................................... 14<br />

IT.2 Bathymetry and Morphometrics .. . ........ ..... .. .... . .... . .......... 15<br />

IT.3 Benthic Habitat Map ....... . ............... . . ... ... .. ........ ... .. 16<br />

IT.4 Benthic Macroinfauna ... ..... ........... .. ... .. . .. . ... . ... . ....... 16<br />

IT.4.1 Faunal Identification and Enumeration .................... .. . ... 16<br />

IT.4.2 Biomass Analysis ......... . ... .......... .. . ........ . ....... . 17<br />

IT.4.3 Incorporation of Other Benthic Data ... ... . ........... ..... ... .. 17<br />

IT.5 Sediment Analyses .............................................. . . 18<br />

IT. 7 Data Analysis .... ... ... ............. ... ..... . ... .... .. . .... . .. ... 19<br />

IT.8 Results ............ ......... . . .. ............ . .......... .. ... .... 19<br />

IT.8.1 Salinity Conditions .............................. . ...... . .... 19<br />

IT.8.2 Bathymetry and Morphometrics ...... ....... ................... 20<br />

IT.8.3 Sediment Composition .......... . ....... . ... . .. . . . ........... 20<br />

IT.8.4 Benthic Macroinfauna ................... ........ ... .. . ...... 22<br />

IT.8.4.1 Methodological Considerations .. . .. . . ............ . 22<br />

IT.8.4.2 Benthic Community Parameters ........ . ..... . ... . 22<br />

IT.8.4.3 Seasonal and Spatial Distribution of Taxa .......... .. 23<br />

IT.8.4 4 Benthos as a Trophic Resource .. . ................ . 24<br />

IT.8.4.5 Biomass ..................... .... . ........ . .. . 25<br />

IT.8.4.6 Community Similarity - Cluster Analysis .......... .. 26<br />

IT.8.4.7 Faunal Relationships to Salinity .. . ........... ... .. 26<br />

IT.9 Summary and Discussion . ... .. .... . . . .. .. . . .... ... . ...... . ......... 30<br />

Alafia Ri ver - Final Report -1- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


(Table of Contents, continued)<br />

Page No.<br />

III. MOLLUSCAN BIO·INDICATORS OF THE TIDAL ALAFIA RIVER .............. .. .. 97<br />

m.1 Introduction .... ..... ........... . . ... .. . ... ...................... 97<br />

m.1.1 Metrics of Benthic Macroinvertebrate Response to Salinity<br />

Change in the Alafia River ............. ... .... ........ . .. .. . .. 99<br />

m.1.2 Hydrology ...... . ....... .... ......... ... . ...... ..... ..... 100<br />

m.2 Methods . . ..... .. ........ .... . ..... ....... . ....... ... .......... 100<br />

m.3 Results . ... ...... .. .... ..... . .. .. ............. ..... . ... . ... .. .. 102<br />

m.3.1 Effort and Representativeness .. . . .... . ..... ............... ... 102<br />

m.3.2 Species Richness .......................................... 102<br />

m.3.3 Species Accounts .. ........ . ....... .. ......... .. ..... ... ... 103<br />

m.3.4 Community Pattern ...... .. .. ... ......... . ..... . ...... . .. .. . 105<br />

m.3.5 Oysters and Mussels ........................................ 107<br />

m.4 Discussion ..................................................... 108<br />

ill. 5 Synthesis ...................................................... 112<br />

IV. LITERATURE CITED ............ ' ....................................... 142<br />

ApPENDICES<br />

Appendix A •<br />

Appendix B •<br />

Appendix C •<br />

AppendixD •<br />

Appendix E •<br />

Appendix F •<br />

Bathymetry Data<br />

Sediment Parameters<br />

Benthic Habitat Maps<br />

Macroinfaunal Data<br />

Mollusk Data<br />

Mollusk Data<br />

Data appendices included as pdf files on the accompanying compact disc.<br />

Appendix CD·A Macroinfauna<br />

Alafia River - Final Report -ii- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


,......<br />

• t<br />

, "<br />

Alafia River Watershed.<br />

"Not everything that can be counted counts, and not everything that counts can be counted."<br />

- Albert Einstein (1879-1955)


II.<br />

LIST OF TABLES<br />

MORPHOMETRY, HABITATS, SEDIMENT AND MACROINFAUNA<br />

Page No.<br />

Table 11.1.<br />

Comparison of locations of stations sampled for this study with the strata<br />

utilized by the HBMP program ...... . ........... .. .......... .... .... 15<br />

Table 11.2. Area and volume for 1 kilometer segments of the lower Alafia River. ........ 21<br />

Table 11.3.<br />

Table 11.4.<br />

Table 11.5.<br />

Table 11.6.<br />

Summary of benthic community parameters by sampling event. Collec~ions<br />

made for this project are in bold print. Data are arranged by HBMP stratum<br />

and rank order by preceding 60 day rainfall totals. . ...................... 36<br />

Number and percentage of taxa recovered for each sampling date and HBMP<br />

river stratum, with data ranked by preceding 60 day rainfall totals. . ......... 43<br />

Abundance and percentage abundance for each sampling date and HBMP<br />

river stratum, with data ranked by preceding 60 day rainfall totals. . ......... 44<br />

Distribution of species in shallow versus deep strata as sampled by sweep<br />

nets for the wet and dry sampling periods. . .................... . ... ... . 45<br />

III.<br />

MOLLUSCAN BIO-INDICATORS OF THE TIDAL ALAFIA RIvER, FLORIDA<br />

Table 111.1. Expected response of benthic macroinvertebrates to salinity increase .. ... .. . 99<br />

Table 111.2.<br />

Summary list of Alafia River mollusk species collected on 0.5 km<br />

transects ............................. . ...... .... ...... ... ...... 102<br />

Table 111.3. Relation of live to dead shell distribution patterns in the tidal Alafia River ... 107<br />

Table 111.4. Comparison of mollusk species richness by river and gear ................ 108<br />

Alafia Ri ver - Final Report -lll- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


LIST OF FIGURES<br />

PREFACE<br />

Page No.<br />

Figure 1. Hillsborough Bay Chart 1879 ........................................ 4<br />

I. INTRODUCTION<br />

Figure 1.1.<br />

Figure 1.2.<br />

Figure 1.3.<br />

Figure 1.4.<br />

Rainfall conditions for the Alafia River Basin 1998 - 200 1 as compared to the<br />

long-term average. . ............. . .................................. 9<br />

Monthl y rainfall for the study period (dark bars) as compared to the long term<br />

average rainfall for the Alafia basin. . ................................. 10<br />

Monthly rainfall deviation from the long tern average within the Alafia River<br />

drainage basin. ....................... ... ......................... 11<br />

Rainfall and total estimated River flow for the period January 1995 through<br />

September 200 1. ................................................. 12<br />

Figure 1.5. Relative percentage of contributing flows to the Alafia River. .............. 13<br />

II.<br />

MORPHOMETRY, HABITATS, SEDIMENT AND MACROINFAUNA<br />

Figure 11.1. Map of the Alafia River illustrating the approximate locations of the 1<br />

kilometer sampling intervals ......................................... 14<br />

Figure 11.2. Distribution of benthic sampling based on preceding 60 day rainfall totals. . . . 18<br />

Figure 11.3.<br />

Figure 11.4.<br />

Figure 11.5.<br />

Figure 11.6.<br />

Bottom salinity for two sampling periods, May 1999 (wet) and October<br />

2001(dry) ...................... . .................... ....... ..... 46<br />

Daily average modeled salinity, (minimum, maximum, median) by river<br />

kilometer based on data covering the period May 1999 - September 2001 ..... 47<br />

Benthic relevant salinity regime based on modeled salinity for thirty day<br />

average preceding each of 18 benthic sampling dates. . .... ..... . ......... 48<br />

Relative contribution of surface area and volume of the Alafia River by<br />

kilometer .. ... . .. . ... . .... ... .. . ................ .. ... . .......... 49<br />

Alalia River - Final Report -lV- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


(List of Figures, continued)<br />

Page No.<br />

Figure 11.7.<br />

Figure 11.8.<br />

Figure 11.9.<br />

Schematic illustration of the Alafia River bathymetry based on NGVD, figure<br />

provided by SWFWMD. . .......................................... 50<br />

lllustration of the greatest depths recorded for cross-section transects during<br />

the bathymetry survey of the Alafia River. ............................. 51<br />

Distribution of sediment median and mean grain size by river kilometer and<br />

cross channel position. Left and right bank: designations are based on a<br />

boater's perspective looking downstream. Size of circle is proportional to<br />

grain size ....................................................... 52<br />

Figure 11.10. Distribution of sediment percentage silt and percentage clay by river<br />

kilometer and cross channel position. Left and right bank: designations are<br />

based on a boater's perspective looking downstream ..................... . 53<br />

Figure 11.11. Distribution of sediment percentage sand and volatile solids (organics) by<br />

river kilometer and cross channel position. Left and right bank designations<br />

are based on a boater's perspective looking downstream ................... 54<br />

Figure 11.12. Distribution of sediment percentage solids and moisture by river kilometer<br />

and cross channel position. Left and right bank: designations are based on a<br />

boater's perspective looking downstream ............................... 55<br />

Figure 11.13. Distribution of number of taxa (counts) recovered from each sample ......... 56<br />

Figure 11.14. Distribution of number of individuals collected from each benthic faunal<br />

sample ......................................................... 57<br />

Figure 11.15. Distribution of diversity values (R') for each benthic sample ............... 58<br />

Figure 11.16. Number of taxa recovered from core samples by river kilometer for May<br />

1999 (dry season) and September 2001 (wet season) .................... . . 59<br />

Figure 11.17. N umber of indi viduals per m 2 recovered from core samples by river kilometer<br />

for May 1999 (dry season) and September 2001 (wet season) ............... 60<br />

Figure 11.18. Number of taxa recovered from sweep samples by river kilometer for May<br />

1999 (dry season) and September 2001 (wet season) ....... . .............. 61<br />

Alafia River - Final Report -v- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


(List of Figures, continued)<br />

Page No.<br />

Figure 11.19. Number of individuals recovered from sweep samples by river kilometer for<br />

May 1999 (dry season) and September 2001 (wet season) .......... . ....... 62<br />

Figure 11.20. Number of insect taxa recovered from core samples by river kilometer for<br />

May 1999 (dry season) and September 2001 (wet season) ............. . .... 63<br />

Figure 11.21. Number of insects per m 2 based on counts from core samples by river<br />

kilometer for May 1999 (dry season) and September 2001 (wet season) ...... . 64<br />

Figure 11.22. Total abundance of benthic organisms for each kilometer of river. . ....... . . 65<br />

Figure 11.23. Total abundance of polychaetes for each kilometer of river ............... . . 66<br />

Figure II.24. Total abundance of molluscs for each kilometer of river. . .... . ............ 67<br />

Figure 11.25. Total abundance of amphipods for each kilometer of river. . .. . ............ 68<br />

Figure II.26. Total abundance of cumaceans for each kilometer of river. ... . ............ 69<br />

Figure 11.27. Total abundance of mysids for each kilometer of river. .................. . 70<br />

Figure 11.28. Total abundance of decapods for each kilometer of river ... . ............... 71<br />

Figure 11.29. Total abundance of isopods for each kilometer of river. ...... . ..... . . . . . . . 72<br />

Figure 11.30. Total abundance of nemerteans for each kilometer of river. ................ 73<br />

Figure 11.31. Total abundance of dipterans for each kilometer of river. .. ... . . . ........ .. 74<br />

Figure 11.32. Total abundance of ologochaets for each kildmeter of river. ... . .... . .. . .. .. 75<br />

Figure 11.33. Ash-free biomass weights for the May 1999 dry season sampling .. .... . . ... . 76<br />

Figure 11.34. Dry weight benthic biomass for the May 1999 collection. . ............. .. . 77<br />

Figure 11.35. Ash-free benthic biomass for the September 2001 collection. . ... . .. . . . . . .. 78<br />

Figure 11.36. Dry weight benthic biomass for the September 2001 collection. . ........... 79<br />

Alafia River· Final Report - Vl- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong>· June 2003


(List of Figures, continued)<br />

Page No.<br />

Figure II.37. Cluster diagram based on Bray-Curtis, group averaged sorting and<br />

presence/absence faunal data. . ............................ . ......... 80<br />

Figure II.38. Representation of taxa ranked by abundance and plotted against the weighted<br />

center of salinity for the occurrence of that species. . ..................... 81<br />

Figure II.39. The number of taxa collected within discrete salinity increments. . .......... 82<br />

Figure II.40. Distribution of the number of taxa collected for each sampling period versus<br />

salinity, based on HBMP zones. . .................................... 83<br />

Figure II.41. Distribution of benthic abundance for each sampling period versus salinity,<br />

based on HBMP zones. . ........................................... 84<br />

Figure II.42. Plots of the Shannon-Wiener Index (H') versus salinity based on HBMP<br />

zones ..................................................... ' ..... 85<br />

Figure II.43. Plots of Pie lou's Equitability Index versus salinity based on HBMP zones .. .. . 86<br />

Figure II.44. Plots of Gini's Index versus salinity based on HBMP zones ................ 87<br />

Figure II.4S. Plots of the Margalef Index versus salinity based on HBMP zones. . ......... 88<br />

Figure II.46. Dry season cumulative species list and distribution (presence/absence) by<br />

river kilometer, starting by listing fIrst species occurrence downstream then<br />

proceeding upstream adding additional species. Core = x, sweep = o. . ....... 89<br />

Figure II.47. Wet season cumulative species list and distribution (presence/absence) by<br />

river kilometer, starting by listing fIrst species occurrence downstream then<br />

proceeding upstream adding additional species. Core = x, sweep = o. . ....... 91<br />

Figure II.48. Dry season cumulative species list and distribution (presence/absence) by<br />

river kilometer, starting by listing fIrst species occurrence upstream then<br />

proceeding downstream adding additional species. Core = x, sweep = o ....... 92<br />

Figure II.49. Wet season cumulative species list and distribution (presence/absence) by<br />

river kilometer, starting by listing fIrst species occurrence upstream then<br />

proceeding downstream adding additional species. Core = x, sweep = o .. ..... 94<br />

Alafia Ri ver - Final Report -Vll- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - Jllne 2003


(List of Figures, continued)<br />

Page No.<br />

Figure II.SO. Cumulative species curves for analysis of data proceeding downstream to<br />

upstream and upstream to downstream for both dry (top) and wet season<br />

(bottom) .. ... .... .. .............................................. 95<br />

Figure II.S1. Cluster analysis results for salinity with species presence/absence data within<br />

each salinity interval used as the matrix. . .... : ......................... 96<br />

III.<br />

MOLLUSCAN BIO-INDICATORS OF THE TIDAL ALAFIA RIVER, FLORIDA<br />

Figure III.1. The tidal Alafia River. US 41 is near river kilometer (RK) 1.6; 1-75 crosses<br />

the river near RK 5.4; US 301 crosses near RK 7.9, Buckhorn Spring is near<br />

RK 12.2, and Bell Shoals is near 17.9 .................. . ............. 115<br />

Figure III.2. Density, size, percent juveniles, and weather index values for live and dead<br />

collections of Mytilopsis leucophaeta as a function of distance from<br />

Hillsborough Bay, in intertidal and subtidal strata ....... . .. . ............ 116<br />

Figure III.3. Density, size, percent juveniles, and weather index values for live and dead<br />

collections of Geukensia demissa as a function of distance from Hillsborough<br />

Bay, in intertidal and subtidal strata .. . .. . ............................ 117<br />

Figure III.4. Density, size, percent juveniles, and weather index values for live and dead<br />

collections of Polymesoda caroliniana as a function of distance from<br />

Hillsborough Bay, in intertidal and subtidal strata ........ ... . .. .. .... . .. 118<br />

Figure III.S. Density, size, percent juveniles, and weather index values for live and dead<br />

collections of Crassostrea virginica as a function of distance from<br />

Hillsborough Bay, in intertidal and subtidal strata . . ......... . .... . .. . ... 119<br />

Figure III.6. Density, size, percent juveniles, and weather index values for live and dead<br />

collections of Mysella planulata as a function of distance from Hillsborough<br />

Bay, in intertidal and subtidal strata .................. . .. .. ... . .... .. . 120<br />

Figure III.7. Density, size, percent juveniles, and weather index values for live and dead<br />

collections of Tagelus plebe ius as a function of distance from Hillsborough<br />

Bay, in intertidal and subtidal strata .. .. .......... . . . . . ......... . ..... 121<br />

AJafi a River - Final Report - Vlll- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


(List of Figures, continued)<br />

Page No.<br />

Figure 111.8. Density, size, percent juveniles, and weather index values for live and dead<br />

collections of Neritina usnea as a function of distance from Hillsborough<br />

Bay, in intertidal and subtidal strata .................................. 122<br />

Figure 111.9. Density, size, percent juveniles, and weather index values for live and dead<br />

collections of Corbiculafluminea as a function of distance from Hillsborough<br />

Bay, in intertidal and subtidal strata .................................. 123<br />

Figure 111.10. Density, size, percent juveniles, and weather index values for live and dead<br />

collections of Tellina sp. as a function of distance from Hillsborough Bay, in<br />

intertidal and subtidal strata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124<br />

Figure 111.11. Density, size, percent juveniles, and weather index values for live and dead<br />

collections of Littorina irrorata as a function of distance from Hillsborough<br />

Bay, in intertidal and subtidal strata .................................. 125<br />

Figure 111.12. Species richness for live and dead mollusk collections relative to river<br />

kilometer ...................................................... 126<br />

Figure 111.13. Faunal densities for live and dead mollusk collections relative to river<br />

kilometer ...................................................... 127<br />

Figure 111.14. Species richness for intertidal and subtidal mollusk collections relative to<br />

river kilometer .................................................. 128<br />

Figure 111.15. Faunal densities for intertidal and subtidal mollusk collections relative to<br />

river kilometer .................................................. 129<br />

Figure 111.16. Mollusk species-accumulation curves for live and dead collections<br />

progressing upstream (upper) and downstream (lower) ................... 130<br />

Figure 111.17. Mollusk species-accumulation curves for intertidal and subtidal collections<br />

progressing upstream (upper) and downstream (lower) ... . .. . ............ 131<br />

Figure 111.18. Dispersion of individual mollusk species sorted by first occurrence moving<br />

upstream from Hillsborough Bay ..... . ................ . ........... . . 132<br />

Figure 111.19. Dispersion of individual mollusk species sorted by first occurrence moving<br />

downstream from Bell Shoals ............ .. . .. ..... . ... . ........... 133<br />

Alafia Ri ver - Final Report -ix- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


(List of Figures, continued)<br />

Page No.<br />

Figure 111.20. Mean height (mm ± s.d.) of largest living Geukensia and Crassostrea relative<br />

to distance from Hillsborough Bay. Data collected September 11, 2001 ..... 134<br />

Figure 111.21. Mean salinity (parts per thousand) and salinity variance (as standard<br />

deviation) of surface waters relative to distance from Hillsborough Bay ..... 135<br />

Figure 111.22. Mean concentration (mg/l) and variability of dissolved oxygen in bottom<br />

waters for each HBMP sampling stratum ............................. 136<br />

Figure 111.23. Schematic of bottom types and areas of transition in bottom types within the<br />

upper reach of the tidal Alafia River ................................. 137<br />

Figure 111.24. Location and sizes of oyster reefs in the lower reach of the tidal Alafia River,<br />

June and July, 2001 .............................................. 138<br />

Figure 111.25. Surface area (hectares) of low-intertidal river bottom (-0.12 m NGVD) as a<br />

function of distance from Hillsborough Bay ........................... 139<br />

Figure 111.26. Cumulative surface area (hectares) of low-intertidal river bottom (-0.12 m<br />

NGVD) as a function of distance from Bell Shoals ...................... 140<br />

Alafia Ri ver - Final Report -x- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


LIST OF ApPENDICES TABLES<br />

Page No.<br />

Appendix Table B-l.<br />

Appendix Table B-2.<br />

Appendix Table B-3.<br />

Appendix Table D-l.<br />

Appendix Table D-2.<br />

Appendix Table D-3.<br />

Appendix Table D-4.<br />

Appendix Table D-S.<br />

Appendix Table E-l.<br />

Sediment grain size statistics for May 2001 samples<br />

from the Alafia River. Terminology:<br />

HB=Hillsborough Bay, R=river, # = river kilometer ( +<br />

upstream from mouth), L, M, R = left, middle, and<br />

right side of river when facing downstream. . .............. B-1<br />

Sediment grain size statistics for December 2000)<br />

samples from the Little Manatee River. Terminology:<br />

Bay=Tampa Bay, R=river, #=river kilometer (+<br />

upstream from mouth), L, M, R = left, middle, and<br />

right side of river when facing downstream. . .............. B-4<br />

Sediment characteristics of coarse material (>0.5 mm)<br />

from Alafia River benthic samples from May 1999 .......... B-5<br />

Phylogenetic species list for all data used<br />

within this report ................................... D-l<br />

Center of abundance for all species collected during<br />

the dry season (May 1999) and wet season (September<br />

2001), using salinity at capture data . . . . . . . . . . . . . . . . . . .. D-ll<br />

Center of abundance estimates for all data used in this<br />

report based on modeled 30 day average salinity,<br />

reported by HBMP strata. ........................... D-17<br />

Benthic invertebrate biomass for the Alafia River,<br />

May 1999 samples ................................. D-26<br />

Benthic invertebrate biomass for the Alafia<br />

River, May 1999 samples ............................ D-29<br />

Mollusk data from ponar grabs ......................... E-l<br />

Alafia River - Final Report<br />

-Xl- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


LIST OF ApPENDICES FIGURES<br />

Page No.<br />

Appendix Figure A-I. Alafia cross-section profiles. A-I<br />

Appendix Figure A-2. Alafia cross-section profiles continued. . . . . . . . . . . . . . . . . .. A-2<br />

Appendix Figure A-3. Alafia cross-section profiles continued. . . . . . . . . . . . . . . . . . . A-3<br />

Appendix Figure A-4. Alafia cross-section profiles continued. . . . . . . . . . . . . . . . . .. A-4<br />

Appendix Figure A-S. Alafia cross-section profiles continued. . . . . . . . . . . . . . . . . .. A-5<br />

Appendix Figure A-6. Alafia cross-section profiles continued. . . . . . . . . . . . . . . . . .. A-6<br />

Appendix Figure A-7. Alafia cross-section profiles continued .......... ......... A-7<br />

Appendix Figure A-S. Alafia cross-section profiles continued. . . . . . . . . . . . . . . . . .. A-8<br />

Appendix Figure A-9. Alafia cross-section profiles continued. . . . . . . . . . . . . . . . . .. A-9<br />

Appendix Figure A-IO.<br />

Bathymetry contours for the lower Alafia River. Data<br />

expressed as depth related to NGVD29. . .. . ... .... . .. .. A-II<br />

Appendix Figure A-ll. Bathymetry contours (continued). · .................... A-12<br />

Appendix Figure A-12. Bathymetry contours (continued). ·......... . . . . . ...... A-13<br />

Appendix Figure A-13. Bathymetry contours (continued). ·.................... A-14<br />

Appendix Figure A-14. Bathymetry contours (continued). · ............... . . . .. A-15<br />

Appendix Figure A-IS. Bathymetry contours (continued). · .. . ... . . ....... . . . .. A-16<br />

Appendix Figure A-16. Bathymetry contours (continued). · ......... . ...... . ... A-17<br />

Appendix Figure A-17. Bathymetry contours (continued). · ... .... . .. .... ... ... A-18<br />

Appendix Figure A-IS. Bathymetry contours (continued). · ....... . ..... . . . . ... A-19<br />

Alafia Ri ver - Final Report - Xll- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


(List of Appendix Figures, continued)<br />

Appendix Figure B-l.<br />

Appendix Figure B-1<br />

(continued).<br />

Appendix Figure B-2.<br />

Appendix Figure B-3.<br />

Appendix Figure B-4.<br />

Appendix Figure B-S.<br />

Appendix Figure B-6.<br />

Appendix Figure C-l.<br />

Appendix Figure C-2.<br />

Appendix Figure C-3.<br />

Appendix Figure C-4.<br />

Appendix Figure D-l.<br />

Grain size distribution for sediment of the Alafia<br />

River, May 2001, (KM = upstream distance in<br />

kilometers; HB = kilometers from mouth in<br />

Hillsborough Bay). . . . . . . . . . . . . . . . . . . . . . .. B-7 through B-12<br />

(HB = Kilometers from mouth in Hillsborough Bay) ....... B-13<br />

Sediment grain size statistics for cross sections of the<br />

Alafia River, May 2001. ................. B-14 through B-22<br />

Sediment statistics plotted by river kilometer .............. B-23<br />

Grain size distribution for sediment of the Little<br />

manatee River, December 2000, (KM = upstream<br />

distance in Kilometers) ............................... B-25<br />

Grain size statistics for samples from the Little<br />

Manatee River, December 2000, (Km = Kilometers<br />

upstream from mouth). The three bars for each<br />

kilometer indicate left bank, river center, and right<br />

bank respectively; as observed facing downstream. . ....... B-27<br />

Comparison of sediment mean grain size for the<br />

Alafia and Little Manatee Rivers ....................... B-29<br />

Habitat maps for the little Alafia River. ................... C-l<br />

Habitat maps for the little Alafia River (continued) .......... C-2<br />

Habitat maps for the little Alafia River (continued) .......... C-3<br />

Habitat maps for the little Alafia River (continued) . ......... C-4<br />

Distribution of the polychaete Laeonereis culveri for<br />

dry (May 1999) and wet (September 2001) season<br />

conditions. Overall rank abundance #2. ................ D-32<br />

A1afia River - Final Report<br />

-Xlll- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


(List of Appendix Figures, continued)<br />

Page No.<br />

Appendix Figure D-2.<br />

Appendix Figure D-3.<br />

Appendix Figure D-4.<br />

Appendix Figure D-5.<br />

Appendix Figure D-6.<br />

Appendix Figure D-7.<br />

Appendix Figure D-8.<br />

Appendix Figure D-9.<br />

Appendix Figure D-IO.<br />

Distribution of the polychaete Mytilopsis<br />

leucophaeata for dry (May 1999) and wet (September<br />

2001) season conditions. Overall rank abundance<br />

#3 .............................................. D-33<br />

Distribution of the polychaete Chironomus spp. for<br />

dry (May 1999) and wet (September 200 1) season<br />

conditions. Overall rank abundance #6 ................. D-34<br />

Distribution of the polychaete Streblospio benedicti<br />

for dry (May 1999) and wet (September 2001) season<br />

conditions. Overall rank abundance #8 ................. D-35<br />

Distribution of the polychaete Polypedilum halterale<br />

gpo for dry (May 1999) and wet (September 2001)<br />

season conditions. Overall rank abundance #9 ........... D-36<br />

Distribution of the polychaete Apocorophium<br />

louisianum for dry (May 1999) and wet (September<br />

2001) season conditions. Overall rank abundance<br />

#10............................................... D-37<br />

Distribution of the polychaete Tubificidae sp. for dry<br />

(May 1999) and wet (September 2001) season<br />

conditions. Overall rank abundance #12 ................ D-38<br />

Distribution of the polychaete Paraprionospio<br />

pinnata for dry (May 1999) and wet (September<br />

2(01) season conditions. Overall rank abundance<br />

#13 .............................................. D-39<br />

Distribution of the polychaete Cladotanytarsus spp.<br />

for dry (May 1999) and wet (September 200 1) season<br />

conditions. Overall rank abundance #20. ............... D-40<br />

Distribution ofthe polychaete Eteone heteropoda for<br />

dry (May 1999) and wet (September 2(01) season<br />

conditions. Overall rank abundance #33 ................ D-41<br />

Alafia Ri ver - Final Report<br />

-XIV- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


(List of Appendix Figures, continued)<br />

Page No.<br />

Appendix Figure D-ll.<br />

Appendix Figure D-12.<br />

Appendix Figure D-13.<br />

Appendix Figure D-14.<br />

Appendix Figure D-IS.<br />

Appendix Figure D-16.<br />

Appendix Figure D-17.<br />

Appendix Figure D-18.<br />

Appendix Figure D-19.<br />

Appendix Figure D-20.<br />

Distribution of the polychaete Mulinia lateralis for<br />

dry (May 1999) and wet (September 2001) season<br />

conditions. Overall rank abundance #36. ...... . ........ D-42<br />

Distribution of the polychaete Phyllodoce arenae for<br />

dry (May 1999) and wet (September 200 1) season<br />

conditions. Overall rank abundance #63 ................ D-43<br />

Abundance distribution of the amphipod Ampelisca<br />

cf Abdita by HBMP strata and salinity. Rank<br />

abundance #1.......................... .. . . ....... D-44<br />

Abundance distribution of the amphipod Laeonereis<br />

culveri by HBMP strata and salinity. Rank abundance<br />

#2 ....................................... . ....... D-45<br />

Abundance distribution of the amphipod Mytilopsis<br />

leucophaeata by HBMP strata and salinity. Rank<br />

abundance #3. ... ... ....................... . ...... D-46<br />

Abundance distribution of the amphipod<br />

Grandidierella bonnieroides by HBMP strata and<br />

salinity. Rank abundance #4. . ...... . ............ . ... D-47<br />

Abundance distribution of the amphipod Chironomus<br />

spp. by HBMP strata and salinity. Rank abundance<br />

#6 ........ . ............... .. ....... . .. . ........ . . D-48<br />

Abundance distribution of the amphipod Streblospio<br />

benedicti by HBMP strata and salinity. Rank<br />

abundance #8........................ . ............ D-49<br />

Abundance distribution of the amphipod Tubificidae<br />

wlo cap. setae by HBMP strata and salinity. Rank<br />

abundance #12. . .. . ..... . ... . ......... . . . .. . ..... . D-50<br />

Abundance distribution of the amphipod Hobsonia<br />

florida by HBMP strata and salinity. Rank abundance<br />

#28 .................................. . . .. ... . .. .. D-51<br />

A1afia Ri ver - Final Report<br />

-xv- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


(List of Appendix Figures, continued)<br />

Page No.<br />

Appendix Figure D-21.<br />

Appendix Figure D-22.<br />

Appendix Figure D-23.<br />

Appendix Figure D-24.<br />

Appendix Figure D-25.<br />

Appendix Figure D-26.<br />

Appendix Figure D-27.<br />

Appendix Figure D-28.<br />

Appendix Figure D-29.<br />

Abundance distribution of the amphipod Eteone<br />

heteropoda by HBMP strata and salinity. Rank<br />

abundance #33. . .................................. D-52<br />

Abundance distribution of the amphipod Mulinia<br />

lateralis by HBMP strata and salinity. Rank<br />

abundance #36. . .................................. D-53<br />

Abundance distribution of the amphipod Cyathura<br />

polita by HBMP strata and salinity. Rank abundance<br />

#56 .............................................. D-54<br />

Abundance distribution of the amphipod Edotea<br />

triloba by HBMP strata and salinity. Rank<br />

abundance #57. ....................... .... ........ D-55<br />

Abundance distribution of the amp hi pod Polypedilum<br />

halterale by HBMP strata and salinity. Rank<br />

abundance #69. . ........... ... ................ . ... D-56<br />

Abundance distribution of the amphipod<br />

Stenoninereis martini by HBMP strata and salinity.<br />

Rank abundance #73. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. D-57<br />

Abundance distribution of the amphipod<br />

Heteromastusfiliformis by HBMP strata and salinity.<br />

Rank abundance #78 ..................... ... ... ..... D-58<br />

Abundance distribution of the amphipod Procladius<br />

spp. by HBMP strata and salinity. Rank abundance<br />

#80 ................... .. ........... ... ........... D-59<br />

Abundance distribution ofthe amphipod Hydrobiidae<br />

spp. by HBMP strata and salinity. Rank abundance<br />

#96 .............................................. D-60<br />

Alafia River - Final RepoI1<br />

-XVl- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


PROJECT PARTICIPANTS<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong><br />

James K. Culter<br />

Ernest D. Estevez<br />

Jay M .. Sprinkel<br />

Jay R. Leverone<br />

Andrea Baird<br />

Jennifer Osterhoudt<br />

Debi Ingrao<br />

Jon Perry<br />

Tracy Toutant<br />

Project Manager, Principal Investigator<br />

Co-Principal Investigator<br />

Data Manager<br />

Invertebrate Taxonomy<br />

Invertebrate Taxonomy<br />

Invertebrate Taxonomy<br />

Invertebrate Taxonomy<br />

Sediment Analysis, GIS Products<br />

GIS Products<br />

Water and Air Research. Inc .. Gainesville. Florida<br />

IV. ACKNOWLEDGMENTS<br />

This study could not have been done without the able assistance of MML scientists and interns, K.<br />

Churchill, D. Ingrao, and J. Lucas. The project was sponsored by the Southwest Florida Water<br />

Management District. We thank M.S. Flannery for technical and other assistance.<br />

A1afia River - Final Report -xvu- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


PREFACE<br />

There is a concept in biological ecology know as the eroding baseline, which refers to gradual<br />

degradation of habitat, such that through time the baseline conditions are actually representative of<br />

a previously impacted system. It is often erroneously believed that a baseline condition is the natural<br />

or normal non-impacted condition, when this may not be the case. The baseline becomes eroded<br />

through a continuum of anthropogenic impacts which mayor may not be coupled with natural<br />

fluctuations, such as climate change.<br />

A fundamental principle of benthic ecology is that changes in the biota are reflections of changes in<br />

the physio-chemical environment (Matthews et ai., 1991). It is a grievous error to imply that a<br />

biological system under scrutiny, in this case a tidal river, is existing in a normal or "non-impacted"<br />

state prior to the initiation of a new alteration or "impact." We have no data concerning the presettlement<br />

biological condition ofthe Alafia River. This report contains the results of investigations<br />

of the benthos of the Alafia River spanning the period of 1998-2001, with additional data sets<br />

collected by other researchers expanded the data set for a period from 1995-2001. These data<br />

comprise the first methodical evaluation of the benthos of the Alafia River, but are not considered<br />

to be a true biological baseline as the Alafia River watershed has been subjected to much disruption<br />

since the settlement of Florida.<br />

The Alafia River is not a pristine river. It is on the Environmental Protection Agency's List of<br />

Impaired Waters due to excessive levels of nutrients, coliforms (bacterial contamination) and low<br />

dissolved oxygen. Within the drainage basin the following tributaries were listed as impaired waters;<br />

North Prong, South Prong, Bell Creek, English Creek, Owens Branch, Poley Creek, thirty Mile<br />

Creek and Turkey Creek.<br />

The Alafia River could serve as a poster river for the diverse and harmful array of anthropogenic<br />

impacts. Natural areas within the watershed are in the minority. Land use includes urban, mining,<br />

agriculture, and industry. The USGS in their ongoing study of Historical and Prehistorical Record<br />

of Tampa Bay Environments, considers the mouth of the Alafia to be a highly impacted area. Thus<br />

far the USGS has found that increased algal, zooplankton and sewer input into Hillsborough Bay<br />

coincides with anaerobic water conditions in the youngest sediments. Anaerobic water conditions<br />

result in anaerobic sediments and the total loss of benthic fauna during these events. The conversion<br />

of the City of Tampa wastewater to advanced treatment has contributed to nutrient reductions in<br />

Hillsborough Bay and apparent increases in oxygenation. However, it may be difficult to hold the<br />

line on nutrient inputs into Tampa Bay, since further reductions will depend on reductions of<br />

atmospheric deposition and non-point source inputs.<br />

Hillsborough Bay and the adjacent shorelines, including the mouth of the Alafia River, have<br />

experienced extensive alteration due to massive dredge and fill projects in the last century. This<br />

activity significantly altered ed the original shoreline configuration and bottom contours. Figure 1,<br />

illustrates Hillsborough Bay shoreline circa 1879, with only a few small areas exhibiting depths<br />

greater than 20 ft. The historic shallow channels at the mouth of the Alafia River bears little<br />

Aiafia River Benthos - Final Report -1- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


esemblance to the present day dredged channel and ship turning basin. At present the controlling<br />

depths in the main shipping channels are 45 ft and a planned port expansion and harbor maintenance<br />

will further increase that depth. Channelization alters the hydrological conditions of tidal rivers, by<br />

increasing the rate of flow of freshwater during the wet season and increasing the upriver penetration<br />

of saltwater during the dry season.<br />

Hillsborough Bay has been the receiving waters for phosphate industry activity for many years. After<br />

the creation of the Clean Water Act of 1972 there was a subsequent reduction of contaminants<br />

released directly into the watershed. However, levels of phosphorus in Tampa Bay remain high as<br />

compared to other estuaries in Florida. There is also a long history of periodic industrial accidents<br />

which have released quantities of phosphate related pollutants to the Alafia River and Hillsborough<br />

Bay. In 1988 an operational failure of a plant in Gibsonton resulted in a release of 40,000 gallons<br />

of concentrated phosphoric acid at the mouth of the Alafia. In 1989 a failure of a holding facility<br />

released 13,000 gallons of concentrated phosphoric acid were released into upper Hillsborough Bay.<br />

A large portion of the lower Alafia is under tidal influence and to some extent the water quality<br />

conditions within Hillsborough Bay may be felt in the lower river particularly during the dry season.<br />

In 1997 a breach in the wall of a phospho gypsum stack located in Mulberry, Florida, resulted in the<br />

release of 50 million gallons of acidic process water into the headwaters of the Alafia. In addition<br />

to being acidic the water was highly enriched in phosphorus and nitrogen,and the resultant water<br />

quality effect was observed in Hillsborough Bay for several months after the spil.l. There was also<br />

a large documented environmental effect with significant mortality offish, shellfish and crabs (Boler,<br />

2000).<br />

Disruptions of natural benthic systems is not limited to direct water quality impacts. Land use has<br />

been shown to play an important role in the maintenance of benthic meiofanua (fauna smaller than<br />

0.5 nun). The Polk County portion of the watershed has been highly altered by phosphate strip<br />

mining. A 1997 study (Cowell) of streams in the headwaters of the Alafia River showed that the<br />

meiofanual component of reclaimed streams were quite similar to each other, but markedly<br />

dissimilar from the other stream types (agriculture influenced and residential use). Other parameters<br />

such as diversity, species richness and Florida Metric indices also showed marked differences<br />

between streams with different land uses; reclaimed streams had low values. Corkum (1990; 1991)<br />

showed that land use adjacent to a river exerted a stronger influence on macroinvertebrate<br />

assemblages than factors associated with longitudinal gradients.<br />

Cowell (1997) cited specific aspects of the Alafia River headwater streams believed to adversely<br />

affect taxonomic compositions and densities, these were; 1) shallow streams with few pools or<br />

backwaters; 2) absence of tree roots and underhang refugia; and 3) the lack of a tree canopy and<br />

associated snag-producing branches and leaves. Cowell believed that increases in all of these factors<br />

would produce structure that would enhance food-webs and also would create new refugia from<br />

predators. The study also found that one stream, Hall's Branch, had large blooms of an irondepositing<br />

bacterium, during the fall and winter. Large blooms of this bacterium, caused by high<br />

concentrations of iron and magnesium, can be toxic to some invertebrates or reduce growth rates<br />

when fed upon (Wellnitz et al., 1991).<br />

A1afia River Benthos - Final Report -2- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Exotic invasive species are also found in the Alafia River, such as the vermiculated sailfin catfish<br />

(Pterygoplichthys disjunctivus) which is also known from streams, canals and other water bodies,<br />

in Florida. Also found in Lithia Springs is the introduced gastropod Melanoides tuberculata<br />

(Prosobranchia, Thiaridae). This gastropod has socioeconomic significance as being an intermediate<br />

host for the human liver fluke and Haplorchis pumilio (Looss, 1896) a common digenean parasite<br />

of many species of fish of economic importance and has been found to infect cultured Sorotherodon<br />

spp. (tilapias).<br />

The lower Alafia River represents a relatively small yet important portion of the Tampa Bay estuary.<br />

One of the first generally accepted definitions of an estuary was provided by Pritchard (1967) as;<br />

a semi-enclosed coastal body of water, which has a free connection with the open<br />

sea, and within which sea water is measurably diluted with freshwater derived from<br />

land drainage.<br />

However, a definition by Fairbridge (1980) is considered by many estuarine researchers to be more<br />

appropriate;<br />

An estuary is an inlet of the sea reaching into a river valley as far as the upper limit<br />

of tidal rise, usually being divisible into three sectors; (a) a marine or lower estuary,<br />

infree connection with the open sea; (b) a middle estuary subject to strong salt and<br />

freshwater mixing; and (c) an upper or fluvial estuary, characterized by freshwater<br />

but subject to strong tidal action. The limits between these sectors are variable and<br />

subject to constant changes in the river discharges.<br />

A symposium in 1991 showed a consensus of opinion that the tidal freshwater regions of estuaries<br />

experiences a great deal of stress due to the variance of the chemical and physical processes which<br />

characterize this region (Me ire and Vinck, 1993).<br />

Assessing the health of these regions is complicated by natural seasonal and spatial dissolved oxygen<br />

sags and areas of turbidity maxima. The effects of human induced disturbance add to the complexity<br />

of interpreting biological conditions. The information contained in this document contributes to the<br />

knowledge of structure and function of the lower Alafia River.<br />

Alafia Ri ver Benthos - Final Report -3- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong>· June 2003


M '<br />

U<br />

III<br />

-1:'\ 1.3 W<br />

'"~ "=""<br />

.•<br />

~,..<br />

... :<br />

•<br />

In<br />

UI<br />

-<br />

~<br />

.,<br />

~<br />

13<br />

.... ';l:<br />

II<br />

n<br />

lAo<br />

III<br />

. 0<br />

D<br />

':\0'<br />

....<br />

,0<br />

.'"<br />

" ~ . '"<br />

u . .. ' 1&<br />

1\.<br />

'11<br />

./ ,,.<br />

'"<br />

/<br />

1$<br />

III<br />

" II u<br />

U.'<br />

l~<br />

"<br />

13<br />

1\<br />

In<br />

n<br />

Figure 1. Hillsborough Bay Chart 1879.<br />

A1afia Ri ver Benthos - Final Report -4-<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong>· June 2003


I. INTRODUCTION<br />

1.1 STUDY RATIONALE<br />

In July of 2000 the Southwest Florida Water Management District m(SWFWMDF) selected <strong>Mote</strong><br />

<strong>Marine</strong> <strong>Laboratory</strong> (<strong>Mote</strong>) to conduct studies of benthic macroinvertebrates within the tidal reach<br />

of the Alafia River, Hillsborough Couniy, as part of the District's data collection program and<br />

evaluation of living resources relative to the establishment of minimum flows and levels (MFL). In<br />

this study, <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> (<strong>Mote</strong>) was assisted by Water and Air Research, Inc.(W AR) of<br />

Gainesville, Florida.<br />

The study of benthic invertebrates is one of several ongoing and planned studies in the Alafia River,<br />

including studies in upstream, non-tidal river reaches. In the tidal reach, generally below Bell<br />

Shoals, study elements include measurement of flows and tide stages, sampling and measurement<br />

of salinity and water quality, other benthic sampling projects, studies of ichthyoplankton and juvenile<br />

and adult fishes, and a variety of other projects associated with a Hydrobiological Monitoring<br />

Program required by the District of Tampa Bay Water.<br />

A complete picture of benthic community structure and dynamics has both spatial and temporal<br />

dimensions. This project emphasized spatial aspects. In order to understand the distribution and<br />

abundance of invertebrates it was first necessary to describe their physical habitat. Accordingly, the<br />

bathymetry of the river was determined so as to learn depth distributions of the river bottom. Also,<br />

the spatial extent of dominant benthic habitat types dispersed along the length of the tidal river was<br />

assessed, and mapped. This information will be useful for salinity-overlap analyses, and will also<br />

provide relevant data for subsequent sampling efforts.<br />

During drought conditions of Spring 1999, <strong>Mote</strong> collected a series of benthic faunal samples along<br />

the tidal river. These samples were processed in order to learn the structure of invertebrate<br />

communities along the dry-season (dry-year) salinity gradient. For the final report emphasis will be<br />

placed upon identifying patterns of species replacement as a function of river position, accounting<br />

as appropriate for the influences of bottom type, salinity, and other measured or modeled variables.<br />

Results of the Spring 1999 sampling will be evaluated in terms of other benthic samples taken by<br />

Hillsborough County, provided by the District to <strong>Mote</strong>. Results of the Spring 1999 sampling were<br />

also compared to the invertebrate bycatch collected by University of South Florida's ichthyoplankton<br />

project, for samples taken during or close to May 1999.<br />

One new sampling event was scheduled to be conducted during the wet season of 2000. However,<br />

prolonged regional drought conditions did not provide a suitable wet season for sampling. Following<br />

favorable wet season flow conditions in August 2001 the wet season sampling was conducted in<br />

September 2001.<br />

A1afia River Benthos - Final Report -5- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Issues addressed by this study included;<br />

~ Do benthic species or communities exhibit dispersion patterns that can be interpreted<br />

meaningfully with respect to salinity?<br />

How do sediment type, density stratification, oxygen limitations, or other variables affect<br />

benthic patterns related to salinity?<br />

Are benthic species or communities limited in their capacity to respond to changing salinity<br />

(because of changed flows) because of geomorphic, hydrodynamic, or habitat constraints?<br />

Relative to their trophic importance, do infaunal species or biomass data correspond with<br />

meaning to patterns in the distribution or abundance of pelagic or swarming invertebrates,<br />

or of juvenile and adult fishes?<br />

How might the availability of benthic food resources be affected by altered flow or salinity<br />

regimes?<br />

1.2 STUDY PERIOD CLIMATE CONDITIONS<br />

1.2.1 Rainfall<br />

Figure 1.1. illustrates monthly rainfall within the Alafia River Basin for the years 1998 - 2001 as<br />

compared to the long term average(1915-2001). The year 1998 began as a strong EI Nino episode<br />

with winter rainfall (January - March) within the Alafia River Basin much greater than long-term<br />

average. El Nino episodes reflect periods of exceptionally warm sea surface temperatures across<br />

the eastern tropical Pacific. La Nina episodes represent periods of below-average sea-surface<br />

temperatures across the eastern tropical Pacific. These episodes typically last approximately 9-12<br />

months. The wet 1998 winter was followed by a dryer than average spring and summer. September<br />

1998 exhibited an exceptionally high rainfall (13.91 inches)due to the effects of Tropical Storm<br />

Gabrielle and the Alafia rose above flood stage of 13.0 ft at Lithia Springs. Primarily due to the<br />

effect of Gabrielle 1998 had a yearly total rainfall (59.6 inches) greater than the long term average<br />

for the basin (52.57inches). Figure 1.2 illustrates the monthly rainfall for the entire study period<br />

considered as compared to the long term monthly averages.<br />

The year 1999 began a La Nina episode and while January exhibited above average rainfall, February<br />

through April exhibited lower than average rainfall. The summer was variable with May June and<br />

August exhibiting greater than average rainfalls and July a lower than average rainfall. September,<br />

October and December were slightly lower than average and November above average in rainfall.<br />

With the onset of 2000 rainfall was substantially lower than average for January through May. A<br />

strong rainy season began in June with above average rainfall and near average conditions were<br />

carried through he summer. However, October, November and December 2000 exhibited weak<br />

rainfall patterns in the Alafia Basin. The low levels of precipitation continued through May of 200 1.<br />

With the onset of June rainfall returned to near average or above average conditions for the summer,<br />

but again settled into below average rainfall for the fall and winter months.<br />

Alafia River Benthos - Final Report -6- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


In general the period of 1998 though 2001 was dryer than average. For this 48 month period there<br />

were 16 months exhibiting rainfall accumulations greater than the long-term average and 32 months<br />

exhibiting rainfall less than the long term average, Figure 1.3.<br />

1.2.2 River Flows<br />

Alafia River Basin<br />

The Tampa Bay watershed encompasses 2,300 square miles, and includes all lakes, rivers,<br />

estuaries, wetlands, streams, and the surrounding landscape in all or part of six counties. The<br />

Alafia River watershed contributes a 418-square-mile drainage basin to the Tampa Bay<br />

watershed. The basin covers approximately one third of Hillsborough County and extends<br />

into western edge of Polk County, a large portion which has been or is actively being mined<br />

for phosphate ore. Approximately 62% of the watershed is located within Hillsborough<br />

County with the remaining 38% contained in Polk County.<br />

The Alafia basin is the largest in area of the 17 major watersheds in Hillsborough County.<br />

The headwaters originate in a swamp and prairie area south of Mulberry in Polk County and<br />

then flow 24 miles before entering the southeastern comer of the Hillsborough Bay.<br />

Numerous small springs along the river contribute to flow, the largest are Lithia springs and<br />

Buckhorn Springs. Surface water runoff contributes most of the river flow, although the<br />

springs are important contributors to base flows during dry periods. Lithia Springs exhibits<br />

a seasonal variation in flow in a time lagged response to rainfall. Buckhorn Springs<br />

contribute less volume than Lithia Springs but do not show the seasonal response to rainfall.<br />

The major problems occurring within the watershed are associated with flooding, water<br />

quality, natural systems, and water supply. The watershed has a history of water quality<br />

problems, with the majority of the pollution occurring as a result of the phosphate mining<br />

industry that dominates land usage throughout much of the watershed. Flooding problems<br />

have occurred in the past, especially during the El Nino year of 199711998. Open areas and<br />

wildlife habitat are rapidly being lost to urban sprawl, mining, and expanding agricultural<br />

concerns. Rapid population growth has led to water supply shortages.<br />

The A Lafia Rive r Wate rshed Management PLan addresses three primary topic areas: (1) flood<br />

abatement/protection, (2) water quality enhancement, and (3) natural systems protection,<br />

enhancement, restoration, and creation. The shoreline of the lower river is highly urbanized<br />

making topics 1 and 3 appear to be competing management strategies, and may severely<br />

restrict the possibilities to restoring the natural cycles and function of flood plain areas.<br />

Dredge and fill activity has highly altered the mouth of the Alafia River. Most of the<br />

original modifications were completed by 1930 (Fehring, 1985). A deep-water channel was<br />

dredged to the river from the main ship channel in Tampa Bay to provide shipping access to<br />

a phosphate processing plant that is located immediately west of U.S. Highway 41. This<br />

channel bypassed the river's natural mouth, passing immediately to its north. The former<br />

Alafia River Benthos - Final Report -7- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


iver mouth was then partially filled with the excavated material, effectively changing the<br />

location; Due to sedimentation from a dredge-spoil area the historic river mouth, has been<br />

reduced to a small tidal creek with little or no connection to the river (Stoker et ai., 1996).<br />

The average daily river flow and total monthly rainfall covering the period from 1995-2001<br />

are shown in Figure 1.4. The graph represents the total flow from the gauged flow at Lithia,<br />

estimated ungauged flow and the contributions of Lithia and Buckhorn Spring. In general<br />

the bulk of the flow in the Alafia River, 50-70% can be accounted for by the gauged flow at<br />

Lithia. However, the relationship between rainfall, and the relative contributions of the four<br />

above elements is not a simple one. Figure 1.5 illustrates the relative contributions of the<br />

four flow components for the period of January 1999 through October 2001. At times the<br />

ungauged flows exceeded the gauged flows and Lithia and Buckhorn springs also show<br />

considerable variation in relative contribution to river flow.<br />

EI Nino and La Nina & The Southern Oscillation Index<br />

The Southern Oscillation Index (SOl) is one measure of the large-scale fluctuations in air pressure occurring between the<br />

western and eastern tropical Pacific (Le., the state of the Southern Oscillation) during El Nino and La Nina episodes.<br />

Traditionally, this index has been calculated based on the differences in air pressure anomaly between Tahiti and Darwin,<br />

Australia. In general, smoothed time series of the SOl correspond very well with changes in ocean temperatures across the<br />

eastern tropical Pacific. The negative phase of the SOl represents below-normal air pressure at Tahiti and above-normal air<br />

pressure at Darwin. Prolonged periods of negative SOl values coincide with abnormally warm ocean waters across the eastern<br />

tropical Pacific typical of El Nino episodes. Prolonged periods of positive SOl values coincide with abnormally cold ocean<br />

waters across the eastern tropical Pacific typical of La Nina episodes.<br />

The time series of the SOl and sea surface temperatures in the eastern equatorial Pacific indicates that the ENSO cycle has an<br />

average period of about four years, although in the historical record the period has varied between two. and seven years. The<br />

1980's and 1990's featured a very active ENSO cycle, with 5 El Nino episodes (1982183, 1986/87, 1991-1993, 1994/95, and<br />

1997/98) and 3 La Nina episodes (1984/85, 1988/89, 1995/96) occurring during the period. This period also featured two of<br />

the strongest El Nino episodes of the century (1982183 and 1997/98), as well as two consecutive periods ofEI Nino conditions<br />

during 1991 - 1995 without an intervening cold episode.<br />

Alafia River Benthos - Final Report -8- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


-..<br />

r/)<br />

14 ....- --- - -<br />

12<br />

10<br />

~<br />

..J:::<br />

u<br />

......<br />

~ 8<br />

'-"<br />

.....<br />

~ 6<br />

......<br />

~<br />

Cd<br />

4<br />

~<br />

2<br />

0<br />

.-<br />

~ ~<br />

"§<br />

§. ~ §<br />

:::J<br />

.§ ~ ~<br />

...,<br />

~<br />

t:::<br />

~<br />

~<br />

~<br />

~<br />

~<br />

Month<br />

......<br />

!(j<br />

Pf<br />

~<br />

- ---- ~_=_ -J-- . Long-term Average<br />

lIJ 1998<br />

01999<br />

~2000<br />

.2.001<br />

t' t' t' t'<br />

..0 ..0 ..0 ..0<br />

9 .8<br />

.... 9 9<br />

::;; CJ<br />

~<br />

...,<br />

f}<br />

:< ~<br />

Figure 1.1.<br />

Rainfall conditions for the Alafia River Basin 1998 - 2001 as compared to the long-term average.<br />

Alafia River Benthos - Final Report -9- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong>, June 2003


" '-1......---;<br />

--<br />

_J~~I<br />

-~~~~~lim<br />

c: 1-4 ........<br />

ro 0.. ~<br />

....,


~<br />

'" :'I<br />

;.:l<br />

:;:;.<br />

~<br />

OJ<br />

'" =.<br />

~<br />

IJ{l<br />

~<br />

~<br />

"<br />

~<br />

Monthly Rainfall (inches)<br />

~ ~ ~<br />

'" So<br />

0<br />

~ 0 I\) .::.. 0) ex> 0 I\) .::..<br />

CI><br />

,<br />

:n<br />

113111995<br />

a<br />

'''' '~<br />

'" ~ _.<br />

;.:l ~ 4/30/1995<br />

"0 "<br />

~<br />

0<br />

::1<br />

;><br />

::::<br />

7/3111995<br />

It : :<br />

... :t> s::<br />

• i<br />

• I<br />

~ 10/31/1995<br />

• !<br />

~<br />

Q.<br />

113111996<br />

... 0<br />

~ 4/30/1996 ~ 0<br />

-<br />

::::I<br />

-.<br />

I<br />

..- ..,<br />

tv<br />

I<br />

o·<br />

Q.<br />

'-<br />

~<br />

... ... ~. '<<br />

S 10/3111996<br />

~ -< -<br />

0<br />

('D<br />

113111997 "'Tl<br />

Q.<br />

~<br />

-<br />

('D<br />

r.n 7/3111996 0 =r<br />

5'<br />

~ 4/30/1997 :E JJ<br />

<br />

('D<br />

.., C'"<br />

7/3111997 '< ::::I<br />

:::!l<br />

"7 D><br />

0 10/3111997<br />

-<br />

~<br />

0' 113111998 I .-'- -- -- -- ~~ :-~. : ____ _- f Ai<br />

..,<br />

...<br />

::r'<br />

4/30/1998<br />

('D<br />

'g 7/3111998<br />

10/3111998 1:"<br />

113111999<br />

~<br />

e 4/30/1999<br />

~<br />

..-<br />

7/3111999<br />

\0<br />

\0 10/3111999<br />

VI<br />

... 113112000<br />

..,<br />

::r'<br />

0<br />

e 4/30/2000<br />

::r' 7/3112000<br />

en<br />

('D<br />

10/31/2000<br />

OCI<br />

'"t::l<br />

...<br />

('D<br />

S<br />

113112001<br />

0-<br />

('D<br />

..,<br />

4/30/2001 :f"i:::::::::::::: -•<br />

tv<br />

8 !<br />

7/3112001<br />

:-- 1 10/3112001<br />

3:<br />

I I<br />

~<br />

- - ~ 4 _ ; ~ : : : .. " ~ .#'_.<br />

" 3: ~ ~<br />

0 0'1 I\) I\)<br />

:1. '" 0 0 0'1 0 0'1<br />

'"<br />

0 " 0 0 0 0<br />

~<br />

a-<br />

0<br />

@<br />

0<br />

~<br />

.....<br />

;:,<br />

'"<br />

'"<br />

'" c<br />

c<br />


]00 , ----------..... - ..... ----- ~-- . -----.-... --- ---.-.----- ---.-.-.. ------.---.. - -·----- ·-1 - Ga u g ed a t Lit h ia<br />

90<br />

80<br />

~<br />

0<br />

t:i:: 70<br />

"0<br />

~<br />

c::<br />

:E 60<br />

S<br />

0<br />

50<br />

u<br />

4-<<br />

0<br />

~<br />

00<br />

C':I<br />

....<br />

c::<br />

~<br />

u<br />

....<br />

~<br />

0...<br />

40<br />

30<br />

20<br />

10<br />

- - -. - -. Ungauged flows<br />

- -.t. - - Lith ia Springs<br />

.-.<br />

. Buckhorn Spring I<br />

-<br />

0<br />

0- 0-<br />

0- 0-<br />

0- 0-<br />

-- --<br />

...... ......<br />

...... ......<br />

...... M<br />

0- 0- 0- 0- 0 0 0 ......<br />

0- 0- 0- 0-<br />

8 8 8 8 0- 0- 0- 0- 0 0 0 8 0<br />

...... ...... ...... ..... N N N N N N N<br />

...... ...... ..... ...... ...... ...... ......<br />

::::::<br />

..... .-<br />

;:::;<br />

-- -- -- -- -- -- -- -- -- -- --<br />

trl t- o- ..... ..... M trl t- o- ..... ......<br />

Date<br />

lFfigllllJr~ 1.5. Relative percentage of contributing flows to the Alafia River.<br />

Alafia River Benthos - Final Report -13- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong>. June 2003


II.<br />

MORPHOlVIETRY, HABITATS, SEDIMENT AND MACROINFAUNA<br />

Tasks conducted during the study are described below. <strong>Mote</strong> conducted all field sampling and<br />

measurement, and analysis of marine and estuarine faunal collections for the 1999 and 2001<br />

collections. Water and Air Research, Inc. (WAR) assisted in the analysis of freshwater fauna.<br />

WAR also assisted <strong>Mote</strong> in the interpretation of data for the final report. The University of Florida<br />

was also been involved through the research of a graduate student for two semesters. The student<br />

started field work the summer of 2000 and investigated the distribution and composition of organic<br />

matter in sediments and how such matter may be affected by freshwater inflows. The student<br />

collaborated with <strong>Mote</strong> and the District in addressing these issues.<br />

11.1 SAMPLING LOCATIONS<br />

The first stem in implementing the sampling program was the establishment of a river coordinate<br />

system. The mouth of the river was established as river kilometer zero (RK-O). For this project<br />

sampling stations were established at 1 kilometer intervals, upriver to RK 15, and down river into<br />

Hillsborough Bay for two sampling stations referenced as RK-3 and RK-5.<br />

For the HBMP program the Alafia River, from the mouth to a location above Bell Shoals Road, was<br />

divided into 6 estuarine strata and 2 freshwater strata. The estuarine strata extend from the mouth<br />

to approximately RKI4.0; and was divided into 6 strata of equal length (2.33 km). The two<br />

freshwater strata included one with a downstream boundary at RKm 14.0 and upstream boundary<br />

at Bell Shoals Road at RK 18.5. The second freshwater stratum extended from Bell Shoals Road<br />

upstream to RK 21.0. Table 11.1 illustrates the river kilometer locations for the upstream and<br />

downstream extent of each stratum for the HBMP and the locations of the stations samples by the<br />

<strong>Mote</strong> surveys at one kilometer intervals. Figure 11.1 provides a map of the Alafia River illustrating<br />

the 1 kilometer sampling locations. Maps providing greater detail are presented in Appendices A<br />

and C.<br />

27.88<br />

Hillsborough<br />

Bay<br />

27.86<br />

-5<br />

27.84 +------,-----.,.--'------,----....,..------,---....,..---~---~--<br />

-82.44 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

Figure 11.1.<br />

Map of the Alafia River illustrating the approximate locations of the 1 kilometer<br />

sampling intervals.<br />

Alafia Ri ver Benthos - Final Report -14- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Table 11.1.<br />

Comparison of locations of stations sampled for this study with the strata utilized by<br />

the HBMP program.<br />

<strong>Mote</strong> HBMP Stratum HBMP Stratum HBMP Stratum<br />

Stations (RK) Downstream Limit (RK) U;ustream Limit (RK) Distance of Stratum (RK)<br />

-5 NA NA<br />

-3 NA NA<br />

0 AR 1 0 2.33 2.33<br />

1<br />

2<br />

AR2 2.33 4.67 2.34<br />

3<br />

4<br />

AR3 4.67 7.00 2.33<br />

5<br />

6<br />

7 AR4 7.00 9.33 2.33<br />

8<br />

9<br />

AR5 9.33 11.67 2.34<br />

10<br />

11<br />

AR6 11.67 14.00 2.33<br />

12<br />

13<br />

14 AR 7 14.00 18.50 4.50<br />

15<br />

NA AR8 18.50 21.00 2.50<br />

11.2 BATHYMETRY AND MORPHOMETRIeS<br />

River bottom sediment composition is dependent on bottom current speed. Current speed is<br />

dependent on depth, cross sectional area and flow volume. These physical processes, flow and<br />

sediment structure, are important in determining the community structure of the benthos. Describing<br />

the bathymetry and sediment structure are key elements in understanding the benthos of the Alafia<br />

River.<br />

River bathymetry was determined by measuring cross sectional depths at an approximate density of<br />

2-3 cross sections per kilometer over the length of the study area. A white-line recording fathometer<br />

was used to obtain a permanent record of each cross section. Cross sectional transect density was<br />

increased if there was evidence of localized rapid changes in bathymetry, such as springs, dredged<br />

A1afia Ri ver Benthos - Final Report -15- MOle <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


areas or scour holes. Beginning and end points of each transect were recorded with differential<br />

global positioning (DGPS). Field timing watches were synchronized to DGPS time to allow for<br />

accurate comparisons to U.S. Geological Survey (USGS) tide recorders located at US 41, 1110 mile<br />

above SR 301 and near Bell Shoals Road. Data from these surveys were used to calculate river area<br />

and volume versus river distance (kilometers above mouth). River surface area and volume for<br />

different depth zones were also calculated as a function of river kilometer.<br />

11.3 BENTHIC HABITAT MAP<br />

A benthic habitat map was constructed for the length of the study area. The objective of this task<br />

was to establish the number and relative extent of identifiable habitat types. A large number of<br />

qualitative samples were collected and visually assessed in the field to characterize each reach of the<br />

river according to a system developed during reconnaissance trips. Field notes were reduced to GIS<br />

coverages depicting the spatial position and extent of each community. Shoreline vegetation<br />

information was compiled from existing sources or updates of coverage provided by the District.<br />

The following is a partial list of the types of habitats which were investigated for this task.<br />

Vegetation Features<br />

Structural features and Substratum<br />

- mangrove fringe - dredged bottom & channels<br />

- salt marsh - marsh creeks<br />

- freshwater marsh - sediments, sand, muddy sand, muddy, silt/clay<br />

- submerged vegetation (SA V) - shoals<br />

- rocky (bedrock, boulder, cobble)<br />

- fill or debris/junk<br />

- oyster bars<br />

11.4 BENTIDC MACROINFAUNA<br />

11.4.1 Faunal Identification and Enumeration<br />

Benthic samples were collected in May of 1999, during a period of very low inflow, and in<br />

September of 2001 after a near normal wet season. A total of 119 core/grab faunal samples were<br />

processed for each collection beginning with Hillsborough Bay samples and proceeding upstream.<br />

Two sampling locations were within Hillsborough Bay and fifteen locations were located upstream<br />

of the river mouth Seven (7) samples were processed from each transect location, two from the<br />

shallows on each bank and three from the central deeper portion. All sweep net samples taken at the<br />

15 river locations were analyzed (30 samples) for each sampling period. Processing entailed roughsorting,<br />

identification to lowest practical taxonomic level, counting, data entry, and analysis.<br />

Alafia River Benthos · Final Report -16- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong>· June 2003


11.4.2 Biomass Analysis<br />

Select benthic samples were analyzed for dry-weight and ash-free biomass in order to determine<br />

patterns, if any, in up-river and between-community values of carbon storage.<br />

Samples were aggregated into major phyletic groups (Family, Order, Class, Phylum, as needed) and<br />

composited dry weights per sample from each of the one-kilometer samples were measured. These<br />

data were used to look for patterns, in the up-river biomass structure of the soft-bottom infauna.<br />

Biomass values were compared to salinity, dissolved oxygen, and the detrital content of sediments.<br />

11.4.3 Incorporation of Other Benthic Data<br />

For the benthic data geographical analyses were made of species-replacement patterns, species limits,<br />

community types and salinity relationships along the length of the tidal river. Patterns or trends in<br />

benthic metrics were compared to physical and chemical conditions for the river.<br />

Weighted centers of abundance for particular species were computed following the methods<br />

employed by Peebles for ichthyoplankton (Peebles 19). Data collected by Peebles was used to<br />

compare distributions of those benthic species which also swarm in the water column at night and<br />

are captured in the fisheries plankton tows. Analysis of benthic metrics compared to District<br />

measurements of water quality made prior to the sampling days were also conducted. Each species<br />

was also coded for all salinities and other water quality parameters from the time of collection.<br />

Data from other sampling programs, the Tampa Bay Water Hydrobiological Monitoring Program<br />

(HBMP) and the data provided by the Environmental Protection Commission for Hillsborough<br />

County (EPCHC) were also analyzed for this report. The sampling dates for which benthic data were<br />

incorporated consisted of the following:<br />

September 28,29, 1995 December 29, 2000<br />

October 1, 1996 January 8, 2001<br />

October 2,6 1997 February 22, 2001<br />

October 1, 7 1998 March 5, 2001<br />

May 14, 1999 April 13,25 2001<br />

June 27, 28 2000 May 11, 16 2001<br />

June 28, 2000 June 21, 28 2001<br />

July 26, 28 2000 July 25, 26 2001<br />

August 14, 15 2000 August 17, 22 2001<br />

September 8, II. 12, 15, 20 2000 September 26, 27, 2001<br />

In total these sampling events represented the entire range of wet season to dry season. However,<br />

sampling effort was not equal for all of the above events. The May 1999 and September 2001<br />

collections were the most intensive in terms of spatial distribution and number of samples collected.<br />

Figure 11.2 illustrates the distribution of benthic sampling events plotted against 60 day preceding<br />

rainfall totals.<br />

A1afia River Benthos - Final Report -17- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


25<br />

•<br />

0.0<br />

.5 •<br />

Q.. 20<br />

E<br />

~ • • •<br />

C/) •<br />

0<br />

-...<br />

•<br />

0 15 •<br />

'i:<br />

0..<br />

• •<br />

.-.<br />

•<br />

c<br />

V<br />

~<br />

10<br />

•<br />

c<br />

~ •<br />

~ • •<br />

0 5<br />

0<br />

\0<br />

•<br />

0<br />

• • • • • •<br />

0 5 10 15 20<br />

Samplings<br />

Figure 11.2.<br />

Distribution of benthic sampling based on preceding 60 day rainfall totals.<br />

11.5 SEDIMENT ANALYSES<br />

Sediment samples collected in 2001 were analyzed for grain size distribution and organic content.<br />

The residual material left in the faunal samples after processing was analyzed for coarse organic<br />

particulate matter for both 1999 and 2001. Whole sediment samples for grain size/organic analysis<br />

were collected at each benthic macroinfauna sampling location and also at locations representative<br />

of distinct sediment facies as discerned during the reconnaissance trips. The number of samples<br />

collected and analyzed in conjunction with the faunal samples was 119 (17 transects x 7 samples).<br />

Faunal samples collected in 1999 and 2001 were sieved through a 0.5 mm mesh screen to remove<br />

fine sediment. All material retained on the sieve, which included coarse sand and shell and organic<br />

matter, was then preserved. Coarse particulate organic matter contained in these samples was<br />

measured by drying to a constant weight and then burning off the organic matter in order to<br />

differentiate the organic and mineral components of the sample. The same number of samples<br />

processed for fauna (119 for 1999 and 119 for 2001 ) were processed for coarse particulate organic<br />

matter.<br />

Alafia Ri ver Benthos - Final Report -18- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Sediment samples were collected during the same time period within the Little Manatee River for<br />

the purpose of comparison to the Alafia River samples. Samples were processed in the manner<br />

described above for grain size/organic content and coarse particulate organic matter. Ten river<br />

locations (stations) sampled and two open bay locations at the mouth of the river. Seven samples<br />

were analyzed from each location for a total of 84 grain size/organic samples and 84 coarse<br />

particulate organic matter for the Little Manatee River. The exact locations 0 f the sampling<br />

transects were based on discussions with the District and the locations used for the University of<br />

Florida studies.<br />

11.7 DATA ANALYSIS<br />

Key components of the data analysis task were to:<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

describe the distribution of major macroinvertebrate habitats and communities in the<br />

lower Alafia River.<br />

describe the physical aspects of the river relevant to the benthos; substratum grain<br />

size and organic content, shoreline features, depth, volume.<br />

determine benthic components (taxa, communities, habitats or strata) that will have<br />

greatest utility for detection of changes in the distribution and abundance of<br />

important (or indicator) benthic organisms and lor communities in the lower Alafia<br />

River as they may be affected by changes in freshwater inflows. Benthic fauna<br />

discovered to be important fish food organisms will be evaluated.<br />

evaluate relationships between the distribution and abundance of benthic fauna and<br />

physiochemical variables related to freshwater inflows (e.g. salinity).<br />

identify the macro-mollusc communities of the tidal Alafia River; assess down river<br />

gradients in mollusc dispersion; distinguish live versus dead shell dispersion patterns,<br />

and describe seasonal differences in dispersion of live animals.<br />

use information collected by the project to assist the District in establishment of<br />

minimum flow levels for the Alafia River.<br />

11.8 RESULTS<br />

11.8.1 Salinity Conditions<br />

Rainfall and river flow conditions for the period under consideration were presented in a previous<br />

section. Bottom salinity conditions for the May 1999 and September 200 1 surveys conducted for<br />

this study are illustrated in Figure 11.3. There was a considerable difference in bottom salinity<br />

conditions for these two events. The Alafia river responds quickly to rainfall events and bottom<br />

salinity conditions can change rapidly dramatically throughout most of the length of the river. There<br />

was also an interesting zone of elevated salinity between RK-3 and RK-6 during the wet season<br />

Alafia River Benthos - Final Report -19- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


sampling. Figure 11.4 illustrates the modeled minimum, maximum and median salinity for the study<br />

area for the period may 1999 through September 2001. This graph exhibits the large changes of<br />

salinity that occur in the lower Alafia River. For example, at RK-5.5 (the 1-75 bridge) the river could<br />

be fresh (zero salinity) or exhibit salinity as great as 27 PSU. During dry periods the river exhibits<br />

significant salt intrusion as far upstream as RK-17. It is likely that the rocky shallow shoals at Bell<br />

Shoals Road serve as a salinity barrier during the dry season. Thus, approximately 66% of the length<br />

of the lower river, representing 30% of the river area, is subject to dramatic salinity shifts on an<br />

annual basis (see Table 11.2). Figure II.S illustrates the average salinity for the 30 day period<br />

preceding each of 18 benthic sampling events for each of the HEMP strata. This measure of salinity<br />

is believed to be more relevant to the benthic community than individual measurements made at time<br />

of collection. The above two graphics illustrate the difficulty in describing a biologically relevant<br />

salinity regime for any portion of the Alafia River. The duration of minima and maxima salinity may<br />

play an important structuring role in the diversity and abundance of benthic infauna.<br />

11.8.2 Bathymetry and Morphometries<br />

Like most rivers of south Florida the lower Alafia has a very shallow drainage slope. From the upper<br />

portion of study area (-20 kilometers from the mouth) to the undredged area near the mouth at US<br />

Hwy 41 the bottom of the river drops approximately 2.7 ft. However, the slope of the river bottom<br />

is not constant nor is it uniform in cross section bottom profile. The sediment texture also changes<br />

and exhibits considerable variation, often over short distances. At the uppermost limits of the study<br />

area the river is narrow and the bottom consists of scoured limestone, limestone boulders and small<br />

patches of unconsolidated sediment. In the middle portions of the river, the dominant bottom type<br />

is coarse quartz sand, although other substrates such as pockets of detritus, areas of rock, fine sandy<br />

silt/clays and areas of phosphatic gravels are also present.<br />

Table 11.2 illustrates the river area and river volume from the mouth of the river (RK-1) to the<br />

uppermost portion of the study area (RK-17. 7) near Belle Shoals. The cumulative area of this tidally<br />

influenced portion of the river was 240.5 hectares and the cumulative volume 720.4 hectare-meters.<br />

Although volume changes somewhat based on tide stage and river flow the approximate quantity of<br />

water present in this portion of the river is slightly greater than 1.9 billion gallons. Approximately<br />

60% of both the area and volume are located in the first 5 kilometers of the river. Figure 11.6<br />

illustrates the relative contributions to area and volume for each segment of the river. The river<br />

narrows considerably at the 1-75 bridge and from this point upstream consists largely of a single<br />

channel with few oxbow features.<br />

Figure 11.7 presents a schematic diagram of the Alafia with color coded depths relative to NGVD.<br />

This cartoon illustrates the irregular contour of the river bottom with notable deep holes at various<br />

locations. Figure 11.8 illustrates the deepest parts of the river as recorded while collecting the river<br />

cross-section bathymetry data. River bottom elevation profiles are illustrated for 85 cross sections<br />

of the river in Appendix A.<br />

11.8.3 Sediment Composition<br />

The sediment composition of the Alafia River bed is spatially complex. The sediment grain size<br />

Alafia River Benthos - Final Report -20- MOle <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


structure showed considerable variation for both cross river samples at a single location as well as<br />

for the up/down river gradient. The bottom in the uppermost reaches of the study area consisted of<br />

limestone bedrock, small boulders and small pockets of sand. Further down stream the bottom was<br />

variable depending on depth and location of the sample. It was difficult to summarize the grain size<br />

analysis in a compact format due to the variation. In general the following holds true for the river;<br />

• mean and median grain size decrease from upstream to downstream locations.<br />

• percent organic content was greatest for a few upriver samples but overall organic<br />

content was slightly greater at down river locations.<br />

• silt levels were greatest in the center of the river at upstream locations and was more<br />

widely dispersed across the river at downstream locations.<br />

• clay levels were notably higher downstream of RK 10.<br />

For some sediment samples taken downstream of RK-4 there were notable deposits of clay which<br />

appeared as embedded soft grey layers or streaks, a likely remnant of a phosphatic clay spill.<br />

Graphic illustration of sediment grain size, organic content and moisture distribution throughout the<br />

study area are shown in Figures 11.9 through 11.12.<br />

Table 11.2.<br />

Area and volume for 1 kilometer segments of the lower Alafia River.<br />

River Area Cumulative Segment Cumulative Volume Cumulative Segment volume Segment Cumulative<br />

Kilometer hectares Area (ha) Area % Area % (ha-m) Volume (ha-m) millions of gallons Volume % Volume %<br />

1 18.8 18.8 7.8 7.8 118.7 118.7 313 16.5 16.5<br />

2 37.0 55.8 15.4 23.2 107.0 225.7 282 14.9 31.3<br />

3 41.3 97.1 17.2 40.4 103.0 328.6 272 14.3 45.6<br />

4 31.3 128.4 13.0 53.4 77.2 405.9 204 10.7 56.3<br />

5 25.4 153.8 10.6 64.0 59.8 465.7 158 8.3 64.6<br />

6 18.7 172.6 7.8 71.8 47.2 512.8 124 6.5 71.2<br />

7 14.4 187.0 6.0 77.7 37.8 550.6 100 5.2 76.4<br />

8 9.4 196.4 3.9 81.7 27.7 578.3 73 3.8 80.3<br />

9 10.7 207.0 4.4 86.1 29.9 608.2 79 4.2 84.4<br />

10 7.8 214.8 3.2 89.3 23.7 631.9 63 3.3 87.7<br />

11 5.8 220.7 2.4 91.8 18.6 650.5 49 2.6 90.3<br />

12 4.8 225 .5 2.0 93.8 15.6 666.2 41 2.2 92.5<br />

13 3.8 229.3 1.6 95.3 13.5 679.7 36 1.9 94.3<br />

14 3.2 232.5 1.3 96.7 13.9 693.6 37 1.9 96.3<br />

15 2.6 235.1 l.l 97.8 10.5 704.1 28 1.5 97.7<br />

16 2.2 237.3 0.9 98.7 7.6 711.7 20 1.1 98.8<br />

17 2.0 239.3 0.8 99.5 6.3 718.0 16 0.9 99.7<br />

17.7 1.2 240.5 0.5 100.0 2.4 720.4 6 0.3 100.0<br />

A1afia River Benthos - Final Report -21- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


11.8.4 Benthic Macroinfauna<br />

11.8.4.1 Methodological Considerations<br />

This project conducted two sampling events, May 1999 and September of 200 1. In addition<br />

data from two other sampling programs were compiled for inclusion in some of the analyses.<br />

The sampling methodology and sample size varied between projects. For this project a<br />

relatively small core sampling device was utilized with a surface area of 0.0042 m 2 , or in<br />

certain cases when the core would not retain coarse sediment a petite Ponar grab was used<br />

(sample surface area of 0.0232 m 2 ). The HBMP and EPCHC programs utilize a Youngmodified<br />

VanVeen grab with a sample surface area of 0.04 m 2 • For the <strong>Mote</strong> sampling<br />

program seven (7) samples were analyzed from each sampling site dispersed along a transect<br />

across the river. In general the HBMP sampling program collected two samples per river<br />

stratum each month a total surface area of (0.08 m 2 per stratum). The EPCHC program<br />

usually collected one sample (although sometimes many more) for one index period month<br />

(September or October). The EPCHC program did not cover the upper portion of the river<br />

known as AR -7 by the HBMP.<br />

The table below presents summary information for the data of the three combined studies.<br />

For all of the samples included in this a summary of the number of taxa and animals<br />

(abundance) collected in each sample is summarized as follows:<br />

Mean Mean Median Sample<br />

Gear Type # taxa St.Dev. Abundance St.Dev. Abundance Area (m 2 )<br />

Core sample 7.04 5.9 54.5 114.6 25 .0 0.0042<br />

Petite Ponar grab 6.97 5.5 74.8 82.8 25.0 0.0232<br />

Sweep Sample qualitative 6.70 3.4 30.9 27.1 22.0 -1.5<br />

Young mod. VanVeen 7.68 7.9 117.1 251.7 28.0 0.04<br />

All comparisons on a per sample basis<br />

A methodological evaluation was not one of the objectives of this project, but the results of<br />

this comparison were very unexpected. The number of taxa collected by sampling gear were<br />

very similar. On average the Young-modified VanVeen, which has a sample surface area<br />

nearly ten times as large as the core) collected 9% more taxa than the core but the difference<br />

was not significant. In fact there were no statistically significant differences between the<br />

number of taxa or individuals collected by any of the methodologies (Kruskal-Wallis one<br />

way ANOVA on ranks). Data were not sorted by season or location for the comparison.<br />

Due to the differences in sampling areas subsequent statistics utilizing all data were<br />

computed on presence/absence rather than total numbers.<br />

11.8.4.2 Benthic Community Parameters<br />

Table 11.3 presents the benthic community summary parameters for all of the sampling<br />

periods considered in this report. There is a clear wet season/dry season effect. In all cases<br />

Alafia River Benthos - Final Report -22- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


for the <strong>Mote</strong> collections (May 1999 and September 2001), which compare samples from the<br />

same location, the wet season exhibited fewer benthic invertebrate species and a much lower<br />

abundance than the dry season.<br />

The distribution of benthic species within each of the HBMP river strata is shown in Table<br />

11.4, as both counts and percentage of total for the sampling event. Table 11.5 provides<br />

information for faunal abundance (expressed as numbers of organisms per square meter of<br />

bottom) in the same format. The values for the Shannon-Wiener Index of species diversity<br />

(H') and Pielou's Index of equitability (1') are also presented in Table 11.3.<br />

The information contained in the above tables R-3 through R-5 are graphically illustrated by<br />

Figures 11.13 through 11.15. These figures illustrate the frequency distributions for the<br />

parameter listed on the x axis. For each of these histograms the sum of the counts within<br />

each sampling stratum adds up to the total number of sampling periods evaluated within this<br />

report. The 'estuary effect' on the number of taxa was clear for HBMP zones AR-1 through<br />

AR-3, Figure 11:13. This effect is that as a river zone increases in salinity the number of<br />

benthic taxa per unit area also increases. The same estuary effect was observed for<br />

abundance, Figure 11.14.<br />

The estuary effect was not pronounced for the Shannon-Wiener Index of diversity (H'),<br />

Figure 11.15. This index takes into consideration the number of individuals as well as the<br />

number of taxa so it is possible for freshwater and marine habitats to have similar H' values<br />

even when number of taxa and abundance levels are quite different. For this graphic is was<br />

interesting to note that zone AR-2 seemed to exhibit a bimodal H' distribution and zone AR-<br />

3 exhibited an H' distribution similar to the classic normal distribution.<br />

Two methodologies were utilized for the benthic surveys conducted by this project, core<br />

samples and sweep samples. Sweep samples were stratified based on depth, shallow and<br />

deep. The distribution of species and abundance by the depth strata is presented as Table<br />

11.6.<br />

11.8.4.3 Seasonal and Spatial Distribution of Taxa<br />

Figure 11.16 illustrates the dry/wet season effect on number of species recovered from each<br />

sampling station, based on the comparable station core data from May 1999 (dry) and<br />

September 2001 (wet). This graphic illustrates quite clearly the reduction in number of taxa<br />

collected within the entire study area during the wet season. Many of the estuarine fauna that<br />

occupy the lower river during the dry season are eliminated from the river during the wet<br />

season.<br />

Figure 11.17 exhibits the same dry/wet season effect on the total benthic abundance<br />

throughout the study area. Abundance dropped dramatically during the wet season, with the<br />

exception of the Hillsborough Bay and RK-2 samples.<br />

Alafia River Benthos - Final Report -23- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


The same dry/wet season effect was observed for samples collected by sweep net, Figures<br />

11.18 and Figure 11.19.<br />

Graphics were also prepared illustrating the distribution of representative indicator groups.<br />

Figure 11.20 illustrates the distribution of insect taxa for the dry and wet seasons. For the<br />

dry season insects were absent downstream ofRK-6. However, during the wet season insect<br />

species were found as far downstream as RK -1, although they were not particularly abundant<br />

at most locations during the wet season, Figure 11.21.<br />

Representative species illustrating seasonal changes in distributions are presented in<br />

Appendix Figures D-1 through D-12. In general only species abundant enough to be found<br />

at multiple stations are useful as seasonal indicators. Rare species, or those that occur within<br />

limited areas, may actually respond better to changes in salinity, but because they are rare<br />

it is difficult to define trends unless there is prior experimental evid~nce illustrating a<br />

response to salinity.<br />

11.8.4.4 Benthos as a Trophic Resource<br />

One aspect of the benthic analysis was the determination of the abundance and distribution<br />

oftrophically important invertebrate groups. The examination of data expressed as numbers<br />

per square meter of bottom area is a traditional method of comparing benthic communities.<br />

However, it is also useful to consider the overall abundance of certain groups within the river<br />

system which requires factoring the relative habitat area available within each kilometer of<br />

river length. An organism could be very abundant at a particular sampling location, but if<br />

the river zone consists of a very small total area (narrow) the relative trophic value as a food<br />

web resource may be relatively small.<br />

An estimate of total abundance of the benthos for dry and wet season is presented in Figure<br />

11.22. This graphic illustrates that overall the largest decline in benthic abundance occurs<br />

downstream of RK-8. Downstream of RK-8 the abundance of benthic organisms has<br />

severely declined by the late wet season.<br />

Figure 11.23 illustrates the total abundance of polychaetes. Polychaetes are the dominant<br />

infaunal sediment processing organism, responsible for most of the bio-processing of the<br />

sediments. They can be an important component of bottom feeding fishes, but may be a<br />

secondary resource for fishes targeting larger prey such as infaunal molluscs. With the<br />

exception of RK-1 polychaetes declined dramatically throughout the lower river by the late<br />

wet season.<br />

Figure 11.24 illustrates the total abundance of mollusks by river kilometer. Mollusks are<br />

often + targeted as a prey item by bottom feeding fishes and shorebirds. The mollusks<br />

showed declined in overall abundance on greater than an order of magnitude throughout the<br />

lower river. Above RK-8 mollusks are relatively low in abundance for both the dry and wet<br />

season.<br />

Alalia River Benthos - Final Report -24- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Crustaceans, in particular microcrustaceans are recognized as an important food component<br />

of many fishes. Many crustaceans feed or reproduce on the bottom sediment but periodically<br />

swarm into the water column where they become more available to larval and juvenile fishes.<br />

Figure 11.25 illustrates the total abundance of the amphipods for the dry and wet season.<br />

During the dry season the amphipods were approximately 100 times more abundant than the<br />

late wet season. Cumaceans also exhibit a benthic/pelagic life style, feeding on the surface<br />

sediment and periodically swarming into the water column. A recognized prey species,<br />

cumaceans were abundant in the lower river during the dry season but were driven out-of the<br />

lower river by late wet season, Figure 11.26. Mysids are also a recognized fish prey item.<br />

Mysid abundance did not change as dramatically as other crustaceans and actually exhibited<br />

an increase in numbers during the wet season at most of the lower river stations, Figure<br />

11.27. The number of decapods present in the river responded in a manner similar to the<br />

cumaceans, Figure 11.28. Decapods were common at many of the lower river stations and<br />

particularly abundant at RK-2. However, by late wet season the decapods had abandoned<br />

the lower river. Isopods also reacted strongly to the change from dry to wet season.<br />

Common through out the lower river during the dry season, isopods were sparse (as<br />

compared to other fauna) by late wet season, Figure 11.29. Nemerteans (ribbon worms) are<br />

one of the lesser phyla typical in low numbers in marine and estuarine habitats. The presence<br />

of the wormlike nemerteans far upstream (RK-13, RK -12) during the dry season is indicative<br />

of the extent of salt intrusion, Figure 11.30. Nemerteans are predators on other<br />

macroinfauna. They are also generally contain toxic compounds, presumably for use in prey<br />

capture and as a defensive mechanism. There are also species that are important<br />

ectoparasites on crabs and in some cases can cause the collapse of fisheries.<br />

Insect fauna represent the antithesis of the previously discussed groups. The insect infauna<br />

are dominated by the dipteran larvae and are predominantly freshwater fauna. Figure 11.31<br />

illustrated the down river movement of dipteran species from Dry to wet season. The<br />

location within the river exhibiting the greatest abundance of dipterans moved down stream<br />

four kilometers, from RK-12 to RK-8, from the dry to wet season.<br />

The oligochaetes, small infaunal worms, were not particularly abundant during either wet or<br />

dry season, although they increased in abundance at RK-7 and RK-5 during the rainy season,<br />

Figure 11.32.<br />

11.8.4.5 Biomass<br />

Benthic macroinfaunal biomass determinations (dry weight and ash-free dry weight) were<br />

conducted on stations HB-5, HB-3 and RK-1 through RK-6. It was not possible to determine<br />

biomass values for stations upriver of RK-6 since a large portion of the fauna consisted of<br />

insect larvae. Insect larvae require a destructive mounting technique for identification<br />

making biomass determinations impractical.<br />

Data for the benthic biomass illustrated profound differences between wet and dry season<br />

collections. For many stations the dry season exhibited biomass values over ten times greater<br />

Alafia River Benthos - Final Report -25- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


than the wet season. It is clear that the large change in salinity from dry to wet season<br />

profoundly impacts the lower river zone from RK-1 through RK-6. Estuarine fauna migrate<br />

upriver during dry periods increasing the productivity of the benthos. During the wet season<br />

these fauna are killed or washed downstream by the large influx of freshwater.<br />

Dry season benthic biomass is illustrated by Figures II.33 and II.34. For the dry season the<br />

annelids exhibited greatest biomass at RK-6. Crustaceans were more uniformly distributed<br />

through the lower river but had the greatest biomass within Hillsborough Bay. Interestingly<br />

mollusks had the greatest biomass at RK-3, RKS and RK-6 for the dry season but were nearly<br />

absent from this area during the wet season.<br />

Wet season Biomass values, expressed as dry weight and ash-free dry weight for each station<br />

from Hillsborough Bay through RK-6 are illustrated by Figures 11.35 and II.36.<br />

For the wet season samples from the mouth of the river and into Hillsborough Bay exhibited<br />

the greatest proportion of the river benthic biomass. Annelids primarily limited to the Bay<br />

as RK-l and 2, comprised the bulk of the biomass followed by the molluscs. Molluscs,<br />

however, were conspicuously absent in biomass for RK-l through RK-3. RK-3 exhibited<br />

no measurable biomass for the wet season sampling. This station was nearly devoid of fauna<br />

for the wet season sampling represented primarily by a few small annelids with no<br />

measurable biomass. .<br />

11.8.4.6 Community Similarity - Cluster Analysis<br />

A faunal similarity analysis was conducted on the May 1999 and October 200 1 data sets.<br />

The Bray-Curtis Index with group average sorting for presence/absence data was used to<br />

generate values used to construct a cluster diagram, Figure II.37. For both wet and dry<br />

season data the river illustrates strong upstream-downstream community gradients. Both<br />

seasons illustrated a distinct differentiation of three faunal zones; Bay Stations, lower river<br />

estuary (RKI-6) and upper river oloigohaline habitat (RK7-1S). During the dry season the<br />

station linkages occurred at higher levels os similarity than for the wet season. For the lower<br />

river during the dry season, two subdivisions occurred RK-1,2,3 and RK-4,S,6. In a similar<br />

fashion the upper oligohaline portion of the river clustered into tow fairly distinct zones, RK-<br />

7,8,9,10 and RK-ll,12,13,14,1S. These zones were obscured during the wet season<br />

particularly for the oligohaline portions of the river. In addition the RK cluster series<br />

illustrated a deviation of sequence for the wet season with RK -7 linking with RK -14, RK -IS<br />

linking with RK-8,9,10 and then RK-12. All of the oligohaline station linkages occurred at<br />

moderate to very low levels of faunal similarity.<br />

II.8.4.7 Faunal Relationships to Salinity<br />

The determination of the optimal salinity for a benthic invertebrate species or a community<br />

of species, within an estuary can be difficult. The observed salinity at the time of capture is<br />

not necessarily related to an optimal condition for the species. The distribution and<br />

abundance of the fauna are determined by the period preceding the capture. Therefore to<br />

Alafi a River Benthos - Final Report -26- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


examine the relationships of the invertebrate species diversity and abundance and the<br />

calculated community parameters to salinity the previous 30 day mean salinity was used as<br />

the salinity representative of the community. The authors recognize that this is not also<br />

without drawbacks, however, it provides a more realistic base for comparison of infaunal<br />

distributions than does an instantaneous salinity measure at time of capture. It is even quite<br />

possible that salinity conditions at the time of capture may be sub-optimal.<br />

Data for all ofthe collection periods in this report were used to construct Figure 11.38. Taxa<br />

were ranked by abundance and plotted against the weighted center of salinity for the<br />

occurrence of that species. This plot illustrates the classic paradigm illustrating greater<br />

species diversity in the most saline portions of the estuary (PSU> 17), a zone of somewhat<br />

reduced species diversity, the artenminimum (PSU -6-17) followed by increasing diversity<br />

of a freshwater fauna. In this graphic the zone representing salinity between -12-17 PSU<br />

consists of HBMP strata AR-4. The number of taxa collected for discrete salinity<br />

increments in Figure 11.39. The drop in numbers of taxa for salinity >30 PSU probably<br />

relates more sample size and sediment type rather than an actual reduction in species in this<br />

zone.<br />

In spite of he known relationship between invertebrate diversity and salinity it is often<br />

difficult to observe direct correlations between field collected salinity and species richness.<br />

For this study the best relationship between the invertebrate fauna and salinity was observed<br />

for faunal abundance (log) and 60 day preceding rainfall totals. Data from all 23 sampling<br />

dates were used for this analysis. These data illustrated a positive significant linear<br />

correlation for HBMP strata AR-2 ® = 0.82), AR-3 ® = 0.78) and AR-4 ® = 0.47).<br />

Data for all of the periods cited earlier were used for comparisons of the community<br />

parameters; number of taxa, abundance, diversity (Shannon-Weiner index), equitability<br />

(Pielou's Index), Gini's index and Margalefs Index to salinity. Since the HBMP samples<br />

were obtained from different RK locations for each sampling period plots of parameter<br />

versus salinity were based on the HBMP salinity based river zones which encompass<br />

multiple kilometer segments. All comparisons in this section will use the 30 day preceding<br />

mean salinity. Figure 11.40 provides the distribution of the number of taxa collected for each<br />

sampling period versus salinity. Zones AR-2 and AR-7 illustrated the least variation in<br />

salinity for the period preceding sampling events. In contrast zones AR-3, AR-4 and AR-5<br />

illustrated high levels of salinity variance with somewhat lower variance observed in zone<br />

AR-6.<br />

Figure 11.41 illustrates the distribution of abundance by salinity. These graphs illustrate the<br />

higher levels of organism abundance generally present in the lower estuary, AR-2 and AR-3,<br />

which also illustrated slightly less variance in numbers, a more stable fauna. None of the<br />

zones illustrated a distinct trend of abundance increase or decrease related to salinity,<br />

indicating that salinity per se does not necessarily control benthic faunal abundance.<br />

Alafia Ri ver Benthos - Final Report -27- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Plots of the Shannon-Weiner Index of diversity (H') versus salinity are shown in Figure<br />

11.42. As for faunal abundance there did not appear to be a trend in the relationship between<br />

H' and salinity. The range of diversity values was quite broad in all river zones. Extremely<br />

low diversity values were more common in AR-S and AR-6. For zone AR-6 these low<br />

values were associated with salinity values above 2.S PSu. This indicates that within an area<br />

consisting primarily of freshwater fauna slight increases in salinity exhibit large effects on<br />

species diversity (reduction).<br />

Plots of Pielou's Index of equitability are shown in Figure 11.43. Zones AR-3 and AR-4<br />

exhibited the most consistently high equitability values. There was no increasing or<br />

decreasing trend in values attributable to salinity, with the possible exception of AR-6.<br />

Similar to the trend observed for H' the low equitability values for some of the sampling<br />

events may be related to small changes in salinity.<br />

The results for plots for Gini' s and Margalef s Index were similar to the findings for the<br />

previous parameters, Figures 11.44 and Figure 11.45. There was no apparent relationship<br />

between these indices and salinity with the exception of zone AR-6.<br />

Species and Salinity<br />

By definition estuarine organisms can tolerate a wide range of salinity and are referred<br />

to as being euryhaline. However, the response to an increase or decrease in salinity is not<br />

uniform for all benthic organisms. Complicating the species/salinity relationship are<br />

compounding factors that may also stress benthic organisms such as temperature,<br />

dissolved oxygen and sediment structure. To provide an estimate of the optimal salinity<br />

for the benthic fauna data collected for the dry (May 1999) and wet season (September<br />

200 1) were analyzed to provide a abundance weighted center of salinity based on the<br />

salinity measured at time of capture as well as the minimum and maximum salinity of<br />

occurrence. These data are presented as Appendix Table D-2.<br />

For the other sampling periods (HBMP and EPCHC) it was not always clear if the<br />

salinity data were collected at the same time and location as the faunal samples.<br />

Therefore those data were not incorporated into the table. However, modeled salinities<br />

(SWFWMD) were used to recalculate weighted salinity for each species for all data sets.<br />

The results are presented in Appendix Table D-3. Comparisons of species between the<br />

two tables indicates that the model predictions had a tendency to provide a weighted<br />

salinity value higher than the observed (time of collection) weighted values.<br />

The abundance distribution of select species within HBMP strata by salinity are<br />

illustrated in Appendix Figures D-13 through D-29. The first of these figures (D-13)<br />

illustrating Ampelisca cf. abdita, an amphipod, is an example of a taxon that is most<br />

abundant at the highest salinity values yet was also found in low abundance at very low<br />

salinity. The isopods, Cyathura palita and Edatea trilaba, were generally most common<br />

within the transitional areas AR-3, AR-4 and AR-S, with an apparent preference for<br />

Alafia River Benthos - Final Report -28- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


salinity between 10-20 PSU, Appendix Figure D-23 and D-24. In contrast the<br />

amphipod Grandidierella bonnieroides, was found in all HBMP zones and the full range<br />

of salinity observed in the river, Appendix Figure D-16. However, the salinity for the<br />

calculated center of abundance for Grandidierella was 19.8 PSu. Polychaetes, which<br />

are soft bodied, generally have a more difficult time osmoregulating at low salinity.<br />

However, some species, such as Laeonereis culveri, which occurred in all HBMP zones<br />

are well adapted to a wide range of salinity, Appendix Figure D-14. The salinity for the<br />

center of abundance of Laeonereis was 12.1 PSu. Other fauna illustrated an apparent<br />

lack of tolerance for salinity below certain values. The polychaete Heteromastus<br />

filiformis, had a salinity for center of abundance of 19.8 PSU and was not found at<br />

salinity below 15 PSU, Appendix Figure D-27.<br />

The best visualization of the distribution ofthe invertebrate taxa along the river gradient<br />

is a combination table graphic providing a list of the species on the left and symbols to<br />

the right illustrating presence/absence of a species At a particular river kilometer,<br />

Figures 11.46, II2.47, 11.48 and 11.49. The first two figures illustrate the occurrence of<br />

fauna as an observer moves upstream, RK-(-5) to RK-15. This provides the entire<br />

distribution of a species beginning at the location of first occurrence proceeding<br />

upstream. The second two figures illustrate a comparison of the dry and wet season by<br />

plotting the species occurrence starting at RK-15 and proceeding downstream. Each<br />

presentation provides a unique view of the same species distribution data. The<br />

occurrences marked by red type illustrate the taxa unique to the sampling site (not found<br />

at any other stations). A large number of new taxa, or a proportionately large number,<br />

indicates that there was some habitat parameter which may have changed, such as<br />

salinity, that would contribute to a large change in community structure.<br />

These data are further summarized in Figure 11.50. The two graphs of this figure<br />

illustrate the addition of new species as samples are analyzed downstream to upstream<br />

and again for upstream to downstream. With each sampling site the 'new' taxa are added<br />

to the curve. The point at which the curves cross moves downstream by approximately<br />

1.2 kilometers from the dry to the wet season sampling. The lower number of species<br />

present in the wet season is immediately obvious. In addition the strong spike of<br />

estuarine species, as represented by RK( -3) to RK-2 for the dry season, is not present in<br />

the wet season. Sharp changes in the slope of the lines in these graphics illustrates<br />

habitat change significant enough to cause a change in community structure over a short<br />

distance.<br />

Cluster analysis was also used as a method to examine species/salinity relationships.<br />

Faunal abundance data were reduced to presence absence occurrences within 25 discrete<br />

1 PSU salinity increments from 0-24 PSU. The cluster analysis was then used to connect<br />

salinity groups based on faunal similarities of the presence absence data. The result of<br />

this analysis is shown as Figure II.Sl. This salinity based community structure<br />

indicates that there is a fine structure of community organization within two large<br />

A1afia Ri ver Benthos - Final Report -29- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


clusters. The large clusters consist of salinity from 0 to 15 PSU and salinity 16 to 24<br />

PSU. The primary clusters occur between single digit increments in salinity, such as 1<br />

with 2 PSU, 7 with 8 PSU, and so on. The secondary clusters indicate that perhaps there<br />

are salinity based faunal controlling factors within certain salinity ranges, such as the lack<br />

of similarity between) PSU and the primary cluster of 1 and 2 PSU. Other significant<br />

cluster breaks appear to be between 5 and 7 PSU, 21 and 22 PSU and 23 and 24 PSU.<br />

11.9 SUMMARY AND DISCUSSION<br />

The recognition that salinity change and sedimentation were important aspects of the estuary date<br />

to the earliest days of marine ecology (Forbes, 1844), although intensive studies of estuaries were<br />

not common until the middle of the 20 th Century.<br />

Tidal rivers on the Florida peninsula contain most of the coastal oligohaline or low salinity waters,<br />

meaning that all of the wetlands, submerged aquatic vegetation, reefs, unconsolidated sediments,<br />

creeks, and other habitat features in the tidal river experience varying periods of freshwater, brackish<br />

water, and waters of higher salinity (Browder, 1991). Taken as a whole, this mosaic of habitats<br />

influenced by oligohaline waters comprises an important environment for the larval and juvenile<br />

developmental stages of many invertebrates and fishes of commercial, economic, or ecological<br />

importance (Edwards, 1991; Estevez et aI., 1991c; Peebles et at., 1991).<br />

The lower Alafia River exhibits relatively few mangroves upstream of RK-3. The ecological role<br />

of mangroves in south Florida estuaries is well established. However, this was not always the case.<br />

Lugo and Snedaker (1974) provided a historic perspective to writings on mangrove forests citing an<br />

author in 1969 considering a mangrove forest in south Florida to be " ... a form of wasteland".<br />

Nevertheless, research beginning in the late 1960's, notably Heald (1971) and Odum (1971) linked<br />

south Florida sport and commercial fisheries to the detrital inputs of the estuarine mangroves. A<br />

study conducted in 1984-1985 in the mangroves of the western portion of Florida Bay identified 87<br />

species of fishes representing 39 families, which utilize the mangrove habitat. Fishes are secondary<br />

or tertiary consumers relying on plant or animals, in this case primarily invertebrates, as a food<br />

source. The relative abundance of fishes in the mangrove habitat indicates that the area has an<br />

abundance of these food materials. Prop roots and pneumatophores provide a complex habitat<br />

supporting a diverse biota. The detrital inputs of rivers are essential for providing the organic matter<br />

that provides a food source for epifaunal detritivores.<br />

The ecological importance of the low salinity reaches of estuaries has been amply documented, and<br />

their freshwater needs currently are used as guidelines for river flow regulation (Longley, 1994).<br />

Most recently, Jassby et al. (1995) have demonstrated that the 2 part per thousand (ppt) salinity<br />

position in the San Francisco Bay and Sacramento - San Joaquin Delta Estuary has simple and<br />

significant relationships with phytoplankton, plankton-based detritus, molluscs, mysids and shrimps,<br />

larval fish survival, and the abundance of several fish trophic guilds.<br />

Alafia Ri ver Benthos - Final Report -30- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - Jllne 2003


This document illustrates the seasonal abundances of benthic invertebrates which include fish prey<br />

species. Taken together with the work conducted on the larval and juvenile fishes of the river, by<br />

other researchers, the relationships of river flow invertebrates and fisheries production are beginning<br />

to be understood. For the macroinvertebrates of the Alafia River both taxonomic composition and<br />

abundance responded to changes in salinity. The benthic fauna responded in a characteristic<br />

although imprecise fashion to the changes in observed salinity. The poor correlation of both number<br />

of species and abundance to salinity are due to nature of euryhaline organisms. Salinity can be<br />

tolerated over a wide range of fluctuation and other parameters within this range such as sediment<br />

type, food sources, water flow, oxygen conditions and water quality may then become the limiting<br />

factors in abundance and distribution. For the data contained in this report 60 day antecedent rainfall<br />

correlated with faunal abundance better than direct measurements of salinity. The complexity ofthe<br />

interactions of the tidal estuary were illustrated for a model of the Apalachicola river-bay system<br />

(Li vingston, 1991). Interactions between various controlling functions make precise prediction of<br />

individual elements such as faunal abundance difficult.<br />

The data generated from this study provide important information for assessment of productivity of<br />

the tidal Alafia River. The combination of benthic faunal assessment and river morphometrics<br />

enabled the estimation of standing crop based on river kilometer, shoreline length or river bottom<br />

area.<br />

There were 222 benthic macroinvertebrate taxa collected for May 1999 and 132 for September 2001 .<br />

May was representative of prolonged dry season conditions and September representative of post -wet<br />

season conditions. The number of taxa for the Alafia River are similar to the Peace River which<br />

ranged from 137 to 183 taxa for five sampling events. These numbers also compare favorably with<br />

other single season collections from Florida west coast rivers including the Caloosahatchee River<br />

(Culter, 1996), the Myakka River (Estevez, 1985; 1986), Manatee River (Culter and Mahadevan,<br />

1982), Weeki Wachee, Crystal River, Withlacoochee River and the Waccassa River (Estevez, et ai.,<br />

1986).<br />

The benthic standing crop was greatest for the dry season collection. During this period the estuarine<br />

invertebrates migrate upriver as salinity conditions become favorable. This expansion undoubtedly<br />

plays an important role in providing prey items for juvenile stages of fishes that forage in the upper<br />

estuary. Within the Peace River system the number of animals per kilometer of shoreline length<br />

increases through April after exhibiting the lowest abundance in November.<br />

Studies by Peebles have shown that epifauna and to a much lesser extent infauna are important food<br />

resources for juvenile estuarine fishes. For example the diet of the sand seatrout (Cynoscion<br />

arenarius) consists of nearly 50% epifauna, which includes species such as mysids, cumaceans and<br />

amphipods. The proportion of epifauna in the diet decreases as the fish grows but remains an<br />

important component through the 40-50 mm size class. Other fishes utilizing a high proportion of<br />

epifauna as prey items include the spotted seatrout (Cynoscion nebulosus) the silver perch<br />

(Bairdiella chrysoura). The importance of epifaunal invertebrates has also been illustrated by other<br />

investigators for snook (Centropomus undecimalis), spotted drum and spotted seatrout (McMichael<br />

Alafia River Benthos - Final Report -31- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


and Peters, 1989; McMichael, et aI., 1989; and Peters and McMichael, 1987), and the Gulf flounder<br />

(Paralichthys albigutta).<br />

Amphipods were some of the most abundant fauna within the study area. This study as well as<br />

others on Florida tidal rivers have documented the wide salinity tolerance of various arnphipod<br />

species (Culter and Estevez, 2002; Culter, 1996; Culter and Mahadevan, 1982). Experiments on the<br />

amphipod Ampelisca abdita illustrated that it was tolerant of sediment interstitial water salinity as<br />

low as 2.5 PSU (Redmond, et aI., 1996).<br />

Ampbipods often have short breeding cycles. A Corophium species from Portugal was shown to<br />

reach reproductive maturity within one month. The life-history pattern and reproductive features of<br />

that species was closely related to temperature and salinity; other environmental conditions such as<br />

oxygen content of the water and food availability (Cunha et aI., 2000). Corophium sp. was found<br />

to be ubiquitous in many tidal areas ofthe Hawkesbury River (Australia) catchment where salinities<br />

ranged from 0.1 to 24 ppt, sediment total organic carbon (TOC) ranged from 0.4% to 3.5%, and the<br />

fines content « 63 J.Lm particle size) of the sediment ranged from 4.3% to 47.6% (Hyne and Everett,<br />

1998).<br />

Utility of Macroinvertebrates as Salinity Indicators<br />

Freshwater is toxic to marine invertebrates. Life originated in the sea and the diversity and<br />

abundance of marine organisms has never reached a comparable counterpart in freshwater<br />

systems. The physiologic stresses imposed on organisms to exist in the transitional zone<br />

between the ocean and freshwater are significant, yet the estuary is one of the most<br />

productive of aquatic environments. This is because the freshwater of riverine systems<br />

carries the nutrients and organic matter which are generally in short supply in the open ocean,<br />

and the species which have evolved to tolerate the physiological stresses of freshwater have<br />

the first opportunity to exploit these resources.<br />

Relatively few freshwater species are tolerant of increasing salinity. The utilization of upper<br />

estuary has been accomplished primarily by the marine invertebrates. Many of the most<br />

successful exploiters of the low salinity areas, such as the blue crab and the shrimps require<br />

full marine or higher salinities to spawn eggs in order complete their life cycle. Juveniles<br />

then make their way back into the estuary to forage and grow.<br />

The imprecise nature of the estuarine invertebrate response to salinity makes invertebrates<br />

poor indicators of salinity. However, the maintenance of a broad transition area from fresh<br />

to marine (the estuary) is essential for maximizing benthic production, provided that other<br />

limiting factors, such as dissolved oxygen, contaminants, nutrients, remain at proper levels.<br />

Drought - flood cycles are essential for transport of organic material into the estuarine zone.<br />

Elimination of flood cycles would likely have long term negative consequences for the<br />

estuary.<br />

Alafia Ri ver Benthos · Final Report -32- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> · June 2003


Indicator Species<br />

The crustaceans, in particular, merit consideration for any long-term monitoring because of<br />

their abundance, known utility as a fish prey item, sensitivity to pollutants and their<br />

demonstrated propensity to exhibit mobility and abundance levels related to salinity zones.<br />

The loss of one or more of these taxa, without replacement of a trophic equivalent, would be<br />

indicative of a functional change in the ecology of the tidal Alafia River.<br />

Sediments<br />

Both Jones (1950) and Scanland (1966) considered "bottom type" as the single-most<br />

influential factor for all benthic communities (for any given salinity regime). Both turbidity<br />

and sediment deposition rates affect the substratum, and both exert their independent<br />

influences on filter-feeders and other bottom-dwelling organisms (Collard and D'Asaro,<br />

1973). Sediment structure is the result of a complex mix of factors related to river flow and<br />

transport of terrestriall y derived components. Livingston (1981) described the driving factors<br />

for the productivity of Apalachicola Bay in terms of the interrelationships of the inputs of<br />

dissolved and particulate organic and inorganic substances coupled with cyclic disturbance<br />

(tides, winds, currents) of the benthos. The mechanism serves to enhance microbial<br />

production which in tum is grazed by benthic invertebrates and in tum secondary predators<br />

such as fishes. The weight" of the effect of sediment structure in determining benthic<br />

community composition is as great as the weight of salinity zonation.<br />

The Alafia River exhibited a complex substratum. Although dominated by a particle base<br />

of very fine to coarse quartz sand (0.1 mm to 1.0 mm diameter), there was notable variation<br />

along the length of the river due to bottom topography. A number of relatively deep holes<br />

may be the result of flood scouring and results in a heterogeneous bottom type. The Alafia<br />

River is nearly devoid of quiescent oxbows and small low flow stream junctions. In the<br />

Peace River system oxbows and backwaters were shown to serve as fine grained particle<br />

traps. These areas are likely reservoirs of organic material at least partially released into the<br />

river during flood periods (Culter and Estevez, 2002). Clay layers attributable to phosphate<br />

slime pond spills were also identified in several areas of the river. A similar occurrence of<br />

clay deposits was observes in areas of the Peace River.<br />

Implications for Hydrobiological Monitoring<br />

The use of intensive long term salinity measuring techniques has been a relatively recent<br />

phenomenon and the potential for the interpretation of estuarine species distributions is yet<br />

to be fully realized. It is certainly clear that we now have the capability to measure salinity<br />

to a level of precision which may not have significant biological meaning. Organisms within<br />

an estuary are adapted to salinity with significant variation driven by tidal cycles.<br />

The benthic fauna illustrated significant movement upstream with for the dry period in<br />

response to salinity increases. The dry period migrations probably play an important role in<br />

processing the particulate organic matter present in the river bottom. If the faunal densities<br />

are converted to represent abundance based on the area of river bottom present within each<br />

Alafia River Benthos - Final Report -33- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


segment, we find that the biomass of the upstream areas expands dramatically during the<br />

spring dry season. Such a biomass expansion is synoptic with the spring spawning period<br />

of many fishes. Considering that much of the fauna consists of motile crustacean fauna,<br />

which are a principal food source for juvenile fishes, the implications for transfer of biomass<br />

and the health of fisheries is enormous. The amphipod and cumacean crustaceans in<br />

particular are voracious consumers of detritus and exhibited an explosive increase in<br />

numbers, and movement upstream after the onset of the dry season. This same relationship<br />

was observed in the tidal Peace River. The crustaceans, in particular, merit consideration for<br />

any long-term monitoring because of their abundance, known utility as a fish prey item,<br />

sensitivity to pollutants and their demonstrated propensity to exhibit abundance levels which<br />

may be related to salinity zones.<br />

The Alafia River benthos did not exhibit the four faunal zones that were apparent in the<br />

Peace River. The Peace River studies illustrated a faunal response coinciding with long term<br />

salinity averages of distinct salinity based river zones of ~0.5 PSU, >0.5 ~8.0 PSU, >8.0<br />

~ 16.0 PSU and > 16.0 PSU. The Peace River faunal relationships to zone were complex but<br />

apparent in the fauna similarity analysis. For both wet and dry season data the river illustrates<br />

strong upstream-downstream community gradients. Both seasons illustrated a distinct<br />

differentiation of three faunal zones; Bay Stations, lower river estuary (RKI-6) and upper<br />

river oloigohaline habitat (RK7 -15). Excluding the Bay stations there were two main faunal<br />

zones consisting of salinity from 0 to 15 PSU and salinity 16 to 24 PSU. The Alafia data<br />

also· illustrated secondary clusters, indicating that perhaps there are salinity based faunal<br />

controlling factors within certain ranges, such as between 1 and 2 PSU, 5 and 7 PSU, 21 and<br />

22 PSU and 23 and 24 PSU.<br />

The development of a monitoring plan addressing a single variable, in this case freshwater<br />

withdraw, will be greatly complicated by future land use changes within the watershed. Any<br />

monitoring plan must distinguish between the "sampling units" and the "experimental unit"<br />

which are not necessarily the same thing (Steele and Torrie, 1980). For this study the<br />

experimental units were the stratified habitats of the Peace River benthos to be defined by<br />

Phase I. The sampling units were the individual samples (cores, grabs etc.) taken from each<br />

habitat.<br />

The treatment to be applied to the experimental units is flow reduction. Unfortunately flow<br />

reduction can affect multiple parameters individually important to the composition and<br />

abundance of benthic communities. The two most important parameters determining the<br />

composition of estuarine fauna are salinity and sediment composition, assuming an adequate<br />

non-polluted level of water quality. In addition the long term health of the estuary is<br />

dependent on organic transport by the river to the estuary.<br />

The concept of an average flow year is somewhat misleading. The average daily flow for the<br />

period of record does not precisely match any particular year during the period of record.<br />

AJafia River Benthos - Final Report -34- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


During drought periods benthic fauna respond to changing salinity regime by upstream<br />

migration of the estuarine fauna and a simultaneous retreat of the freshwater fauna. As seen<br />

for the Peace River this process is relatively slow. A benefit of this upstream migration is<br />

the increase is abundance of fish prey species through the estuarine area of the river.<br />

Conversely periods of flood initially impact the benthos by reducing invertebrate abundance<br />

throughout most of the river. However, the flood period provides nutrients and detritus and<br />

resets the stage for recolonization of the tidal river by the opportunistic estuarine benthic<br />

species. Both dry season and flood should be considered normal operating aspects of a<br />

healthy tidal river. The timing of wet season salinity reductions is probably a critical factor<br />

in the maintenance of benthic abundance important to fisheries production. An early flood<br />

or significant reduction in salinity will reduce the availability of fisheries prey species.<br />

Management for maximum fisheries production should include the prevention of too much<br />

water too soon flowing to the estuary as a result of upland development and land use policy.<br />

Future land use and development within the drainage basin will likely affect the quality and<br />

volume of organic inputs into the Alafia River, thus affecting the sediment structure and<br />

therefore the benthos. Flood control, primarily for property protection, is a management<br />

priority within the Alafia basin. Landscape alterations for the purpose of flood control may<br />

conflict with the maintenance of a natural productive biota. Landscape alteration, impacting<br />

the timing and volume of freshwater inflow, was found to be the most common stress on<br />

estuarine systems by Sklar and Browder (1998) in a review of Studies in the Gulf of Mexico.<br />

Poorly planned upstream landscape alterations were found to impact wetland and open-water<br />

salinity patterns, nutrients, sediment fertility, bottom topography, dissolved oxygen, and<br />

concentrations of xenobiotics. Natural landscapes tend to buffer the effect of heavy rainfall<br />

providing gradual changes in salinity regimes. Rapid salinity changes within the river will<br />

decrease the abundance, and duration of invertebrate prey items available to fishes.<br />

Monitoring benthic macroinfauna for the purpose of detecting impacts of flow management<br />

is possible. Monitoring should focus on defining spatial extent and abundance of estuarine<br />

fauna with particular emphasis on crustacean taxa.<br />

A1afia River Benthos - Final Report -35- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Table 11.3.<br />

Summary of benthic community parameters by sampling event. Collections made for this project are in bold print. Data<br />

are arranged by HBMP stratum and rank order by preceding 60 day rainfall totals.<br />

60 day Estimated Pielou's<br />

preceeding HBMP No. No. Total area Abundance Shannon-Wiener Diversity H' Equitability Margalet"s Simpson's Gini's<br />

Project YearMo Rainfall Stratum Samples Taxa Sampled NoJm2 log2 In log10 .I' Index Index Index<br />

<strong>Mote</strong> 200109<br />

<strong>Mote</strong> 199905<br />

HUMP Stratum AR-1<br />

HBMP 200 108<br />

EPCHC 199810<br />

<strong>Mote</strong> 200109<br />

HBMP 200109<br />

EPC HC 199710<br />

HBMP 200107<br />

HBMP 200008<br />

EPCHC 199509<br />

HBMP 200009<br />

EPCHC 200009<br />

HBMP 200007<br />

HBMP 200010<br />

EPCHC 199610<br />

HBMP 200104<br />

HBMP 200006<br />

HBMP 200105<br />

HBMP 200106<br />

<strong>Mote</strong> 199905<br />

HBMP 200101<br />

HBMP 2000 11<br />

HBMP 200012<br />

HBMP 200102<br />

HBMP 200103<br />

18.8<br />

3.1<br />

22.7<br />

21.3<br />

18.8<br />

18.8<br />

18.6<br />

18.4<br />

16.9<br />

15.7<br />

14.3<br />

14.3<br />

14.0<br />

13.0<br />

10.1<br />

7.7<br />

6.7<br />

6.2<br />

4.2<br />

3.1<br />

1.9<br />

1.7<br />

1.7<br />

1.4<br />

1.1<br />

AR-O 7<br />

AR-O 7<br />

AR-I 2<br />

AR-l I<br />

AR-1 14<br />

AR-I 2<br />

AR-l I<br />

AR-I 2<br />

AR-I 2<br />

AR-I I<br />

AR-I 2<br />

AR-I 13<br />

AR-I 2<br />

AR-l 2<br />

AR-I I<br />

AR-I 2<br />

AR-I 2<br />

AR-I 2<br />

AR-I 2<br />

AR-l 14<br />

AR-I 2<br />

AR-I 2<br />

AR-I 2<br />

AR-I 2<br />

AR-I 2<br />

48<br />

46<br />

2<br />

3<br />

31<br />

17<br />

11<br />

32<br />

31<br />

28<br />

23<br />

100<br />

13<br />

28<br />

9<br />

35<br />

40<br />

29<br />

39<br />

84<br />

31<br />

32<br />

21<br />

27<br />

19<br />

0.029<br />

0.029<br />

0.080<br />

0.040<br />

0.058<br />

0.080<br />

0.040<br />

0.080<br />

0.080<br />

0.040<br />

0.080<br />

0.520<br />

0.080<br />

0.080<br />

0.040<br />

0.080<br />

0.080<br />

0.080<br />

0.080<br />

0.058<br />

0.080<br />

0.080<br />

0.080<br />

0.080<br />

0.080<br />

M ean<br />

St.Dev.<br />

M edian<br />

5,183<br />

7,914<br />

25<br />

100<br />

9,900<br />

1,838<br />

6,725<br />

4,775<br />

3,988<br />

8,400<br />

8,088<br />

5,956<br />

488<br />

7,050<br />

375<br />

1,763<br />

5,000<br />

1,500<br />

8,913<br />

19,627<br />

3,000<br />

13,138<br />

863<br />

5,000<br />

1,625<br />

5,136<br />

4,791<br />

4,775<br />

1~ 1~<br />

114 118<br />

1.00 0.69<br />

1.50 1.04<br />

2.25 1.56<br />

2.16 1.50<br />

1.07 0.74<br />

3.01 2.09<br />

3.16 2.19<br />

3.37 2.34<br />

1.88 1.30<br />

4.40 3.05<br />

3.39 2.35<br />

2.73 1.89<br />

2.97 2.06<br />

4.48 3.11<br />

2.51 1.74<br />

4.11 2.85<br />

2.33 1.61<br />

4.72 3.27<br />

3.91 2.71<br />

2.16 1.50<br />

3.64 2.52<br />

2.46 1.70<br />

2.10 1.46<br />

2.84 1.97<br />

1.05 0.73<br />

2.73 1.89<br />

1.04<br />

0.95<br />

0.30<br />

0.45<br />

0.68<br />

0.65<br />

0.32<br />

0.91<br />

0.95<br />

1.01<br />

0.57<br />

1.33<br />

1.02<br />

0.82<br />

0.90<br />

1.35<br />

0.76<br />

1.24<br />

0.70<br />

1.42<br />

1.18<br />

0.65<br />

1.10<br />

0.74<br />

0.63<br />

0.85<br />

0.32<br />

0.82<br />

0.62<br />

0.57<br />

1.00<br />

0.95<br />

0.45<br />

0.53<br />

0.31<br />

0.60<br />

0.64<br />

0.70<br />

0.42<br />

0.66<br />

0.92<br />

0.57<br />

0.94<br />

0.87<br />

0.47<br />

0.85<br />

0.44<br />

0.74<br />

0.79<br />

0.43<br />

0.83<br />

0.52<br />

0.50<br />

0.66<br />

0.20<br />

0.64<br />

5.50<br />

5.01<br />

0.31<br />

0.43<br />

3.26<br />

2.13<br />

1.13<br />

3.66<br />

3.62<br />

2.99<br />

2.44<br />

11.39<br />

1.94<br />

3.05<br />

1.35<br />

4.55<br />

4.58<br />

3.83<br />

4.18<br />

8.40<br />

3.75<br />

3.27<br />

2.96<br />

3.05'<br />

2.43<br />

3.42<br />

2.40<br />

3.05<br />

0.13 0.87<br />

0.23 0.77<br />

0.48 0.52<br />

0.37 0.63<br />

0.37 0.63<br />

0.35 0.65<br />

0.69 0.31<br />

0.28 0.72<br />

0.21 0.79<br />

0. 15 0.85<br />

0.36 0.64<br />

0.07 0.93<br />

0.11 0.89<br />

0.30 0.70<br />

0.14 0.86<br />

0.06 0.94<br />

0.42 0.58<br />

0.09 0.91<br />

0.37 0.63<br />

0.07 0.93<br />

0.10 0.90<br />

0.42 0.58<br />

0. 11 0.89<br />

0.36 0.64<br />

0.47 0.53<br />

0.28 0.72<br />

0.17 0. 17<br />

0.30 0.70<br />

Alafia Ri ver Benthos - Final Report<br />

-36-<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Table 11.3., continued.<br />

60 day · Estimated Pielou's<br />

preceeding HBMP No. No. Total area Abundance Shannon-Wiener Diversity H' Equitability Margalers Simpson's Gini's<br />

Project YearMo Rainfall Stratum Samples Taxa Sampled NoJm2 log2 In log10 J' Index Index Index<br />

HBMP Stratum AR-2<br />

HBMP 200108 22.7 AB,-2 2 6 0.080 388 2.14 1.48 0.64 0.83 0.84 0.29 0.71<br />

EPCHC 199810 21.3 AR-2 2 12 0.080 513 2.77 1.92 0.83 0.77 1.76 0.23 0.77<br />

<strong>Mote</strong> 200109 18.8 AR-2 14 17 0.058 2,045 3.13 2.17 0.94 0.77 2.10 0.17 0.83<br />

HBMP 200109 18.8 AR-2 2 3 0.080 125 1.30 0.90 0.39 0.82 0.41 0.46 0.54<br />

EPCHC 199710 18.6 AR-2 5 7 0.200 710 1.31 0.91 0.39 0.47 0.91 0.50 0.50<br />

HBMP 200107 18.4 AR-2 2 31 0.080 3,525 3.29 2.28 0.99 0.66 3.67 0.22 0.78<br />

HEMP 200008 16.9 AR-2 2 5 0.080 213 1.66 · 1.15 0.50 0.72 0.75 0.41 0.59<br />

EPCHC 199509 15.7 AR-2 I 2 0.040 150 0.92 0.64 0.28 0.92 0.20 0.55 0.45<br />

HBMP 200009 14.3 AR-2 2 II 0.080 550 2.80 1.94 0.84 0.81 1.58 0.20 0.80<br />

EPCHC 200009 14.3 AR-2 12 52 0.480 3,450 3.16 2.19 0.95 0.55 6.26 0.23 0.77<br />

HBMP 200007 14.0 AR-2 2 23 0.080 1,638 4.04 2.80 1.22 0.89 2.97 0.07 0.93<br />

HBMP 200010 13.0 AR-2 2 19 0.080 2,563 3.10 2.15 0.93 0.73 2.29 0.18 0.82<br />

EPCHC 199610 10.1 AR-2 I 6 0.040 3,825 0.46 0.32 0.14 0.18 0.61 0.88 0.12<br />

HBMP 200104 7.7 AR-2 2 25 0.080 1,400 3.74 2.59 1.13 0.81 3.31 0.11 0.89<br />

HBMP 200006 6.7 AR-2 2 24 0.080 2,050 3.22 2.23 0.97 0.70 3.02 0.17 0.83<br />

HBMP 200105 6.2 AR-2 2 37 0.080 2,388 3.90 2.70 1.17 0.75 4.63 0.12 0.88<br />

HBMP 200106 4.2 AR-2 3 29 0.120 13,658 1.99 1.38 0.60 0.41 2.94 0.37 0.63<br />

<strong>Mote</strong> 199905 3.1 AR-2 14 58 0.058 27,705 3.44 2.38 1.04 0.59 5.57 0.17 0.83<br />

HBMP 200101 1.9 AR-2 2 27 0.080 27,688 1.20 0.83 0.36 0.25 2.54 0.67 0.33<br />

HBMP 200011 1.7 AR-2 2 12 0.080 11 ,688 1.02 0.71 0.31 0.29 1.17 0.68 0.32<br />

HBMP 200012 1.7 AR-2 2 8 0.080 15,675 0.19 0.13 0.06 0.06 0.72 0.96 0.04<br />

HBMP 200102 1.4 AR-2 2 33 0.080 28,913 1.53 1.06 0.46 0.30 3.12 0.47 0.53<br />

HBMP 200103 1.1 AR-2 2 6 0.080 9,600 0.26 0.18 0.08 0.10 0.55 0.93 0.07<br />

Mean 6,976 2.20 1.52 0.66 0.58 2.26 0.39 0.61<br />

St.Dev. 9,480 1.22 0.85 0.37 0.27 1.68 0.27 0.27<br />

Median 2,388 2.14 1.48 0.64 0.70 2.10 0.29 0.71<br />

Alalia River Benthos - Final Report -37- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Table 11.3., continued.<br />

60 day Estimated Pielou's<br />

preceeding HUMP No. No. Total area Abundance Shannon-Wiener Diversity H' Equitability Margalers Simpson's Gini's<br />

Project YearMo Rainfall Stratum Samples Taxa Sampled NoJm2 log2 In log10 .I' Index Index Index<br />

I-mMP Stratum AR-3<br />

HBMP 200108 22.7 AR-3 2 9 0.080 650 1.89 1.31 0.57 0.60 1.24 0.43 0.57<br />

EPCHC 199810 21.3 AR-3 1 6 0.040 175 2.52 1.75 0.76 0.98 0.97 0.18 0.82<br />

<strong>Mote</strong> 200109 18.8 AR-3 14 18 0.058 1,925 3.06 2.12 0.92 0.73 2.25 0.17 0.83<br />

HBMP 200109 18.8 AR-3 2 5 0.080 200 2.11 1.46 0.63 0.91 0.75 0.25 0.75<br />

HBMP 200107 18.4 AR-3 2 11 0.080 675 2.86 1.98 0.86 0.83 1.53 0.20 0.80<br />

HBMP 200008 16.9 AR-3 2 7 0.080 1,375 1.22 0.85 0.37 0.44 0.83 0.59 0.41<br />

EPCHC 199509 15.7 AR-3 1 3 0.040 1,075 0.84 0.59 0.25 0.53 0.29 0.68 0.32<br />

HBMP 200009 14.3 AR-3 2 7 0.080 200 2.35 1.63 0.71 0.84 1.13 0.25 0.75<br />

EPCHC 200009 14.3 AR-3 6 33 0.240 2,483 3.03 2.10 0.91 0.60 4.09 0.23 0.77<br />

HBMP 200007 14.0 AR-3 2 5 0.080 550 1.97 1.36 0.59 0.85 0.63 0.28 0.72<br />

HBMP 200010 13.0 AR-3 2 6 0.080 238 2.42 1.68 0.73 0.94 0.91 0.20 0.80<br />

HBMP 200104 7.7 AR-3 2 6 0.080 1,425 1.29 0.90 0.39 0.50 0.69 0.50 0.50<br />

HBMP 200006 6.7 AR-3 2 12 0.080 3,013 1.27 0.88 0.38 0.35 1.37 0.61 0. 39<br />

HBMP 200105 6.2 AR-3 2 19 0.080 6,675 1.75 1.21 0.53 0.41 2.04 0.50 0.50<br />

HBMP 200106 4.2 AR-3 I 19 0.040 15,900 1.95 1.35 0.59 0.46 1.86 0.40 0.60<br />

<strong>Mote</strong> 199905 3.1 AR-3 14 40 0.058 20,195 3.80 2.63 1.14 0.71 3.93 0.11 0.89<br />

HBMP 200101 1.9 AR-3 2 13 0.080 2,888 2.82 1.95 0.85 0.76 1.51 0.18 0.82<br />

HBMP 200011 1.7 AR-3 2 23 0.080 10,063 2.52 1.75 0.76 0.56 2.39 0.27 0.73<br />

HBMP 20001 2 1.7 AR-3 2 17 0.080 6,925 2.09 1.45 0.63 0.5 1 1.81 0.39 0.61<br />

HBMP 200102 1.4 AR-3 2 28 0.080 30,275 1.90 1.32 0.57 0.40 2.62 0.36 0.64<br />

HBMP 200103 1.1 AR-3 9 0.040 2,475 2.46 1.70 0.74 0.78 1.02 0.22 0.78<br />

Mean 5,080 2.19 1.52 0.66 0.65 1.64 0.33 0.67<br />

St.Dev. 7,711 0.70 0.48 0.21 0.19 0.99 0. 16 0.16<br />

Median 1,425 2.10 1.46 0.63 0.60 1.30 0.26 0.71<br />

Alalia Ri ver Benthos - Final Report -38- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - JUlie 2003


Table 11.3., continued.<br />

60 day Estimated Pielou's<br />

preceeding HBMP No. No. Total area Abundance Shannon-Wiener DiversitI H' Equitability Margalers Simpson's Gini's<br />

Project YearMo Rainfall Stratum Sam~les Taxa .Sam~led NoJm2 10&2 In 10&10 .I' Index Index Index<br />

HBMP Stratum AR-4<br />

HBMP 200108 22.7 AR-4 4 9 0.160 431 2.20 1.53 0.66 0.69 1.32 0.28 0.72<br />

<strong>Mote</strong> 200109 18.8 AR-4 21 38 0.087 2,959 3.08 2.13 0.93 0.59 4.63 0.25 0.75<br />

HBMP 200109 18.8 AR-4 2 0.080 13 0.00 0.00 0.00 na 0.00 1.00 0.00<br />

HBMP 200107 18.4 AR-4 4 5 0.160 144 2.10 1.46 0.63 0.91 0.81 0.25 0.75<br />

HBMP 200008 16.9 AR-4 3 12 0.120 2,692 1.27 0.88 0.38 0.35 1.39 0.64 0.36<br />

EPCHC 199509 15.7 AR-4 5 0.040 1,400 0.84 0.58 0.25 0.36 0.55 0.74 0.26<br />

HBMP 200009 14.3 AR-4 2 4 0.080 150 1.42 0.98 0.43 0.71 0.60 0.48 0.52<br />

EPCHC 200009 14.3 AR-4 6 24 0.240 2,029 3.27 2.26 0.98 0.71 3.02 0.16 0.84<br />

HEMP 200007 14.0 AR-4 6 9 0.240 175 2.26 1.57 0.68 0.71 1.55 0.27 0.73<br />

HBMP 200010 13.0 AR-4 2 2 0.080 38 0.92 0.64 0.28 0.92 0.28 0.54 0.46<br />

EPCHC 199610 10.1 AR-4 I 5 0.040 2,950 0.60 0.41 0.18 0.26 0.50 0.81 0.19<br />

HBMP 200104 7.7 AR-4 2 6 0.080 263 1.93 1.34 0.58 0.75 0.90 0.34 0.66<br />

HEMP 200006 6.7 AR-4 6 18 0.240 1,921 2.96 2.05 0.89 0.71 2.25 0.19 0.81<br />

HBMP 200105 6.2 AR-4 2 16 0.080 2,763 1.86 1.29 0.56 0.46 1.89 0.45 0.55<br />

HBMP 200106 4.2 AR-4 4 16 0.160 969 2.38 1.65 0.72 0.59 2.18 0.28 0.72<br />

<strong>Mote</strong> 199905 3.1 AR-4 21 43 0.087 14,869 3.15 2.18 0.95 0.58 4.37 0.16 0.84<br />

HBMP 200101 1.9 AR-4 2 21 0.080 9,313 2.17 1.51 0.65 0.49 2.19 0.34 0.66<br />

HBMP 200011 1.7 AR-4 2 9 0.080 300 2.06 1.43 0.62 0.65 1.40 0.41 0.59<br />

HBMP 200012 1.7 AR-4 2 7 0.080 2,488 1.23 0.85 0.37 0.44 0.77 0.54 0.46<br />

HBMP 200 102 1.4 AR-4 2 11 0.080 3,550 1.81 1.25 0.54 0.52 1.22 0.36 0.64<br />

HBMP 200103 1.1 AR-4 2 12 0.080 1,288 2.53 1.75 0.76 0.71 1.54 0.25 0.75<br />

Mean 2,414 1.91 1.32 0.57 0.61 1.59 0.42 0.58<br />

St.Dev. 3,531 0.88 0.61 0.26 0.18 1.22 0.23 0.23<br />

Median 1,400 2.06 1.43 0.62 0.59 1.39 0.34 0.66<br />

Alafia Ri ver Benthos - Final Report -39- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Table 11.3., continued.<br />

60 day Estimated Pielou's<br />

preceeding HBMP No. No. Total area Abundance Shannon-Wiener Diversit! H' Equitability Margalers Simpson's Gini's<br />

Project YearMo Rainfall Stratum Samples Taxa Sampled NoJm2 log2 In log10 J' Index Index Index<br />

HBMP Stratum AR-5<br />

HBMP 200108 22.7 AR-5 6 18 0.240 379 2.94 2.04 0.88 0.70 2.86 0.21 0.79<br />

<strong>Mote</strong> 200109 18.8 AR-5 14 33 0.058 566 3.79 2.63 1.14 0.75 5.05 0.13 0.87<br />

HBMP 200107 18.4 AR-5 4 11 0.160 2,369 1.88 1.30 0.56 0.54 1.29 0.34 0.66<br />

HBMP 200008 16.9 AR-5 5 9 0.200 2,555 1.83 1.27 0.55 0.58 1.02 0.40 0.60<br />

EPCHC 199509 15.7 AR-5 I 6 0.040 225 2.42 1.68 0.73 0.94 0.92 0.21 0.79<br />

HBMP 200009 14.3 AR-5 2 7 0.080 150 2.45 1.70 0.74 0.87 1.20 0.23 0.77<br />

EPCHC 200009 14.3 AR-5 I 1 0.040 25 0.00 0.00 0.00 na 0.00 1.00 0.00<br />

HBMP 200007 14.0 AR-5 2 5 0.080 375 0.83 0.58 0.25 0.36 0.67 0.75 0.25<br />

HBMP 200010 13.0 AR-5 2 13 0.080 1,000 2.71 1.88 0.81 0.73 1.74 0.24 0.76<br />

EPCHC 199610 10.1 AR-5 1 18 0.040 7,125 2.36 1.64 0.71 0.57 1.92 0.29 0.71<br />

HBMP 200104 7.7 AR-5 2 4 0.080 750 0.45 0.31 0.14 0.23 0.45 0.87 0.13<br />

HBMP 200006 6.7 AR-5 4 7 0.160 1,206 1.02 0.71 0.31 0.36 0.85 0.65 0.35<br />

HBMP 200105 6.2 AR-5 2 6 0.080 1,788 0.39 0.27 0.1 2 0.15 0.67 0.90 0.10<br />

HBMP 200106 4.2 AR-5 5 16 0.200 2,015 2.74 1.90 0.83 0.69 1.97 0.24 0.76<br />

<strong>Mote</strong> 199905 3.1 AR-5 14 44 0.058 4,826 3.66 2.53 1.10 0.67 5.07 0.12 0.88<br />

HBMP 200101 1.9 AR-5 2 8 0.080 1,500 2. 15 1.49 0.65 0.72 0.96 0.31 0.69<br />

HBMP 200011 1.7 AR-5 2 8 0.080 1,71 3 1.88 1.30 0.57 0.63 0.94 0.32 0.68<br />

HEMP 200012 1.7 AR-5 2 9 0.080 313 2.76 1.91 0.83 0.87 1.39 0.18 0.82<br />

HBMP 200102 1.4 AR-5 2 3 0.080 63 1.37 0.95 0.41 0.86 0.48 0.43 0.57<br />

Mean 1,523 1.98 1.37 0.60 0.62 1.55 0.41 0.59<br />

St.Dev. 1,800 1.07 0.74 0.32 0.22 1.40 0.28 0.28<br />

Median 1,000 2.15 1.49 0.65 0.67 1.02 0.31 0.69<br />

Alafia River Benthos - Final Report -40- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - iUlle 2003


Table 11.3., continued.<br />

60 day Estimated Pielou's<br />

preceeding HBMP No. No. Total area Abundance Shannon· Wiener DiversitI H' Equitability Margalel's Simpson's Gini's<br />

Project YearMo Rainfall Stratum Samples Taxa Sampled NoJm2 log2 In log10 J' Index Index Index<br />

HBMP Stratum AR-6<br />

HBMP 200108 22.7 AR-6 3 11 0.1 20 308 2.60 1.80 0.78 0.75 1.74 0.27 0.73<br />

<strong>Mote</strong> 200109 18.8 AR-6 21 26 0.087 349 3.95 2.74 1.19 0.84 4.27 0.09 0.91<br />

HBMP 200107 18.4 AR-6 4 22 0.160 2,013 2.44 1.69 0.74 0.55 2.76 0.30 0.70<br />

HBMP 200008 16.9 AR-6 4 11 0.160 956 2.10 1.46 0.63 0.61 1.46 0.34 0.66<br />

HBMP 200009 14.3 AR-6 2 3 0.080 38 1.58 1.10 0.48 1.00 0.55 0.32 0.68<br />

HBMP 200007 14.0 AR-6 3 9 0.120 1,258 1.77 1.23 0.53 0.56 1.12 0.45 0.55<br />

HBMP 200010 13.0 AR-6 2 10 0.080 338 2.80 1.94 0.84 0.84 1.55 0.19 0.8 1<br />

EPCHC 199610 10.1 AR-6 I 23 0.040 2,450 3.49 2.42 1.05 0.77 2.82 0.17 0.83<br />

HBMP 200104 7.7 AR-6 2 4 0.080 88 1.84 1.28 0.55 0.92 0.67 0.30 0.70<br />

HBMP 200006 6.7 AR-6 2 2 0.080 88 0.59 0.41 0.18 0.59 0.22 0.75 0.25<br />

HBMP 200105 6.2 AR-6 2 16 0.080 23,888 0.42 0.29 0.13 0.10 1.49 0.91 0.09<br />

HBMP 200106 4.2 AR-6 4 5 0.1 60 2,331 0.58 0.40 0.17 0.25 0.52 0.79 0.21<br />

<strong>Mote</strong> 199905 3.1 AR-6 21 72 0.087 10,050 3.34 2.31 1.00 0.54 7.70 0.18 0.82<br />

HBMP 200101 1.9 AR-6 2 9 0.080 625 2.67 1.85 0.80 0.84 1.24 0.19 0.81<br />

HBMP 200011 1.7 AR-6 2 6 0.080 1,088 1.47 1.02 0.44 0.57 0.72 0.47 0.53<br />

HBMP 200012 1.7 AR-6 2 0.080 63 0.00 0.00 0.00 na 0.00 1.00 0.00<br />

HBMP 200102 1.4 AR-6 2 11 0.080 \,338 2.48 1.72 0.75 0.72 1.39 0.25 0.75<br />

Mean 2,780 2.0\ 1.39 0.60 0.65 1.78 0.41 0.59<br />

St.Dev. 5,926 1.14 0.79 0.34 0.24 1.86 0.28 0.28<br />

Median 956 2.10 1.46 0.63 0.61 1.39 0.30 0.70<br />

Alafia River Benthos - Final Report -41- <strong>Mote</strong> Mmine <strong>Laboratory</strong> - June 2003


Table 11.3., continued.<br />

60 day Estimated Pielou's<br />

preceeding HBMP No. No. Total area Abundance Shannon-Wiener Diversity H' Equi tabili ty Margaler s Simpson's Gini's<br />

Project YearMo Rainfall Stratum Sam~l es Taxa Sam(!led NoJm2 lo~2 In lo~ lO J' Index Index Index<br />

HUMP Stratum AR-7<br />

HBMP 200108 22.7 AR-7 3 5 0.120 175 1.63 l.13 0.49 0.70 0.77 0.43 0.57<br />

<strong>Mote</strong> 200109 18.8 AR-7 7 14 0.029 1,306 3.23 2.24 0.97 0.85 1.81 0.14 0.86<br />

HBMP 200 107 18.4 AR-7 3 4 0.120 183 1.36 0.95 0.41 0.68 0.58 0.50 0.50<br />

HBMP 200008 16.9 AR-7 3 14 0.120 375 2.90 2.01 0.87 0.76 2. 19 0.22 0.78<br />

H B M P 200009 14.3 AR-7 2 6 0.080 150 2.36 1.63 0.71 0.9 1 1.00 0.22 0.78<br />

HBMP 200007 14.0 AR-7 3 5 0. 120 267 1.83 1.27 0.55 0.79 0.72 0.34 0.66<br />

HBMP 200010 13.0 AR-7 3 23 0. 120 2,575 2.22 1.54 0.67 0.49 2.80 0.40 0. 60<br />

HBMP 200 104 7.7 AR-7 3 14 0. 120 383 3. 12 2. 16 0.94 0.82 2.19 0. 16 0.84<br />

HBMP 200006 6.7 AR-7 2 3 0.080 75 1.46 1.01 0.44 0.92 0.46 0.38 0.62<br />

HBMP 200 105 6.2 AR-7 3 12 0. 120 583 2.48 1.72 0.75 0.69 1.73 0.26 0.74<br />

HBMP 200106 4.2 AR-7 3 19 0.120 4,075 2.40 1.66 0.72 0.56 2.17 0.26 0.74<br />

<strong>Mote</strong> 199905 3.1 AR-7 7 40 0.029 13,543 3.59 2.49 1.08 0.67 4.10 0.17 0.83<br />

HBMP 200101 1.9 AR-7 3 18 0. 120 1,767 2.84 1.97 0.86 0.68 2.27 0.20 0.80<br />

HBMP 2000 11 1.7 AR-7 3 2 0.120 17 1.00 0.69 0.30 1.00 0.36 0.47 0.53<br />

HBMP 2000 12 1.7 AR-7 3 6 0. 120 142 1.85 1.28 0.56 0.72 1.01 0.39 0.61<br />

HBMP 200102 1.4 AR-7 3 16 0. 120 592 3.53 2.45 1.06 0.88 2.35 0. 11 0.89<br />

HBMP 200103 1.1 AR-7 3 0. 120 .!.l 0.00 0.00 0.00 na 0.00 1.00 0.00<br />

Mean 1,543 2.22 1.54 0.67 0.76 1.56 0.33 0.67<br />

St.Dev. 3,28 1 0.96 0.67 0.29 0.1 4 1.07 0.21 0.21<br />

Median 375 2.36 1.63 0.71 0.72 1.73 0.26 0.74<br />

Alafia River Benthos - Final Report -42- Mot.e <strong>Marine</strong> <strong>Laboratory</strong> - JU lie 2003


Table 11.4. Number and percentage of taxa recovered for each sampling date and HEMP river<br />

stratum, with data ranked by preceding 60 day rainfall totals.<br />

Previous<br />

60 days Number of Taxa contributed by each Stratum<br />

Sampler Year· Mo Rain (in.) AR·O AR·l AR·2 AR·3 AR·4 AR·5 AR·6 AR·7 Total<br />

HCEPC 199810 21.3 -- 3 12 6 -- -- -- -- 16<br />

HBMP 200109 18.8 -- 17 3 5 1 -- -- -- 22<br />

<strong>Mote</strong> 200109 18.8 48 31 17 18 38 33 26 14 133<br />

HCEPC 199710 18.6 -- 11 7 -- -- -- -- -- 15<br />

HBMP 200107 18.4 -- 32 31 11 5 11 22 4 68<br />

HBMP 200008 16.9 -- 31 5 7 12 9 11 14 62<br />

HCEPC 199509 15.7 -- 28 2 3 5 6 -- -- 38<br />

HBMP 200009 14.3 -- 23 11 7 4 7 3 6 49<br />

HCEPC 200009 14.3 -- 100 52 33 24 1 -- -- 125<br />

HBMP 200007 14.0 -- 13 23 5 9 5 9 5 42<br />

HEMP 200010 13.0 -- 28 19 6 2 13 10 23 75<br />

HCEPC 199610 10.1 -- 9 6 -- 5 18 23 -- 49<br />

HBMP 200104 7.7 -- 35 25 6 6 4 4 14 63<br />

HBMP 200006 6.7 -- 40 24 12 18 7 2 3 67<br />

HBMP 200105 6.2 -- 29 37 19 16 6 16 12 76<br />

HBMP 200106 4.2 -- 39 29 19 16 16 5 19 76<br />

<strong>Mote</strong> 199905 3.1 46 84 58 40 43 44 72 40 221<br />

HBMP 200101 1.9 -- 31 27 13 21 8 9 18 76<br />

HEMP 200011 1.7 -- 32 12 23 9 8 6 2 59<br />

HBMP 200012 1.7 -- 21 8 17 7 9 I 6 43<br />

HBMP 200102 1.4 -- 27 33 28 11 3 II 16 80<br />

HBMP 200103 1.1 -- 19 6 9 12 -- -- I 31<br />

P ercentage 0 r event to tal~ oun d WIt ·hi neac hS tratum, rows WI ·11 not to tal to 100<br />

HBMP 200108 22.7 -- 5.9 17.6 26.5 26.5 52.9 32.4 14.7<br />

HCEPC 199810 21.3 -- 18.8 75.0 37.5 -- -- -- --<br />

HBMP 200109 18.8 -- 77.3 13.6 22.7 4.5 -- -- --<br />

<strong>Mote</strong> 200109 18.8 36.1 23.3 12.8 13.5 28.6 24.8 19.5 10.5<br />

HCEPC 199710 18.6 -- 73 .3 46.7 -- -- -- -- --<br />

HBMP 200107 18.4 -- 47.1 45.6 16.2 7.4 16.2 32.4 5.9<br />

HBMP 200008 16.9 -- 50.0 8.1 11.3 19.4 14.5 17.7 22.6<br />

HCEPC 199509 15.7 -- 73.7 5.3 7.9 13.2 15.8 -- --<br />

HEMP 200009 14.3 -- 46.9 22.4 14.3 8.2 14.3 6.1 12.2<br />

HCEPC 200009 14.3 -- 80.0 41.6 26.4 19.2 0.8 -- --<br />

HBMP 200007 14.0 -- 31.0 54.8 11.9 21.4 11.9 21.4 11.9<br />

HBMP 200010 13.0 -- 37.3 25.3 8.0 2.7 17.3 13.3 30.7<br />

HCEPC 199610 10.1 -- 18.4 12.2 -- 10.2 36.7 46.9 --<br />

HEMP 200104 7.7 -- 55.6 39.7 9.5 9.5 6.3 6.3 22.2<br />

HEMP 200006 6.7 -- 59.7 35.8 17.9 26.9 10.4 3.0 4.5<br />

HBMP 200105 6.2 -- 38.2 48.7 25.0 21.1 7.9 21.1 15.8<br />

HBMP 200106 4.2 -- 51.3 38.2 25.0 21.1 21.1 6.6 25.0<br />

<strong>Mote</strong> 199905 3.1 20.8 38.0 26.2 18.1 19.5 19.9 32.6 18.1<br />

HBMP 200101 1.9 -- 40.8 35.5 17.1 27.6 10.5 11.8 23.7<br />

HEMP 200011 1.7 -- 54.2 20.3 39.0 15.3 13.6 10.2 3.4<br />

HBMP 200012 1.7 -- 48.8 18.6 39.5 16.3 20.9 2.3 14.0<br />

HBMP 200102 1.4 -- 33.8 41.3 35.0 13.8 3.8 13.8 20.0 80<br />

HEMP 200103 l.l -- 61.3 19.4 29.0 38.7 -- -- 3.2 31<br />

Alafia Ri ver Benthos - Final Report -43- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Table II.S. Abundance and percentage abundance for each sampling date and HBMP river<br />

stratum, with data ranked by preceding 60 day rainfall totals.<br />

Previous<br />

60 days Calculated Number of Individuals per m2 for each stratum<br />

Sampler Year·Mo Rain (in.) AR·O AR·l AR·2 AR·3 AR·4 AR·5 AR·6 AR·7 Mean<br />

HCEPC 199810 21.3 .. 100 513 175 -- -- -- -- 263<br />

HBMP 200109 18.8 5,183 9,900 2,045 1,925 2,959 566 349 1,306 3,029<br />

<strong>Mote</strong> 200109 18.8 .. 1,838 125 200 13 .. . . .. 544<br />

HCEPC 199710 18.6 -- 6,725 710 -- -- -- -- -- 3,718<br />

HBMP 200107 18.4 -- 4,775 3,525 675 144 2,369 2,013 183 1,955<br />

HBMP 200008 16.9 -- 3,988 213 1,375 2,692 2,555 956 375 1,736<br />

HCEPC 199509 15.7 -- 8,400 150 1,075 1,400 225 -- -- 2,250<br />

HBMP 200009 14.3 -- 8,088 550 200 150 150 38 150 1,332<br />

HCEPC 200009 14.3 -- 5,956 3,450 2,483 2,029 25 -- -- 2,789<br />

HBMP 200007 14.0 -- 488 1,638 550 175 375 1,258 267 679<br />

HBMP 200010 13.0 -- 7,050 2,563 238 38 1,000 338 2,575 1,971<br />

HCEPC 199610 10.1 -- 375 3,825 -- 2,950 7,125 2,450 -- 3,345<br />

HBMP 200104 7.7 -- 1,763 1,400 1,425 263 750 88 383 867<br />

HBMP 200006 6.7 -- 5,000 2,050 3,013 1,921 1,206 88 75 1,907<br />

HBMP 200105 6.2 -- 1,500 2,388 6,675 2,763 1,788 23,888 583 5,655<br />

HBMP 200106 4.2 -- 8,913 13,658 15,900 969 2,015 2,331 4,075 6,837<br />

<strong>Mote</strong> ' 199905 3.1 7,914 19,627 27,705 20,195 14,869 4,826 10,050 13,543 14,841<br />

HBMP 200101 1.9 -- 3,000 27,688 2,888 9,313 1,500 625 1,767 6,683<br />

HBMP 200011 1.7 -- 13,138 11 ,688 10,063 300 1,713 1,088 17 5,429<br />

HBMP 200012 1.7 -- 863 15,675 6,925 2,488 313 63 142 3,781<br />

HBMP 200102 1.4 -- 5,000 28,913 30,275 3,550 63 1,338 592 9,961<br />

HBMP 200103 1.1 -- 1,625 9,600 2,475 1,288 -- -- 17 3,00 I<br />

Mean 6548 5136 6976 5208 2414 1523 2780 1543 3605<br />

Percentage of event total contributed by each stratUDL<br />

HBMP 200108 22.7 -- 1.1 16.4 27.6 18.3 16.1 13.1 7.4 100<br />

HCEPC 199810 21.3 -- 12.7 65.1 22.2 -- -- -- -- 100<br />

HBMP 200109 18.8 21.4 40.9 8.4 7.9 12.2 2.3 1.4 5.4 100<br />

<strong>Mote</strong> 200109 18.8 .. 84.5 5.7 9.2 0.6 .. .. .. 100<br />

HCEPC 199710 18.6 -- 90.5 9.5 -- -- -- -- -- 100<br />

HBMP 200107 18.4 -- 34.9 25.8 4.9 1.1 17.3 14.7 1.3 100<br />

HBMP 200008 16.9 -- 32.8 1.7 11.3 22.1 21.0 7.9 3.1 100<br />

HCEPC 199509 15.7 -- 74.7 1.3 9.6 12.4 2.0 -- -- 100<br />

HBMP 200009 14.3 -- 86.7 5.9 2.1 1.6 1.6 0.4 1.6 100<br />

HCEPC 200009 14.3 -- 42.7 24.7 17.8 14.6 0.2 -- -- 100<br />

HBMP 200007 14.0 -- 10.3 34.5 I\.6 3.7 7.9 26.5 5.6 100<br />

HBMP 200010 13.0 -- 51.1 18.6 1.7 0.3 7.2 2.4 18.7 100<br />

HCEPC 199610 10.1 -- 2.2 22.9 -- 17.6 42.6 14.6 -- 100<br />

HBMP 200104 7.7 -- 29.0 23.1 23.5 4.3 12.4 1.4 6.3 100<br />

HBMP 200006 6.7 -- 37.4 15.4 22.6 14.4 9.0 0.7 0.6 100<br />

HBMP 200105 6.2 -- 3.8 6.0 16.9 7.0 4.5 60.3 1.5 100<br />

HBMP 200106 4.2 -- 18.6 28.5 33.2 2.0 4.2 4.9 8.5 100<br />

<strong>Mote</strong> 199905 3.1 6.7 16.5 23.3 17.0 12.5 4.1 8.5 11.4 100<br />

HBMP 200101 1.9 -- 6.4 59.2 6.2 19.9 3.2 1.3 3.8 100<br />

HBMP 200011 1.7 -- 34.6 30.8 26.5 0.8 4.5 2.9 0.0 100<br />

HBMP 200012 1.7 -- 3.3 59.2 26.2 9.4 1.2 0.2 0.5 100<br />

HBMP 200102 1.4 -- 7.2 41.5 43.4 5.1 0.1 1.9 0.8 100<br />

HBMP 200103 1.1 -- 10.8 64.0 16.5 8.6 -- -- 0.1 100<br />

Mean 14.0 31.9 25.7 17.0 9.0 8.5 9.6 4.5 100<br />

Alafia River Benthos - Final Report -44- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Table II.6.<br />

Distribution of species in shallow versus deep strata as sampled by sweep nets for the<br />

wet and dry sampling periods.<br />

Year Mo. River No. Individuals Number of Taxa<br />

Dry Season Kilometer Shallow Deep Shallow Deep<br />

199905 1 42 75 7 10 S=D 2<br />

199905 2 66 67 18 10 S>D 7<br />

199905 3 58 66 11 9 SS=8 S>D= 7<br />

Wet Season<br />

200109 1 136 16 10 9 S=D 2<br />

200109 2 10 15 4 6 S>D 6<br />

200109 3 43 15 3 5 SS=7 S>D=8<br />

Alafia River Benthos - Final Report -45- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


30,------------------------------------------------,<br />

25<br />

20<br />

o<br />

:5<br />

';J 15<br />

C/l<br />

E<br />

g 10<br />

o<br />

c:Q<br />

5<br />

\ /"<br />

\ / "\<br />

\ / \ I'<br />

\ / \ I \<br />

\ / y \<br />

\ I \<br />

\ / \<br />

V \<br />

~<br />

~<br />

\<br />

\<br />

L _________ "'--___<br />

o<br />

o 2 4 6<br />

8 10 12 14 16<br />

River Kilometer<br />

18<br />

Figure II.3.<br />

Bottom salinity for two sampling periods, May 1999 (wet) and October<br />

200 1 (dry).<br />

Alafia River Benthos - Final Report -46- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


35 .---------------------------------------------------~<br />

30<br />

25<br />

.c 20<br />

.....<br />

.....<br />

~<br />

-~<br />

CIJ 15<br />

10<br />

5<br />

O+-----.-----.---~~--~r_--_,----~----~----_r~~~<br />

o 2 4 6 8 10 12 14 16 18<br />

River Kilometer<br />

Figure 11.4.<br />

Daily average modeled salinity, (minimum, maximum, median) by river kilometer<br />

based on data covering the period May 1999 - September 2001.<br />

Alafia River Benthos - Final Report -47- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - JUlie 2003


35<br />

30<br />

25<br />

o 20<br />

.....<br />

I:<br />

.....<br />

~ ~<br />

e .<br />

~<br />

e<br />

e<br />

T<br />

CI:l 15 e e<br />

-r-<br />

10<br />

5<br />

o<br />

+<br />

_e_<br />

+<br />

I I<br />

I I t<br />

~<br />

~<br />

HBMP Strata<br />

Figure 11.5.<br />

Benthic relevant salinity regime based on modeled salinity for thirty day average<br />

preceding each of 18 benthic sampling dates.<br />

Alafia River Benthos - Final Report -48- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Surface Area •<br />

Volume •<br />

o ~----.-----.-----.-----.-----.-----'---~r----.-----.~<br />

2 4 6 8 10 12 14 16 18<br />

River Kilometer<br />

Figure 11.6.<br />

Relative contribution of surface area and volume of the Alafia River by kilometer.<br />

A1afia River Benthos - Final Report -49- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


B~m<br />

61ovatlon<br />

Figure 11.7.<br />

Schematic illustration of the Alafia River bathymetry based on NGVD, figure<br />

provided by SWFWMD.<br />

A1afia Ri ver Benthos - Final Report -50- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Greatest Depths on Transects<br />

o .-----------------------~----------------------------_.<br />

-2<br />

----<br />

E -4<br />

'-"<br />

0<br />

><br />

0<br />

Z<br />

E -6<br />

0<br />

..:::<br />

= 0<br />

......<br />

ro<br />

><br />

0 -8<br />

~<br />

-10<br />

-12<br />

o 2 4 6 8 10 12 14 16 18<br />

River Kilom eter<br />

Figure 11.8.<br />

lllustration of the greatest depths recorded for cross-section transects during the<br />

bathymetry survey of the Alafia River.<br />

Alafia River Benthos - Fi nal Report -51- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


..:.:<br />

c:<br />

Median Grain Size (urn)<br />

'"<br />

a


.¥<br />

c:<br />

Percent Silt<br />

'" 0 0 0 0 e><br />

c:o<br />

.;::<br />

OIl<br />

C2<br />

"0<br />

~<br />

.¥<br />

c:<br />

c:o '"<br />

a::<br />

j<br />

....:<br />

c<br />

CQ '"<br />

•<br />

.;:: ..<br />

Ol)<br />

Ci<br />

~


Percent Organics<br />

"<br />

o<br />

o Gl 0 100%<br />

o<br />

"<br />

o 75%<br />

" (j<br />

Gl 13 0 50%<br />

Q 0


..:.:<br />

c:<br />

Percent Solids<br />

'" 0 G<br />


Number of Taxa<br />

0 20 40 60 80 100<br />

8<br />

E 6<br />

::l<br />

0<br />

U<br />

4<br />

2<br />

0<br />

8<br />

E 6<br />

::l<br />

0<br />

U<br />

4<br />

2<br />

0<br />

AR-I<br />

AR-2<br />

8<br />

~<br />

c 6<br />

::l<br />

0<br />

U<br />

4<br />

2<br />

0<br />

8<br />

= 6 ::l<br />

0<br />

U<br />

4<br />

2<br />

0<br />

AR-3<br />

AR-4<br />

8<br />

E 6<br />

::l<br />

0<br />

U<br />

4<br />

2<br />

0<br />

AR-5<br />

8<br />

E 6<br />

::l<br />

0<br />

U<br />

4<br />

2<br />

0<br />

AR-6<br />

8<br />

E 6<br />

::l<br />

0<br />

U<br />

4<br />

2<br />

0<br />

0 20 40 60 80 100<br />

Number of Taxa (rounde d to interval of 5)<br />

AR-7<br />

Figure II.B. Distribution of number of taxa (counts) recovered fro m each sample.<br />

Alafia River Benthos - Fi nal Report -56- MOle <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


0<br />

Number of Individuals per m 2 (logIO)<br />

1 2 3 4 5<br />

10<br />

8<br />

::l<br />

== 0 6<br />

u 4<br />

2<br />

0<br />

AR-l<br />

8<br />

::l<br />

== 0<br />

U<br />

::l<br />

== 0<br />

u<br />

::l<br />

== 0<br />

u<br />

6<br />

4<br />

2<br />

0<br />

I j<br />

I j<br />

..... I<br />

r.L I<br />

AR-2<br />

AR-3<br />

AR-4<br />

..L j<br />

0<br />

AR-5<br />

1<br />

I<br />

::l<br />

==<br />

u<br />

::l<br />

==<br />

u<br />

8<br />

6<br />

0 4 AR-6<br />

2<br />

0<br />

8<br />

~<br />

:: 6<br />

::l<br />

0<br />

U<br />

4<br />

2<br />

0<br />

0 1 2 3 4<br />

Number of Indivduals per m 2 (logIO)<br />

AR-7<br />

Figure II.14. Distribution of number of individuals collected from each benthic faunal<br />

sample.<br />

Alalia River Benthos - Final Report -57- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Shannon Weiner<br />

0 2 3 4 5<br />

....<br />

c<br />

:::I<br />

8<br />

6<br />

0 4<br />

U<br />

2<br />

0<br />

8<br />

c: 6<br />

:::I<br />

0 4<br />

U<br />

2<br />

0<br />

AR-l<br />

AR-2<br />

8<br />

c: 6<br />

:::I<br />

0 4<br />

U<br />

2<br />

0<br />

8<br />

c: 6<br />

:::I<br />

0 4<br />

U<br />

2<br />

0<br />

AR-3<br />

AR-4<br />

8<br />

c: 6<br />

:::I<br />

0 4 AR-5<br />

u<br />

2<br />

0<br />

8<br />

c: 6<br />

:::I<br />

0 4 AR-6<br />

u<br />

2<br />

0<br />

8<br />

c: 6<br />

:::I<br />

0 4<br />

U<br />

2<br />

0<br />

0 2 3 4 5<br />

Shannon Weiner (rounded to interval of 0 .5)<br />

AR-7<br />

Figure II.IS. Distribution of diversity values (H') for each benthic sample.<br />

A1afia River Benthos - Final Report -58- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


27.ffi<br />

27.85<br />

•<br />

Tctal<br />

ifil • 40<br />

J)<br />

•<br />

• 10<br />

-82.44 -82.42 -82.4l -82.:E -82.3l -82.34 .f232 -8?3l -8?a!<br />

27.ffi<br />

~<br />

27.85<br />

• 40 I<br />

• J) I<br />

I<br />

•<br />

• 10<br />

I<br />

27.~<br />

-82.44 -82.42 -82.4l .f2:E -82.3l .f234 -82.31 -8?3l -8?a!<br />

Figure 11.16. Number of taxa recovered from core samples by river kilometer for May 1999 (dry<br />

season) and September 2001 (wet season).<br />

A1afia Ri ver Benthos - Final Report -59- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Tctal<br />

2<br />

{l:T m - Ily Seascn<br />

27.00<br />

I • ron I<br />

I lam I<br />

27.00 • .iXX)<br />

• p<br />

27.~ +------,------,--'---r----r-------r---,....--...,.---,--.....J<br />

-&34 -&32<br />

• Hill<br />

27.00<br />

TctalIrrl .<br />

2<br />

{l:Tm-Wt~<br />

e ron<br />

• lam I<br />

27.00<br />

• .iXX) 1<br />

27.~<br />

• ~<br />

-&44 -&42 -&~ -&35 -&35 -&34 -&32 -&3) -&:13<br />

· Hill I<br />

I<br />

Figure 11.17. Number of individuals per m 2 recovered from core samples by river kilometer for<br />

May 1999 (dry season) and September 2001 (wet season).<br />

A1afia Ri ver Benthos · Final Report -60- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


27.ffi<br />

27.ffi<br />

•<br />

e Tcta1 N1s) - fly Seascn<br />

• 22<br />

10<br />

5<br />

~<br />

• 3<br />

27.84<br />

-&44 -&42 -&40 -&:ll -&:Ji -&31 -&32 -&3:1 -&al<br />

e<br />

27.ffi 22<br />

10<br />

27.ffi<br />

• 5<br />

~<br />

• 3<br />

27.84 ,<br />

-&44 -&42 -&40 -&:ll -&:Ji -&31 -&32 -&3:1 -&2!l<br />

--- - - -'<br />

Figure 11.18. Number of taxa recovered from sweep samples by river kilometer for May 1999 (dry<br />

season) and September 2001 (wet season).<br />

Alafia River Benthos - Final Report -61- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


I<br />

I<br />

1--<br />

e 117 I<br />

• ~<br />

• 25<br />

• 10<br />

I<br />

I<br />

i<br />

I<br />

I<br />

27a! Tctal<br />

e<br />

.<br />

117<br />

~<br />

'25<br />

• 10<br />

Figure 11.19. Number of individuals recovered from sweep samples by river kilometer for May<br />

1999 (dry season) and September 2001 (wet season).<br />

Alafia River Benthos - Final Report -62- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


27.!fI<br />

e<br />

27.$<br />

•<br />

Nl Taxa-Dy~<br />

•<br />

27.84<br />

-&44 -&42 -(4) -&:!l -&33 -&~ -&3! -&:IJ -&lB<br />

])<br />

a)<br />

10<br />

1<br />

27.!fI<br />

e<br />

27.ffj<br />

•<br />

Nlcf Taxa-\\et~<br />

•<br />

])<br />

:J)<br />

10<br />

1<br />

27.84 ~----!<br />

-&44 -&42 -(4) -&:!l -&33 ~ -&3! -&:IJ -&lB<br />

Figure II.20. Number of insect taxa recovered from core samples by river kilometer for May 1999<br />

(dry season) and September 2001 (wet season).<br />

A1afia Ri ver Benthos - Final Report -63- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Figure 11.21. Number of insects per m 2 based on counts from core samples by river kilometer for<br />

May 1999 (dry season) and September 2001 (wet season).<br />

Alafia River Benthos - Final Report -64- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


27.!B<br />

Tctal<br />

Mlli(]l)<br />

tID)<br />

e(ill)<br />

27f£ • nn<br />

- UID<br />

27.84<br />

-&44 -&42 -&4:> -&:11 -&3> -&~ ~ -&:D -&:!I<br />

Mlli(]l)<br />

27.!B Tctal p;I" Ri\ef km- Wt &anl tID)<br />

27f£<br />

•<br />

effID<br />

nD<br />

~ - laD<br />

27.84<br />

-&44 -&42 -&4:> -&:11 -&3> ~ ~ -&:D -&:!I<br />

Figure 11.22. Total abundance of benthic organisms for each kilometer of river.<br />

Alafia River Benthos - Final Report -65- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


27.!B<br />

Mllimi<br />

Tctalltl I»" Ri~ km- Dy ~ I~ ezm<br />

tUID<br />

27.E6<br />

• ~<br />

~<br />

27.84<br />

-82.44 -82.42 -82.40 -82.33 .f2:£ -82.3' -82.31 -82.3> -82.aI<br />

t<br />

100<br />

Mllimi<br />

27.!B Tctal I»" Ri~ km- \\tt ~<br />

ezm<br />

t UID<br />

27.E6<br />

• ~<br />

t 100<br />

27.84<br />

-82.44 -82.42 -82.40 -82.33 .f2:£ ~ -82.31 -82.3> -82.28<br />

Figure 11.23. Total abundance of polychaetes for each kilometer of river.<br />

Alafia River Benthos - Final Report -66- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


27.ffi<br />

Mllim;<br />

Tcta1 rer Ri\tY km- Qy &am e2W 1<br />

i<br />

• Ian I<br />

:ill I<br />

271f3<br />

•<br />

i<br />

.:u<br />

i<br />

I<br />

27.m i<br />

-&44 -&42 -&41 -&33 -&$ ~ -&32 ~ ~<br />

27.ffi<br />

Tcta1<br />

rer Ri\tY km- Vkt &>am<br />

;<br />

e<br />

Mllim;<br />

2W<br />

• Ian<br />

271f3<br />

• .w<br />

• :u<br />

~<br />

27.m<br />

-&44 -&42 -&41 -&33 -&$ -&~ -&32 ~ ~<br />

i<br />

I<br />

Figure 11.24. Total abundance of molluscs for each kilometer of river.<br />

A1afia River Benthos - Final Report -67- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


27./B<br />

27.ffi<br />

Mllirn;<br />

Tctal IHRiwrkm-ny~ eiUD<br />

~<br />

27.84<br />

-&44 -&42 -&«> -&33 -&3l -&~ -&31 -&3) -&a3<br />

27./B<br />

27.ffi<br />

27.84<br />

-&44 -&42 -&«> -&33 -&3l -&~ -&31 -&3) -&a3<br />

lll)<br />

• urn<br />

• 1m<br />

Mllirn;<br />

e iUD<br />

• lll)<br />

• HID<br />

• 1m<br />

Figure 11.25. Total abundance of amphipods for each kilometer of river.<br />

Alafia River Benthos - Final Report -68- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


27.11!<br />

Total<br />

IXT River km - IXy Season<br />

I<br />

I<br />

i<br />

Mllions<br />

'2700 i<br />

I • HID<br />

I<br />

27.1Il<br />

I • 500<br />

~<br />

27.84<br />

-&44 -&42 -&40 -&38 -&38 -&34 -&32 -&~ -&::s<br />

• 100<br />

Mllirns<br />

27.11!<br />

Total IXT River km - Wet Season '2700<br />

• HID<br />

27.1Il<br />

• 500<br />

• 100<br />

27.84<br />

-&44 -&42 -&40 -s:a38 -&38 -&34 -&32 -&~ -&;:s<br />

Figure 11.26. Total abundance of cumaceans for each kilometer of river.<br />

Alafia River Benthos - Final Report -69- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


27.ffi<br />

Tctali<br />

Ri",,"<br />

Mllim;<br />

km- fly Seam<br />

e(ill<br />

en><br />

27.00<br />

• 100<br />

~<br />

27.84<br />

-8244 -8242 -82«) -82$ -8233 -8234 -8231 -8231 -82al<br />

• 10<br />

Mllim;<br />

27.ffi Tctal Ri\tY km- Wt &am<br />

e fill<br />

en><br />

27.00<br />

• 100<br />

• 10<br />

27.84<br />

-8244 -8242 -82«) -8233 -8233 -8234 -8231 -8231 -82al<br />

Figure 11.27. Total abundance of mysids for each kilometer of river.<br />

Alafia Ri ver Benthos - Final Report -70- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


27.!B<br />

27.00<br />

•<br />

Mlim;<br />

e4D<br />

Tctal lD" Ri\tT km-lly ~<br />

en><br />

1m<br />

~<br />

27.m<br />

-&44 -&42 -&.() -8233 -&35 -&~ -&32 -&3) -8?a3<br />

, 1<br />

Mlim;<br />

e4D<br />

27.!B<br />

Tctal lD" Ri\tT km- Wi ~<br />

In><br />

27.00<br />

• 1m<br />

~<br />

27.m<br />

-&44 -&42 -&.() -8233 -&35 -&~ -&32 -&3) -8?a3<br />

, 1<br />

Figure 11.28. Total abundance of decapods for each kilometer of river.<br />

A1afia River Benthos - Final Report -71- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


'llf£<br />

Tctal<br />

Mlim;<br />

e2'fl<br />

• 1m<br />

'llH3<br />

• j)<br />

• • 1<br />

'll.84<br />

-&44 -&.Q -&


Mllicn;<br />

Tcta1 ~ Ri\{'f km-lly ~ i<br />

I<br />

I<br />

I<br />

.~<br />

27.83<br />

I<br />

elm<br />

~<br />

• 10<br />

I<br />

1<br />

-&44 -&42 -&4) .S1.:£ -&$ -&34 -&~ -&3) -&al<br />

Mlli(l1)<br />

Tcta1 ~ Ri\{'fkm- Wi ~ elm I<br />

27.83 I<br />

I<br />

.~<br />

27.83<br />

• 10<br />

1<br />

~<br />

27.84<br />

-&44 -&42 -&4) -&:II -&$ -&34 ~ -&3) -&al<br />

I<br />

!<br />

Figure 11.30. Total abundance of nemerteans for each kilometer of river.<br />

Alafia River Benthos - Final Report -73- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


2!.lB<br />

2!IJj<br />

Mllim;<br />

I<br />

I<br />

Tdal I I<br />

e4il I<br />

I ean I<br />

I<br />

1m I<br />

j •<br />

I<br />

• 1<br />

I<br />

I I<br />

2!.84 I I<br />

~44 ~42 ~4l -8!al -&al -l234 ~3! -&3) -&a!<br />

2!.lB<br />

2!IJj<br />

•<br />

2!.84<br />

Tdal<br />

~44 ~42 ~4l -8!al -&al -l234 ~ -&3) -&a!<br />

Mllim;<br />

I<br />

I<br />

r<br />

e48)<br />

, eli)<br />

,<br />

I 1m<br />

• 1<br />

Figure 11.31. Total abundance of dipterans for each kilometer of river.<br />

Alafia River Benthos - Final Report -74- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


l\1llicrE<br />

:<br />

Zl.ffi<br />

p.=T ~\ef km-lly ~<br />

elD I<br />

I<br />

I<br />

ell) I<br />

Zl.ffi<br />

• 100<br />

• 10<br />

Zl.~<br />

-81.44 -81.~ -81.4) -8?33 ~ ~ -81.3! -&:D ~<br />

l\1llicrE<br />

Tctal pY~\efkm-Wt~ em I<br />

~<br />

-81.44 -81.~ -81.4) -8?33 ~ -81.~ -8?3! -&:D ~<br />

ean<br />

I<br />

i<br />

I<br />

!<br />

i<br />

!<br />

1m j<br />

• 10<br />

Figure 11.32. Total abundance of ologochaets for each kilometer of river.<br />

Alafia River Benthos - Final Report -75- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


4.------------------------------------------------,<br />

3 Annelida<br />

2<br />

HB5 HB3 2 3 4 5 6<br />

3,------------------------------------------------,<br />

2<br />

Crustacea<br />

,.-.. 0<br />

C'l<br />

E<br />

6<br />

OJ)<br />

-- '-'<br />

rJj<br />

rJj<br />

c


---<br />

10<br />

"'E 8 Annelida<br />

-00<br />

'-'<br />

6<br />

'"<br />

E<br />

'"<br />

4<br />

0<br />

~<br />

---<br />

'"- E<br />

00 2<br />

'-'<br />

'"<br />

E<br />

0<br />

~<br />

2<br />

0<br />

3<br />

0<br />

HB5 HB3 2 3 4 5 6<br />

Crustacea<br />

HB5 HB3 2 3 4 5 6<br />

--- 20·<br />

"'6<br />

eo 15<br />

'-'<br />

'"<br />

'"<br />

'" 10<br />

E<br />

0<br />

5<br />

~<br />

0<br />

---<br />

30<br />

"'~<br />

'-'<br />

20<br />

'"<br />

~<br />

0 10<br />

~<br />

0<br />

--- 30<br />

"'E<br />

-00<br />

'-'<br />

20<br />

'"<br />

E 10<br />

0<br />

~<br />

0<br />

Mollusca<br />

HB5 HB3 2 3 4 5 6<br />

Miscellaneous<br />

HB5 HB3 2 3 4 5 6<br />

All Groups<br />

HB5 HB3 2 3 4 5 6<br />

StationlRiver Kilometer<br />

Figure 11.34. Dry weight benthic biomass for the May 1999 collection.<br />

Alafia River Benthos - Final Report -77- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


1.0<br />

0.8 Annelida<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

1.0<br />

HB5 HB3 2 3 4 5 6<br />

0.8 Crustacea<br />

0.6<br />

0.4<br />

0.2<br />

r----l r----l ~<br />

0.0<br />

,-...<br />

N HB5 HB3 2 3 4 5 6<br />

E 1.0<br />

bll<br />

'-"<br />

CI:l<br />

0.8<br />

CI:l<br />

~<br />

0.6<br />

E<br />

0<br />

0.4<br />

~<br />

Q.)<br />

0.2<br />

Q.)<br />


3.0 -<br />

2.S Annelida<br />

2.0<br />

1.S<br />

1.0<br />

O.S<br />

0.0 n<br />

1.0<br />

HBS HB3 2 3 4 S 6<br />

0.8 Crustacea<br />

0.6<br />

0.4<br />

0.2<br />

.--. r-1 r-1<br />

N 0.0<br />

E<br />

HBS HB3 2 3 4 S 6<br />

OJ)<br />

--<br />

'--' 1.0<br />

'" ell 0.8<br />

E Mollusca<br />

0 0.6<br />

~ ,---<br />

0.4<br />

:c<br />

OJ) 0.2<br />

.Q3<br />

~ 0.0<br />

r-1 r-I<br />

;:>., HBS HB3 2 3 4<br />

.....<br />

S 6<br />

a<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Miscellaneous<br />

HBS HB3 2 3 4 S 6<br />

3.0<br />

2.S<br />

2.0<br />

1.S<br />

1.0<br />

.--<br />

O.S<br />

0.0 n Ll<br />

All Groups<br />

HBS HB3 2 3 4 S 6<br />

StationlRiver Kilometer (Wet Season)<br />

Figure II.36. Dry weight benthic biomass for the September 200 1 collection.<br />

Alafia River Benthos - Final Report -79- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


:Figure 11.37. Cluster diagram based on Bray-Curtis, group averaged sorting and presence/absence faunal data.<br />

May 1999, Dry Season<br />

Station RK<br />

5 --------------------------------- - ---------1------------------------------------------1<br />

3 -- - ----------------------------------------1 1-----------1<br />

1 -- --- - ----------------------------------------------1--- - ----I I<br />

2 - --------- - - -------- ---------I--------------------- --I I ------------------------ - 1<br />

3 -- ----------------- -------- - I I<br />

4 ---- - - - -------------- -- ------------------I-------------------I<br />

5 --------------------------------- - I------I<br />

6 ------------- ------- ------ - -- -- - -- I<br />

7 ---------- - -------------- ---------------------1-----------I<br />

8 --------------------------------------I-------l I---------------l<br />

9 -------- - -----------------------------1 I I<br />

10 ----------------------------------------------------------I 1-----------------------1<br />

11 ---------------------------------------------------1 I<br />

12 -------------------------------------------I--l I----l I<br />

13 -------------------------------------------I I----l 1-----------------1<br />

14 ----------------------------------------------1 I<br />

15 ------------------------------------------------------ - -I<br />

September 2001, Wet Season<br />

Station RK<br />

5 -----------------------------------1---------------------------------------------------------------1<br />

3 ---------------------------------- -1<br />

1 -------------------- -- ------------------ - -- -- ---------- ----------I<br />

2 -------- -------- - -------- -- --- - -- ---- ---------- - --- - ------I 1 -------------------------1<br />

3 - - ---- ------- -- ------------ ------- - --- ---------------1 1-- - -- -I I<br />

4 ------------- - -------- -- ---------- I ----------I I ----I I<br />

5 ---------------------------------- I I ------ -I<br />

6 -------- -- ----- ----- ------- ------------ ------I<br />

7 --------------------- - ------------------------------------------------I-----l I<br />

14 ----------------------------------------------------------------------1 I I<br />

8 ---------------------------------------------1-1 1----1 I<br />

9 ---------------------------------------------1 1------------------------1 I I I<br />

10 ----------------------------------------------I II I l---------I<br />

15 --------------- - --------------------------------------------------------II--l I<br />

12 -------------------------------------------------------------------------1 I<br />

11 -------------------------------------------------------------1-------------------1<br />

13 -------------------------------------------------------------1<br />

I<br />

1-------<br />

I<br />

I<br />

l-------I<br />

I<br />

I<br />

I<br />

High Simi larity ---------------------------------------------------------------Very Low Similarityl<br />

Alalia River Benthos - Final Report -80- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - JUlie 2003


0<br />

• • .- •<br />

Common<br />

• •<br />

•<br />

•• •<br />

• •<br />

20<br />

II<br />

•<br />

•• •<br />

:.<br />

• • • •<br />

• •<br />

• • 40<br />

• • ••<br />

t • • ., •<br />

-. •<br />

Q) 1<br />

u<br />

t::<br />

••<br />

ell<br />

"0<br />

60<br />

• •<br />

t::<br />

I<br />

:l<br />

.0<br />

~ •<br />

-<<br />

• ..,.<br />

4-<br />

..<br />

0<br />

~. • •<br />

•<br />

•<br />

..<br />

:<br />

• •<br />

;: • :<br />

100 • • • • •<br />

...:.:: 80<br />

§<br />

~<br />

:-<br />

Rare 140<br />

:1 •<br />

• •<br />

120 I •<br />

• • • • ••..<br />

I<br />

•<br />

r • • • • • • •• • •<br />

0 5 10 15 20 25<br />

Salinity<br />

Figure 11.38. Representation of taxa ranked by abundance and plotted against the weighted center<br />

of salinity for the occurrence of that species.<br />

A1afia River Benthos - Final Report -81- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


C\j<br />

70<br />

60<br />

>< 50<br />

C\j<br />

~<br />

4-i 40<br />

0<br />

;....<br />

(1)<br />

30<br />

~<br />

::s<br />

Z<br />

20<br />

10<br />

0<br />

qf\:j<br />

~~<br />

"'1<br />

Figure 11.39.<br />

The number of taxa collected within discrete salinity increments.<br />

Alafia River Benthos - Final Report -82- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


"" ><<br />

~ 40<br />

"-<br />

~ 30<br />

CI,)<br />

.r:J<br />

60.-----------------------------. 60 .-----------------------------,<br />

AR-2<br />

50<br />

• AR-3<br />

E 20<br />

~<br />

•<br />

Z<br />

"" ><<br />

10 ••<br />

50<br />

40<br />

•<br />

•<br />

••<br />

• 30<br />

• •<br />

•<br />

20 •<br />

• •••<br />

.. _. • •<br />

•••<br />

10<br />

.- .<br />

o~--~----~--~----~--~--~ o ~--~----~--~------,----.,-----,--'<br />

o 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

60 .-----------------------------. ~ .-----------------------------,<br />

50<br />

~ 40<br />

"-<br />

~ 30<br />

CI,)<br />

.r:J<br />

E 20<br />

~<br />

Z<br />

10<br />

AR-4<br />

~~t AR-6<br />

60<br />

~ 50<br />

~ ~l<br />

.r:J 30<br />

E •<br />

Z 20<br />

•<br />

10 .,<br />

. - ..<br />

o '.... •<br />

o 5 10<br />

AR-5<br />

50<br />

• •<br />

•<br />

40<br />

30 •<br />

20<br />

• • • •<br />

• .- •<br />

•<br />

10 • •<br />

• • ••<br />

• ·1· •<br />

15 20<br />

Mean Salinity (30 days)<br />

25<br />

. '.<br />

O ~--~----~··~~----~--~--~<br />

o 5 10 15 20 25 30 0 5 10<br />

J:<br />

AR-7<br />

/ 40<br />

30<br />

o ~--~--~~--~--~----~--~<br />

I<br />

.<br />

20 t •<br />

I •<br />

10<br />

~<br />

15 20 25 30<br />

o""'--=--~----~--~--~----.,------,-'<br />

30 0 5 10 15 20 25 30<br />

Mean Salinity (30 days)<br />

Figure 11.40. Distribution of the number of taxa collected for each sampling period versus salinity,<br />

based on HBMP zones.<br />

A1afia River Benthos - Final Report -83- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - Ju ne 2003


'" E<br />

\e+5<br />

AR-2 • • AR-3 •<br />

\e+5<br />

' .. • •<br />

\e+4 le+4<br />

•••<br />

...<br />

...<br />

Q)<br />

0.. \e+3<br />

le+3<br />

••<br />

. !I. · •<br />

E • ••<br />

•<br />

•<br />

•••<br />

~<br />

'c \e+2 •<br />

~<br />

\e+2<br />

Ol)<br />

....<br />

0<br />

\e+\<br />

\e+O<br />

\e+\<br />

le+O<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

\e+5<br />

AR-4<br />

le+4 •<br />

'"<br />

• le+4<br />

E<br />

... • ••• •<br />

•<br />

Q)<br />

• •• • ,<br />

le+3 ••<br />

." .<br />

0.. le+3<br />

E • .<br />

• • •<br />

~<br />

'c<br />

#<br />

\e+2 le+2 •<br />

~<br />

Ol)<br />

...<br />

•<br />

•<br />

0<br />

•<br />

le+5<br />

le+l • le+\<br />

AR-5<br />

'" E<br />

...<br />

Q)<br />

0..<br />

,<br />

E<br />

~<br />

le+O<br />

le+5<br />

le+O<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

• AR-6<br />

\e+5<br />

le+4<br />

le+4<br />

'1- •<br />

le+3<br />

.. •<br />

le+3<br />

••<br />

'c le+2<br />

•• •<br />

~ le+2<br />

Ol)<br />

... •<br />

•<br />

0<br />

le+l<br />

\e+l • •<br />

le+O<br />

r<br />

AR-7<br />

\e+O<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

,Mean Salinity (30 days)<br />

Mean Salinity (30 days)<br />

Figure H.4l. Distribution of benthic abundance for each sampling period versus salinity, based on<br />

HEMP zones.<br />

Alafia River Benthos - Final Report -84- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


5 5<br />

AR-2<br />

AR-3<br />

4<br />

'- •• 4<br />

~<br />

c<br />

• •<br />

0a3<br />

3 • It •<br />

~ 3<br />

• • •<br />

C<br />

0<br />

•<br />

••••<br />

2 • 2 • ,'.<br />

c<br />

~<br />

•• ,<br />

•<br />

..c<br />

C/.l •<br />

• • •<br />

I<br />

tI'<br />

0<br />

0<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

5 5<br />

AR-4<br />

4<br />

'- 4<br />

c<br />

0a3<br />

• •<br />

~<br />

I<br />

c<br />

••<br />

c 2 2<br />

AR-5<br />

~<br />

• •<br />

3 • • 3<br />

• • ••<br />

0<br />

•• • • •<br />

c • ••<br />

~<br />

• • •<br />

• • •<br />

• •<br />

0 0<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

5 5<br />

AR-6<br />

AR-7<br />

..c ,. C/.l<br />

•<br />

'-<br />

4 • 4<br />

~<br />

c<br />

0a3 ,<br />

.<br />

3<br />

~<br />

I<br />

c<br />

0<br />

c<br />

2<br />

~<br />

..c<br />

C/.l<br />

:.<br />

:r"<br />

•<br />

'\<br />

• :<br />

•<br />

• • •<br />

0 0<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

Mean Salinity (30 days)<br />

Mean Salinity (30 days)<br />

Figure 11.42. Plots of the Shannon-Wiener Index CR') versus salinity based on HBMP zoneso<br />

Alafia River Benthos - Final Report -85- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


1.0 1.0<br />

AR-2 • AR-3 ••<br />

0.8 • •• 0.8 • ••<br />

Il)<br />

"0<br />

•<br />

c: 0.6<br />

• 0.6<br />

- • • •<br />

CIl<br />

• ,•<br />

-::I<br />

0 0.4 • •<br />

0.4<br />

~<br />

i:i:<br />

t<br />

•<br />

0.2 0.2<br />

••<br />

0.0 0.0<br />

0 5 to 15 20 25 30 0 5 to 15 20 25 30<br />

x<br />

. ., • • •<br />

..<br />

1.0 1.0<br />

AR-4 • • ••• AR-5<br />

0.8 0.8<br />

x • ... ••<br />

Il)<br />

• • •• •<br />

"0<br />

• •<br />

......<br />

c: 0.6<br />

• • •<br />

0.6<br />

• •<br />

CIl ., •<br />

-::I<br />

0 0.4 • 0.4<br />

~<br />

• • •<br />

i:i:<br />

0.2 0.2 • •<br />

0.0 0.0<br />

0 5 10 15 20 25 30 0 5 to 15 20 25 30<br />

1.0 1.0<br />

• AR-6 • AR-7<br />

0.8 •••<br />

0.8<br />

•<br />

x<br />

Il)<br />

"0<br />

c: 0.6 • ,<br />

0.6<br />

~<br />

- .<br />

CIl<br />

-::I<br />

0 0.4<br />

~<br />

0.4 t<br />

i:i:<br />

0.2 •<br />

0.2 t<br />

•<br />

0.0<br />

0.0 f<br />

0 5 to 15 20 25 30 0 5 to 15 20 25 30<br />

Mean Salinity (30 days)<br />

Mean Salinity (30 days)<br />

Figure 11.43. Plots of Pielou's Equitability Index versus salinity based on HBMP zones.<br />

A1afia River Benthos - Final Report -86- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


,.<br />

1.0 1.0<br />

AR-2<br />

•• • AR-3 •<br />

0.8 • • 0.8 I. ••<br />

x<br />

• • I ••<br />

~<br />

"0 0.6 •<br />

c • 0.6<br />

• ••<br />

- • •<br />

•<br />

Y'<br />

• •<br />

c 0.4 0.4 • •<br />

6 •<br />

0.2 0.2<br />

••<br />

0.0 0.0<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

1.0 1.0<br />

AR-4<br />

• • • • AR-5<br />

0.8 • 0.8<br />

••• • •<br />

". • •<br />

><<br />

~<br />

• •• • • •<br />

"0 0.6<br />

c<br />

•<br />

0.6<br />

••<br />

- -'" • 'c •<br />

0.4 0.4<br />

6 • •<br />

0.2 0.2 •<br />

• •<br />

0.0 0.0<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

1.0<br />

1.0 I<br />

• AR-6 AR-7<br />

0.8 ••<br />

• 08 ~<br />

x t/·<br />

••<br />

~<br />

"0 0.6<br />

c<br />

- •<br />

-'"<br />

•<br />

:: 1 :<br />

'c 0.4<br />

6<br />

•<br />

0.2 •<br />

•<br />

0.2<br />

0.0 0.0<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

Mean Salinity (30 days)<br />

Mean Salinity (30 days)<br />

Figure II.44. Plots of Gini's Index versus salinity based on HEMP zones.<br />

Alafia River Benthos - Final Report -87- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - Jun e 2003


8 8<br />

7 AR-2 7 AR-3<br />

>< 6 •<br />

.... c •<br />

5 5<br />

'"<br />

•<br />

~ 4 •<br />

(!)<br />

• 4 ~<br />

•<br />

::.n 3 ••• 3<br />

::E '" 2 • • • •<br />

2 • ••• •<br />

•... ••.,<br />

•<br />

•<br />

(!) 6<br />

"1:j<br />

• .-: •<br />

0 0<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

8 8<br />

7 AR-4 7 AR-5<br />

-<br />

><<br />

(!) 6 6<br />

"1:j<br />

c 5 5 • •<br />

'" • •<br />

13 4 4<br />

~<br />

::E '" 2<br />

I •<br />

•<br />

2<br />

•<br />

::.n 3 • 3<br />

•<br />

•• • •<br />

• •<br />

• ••<br />

0 0<br />

•<br />

• • ;, .<br />

•<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

8 8<br />

7 AR-6<br />

7 AR-7<br />

-<br />

~ '" 4 •<br />

><<br />

(!) 6 6<br />

"1:j<br />

c 5 5<br />

(!) 4<br />

~<br />

::.n 3 ~ 3 t<br />

::E '"<br />

:f.<br />

2<br />

t4 •<br />

•• • •<br />

0 • 0<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

Mean Salinity (30 days)<br />

Mean Salinity (30 days)<br />

Figure 11.45. Plots of the Margalef Index versus salinity based on HBMP zones.<br />

Alafia River Benthos - Final Report -88- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


lFDgl\DJr'~ H.416. Dry season cumulative species list and distribution (presence/absence) by river kilometer, starting by listing first species<br />

occurrence downstream then proceeding upstream adding additional species. Core = x, sweep = O.<br />

River kilOlreter<br />

Taxa -5 -3 2 3 4 6 7 8 9 10 II 12 13 14 15<br />

Alpheus<br />

X<br />

Ambidexter symmetricus<br />

X<br />

Amphioplus thrombodes<br />

X<br />

Amphipholis squamata<br />

X<br />

Bhawania heteroseta<br />

X<br />

Corbula contracta<br />

X<br />

Hemipholis elongata<br />

X<br />

Munna<br />

X<br />

Nephtys<br />

X<br />

Schistomeringos rudolphi<br />

X<br />

Stylochus<br />

X<br />

Malmgreniella taylori X X<br />

Gyptis crypta X X<br />

Monticellina dorsobranchialis X X<br />

Paramphinome sp. B X X<br />

Prionospio perkinsi X X<br />

Sthenelais sp. A X X<br />

Sigambra tentaculata X X X<br />

Micropholis atra X X X<br />

Mediomastus X 0<br />

Spiochaetopterus costa rum X X X<br />

Glollidia pyramidata X X X X<br />

Pinnixa chaetopterana X X X X X X<br />

Enteropneusta X X X X X<br />

Carauiella hobsonae X X X X X<br />

Cyclaspis varians X X X X X X<br />

Tellina X X XO XO XO X<br />

Phyllodoce arenae X X XO X X<br />

Nemertea sp. F X X X X X<br />

Paguridae X X X<br />

Oligochaeta X X X X X X<br />

Listriella barnardi X X X X<br />

Nemertea sp. A X X X<br />

Ampelisca X X X X X X X X X X X<br />

Bivalvia X X X X XO X X X X X X<br />

Nemertea X 0 0 X XO X X X X<br />

AcanthohauslOrius<br />

X<br />

Branchiomma<br />

X<br />

Magelona pettiboneae<br />

X<br />

Monoculodes edwardsi<br />

X<br />

Pectinaria gouldii<br />

X<br />

Scolelepis texana<br />

X<br />

Scoloplos rubra<br />

X<br />

Podarkeopsis levifuscina X X<br />

Platyhelminthes X X X X<br />

Paraprionospio pinnata X X X X X X X<br />

Ampelisca abdita 0<br />

Aricidea phi/binae<br />

X<br />

BranchioslOma floridae<br />

X<br />

Calippidae 0<br />

Ensis minor<br />

X<br />

Leitoscoloplos robustus 0<br />

Leucon acutirostris<br />

X<br />

Nassarius vibex<br />

X<br />

Nephtys simoni<br />

X<br />

Paguridea 0<br />

Polinices duplicatus X ;.


............. ....... ... . ..,c. ..... A<br />

Nephtys simoni<br />

X<br />

Paguridea 0<br />

Polinices duplicatlls<br />

X<br />

Sphaeroma terebrans 0<br />

Spio pelliboneae<br />

X<br />

Tra yisia IlObsonae<br />

X<br />

Capitella eapitata X X<br />

Aegathoa oeulata 0 X<br />

Aeteocina eanalieulata X X X<br />

Glycinde solita ria X X 0<br />

Crepidula X X X<br />

Leitoscoloplos foliosus X X 0<br />

Decapoda (unid. shrimp) 0 0<br />

Neanthes sueeinea 0 XO 0 0<br />

Oxyurostylis smithi XO XO X X<br />

Palaemonetes pugio 0 0<br />

Heteromastus filiformis X X X X X<br />

Mulinia lateralis XO XO XO X X<br />

Streblospio benedicti X .x X X X<br />

Tagelus plebeius X X X X X X<br />

Gammarus mucronalus XO XO XO XO 0<br />

Ampelisca cf vadorum 0 0 0 0 0<br />

Amygdalum papyrium XO XO XO XO X X<br />

Corophium X X X X X X<br />

Eteone heteropoda X XO XO XO X XO X X X<br />

Grandidierella bonnieroides X XO XO XO XO XO 0 0 XO<br />

Laeonereis culveri 0 XO X X XO XO XO X X XO XO XO X<br />

Crassostrea yirginica<br />

X<br />

Leitoseoloplos f ragilis 0<br />

Loimia medusa<br />

X<br />

Genetyllis castanea 0<br />

Natica pusilla<br />

X<br />

Nudibranchia 0<br />

Ophiophragmus filograneus<br />

X<br />

Phoronis architecta<br />

X<br />

Sphenia antillensis<br />

X<br />

Vitrinellidae<br />

X<br />

Tellina versicolor X X<br />

Macoma tenia X X<br />

Haminoea succinea X X<br />

Odostomia X X<br />

Tanaidacea X X X<br />

Melinna maculata X X X<br />

Caprella XO 0<br />

Diopatra cup rea X X<br />

Tagelus 0 0<br />

Ricraxis p unctostriallls X X X<br />

Americamysis bahia 0 0 0<br />

Xanthidae X X 0<br />

Amakusanthura magnifica XO X X X XO<br />

Mysella planulata X X X X<br />

Almyracllma proximoculae X X X X X X<br />

Edotea montosa XO X XO XO XO 0<br />

Hobsollia florida 0 0 0 0 X X X<br />

Mysidopsis almyra 0 0 0 0 0 0 0 0<br />

Polydora ligni X X X X X X X X<br />

Polypedilum halterale gpo X X X X XO XO XO<br />

Lucinidae<br />

X<br />

Upogebia affinis<br />

X<br />

Caprellidae X X<br />

Gastropoda X X X X X<br />

Actiniaria X X<br />

Amphicteis gunneri X X X<br />

Polydora socialis X X X<br />

Apocorophium louisianum 0 0 XO XO XO XO X 0 X X<br />

Alalia River Benthos - Final Re port -89-<br />

M ote <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Fiiglllll"e H.46. (conti nued).<br />

Aeolidoidea<br />

X<br />

Insecta<br />

X<br />

SipuncuIidae<br />

X<br />

Taphromysis bowmani ()<br />

Stenoninereis martini X X<br />

Apocorophium lacustre 0 0 0<br />

Mytilopsis leucophaeata X X X X XO XO XO X X X X<br />

Neritina usnea 0<br />

Cassidinidea ova lis 0<br />

Pinn;xa<br />

X<br />

Veneridae<br />

X<br />

Tagelus cf plebeius<br />

X<br />

Nereidae sp. B X X<br />

Cumacea X X X X<br />

Hydrobiidae 0 X<br />

Edotea triloba X XO XO X X<br />

Ostracoda X X<br />

Amphipoda X X 0<br />

cf Cincinnariajloridana X X X XO X X X X<br />

Chironomus X X XO XO XO XO XO X<br />

Polypedilum scalaenum gpo X X X X XO X XO X<br />

Tubificidae (immature) sp. A X X X XO X XO XO X X<br />

Palaemonetes paludosus 0<br />

Myzobdella lugubris 0 X<br />

Tanytarsus cf sp. C X X<br />

Chironomi ni X X X X X X X X<br />

Ceratopogonidae X X X X X<br />

Cladoranytarsus X X X xo X XO<br />

Tanytarsus 0 X xo X X X<br />

Ta nytarsus sp. T 0<br />

Mysidopsis X X X<br />

Rheotanytarsus distinctissimus gpo 0 X<br />

Nerf/ina recIivata 0 0<br />

Mysidacea X X<br />

Dicrotendipes 0 0 XO XO X XO<br />

Tanytarsus sp. G X X xo XO xo XO XO<br />

Cryptochironomus fulvous gpo<br />

X<br />

Cyarhura polita<br />

X<br />

Nereidae<br />

XO<br />

Polypedilum<br />

X<br />

Taphromysis louisianae 0<br />

Chironomini (pupae) X X<br />

Dubiraphia X X X X<br />

Spionidae XO X X X<br />

Limnodrilus hoffmeisteri X X X XO XO X<br />

Clllicoides<br />

X<br />

Pseudochironomus 0<br />

Tanytarsus sp. C 0<br />

Capiteltidae X X<br />

Dicrotendipes tritomus X 0 0 XO<br />

Cryptochironomus blarina X X X X<br />

Prociadius (Holotanypus) XO X X X<br />

Polypedilum iIIinoense gpo XO XO XO 0 XO<br />

Prociadills X X 0 X X<br />

HydrophiIidae<br />

X<br />

[solda pllichella<br />

X<br />

cf Elimia<br />

X<br />

cf Paralallterborniella nigrohauterale<br />

X<br />

cf Siavina appendiclliata<br />

X<br />

Bivalvia sp. A X X<br />

Prionospio X X<br />

Na is pardalis X X<br />

Dasyhe/ea X X


cf Elimia<br />

x<br />

cf Paralalllerborniella nigrohaulerale<br />

X<br />

cf Siavina appendiculara<br />

X<br />

Bivalvia sp. A<br />

X X<br />

Prionospio<br />

~ X X<br />

Nais pardalis<br />

X<br />

X<br />

Dasyhelea X X<br />

Orthocladiinae X X X<br />

Tanytarsus sp. K 0 X<br />

Cryptochironomus X X<br />

Gammarus nr. tigrinus 0 X 0<br />

Dero X X XO X<br />

Dicrotendipes neomodestus XO 0 x 0<br />

Ablabesmyia mallochi<br />

X<br />

Coenagrionidae<br />

X<br />

Decapoda (zoea)<br />

X<br />

Melita<br />

X<br />

Pyrgophorus platyrachis<br />

X<br />

Aulodrilus limnobius<br />

X XO<br />

Aulodrilus pigueti<br />

X X<br />

Corbicula fluminea<br />

0 X<br />

Paranais littoralis<br />

X X<br />

Dicrotendipes modestus<br />

0 XO 0<br />

Ablabesmyia<br />

X<br />

Aulodrilus<br />

X<br />

Coelotanypus<br />

X<br />

Nereidae sp. C<br />

X<br />

Oxyethira<br />

X<br />

Tubificidae (immature) sp. B<br />

X<br />

Cryptotendipes X X<br />

Dero digitata X X<br />

Oecetis X XO<br />

Parakeifferiella X X<br />

Ablabesmyia rhamphe gp. 0<br />

Baetidae 0<br />

cf Mesosmittia<br />

X<br />

cf Tribelos<br />

X<br />

Cladopelma 0<br />

Enchytraeidae<br />

X<br />

Oecetis inconspicua complex sp. A<br />

X<br />

Srempellina<br />

X<br />

Stenelmis<br />

XO<br />

Tanytarsus sp. A<br />

X<br />

Tanytarsus sp. S<br />

X<br />

Trombidifonres<br />

X<br />

Alafia River Benthos - Final Report -90- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - Jllne 2003


I~ ~--.. --..--~--~--..---~--- - l ~ -- ---<br />

Figure 11.47. Wet season cumulative species list and distribution (presence/absence) by river kilometer, starting by listing first species<br />

occurrence downstream then proceeding upstream adding additional species. Core = x, sweep = O.<br />

River kilorreter<br />

Taxa ·5 ·3 2 3 4 6 7 8 9 10 I I 12 13 14 15<br />

Americamysis cf bigelowi<br />

X<br />

Cephalocarida<br />

X<br />

Corbula contracta<br />

X<br />

Enteropneusta<br />

X<br />

Listriella barnardi<br />

X<br />

Nemerrea sp. A<br />

X<br />

Nucula crenulata<br />

X<br />

Parahesione luteola<br />

X<br />

Schistomeringos rudolphi<br />

X<br />

Tectonatica pusil/a<br />

X<br />

Diplodonta semiaspera X X<br />

GIOItidia pyramidata X X<br />

Glycinde solita ria X X<br />

Gyptis crypta X X<br />

Mediomastus ambiseta X X<br />

Monticellina dorsobranchialis X X<br />

Mulinia lateralis X X<br />

Ophiuroidea X X<br />

Nemer/ea sp. F X X<br />

Phyllodoce arenae X X<br />

Podarkeopsis levifuscina X X<br />

Sigambra tentaculata X X<br />

Tellina X X<br />

Ampelisca verrilli X X X<br />

Carazziella hobsonae X X X<br />

Cye/aspis varians X X 0<br />

Paraprionospio pinnara X X X<br />

Pinnixa X X X<br />

Prionospio perkinsi X X X<br />

Abra aequalis X X X<br />

Capitella capirala X XO X<br />

Otigochaeta X X X X X<br />

Streblospio benedicti X X XO XO XO 0 0<br />

Bivalvia X X 0 0 X X<br />

Nerrenea X 0 0 X 0 0 X<br />

Aglaophamus verrilli<br />

X<br />

Ancistrosyllis jonesi<br />

X<br />

Clymenella torquata<br />

X<br />

Diopatra cuprea<br />

X<br />

Gastropoda<br />

X<br />

Leitoscoloplos<br />

X<br />

Malmgreniella maccraryae<br />

X<br />

Notomastus hemipodus<br />

X<br />

Paramphinome sp. B<br />

X<br />

Parvilucina multilineata<br />

X<br />

Prionospio pygmaea<br />

X<br />

Platyhelminthes X X<br />

Almyracuma nr. proximoculae ()<br />

Ampelisca<br />

X<br />

Aricidea philbinae<br />

X<br />

Bowmaniella 0<br />

cf Callianassa biformis<br />

X<br />

Eteone heteropoda<br />

X<br />

Edotea montosa 0 0 0<br />

Americamysis 0 0 0 0 0<br />

Mysidopsis 0 0 0 0 0<br />

Grandidierella bonnieroides 0 0 0 0 0 0 0 0<br />

Laeonereis culveri XO XO 0 0 0 0 X X 0 XO X<br />

Chironomus . X XO 0 XO<br />

Amphicteis gunneri<br />

X<br />

0 0 0 0 0 X 0<br />

Aoridae<br />

X<br />

Hobsonia florida 0<br />

Neanthes succinea 0<br />

Mylilopsis leucophaeata


Neanthes ~" ccinea 0<br />

Mytj/opsis /eucophaea!a X A XO 0 XO ~ x<br />

Polypedilum halterale gpo 0 0 X XO XO XO x x x 0 0<br />

Hargeria rapax 0<br />

Diptera 0 0 0<br />

Cryptotendipes 0 0<br />

Parvanachis obesa<br />

X<br />

Taphromysis bowmani 0 0<br />

Polydora sociaUs XO X<br />

Procladius 0 0 X<br />

Cyathura<br />

X<br />

Dicrotendipes cf. neomodestus 0<br />

Heteromastlls filiformis<br />

X<br />

Hydrozoa<br />

X<br />

Cambaridae 0<br />

Goeldichironomus<br />

X<br />

Neritina reclivata 0<br />

Cyathura polita X X X<br />

Nereidae XO 0 0<br />

Tubificidae (immature) sp. A X X 0 X X XO 0<br />

Ablabesmyia rhamphe gpo 0<br />

XO<br />

Cercobrachys etowah 0<br />

Pentaneura inconspicua 0<br />

Tanytarsus cf. sp. C 0<br />

Chironomini X 0<br />

Chironomini (pupae) 0 XO 0<br />

Cladotanytarsus cf. davies XO XO 0<br />

Mysidopsis almyra 0 0 0<br />

Polypedilum X X X<br />

cf. Cincinnatia f10ridana X X 0<br />

Polypedilum scalaenum gpo X X X X<br />

Cryptochironomus X XO 0 X<br />

Fissimentum X X X<br />

Tricorythodes albilineatus 0 0 0<br />

Dicrotendipes tritomus 0 0 0<br />

Coelotanypus scapularis XO 0 X<br />

Gammarus<br />

X<br />

Limnodrilus hoffmeisteri<br />

X<br />

Sphaeriidae 0 0<br />

Tanytarsus 0 0<br />

Trichoptera 0 0<br />

Brachycercus maculatus 0 0 0<br />

Corbicula f1uminea XO X XO X XO<br />

Ceratopogonidae<br />

X<br />

Hydroptitidae<br />

X<br />

Oecetis nocturna 0<br />

ParalauterbornieIla nigrohalterale 0<br />

Tanytarsus sp. K 0<br />

Dubiraphia vittata 0 X 0 0<br />

Pyrgophorus platyrachis 0 0 0 0<br />

Chaoborus punctipennis 0<br />

Coelotanypus tricolor 0<br />

Coelotanypus 0 X<br />

Caenis hilaris 0 0<br />

Macromia 0 0<br />

Dubiraphia X X<br />

Caenis<br />

X<br />

Cercobrachys<br />

X<br />

Hydrobiidae 0<br />

Procladius (Holotanypus)<br />

X<br />

Rheotanytarsus exiguus gpo<br />

X<br />

Baetidae 0 0<br />

AlIlodrillls pigueti 0<br />

Ablabesmyia 0<br />

Ablabesmyia maIlochi 0<br />

Paracladopelma 0<br />

Oecetis<br />

X<br />

PagastieIla 0<br />

Rheumatobates 0<br />

Alafia Ri ver Benthos - Final Report -91- <strong>Mote</strong> <strong>Marine</strong> Laboratorv - June 2on. ~


lFigure lIlI.41S. Dry season cumulative species list and distribution (presence/absence) by river kilometer, starting by listing first species<br />

occurrence upstream then proceeding downstream adding additional species. Core = x, sweep = O.<br />

River Kilometer<br />

Taxa -5 -3 2 3 4 5 6 7 8 9 10 11 12 D 14 15<br />

Alpheus<br />

X<br />

Ambidexter symmetricus<br />

X<br />

Amphioplus thrombodes<br />

X<br />

Amphipholis squamata<br />

X<br />

Bhawania heteroseta<br />

X<br />

Corbula contracta<br />

X<br />

Hemipholis elongata<br />

X<br />

Munna<br />

X<br />

Nephtys<br />

X<br />

Sehistomeringos rudolphi<br />

X<br />

Stylochus<br />

X<br />

Aeanthohaustorius<br />

X<br />

Branehiomtlla<br />

X<br />

Gyptis erypta X X<br />

Magelona pettiboneae<br />

X<br />

Malmgreniella taylori X X<br />

Monoeulodes edwardsi<br />

X<br />

Montieellina dorsobranehialis X X<br />

Paramphinome sp. B X X<br />

Peetinaria gouldii<br />

X<br />

Prionospio perkinsi X X<br />

Scolelepis texan a<br />

X<br />

Seoloplos rubra<br />

X<br />

Sthenelais sp. A X X<br />

Ampelisea abdita 0<br />

Arieidea philbinae<br />

X<br />

Branehiostoma floridae<br />

X<br />

Calippidae 0<br />

Ensis minor<br />

X<br />

Leitoscoloplos robustus 0<br />

Leucon aeutirostris<br />

X<br />

MicropllOlis atra X X X<br />

Nassarius vibex<br />

X<br />

Nephtys simoni<br />

X<br />

Paguridea 0<br />

Polin ices duplieatus<br />

X<br />

Sigambra tentaculata X X X<br />

Sphaeromo terebrans 0<br />

Spio pettiboneae<br />

X<br />

Travisia hobsonae<br />

X<br />

AegatllOa oeulata 0 X<br />

Capitella capitata X X<br />

Crassostrea virginica<br />

X<br />

Genetyllis castanea 0<br />

Glottidia pyramidata X X X X<br />

Leitoscoloplos fragilis 0<br />

Loimia medusa<br />

X<br />

Mediomostus X 0<br />

Natica pusilla<br />

X<br />

Nudibranchia 0<br />

Ophiophragmus filograneus<br />

X<br />

Paguridae X X X<br />

Phnmnis archi!eeta<br />

X<br />

Podarkeopsis levifuscina<br />

v


Ophiophragmus filograneus<br />

X<br />

Paguridac X X X<br />

Phornnis architecla 'I.<br />

X<br />

Podarkeopsis levifuscina X X<br />

Sphenia antillensis<br />

X<br />

Spiochaetopterus costa rum X X X<br />

Vitrinellidae<br />

X<br />

Acteocina canaliculata X X X<br />

Brachidontes exustus 0<br />

Caprel/a XO 0<br />

Carazziella hobsonae X X X X X<br />

Crepidula X X X<br />

Decapoda (unid. shrimp) 0 0<br />

Enteropneusta X X X X X<br />

Glycinde solitaria X X 0<br />

Haminoea succinea X X<br />

Leitoscoloplos foliosus X X 0<br />

Lucinidac<br />

X<br />

Macoma tenta X X<br />

Odostomia X X<br />

Tellina versicolor X X<br />

Upogebia affinis<br />

X<br />

Caprellidae X X<br />

Cyc/aspis varians X X X X X X<br />

Diopatra cup rea X X<br />

Melinna maculata X X X<br />

Neanthes succinea 0 XO 0 0<br />

Nemertea sp. F X X X X X<br />

Phyllodoce arenae X X XO X X<br />

Pinnixa chaetopterana X X X X X X<br />

Platyhelminthes X X X X<br />

Tagelus 0 0<br />

Tanaidacea X X X<br />

Aeolidoidea<br />

X<br />

Americamysis bahia 0 0 0<br />

Ampelisca cf vadorum 0 0 0 0 0<br />

Heteromastus filiformis X X X X X<br />

Insecta<br />

X<br />

Listriella barnardi X X X X<br />

Nemertea sp. A X X X<br />

Rictaxis punctostriatus X X X<br />

Sipunculidae<br />

X<br />

Taphromysis bowmani 0<br />

Tellina X X XO XO XO X<br />

Actiniaria X X<br />

Amakusanthura magnifica XO X X X XO<br />

Amphicteis gunneri X X X<br />

Amygdalum papyrium XO XO XO XO X X<br />

Corophium X X X X X X<br />

Gammarus mucronatus XO XO XO XO 0<br />

Mulinia lateralis XO XO XO X X<br />

Mysella planulata X X X X<br />

Neritina usnea 0<br />

Oligochaeta X X X X X X<br />

Stenoninereis martini X X<br />

Streblospio benedict; X X X X X<br />

Tagelus plebe ius X X X X X X<br />

Apocorophium lacustre 0 0 0<br />

Cassidinidea ovalis 0<br />

Edotea montosa XO X XO XO XO 0<br />

Palaemonetes pugio 0 0<br />

Alafia Ri vcr Benthos - Final Report -92- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


lFngllDlI"e lIlI.4B. (collUtDllmed).<br />

Pinnixa<br />

X<br />

Tagelus cf plebeills<br />

X<br />

Veneridae<br />

X<br />

Nereidae sp. B X X<br />

Palaemonetes paludosus 0<br />

Eteone heteropoda X XO XO XO x XO x x x<br />

Hobsonia jlorida 0 0 0 0 X X X<br />

Tanytarsus cf sp. C x X<br />

Tanytarsus sp. T 0<br />

Almyracuma proximoculae X X X X X X<br />

Ampelisca X X X X X X X X X X X<br />

Cryptochironomus fulvous gpo<br />

X<br />

Cumacea X X X X<br />

Cyathura polita<br />

X<br />

Grandidierella bonnieroides X XO XO XO XO XO 0 0 XO<br />

Hydrobiidae 0 X<br />

Myzobdella lugubris 0 X<br />

Nereidae<br />

XO<br />

Oxyurostylis smithi XO XO x X<br />

Polypedilum<br />

X<br />

Rheotanytarsus distinctissimus gpo 0 X<br />

Taphromysis louisianae 0<br />

Chironomini (pupae) X X<br />

Culicoides<br />

X<br />

Pseudochironomus 0<br />

Tanytarsus sp. C 0<br />

cf Elimia<br />

X<br />

cf Paralauterbomiella nigrohauterale<br />

X<br />

cf Slavina appendiculata<br />

X<br />

Hydrophilidae<br />

X<br />

Isolda pulchella<br />

X<br />

Neritina reclivata 0 0<br />

Paraprionospio pinnata X X X X X X X<br />

Polydora socia lis X X X<br />

Ablabesmyia mallochi<br />

X<br />

Apocorophium louisianum 0 0 XO XO XO XO X 0 X X<br />

Bivalvia sp. A X X<br />

Coenagrionidae<br />

X<br />

Decapoda (zoea)<br />

X<br />

Laeonereis culveri 0 XO X X XO XO XO X X XO XO XO X<br />

Melita<br />

X<br />

Mysidacea X X<br />

Mysidopsis X X X<br />

Nemertea X 0 0 X XO X X X X<br />

Prionospio X X<br />

Pyrgophorus platyrachis<br />

X<br />

Ablabesmyia<br />

X<br />

Amphipoda X X 0<br />

Aulodrilus<br />

X<br />

Aulodrilus limnobills X XO<br />

Alilodrilus pigueti X X<br />

Capitellidae X X<br />

cf Cincinnatiajloridana X X X XO X X X X<br />

Chironomlls X X XO XO XO XO XO X<br />

Coe[otanypus<br />

X<br />

Corbicllia j7uminea 0 X<br />

Dasyhelea


cf Cincinnatiafloridana X X X XO x x x X<br />

Chironomus X X XO XO XO XO XO X<br />

Coelotanypus<br />

X<br />

"""<br />

Corbicuia j1uminea 0 X<br />

Dasyhelea X X<br />

Dicrotendipes tritomus X 0 0 XO<br />

Edotea triloba X XO XO x x<br />

Gastropoda X X X X X<br />

Nais pardalis X X<br />

Nereidae sp. C<br />

X<br />

Orthocladiinae X X X<br />

Ostracoda X X<br />

Oxyethira<br />

X<br />

Paranais littoralis X X<br />

Polydora ligni X X X X X X X X<br />

Spionidae XO X X X<br />

Tubificidae (immature) sp. B<br />

X<br />

Xanthidae X X 0<br />

Ablabesmyia rhamphe gpo 0<br />

Baetidae 0<br />

Bivalvia X X X X XO X X X X X X<br />

Ceratopogonidae X X X X X<br />

cf Mesosmittia<br />

X<br />

cf Tribelos<br />

X<br />

Chironomini X X X X X X X X<br />

Cladopelma 0<br />

Cladotanytarsus X X X XO X XO<br />

Cryptochironomus X X<br />

Cryptochironomus blarina X X X X<br />

Cryptotendipes X X<br />

Dero X X XO X<br />

Dero digitata X X<br />

Dicrotendipes 0 0 XO XO X XO<br />

Dicrotendipes modestus 0 XO 0<br />

Dicrotendipes neomodestus XO 0 X 0<br />

Dubiraphia X X X X<br />

Enchytraeidae<br />

X<br />

Gammarus nr. tigrinus 0 X 0<br />

Limnodrilus hoffmeisteri X X X XO XO X<br />

Mysidopsis almyra 0 0 0 0 0 0 0 0<br />

Mytilopsis leucophaeata X X X X XO XO XO X X X X<br />

Oecetis X XO<br />

Oecetis inconspicua complex sp. A<br />

X<br />

Parakeifferiella X X<br />

Polypedilum halterale gpo X X X X XO XO XO<br />

Polypedilum illinoense gpo XO XO XO 0 XO<br />

Polypedilum scalaenum gpo X X X X XO X XO X<br />

Procladius<br />

X X 0 X X<br />

Procladius (Holotanypus)<br />

XO X X X<br />

Stempellina<br />

X<br />

Stenelmis<br />

XO<br />

Tanytarsus 0 X XO X X X<br />

Tanytarsus sp. A<br />

X<br />

Tanytarsus sp. G<br />

X X XO XO XO XO XO<br />

Tanytarsus sp. K 0 X<br />

Tanytarsus sp. S<br />

X<br />

Trombidifonnes<br />

X<br />

Tubificidae (immature) sp. A X X X XO X XO XO X X<br />

Alafia River Benthos - Final Report -93- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


.... ... ~--~<br />

~--~<br />

...<br />

~--~ .....<br />

--~----.<br />

---------------.--------------~-=---=-=~-===~-===~~==~-===~~~~~<br />

Figure 11.49. Wet season cumulative species list and distribution (presence/absence) by river kilometer. starting by listing first species<br />

occurrence upstream then proceeding downstream adding additional species. Core = x, sweep = O.<br />

Taxa<br />

Americamysis cf bigelowi<br />

Cephalocarida<br />

Corbula contracta<br />

Enteropneusta<br />

listriella barnardi<br />

Nemertea sp. A<br />

Nucula crenulata<br />

Parahesione luteola<br />

Schistomeringos rudolphi<br />

Tectonatica pusilla<br />

Aglaophamus verrilli<br />

Ancistrosyllis jonesi<br />

Clymenella torquata<br />

Diopatra cup rea<br />

Diplodonta semiaspera<br />

Gastropoda<br />

Glottidia pyramidata<br />

Glycinde solita ria<br />

Gyptis crypta<br />

Leitoscoloplos<br />

Malmgreniella maccraryae<br />

Mediomastus ambiseta<br />

Monticellina dorsobranchialis<br />

Mulinia lateralis<br />

Nemertea sp. F<br />

Notomastus hemipodus<br />

Ophiuroidea<br />

Paramphinome sp. B<br />

Parvilucina multilineata<br />

Phyllodoce arenae<br />

Podarkeopsis levifuscina<br />

Prionospio pygmaea<br />

Sigambra tentaculata<br />

Tellina<br />

Almyracuma nr. proximoculae<br />

Ampelisca<br />

Ampelisca verrilli<br />

Aricidea philbinae<br />

Bowmaniella<br />

Carazziella hobsonae<br />

cf Callianassa biformis<br />

Cyc/aspis varians<br />

Eteone heteropoda<br />

Paraprionospio pinnata<br />

Pinnixa<br />

Platyhelminthes<br />

Prionospio perkinsi<br />

Amphicteis gunneri<br />

Aoridae<br />

Capitella capitata<br />

Hobsonia florida<br />

Neanthes succinea<br />

Hargeria rapax<br />

Edotea montosa<br />

Parvanachis obesa<br />

Americamysis<br />

Cyathura<br />

Dicrotendipes cf neomodestus<br />

Diptera<br />

Heteromastus /iliformis<br />

Hydrozoa<br />

Oligochaeta<br />

T"n .. r,.. ... "C'; ... h,.. ... _ ...... ;<br />

River Kilom:ter<br />

-5 -3<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

0<br />

X<br />

X X X<br />

X<br />

0<br />

X X X<br />

X<br />

X X 0<br />

X<br />

X X X<br />

X X X<br />

X X<br />

X X X<br />

X<br />

XO<br />

x x x<br />

0<br />

0<br />

2 4 5 6 7 8 9 10 I I 12 13 14 15<br />

x<br />

X<br />

X<br />

0<br />

0<br />

0<br />

0 0<br />

X<br />

0 0 0 0<br />

X<br />

0<br />

0 0 0<br />

X<br />

X<br />

X<br />

X


Taphromysis bowman; 0 0<br />

Abra aequali .~<br />

.\<br />

X X- X<br />

Mysidopsis 0 0 0 0 0<br />

Streblospio benedicti X X XO XO XO 0 0<br />

Cambaridae 0<br />

Goeldichironomus<br />

X<br />

Neritina reclivata 0<br />

Ablabesmyia rhamphe gpo 0<br />

Cercobrachys etowah 0<br />

Nemertea X 0 0 X 0 0 X<br />

Pentaneura inconspicua 0<br />

Tanytarslls cf sp. C 0<br />

Cryptotendipes 0 0<br />

Gammarus<br />

X<br />

Grandidierella bonnieroides 0 0 0 0 0 0 0 0<br />

Limnodrilus hoffmeisteri<br />

X<br />

Polydora socia lis XO X<br />

Ceratopogonidae<br />

X<br />

Chironomini X 0<br />

Chironomini (pupae) 0 XO 0<br />

Cladotanytarsus cf davies XO XO 0<br />

Cyathura polita X X X<br />

Hydroptilidae<br />

X<br />

Mysidopsis almyra 0 0 0<br />

Mytilopsis lellcophaeata X X XO 0 XO X X<br />

Oecetis nocturna 0<br />

Paralauterborniella nigrohalterale 0<br />

Polypedilum X X X<br />

Sphaeriidae 0 0<br />

Tanytarsus 0 0<br />

Tanytarsus sp. K 0<br />

cf Cincinnatia jloridana X X 0<br />

Chaoborus punctipennis 0<br />

Coelotanypus tricolor 0<br />

Procladius 0 0 X<br />

Bivalvia X X 0 0 X X<br />

Caenis<br />

X<br />

Cercobrachys<br />

X<br />

Fissimentum X X X<br />

Hydrobiidae 0<br />

Laeonereis culveri XO XO 0 0 0 0 X X 0 XO X<br />

Polypedilum scalaenum gpo X X X X<br />

Procladius (Holotanypus)<br />

X<br />

Rheotanytarsus exiguus gpo<br />

X<br />

Aulodrilus pigueti 0<br />

Coelotanypus 0 X<br />

CoelotanYPlls scapularis XO 0 X<br />

Ablabesmyia 0<br />

Ablabesmyia mallochi 0<br />

Caeni" hilaris 0 0<br />

Chironomus X XO 0 XO 0 0 0 0 0 X 0<br />

Macromia<br />

0 0<br />

Nereidae XO 0 0<br />

Paracladopelma 0<br />

Pyrgophorus platyrachis 0 0 0 0<br />

Baetidae 0 0<br />

Brachycercus maculatus 0 0 0<br />

Corbicula jluminea XO X XO X XO<br />

CryplOchironomus X XO 0 X<br />

Dicrotendipes tritomus 0 0 0<br />

Dubiraphia X X<br />

Dubiraphia villata 0 X 0 0<br />

Oecetis<br />

X<br />

Pagastiella 0<br />

Polypedilum halterale gpo 0 0 X XO XO XO X X X 0 0<br />

Rheumatobates 0<br />

Trichoptera 0 0<br />

Tricorythodes albilineatus 0 0 0<br />

Tubificidae (immature) sp. A X X 0 X X XO 0 XO<br />

Alafia River Benthos - Final Report -94- <strong>Mote</strong> <strong>Marine</strong> Laboratorv - June 2003


250<br />

~ 200<br />

><<br />

~<br />

....<br />

0<br />

~<br />

II)<br />

150<br />

.CJ<br />

E<br />

i<br />

II)<br />

;> 100<br />

.=<br />

~<br />

:;<br />

E<br />

:::l<br />

U 50<br />

Dry Season<br />

0<br />

-5 -3 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

250<br />

Wet Season<br />

~ 200<br />

><<br />

~<br />

E-<<br />

....<br />

0<br />

~<br />

II)<br />

150<br />

.CJ<br />

E<br />

:::l<br />

Z<br />

II)<br />

.:: 100<br />

-~<br />

:;<br />

E<br />

:::l<br />

U 50<br />

-5 -3 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

River Kilometer<br />

Figure 11.50. Cumulative species curves for analysis of data proceeding downstream<br />

to upstream and upstream to downstream for both dry (top) and wet<br />

season (bottom).<br />

Alafia River Benthos - Final Report -95- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Weighted pair-group average<br />

Euc IceCil distances<br />

sal 0<br />

Sal 1<br />

Sal 2<br />

Sal 3<br />

Sal 4<br />

Sal 5<br />

Sal 6<br />

Sal 7<br />

Sal 8<br />

Sal 9<br />

Sal 10<br />

Sal 11<br />

Sal 12<br />

Sal 13<br />

Sal 14<br />

Sal 15<br />

Sal 16<br />

Sal 17<br />

Sal 18<br />

Sal 19<br />

Sal 20<br />

Sal 21<br />

Sal 22<br />

Sal 23<br />

Sal 24<br />

I<br />

I<br />

I<br />

I<br />

I<br />

o<br />

20<br />

40 60<br />

80 100 120<br />

(Olink/O max)* 1 00<br />

Figure 11.51. Cluster analysis results for salinity with species presence/absence data within each<br />

salinity interval used as the matrix.<br />

Alafia Ri ver Benthos - Final Report -96- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


III. MOLLUSCAN BIO-INDICATORS OF THE TIDAL ALAFIA RIVER<br />

111.1 INTRODUCTION<br />

The objectives of the benthic macroinvertebrate and mollusk projects are to describe the benthic<br />

habitats and communities of the Alafia River in order to:<br />

~ describe the present distribution of major macroinvertebrate habitats and<br />

communities in the lower Alafia River,<br />

determine benthic components (taxa, communities, habitats or strata) important to<br />

the ecological structure and functioning of the tidal Alafia River<br />

evaluate relationships between the distribution and abundance of important benthic<br />

components and physicochemical variables related to freshwater inflows (e.g.<br />

sediments, oxygen, salinity, etc).<br />

Macroinvertebrates, including mollusks, are dominant elements of estuarine and tidal river<br />

ecosystems. Their number, diversity, dispersion, and condition have been studied for decades,<br />

forming a large and robust body of information on the adaptations of numerous phyla to the physical<br />

and chemical conditions unique to estuaries. Numerous studies have demonstrated that spatial and<br />

temporal trends in macro invertebrate attributes vary in consistent form with variations of river flow,<br />

current speed, salinity, dissolved oxygen, and foodstuffs such as particulate organic carbon,<br />

phytoplankton, macrophytes, and prey.<br />

In recent years, a variety of studies have been published which indicate the extent to which<br />

macroinvertebrate attributes can be related specifically to independent variables of interest in the<br />

present study-- freshwater inflow, salinity, and dissolved oxygen. Depending on the estuary, faunal<br />

groups, attributes, and collateral factors such as depth, sediment type, or tide range, relationships<br />

have been defined which satisfy criteria for statistical significance.<br />

To illustrate the range of methodological possibilities from which the present investigation has been<br />

crafted, some recent studies are cited, below.<br />

The Environmental Protection Agency's "Biological Criteria: Technical Guidance for Streams and<br />

Small Rivers," (Barbour et ai., 1994) states that advantages of using macroinvertebrates include<br />

advanced development of sampling gear, their major role in the nutritional ecology of fisheries,<br />

abundant numbers for assessment, their relative immobility, and the availability of prior data.<br />

Barbour et al. (1994) cite 21 major suites of metrics for macroinvertebrate studies in river<br />

ecosystems. Discounting those based entirely or mostly upon insects, about 10 metric suites are<br />

pertinent to the tidal Peace River (see below). Examples include total number of taxa, percent<br />

individual dominant taxa, percent individual trophic-level representatives, total abundance, and<br />

various indices of community organization. Several of these metrics, plus indices of habitat<br />

Alafia Ri ver Mollusk - Final Report -97- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


availability, have been used successfully to evaluate the environmental effects of flow regime<br />

alterations.<br />

J assby et al. (1995) evaluated the relationship of estuarine food webs to freshwater inflow, using the<br />

down-estuary position of the 2 ppt isohaline as an estimator for flow. The food web of striped bass<br />

(Marone saxatilis) in San Francisco Bay/Sacramento-San Joaquin Delta Estuary was determined to<br />

include phytoplankton, invertebrates, smelt, and flounder. Each component of the food web was<br />

statistically modeled against the 2 ppt isohaline position. Different lags and averaging methods were<br />

used. Meaningful relationships were established between the flow estimator, and abundance indices<br />

for crustaceans and mollusks.<br />

Christensen et al. (1997) developed an index to assess the sensitivity of Gulf of Mexico species to<br />

changes in estuarine salinity regimes. The index is keyed to habitats and their utilization by each life<br />

stage of 44 estuarine species, of which 13 are macroinvertebrates, including 8 species of crustaceans<br />

and mollusks occurring in Charlotte Harbor. Species salinity range/tolerance data were compiled<br />

from reports of invertebrate distribution and abundance, in original literature.<br />

Kalke and Montagna (1991) used benthic cores to sample infauna in the Lavaca River/Bay system<br />

Texas. Specimens were enumerated and wet weight biomass was measured for dominant species.<br />

Mollusks were weighed with shells. Polychaete and mollusk data varied meaningfully with flows,<br />

salinity and chlorophyll. Vertical increments of core samples also showed differences in infaunal<br />

number and biomass responses to these variables. Montague et at. (1989) used small and large cores<br />

and sampled epifauna with an inverted plankton net in northeastern Florida Bay, to assess benthic<br />

communities along salinity gradients. Fauna were sorted by taxonomic class and counted. Total<br />

faunal counts were related with meaning to mean salinity and standard deviation of means, across<br />

a salinity gradient.<br />

Peterson (1996) followed shifts in dispersion of crustaceans in a Mississippi estuary, using a<br />

stratified sampling design to estimate invertebrate densities. Samples were taken in vegetated and<br />

non-vegetated areas. Crustacean species were identified and number of individuals counted. Species<br />

occurrence (presence/absence), location, and number were affected by inflows and salinity. Large<br />

variations were observed.<br />

Livingston et al. (1997) sampled invertebrates by trawls and cores at fixed stations in Apalachicola<br />

Bay, Florida. Samples were sorted, identified, counted, and measured. Subsamples were dried and<br />

weighed to produce size:weight regressions. In addition, invertebrates were sorted from gut contents<br />

of fishes caught by trawl, and were treated as above. All data for all specimens were grouped<br />

according to trophic level, and biomass of each trophic level was calculated on a meter-squared<br />

basis. Droughts were found to amplify herbivore biomass throughout the Bay.<br />

In a large study of Texas estuaries, Longley (1994) used commercial landings of oysters, and of four<br />

crustacean species, to determine that antecedent 1-2 year average inflows, and temperature,<br />

significantly regulated estuary-specific yields.<br />

A1afia River Mollusk - Final Report -98- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Barbour et al. (1996) developed a framework for biological criteria for Florida streams using benthic<br />

macroinvertebrates. Though intended for freshwater systems, results are instructive for the tidal<br />

Peace River. An ensemble of 31 candidate metrics was screened for utility. Twelve were chosen<br />

for detailed study in different ecoregions of the state. Not counting exclusively insect-dependent<br />

metrics, number of taxa, percent dominant taxon, and possibly, number of crustacea plus mollusk<br />

taxa may be useful in the development of a condition index for the tidal Peace River.<br />

111.1.1 Metrics of Benthic Macroinvertebrate Response to Salinity Change in the Alafia River<br />

Empirical attributes (metrics) of river and estuarine biota may be drawn from ecological studies for<br />

use in constructing hypotheses regarding the response of communities to perturbation (Barbour et<br />

al., 1996; Deegan et aI., 1997). Results of previous studies (Texas Instruments, 1978; Estevez 1985,<br />

1986a, 1986b) in the Peace and Myakka Rivers, and Charlotte Harbor, may be combined with<br />

published accounts to identify metrics for Alafia River benthic macroinvertebrates, and to identify<br />

the type of change expected for each metric, given a salinity change, Table 111.1. Metrics are<br />

evaluated with respect to salinity increases potentially resulting from a reduction of river discharge.<br />

Table 111.1.<br />

Expected response of benthic macroinvertebrates to salinity increase.<br />

Tidal Alafia River<br />

Macroinvertebrate Metric Upriver Reach Downriver Reach<br />

Number of species decrease increase<br />

Shannon-Weiner Index decrease increase<br />

Numerical dominance of a taxon increase decrease<br />

Number of individuals decrease increase<br />

Percent Crustacea decrease increase<br />

Percent Annelida mcrease decrease<br />

Number of wood borers mcrease increase<br />

Percent herbivores variable increase<br />

Percent filter feeders variable mcrease<br />

Percent deposit feeders mcrease decrease<br />

Biomass of fauna less mollusks decrease increase<br />

Biomass of mollusks decrease increase<br />

River position of living bivalve taxa mcrease increase<br />

River position of dead bivalve taxa decrease decrease<br />

Bivalve condition index decrease variable<br />

The listed metrics address ecological properties of richness, composition, and trophic status, similar<br />

to other efforts to establish biotic criteria. In addition, two additional properties are addressed-­<br />

dispersion, and condition.<br />

A1afia River Mollusk - Final Report -99- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Dispersion refers to the spatial range and central position of a taxon along the river gradient, in this<br />

case evaluated for live and dead bivalves. Bivalve shells persist in the river for a decade or more,<br />

leaving a record against which modem distributions, and trends, may be assessed (see next section).<br />

Relative to living bivalves, dead shells will be positioned down-river (decreased river-kilometer<br />

value).<br />

111.1.2 Hydrology<br />

Conditions of rainfall and river flows for the period encompassing this study were described in<br />

Section II. Figures 11.1 through 11.5 illustrate the rainfall and river conditions.<br />

Prior to sampling the Alafia River's mean monthly flow at Lithia (USGS 02301500) had been less<br />

than the mean of monthly stream flows for 20 consecutive months. In the previous 30 months mean<br />

monthly flow exceeded the long term flows only twice.<br />

111.2 METHODS<br />

Mollusk populations and communities do not respond instantaneously to conditions of river flow,<br />

salinity, or other physicochemical variables. Spatial patterns in mollusk distribution develop as a<br />

result of differential reproductive periods, larval development rates, recruitment variables, life ·<br />

history characteristics, and mortaJity patterns and rates. As a result, a spatial pattern observed at a<br />

given time is the result of antecedent conditions, generally on the order of weeks to months.<br />

One set of samples was collected during the period June 18,2001 to July 12,2001. Measurements<br />

of maximum shell height were made for two bivalve species on September 11, 2001. Oyster reef<br />

locations were noted during reconnaissance trips prior to and during sampling trips, and in<br />

September.<br />

A river kilometer system developed for the District's minimum flow studies was employed (Figure<br />

111.1). Samples were collected at half-kilometer intervals from the mouth of the river to Bell Shoals.<br />

Observations were also made at oyster reefs, channel markers and bridges, and known restoration<br />

sites.<br />

Transects normal to the river's center-line and intersecting it at half-kilometer intervals were<br />

reconnoitered to decide the distribution of sampling effort across each transect. Because the primary<br />

objective of the study was to identify down-river patterns in species dispersion, samples were<br />

collected across each transect at representative sites, and data were pooled for the entire transect.<br />

In single-channel reaches of the river, subtidal samples were collected close by opposite banks and<br />

at evenly spaced intervals across the channel. In reaches with islands and multiple channels, subtidal<br />

effort was distributed so as to sample in each channel or basin.<br />

Alafia Ri ver Mollusk - Final Report -100- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Collection of intertidal samples was biased by two criteria. First, accreting banks were preferred<br />

over eroding ones, meaning in practice that the insides of bends were preferred over outsides, and<br />

that samples were collected more from point-bars, mangrove islands, and shoals than from steeply<br />

inclined banks. Second, a preference was used for the bank judged to be least altered by human<br />

activity. Sea walls and filled areas were avoided where possible. It was not possible to find suitable<br />

intertidal areas at either end of a few transects in the lower reaches of the river.<br />

Subtidal samples « ML W) were collected by a petite ponar grab rather than pipe cores because<br />

larger bivalve such as Rangia were often missed or lost by the cores. Ponar grabs offered a larger<br />

sampling surface area (0.0232 square meters) than pipe cores (0.00456 square meters).<br />

A sample was comprised of two ponar grabs (surface area = 0.0464 square meters) at a given<br />

location. Five such subtidal samples were taken along each half-kilometer transect, giving a pertransect<br />

sampling surface area of 0.2320 square meters. Contents of each sample were concentrated<br />

over a 3.0 millimeter sieve, processed in the field (light samples), or bagged and returned to the<br />

<strong>Laboratory</strong> (heavy samples).<br />

Intertidal samples (> ML W) were usually collected by spade although ponar grabs were sometimes<br />

used during high tides. Intertidal effort was the same as subtidal effort except that hand collections<br />

of particular species were sometimes added to intertidal samples so as to record the presence of rare<br />

or cryptic species. The gastropods Neritina and Littorina, for example, often were found in low<br />

numbers, near the tops of black needlerush shoots. Oysters and mussels likewise grow cryptically<br />

behind mangrove roots or within crevices of fallen wood.<br />

Usually, subtidal areas were visually reconnoitered by snorkeling and intertidal areas were walked<br />

in search of rare occurrences.<br />

Specimens were sorted as live or dead and identified in the field or <strong>Laboratory</strong>. For each species in<br />

each sample, median size was determined by arranging specimens from smallest to largest and<br />

measuring the median specimen to the nearest millimeter. Gastropods were measured from the apex<br />

to opposite end; bivalves were measured from front end to hind end. For data analysis, a mean value<br />

of median sizes was computed for each species. Condition was scored for each whole live animal<br />

or single dead valve as percent covered by mechanical erosion, shell dissolution, or other loss or<br />

damage.<br />

During the September survey of dominant bivalves, samples were taken of oysters and mussels<br />

(Crassostrea virginica and Geukensia demissa, respectively). Samples were taken from<br />

representative sites and areas where the species occurred in large numbers, rather than on halfkilometer<br />

intervals. Most oysters ana ·all mussels were collected intertidally. At each site, 20-30<br />

relatively large individuals were returned to the boat; the largest 15 were measured for height to the<br />

nearest millimeter.<br />

A1afia River MoUusk - Final Report -101- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


III.3<br />

RESUL TS<br />

III.3.1 Effort and Representativeness<br />

A total of 37 sites was visited. Contamination was rare except for the introduced and naturalized<br />

bivalve Corbicula. Only a few fossil shells were found at sites near steep and recently filled river<br />

banks and these were not counted.<br />

III.3.2 Species Richness<br />

Twenty taxa were encountered and 18 were identified to species (Table III.2). Ten species<br />

constitute 95% of specimen counts, with the remaining 10 species present only in low numbers or<br />

as 1 species.<br />

Table III.2.<br />

Summary list of Alafia River mollusk species collected on 0.5 km transects.<br />

Species<br />

Cumulative Percent<br />

Mytilopsis leucophaeata<br />

Geukensia demissa granossissima<br />

Polymesoda caroliniana<br />

Crassostrea virginica<br />

Mysella planulata<br />

Tagelus plebeius<br />

Neritina usnea<br />

Corbicula fluminea<br />

Tellina spp.<br />

Unidentified bivalve<br />

Littorina irrorata<br />

Mulinia lateralis<br />

Macoma tenta<br />

Amygdalum papyrium<br />

Haminoea succinea<br />

Crepidula Jomicata<br />

Abra aequalis<br />

Nassarius vibex<br />

Polinices duplicatus<br />

Unidentified planospiral gastropod<br />

36.7<br />

52.0<br />

66.9<br />

78.1<br />

82.6<br />

86.5<br />

89.1<br />

91.3<br />

93.4<br />

95.3<br />

97.0<br />

98.3<br />

99.0<br />

N = 20 taxa<br />

Alafia Ri ver Mollusk - Final Report -102-<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - Jun e 2003


111.3.3 Species Accounts<br />

Accounts are given below of the numerically dominant species. Data are provided for all species<br />

in Appendix Table E-l. Accounts emphasize down-river presence and absence in terms of live and<br />

dead specimens found both intertidally and subtidally, but other information is summarized on mean<br />

sizes, evidence of recruitment (as percent juveniles), condition (as weathering indices), and transport<br />

(as dead-valve isotropy). As used here, mean size represents the arithmetic average of a set of<br />

median sizes measured for each species. Accounts are listed in descending order of the species'<br />

numerical abundance. Scales used to graph density and size data vary between species.<br />

Mytilopsis leucophaeata<br />

Mytilopsis is a small mussel with opportunistic life-history characteristics. It was found in<br />

the half-kilometer survey only from RK 8.0 - 11.0 and near RK 15.0, and live specimens<br />

were found only at RK 9.0 and 9.5 (Figure 111.2). Only subtidal material was found alive.<br />

Despite its narrow range Mytilopsis was numerically dominant in the river because very large<br />

numbers of the mussel can occur in small clumps; Mytilopsis is not a large bivalve and in<br />

2001 there were large numbers of recently settled, small « 10 mm) animals in the upper<br />

reach of the tidal river. In fact, Mytilopsis was the only mollusk found upstream of RK 12<br />

(near Buckhorn Spring) save for two occurrences of Corbicula. Mussel colonies were more<br />

common between Buckhorn Spring and Bell Shoals than indicated by the half-kilometer data.<br />

Clumps of mussels were encountered throughout this reach but only in the surface 10-15 cm<br />

of the water column, and only on tree branches, snags, ropes, buoys, or other substrata able<br />

to float near the water surface as the tide changed. It should be noted that the Buckhorn<br />

Spring to Bell Shoals reach was characterized by chalky, whitish-yellow bottom waters<br />

(deeper than about 1.5 m) of unknown origin or composition. No living mussels were found<br />

in the chalky zone of the river, despite an extensive effort to sample and observe the bottom<br />

under these difficult conditions.<br />

Geukensia demissa granossissima<br />

This mussel is almost exclusively intertidal and occurred in the lower 7 kilometers of the<br />

river, especially in association with mangrove roots. It also grew as clumps along the<br />

margins of salt marshes and reached very high densities. Among half-kilometer stations,<br />

mussel density and mean size increased with distance from the river mouth (Figure 111.3)<br />

Polymesoda caroliniana<br />

The marsh clam Polymesoda belongs to the same bivalve family as Corbicula, but differs<br />

from it by being larger, more intertidal, and a native species. Polymesoda in the Alafia River<br />

tends to be intertidal and is conspicuous along margins of intertidal wetlands, especially<br />

brackish marshes. It was much more abundant, and widely distributed, than indicated by<br />

transect data, and so was studied in more detail in the September sampling (see below). The<br />

species occurred in all available habitat between river kilometers 2.0 - 10.0. Density (both<br />

live and dead) was greatest in the middle part of the species' range (RK 4.5-8.0) but density<br />

and size were unrelated: live and dead size increased as a function of ri ver kilometer (Figure<br />

111.4). Because of its intertidal location, Polymesoda shells weather rapidly.<br />

A1afia Ri ver Mollusk - Final Report -103- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Crassostrea virginica<br />

Crassostrea is the eastern oyster of commercial importance. In the Alafia River it grows as<br />

small to large intertidal reefs, among roots of the red mangrove, Rhizophora mangle, on<br />

seawalls, and on intertidal shell hash in the lower 7.5 Ian of the stream. The location of all<br />

oyster reefs was mapped (see ahead to Figure III.24). All reefs occurred between RK 1.0-<br />

4.0 and reefs on the south bank were larger than elsewhere. A reef created at the Bullfrog<br />

Creek Cutoff has been overgrown by mangroves, and another created at the US 41 boat ramp<br />

could not be found. Oysters were much more abundant, and widely distributed, than<br />

indicated by transect data, and so were studied in more detail in the September sampling (see<br />

below). Oyster density and percent juveniles decreased with distance from Hillsborough<br />

Bay (Figure III.5). Few juveniles were collected.<br />

Mysella planulata<br />

Mysella was not common in the river but it was very abundant, as a recent set of juveniles,<br />

at one station, resulting in a high numerical rank overall (Figure III.6).<br />

Tagelus plebeius<br />

Tagelus, a member of the family of short razor clams, is common but not abundant<br />

throughout the lower 7 Ian of the tidal river. It was found alive and dead in subtidal areas<br />

between RK 5.0 - 7.0 but the intertidal upstream limit of the species was sharply demarcated<br />

at RK 5.0. Tagelus had the same river distribution as Crassostrea but, unlike oysters,<br />

Tagelus density increased with river kilometer (Figure III.7). This species has particular<br />

habitat requirements and its dispersion may be highly gregarious or clumped (Holland and<br />

Dean, 1977). Tagelus is a fragile species and even live material can be weathered<br />

substantially.<br />

Neritina usnea<br />

Neritina usnea is a shallow-water gastropod with strong intertidal affinities, and is often<br />

found grazing on benthic algae mats, submerged aquatic vegetation, and emergent marsh<br />

species such as black needlerush, funcus roemerianus. The species is conspicuous in the<br />

tidal Alafia River upstream of RK 5.0 to near RK 11.5. A sharp transition occurred at RK<br />

5.0 relative to the dominant intertidal gastropod, where Neritina gave way to the periwinkle<br />

Littorina. Nerite density was highest in the middle of its range (Figure III.8). Live material<br />

tended to be larger than dead material.<br />

Corbicula fluminea<br />

Corbiculafluminea is an introduced, naturalized freshwater bivalve with a tolerance for low<br />

salinities. Corbicula was one of two non-native species of mollusk collected in the tidal<br />

Alafia River. Corbicula was more abundant subtidally than intertidally and in both strata<br />

extended from Bell Shoals down to RK 8.5 (Figure III.9). Corbicula was most abundant<br />

as dead material close to Bell Shoals; live material was sparse. Dead shells were highly<br />

weathered, suggestive of drift from upstream reaches. At least for the river below Bell<br />

Shoals, Corbicula was not a problem species.<br />

Alafia River Mollusk - Final Report -104- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Tellina sp.<br />

Tellins were not common but did occur at a few stations, in high number, as small dead<br />

material (Figure 111.10). What makes this species or species group interesting is that it is<br />

one of a few mollusk species that have ranges falling entirely within the tidal river. (A<br />

similar pattern was found in the Peace River.) These bivalves set in large numbers but<br />

juvenile mortality apparently is large. Tellins represent a significant component of the<br />

benthic infaunal community, and of data summarized elsewhere in this report, but in this<br />

sampling effort tellin abundance may be under-estimated because of the relatively large sieve<br />

size that was used.<br />

Littorina irrorata<br />

Littorina is the marsh periwinkle found on mangroves and emergent marshes near or above<br />

the water line. It occurred on salt marshes below RK 5.0 and on mangrove-dominated<br />

stations above and below US 41. Littorina was more abundant intertidally, where both living<br />

and dead specimens were found. Though data are few, upstream Littorina appear larger than<br />

downstream ones (Figure 111.11). As noted previously, the ranges of Littorina and Neritina<br />

do not overlap although their respective end-members converge at RK 5.0. The basis for this<br />

switch is unknown but suggests strong habitat specificity or competitive exclusion.<br />

Perna viridis<br />

Perna, the green mussel, was not encountered during the half-transect surveys but was found<br />

on a channel marker downstream of US 41 (-RK 1.0: 27deg 51min 23.5sec N latitude, 82deg<br />

23 min 20.9sec W longitude). Most likely introduced to Hillsborough Bay in 19xx, Perna<br />

had already established itself throughout McKay, Hillsborough, Middle Tampa, and Upper<br />

Tampa bays by 2001. This large mussel was abundant well below the surface. Intertidal<br />

piling and piling in the 30 cm below MLL W did not support Perna.<br />

111.3.4 Community Pattern<br />

The mollusk community of the tidal Alafia River, sampled as it was in this study, can be studied as<br />

a whole for patterns in number and kind as functions of strata and ri ver position. Concerning overall<br />

mollusk numbers, for example, it can be seen from Figures 111.12 through 111.15 that more species<br />

were collected down-river than upriver, for both live and dead material. In terms of density, live and<br />

dead material exhibited variable spatial patterns with live material tending to be more abundant than<br />

dead in the lower river. It is noteworthy that both richness and density were minimal above RK 12.0.<br />

Also noteworthy was the presence of greater species richness in the intertidal stratum, than<br />

subtidally . . Intertidal richness was highest near RK 4.0-5.0 (Figure 111.14). With one exception (at<br />

RK 10.5), intertidal densities were always larger than subtidal densities.<br />

Additive effects of estuarine species can be seen in Figures 111.16 and 111.17, depicting cumulative<br />

number of species progressing upstream or down. In an upstream sort the y-intercept begins low<br />

because of a paucity estuarine species, both live and dead. A strong step-function occurs at RK 2.0<br />

in the upstream sort of live species whereas the upstream increase of dead species richness is gently<br />

curvilinear. Both live and dead species richness curves decrease monotonically in downstream sorts<br />

Alafia River Mollusk - Final Report -105- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


(Figure III.16). From Figure III.17 it can be seen that the upstream step-function is caused by an<br />

increase in intertidal species richness, and that there is no further gain in cumulative species richness<br />

upstream of RK 8.5.<br />

Details of cumulative species curves can be found in species-overlap diagrams depicting live and<br />

dead occurrences sorted by first occurrence, progressing upstream (Figure III.lS). Several rarer<br />

species near the river mouth originate in Hillsborough Bay and do not penetrate into the river beyond<br />

RK 4.0. A few species have ranges falling entirely within the tidal river and Corbicula's range<br />

presumably extends upriver far beyond the reach of tidal influence. The sharp replacement of<br />

Littorina by Neritina is evident in Figure III.lS. No step-functions occur when progressing<br />

downstream (Figure III.19).<br />

Species-overlap curves allow two questions to be answered. First, how should the river fauna be<br />

sampled in order to maximize the probability of accurately defining a species' range? Second, how<br />

does the living component of a species lay relative to its "footprint" of dead remains accumulated<br />

over the period of years to decades?<br />

In the first case, it is evident in all diagrams that the live-only fraction or single-stratum fraction does<br />

not represent all of a species' spatial domain. No species occurred continuously throughout its range<br />

along the river, as living material, although the intertidal gastropods came close. Some species had<br />

nearly-continuously distributions, notably Tagelus and Corbicula, but even these contained gaps<br />

when surveyed at half-kilometer intervals. Given the relatively intense effort made to sample the<br />

River, such gaps could be interpreted as the result of natural variation in habitat variability and<br />

recruitment success. To the extent a gap represented a result of consequence to the interpretation<br />

of data, the gap could be assessed more thoroughly by means of a follow-up visit. No follow-up<br />

visits were made to verify gaps in this study.<br />

The second question regards the spatial relationship of a species' living members to its dead ones.<br />

Six species were only found as dead material (Table III.3). Three species have coincident material<br />

and 6 (Corbicula, Geukensia, Mysella, Macoma, Tagelus, and Crassostrea) had live ranges that were<br />

shifted upriver relative to dead material, or were out-of-range relative to dead material. Whether<br />

these species' live ranges had shifted during or as a result of the prevailing drought conditions cannot<br />

be discerned from the data.<br />

Alafia River Mollusk - Final Report -106- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Table III.3.<br />

Relation of live to dead shell distribution patterns in the tidal Alafia River.<br />

Relative to dead shells,<br />

live animals are<br />

Not found<br />

In the same range<br />

Toward upriver end<br />

Out-of-range, upriver<br />

Toward downriver end<br />

Out-of-range, downriver<br />

Out-of-range, both ways<br />

Species<br />

Polin ices<br />

Crepidula<br />

Haminoea<br />

Abra<br />

Nassarius<br />

Tellina<br />

Amygdalum<br />

Polymesoda<br />

Mulinia<br />

Corbicula<br />

Geukensia<br />

Mysella<br />

Macoma<br />

Tagelus<br />

Crassostrea<br />

Mytilopsis<br />

Neritina<br />

Littorina<br />

III.3.5 Oysters and Mussels<br />

Although Mytilopsis occurred as dense clumps in upriver reaches, the two species forming the largest<br />

biocoenosces were the intertidal mussel Geukensia demissa, and the eastern oyster, Crassostrea<br />

americana, which occurred between high subtidal to mid-intertidal elevations. A September 2001<br />

effort was made to describe the spatial arrangement of these species' largest individuals. Although<br />

no distinct pattern was discerned for mussels, the dispersion of largest oysters was of interest- most<br />

large oysters occurred in the mid-range of the species, around RK 2.0-3.0, and the size of largest<br />

oysters on upriver and downriver reefs were significantly smaller (Figure 111.20).<br />

Alafia River Mollusk - Final Report -107- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


III.4<br />

DISCUSSION<br />

The presence of 20 macro-mollusk species in the tidal Alafia River, as collected by half-kilometer<br />

sampling effort, compares unfavorably with the list of mollusks collected by the benthic infaunal<br />

community analysis (Table III.4). About half of the extra species collected by the infaunal effort<br />

were numerically rare or occurred in only one sampling event (the benthic infaunal effort was<br />

repetitive whereas the mollusk survey was conducted only once). Some species were collected by<br />

the live and dead survey that were not collected by the infaunal effort, and vice versa. The most<br />

notable absence from the infaunallist was Littorina irrorata, which may be explained by the species'<br />

intertidal habit. Live Littorina are sometimes found on intertidal substrata but are more commonly<br />

found on mangrove roots or shoots of various salt marsh species. Furthermore, some species found<br />

in the infaunal effort but not in the mollusk survey were very small: the infaunal effort retained many<br />

more small specimens because it employed a 0.5 mm mesh sieve, compared to the 3.0 mm mesh<br />

sieve employed in the mollusk survey.<br />

Table III.4.<br />

Comparison of mollusk species richness by river and gear.<br />

Effort<br />

Species Number<br />

Alafia<br />

Peace<br />

Mollusk Survey 20 34<br />

Invertebrate Survey 45 55<br />

Mollusk species richness was lower than that observed in the tidal Peace River, where similar gear<br />

and effort were made as part of the hydrobiological monitoring program (<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong>,<br />

2001). The mollusk survey collected 70% more species in the Peace than in the Alafia, whereas the<br />

infaunal program collected 33% more species. Compared to mollusk diversity of the Peace River,<br />

the mollusk diversity of the Alafia was impaired.<br />

Closer comparison of Alafia and Peace river mollusks reveals other similarities and differences. In<br />

discussing these points it is important to recognize that both the Peace and Alafia rivers enter the<br />

tops of their respective bays (i.e., farthest from Gulf waters); that both have a history of chemical<br />

contamination from upstream phosphate miningl, and that the tidal Alafia River is approximately<br />

half as long as the tidal Peace River.<br />

In terms of species diversity, the two streams are similar relative to dominant taxa except that the<br />

Alafia River appears to lack Rangia cuneata. No live or dead Rangia were collected by the mollusk<br />

1/ Although the Alafia River has experienced acid spills in addition to clay slime spills historically common<br />

in both rivers.<br />

AJafia River Mollusk - Final Repon -108- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


survey, and no Rangia were collected by <strong>Mote</strong>'s benthic infaunal collection efforts, in the Alafia<br />

River. Furthermore, Rangia has not been reported by either the Hillsborough County or HBMP<br />

sampling efforts in the Alafia River. Rangia is a common bivalve in the Peace River and dominates<br />

subtidal strata where Corbicula does not. Rangia occurs entirely within the tidal River and is<br />

regarded an element of that river's brackish water fauna. It may attain densities of 465 live animals<br />

per square meter. In the Peace River it is more or less coincident with the intertidal marsh clam<br />

Polymesoda (<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong>, 2001). If Rangia was coincident with Polymesoda in the<br />

Alafia River it would occur from RK 2.0-10.0. No ecological homologue of Rangia occurs in the<br />

Alafia River, leaving open the question of what effects, if any, the lack of a numerically dominant,<br />

large, subtidal bivalve has on water quality and river ecology.<br />

Rangia occurs in rivers north and south of Tampa Bay but whether Rangia occurs, or once occurred,<br />

in tributaries of Tampa Bay is presently unknown. Godcharles and J app (1973) remarked that "the<br />

most abundant bivalve found in a dredge survey of the Florida west coast was the marsh clam,<br />

Rangia cuneata", and that, further, "it was confined to brackish areas of the Peace and Myakka<br />

Rivers." Godcharles and J aap surveyed the lower reach ofthe tidal Manatee River but did not sample<br />

in other tributaries of Tampa Bay.<br />

In contrast to the Peace River, Corbicula is not a problem species in the Alafia River. It may occur<br />

upstream of Bell Shoals but in the tidal river it was found at low densities, most often dead. The<br />

relatively density of dead shells further suggests that Corbicula has not been historically important<br />

in the tidal river, although weathering scores for dead Corbicula were very high (Figure 111.10),<br />

even compared to weathering of dead Corbicula in the Peace River. The green mussel, Perna<br />

viridis, has established a foothold in the tidal Alafia River. Whether it attains the numerical densities<br />

of a problematic invasive species remains to be seen but, given the high densities of other mussels<br />

in the Alafia River, its potential is considerable.<br />

Currents were not measured during the mollusk survey but it was evident that current speeds become<br />

very strong through the narrow, rock-lined reach of the tidal river below Bell Shoals.<br />

Salinity was not measured during the survey but historical data and contemporary data from other<br />

sources are informative. Figure 111.21 depicts mean surface salinity and the standard deviation of<br />

salinity along the river, calculated from EPCIHBMP data for a 60 month period. Mean salinity was<br />

nearly zero near Bell Shoals and, with one exception near RK 2.0, increased as a smooth curvilinear<br />

function with proximity to Hillsborough Bay. Salinity variability, expressed as standard deviation,<br />

also rose with proximity to the Bay but peaked near RK 2.0. At least for the period of record for<br />

salinity data, the river freshens so far downstream as RK 4.0 only rarely. Whether salinity variability<br />

of the Bay was lower than the river cannot be discerned with these data. Using data from Bulger et<br />

al. (1990), the tidal Alafia River may be segmented with respect to salinity as follows:<br />

A1afia River Mollusk - Final Report -109- More <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


NOS Salinity Band<br />

Fresh to 4 ppt<br />

2 ppt to 15 ppt<br />

11 pptto 19 ppt<br />

15 ppt to 28 ppt<br />

23 ppt to <strong>Marine</strong><br />

Alafia River Kilometers<br />

9.0 -17.1<br />

3.4 -11.2<br />

2.0 to 2.5 - 5.1<br />

Hillsborough Bay -3.3<br />

Not present<br />

Percent Total Length<br />

45<br />

43<br />

3 - 17<br />

18<br />

Based on river distance and mean salinities the tidal Alafia may be seen as being dominated by tidalfresh,<br />

oligohaline, and brackish water conditions. As shown below, a different result obtains when<br />

salinities are interpreted with respect to river area. There were no distinct correlations between<br />

salinity metrics and metrics of the subtidal mollusk community except insofar as species richness<br />

and salinity were positively related.<br />

Dissolved oxygen was not measured during the mollusk survey. Figure 111.22 depicts bottom<br />

concentrations of dissolved oxygen expressed as mean and percentile values for each HBMP stratum.<br />

Strata 4 through 6 (RK 7.0 - 14.0) had mean DO values less than or equal to the criterion for<br />

hypoxia, 2.0 mgll. Stratum 6 (RK 11.7 - 14.0) had extreme low concentrations. Stratum 6 is<br />

centered approximately at Buckhorn Spring and so encompasses the upstream most reach of tidal<br />

river with sediment-dominated bottom (see below). Numbers of species and numbers of individuals<br />

are lower upstream of RK 7.0, and especially upstream of RK 11.7, implicating oxygen stress as a<br />

probable limiting factor.<br />

Sediments display several characteristics of nutrient and organic enrichment. From the literature,<br />

Hill (2001) found that percent carbon and percent organic matter in sediments were much higher<br />

than in the Little Manatee River, and were especially high2 between RK 3 -10, inclusive, in the<br />

Alafia River. These findings were corroborated by sediment data collected as part of the benthic<br />

macroinvertebrate study in the Alafia River (Section II of this report): although bank-to-bank<br />

variation in sediment composition occurred, the impaired nature of sediments from near RK 4.0 to<br />

RK 13.0 can be seen in grain sizes, percent clays and silts, percent solids, and percent moisture<br />

(Section II, Figures 11.9 - 11.12).<br />

Not all river bottom below Bell Shoals is dominated by sediment. In fact, the tidal river bottom<br />

upstream of Buckhorn Spring is a mixture of sediment and rock, and the river bottom upstream of<br />

RK 16.6 is almost entirely rock in nature (Figure 111.23). The combination of indurated bottom, and<br />

bottoms with poor sediments, places a strong limitation on subtidal mollusks relative to suitable<br />

physical habitat availability in the tidal Alafia River.<br />

Taken as a whole, physical and chemical data portray a tidal river environment for mollusks that has<br />

a strong salinity gradient (> 1 pptlkm); areas of tidal river with no sedimentary habitat; other areas<br />

of river bottom covered by accumulations of fine, organically enriched, and anoxic sediments; and<br />

2/ Greater than 4% carbon and 7% organic matter.<br />

Alafia River Mollusk - Final Report -110- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


an overlying water column with mean dissolved oxygen concentrations less than or equal to the<br />

ecological standard for hypoxia across 30-40% of the river's tidal length. The tendency for intertidal<br />

areas to support more species and individuals than subtidal areas bespeaks of the poor quality of<br />

subtidal habitat in the Alafia River, at least for mollusks.<br />

Based on species richness and density comparisons, the quality of mollusk habitat within intertidal<br />

areas is less impaired. Current speeds are lower across tidal flats than in river channels. Oxygen<br />

concentrations tend to be higher across intertidal bottoms because the water is shallow and winddriven<br />

wave energy promotes mixing. The same energy resorts sediments and promotes the export<br />

of fine or organic particles from sediments. Other factors be"ing equal, salinity, food supply are<br />

probably the most important chemical and ecological factors regulating intertidal mollusk species<br />

richness and densities. Predation, parasitism, and disease may have strong effects on particular<br />

species.<br />

Oyster data are informative relative to the combined effects of physical, chemical, and biotic limits<br />

to intertidal mollusks in the Alafia River. As shown in Figure 111.24, oyster reefs were found in the<br />

lower river downstream ofRK 4.0. Most reefs were associated with vegetated wetland systems, and<br />

the largest reefs were on the south shore of the river. The statistical form of maximum oyster size<br />

in relation to RK is a normal curve (see Figure 111.20), where the greatest values of mean oyster<br />

height among large, living oysters occurred between RK 2.0 and 3.0. Geographically, the largest<br />

oysters occurred where the largest reefs occurred. The mean salinity of this river reach was<br />

approximately 19 to 20 ppt with a standard deviation about 8 to 9 ppt (Figure 111.21).<br />

The present study lacks data on oyster predators, parasites, or diseases, but insofar as maximum<br />

oyster size peaked within the tidal reach of the river (as opposed to Hillsborough Bay) it may<br />

reasonably be inferred that the limiting effects of such depradations, if any is significant, are<br />

regulated by lower salinities, and that conditions for optimal oyster growth do occur in the Alafia<br />

River. As explained above, if salinity and food supply are more important for oysters than sediment<br />

quality or water quality, then a mean salinity of approximately 19 to 20 ppt with a standard deviation<br />

about 8 to 9 ppt represents an optimal regime for oyster growth in the river.<br />

Nothing can be said about the characteristics of an optimal food supply for oysters with data at hand.<br />

It turns out that the most reefs, largest reefs, and largest individual oysters are growing where the<br />

most physical habitat space for oysters is available. As Figure III.2S illustrates, low intertidal 3<br />

bottom surface area increases with proximity to Hillsborough Bay and is greatest near RK 2-3. It<br />

is interesting to question whether oysters are utilizing available reef space fully or whether there is<br />

habitat for more or larger reefs. In any event, the exponential decline in potential oyster habitat as<br />

RK increases can be exploited to evaluate how much optimal oyster habitat might be lost if flows<br />

declined enough to move the river-position of optimal salinities farther upstream. From<br />

3/ -0.12 m NGVD; essentially the same curves describe the area of the higher intertidal area (+0.18 m<br />

NGVD).<br />

Alafia River Mollusk - Final Report -111 - <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Figure 111.26 it may be seen that approximately 180 ha of oyster reefs occur upstream of RK 2.0.<br />

An upstream shift in the location of optimal oyster salinities, of only 1 km, would truncate potential<br />

oyster habitat by about 35 acres, a loss of nearly 20%. A 2 km upstream shift of optimal salinities<br />

would truncate potential oyster habitat by more than a third.<br />

Such analysis must be taken as preliminary, albeit informative, because numerous factors have yet<br />

to be reckoned. The definition of optimal oyster salinity was based on the maximum heights of<br />

large, living oysters. As shown by <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> (2001), live mollusks in the Peace River<br />

may occupy only a part of a given species' long-term river-range as depicted by the spatial dispersion<br />

of dead shells. It is possible that maximum sizes of dead oyster material would reveal a different RK<br />

maximum and hence, a different optimal salinity regime.<br />

By the same token, precisely what antecedent period of salinity exposure is relevant in regulating the<br />

size of very large oysters is unknown. Certainly the salinity regime at times of spawning and<br />

settlement are important initial conditions, but without knowing the precise ages of very large oysters<br />

it is difficult to identify the most relevant historical salinity conditions to use for improved analyses.<br />

Finally, the effects of natural or catastrophic episodic events on the maximum sizes of oysters in the<br />

Alafia River would need to be considered. In addition to episodic biotic impacts such as predation<br />

or disease, the river's recent history of acid pollution needs to be included in the interpretation of<br />

mollusk data. The most recent acid spill occurred in December 1997 (EPC et a!., 2000), just 43<br />

months before the mollusk survey. "Mussels" on the 1-75 bridge experienced 100% mortality and<br />

oysters at a reef created in 1996 at US 41 experienced 33% mortality. No published data are<br />

available on the ability of oysters to tolerate acidic waters, but it follows from observations following<br />

the acid spill that pH's in the range of 3.0 to 4.0 were sufficient to cause 33% to 100% mortality<br />

among bivalves.<br />

Oysters grow to market size (~ 76 mm) in two to four years (Little and Quick, 1976; Ortega and<br />

Sutherland, 1992; Livingston et a!., 1999), signifying that most of the oysters living in the Alafia<br />

River in 2001, including the largest oysters, could have recruited since the acid spill in 1997. If so,<br />

then the salinity characteristics of the previous three years would have had the most effect on oysters<br />

found alive in 2001.<br />

111.5 SYNTHESIS<br />

From the standpoint of mollusk survey results, the present distribution of major macroinvertebrate<br />

habitats and communities in the lower Alafia River may be described by river reach. Bell Shoals is<br />

a sill and rock -controlled nick -point of the tidal channel. It may serve as ephemeral habitat for lotic<br />

fauna with lithophilic tendencies (e.g. Insecta) but is not a significant habitat for infaunal<br />

macroinvertebrates. The same may said of the river channel from Bell Shoals to near Buckhorn<br />

Spring, where the predominance of rock bottom is high, banks are steep, and sedimentary formations<br />

occur as local and thin lenses of materials washed from tributaries and ditches. In Summer 2001<br />

Alafia River Mollusk - Final Report -112- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


near-bottom waters were also plagued by a bloom or turbid layer of unknown origin, further reducing<br />

invertebrate habitat value.<br />

From Buckhorn Spring to the vicinity of the interstate bridge the mollusk fauna is depauperate both<br />

in terms of species richness and density. As much or more fauna occur intertidally through this area<br />

as do sub tidally. Much of the bottom is unsuited for mollusks and water quality is poor. The river<br />

from the interstate to the ship channel is a widening, shallowing reach where salt water is always<br />

present. This reach of river has the most tidal flats and wetlands, and is dominated by gasstropods<br />

(supratidal), marsh clams or mussels, and gastropods (high intertidal), oysters (mid-tidal to high<br />

subtidal), and a few other species. The bottom of the ship channel supports fewer species than the<br />

natural river bottom adjacent to it.<br />

The mollusk survey sheds light on benthic components important to the ecological structure and<br />

functioning of the tidal Alafia River. Surprisingly, the most important taxa, communities, habitats<br />

or strata of the tidal Alafia River in its present condition are basically the same, namely intertidal<br />

aggregations offilter-feeding bivalves. From upriver to down these are 1) Mytilopsis clumps, the<br />

only mollusk living above Buckhorn Spring, and then only in surface-waters; 2) the marsh clam<br />

Polymesoda, dominant in Juncus marsh pockets and marshes in the middle river; 3) the mussel<br />

Geukensia, a mangrove analogue of Polymesoda in marshes, reaching very high densities in the<br />

lower river; and 4) oyster reefs below RK 4.0 and most abundant in RK 2-3, these reefs are mostly<br />

intertidal.<br />

Relationships between the distribution and abundance of important mollusks and physicochemical<br />

variables related to freshwater inflows (e.g. sediments, oxygen, salinity, etc) can only be suggested<br />

from a once-only survey, especially one occurring within one-to-two mollusc generations after a<br />

serious acid spill. At least two habitat limitations of natural origin were discovered. The first, a<br />

transition from sedimentary to lithic bottoms, has profound consequences for invertebrates. The<br />

second, a transition among supratidal gastropods (Neritina to Littorina) was seen also in the Peace<br />

River where it was explained by a vegetative transition from marshes to mangroves. Another two<br />

habitat limitations are man-made. The most significant relative to the establishment of minimum<br />

flows is the very poor bottom and water quality conditions dominating the middle reach of the tidal<br />

river. Anoxic, pudding-like sediments are functioning as recruitment sinks for larvae attempting to<br />

settle in brackish water areas, and any forms surviving to juvenile stages are further limited by<br />

hypoxic to anoxic conditions in the water column. Another man-made limitation of mollusk habitat<br />

is the ship channel at the mouth of the river.<br />

Results of the mollusk survey will need to be checked against by the results of other inveretbrate<br />

studies in the Alafia River, but for the time being, conclusions that may be offered relative to the<br />

establishment of minimum regulatory flows are these:<br />

1. The river below 1-75 (RK 5-6) is the reach with highest species richness and density,<br />

and persistent occurrences of mollusks.<br />

Alafia River Mollusk - Final Report -113- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - JUlie 2003


2. Conditions of low flow that translate salinity conditions of this lower reach to parts<br />

of the river located farther upstream would cause a significant loss of biota because<br />

physical habitat space and water quality are much poorer there.<br />

3. Three species of filter-feeding bivalves are abundant enough in the lower reach to<br />

probably matter in terms of filtration rates, energy flux, transfers of foodstuffs, and<br />

provision of habitat for other species: Polymesoda, Geukensia, and Crassostrea.<br />

4. These 3 species and especially oysters will be useful for analytical assessments of<br />

alternative river flow and salinity scenarios. Most oysters presently occur where the<br />

most shallow oyster habitat occurs, and this fact lends itself to spatial modeling.<br />

Also, oyster size is meaningfully related to river kilometer and analysis of water<br />

quality data from other studies may reveal what physicochemical conditions during<br />

the past 4 years have been associated with maximum oyster size.<br />

5. It would be interesting to examine the spatial distribution of the largest dead oyster<br />

shells in the river, and also the evidence for parasitism, predation, and/or disease of<br />

oysters as a function of river position, sensu Kent (1992).<br />

Alafia Ri ver Mollusk - Final Report -114- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Figure III.I. The tidal Alafia River. US 41 is near river kilometer (RK) 1.6; 1-75 crosses the river<br />

near RK 5.4; US 301 crosses near RK 7.9; Buckhorn Spring is near RK 12.2; and Bell<br />

Shoals is near 17.9.<br />

Alafia River Mollusk - Final Report -115- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


• Live<br />

Mytilopsis leucophaeata<br />

0 Dead<br />

Subtidal and Intertida l Subtidal Only Intertidal O nly<br />

0 I<br />

2500<br />

-<br />

J<br />

j<br />

I I l<br />

2000<br />

--1<br />

-1 J<br />

E<br />

-<br />

I<br />

I<br />

w<br />

I<br />

a. 1500<br />

'-<br />

~<br />

Q)<br />

0<br />

0 I<br />

N<br />

l I J<br />

]<br />

1<br />

E i<br />

z<br />

I ]<br />

.c<br />

:J<br />

~ 1<br />

I<br />

0 QI4 c:g I l<br />

o I<br />

1000<br />

I<br />

j<br />

0<br />

500<br />

0<br />

I<br />

<<br />

I<br />

0<br />

I ~<br />

I , I I I<br />

20<br />

]<br />

-<br />

~<br />

~ l j<br />

E<br />

l<br />

0 0<br />

§. 15 J<br />

J<br />

Q)<br />

00 e 00 e 0<br />

N 0<br />

U5 10<br />

0 -<br />

0<br />

"0<br />

~<br />

"0<br />

c: 0 0<br />

0 0<br />

CIl<br />

Q) 00 I<br />

0 0 I<br />

1<br />

~<br />

~ 5 I<br />

l<br />

I<br />

0<br />

I<br />

j<br />

I<br />

• 0 CD<br />

e 0<br />

100 J 4<br />

en<br />

J I<br />

~ ---l -.J<br />

·c<br />

75 J<br />

I<br />

Q) 0<br />

~<br />

1 ~<br />

I<br />

1 -1 CD<br />

l<br />

I<br />

-,<br />

0<br />

I<br />

I<br />

I<br />

I I<br />

J<br />

~<br />

] I ,<br />

I<br />

I<br />

I<br />

I<br />

~ ~<br />

I 0 ,<br />

> I<br />

:J I<br />

""") -J ---l<br />

C 50 I<br />

Q)<br />

~<br />

Q) 0 0 ., 0<br />

n. I<br />

00<br />

25l<br />

!<br />

I<br />

o<br />

I<br />

I " I e el<br />

I e I<br />

10<br />

I<br />

: ~<br />

I<br />

x 0<br />

~ ,<br />

l<br />

Q) I<br />

l 0<br />

-0<br />

c: 00 -, I<br />

0<br />

w o 0<br />

! o 0<br />

l<br />

I I<br />

J<br />

CD<br />

0<br />

0 0<br />

I 0<br />

-1<br />

I l<br />

..c:<br />

ro • e<br />

-I<br />

4 ~ ~ ~<br />

Q)<br />

2 ~<br />

3: I !<br />

0<br />

-; -, 0<br />

~<br />

• i e<br />

I<br />

1<br />

I<br />

I<br />

I<br />

0<br />

0<br />

CD<br />

1 l<br />

0 I<br />

0 5 10 15 0 5 10 15 0 5 10 15<br />

River Kilometer<br />

1<br />

~<br />

I<br />

Figure 111.2. Density, size, percent juveniles, and weather index values for live and dead<br />

collections of Mytilopsis leucophaeta as a function of distance from Hillsborough<br />

Bay, in intertidal and subtidal strata.<br />

Alafia River Mollusk - Final Report -116- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


E 1 000 ~<br />

• Live<br />

Guekensia demissa granossissima o Dead<br />

Subtidal and Intertidal Subtidal Only Intertidal Only<br />

•<br />

1200 J ~~ -ji 1<br />

J<br />

l~<br />

I<br />

...<br />

(I)<br />

a. 800 1 ~ I l<br />

600 1 · j 1 l ~ -1<br />

~~~ -'i"" t_e~; o_ ,----,---'J +l -Q-?_,------.----'~ 1 ~ ·<br />

:: -'--- .. - j j ~ -~ ~ l'---<br />

i 20' s 0 0 1<br />

x<br />

(I)<br />

1:1<br />

C<br />

1 0<br />

l<br />

~ 0<br />

0 ~<br />

.. -~ - J<br />

a +-1 -r----,-----~----'I I i +- 1 - ,-------.-------.-----'<br />

100 10 1<br />

1, I, I 0<br />

75 1 1 III<br />

50 l -1 J -1 ~<br />

25 t<br />

1 ~ 11l<br />

0-,..,. ~ i ~.,.<br />

10 I<br />

8 1<br />

,0<br />

6 ~ i 0<br />

4 J<br />

I<br />

o<br />

o<br />

2 ---1. • ••<br />

i<br />

-j<br />

I<br />

~ I<br />

l<br />

~,<br />

=1<br />

i<br />

]<br />

I<br />

i<br />

I<br />

t<br />

o 5<br />

10 15 5 10 15 o 5<br />

River Kilometer<br />

10 15<br />

Figure 111.3. Density, size, percent juveniles, and weather index values for live and dead<br />

collections of Geukensia demissa as a function of distance from Hillsborough Bay,<br />

in intertidal and subtidal strata.<br />

Alafia River Mollusk - Final Report -117- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


E<br />

....<br />

N<br />

• Live<br />

Polymesoda caroliniana<br />

0 Dead<br />

Subtidal and Intertidal Subtidal Only Intertidal Only<br />

]<br />

250 l<br />

- J J • o·<br />

]<br />

I<br />

I<br />

I •<br />

200 ~<br />

~<br />

I<br />

~<br />

I • 0 00<br />

Q) I<br />

· 0·.<br />

I<br />

I<br />

I<br />

]<br />

I ~<br />

Co I<br />

150 -J -<br />

(j)<br />

i<br />

.0 I<br />

~<br />

I<br />

I<br />

E 100<br />

"I 0 -<br />

:::J • 0 00 I 0<br />

z<br />

1<br />

j<br />

50<br />

•<br />

-<br />

o 0<br />

o ~ e·<br />

.0 .~ .8. l<br />

=<br />

I<br />

• •<br />

ID I ID<br />

0 I I I I I , I<br />

I I<br />

I i I I<br />

60<br />

I<br />

I<br />

• •<br />

• •<br />

E o • I o·<br />

I<br />

.s 40 • ---l I • 0<br />

• 0<br />

] 1 -<br />

Q)<br />

• ~d> 00 I N<br />

• -sid> 00<br />

en i, • I<br />

0 0<br />

i, • 0 0<br />

c<br />

0<br />

20 J<br />

~<br />

I<br />

0<br />

ctl<br />

Q)<br />

~<br />

I<br />

l<br />

I<br />

I<br />

0 ~ I<br />

I i<br />

I<br />

I<br />

100<br />

-l --.j =j<br />

1<br />

i<br />

I<br />

en<br />

I<br />

I<br />

.!!1<br />

75 I<br />

I<br />

I<br />

"1:<br />

Q)<br />

><br />

:::J<br />

l<br />

I<br />

I I I I I I I ! I I<br />

j<br />

I<br />

1<br />

l ~<br />

I<br />

I<br />

I<br />

!<br />

l<br />

I<br />

1 I<br />

~ ~<br />

""")<br />

"E 50 ~<br />

0 0<br />

Q) I I i<br />

i<br />

~<br />

I<br />

I<br />

I i I<br />

Q)<br />

25 --j<br />

-1<br />

a.. "I<br />

-i<br />

-<br />

0<br />

I 0<br />

i<br />

0<br />

I<br />

0 i<br />

• 1-__ ':-.<br />

I<br />

I I I I I : I I I I I<br />

10<br />

i<br />

I I<br />

I I I<br />

8<br />

0<br />

I ....! 0<br />

X ~<br />

~ "1<br />

,<br />

Q)<br />

I l<br />

0 o 0 0 I<br />

I<br />

"0<br />

J 0 000<br />

I<br />

1<br />

0 0<br />

0<br />

.s 0<br />

0<br />

0<br />

.... 6 1 0 l<br />

Q) 0 I<br />

q,<br />

..c<br />

l<br />

I<br />

]<br />

4 ~ •<br />

I<br />

0<br />

iii • --I -j --l 0 •<br />

l<br />

•.. .<br />

Q)<br />

I<br />

• • • • I<br />

I i<br />

~ I<br />

!<br />

I • • J<br />

2 I<br />

...J<br />

• •<br />

~<br />

1 !<br />

••<br />

I i<br />

I<br />

i<br />

i<br />

I<br />

0 ,<br />

I<br />

I<br />

I<br />

I<br />

I I I I<br />

0 5 10 15 0 5 10 15 0 5 10 15<br />

River Kilometer<br />

I<br />

-1<br />

J<br />

I<br />

~<br />

I<br />

1<br />

I<br />

Figure IIl.4. Density, size, percent juveniles, and weather index values for live and dead<br />

collections of Polyrnesoda caroliniana as a function of distance from Hillsborough<br />

Bay, in intertidal and subtidal strata.<br />

Alafia River Mollusk - Final Report -118- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Crassostrea virginica<br />

• Live<br />

o Dead<br />

350 J<br />

300<br />

E<br />

~<br />

250<br />

! 200<br />

150<br />

Subtidal and Intertidal<br />

] ~<br />

Subtidal Only<br />

- •• 1 ~ . ~<br />

~ 100 - l ~ ~<br />

500 -; 00 ~'. ~.. J I · j<br />

~I----~I ~-'I----'I --~ ~I----TI ---'I----'I --~<br />

75 - • : 1 :<br />

J<br />

-<br />

I<br />

Intertidal Only<br />

•<br />

I<br />

I<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

E<br />

.s 50<br />

Q)<br />

N<br />

i:i5<br />

c:<br />

m 25<br />

~<br />

o<br />

l · ..<br />

J . ·<br />

00 ••<br />

10 0 0<br />

a i<br />

~I --~I ---'I ---~I ~<br />

1<br />

I<br />

1<br />

•<br />

-<br />

-<br />

•<br />

100 l<br />

J<br />

75 I 0<br />

50 --e<br />

25 r<br />

00<br />

I ~<br />

o I ~- I<br />

5 10 15<br />

=1<br />

1<br />

l J<br />

~<br />

I<br />

~<br />

~<br />

I<br />

~<br />

I<br />

i<br />

--i I<br />

o<br />

o<br />

•<br />

•<br />

5 10 15<br />

River Kilometer<br />

I<br />

1<br />

~<br />

I<br />

-1<br />

I<br />

I<br />

1<br />

o<br />

o<br />

o<br />

o<br />

••<br />

• •<br />

5 10 15<br />

11<br />

~<br />

I<br />

1<br />

Figure III.S. Density, size, percent juveniles, and weather index values for live and dead<br />

collections of Crassostrea virginica as a function of distance from Hillsborough Bay,<br />

in intertidal and subtidal strata.<br />

Alafia River Mollusk - Final Report -119- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Figure III.6. Density, size, percent juveniles, and . weather index values for live and dead<br />

collections of Mysella planulata as a function of distance from Hillsborough Bay, in<br />

intertidal and subtidal strata.<br />

Alafia River Mollusk - Final Report -120- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


• Live<br />

Tagelus plebeius 0 Dead<br />

Subtidal and Intertidal Subtidal Only Intertidal 0 nly<br />

,<br />

!<br />

j J ]<br />

0<br />

175 --1 ---l<br />

i<br />

~<br />

J<br />

1<br />

I<br />

]<br />

'" 150 ~<br />

E<br />

I<br />

I<br />

.... i<br />

125 --1 J<br />

Q)<br />

a.<br />

j I l ] j<br />

100<br />

Co ~<br />

° J l ! ! 1<br />

• J<br />

.0 75 --,<br />

E<br />

l<br />

I<br />

::::l<br />

I<br />

50<br />

- ---l<br />

Z<br />

I "-<br />

I<br />

~<br />

° j<br />

I<br />

o<br />

25<br />

-<br />

--j 0 ° • J .<br />

1


100 I<br />

'" 75 ~<br />

E<br />

Qj<br />

a.<br />

I<br />

• Live<br />

Neritina usnea<br />

0 Dead<br />

Subtidal and Intertidal Subtidal Only Intertidal Only<br />

•<br />

I<br />

I<br />

l<br />

I<br />

J<br />

~ ~<br />

l<br />

Qj 50 - • -<br />

.0<br />

I<br />

•<br />

• •<br />

-<br />

• • • •<br />

E<br />

:l<br />

Z • -<br />

l l<br />

• • .0 .0<br />

o i 1 I 1 1 1 1 1 1 I I<br />

25 l<br />

.0•


'"<br />

• Live<br />

Corbicula fluminea<br />

0 Dead<br />

S ubtidal and Intertidal Subtidal Only Intertidal Only<br />

50<br />

I i<br />

i<br />

I I<br />


N<br />

E<br />

Qj<br />

c.<br />

....<br />

150<br />

100<br />

I<br />

I<br />

l<br />

Q)<br />

.0 0<br />

E 0<br />

:J<br />

50<br />

I<br />

• Live<br />

Tellina spp.<br />

0 Dead<br />

Subtidal and Intertidal Subtidal Only Intertidal Only<br />

I !<br />

I<br />

--;<br />

J ---i 0<br />

I<br />

0<br />

! I<br />

I<br />

i<br />

I<br />

I I<br />

I<br />

~ l I l I<br />

I<br />

!<br />

---.:<br />

z -; -; ---;<br />

0<br />

25 -<br />

I<br />

0<br />

I<br />

I<br />

I<br />

I<br />

1 J<br />

00<br />

E 20 - ~<br />

-<br />

.s<br />

j I<br />

Q)<br />

15 -<br />

I<br />

--i -<br />

N<br />

l<br />

i:i5<br />

I ,<br />

c 10 -<br />

-<br />

m<br />

,<br />

Q) o~<br />

000<br />

0<br />

:!!:<br />

I i J ]<br />

5 -<br />

I<br />

I<br />

l<br />

1 l I<br />

I<br />

0 I<br />

I<br />

100 l<br />

om<br />

1 -1 000 OJ<br />

I<br />

III I I<br />

~<br />

·2 75<br />

~ J<br />

><br />

:J<br />

I i<br />

....,<br />

I<br />

1<br />

~<br />

l<br />

1<br />

0<br />

,<br />

Q) i<br />

I<br />

i<br />

i<br />

I<br />

50<br />

c 1<br />

1 -1<br />

I<br />

l 1<br />

Q)<br />

i<br />

I<br />

I<br />

~<br />

I J ~ J<br />

I<br />

I<br />

Q)<br />

25 --i<br />

a.. ! I<br />

1<br />

--i !<br />

I<br />

I<br />

I<br />

0<br />

I<br />

I<br />

I I<br />

10<br />

I<br />

I<br />

j<br />

8 I ~<br />

J<br />

J<br />

I<br />

I<br />

-<br />

l<br />

I<br />

4<br />

I , i<br />

I ...., .J<br />

I<br />

I<br />

i<br />

X<br />

Q) i<br />

"C<br />

I<br />

I<br />

.£<br />

0 0 ...J<br />

6 l ~<br />

-j 0 --'<br />

0<br />

Qj<br />

I<br />

i<br />

I<br />

I 0 i<br />

i<br />

.s=<br />

1ii<br />

Q)<br />

3;:<br />

I<br />

4 1 ~<br />

...j -j<br />

I<br />

J<br />

I<br />

0 I I I<br />

0 5 10 15 0 5 10 15 0 5 10 15<br />

0<br />

0<br />

I I<br />

2<br />

...J I I<br />

....,<br />

,<br />

1<br />

I<br />

River Kilometer<br />

I<br />

J<br />

Figure III.10. Density, size, percent juveniles, and weather index values for live and dead<br />

collections of Tellina sp. as a function of distance from Hillsborough Bay, In<br />

intertidal and subtidal strata.<br />

Alafia River Mollusk - Final Report -124- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


-<br />

Live<br />

Littorina irrorata<br />

0 Dead<br />

Subtidal and Intertidal Subtidal Only Intertidal Only<br />

75 -1<br />

J<br />

C\I<br />

E<br />

I<br />

Q; 50<br />

a.<br />

I<br />

Q) ,<br />

I<br />

.0<br />

I I<br />

,<br />

• =1<br />

I<br />

•<br />

... I<br />

•<br />

E<br />

~<br />

J 0<br />

25 • • J<br />

:J<br />

I<br />

Z I ,. •• 0<br />

,. •<br />

i<br />

I<br />

i<br />

•,<br />

• ••<br />

I<br />

I<br />

• •<br />

0<br />

I<br />

I<br />

I<br />

20<br />

l<br />

, I<br />

•<br />

l l<br />

~<br />

l<br />

---j<br />

•<br />

E<br />

I<br />

• • • I<br />

.s 15 • • •<br />

l ~ •• --j<br />

l<br />

....;<br />

,<br />

•• --l<br />

Q)<br />

I<br />

l<br />

N<br />

U5 10<br />

l 1"<br />

j<br />

c<br />

03 , I<br />

I I<br />

Q)<br />

~<br />

J<br />

5<br />

! l ,<br />

I<br />

l<br />

0 I<br />

I<br />

I .J I I<br />

--J<br />

-'<br />

100 l ~ ~ ~<br />

I<br />

I<br />

l<br />

I ,<br />

I I<br />

l<br />

,<br />

III I<br />

~<br />

75<br />

0<br />

'c<br />

Q)<br />

><br />

:J<br />

I<br />

I<br />

I<br />

t··<br />

"") I ,<br />

50<br />

C<br />

Q)<br />

~<br />

0<br />

, I<br />

J<br />

J i<br />

I<br />

J ,<br />

I<br />

-_-e__ I<br />

I ,<br />

, ,<br />

--<br />

, ,<br />

l<br />

l<br />

I<br />

I<br />

I<br />

I<br />

1<br />

::J<br />

,<br />

I<br />

- I· •• -1<br />

I<br />

I<br />

t<br />

!<br />

Q)<br />

25 --; J<br />

0-<br />

i I<br />

-I<br />

~<br />

0<br />

10 ,<br />

I<br />

, I<br />

8 J I<br />

i<br />

~<br />

J<br />

I<br />

-l -.J -,<br />

x I ,<br />

0 0<br />

,<br />

Q)<br />

"C<br />

t<br />

I<br />

I<br />

E 6 .., J<br />

I<br />

Q;<br />

~<br />

l<br />

J J l<br />

.J::<br />

I I<br />

4<br />

-.J<br />

1il J<br />

- •<br />

Q) I I<br />

3:<br />

,- ,<br />

~.<br />

2<br />

J<br />

0<br />

-<br />

I<br />

- -- -- l<br />

-1 -. -<br />

I •• I<br />

-<br />

0 5 10 15 0 5 10 15 0 5 10 15<br />

River Kilometer<br />

I<br />

;<br />

!<br />

Figure III.H. Density, size, percent juveniles, and weather index values for live and dead<br />

collections of Littorina irrorata as a function of distance from Hillsborough Bay, in<br />

intertidal and subtidal strata.<br />

A1afia River Mollusk - Final Report -125- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


'" ><<br />

E- '"<br />

"-<br />

0 6<br />

...<br />

II)<br />

.D<br />

E 4<br />

::l<br />

Z<br />

10 J<br />

Live + Dead<br />

8<br />

2<br />

0<br />

0 2 4 6 8 10 12 14 16<br />

'" ><<br />

E- '"<br />

0<br />

...<br />

l<br />

10 I ]<br />

I<br />

8<br />

"-<br />

6<br />

II)<br />

.D<br />

E 4<br />

::l<br />

Z<br />

l<br />

J<br />

i<br />

I<br />

Live<br />

2 J<br />

I<br />

J<br />

I<br />

0<br />

0 2 4 6 8 10 12 14 16<br />

10 ---,<br />

8<br />

'" ><<br />

E-<br />

.... '"<br />

6<br />

I<br />

I<br />

I<br />

~<br />

I<br />

J<br />

Dead<br />

...<br />

I<br />

II)<br />

0<br />

1<br />

.D<br />

E 4 -l<br />

::l<br />

Z<br />

2<br />

I<br />

l<br />

I<br />

I<br />

0<br />

0 2 4 6 8 10 12 14 16<br />

River Kilometer<br />

Figure III.12. Species richness for live and dead mollusk collections relative to river kilometer.<br />

Alafia River Mollusk - Final Report -126- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


C"l<br />

E 600 J<br />

....<br />

Live+Dead I<br />


1400<br />

C"l<br />

E 1200 I S ubtidal+ In tertidal ~<br />

.....<br />

Q)<br />

I I<br />

0-<br />

1000 ---l<br />

til<br />


22<br />

20<br />

ell<br />

18<br />

Cl,)<br />

'u<br />

Cl,)<br />

0..<br />

(/.l<br />

......<br />

0<br />

.....<br />

Cl,)<br />

.D<br />

E<br />

16<br />

14<br />

12<br />

= 10<br />

Z<br />

Cl,)<br />

> 8 ....<br />

c:


1400<br />

1200<br />

N<br />

E -;<br />

....<br />

]<br />

(l)<br />

c..<br />

-;;; '"<br />

:::l<br />

S ubtidal+ In tertidal<br />

1000<br />

I<br />

i<br />

800<br />

---,<br />

0;;: I<br />

"<br />

:0<br />

..= 600<br />

"-<br />

....<br />

400<br />

I<br />

0 I<br />

(l)<br />

.D<br />

E<br />

z<br />

:::l<br />

200<br />

a a 2 4 6 8 10 12 14 16<br />

l<br />

~<br />

~<br />

I<br />

1400<br />

] I<br />

N<br />

E 1200<br />

.... In tertidal<br />

(l)<br />

c..<br />

100 0<br />

-;;; '"<br />

:::l<br />

800<br />

I<br />

0;;: " """1<br />

:0<br />

..= 600<br />

"- 0<br />

....<br />

400<br />

(l)<br />

.D<br />

E<br />

z<br />

:::l<br />

200<br />

a a 2 4 6 8 10 12 14 16<br />

j<br />

]<br />

~<br />

1400<br />

N<br />

1200<br />

I<br />

E<br />

....<br />

l<br />

Subtidal<br />

I<br />

(l)<br />

I<br />

c.. I<br />

1000 I<br />

-;;; '"<br />

:::l<br />

i<br />

" 0;;: 800<br />

1<br />

:0<br />

l<br />

..= 600<br />

"-<br />

l<br />

"I<br />

0<br />

....<br />

-.J<br />

(l) 400 I<br />

.D<br />

§<br />

Z<br />

-1<br />

200<br />

I<br />

..J<br />

a ā 2 4 6 8 10 12 14 16<br />

River Kilometer<br />

Figure III.IS. Faunal densities for intertidal and subtidal mollusk collections relative to river<br />

kilometer.<br />

Alafia River Mollusk - Final Report -130- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


25<br />

(!)<br />

'"<br />

u<br />

(!)<br />

0..<br />

C/l<br />

......<br />

0<br />

.....<br />

(!)<br />

..c<br />

20<br />

15<br />

E 10 :::l<br />

Z<br />

(!)<br />

><br />

(;<br />

5<br />

'3<br />

E<br />

:::l<br />

U<br />

0<br />

) ~- '<br />

.",- ,<br />

, / ,/<br />

--.../'/-<br />

J<br />

/-"<br />

r --- --- ---- -- - S~~<br />

/ _ . _ . _ . - ~ ' - ' - ' Intertidal<br />

( ---7 - ' --./<br />

Subtidal-Intertidal<br />

o<br />

2 4 6 8 10 12 14 16 18<br />

River Ki lometer (Progressing Upstream)<br />

25<br />

'"<br />

(!)<br />

'13<br />

(!)<br />

0..<br />

C/l<br />

'0<br />

20<br />

15<br />

.....<br />

(!)<br />

..c<br />

E 10<br />

Z<br />

(!)<br />

><br />

(;<br />

5<br />

:::l<br />

E<br />

:::l<br />

U<br />

0<br />

r---;r-.../..- - - - - - /<br />

, --.../ /<br />

,J /<br />

~ , ---./<br />

~-_/.../<br />

/ - - Subtidal<br />

, Intertidal<br />

.",- /<br />

r-....,..--


Corbicula fluminea<br />

Mytilopsis leucophaeta<br />

Neritina usnea<br />

Mysella planulata<br />

Tellina spp.<br />

Nassarius vibex<br />

Haminoea succinea<br />

Abra aequalis<br />

Macoma tenta<br />

Mulinia lateralis<br />

Amygdalum papyrium<br />

Polymesoda caroliniana<br />

Crepidula fornicata<br />

Tagelus plebeius<br />

Polynices duplicatus<br />

Littorina irrorata<br />

Geukensia demissa granossissima<br />

Crassos(rea virginica<br />

~--I--- , ----- r------,- -- ,- ----, -- ,<br />

· ..... ..... . . . . . .. .... ..... .. . . ...... . ... ·0· .. ·0· .. ·0 · 0 ..... ·.· 0 ·0 ·0 {] . D· ..... {] . .. {] ·111<br />

· ..... ......... . .. .. ....... ... . ... ..... {] ·0· III · 111 ' 0 ·0· 0 . . ...... ..... . ... . D· {] ..... .. ... . .<br />

... . .... .......... . ........ • ..• . • . • · 111 · • . • . . .. • . • . • . • .• . . . . ... . ...... . ....... . . . . . . . ...<br />

················ · ··· · ·0 ····· · ··········· ·.······· ····· ................ ..... ... ... .. ..... .<br />

.. .... .. ... . .... .. . '0 ··' ·0 · 0· ····· · · ·· ··· ··· · ··· . ... . .. .. .. .. . ..... . . ...... . ...... . ... .. . .<br />

····· · ···· ··· ····0·· · ··· · · · · · · · ··· · ··· ·· ··· · · ·· · · · · ··· ...... . ... . . ... . .. . . . ... . .. ... . . . . .<br />

········ · ··· 0 · ···· ··· ···· ··· · · ··· · ··· ·········· ······· ........... . .. .. ........ . . . . ...... .<br />

·· ········· · 0· ·· · ·· ·· ··· ·· ·· ·· · · · ·· · ··· · · · · ·· · ···· · ··· . .... .. . ....... . ...... . .. . . . .... .. .<br />

··· · · ·· ·· ··· 0 ·.·.·· ········ · · · ... .. ...... . ....... . .... . . .... . . . . . ........ . . .. . ... . .. . ... .<br />

· ··· ··· · ···· 0 ······ ·· .. ···· ··· ·· · ····· · ··· · · ·· ··· ····0· .. . . . ...... . . . . ... . . . . ... . ... . . . .<br />

... . .... ..• ...... .. ..... ........ .. ... . . . . . ... . . . .. .. ... ... .. . . . ..... ........ . .. .. . ....... .<br />

· ....... . .• . • ..... .• · 111· ·111 . o· {] . o· .. .. . ...... .... . .... .. . . . . ..... . ... . ... ... .. .. .. . .. . .. .<br />

··· · ·0 ·· ··· . . . . . .. . . . . .. ...... . . .. .. . .... ....... ...... . . .... . . ... ... . . . .. . . . . .. .. ....... . .<br />

. . 0 · 111 · 0 · ·· 0 ·0······0 .• . • . ... . .... •. ... . . . . . ....... . . . . . ... . . . ... ................ .. . . . .<br />

..•.. ...•..<br />

D·· · . ..... . ......... ........ . . ..... . . ... .. .. . .. .. .... .... . .. . . . ... . . . ........ .. . . . . . ... .. .<br />

.• ....• . • ..• . • . . . . ... . .... .. . ... . . . . . ..... . . . . . . .. . ...... .. .. .. . . ... ........<br />

o · • ...... . . • .... . . .. . ..• ..... .•. . ... . .. ... ..... .. .. .. ............ .. . . . . . . ... .. .. . ... . ...<br />

• . • . . .. ..•.• ..... ·0 . • ..• . • . ... • ..• . • . . . . ..... . . .... . . . . . . . ..... .... ... ... . . . . ...........<br />

L__ . ___ 1-____ .-.1 ~ --.-1 ____ . __ I<br />

o 2 4 6 8 10 12 14 16 18<br />

River Kilometer<br />

• Live<br />

o Dead<br />

Figure 111.18. Dispersion of individual mollusk species sorted by first occurrence moving upstream from Hillsborough Bay.<br />

Alalia Ri ver Mollusk - Final Report -132- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - JUlie 2003


1 - - - 1-- -- --r --- - -r - -------1 -- - I ------, - -------1- - -- ---1----- - 1<br />

Polynices dupJicatus 0······ ········· ····· · · · ···· ········ · ······ · ······· · · ·· ····· , ········· ·· · ·· , ····· · · · ·, ··· ·<br />

Crepidula fornicata .... ·0· ....... ... .. . . . ... .... .... . . . . . ......... . .. .. ... ..... .. . ....... .. ...... . , . ... ... . . .<br />

Amygdalum papyrium .... .. , .. .• .. , ..... . .... . , .. . . .. .. , .. . , . .. ... .. . ......... ... . ... .... , ..... . ... .... ....... .<br />

Haminoea succinea ... .. ....... 0 ...... ... . ... .. .. .. . ...... ... .. ......... ... . .... . ....... . ....... .... . . ... . . .<br />

Abra aequaJis ............ 0 .... ..... .......... .... ... . ..... . ... ... . .... .. . ...... . . .. . .. .. ... . . .... . . . . .<br />

Nassarius vibex . .. . .. ... ... .. ... 0 ... .. .. .. . .. . .... . . . ...... . . ...... . ........ , . ..... . ..... ... ... , ..... . . .<br />

Macoma tenta ... . ..... .. . 0 .•.•. .... . ... ... . . .. . . , . .. ........ .. .... . .. .. . . ... . . . ........ . .. ........... .<br />

Tel/ina spp. ' ..... , . .......... . ·0· . . -0 . o· .. . ............... ....... . ..... . ....... . . . .. .. .. , ...... . , .. . .<br />

Littorina irrorata • . • ......• . •. .• ....• . • ..• . • .. , .. .. .. . . .. ... ... ... . ..... . .. . ........ . . .. . . .... . .......... .<br />

Geukensia demissa granossissima 0 · . · ·· ···· · • .. . . .. ... . ' • .. , ...•......... .. . . ... . . .. . .......... ........... ... . . ..... . ....<br />

Tagelus plebeius .. 0 .•. 0 ... D ·0 · ..... G .• . • .. .... , . .•. .. . . , ... . . . .. .. . .. . ..... . . . ... . , .. .. . ...... . .... , ..<br />

Crassostrea virginica • . • .. . .. .• . • .... . ·0 . III- .• . • .... • . .• . • • ...... ... . .... .... . . ..... . ... ..• ...................<br />

Mysel/a planulata ....... .. . .. . . . , ..... . G ... .. ...... . . ... ..• . . ...... ... ........... . . . .... . .... , ..... .. ... . .<br />

Polymesoda caroJiniana .. . .... ...• . • ... .. .•.•..•. G {] . o· • .• . • .• ...... • ' ................ .. .... . . ..... ... .. . . . .<br />

MuJinia lateraJis ..... . ... ... D ... , ... .•... ... . ... . .. ..... ... . ......... 0 ... ........... ... .... . ........... .<br />

Neritina usnea .. .. .. ..... .. .... , ....... .. • . .• . • . • .• . • . • ... .• . • .• . • .• ......... . .... . . . .. ........ .... .<br />

Mytilopsis leucophaeta . . .. .. .... . . ... .. , ... ....... .... .. . .... {] ·0· •.•. D ,O, D . . . ..... ...... , ... 0- {] ... .. .... .. .<br />

Corbicula fluminea<br />

. . ... . .. ......................... . , ... , .. ·0' .. ' 0· , . ' 0 ' D ......• . G ·0 · 0- -0 ' 0 ' ... .. {] ... {] . •<br />

L _____ '-__ _ _L ____ L _______ I ____ _ ---.l. _ ______ . . 1 __ _ _ . __ 1 ____ . _ L _<br />

o 2 4 6 8 10 12 14 16 18<br />

River Kilometer<br />

o<br />

• Live<br />

Dead<br />

Figure 111.19. Dispersion of individual mollusk species sorted by first occurrence moving downstream from Bell Shoals.<br />

Alatia River Mollusk - Final Report -133- Matt: <strong>Marine</strong> Laboralory - JUlie 2003


80<br />

Live Geukensia demissa<br />

75<br />

70<br />

,.....<br />

E<br />

65<br />

'---'<br />

... 60<br />

~<br />

OJ)<br />

'Q3<br />

::r: 55<br />

50<br />

!<br />

f !<br />

f f<br />

45<br />

40<br />

0 2 3 4 5 6 7<br />

River Kilometer<br />

140<br />

Live Crassostrea virginica<br />

120<br />

100<br />

,.....<br />

E<br />

'---'<br />

:c 80<br />

OJ)<br />

'Q3<br />

;:t;<br />

60<br />

40<br />

! !<br />

t<br />

20<br />

0 2 3 4 5 6 7<br />

Ri ver K ilometer<br />

Figure III.20. Mean height (mm ± s.d.) of largest living Geukensia and Crassostrea relative to<br />

distance from Hillsborough Bay. Data collected September 11 , 2001.<br />

Alafia Ri ver Mollusk - Final Report -1 34- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


25 ,--------------------------------------------------------,<br />

20<br />

15<br />

o +------.-----,-----.------.-----~----_r----_.----_.--~~<br />

o 2 4 6 8 10 12 14 16 18<br />

-- Mean<br />

- - Standard Deviation<br />

River Kilometer<br />

Figure 111.21. Mean salinity (parts per thousand) and salinity variance (as standard deviation) of<br />

surface waters relative to distance from Hillsborough Bay.<br />

A1afia River Mollusk - Final Report -135- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Figure 111.22. Mean concentration (mgll) and variability of dissolved oxygen in bottom waters for<br />

each HBMP sampling stratum.<br />

A1afia River Mollusk - Final Report -1 36- MOle <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Substrate<br />

% Rock - dominated<br />

Z Rock - sediment mixture<br />

# Sediment - dominated<br />

N Snag<br />

V. River Kilometers<br />

W'ltlands<br />

Mangove Swamps<br />

Stream/lake Swamps<br />

Wetland Forested Mixed<br />

Freshwater Marshes<br />

Saltwater Marshes<br />

Wet Prairies<br />

TIdal Flats<br />

/<br />

0.1 0 0.1 0.2 Kilometers<br />

~<br />

Figure 111.24. Schematic of bottom types and areas of transition in bottom types within the upper<br />

reach of the tidal Alafia River.<br />

Alafia River Mollusk - Final Report -137- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


AJafia River Oyster Reefs June - July 2001<br />

i<br />

i<br />

: ... River Kilometers<br />

I .:. Continuous oyster reefs<br />

~ Isolated oyster reefs<br />

I<br />

0i'lli _5~_ ...... _. rja0 __.o.;0'~~_<br />

" .---.;.1_ ...... 1 j 5 Kilometers<br />

Figure 111.24. Location and sizes of oyster reefs in the lower reach of the tidal Alafia River, June<br />

and July, 2001<br />

A1afia Ri ver Mollusk - Final Report -138- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


6<br />

Q<br />

:><br />

tI<br />

Z<br />

s=<br />

0<br />

.~<br />

~<br />

~<br />

;><br />

~<br />

.......<br />

~<br />

S<br />

C'l<br />

......<br />

0<br />

I<br />

~<br />

cod<br />

,-..,<br />

cod<br />

...c:<br />

'-'<br />

cod<br />

Q)<br />

~<br />

<<br />

~<br />

Q)<br />

;><br />

.~<br />

~<br />

5<br />

4<br />

3<br />

2<br />

1<br />

o<br />

o 1 2 3 4 5 6 7 8 9 10 11 12 l3 14 15 16 17<br />

River Kilometer<br />

Figure 111.25. Surface area (hectares) oflow-intertidal river bottom (-0.1 2 m NGVD) as a function<br />

of distance from Hillsborough Bay.<br />

Alafia Ri ver Mollusk - Final Repon -1 39- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


250~-------------------------------------------------;<br />

0<br />

><br />

d<br />

Z<br />

~<br />

0<br />

.~<br />

......<br />

~<br />

;><br />

Q)<br />

~<br />

~<br />

S<br />

C'l<br />

,.....;<br />

0<br />

I<br />

......<br />

~<br />

,-...,<br />

~<br />

...c::<br />

'-"<br />

~<br />

Q)<br />

$-0<br />

~<br />

$-0<br />

Q)<br />

;><br />

......<br />

~<br />

200<br />

150<br />

100<br />

50<br />

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17<br />

Ri ver Kilometer<br />

Figure III.26. Cumulative surface area (hectares) of low-intertidal river bottom (-0.12 m NGVD)<br />

as a function of distance from Bell Shoals.<br />

A1afia River Mollusk - Final Report -140- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


IV. LITERA TURE CITED<br />

Boler, R. Surface Water Quality 1999-2000, Hillsborough County Florida. Environmental Protection<br />

Commission of Hillsborough County. Tampa.<br />

Bulger, A.J., B.P. Hayden, M.G. McCormick-Ray, M.E. Monaco and D.M. Nelson. 1990. A<br />

proposed estuarine classification: analysis of species salinity ranges. ELMR Rept. No.5,<br />

NOSINOAA, Rockville, MD. 28 p.<br />

Cardinale, T., T. Ash and S. Cooper. 1999. Alafia River oyster bar restoration demonstration<br />

project final monitoring report. Tampa Bay Estuary Program Technical Report No. 01-99.<br />

Collard, SB and CN D'Asaro. 1973. Benthic invertebrates ofthe eastern Gulf of Mexico. A summary<br />

of knowledge of the eastern Gulf of Mexico. State University System of Florida, Institute<br />

of Oceanography.<br />

Cowell, B.C. 1997. Meiofauna and macrofauna in six headwater streams of the Alafia River,<br />

Florida. Florida Institute of Phosphate Research. Publication No. 03-101-130. 128 p.<br />

Corkum, L. D. 1990. Intrabiome distributional patterns of lotic macroinvertebrate assemblages.<br />

Canadian Journal of Fisheries and Aquatic Sciences 47: 2147-2157.<br />

Corkum, L. D. 1991. Spatial patterns of macroinverebrate distributions along rivers in eastern<br />

deciduous forest and grassland biomes. Journal of the North American Benthological<br />

Society 10: 358-371.<br />

Cowell, B. C. and D. S. Vodopich. 1981. Distribution and abundance of benthic macroinvertebrates<br />

in a subtropical Florida lake. Hydrobiologia 78: 97-105.<br />

Culter, J. K. and E.D. Estevez. 2002. Peace River Benthic macroin vertebrate and mollusk indicators.<br />

<strong>Mote</strong> Technical Report No. 744, submitted to the Peace River Manasota Regional Water<br />

Supply Authority.<br />

Culter, J.K. 1996. Analysis of Benthic Invertebrate samples from the Caloosahatchee River, Florida.<br />

<strong>Mote</strong> Technical Report No. 466. Submitted to South Florida Water Management District. 55<br />

pp.<br />

Culter, J.K. and S. Mahadevan, S. 1982. Benthic studies of the lower Manatee River. <strong>Mote</strong> <strong>Marine</strong><br />

<strong>Laboratory</strong> Technical Report to Manatee County Materials and Service Department. 46 pp,<br />

Appendix.<br />

A1afia River - Final Report -141- MOle <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Cunha, M.R, J.C. Sorbe, M.H. Moreira. 2000. The amphipod Corophium multisetosum<br />

(Corophiidae) in Ria de Aveiro (NW Portugal). I. Life history and aspects of reproductive<br />

biology. <strong>Marine</strong> Biology, Abstract Volume 137; Issue 4, pp 637-650.<br />

Elmore, J. L. 1983. Factors influencing Diaptomus distributions: An experimental study in<br />

subtropical Florida. Limnology and Oceanography 28: 522-532.<br />

Environmental Protection Commission of Hillsborough County, Florida Department of<br />

Environmental Protection, National Oceanic and Atmospheric Administration, Polk County<br />

Natural Resources, and US Fish and Wildlife Service. 2000. Final damage assessment and<br />

restoration plan and environmental assessment for the December 7, 1997 Alafia River Spill.<br />

88 p.<br />

Estevez, E.D. and M.J. Marshall. 1993. Sebastian River Salinity Regime. Final report to St. Johns<br />

River Water Management District. MML Technical Report No. 308. 171 p.<br />

Estevez, E.D. and M.J. Marshall. 1994. Ecological hnpact of Freshwater Flow Variations in the<br />

Manatee River, part IT of Tampa Bay National Estuary Program Technical Publication<br />

#09-94. var. pag.<br />

Estevez, E.D. and M.J. Marshall. (in press). A landscape model assessing estuarine impacts of<br />

freshwater inflow alterations, in S.P. Treat (ed.), Proceedings, Tampa Bay Scientific<br />

Information Symposium 3. Tampa Bay Regional Planning Council, St. Petersburg, FL.<br />

Forbes, E. 1844. Report on the mollusca and radiata of the Agean Sea, and on their distribution,<br />

considered as bearing on geology. Report 13 th meeting, British Assoc. Adv. Science, 1843,<br />

pp. 130-193.<br />

Giovannelli, RP.. 1981. Relation between freshwater flow and salinity distribution in the Alafia<br />

River, Bullfrog Creek, and Hillsborough Bay, Florida: U.S. Geological Survey<br />

Water-Resources Investigations Report 80-102, 62 p.<br />

Godcharles, M.P. and W.c. J aap. 1973. Exploratory clam survey of Florida nearshore and estuarine<br />

waters with commercial hydraulic dredging gear. Professional Paper, Florida Department of<br />

Natural Resources <strong>Marine</strong> Research <strong>Laboratory</strong> Vol. 21, 77 pp.<br />

Hall, E.R 200l. Natural organic matter in the sediments of two rivers in southwestern Florida.<br />

Thesis, Master of Science, University of Florida, Gainesville. 88 p.<br />

Heald, E. 1971. The production of organic detritus in a south Florida estuary. Univ. Miami Sea<br />

Grant Tech. Bull. 6. 110 p.<br />

Jones, N. 1950. <strong>Marine</strong> bottom communities. Biological Reviews 25.<br />

A1afia River· Final Repol1 -142- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong>· June 2003


Kalke, RD. and P.A. Montagna. 1991. The effects of freshwater inflow on macro-benthos in the<br />

Lavaca River delta and upper Lavaca Bay, Texas. Contrib. <strong>Marine</strong> Sciences 52: 49-71.<br />

Kaufman, Matthew I.. 1967. Hydrologic Effects of Ground-Water Pump age in the Peace and Alafia<br />

River basins, Rorida, 1934-1965. United States Geological Survey. Type of Work: Report.<br />

Kent,B.W. 1992. Making dead oysters talk: techniques for analyzing oysters from archaeological<br />

sites. Maryland Historical and Cultural Publications. White Plains 76 p.<br />

Little, E.J. and J.A. Quick, Jr. 1976. Ecology, resource rehabilitation, and fungal parasitology of<br />

commercial oysters, Crassostrea virginica (Gmelin), in Pensacola Estuary, Rorida. Rorida<br />

<strong>Marine</strong> Research Publication No. 21, FDNR 89 p.<br />

Livingston, RJ. 1981. Ecology of the Apalachicola Bay System (Northeast gulf of Mexico) An<br />

Estuarine Profile. Prepared for National Coastal Ecosystem Team, Slidell, Louisiana.<br />

Livingston, R.J. 1991. Chapter 16: Inshore marine habitats. In: Ecosystems of Florida. RL. Myers<br />

and J.J. Ewel, editors. University of Central Rorida Press, Orlando. 765 p.<br />

Livingston, RJ., RL. Howell, IV, X. Niu, EG. Lewis, ill and G.c. Woodsum. 1999. Recovery of<br />

oyster reefs (Crassostrea virginica) in a gulf estuary following disturbance by two<br />

hurricanes. Bulletin of <strong>Marine</strong> Science 64(3): 465-483.<br />

Loeb, S.L. and Spacie, A. editors. 1994. Biological Monitoring of Aquatic Systems. Lewis<br />

Publishers, Boca Raton, 381 p.<br />

Ludlow, M. E., and S. J. Walsh. 1991. Occurrence of a South American armored catfish in the<br />

Hillsborough River, Rorida. Florida Scientist 54(1): 48-50.<br />

Matthews, G. B., R A. Matthews and B. Hachrnoller. 1991. Mathematical analysis of temporal and<br />

spatial trends in the benthic macro invertebrate communities of a small stream. Canadian<br />

Journal of Fisheries and Aquatic Sciences 48: 2184-2190.<br />

McMichael, RH. Jr. and K.M. Peters. 1989. Early life history of spotted seatrout Cynoscion<br />

nebulosus (Pisces: Sciaenidae), in Tampa Bay, Florida. Estuaries 12: 98-110.<br />

McMichael, R.H. Jr., K.M. Peters and G.R Parsons. 1989. Early life history of the snook,<br />

Centropomus undecimalis, in Tampa Bay, Florida. Northeast Gulf Science 10: 113-125.<br />

Meire, P. and M. Vincx, (eds). 1993. <strong>Marine</strong> and Estuarine Gradients. Netherlands Journal of<br />

Aquatic Ecology.<br />

Alafi a River - Final Report -143- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong>. 2001. Peace River Benthic Macroinvertebrate and Mollusk Indicators.<br />

Final Report to Peace RiverlManasota Regional Water Supply Authority. <strong>Mote</strong> <strong>Marine</strong><br />

<strong>Laboratory</strong> Technical Report No. 744. Sarasota.<br />

Odum, W.E. 1971. Pathways of energy flow in a south Florida estuary. University of Miami Sea<br />

Grant Technical Bulletin 7. 162 p.<br />

Ortega, S. and J.P. Sutherland. 1992. Recruitment and growth of the eastern oyster, Crassostrea<br />

virginica, in North Carolina. Estuaries 15(2): 158-170.<br />

Page, L. M. 1994. Identification of sailfin catfishes introduced to Florida. Florida Scientist 57(4):<br />

171-172.<br />

Peebles, E.B. 1999. An assessment of the effects of freshwater inflows on fish and invertebrate<br />

habitat use in the manatee River, Braden River, Peace River, and Shell Creek estuaries; First<br />

contact period: April 1997 - June 1998; Volume 2: High-resolution event monitoring:<br />

Studies of inflow effects on spawning and growth of the bay anchovy. Report submitted to<br />

the Southwest Florida Water Management District. Brooksville, Florida. 80 p. Inflowabundance<br />

relationships for fishes and invertebrates in tidal inflow-abundance relationships<br />

for fishes and invertebrates in tidal rivers.<br />

Peters, K.M. and R.H. McMichael, Jr. 1987. Early life history of the red drum Sciaenops ocellatus<br />

(Pisces: Sciaenidae) in Tampa Bay, Florida. Estuaries 10: 92-107.<br />

Pritchard, D.W. 1967. What is an Estuary: a physical viewpoint. American Association for the<br />

Advancement of Science 83: 3-5.<br />

Redmond, M.S., P. A. Crocker, K. M. McKenna, E. A. Petrocelli, K. J. Scott, C. R. Demas. 1996.<br />

Sediment Toxicity Testing with the Amphipod Ampelisca abdita in Calcasieu Estuary,<br />

Louisiana. Arch. Environmental Contamination and Toxicology 30: 53-61.<br />

Scanland, TB. 1966. A description ofthe community associated with two arcs, Arca zebra and Arca<br />

imbricata (Pelycopoda: Arciade) in the offshore northeastern Gulf of Mexico: MS Thesis,<br />

Florida State University, Tallahassee.<br />

Steele, R.G. and J.H. Torrie. Principals and Procedures of Statistics: A 'Biometrical Approach.<br />

McGraw-Hill Book Company, NY. 633 p.<br />

Stoker, Y.E., Levesque, V.A., and Woodham, W.M., in press, The effect of discharge and water<br />

quality of the Alafia River, Hillsborough River, and the Tampa Bypass Canal on nutrient<br />

loading to Hillsborough Bay, Florida: U.S. Geological Survey Water-Resources<br />

Investigations Report 95-4107,68 p.<br />

Alafia River - Final Report -144- <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


ApPENDICES<br />

ApPENDIX A<br />

Bathymetry Data<br />

ApPENDIXB<br />

Sediment Parameters<br />

ApPENDIXC<br />

Benthic Habitat Maps<br />

ApPENDIXD<br />

Macroinfaunal Data<br />

ApPENDIXE<br />

Mollusk Data<br />

ApPENDIXF<br />

Oyster Salinity Requirements


ApPENDIX A<br />

BATHYMETRY DATA


:: F ::::: ::::: ::::: :: I KM-170<br />

::k: ::::: :::: ::::: :: I KM-16.8<br />

::~ : : : : : : : : : : : : : : : : : I KM-16.6<br />

:: L '::: ::: I ~ KM-164<br />

.~ :l~ ' """"""'" I KM 1622<br />

~ -4 ~,<br />

i<br />

, "', " "I<br />

:l i¥=' ,,," " ""'" I KM 1602<br />

§ -4 l " " " " ""'" I<br />

1 :l y : : : : : : : : : : : : : : I KM 15.34<br />

~ 6;: ::,:::::::::::: I KM 15.21<br />

HiL .::::' ::::,:: : I KM 15.04<br />

:; E; ::,::,:::::::: I KM 14.89<br />

o 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100<br />

Distance in Meters from Left Bank (Facing Downstream)<br />

Appendix Figure A-I.<br />

Alafia cross-section profiles.<br />

Appendix A - Bathymetry Data A-I <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


f : :::: :::: ~1 ~;( : 0 : : 0 : 1 KM \4.71<br />

HS:: :::: :::: :::: :: 1 KM 14.62<br />

~1 E: 0<br />

=:<br />

1<br />

0 : : : : : 0 : : : :<br />

~ ~1 ~ : : : : : : : : : : : : : 1<br />

j ~1~: : : : : : : : 1 KM<br />

:; 2 ::: 1<br />

~ 0 : : 0 : : : : : : : :<br />

I ~1<br />

p o :: 0<br />

KM 14.37<br />

KM 14.23<br />

1402<br />

KM 13.83<br />

: : : : 0 : : : : : : 1 KM \3.67<br />

:;~ : : : : : : : : : : : : :1 KM\3.50<br />

~1 ~ : ~ : : : : : : : : : : : : 1<br />

:~ ts:2 : : : : :<br />

KM \329<br />

0 : : : : 1 KMI3.11<br />

o 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100<br />

Distance in Meters from Left Bank (Facing Downstream)<br />

Appendix Figure A-2.<br />

Alafia cross-section profiles continued.<br />

Appendix A - Bathymetry Data A-2 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


:~~ . '<br />

•••••••••••• 1 KM12.95<br />

:~ E;; • •• • • •• • 1 KM 12.90<br />

.~ ~ ' , •• ' , •• ' ••• 1 KM 12.79<br />

~ :~c ./2 •••••••••••• 1<br />

j .~~ .: •••.•••• 1<br />

~ :~ ~ •••••<br />

KM12.61<br />

KM12.39<br />

' ••• ' • 1 KM<br />

I :!E;;••••••• :••••• 1<br />

:!E :::::= •• '•••• 1<br />

12.20<br />

KM12.00<br />

KMIL83<br />

:11::,•••••••• :•••••• : 1 KM-l1.50<br />

:::• :, ,•••••• 1<br />

:~ E :~ : KMI1.29<br />

o 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100<br />

Distance in Meters from Left Bank (Facing Downstream)<br />

Appendix Figure A -3.<br />

Alafia cross-section profiles continued.<br />

Appendix A - Bathymetry Data A-3 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


n:: : : : : : ~ : 1 KM 10.96<br />

~!~ •• :~ ::::::: 1 KM1O.77<br />

•: :::: :: ~CS2 : :1 KM1O.59<br />

~ :![ •<br />

:~ : 2 : : : : : I KM10.46<br />

i :! r= : ==: : • ~ . : : : 1 KM 10.36<br />

i :'2 •:: :':: 1<br />

~! CS KMlO.23<br />

I :!~::::: I<br />

H<br />

:!E .:::==== 1<br />

: ==: •• :<br />

•• : : : •:<br />

~<br />

KM1003<br />

I<br />

KM9.89<br />

KM9.71<br />

:!C== •::•:=::: : 1 KM9.60<br />

o 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100<br />

Distance in Meters from Left Bank (Facing Downstream)<br />

Appendix Figure A-4.<br />

Alafia cross-section profiles continued.<br />

Appendix A - Bathymetry Data A-4 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


:;E:: :::: :1<br />

KM 9.45<br />

~~ :I<br />

:!f::~ I<br />

~ :;1::::::::=:' I<br />

z<br />

j:!~:::::: !<br />

KM 9.30<br />

KM 9.19<br />

KM 8.97<br />

KM 8.80<br />

~ :!C ~ : :-" •<br />

o<br />

I :!r : : : : : : : =:: I<br />

:!t= '<br />

.:: I<br />

I<br />

:! L: ' ::::::,:~<br />

:;C::~ ~ :: •<br />

o 10 20 30 40 50 60 70 80 90 100 110 120 130 140<br />

Distance in Meters from Left Bank (Facing Downstream)<br />

KM 8.59<br />

KM 8.84<br />

KM 8.27<br />

KM 9.71<br />

KM 9.60<br />

Appendix Figure A-S.<br />

Alafia cross-section profiles continued.<br />

Appendix A - Bathymetry Data A-5 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


:::: ~1~ : I KM7.75<br />

B ::-: : ===== :::: I KM 7.62<br />

H : - '== : , == : : : I KM 7.75<br />

~ B:~: : := :-, : • ~ : : : I KM7.33<br />

j H : : : ~ ' : ' : : : : : : I KM 716<br />

E :::' :' ,::: = I ~ :1 KM 696<br />

I E: ::::::::::<br />

1<br />

:l --> 151m KM 681<br />

F :::::::: ~l n><br />

l63m I<br />

KM 6.66<br />

H : , : : : : : : : :: : : I KM -6.50<br />

L ::::::::::' I ~1 KM 6.39<br />

o 10 20 30 40 50 60 70 80 90 100 110 120 130 140<br />

Distance in Meters from Left Bank (Facing Downstream)<br />

Appendix Figure A-6.<br />

Alafia cross-section profiles continued.<br />

Appendix A - Bathymetry Data A-6 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


~;~<br />

•<br />

~<br />

•<br />

~!~<br />

:;~ :<br />

/<br />

• •<br />

• • •<br />

~<br />

, ,<br />

:<br />

: : , I<br />

I<br />

KM 6.19<br />

KM 6.02<br />

KM 5.58<br />

~; f :~<br />

•<br />

0 KM 5.71<br />

><br />

Co:)<br />

: : I<br />

z<br />

....<br />

0<br />

:!~<br />

a)<br />

...... :> KM 5.66<br />

~ ,<br />

: : i<br />

:!t --<br />

-a)<br />

~<br />

~<br />

•<br />

...-.-<br />

S KM 5.57<br />

'-.-'<br />

c:: : , : I<br />

...... 0<br />

:;~<br />

: -~<br />

~<br />

•<br />

:><br />

-a)<br />

KM 5.41<br />

~<br />

: I<br />

:;r---<br />

-<br />

,<br />

•<br />

KM 5.21<br />

: I<br />

H~--<br />

• •<br />

:----<br />

:<br />

• • •<br />

•<br />

~<br />

~<br />

.~ •<br />

• • •<br />

:~ I<br />

KM 5.1 1<br />

:;f<br />

:<br />

:<br />

/<br />

KM 4.74<br />

: I<br />

0 25 50 75 100 125 150 175 200 225 250 275 300<br />

Distance in Meters from Left Bank (Facing Downstream)<br />

Appendix Figure A-7.<br />

Alafia cross-section profiles continued.<br />

Appendix A - Bathymetry Data A-7 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


:~ t = : : : : : : : : I KM 458<br />

:!~: •• ::: I KM206<br />

:! E: : : : : : : : : I KM 4.40<br />

:!E:: : : : : : : : I<br />

KM410<br />

::::::: ~ :~ r=:: I KM384<br />

i c: :::::::::: :! I<br />

KM -340<br />

~ :l~ ' •: : I KM3.18<br />

! :!~ : : : : : : I KM2.83<br />

:!~ : ::: : : I KM243<br />

:!~: : ~ I KML75<br />

o 50 100 150 200 250 300 350 400 450 500 550 600<br />

Distance in Meters from Left Bank (Facing Downstream)<br />

Appendix Figure A-S.<br />

Alafia cross-section profiles continued.<br />

Appendix A - Bathymetry Data A-8 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


lrs;z:: : : , , , I KM1.55<br />

lL:;Z , : : : : : I KM1.21<br />

0<br />

-2<br />

-4<br />

0<br />

><br />

d<br />

Z<br />

.....<br />

0<br />

(l)<br />

......<br />

(l)<br />

~<br />

"......,<br />

S<br />

'-"<br />

I::<br />

0<br />

....... :>-<br />

ro<br />

.......<br />

ro<br />

:>-<br />

......<br />

(l)<br />

~<br />

-6<br />

-8<br />

-10<br />

0<br />

-2<br />

-4<br />

KMO.94<br />

-6 KMO.50<br />

-8<br />

-10<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

KMO.29<br />

-10<br />

0 50 100 150 200 250 300 350 400 450 500 550 600<br />

Distance in Meters from Left Bank (Facing Downstream)<br />

Appendix Figure A-9.<br />

Alafia cross-section profiles continued.<br />

Appendix A - Bathymetry Data A-9 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


o<br />

0.5 Kilometers<br />

~~"'!iiiiiiiiiiiiiiiiii~~~~~1<br />

N<br />

A ~========~====~<br />

II River Kilometer<br />

Depth (meters)<br />

/' / -1<br />

/V -2<br />

/V -3<br />

/\/-4<br />

/\/ -5<br />

/V -6<br />

/\/ -7<br />

/ -8<br />

\, -9<br />

/V -10<br />

/V -11<br />

Appendix Figure A-tO.<br />

Bathymetry contours for the lower Alafia River. Data expressed as<br />

depth related to NGVD29.<br />

Appendix A - Bathymetry Data A-tO <strong>Mote</strong> Ma rine <strong>Laboratory</strong> - June 2003


0.1 0 0.1 0.2 0.3 Kilometers<br />

~_<br />

I<br />

KM7<br />

'--___ ---j 'i River Kilometer f-----<br />

Depth (meters)<br />

-1<br />

/\/ -2<br />

/V -3<br />

/V -4<br />

/V -5<br />

/\/ -6<br />

1\ -7<br />

-8<br />

-9<br />

I\, -10<br />

/V -1 1<br />

----j<br />

N<br />

A<br />

100 0 100 Meters<br />

,-_ i<br />

Appendix Figure A-H.<br />

Bathymetry contours (continued)_<br />

Appendix A - Bathymetry Data<br />

A-ll<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


KM13<br />

II<br />

River Kilometer<br />

50 0 50 100 Meters<br />

~~§--~~~-~<br />

Depth (meters)<br />

'\ -1<br />

/\/-2<br />

/\/ -3<br />

/\/ -4<br />

/\/ -5<br />

/\/-6<br />

/\ -7<br />

-8<br />

-9<br />

/\/ -10<br />

/\1 -11<br />

Appendix Figure A-12.<br />

Bathymetry contours (continued).<br />

Appendix A - Bathymetry Data A-12<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


KMI2<br />

'i River Kilometer<br />

Depth (meters)<br />

/\/ -1<br />

/\/ -2<br />

/\/ -3<br />

/\/ -4<br />

/\/ -5<br />

/\/ -6<br />

/\/ -7<br />

-8<br />

-9<br />

/\/ -10<br />

/\/ -11<br />

0.1 0 0.1 0.2 Kilometers<br />

~~~iiiiiiiiiiiiiii<br />

Appendix Figure A-13.<br />

Bathymetry contours (continued).<br />

Appendix A - Bathymetry Data<br />

A-13 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


10 0 10 20 Meters<br />

~<br />

~ River Kilometer<br />

Depth (meters)<br />

/\1 -1<br />

/\/ -2<br />

/\/-3<br />

/\/ -4<br />

/\/ -5<br />

/\/ -6<br />

/\/ -7<br />

-8<br />

IV -9<br />

/\/ -10<br />

/\/ -11<br />

50 o 50 100<br />

- - - -<br />

Appendix Figure A-14.<br />

Bathymetry contours (continued).<br />

Appendix A - Bathymetry Data<br />

A-14<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


0.1 0 0.1 Kilometers<br />

~I ~~ __ ~~~~~i<br />

KM14<br />

'i River Kilometer<br />

Depth (meters)<br />

-1<br />

/\/ -2<br />

/\/-3<br />

/\/ -4<br />

"\; -5<br />

/\/ -6<br />

I'v -7<br />

-8<br />

-9<br />

/ V -10<br />

/\/ -11<br />

Appendix Figure A-1S.<br />

Bathymetry contours (continued).<br />

Appendix A - Bathymetry Data A-IS <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


v. River Kilometer<br />

Depth (meters)<br />

/\/ -1<br />

/\/ -2<br />

/\/ -3<br />

/\/-4<br />

/\/ -5<br />

/\/ -6<br />

/V -?<br />

-8<br />

-9<br />

/\/ -10<br />

/V -11<br />

KM1 6<br />

0.1 0 0.1 Kilometers<br />

~~~~~<br />

Appendix Figure A-16.<br />

Bathymetry contours (continued).<br />

Appendix A - Bathymetry Data A-16<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


'i River Kilometer<br />

Depth (meters)<br />

/' v -1<br />

/\/ -2<br />

/\/ -3<br />

/\/ -4<br />

/\/ -5<br />

/\/ -6<br />

/\/ -7<br />

-8<br />

-9<br />

/\/ -10<br />

/\/ -11<br />

0.1 0 0.1 Kilometers<br />

~~~~~<br />

Appendix Figure A-17.<br />

Bathymetry contours (continued).<br />

Appendix A - Bathymetry Data A-I7 <strong>Mote</strong> Ma rine <strong>Laboratory</strong> - June 2003


v: River Kilometer<br />

Depth (meters)<br />

/V -1<br />

/V -2<br />

/V -3<br />

/V -4<br />

/V -5<br />

/V -6<br />

1\/-7<br />

-8<br />

-9<br />

/\/-10<br />

/\/ -11<br />

KMIS<br />

0.1 0 0.1 Kilometers<br />

~1~~iiiiiiiiiii~~~~1<br />

Appendix Figure A-IS.<br />

Bathymetry contours (continued).<br />

Appendix A - Bathymetry Data<br />

A-I8<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


ApPENDIXB<br />

SEDIMENT PARAMETERS<br />

Appendix B - Sediment Parameters B-ll <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table B-1.<br />

Sediment grain size statistics for May 2001 samples from the Alafia<br />

River. Terminology: HB=Hillsborough Bay, R=river, # = river kilometer<br />

(+ upstream from mouth), L, M, R = left, middle, and right side of river<br />

when facing downstream.<br />

Station<br />

Median Grain Mean Grain Percent Percent Percent Percent Percent<br />

(kilometer) Location Size (urn) Size (urn) Silt Sand Solids Moisture Clay Skewness Kurtosis<br />

HB (-5)<br />

HB (-5)<br />

HB (-5)<br />

HB (-5)<br />

HB (-5)<br />

HB (-5)<br />

HB (-5)<br />

HB (-3)<br />

HB (-3)<br />

HB (-3)<br />

HB (-3)<br />

HB (-3)<br />

HB (-3)<br />

HB (-3)<br />

Rl<br />

RI<br />

Rl<br />

Rl<br />

Rl<br />

Rl<br />

Rl<br />

R2<br />

R2<br />

R2<br />

R2<br />

R2<br />

R2<br />

R2<br />

R3<br />

R3<br />

R3<br />

R3<br />

R3<br />

R3<br />

R3<br />

R4<br />

R4<br />

R4<br />

R4<br />

R4<br />

R4<br />

Ll<br />

L2<br />

Ml<br />

M2<br />

M3<br />

Rl<br />

R2<br />

Ll<br />

L2<br />

Ml<br />

M2<br />

M3<br />

Rl<br />

R2<br />

Ll<br />

L2<br />

Ml<br />

M2<br />

M3<br />

RI<br />

R2<br />

Ll<br />

L2<br />

Ml<br />

M2<br />

M3<br />

Rl<br />

R2<br />

Ll<br />

L2<br />

Ml<br />

M2<br />

M3<br />

Rl<br />

R2<br />

Ll<br />

L2<br />

Ml<br />

M2<br />

M3<br />

Rl<br />

175.2<br />

119.8<br />

81.45<br />

21.51<br />

60.03<br />

40.01<br />

61.25<br />

181.6<br />

140.4<br />

162.8<br />

45.08<br />

168.3<br />

157.1<br />

158.9<br />

188.3<br />

218.6<br />

64.76<br />

17.18<br />

39.07<br />

21.64<br />

30.48<br />

170.5<br />

200.4<br />

320.1<br />

182.8<br />

197.1<br />

36.11<br />

225.4<br />

164.1<br />

99.48<br />

138.6<br />

212.1<br />

95.97<br />

140.7<br />

82.37<br />

65.38<br />

131 .8<br />

104.5<br />

36.62<br />

155.6<br />

106.2<br />

148.6<br />

92.7<br />

50.5<br />

22.9<br />

39.4<br />

31.0<br />

42.5<br />

150.8<br />

109.0<br />

125.5<br />

43.1<br />

128.0<br />

112.4<br />

113.4<br />

144.2<br />

168.1<br />

49.5<br />

21.4<br />

51.6<br />

33.4<br />

48.5<br />

117.5<br />

150.2<br />

243.9<br />

130.5<br />

137.4<br />

33 .6<br />

167.3<br />

114.1<br />

71.3<br />

110.2<br />

140.3<br />

74.5<br />

86.5<br />

53.7<br />

58.6<br />

94.1<br />

76.5<br />

39.0<br />

108.0<br />

79.0<br />

11.1<br />

22.8<br />

36.4<br />

65.5<br />

44.3<br />

52.1<br />

44.5<br />

5.2<br />

13.0<br />

11.7<br />

48.8<br />

9.7<br />

13.4<br />

13.4<br />

9.6<br />

7.7<br />

41.8<br />

66.5<br />

50.1<br />

58.8<br />

50.5<br />

12.0<br />

7.2<br />

5.7<br />

10.5<br />

13.2<br />

50.7<br />

9.2<br />

16.7<br />

34.8<br />

28.2<br />

15.3<br />

36. 1<br />

25.4<br />

38.0<br />

43.7<br />

31.0<br />

35.0<br />

51.0<br />

29.1<br />

33.5<br />

86.1<br />

72.2<br />

58.0<br />

25.6<br />

49.0<br />

40.0<br />

49.5<br />

92.9<br />

83.3<br />

84.8<br />

44.3<br />

87.5<br />

83.2<br />

82.5<br />

87.4<br />

89.6<br />

50.5<br />

23.1<br />

43.4<br />

32.2<br />

41.4<br />

83.4<br />

89.3<br />

92.3<br />

86.3<br />

83.9<br />

40.9<br />

88.3<br />

79.6<br />

58.6<br />

67.4<br />

80.8<br />

57.6<br />

69.9<br />

56.7<br />

50.8<br />

64.3<br />

60.3<br />

41.3<br />

66.7<br />

62.5<br />

71.2<br />

61.1<br />

47.3<br />

25.1<br />

42.1<br />

39.3<br />

37.2<br />

77.5<br />

70.0<br />

74.7<br />

35.1<br />

68.6<br />

76.1<br />

70.0<br />

70.9<br />

73.1<br />

34.8<br />

21.1<br />

21.0<br />

21.5<br />

20.6<br />

67.0<br />

71.7<br />

74.1<br />

72.7<br />

67.8<br />

38.4<br />

72.6<br />

68.4<br />

29.3<br />

34.3<br />

66.1<br />

32.4<br />

52.1<br />

39.7<br />

23.4<br />

28.5<br />

24.4<br />

24.5<br />

22.4<br />

34.3<br />

28.8<br />

38.9<br />

52.7<br />

74.9<br />

57.9<br />

60.7<br />

62.8<br />

22.5<br />

30.0<br />

25.3<br />

64.9<br />

31.4<br />

23.9<br />

30.0<br />

29.1<br />

26.9<br />

65.2<br />

78.9<br />

79.0<br />

78.5<br />

79.4<br />

33.0<br />

28.3<br />

25.9<br />

27.3<br />

32.2<br />

61.6<br />

27.4<br />

31.6<br />

70.7<br />

65 .7<br />

33.9<br />

67.6<br />

47.9<br />

60.3<br />

76.6<br />

71.5<br />

75.6<br />

75.5<br />

77.6<br />

65.7<br />

2.9<br />

5.0<br />

5.6<br />

8.9<br />

6.7<br />

8.0<br />

6.0<br />

1.9<br />

3.8<br />

3.6<br />

6.9<br />

2.7<br />

3.4<br />

4.1<br />

2.9<br />

2.6<br />

7.7<br />

10.5<br />

6.5<br />

9.0<br />

8.0<br />

4.6<br />

3.4<br />

2.0<br />

3.3<br />

2.9<br />

8.4<br />

2.5<br />

3.8<br />

6.7<br />

4.3<br />

3.8<br />

6.3<br />

4.7<br />

5.3<br />

5.5<br />

4.7<br />

4.6<br />

7.7<br />

4.2<br />

4.0<br />

-1.3<br />

-0.6<br />

-0.9<br />

-0.1<br />

-0.7<br />

-0.5<br />

-0.6<br />

-3.1<br />

-1.5<br />

-1.5<br />

-0.1<br />

-2.3<br />

-1.7<br />

-1.6<br />

-1.9<br />

-2.2<br />

-0.3<br />

0.4<br />

0.1<br />

0.5<br />

0.2<br />

-1.7<br />

-2.5<br />

-2.5<br />

-2.1<br />

-1.7<br />

-0.2<br />

-2.1<br />

-1.3<br />

-0.4<br />

-0.5<br />

-1.3<br />

-0.2<br />

-0.8<br />

-0.6<br />

-0.1<br />

-0.5<br />

-0.5<br />

0.0<br />

-0.6<br />

-0.5<br />

2.6<br />

0.3<br />

0.1<br />

-0.4<br />

-0.3<br />

-0.5<br />

-0.4<br />

10.9<br />

2.7<br />

2.8<br />

-0.7<br />

5.5<br />

2.7<br />

2.4<br />

4.0<br />

5.5<br />

-0.9<br />

-0.1<br />

-1.l<br />

-0.6<br />

-1.2<br />

2.8<br />

6.2<br />

7.0<br />

3.9<br />

2.6<br />

-0.7<br />

4.4<br />

1.4<br />

-0.8<br />

-0.6<br />

1.2<br />

-0.8<br />

0.1<br />

-0.2<br />

-0.7<br />

-0.7<br />

-0.5<br />

-0.8<br />

-0.6<br />

-0.3<br />

Appendix B - Sediment Parameters<br />

B-1<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Appendix Table B-1 (continued).<br />

Station<br />

Median Grain Mean Grain Percent Percent Percent Percent Percent<br />

(kilometer} Location Size (!!:!!!l Size (!!:!!!} Silt Sand Solids Moisture Clal: Skewness Kurtosis<br />

R4 R2 121.6 80.9 22.5 71.5 56.4 43.6 6.0 -1.0 0.6<br />

R5 Ll 93.1 51.9 38.2 56.1 53.6 46.4 5.7 -0.7 -0.6<br />

R5 L2 151.3 126.0 11.2 85.8 70.0 30.0 3.0 -1.4 3.0<br />

R5 Ml 150.2 83.6 25.0 69.8 70.0 30.0 5.2 -1.1 0.1<br />

R5 M2 112.5 58.6 27.4 66.6 58.6 41.4 6.1 -1.1 0.2<br />

R5 M3 98.0 67.6 36.4 57.6 40.3 59.7 6.1 -0.4 -0.7<br />

R5 Rl 388.6 261.8 11.0 86.9 68.2 31.8 2.1 -1.7 2.5<br />

R5 R2 264.0 188.9 10.7 86.8 72.6 27.4 2.4 -1.8 3.1<br />

R6 Ll 167.3 131.3 12.3 84.1 67.0 33.0 3.5 -1.3 2.4<br />

R6 L2 156.7 132.1 10.4 87.0 70.6 29.4 2.6 -1.5 3.9<br />

R6 Ml 116.2 78.7 27.9 67.2 53.4 46.6 4.9 -0.4 0.0<br />

R6 M2 135.3 118.3 17.7 78.9 57.9 42.1 3.4 -0.6 0.6<br />

R6 M3 27.2 28.8 62.9 30.4 17.6 82.4 6.7 -0.1 -0.2<br />

R6 Rl 362.5 279.5 17.3 80.0 51.8 48.2 2.7 -0.8 -0.2<br />

R6 R2 195.1 200.1 7.9 89.8 67.6 32.4 2.3 -1.0 2.5<br />

R7 Ll 200.7 190.6 6.4 92.4 64.1 35.9 1.2 -1.4 6.1<br />

R7 L2 207.5 176.5 11.3 86.8 57.4 42.6 1.9 -1.4 3.3<br />

R7 Ml 124.9 95.3 22.5 74.8 53.8 46.2 2.7 -0.8 1.1<br />

R7 M2 47.0 41.3 49.8 44.9 40.9 59.1 5.4 -0.4 -0.3<br />

R7 M3 90.1 82.4 40.5 55.9 45.5 54.5 3.7 -0.3 -0.7<br />

R7 Rl 152.0 136.6 12.0 85.9 63.2 36.8 2.1 -1.1 2.6<br />

R7 R2 229.5 160.1 13.9 82.6 60.4 39.6 3.6 -1.5 1.9<br />

R8 Ll 580.2 574.9 1.0 98.6 84.3 15.7 0.4 -3.0 19.4<br />

R8 L2 411.8 351.0 2.3 97.3 79.4 20.6 0.5 -2.6 11.1<br />

R8 Ml 32.5 37.1 49.8 40.8 43.4 56.6 9.4 -0.1 -0.9<br />

R8 M2 16.2 14.5 87.1 3.3 16.0 84.0 9.6 -0.7 0.5<br />

R8 M3 47.3 53.2 49.4 45.5 39.3 60.7 5.1 0.2 -0.3<br />

R8 R1 142.7 131.6 10.4 87.9 61.2 38.8 1.7 -1.1 3.6<br />

R8 R2 166.1 177.5 11.5 86.7 61.5 38.5 1.8 -0.5 1.4<br />

R9 Ll 277.6 297.6 10.3 88.5 65.5 34.5 1.2 -0.7 0.9<br />

R9 L2 218.5 225.8 10.0 88.4 54.9 45.1 1.7 -1.0 1.6<br />

R9 Ml 74.1 61.3 42.5 53.0 39.4 60.6 4.5 -0.3 -0.5<br />

R9 M2 38.6 41.3 56.6 38.8 26.7 73.3 4.6 -0.1 -0.2<br />

R9 M3 27.5 25.7 70.3 23.9 22.9 77.1 5.8 -0.6 0.3<br />

R9 Rl 142.5 129.6 23.8 74.3 28.4 71.6 1.9 -0.5 0.2<br />

R9 R2 125.3 123.5 30.7 67.4 30.6 69.4 1.9 -0.1 -0.2<br />

RIO Ll 313.7 310.9 3.3 96.1 62.5 37.5 0.6 -1.2 4.8<br />

RIO L2 220.0 201 .1 8.6 90.5 60.2 39.8 0.9 -1.3 3.8<br />

RIO Ml 460.0 331.9 8.4 90.6 71.7 28.3 1.1 -1.8 3.8<br />

RIO M2 36.2 37.7 57.7 37.4 34.8 65.2 4.9 -0.1 0.1<br />

RIO M3 68.5 61.7 44.8 51.6 41.2 58.8 3.6 -0.3 -0.5<br />

RIO R1 177.9 182.7 8.8 90.3 59.8 40.2 0.8 -0.7 2.8<br />

R11 Ll 215.8 177.0 9.6 89.0 72.8 27.2 1.4 -1.7 4.3<br />

R11 L2 257.3 221.4 8.6 90.4 67.5 32.5 1.0 -1.4 3.6<br />

R11 Ml 79.9 77.5 41.4 53.5 42.2 57.8 5.0 -0.3 -1.0<br />

R11 M2 123.9 88.5 38.5 57.9 52.4 47.6 3.6 -0.5 -0.8<br />

R11 M3 40.8 48.9 56.1 40.1 40.4 59.6 3.7 -0.1 -0.5<br />

R4 R2 121.6 80.9 22.5 71.5 56.4 43.6 6.0 -1.0 0.6<br />

R11 Rl 190.2 165.1 14.2 84.1 47.3 52.7 1.7 -0.9 1.7<br />

RIO R2 182.1 174.4 8.9 90.2 64.4 35.6 0.8 -1.0 3.8<br />

Appendix B - Sediment Parameters B-2 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Appendix Table B-1 (continued).<br />

Station<br />

(kilometer) Location<br />

Median Grain Mean Grain Percent Percent Percent Percent Percent<br />

Size (um) Size (11m) Silt Sand Solids Moisture Clay<br />

Skewness Kurtosis<br />

Rll<br />

R12<br />

R12<br />

R12<br />

R12<br />

RI2<br />

RI2<br />

R12<br />

RI3<br />

RI3<br />

RI 3<br />

R1 3<br />

RI 3<br />

RI 3<br />

R1 3<br />

R14<br />

RI4<br />

R14<br />

RI4<br />

R14<br />

RI4<br />

R14<br />

R15<br />

RI5<br />

R15<br />

RI5<br />

R15<br />

R15<br />

R15<br />

R2<br />

Ll<br />

L2<br />

MI<br />

M2<br />

M3<br />

RI<br />

R2<br />

Ll<br />

L2<br />

Ml<br />

M2<br />

M3<br />

Rl<br />

R2<br />

Ll<br />

L2<br />

MI<br />

M2<br />

M3<br />

Rl<br />

R2<br />

Ll<br />

L2<br />

Ml<br />

M2<br />

M3<br />

Rl<br />

R2<br />

151 .2<br />

151.0<br />

319.5<br />

110.4<br />

40.9<br />

78.1<br />

219.1<br />

199.6<br />

194.3<br />

181.2<br />

246.1<br />

116.8<br />

80.3<br />

57.7<br />

845.2<br />

167.6<br />

167.2<br />

444.5<br />

484.2<br />

443.3<br />

53.0<br />

68.8<br />

524.7<br />

236.8<br />

249.5<br />

93.1<br />

23.0<br />

382.9<br />

75.4<br />

127.2<br />

118.1<br />

312.4<br />

83.2<br />

41.2<br />

62.0<br />

186.4<br />

172.6<br />

197.1<br />

166.7<br />

149.9<br />

91.9<br />

72.8<br />

62.0<br />

532.7<br />

152.0<br />

161.3<br />

306.6<br />

451.7<br />

277.5<br />

51.7<br />

61.7<br />

513.6<br />

209.4<br />

220.4<br />

99.4<br />

20.5<br />

277.8<br />

102.7<br />

27.1<br />

28.4<br />

6.3<br />

27.8<br />

55.2<br />

41.5<br />

7.0<br />

6.7<br />

8.8<br />

5.4<br />

20.5<br />

35.5<br />

42.6<br />

47.7<br />

9.8<br />

10.3<br />

10.0<br />

9.1<br />

1.7<br />

13.1<br />

50.1<br />

44.9<br />

1.0<br />

3.6<br />

4.4<br />

39.4<br />

70.0<br />

9.2<br />

43.6<br />

70.9<br />

69.1<br />

92.4<br />

69.1<br />

40.2<br />

55.2<br />

92.2<br />

92.3<br />

90.0<br />

93.5<br />

78.1<br />

61.4<br />

54.6<br />

48.5<br />

88.9<br />

87.6<br />

88.6<br />

89.7<br />

98.1<br />

85.8<br />

45.9<br />

52.4<br />

98.8<br />

95.9<br />

94.7<br />

57.9<br />

20.7<br />

90.0<br />

53.6<br />

46.1<br />

48.2<br />

65.0<br />

59.9<br />

26.8<br />

41.4<br />

68.0<br />

70.4<br />

68.7<br />

70.7<br />

56.3<br />

40.7<br />

27.3<br />

28.6<br />

53 .9<br />

67.3<br />

67.2<br />

78.8<br />

79.7<br />

67.5<br />

22.7<br />

26.0<br />

79.7<br />

74.0<br />

91.7<br />

15.6<br />

23.5<br />

70.2<br />

14.4<br />

53.9<br />

51.8<br />

35.0<br />

40.1<br />

73 .2<br />

58.6<br />

32.0<br />

29.6<br />

31.3<br />

29.3<br />

43.7<br />

59.3<br />

72.7<br />

71.4<br />

46.1<br />

32.7<br />

32.8<br />

21.2<br />

20.3<br />

32.5<br />

77.3<br />

74.0<br />

20.3<br />

26.0<br />

8.3<br />

84.4<br />

76.5<br />

29.8<br />

85.6<br />

2.1<br />

2.5<br />

1.3<br />

3. 1<br />

4.7<br />

3.2<br />

0.9<br />

1.0<br />

1.2<br />

1.1<br />

1.3<br />

3.0<br />

2.8<br />

3.9<br />

1.3<br />

2.1<br />

1.4<br />

1.2<br />

0.2<br />

1.1<br />

4.0<br />

2.7<br />

0.2<br />

0.6<br />

0.9<br />

2.7<br />

9.3<br />

0.8<br />

2.7<br />

-0.4<br />

-0.5<br />

-1.2<br />

-0.8<br />

-0.3<br />

-0.3<br />

-2.3<br />

-2.4<br />

-0.8<br />

-2.1<br />

-1.4<br />

-0.4<br />

-0.4<br />

0.0<br />

-1.3<br />

-1.3<br />

-1.0<br />

-2.3<br />

-3 .3<br />

-1.6<br />

-0.1<br />

-0.3<br />

-3.8<br />

-3.2<br />

-2.4<br />

-0.1<br />

-0.7<br />

-2.3<br />

0.1<br />

0.0<br />

-0.1<br />

3.0<br />

0.8<br />

-0.2<br />

0.2<br />

7.0<br />

8.0<br />

2.6<br />

9.1<br />

1.4<br />

-0.3<br />

-0.4<br />

-0.5<br />

1.5<br />

3.4<br />

3.1<br />

4.9<br />

18.8<br />

2.3<br />

0.0<br />

0.1<br />

28.1<br />

14.5<br />

9.8<br />

-0.7<br />

0.0<br />

5.2<br />

-1.0<br />

Appendix B - Sediment Parameters B-3 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Appendix Table B-2.<br />

Sediment grain size statistics for December 2000) samples from the Little<br />

Manatee River. Terminology: Bay=Tampa Bay, R=river, #=river<br />

kilometer (+ upstream from mouth), L, M, R = left, middle, and right<br />

side of river when facing downstream.<br />

Station Location Median Grain Mean Grain Percent Percent Percent Percent Percent<br />

(kilometer) (LIMIR) Size (um) Size (um) Silt Sand Solids Moisture Clay Skewness Kurtosis<br />

Bay L 127.3 90.9 2 1.3 75.6 61.8 38.2 3.1 -l.11 1.33<br />

Bay M 174.7 134.9 9.1 89.0 73.4 26.6 1.9 -2.50 6.55<br />

RO L 169.3 127.4 12.4 84.4 67.7 32.3 3.2 -1 .57 2.75<br />

RO M 241.3 244.7 3.6 95.4 75.8 24.2 1.0 -1.58 6.78<br />

RO R 160.0 132.2 LO.O 87 .6 68.1 31.9 2.4 -1.82 4.16<br />

R1 L 141.7 115.1 9.7 86.8 70.5 29.5 3.5 -1.72 3.96<br />

Rl M 187.6 164.6 5.3 92.7 75.3 24.7 2.0 -2.50 8.48<br />

R1 R l73.4 120.9 19.0 77.8 37.5 62.5 3.2 -1.13 0.79<br />

R3 M 189.9 177.4 3.4 95 .0 76.8 23.2 1.6 -2.82 12.00<br />

R3 M 183.0 160.6 5.3 92.8 76.4 23 .6 1.9 -2.52 8.69<br />

R3 R 177.9 167.9 2.3 96.5 76.5 23.5 1.2 -3.54 19.70<br />

R5 L 319.9 271.4 4.5 94.2 77.6 22.4 1.2 -2.57 8.52<br />

R5 M 348.1 308.2 3.1 95.9 78.0 22.0 1.0 -2.86 11.70<br />

R5 M 163.9 133.4 6.7 9l.1 75.0 25 .0 2.1 -2.73 8.15<br />

R7 L 166.3 104.5 l7.9 78.5 71.0 29.0 3.6 -1.45 1.52<br />

R7 M 272.7 244.3 2.9 95 .9 75.1 24.9 1.3 -2.92 12.50<br />

R7 R 191.8 158.3 11.0 87.4 70.2 29.8 1.6 -1.54 3.72<br />

R9 M 299.6 218.8 11.1 86.5 69.5 30.5 2.5 -1.51 2.41<br />

R9 R 294.8 207.1 8.9 88 .8 73.1 26.9 2.3 -2.15 4.5 1<br />

R11 M 126.2 77.5 33.0 63.7 52.6 47.4 3.3 -0.75 0.29<br />

Rl1 R 152.2 156.5 13.4 84.4 58.9 4l.1 2.2 -0.69 l.14<br />

Rll R2 168.8 107.1 21.8 73.7 63.9 36.1 4.5 -1.02 0.35<br />

R13 M 300.5 264.3 4.1 94.9 76.1 23 .9 1.0 -2.71 10.40<br />

R13 R 193.5 184.3 9.1 89.2 67.6 32.4 1.7 -1.16 3.03<br />

R13 R 81.6 61.7 40.8 54.6 46.7 53.3 4.5 -0.46 -0.42<br />

R15 L 429.8 400.2 1.9 97.9 80.0 20.0 0.2 -4.26 26.00<br />

R15 R 361.5 337.0 2.0 97.6 78.7 21.3 0.4 -3.41 19.00<br />

R15 M 302.1 283.6 2.1 97.5 77.3 22.7 0.4 -3.14 l7.80<br />

Rl7 M 450.6 463.3 0.7 99.3 84.0 16.0 0.0 -1.14 11.60<br />

Rl7 R 141.6 125.5 31.2 65 .7 15.7 84.3 3.1 -0.41 -0.53<br />

Rl8 L 238.9 165.0 25 .0 72.6 42.9 57.1 2.3 -0.68 -0.07<br />

R18 R 349.2 346.7 0.0 100.0 78.9 2l.1 0.0 -0.04 0.86<br />

Appendix B - Sediment Parameters B-4 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Appendix Table B-3.<br />

Sediment characteristics of coarse material (>0.5 mm) from Alafia River<br />

benthic samples from May 1999.<br />

Database of sediment characteristics from benthic fauna samples.<br />

Parameter<br />

Km<br />

1<br />

2<br />

4<br />

5<br />

6<br />

9<br />

10<br />

Mean<br />

S.D.<br />

% Moisture<br />

% Moisture<br />

% Moisture<br />

% Moisture<br />

% Moisture<br />

% Moisture<br />

% Moisture<br />

% Moisture<br />

% Moisture<br />

% Moisture<br />

% Moisture<br />

% Moisture<br />

% Moisture<br />

% Moisture<br />

% Moisture<br />

% Moisture<br />

% Moisture<br />

-5<br />

-3<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

31.8<br />

93.5<br />

83.9<br />

54.2<br />

89.9<br />

53.3<br />

57.6<br />

25.2<br />

91.7<br />

27.8<br />

21.7<br />

29.9<br />

84.0<br />

88.9<br />

90.4<br />

66.3<br />

57.2<br />

84.5<br />

86.4<br />

80.7<br />

70.8<br />

64.7<br />

83.4<br />

92.5<br />

31.5<br />

38.8<br />

90.0<br />

84.9<br />

92.1<br />

77.1<br />

55 .1<br />

76.9<br />

76.9<br />

60.8<br />

70.4<br />

68.3<br />

46.3<br />

83 .5<br />

91.3<br />

37.0<br />

45.4<br />

93.0<br />

26.0<br />

89.6<br />

58.4<br />

98.7<br />

66.1<br />

47.5<br />

77.3<br />

82.0<br />

76.3<br />

45.7<br />

56.9<br />

69.7<br />

57.9<br />

91.9<br />

90.0<br />

91.0<br />

25.5<br />

89.1<br />

93.1<br />

99.2<br />

98.9<br />

69.9<br />

51.1<br />

86.2<br />

78.6<br />

83.9<br />

88.1<br />

90.2<br />

79.6<br />

83.5<br />

51.4<br />

33.4<br />

89.0<br />

29.4<br />

94.4<br />

91.8<br />

90.7<br />

63.0<br />

50.5<br />

37.2<br />

72.8<br />

43.5<br />

92.1<br />

74.2<br />

38.4<br />

50.3<br />

86.7<br />

30.1<br />

89.4<br />

94.7<br />

26.3<br />

24.5<br />

93 .0<br />

71.9<br />

44.7<br />

34.0<br />

38.1<br />

67.5<br />

87.6<br />

83.0<br />

91.8<br />

88.9<br />

38.2<br />

9l.2<br />

89.0<br />

42.2<br />

89.6<br />

90.5<br />

94.0<br />

77.3 17.1<br />

76.5 23.4<br />

50.5 17.6<br />

54.2 19.0<br />

78.4 6.9<br />

72.7 17.0<br />

8l.0 10.4<br />

70.6 16.8<br />

66.4 18.4<br />

56.1 21.9<br />

83 .9 12.1<br />

59.0 30.7<br />

50.4 27.6<br />

75.7 26.4<br />

57.2 33.2<br />

68.9 33.9<br />

92.0 l.6<br />

% Organic<br />

% Organic<br />

% Organic<br />

% Organic<br />

% Organic<br />

% Organic<br />

% Organic<br />

% Organic<br />

% Organic<br />

% Organic<br />

% Organic<br />

% Organic<br />

% Organic<br />

% Organic<br />

% Organic<br />

% Organic<br />

% Organic<br />

-5<br />

-3<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

146.1<br />

46.5<br />

24.3<br />

5.7<br />

19.8<br />

4.9<br />

10.7<br />

0.6<br />

72.7<br />

2.0<br />

0.5<br />

4.4<br />

19.8<br />

59.5<br />

48.2<br />

2.3<br />

3.0<br />

10.7<br />

15.5<br />

16.9<br />

8.5<br />

12.4<br />

21.9<br />

67.0<br />

2.6<br />

8.4<br />

72.5<br />

24.7<br />

65 .9<br />

3.7<br />

3.8<br />

11.7<br />

9.5<br />

5.1<br />

5.7<br />

10.9<br />

3.2<br />

27.7<br />

66.3<br />

1.8<br />

5.1<br />

65 .1<br />

0.7<br />

45.2<br />

3.4<br />

7.1<br />

4.4<br />

2.8<br />

18.1<br />

12.2<br />

22.2<br />

4.0<br />

5.6<br />

12.9<br />

13.7<br />

66.0<br />

63.2<br />

63.1<br />

1.4<br />

64.9<br />

78.9<br />

52.7<br />

55.4<br />

10.2<br />

4.2<br />

54.4<br />

39.7<br />

20.6<br />

35.0<br />

71.5<br />

27.1<br />

72.0<br />

3.2<br />

3.6<br />

67.4<br />

1.7<br />

80.0<br />

57 .3<br />

16.1<br />

l.5<br />

3.9<br />

l.7<br />

8.7<br />

4.1<br />

36.7<br />

16.8<br />

3.6<br />

5.7<br />

62.8<br />

2.4<br />

48.1<br />

64.6<br />

1.1<br />

0.6<br />

60.2<br />

3.8<br />

0.8<br />

1.7<br />

2.4<br />

7.7<br />

22.7<br />

12.4<br />

30.8<br />

52.6<br />

4.8<br />

76.4<br />

63.2<br />

9.6<br />

66.9<br />

79.3<br />

68.5<br />

15.7 21.5<br />

13.7 23.4<br />

33.3 63.2<br />

9.2 16.5<br />

19.4 16.5<br />

15.6 12.3<br />

19.1 9.7<br />

15 .1 12.9<br />

23.9 26.8<br />

10.9 10.1<br />

56.0 24.9<br />

29.4 33.5<br />

19.3 25.4<br />

49.1 30.5<br />

19.0 24.9<br />

47 .5 37.2<br />

60.6 11.7<br />

% Solids<br />

% Solids<br />

% Solids<br />

% Solids<br />

% Solids<br />

-5<br />

-3<br />

2<br />

3<br />

68.2<br />

6.5<br />

16.1<br />

33.7<br />

42.8<br />

15.5<br />

22.9<br />

44.9<br />

23 .1<br />

4l.6<br />

1.3<br />

33.9<br />

52.5<br />

22.7<br />

0.8<br />

1.1<br />

30.1<br />

48.9<br />

13.8<br />

9.3<br />

37.0<br />

49.5<br />

62.8<br />

27.2<br />

28.1<br />

55.3<br />

66.0<br />

61.9<br />

32.5<br />

22.7 17.1<br />

23.5 23.4<br />

49.5 17.6<br />

45 .8 19.0<br />

2l.6 6.9<br />

Appendix B - Sediment Parameters<br />

B-5<br />

Male <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Appendix Table B-3 (continued).<br />

Database of sediment characteristics from benthic fauna samples.<br />

Parameter Km 1 2 4 5 6 9 10 Mean S.D.<br />

% Solids 4 45.8 13.6 23.1 18.0 21.4 56.5 12.4 27 .3 17.0<br />

% Solids 5 10.1 19.3 39.2 23 .7 16.1 7.9 17.0 19.0 10.4<br />

% Solids 6 46.7 29.2 29.6 54.3 11.9 25 .8 8.2 29.4 16.8<br />

% Solids 7 42.4 35.3 31.7 43.1 9.8 61.6 11.1 33.6 18.4<br />

% Solids 8 74.8 16.6 53.7 30.3 20.4 49.7 61.8 43.9 21.9<br />

% Solids 9 8.3 7.5 16.5 42.1 16.5 13.3 8.8 16.1 12.1<br />

% Solids 10 72.2 68.5 8.7 8.1 48.6 69.9 11.0 41.0 30.7<br />

% Solids 11 78.3 61.2 63.0 10.0 66.6 10.6 57.8 49.6 27.6<br />

% Solids 12 70.1 10.0 54.6 9.0 11.0 5.3 10.4 24.3 26.4<br />

% Solids 13 16.0 15.1 7.0 74.5 70.6 73.7 42.8 33.2<br />

% Solids 14 11.1 74.0 10.9 5.6 75.5 9.5 31.1 33.9<br />

% Solids 15 9.6 7.9 10.4 6.9 8.2 7.0 6.0 8.0 1.6<br />

SumInorg -5 87.6 82.6 13.0 46.5 80.8 62.1 31.9<br />

SumInorg -3 81.3 68.6 11 .8 91.6 95.4 69.7 34.0<br />

SumInorg 1 -5.6 78.4 59.5 80.4 90.6 60.7 38.7<br />

SumInorg 2 16.1 84.4 80.8 85 .3 79.2 90.6 87.1 74.8 26.2<br />

SumInorg 3 34.2 58.2 55.7 43.0 12.3 63.6 66.6 47.7 19.4<br />

SumInorg 4 73.4 47.6 61.4 54.5 20.2 79.6 36.2 53.3 20.7<br />

SumInorg 5 40.3 45.0 75.6 36.9 39.1 22.3 54.1 44.8 16.6<br />

SumInorg 6 76.4 64.2 73.4 80.0 23.6 45.2 27.2 55.7 23.6<br />

SumInorg 7 58.2 54.1 57.7 73.8 6.2 81.7 13.1 49.2 28.8<br />

SumInorg 8 96.5 37.3 83.5 53.0 31.0 73.4 76.8 64.5 24.5<br />

SumInorg 9 5.9 7.6 30.3 5 1.2 6.1 9.0 4.9 16.4 17.7<br />

SumInorg 10 89.1 86.2 7.8 7.9 83.5 87.1 8.9 52.9 41.9<br />

SumInorg 11 97.1 64.5 90.1 8.9 81.7 15.2 61.1 59.8 35.1<br />

SumInorg 12 78.4 6.0 75.6 8.9 7.5 8.4 7.6 27.5 33.9<br />

SumInorg 13 40.3 33.7 8.2 92.2 90.6 93 .7 59.8 37.1<br />

SumInorg 14 10.2 95 .9 8.3 4.0 96.5 4.2 36.5 46.3<br />

SumInorg 15 15.2 7.9 16.8 4.3 11.1 9.9 7.1 10.3 4.5<br />

Appendix B - Sediment Parameters B-6 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


L-__ ~L~e~f~t~B~a~n~k~ ____ ~1 LI<br />

______ ~M~a~i~n_R_l_·v~e_r~C~h~a~n_n~e_I ______ ~ Right Bank<br />

2000.0<br />

141 0 .0<br />

II) 1000.0<br />

710.0<br />

500.0<br />

350.0<br />

::c = 250.0<br />

177.0<br />

125.0<br />

e- 88.0<br />

62.5<br />

2; 44.0<br />

31.0<br />


L-____ L~e~ft~B~a~n~k ______ _"1 LI<br />

______ ~M~a~in~R~i~v~e~r~C~h~a~n~n~e~I~ ____ ~ Ri ght Bank<br />

2000 .0<br />

1410 .0<br />

1000.0<br />

710 .0<br />

500 .0<br />

350 .0<br />

~ 250.0<br />

177 .0<br />

125.0<br />

88 .0<br />

E 62 .5<br />

44.0<br />

~ 3 1.0<br />

0) 22 .1<br />

N , 5 .6<br />

1 1 .0<br />

Ci3 7 .•<br />

5 .5<br />

0)<br />

3 .•<br />

U 2 .•<br />

2.0<br />

't 1.4<br />

ell 1.0<br />

0- 0 .7<br />

0.5<br />

0 .0<br />

0 10 20 30 0 10 20 30 0<br />

10<br />

20 30 0 10 20 30 o 10 20 30 0 10 20 30 0 10 20 30<br />

2000.0<br />

1410.0<br />

1000 .0<br />

7 10.0<br />

500 .0<br />

350.0<br />

~ 250 .0<br />

177 .0<br />

125.0<br />

8S .0<br />

E 62 .5<br />

44 .0<br />

~ 31 .0<br />

0) 22 .1<br />

N 15.6<br />

11 .0<br />

Ci3 7 .•<br />

5 .5<br />

0)<br />

3 .•<br />

U<br />

't<br />

2 .•<br />

2 .0<br />

1 ..<br />

ell 1 .0<br />

0- 0 .7<br />

0 .5<br />

0 .0<br />

0 10 20 30 0 10 20 30 0<br />

10<br />

20 30 0 10 20 30 o 10 20 30 0 10 20 30 0 10 20 30<br />

2000 .0<br />

1410.0<br />

'


L-____ L~e~f~t _B~a~n~k~ ____ _"1 LI<br />

______ ~M~a~i~n~R~iv~e~r ~C~h~a~n~n~e~I ______ ~1 LI<br />

____ ~R~i g~h~t~B~a~n~k~ __ ~<br />

2000 .0<br />

1410.0<br />

1000 .0<br />

710 .0<br />

500 .0<br />

350.0<br />

~ 250 .0<br />

177 .0<br />

125 .0<br />

88 .0<br />

E 62 .5<br />

44 .0<br />

~ 31 .0<br />

0) 22 .1<br />

N 15.6<br />

11 .0<br />

C;;<br />

7 ."<br />

5 .5<br />

0)<br />

3 .9<br />

U 2 ."<br />

°E<br />

2 .0<br />

1.4<br />

OJ 1.0<br />

0... 0 .7<br />

0.5<br />

0 .0<br />

0 10 20 30 0 10 20 30 0<br />

10<br />

20 30 0 10 20 30 o 10 20 30 0 10 20 30 0 10 20 30<br />

2000.0<br />

1410.0<br />

1000.0<br />

7 10 ,0<br />

500.0<br />

350 .0<br />

~ 250 .0<br />

177 .0<br />

125.0<br />

88 .0<br />

E 62 .5<br />

44 .0<br />

~ 31 .0<br />

0) 22 .1<br />

N 1 5 .6<br />

11.0<br />

C;; 7 ."<br />

5.5<br />

0)<br />

3.9<br />

U ."<br />

.t:<br />

2 .0<br />

1.4<br />

OJ 1.0<br />

0... 0 .7<br />

0.5<br />

0.0<br />

0 10 20 30 0 10 20 30 0<br />

10<br />

20 30 0 10 20 30 o 10 20 30 0 10 20 30 0 10 20 30<br />

20 00 .0<br />

141 0 .0<br />

1000.0<br />

71 0 .0<br />

500 .0<br />

3 50 .0<br />

~ 250.0<br />

, 77 .0<br />

125.0<br />

88 .0<br />

E 62 .5<br />

44 .0<br />

~ 31.0<br />

0) 22 .1<br />

N 15.6<br />

11 .0<br />

C;;<br />

7 ."<br />

5 .5<br />

0)<br />

3 .9<br />

U 2 ."<br />

.t:<br />

2.0<br />

1.4<br />

OJ 1 .0<br />

0... 0 .7<br />

0. 5<br />

0 .0<br />

0 10 20 30 0 10 20 30 0<br />

10 20 30 0 10 20 30 o 10 20 30 0 10 20 30 0 10 20 30<br />

Individ ual Vo lu me Percent<br />

Appendix Figure B-1 (continued).<br />

Appendix B - Sediment Parameters<br />

B-9 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Left Bank I I M ain River Channel Right Bank<br />

2000.0<br />

1410.0<br />

op 1000.0<br />

710.0<br />

500.0<br />

350.0<br />

~ 250.0<br />

177.0<br />

125.0<br />

88.0<br />

E 62.S<br />

44 .0<br />

C 31.0<br />

Q) 22.1<br />

N 15.8<br />

11 .0<br />

en 7 .•<br />

5 .5<br />

Q)<br />

3 .•<br />

U<br />

'€<br />

2 .•<br />

2 .0<br />

1 .•<br />

t


2000 .0<br />

.... 1410 .0<br />

.... 1000 .0<br />

710.0<br />

500 .0<br />

350 .0<br />

~<br />

~<br />

E<br />

2:<br />

250 .0<br />

177.0<br />

125.0<br />

88.0<br />

62 .5<br />

44 .0<br />

31 .0<br />

22 .1<br />


Main River Chann el<br />

Right Bank<br />

2000 .0<br />

.". 1410,0<br />

.... 1000.0<br />

710.0<br />

500.0<br />

350.0<br />

2 50 .0<br />

~ 177.0<br />

125 .0<br />

88.0<br />

E 62.5<br />

44 .0<br />

~<br />

3 1.0<br />

22 .1<br />

Q) 15 .6<br />

N 11 .0<br />

iZi<br />

7 .•<br />

5 .5<br />

Q) 3 .•<br />

2 .•<br />

U 2 .0<br />

"E '.<br />

1.0<br />

0 .7<br />

0... '" 0 .5<br />

0 .0<br />

0 10 20 30 0 10 20 30 0<br />

10<br />

20 30 0 10 20 30 o 10 20 30 0 10 20 30 0 10 20 30<br />

2000.0<br />

I/) 1410.0<br />

.... 1000.0<br />

710 .0<br />

500 .0<br />

350 .0<br />

250 .0<br />

~ 177.0<br />

125.0<br />

88.0<br />

E 62.5<br />

44 .0<br />

~<br />

31 .0<br />

22. 1<br />

Q) 15.6<br />

N 11.0<br />

iZi<br />

7 .•<br />

5 .5<br />

Q) 3 .•<br />

U<br />

2 .•<br />

2 .0<br />

"E<br />

1..<br />

1.0<br />

0 .7<br />

0... '" 0 .5<br />

0 .0<br />

0 10 20 30 0 10 20 30 0<br />

10<br />

20 30 0 10 20 30 o 10 20 30 0 10 20 30 0 10 20 30<br />

Individual Volume Percent<br />

Appendix Figure B-1 (continued).<br />

Appendix B - Sediment Parameters<br />

B-12 <strong>Mote</strong> Ma rine <strong>Laboratory</strong> - June 2003


LI ________<br />

L-____ L __ ef_t_B_a_n_k ______-"<br />

M_a~i_n_R __ iv~e_r_C~h_a~n_n~e_l ______ ~1 LI<br />

_____ R~ig~h~t_B~a~n_k ____ ~<br />

2000.0<br />

1410.0<br />

l£) 1000.0<br />

710 .0<br />

500 .0<br />

350.0<br />

250 .0<br />

== 177.0<br />

"" 125.0<br />

E 88 .0<br />

62 .5<br />

..=, 44.0<br />

3 1.0<br />


400<br />

500 , I<br />

n~ L_-__ -_--=-=-_ .. -L----'-"------'-'"---_ -"-'------J H B-5<br />

500<br />

400<br />

300<br />

200<br />

100<br />

n~oo<br />

o<br />

500<br />

400<br />

300<br />

200<br />

100<br />

o<br />

L1 L2 M1 M2 M3 R 1 R2<br />

.L..-___- _ ---"- - _ _- _ ---"- - _ --"'- ___-=----.!I K M -I<br />

L1 L2 M1 M2 M3 R 1 R2<br />

L_-_--= __-__-__-----'___-"-'------JI K M -,<br />

L<br />

400<br />

500 • I<br />

n~ L_-__ -___- _ ---'-"-_ -___-__-..---J H B-3<br />

L1 L2 M1 M2 M3 R1 R2<br />

400<br />

500 1 I<br />

10g L_-__ -_____-__-__..<br />

-'--_..---J.<br />

~gg - _ KM-2<br />

m<br />

L1 L2 M1 M2 M3 R1 R2<br />

I _ I K M -,<br />

- - - . 1 0 g L....::: -__-___- _ ---'-'--_ -___-__<br />

,=L.:.1_-=L:..:2=--_Mc.:...:1_ccM.:..:2=----=M.:.:....o3_c.R'--1'--------=R-=- 2--, L 1 L2 M 1 M 2 M 3 R 1 R 2<br />

--=<br />

•<br />

______<br />

• •<br />

-=-____<br />

•• I , 10g L_-__ -___-__-_-----'-'"--____<br />

..---J.<br />

~gg I I<br />

-__ ----' K M -5 ~g g - _ K M -6<br />

L 1 L2 M 1 M 2 M 3 R 1 R 2 L 1 L2 M 1 M 2 M 3 R 1 R 2<br />

I K M - 8<br />

~ g g Ir-'~-=--=-'--.-=:.:-=----"=-'-'-'--=:,I !~ ogo gog I·<br />

~ g~ .L.._-__<br />

- _<br />

-___-_<br />

--"-'-_ -___-__----'<br />

K M -7 _ _ _ _ _ .<br />

,=L -'- 1 _-=L:..:2=----'M~1_-"M.:..:2=---__'M.:.:...= 3_-'-R~1'-------__'R-'-2~<br />

,=L -'- 1 _-=L:..:2=--__'M~1 _-"M.:..:2=--_'_M.:.:...= 3 _.:..:R__'1 _ _'_R-'-2~<br />

~3g0g0 i _ _ . KM-9 500 ~gg I - - I<br />

ng _ _ ~gg - - - KM-IO<br />

o "--_____-=-_~-'--_____'-______---.J<br />

0 "--______--"-'--_-=---____---.J.<br />

L 1 L2 M1 M2 M3 R1 R2 L1 L2 M1 M2 M3 R 1 R2<br />

40 0 400<br />

50 ~gg I _ _ I KM-l1 ~gg 500 I - _ _ ! KM-12<br />

10g "--_- ____ -___<br />

-_--=-=-____----'<br />

10g L __- ____-__-"-'--_-=---____---.J.<br />

L 1 L2 M 1 M 2 M 3 R 1 R 2 L 1 L2 M 1 M 2 M 3 R 1 R 2<br />

---.J.<br />

Ii! I - - - _ _ _ - I K M -13 Ii!<br />

I _ _ - - - _ _ I K M -14<br />

L 1 L2 M 1 M 2 M 3 R 1 R 2 L 1 L2 M1 M2 M3 R1 R2<br />

~gg ~g~ I- _ _ _ _ _ - _ I<br />

KM-15<br />

L 1 L2 M 1 M 2 M 3 R 1 R 2<br />

Appendix Figure B-2.<br />

Sediment grain size statistics for cross sections of the Alafia River, May<br />

2001.<br />

Appendix B - Sediment Parameters B-14 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


__________<br />

500<br />

400<br />

300 200 _<br />

1 og L ____ ~-_____ _ _ __.:-=__<br />

L1<br />

500<br />

400<br />

300 200 _<br />

100<br />

o<br />

L 1<br />

L2<br />

M1<br />

- -<br />

L2 M1<br />

"'-'_____=-=____..!<br />

M2 M3 R1 R2<br />

- - - -<br />

M2 M3 R1 R2<br />

500 400<br />

•<br />

300<br />

200. •• •<br />

10g L ___-_______-_____- _<br />

L1 L2 M1 M2 M3 R1 R2<br />

~gg i - I<br />

~gg - - -<br />

KM-5<br />

100 o L-________________________ _ - - ~ .<br />

L1<br />

500<br />

400<br />

300<br />

200 100 -<br />

o<br />

500<br />

400 300 _<br />

200<br />

100<br />

o<br />

L1<br />

500<br />

400<br />

300<br />

200<br />

100<br />

-<br />

o<br />

L2<br />

M1<br />

- -<br />

M2 M3 R1 R2<br />

-<br />

-<br />

KM-7<br />

. I<br />

-<br />

L1 L2 M 1 M 2 M 3 R 1 R 2<br />

-<br />

L2 M1 - - - - -<br />

M2 M3 R1 R2<br />

- -<br />

- - - -<br />

L 1 L2 M 1 M 2 M 3 R 1 R 2<br />

400<br />

500 300 I _ _ (81 5 ) I<br />

~gg<br />

L_-__ -_____-___-_---='--_T_.<br />

L1 L2 M1 M2 M3 R1 R2<br />

- -<br />

-<br />

400<br />

300<br />

200<br />

100 o -<br />

L-________ ~-L-____ ~<br />

500 I -<br />

-<br />

L 1 L2 M 1 M 2 M 3 R 1 R 2<br />

OB-5<br />

KM -I<br />

KM-3<br />

KM-9<br />

KM -II<br />

KM-13<br />

KM-15<br />

~gg I I<br />

--.J 0 B-3<br />

L1 L2 M1 M2 M3 R 1 R2<br />

~ g~ L _ _ -__-___- _---'-'-__- __-___<br />

500 400<br />

I<br />

-_ --'-"-__-.J K M -2<br />

L1 L2 M1 M2 M3 R1 R2<br />

~ g~ L.._-__ -___-__-___<br />

ill L..-=-,___-___ -_ --,-"-__-__<br />

500<br />

400<br />

300<br />

200<br />

100<br />

o<br />

500<br />

400<br />

300<br />

200<br />

L1<br />

-L1<br />

L2<br />

M1<br />

- -<br />

L2 M1<br />

-<br />

-__ -___,I K M -.<br />

M2 M3 R1 R2<br />

-<br />

-<br />

-<br />

M2 M3 R1 R2<br />

-<br />

- -<br />

10g L.. ____ ~-'__~L-_~-____ ___'<br />

500 400 I<br />

~gg -<br />

L 1 L2 M 1 M 2 M 3 R 1 R 2<br />

-<br />

-<br />

- -<br />

L1 L2 M1 M2 M3 R 1 R2<br />

- - -<br />

10g L ________ ~-"-_-=-____ ___'<br />

500 400 I<br />

300<br />

o .L _____________ ~<br />

-<br />

~<br />

- - -<br />

~gg - - -<br />

500 400 I<br />

300<br />

L1 L2 M1 M2 M3 R1 R2<br />

- -<br />

~gg - -<br />

o L ____________ ~ __<br />

~<br />

L1 L2 M1 M2 M3 R 1 R2<br />

KM-6<br />

KM-8<br />

KM-IO<br />

KM-12<br />

KM-t4<br />

Appendix Figure B-2 (continued).<br />

Appendix B - Sediment Parameters<br />

B-15<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


1i4go 1 _ - - - - - 1 HB·5<br />

20 o L-__________________________ -<br />

-"<br />

ill. . · · · · ·1 KM.I<br />

100 L1 L2 M1 M2 M3 R1 R2<br />

ill. · · · · · ·1 KM·'<br />

100 L1 L2 M1 M2 M3 R1 R2<br />

'II L.<br />

__- ____- ____-____-____-_____- ____---'1 H B.'<br />

ill. · . · · · ·1 KM·'<br />

ill· · · · · · · 1 KM·'<br />

100 L1 L2 M1 M2 M3 R1 R2<br />

100 L1 L2 M1 M2 M3 R1 R2<br />

100<br />

ill·<br />

L1 L2<br />

·<br />

M1<br />

·<br />

M2<br />

·<br />

M3<br />

·<br />

R1<br />

·<br />

R2<br />

.1<br />

L1 L2 M1 M2 M3 R1 R2<br />

KM.'<br />

~g<br />

1ig I<br />

_ _ -<br />

- -<br />

_ _<br />

1 KM·7<br />

o L-__________________________ __<br />

ill. · · · · · ·1 KM.'<br />

100 L1 L2 M1 M2 M3 R1 R2<br />

100 L1 L2 M1 M2 M3 R1 R2<br />

~g 1 _ - _ - - -I KM·II<br />

~g j - .<br />

100<br />

ill.<br />

L1 L2<br />

·<br />

M1<br />

·<br />

M2<br />

·<br />

M3<br />

·<br />

R1<br />

·<br />

R2<br />

· IKM."<br />

i I .LI__-____<br />

100 ,.:L:...:1 ___ L_ 2 ____ M_1 ___ M'--=- 2 __-'-M--'3'-----_R-'--'-<br />

1 ____ R-=2_<br />

-____ -____ -____-_____-____<br />

L 1 L2 M 1 M 2 M 3 R 1 R 2<br />

164~Og I - - - 1<br />

-~I K<br />

M .,<br />

_ _ KM·8<br />

20 _ -<br />

o L-__________________________ --'<br />

ill. · · · · · · 1<br />

ill· · · · · · .1<br />

100 ,-=L:...:1 ___ L"'2=------"-Mcc1'------'-Mc-2=--_M= 3'------'-R __ 1 __,__ R= 2-,<br />

10 0 " L=-1=----=- L=- 2 __.:..:M<br />

__ 1'------'M= 2 __.:.:M:.:3=-----'R-'--'-<br />

1 __.:..:<br />

Rc::2:.--,<br />

100 L1 L2 M1 M2 M3 R1 R2<br />

KM·JO<br />

KM.1l<br />

ill. · . . · · · 1 KM·I'<br />

100 L1 L2 M1 M2 M3 R1 R2 L1 L2 M1 M2 M3 R1 R2<br />

~g • - - _ - I KM·15<br />

~g - - - .<br />

L 1 L2 M 1 M 2 M 3 R 1 R 2<br />

Appendix Figure B-2 (continued).<br />

Appendix B - Sediment Parameters B-16 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong>· June 2003


100<br />

80<br />

60<br />

40<br />

20<br />

o<br />

100<br />

80<br />

60<br />

40<br />

20<br />

o<br />

100<br />

80<br />

60<br />

40<br />

20<br />

LI_-__ -__ -__ -__ -__ -__-----'I HB-S ' !I I · · · · · · ·<br />

L1 L2 M1 M2 M3 R1 R2 L1 L2 M1 M2 M3 R1 R2<br />

LI_-__ -__ -__ -__ -__<br />

o<br />

il. L _-__-__-__-___-__-__ ill· ---,1 K M -s<br />

-__ -----,I K M -I ' !I I · · · · · · ·1<br />

L1 L2 M1 M2 M3 R1 R2 100 L1 L2 M1 M2 M3 R1 R2<br />

-'----1·_-_-_-_ -_------' · 1<br />

KM-'<br />

ill.·· · · · · i<br />

· · · . · · 1<br />

100 L 1 L 2 M 1 M 2 M 3 R 1 R 2 100 ,:L:..:1,-------=- L =_ 2 _.:.:M'--1'----...:M.:.:...=2_:..:M:...:3=--...:R.:...:... 1 _.:..:Rc::2=---,<br />

UB-3<br />

KM-2<br />

KM-4<br />

KM-6<br />

100 L1 L2 M1 M2 M3 R1 R2 100 L1 L2 M1 M2 M3 R1 R2<br />

ill· · · · · · · ill· 1 K M -1<br />

· · . · ·<br />

KM-8<br />

· 1<br />

ill· · · · · · ·1 KM -.<br />

il •.L_ - __-__-__<br />

100 L 1 L 2 M 1 M 2- M 3 R 1 R 2 100 ,--"L:..:1 __ L_ 2 __ M_1 __ M_ 2 __ M-,3 __ R_ 1 __ R_2---,<br />

-___ - __- __<br />

100 L1 L2 M1 M2 M3 R1 R2 1 100 L1 L2 M1 M2 M3 R1 R2<br />

:~ggo I· · " I - - - - I<br />

_ - - - - - K M -11 ~~ .L_-<br />

-----'1<br />

_______-___- ______<br />

1<br />

ill<br />

00 L 1 L 2 M 1 M 2 M 3 R 1 R 2 1 1<br />

iI<br />

00<br />

LI_-__<br />

T.:L:..:1 __ L=_2=-----"M:..:1'-----...:.M=<br />

-__ -__ -__<br />

2_:..:M:...:3=--...:.R.:...:...<br />

-___-__ 1 _:...:R.:2'-.<br />

-_.<br />

KM-14<br />

L_-__ -__ -__-___-__-__----' K M - J3<br />

il .. ....<br />

L2 M1 M2 M3 R 1 R2<br />

100 . L1 L2 M~ M2 M3 R1 R2 i L1<br />

KM-1S<br />

KM-10<br />

KM -12<br />

L1 L2 M1 M2 M3 R1 R2<br />

Appendix Figure B-2 (continued).<br />

Appendix B - Sediment Parameters B-1? <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


! · · · · · · · HB-' !i- · · · · · · 1<br />

HB-3<br />

; · .. · · KM-l l · . · · · · 1<br />

L1 L2 M1 M2 M 3 A 1 A 2 L 1 L2 M 1 M 2 M 3 A 1 A 2<br />

KM-2<br />

:H.......•<br />

L1 L2 M1 M2 M3 R1 R2 L1 L2 M1 M2 M3 R1 R2<br />

KM-4<br />

.l · · · · · ·1 K M -3<br />

L 1 L2 M 1 M 2 M 3 A 1 A 2 L 1 L2 M 1 M 2 M 3 A 1 A 2<br />

:H" · · · · · ·1 -' K M<br />

!I- · · · · · · 1<br />

l · · · · · ·1<br />

KM-' !i- · · · · · · 1<br />

L 1 L2 M 1 M 2 M 3 A 1 A 2 L 1 L2 M 1 M 2 M 3 A 1 A 2<br />

n· · · · · · "j. M-' :H- ..... · 1<br />

L1 L2 M1 M2 M3 R1 R2 L1 L2 M1 M2 M3 R1 R2<br />

KM-6<br />

KM-8<br />

KM-I0<br />

~L~1 __ ~L~2~~M~1 __ ~M~2~~M~3~~R~1~~R~2 , r~L~1 __ ~L~2~_M~1 __ ~M~2~~M~3 __ ~R~1~~R~2 ,<br />

; LI_-__ -__ -__ -__ -__ -__---,I K M -II :; IL_-__ -__ -__ -__ -__ -__----,I<br />

~L ~1 __ ~L~2 __ ~M~1~~M~2~~M~3 __ ~R ~1 __ ~R~2-, r~L ~1 __ ~L~2 __ ~M~1~~M~2~~M~3 __ R~1 __ ~R~2-,<br />

_:3 021 I_ - - - - - - - I KM -13 :; -~ . - - __ - - - I<br />

- -<br />

-4 -'----------------------------~ -4 L ___________________________ ~<br />

L 1 L2 M 1 M 2 M 3 A 1 A 2<br />

L1 L2 M1 M2 M3 R1 R2<br />

o<br />

-1<br />

-<br />

-2<br />

KM -15<br />

-3<br />

-4 - - -<br />

L1 L2 M1 M2 M3 R1 R2<br />

-<br />

KM-12<br />

KM-14<br />

Appendix Figure B-2 (continued).<br />

Appendix B - Sediment Parameters B-18 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


:1 [._-_ -----=-_-_------i ' I HB-S<br />

30 L 1 L2 M 1 M 2 M 3 R 1 R 2<br />

:: IL---_ - ~-=----=-<br />

- _-~-~. I<br />

KM-I<br />

30 L 1 L2 M1 M2 M3 R1 R2<br />

-~- _ -'------JI<br />

:: IL _------=-<br />

--=----=- -<br />

30 L1 L 2 M1 M2 M3 R 1 R2<br />

KM-S<br />

:: L..::-_-_-~- _-~-_. I<br />

30 L 1 L2 M 1 M 2 M 3 R 1 R 2<br />

:: ;L_-__-__- _~-_~-~_-__-~I<br />

30 L 1 L2 M 1 M 2 M 3 R 1 R 2<br />

KM-3<br />

KM-7<br />

:: L-~_- ---=- - -----'-=-- -~- _ -----'I KM-9<br />

30 L1 L2 M1 M2 M 3 R1 R2<br />

:: I· · . · · · · I<br />

:: I.<br />

R2 L1 L2 M1 M2 M3 R1 R2<br />

- . IKM-13 :1I... · ... 1<br />

30 L 1 L2 M1 M2 M3 R1<br />

30 L 1 L2<br />

20<br />

10<br />

-<br />

o<br />

-<br />

-<br />

M1<br />

-<br />

KM-II<br />

:1 . r -_--_--_--_-----------'1 H B-3<br />

30 L1 L2 M1 M2 M3 R1 R2<br />

:: I. · · . . . .1 KM-2<br />

::<br />

30<br />

I.<br />

L 1 L2<br />

.<br />

M<br />

.<br />

1 M<br />

.<br />

2 M<br />

.<br />

3 R<br />

.<br />

1 R 2<br />

. 1 KM-4<br />

:1. . . . . . .1 KM-'<br />

'-------------------'<br />

30 L 1 L2 M 1 M 2 M 3 R 1 R 2<br />

30 L 1 L2 M 1 M 2 M 3 R 1 R 2<br />

:: IL_-__ -__-,,--_-__-__-__-_I K M -.<br />

30<br />

20<br />

10<br />

o<br />

- - -<br />

M2 M3 R1 R 2 L 1<br />

- - - -<br />

L 1 L2 M 1 M 2 M 3 R 1 R 2<br />

KM-IS<br />

L1 L2 M1 M2 M3 R 1 R2<br />

,--__-__-__-__-__-__-_1 K M-IO<br />

30 L 1 L 2 M 1 M 2 M 3 R 1 R 2<br />

~~ ,--___ -__ -________ -__ -~I K M -"<br />

L2 M1 M2 M3 R1 R2<br />

KM-J4<br />

Appendix Figure B-2 (continued).<br />

Appendix B - Sediment Parameters B-19<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


: I LI-.--.--.--·--·--·--·--,I H B-S<br />

'II..···· 12 L 1 L2 M 1 M 2 M 3 R 1 R 2<br />

' 1 KM-I<br />

'II.····· 12 L 1 L2 M 1 M 2 M 3 R 1 R 2<br />

·1 KM-3<br />

12 L 1 L2 M1 M2 M3 R 1 R2<br />

'II '<br />

• • •<br />

• .1 KM-S<br />

•<br />

l.<br />

L1 L2 M1 M2 M3 R1 R2<br />

:1 • • . 1<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

o<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

o<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

-'-----.__. __. __·__. __.__.----'1 H B-3<br />

L1 L2 M1 M2 M3 R1 R2<br />

•<br />

.1 KM-2<br />

L-____________________<br />

•<br />

----'<br />

o<br />

'II·<br />

12 L 1 L2<br />

• • • •<br />

L1 L2 M1 M2 M3 R1 R2<br />

•<br />

• • • • •<br />

-'--------------------------~<br />

M1 M2 M3 R 1<br />

•<br />

•<br />

• • •<br />

L1 L2 M1 M2 M3 R1 R2<br />

12<br />

10<br />

8<br />

6<br />

KM-7 4<br />

• • •<br />

2<br />

o<br />

12<br />

'! l. . · · · . .<br />

L 1 L2 M 1 M 2 M 3 R 1 R 2 L 1 L2 M 1 M 2 M 3 R 1 R 2<br />

1 K M -. : I I'-=.--'------=:':: . '------'-"-- .-'------"-'-.=-----=.-=------'-'.--'-------'-'-'<br />

'! I. . · · · . J M -II<br />

· 1 KM-'<br />

R2<br />

. 1 KM-'<br />

~.L_~.L_ __• ____• ____ • ___•____.----'I KM-'<br />

12 L 1 L 2 M1 M2 M3 R1 R2 L1 L2 M1 M2 M3 R1 R2<br />

'I I. . . · · · .1 KM-13 :11.<br />

. =----'I K M -10<br />

: I I"'.'-'-----''-' . '----=-.-'----''-'·-=------''-.-=-------'-.'-'-----'--'' . =-'I K M -12<br />

12 L1 L2 M1 M2 M3 R1 R2 L1 L2 M1 M2 M3 R1 R2<br />

'I I. . . . · . . 1 KM-IS<br />

12 ,=cL-'-1_ --'L"'2'------'M-"--'1_ -"M'-'2'------'M= 3_-"Rcc 1 _--'R-"2=_, L 1 L2 M 1 M 2<br />

. . . . · .1 KM-14<br />

M3 R 1 R2<br />

L1 L2 M1 M2 M3 R 1 R2<br />

Appendix Figure B-2 (continued).<br />

Appendix B - Sediment Parameters B-20 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


1:4g0 • _ - _ - _ I HB-5<br />

20 _ -<br />

a ~--------------------------~<br />

L1 L2 M1 M2 M3 R1 R2<br />

1 :4 go i " I<br />

--=__---'-~ ___-________-_________-____' K M - I<br />

2 ~ L_<br />

L1 L2 M1 M2 M3 R1 R2<br />

1 i 4<br />

g 0<br />

I _ _ _ _ _ i KM-3<br />

20 _ _<br />

a ~--------------------------~<br />

100<br />

ill.<br />

L1 L2<br />

.<br />

M1<br />

.<br />

M2<br />

·<br />

M3<br />

·<br />

R1<br />

.<br />

R2<br />

. 1·M-5<br />

'II '!j<br />

7<br />

LI--'!-'-----'-=-___ -____-_____-____-'--__----'I K M -<br />

100<br />

80<br />

60<br />

40<br />

20<br />

a<br />

100<br />

80<br />

60<br />

40<br />

20<br />

a<br />

100<br />

80<br />

60<br />

40<br />

20<br />

a<br />

100<br />

80<br />

60<br />

40<br />

20<br />

a<br />

L1 -<br />

-<br />

L 1<br />

-<br />

L1<br />

-<br />

-<br />

L2<br />

-L2<br />

-<br />

L2<br />

-<br />

-<br />

-<br />

- - -<br />

M1 M2 M3 R1 R2<br />

-<br />

- - - -<br />

M1 M2 M3 R1 R2<br />

-<br />

- - - -<br />

M1 M2 M3 R 1 R2<br />

-<br />

- - - -<br />

L 1 L2 M1 M2 M3 R1 R2 L1 L2 M1 M2 M3 R 1 R2<br />

-'-___--_______-____-_____-__-'-=-__-=-- --.J<br />

L1 L2 M1 M2 · M3 R1 R2 L1 L2 M1 M2 M3 R1 R2<br />

100 I 100 ~=-------------~--~------~~<br />

~g I - - - - -9 g.<br />

-KM<br />

--<br />

2 g - - . a -'-______ -=-__ -=-'----__________ -"-=--__ -=-_<br />

100 L1 L2 M1 M2 M3 R1 R2 1 100 L1<br />

~g I - - - KM<br />

-11 ~g I<br />

2 g _ _ _ - 2 g .c<br />

1 a a ,.::L:..:1,--_L::.2::""--2M:..1=-..:.M::.::; 2 __::.M:...:3,-..:.R.:...:.<br />

1 __:..:<br />

R.=2:...<br />

- -<br />

L2 M1 M2 M3 R 1 R2<br />

___- __----'-'"-___- ____________.,-'-__,.,<br />

- '----<br />

1 a a ,:L:..:1,----=- L =- 2 __.:.:M:..1'----'M::.::;<br />

2 __::.M:..:3=---'R.:...:.<br />

1 __:..:Rc::2=--,<br />

80 80<br />

~~ _ - - KM-13 ~g<br />

20 _ • - _ 20 _ _ _ _ - -<br />

a a -'-.=---.=---.=---- -------------'<br />

-<br />

100 ,--:L,-,1 ___ L::.2=---"M:..1,--..:.M= 2 __::.M:...:3,-..:.R.:...:.<br />

1 _ :..: R-=2" L 1<br />

80<br />

60<br />

40<br />

_ KM -15<br />

20<br />

a . . - -<br />

L1 L2 M1 M2 M3 R1 R2<br />

L2 M1 M2 M3 R1 R2<br />

HB-3<br />

KM-2<br />

KM-4<br />

KM-6<br />

KM-8<br />

KM-IO<br />

KM-12<br />

KM-14<br />

Appendix Figure B-2 (continued).<br />

Appendix B - Sediment Parameters B-21 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


'II . L _<br />

-_i - __-__-__-__-__-__ H B-S<br />

100 L1 L2 M1 M2 M3 R1 R2<br />

11" " " " " " "I KM-I<br />

100 L1 L2 M1 M2 M3 R1 R2<br />

1I LI_-__ -__ -__ -__-___-__------'1 K M -3<br />

100 L1 L2 M1 M2 M3 R1 R2<br />

11 1" " " " " " "I KM-S<br />

III"<br />

1 0 0 r-.,.L.-'- 1_~L~2=___M~1_~M~2=__~M=3'__-'-R'_1'____~R_'_=__,<br />

""""" 2<br />

"IKM-'<br />

L1 L2 M1 M2 M3 R1 R2<br />

'II LI_-__ -__ -__ -___ -__ -__ -_I K M.<br />

, II .LI_-__-___-__-__-___-__-_I<br />

ill" " """<br />

100 ,-=:L--,1 _--,L~2~~M~~_ _"M_,_2~_M_,__,3,__~R,-1,____R~2 _,<br />

"I KM-2<br />

L1 L2 M1 M2 M3 R1 R2<br />

'II LI_-__ -__ -___ -__ -___ -__ -_I<br />

ill" """"" 10 0 ,-=:L--'1 _--'L=.:2=---~M__'1'___"M_'_2~--'M_'__'3'__~R'-1'_____R~2_,<br />

"I KM-6<br />

'II j" .' : ' ~'<br />

100<br />

80<br />

60<br />

40<br />

20<br />

L1<br />

L2<br />

-<br />

-<br />

M1<br />

:' : ' :' I<br />

-<br />

- -<br />

M2 M3 R 1 R2<br />

-<br />

o -'------------ ----<br />

100 L 1 L; M 1 M 2 M 3 R_1 R 2 10 0 .-'L=-1'-------'i L_~2-ccM-'--'-- 1 -----'M= 2_ccM'-'3'------'R-.;;_;.-1--cR;.:2=-<br />

DB-3<br />

KM-4<br />

KM-8<br />

KM-IO<br />

11 1" """ "I K M -11 11 1" """ "I K M - I2<br />

1 ~~O ggoO . T -=L:,:~,__-=,L _~2_::.M'_~'-----'M"-_=-2-:..:<br />

Mc.:=------'R-'-_-'- 1 _'-OR _-=: 2'---1 100 1 L ~ L! M: M: M: R 1 R 2 1<br />

L __________ _____ K M -13 11 " "K M -I'<br />

'III" "· """"I KM-IS<br />

L 1 L2 M 1 M 2 M 3 R 1 R 2 L 1<br />

L2 M1 M2 M3 R1 R2<br />

L1 L2 M1 M2 M3 R1 R2<br />

Appendix Figure B-2 (continued).<br />

Appendix B - Sediment Parameters B-22 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


100<br />

80<br />

'"<br />

I<br />

:E<br />

-<br />

I • •<br />

a 60 • •<br />

'" -<br />

"'" -I ~ 40<br />

•<br />

c.. '"<br />

-<br />

•-<br />

-<br />

20 •<br />

•<br />

;<br />

- •<br />

I . •<br />

• - • - I • • • I<br />

0<br />

-<br />

HB5HB3 3 4 5 6 7 8 9 10 11 12 13 14 1 5<br />

1 00<br />

I .<br />

• • I • • •<br />

I<br />

- I<br />

·- •<br />

• • -•<br />

•<br />

"<br />

-<br />

40<br />

'" ~<br />

• ·<br />

I<br />

'"<br />

•<br />

c.. I<br />

-• •<br />

80<br />

~ .<br />

5l -<br />

·0 60<br />

I<br />

:2<br />

·<br />

20<br />

-<br />

0<br />

HB5HB3 2 3 4 6 7 8 9 10 1 1 12 13 14 15<br />

100<br />

80<br />

•<br />

rl<br />

•<br />

. ~ :<br />

60 e!' 0<br />

-<br />

·<br />

I -<br />

40<br />

"'" -<br />

~<br />

c.. '"<br />

20<br />

!<br />

0<br />

I - •<br />

; - ; •<br />

• I<br />

• •<br />

I<br />

• • • • ·<br />

HB5HB3 2 3 4 5 6 7 8 9 10 11 12 13 14 1 5<br />

S tation/R iver Kilometer<br />

Appendix Figure B-3.<br />

Sediment statistics plotted by river kilometer.<br />

Appendix B - Sediment Parameters B-23 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


El<br />

., ...<br />

0.<br />

t; '"<br />

:l<br />

"0<br />

0;;<br />

'i5<br />

.:<br />

'-<br />

0<br />

.,<br />

30000<br />

25000<br />

20000<br />

15000<br />

... 10000<br />

.0<br />

E<br />

:l<br />

Z 5000<br />

•<br />

0<br />

-<br />

Petite Ponar Samples (9-15km)<br />

•<br />

•<br />

•<br />

• • -• •<br />

• --<br />

....<br />

• •<br />

0 20 40 60 80 100<br />

Percent Solids<br />

30000<br />

3 " Core Samples (9-15km)<br />

C'l 25000<br />

E<br />

...<br />

'"<br />

0.<br />

20000<br />

'"<br />

•<br />

t;<br />

:l<br />

"0<br />

0;; • -•<br />

'i5 15000<br />

.: •<br />

'- • •<br />

0<br />

... 10000<br />

1l<br />

:l<br />

•<br />

E • ••<br />

Z 5000<br />

•<br />

0<br />

5 10 15 20 25 30 35 40 45<br />

Percent Solids<br />

Appendix Figure B-3 (continued).<br />

Appendix B - Sediment Parameters B-24 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Left Bank Mid Right Bank Left Bank Mid Ri ght Bank<br />

2000.0 2000 .0<br />

, 410 .0<br />

Q 1410.0<br />

.., 1000 .0 1000.0<br />

710 .0<br />

710 .0<br />

('I 500 .0 500 .0<br />

~ 350.0 350.0<br />

250.0 ~ 250.0<br />

177 .0 177.0<br />

125.0<br />

125.0<br />

E 88 .0 88 .0<br />

62.5 E 62 .5<br />

~ 44 .0<br />

44 .0<br />


Left Bank Mid Right Bank Left Bank Mid Right Bank<br />

0'1 ....<br />

~<br />

E<br />

2: 2:<br />

Q)<br />

N<br />

i:I3<br />

i:I3<br />

Q)<br />

Q)<br />

'0 '0<br />

"€<br />

NA "€<br />

&!<br />

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30<br />

~<br />

::.d<br />

E<br />

Q)<br />

N<br />

Q..<br />

'"<br />

~ III<br />

.... ....<br />

~ ~<br />

,.-.<br />

E<br />

2: 2:<br />

Q) Q)<br />

N<br />

N<br />

i:I3<br />

i:I3<br />

Q) Q)<br />

'0 '0<br />

"~ "~<br />

Q..<br />

E<br />

Q..<br />

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30<br />

r--<br />

~ ~<br />

E<br />

2: 2:<br />

Q) Q)<br />

N<br />

N<br />

i:I3<br />

i:I3<br />

Q) Q)<br />

'0 '0<br />

"€ NA "€<br />

Q..<br />

'"<br />

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30<br />

QC)<br />

E<br />

Q..<br />

'"<br />

Individual Volume Percent<br />

Individual Volume Percent<br />

Appendix Figure B-4 (continued).<br />

Appendix B - Sediment Parameters B-26 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


500<br />

E 400<br />

2;<br />

..,<br />

N<br />

'


....<br />

50<br />

40<br />

CI)<br />

30<br />

c:<br />

Q)<br />

~ 20<br />

Q)<br />

0...<br />

10<br />

0<br />

5<br />

4<br />

o I I II I .11<br />

Bay KmO Kml Km3 Km5 Km7 Km9 Kmll Km13Km15Km17 Kml8<br />

100<br />

80<br />

:9 '"<br />

"0 60<br />

CI)<br />

c:<br />

Q)<br />

u<br />

....<br />

Q)<br />

0...<br />

40<br />

20<br />

0<br />

II<br />

Bay KmO Km 1 Km3 Km5 Km7 Km9 KmllKm13iKml5kml7 Km 18<br />

Appendix Figure B-S (continued).<br />

Appendix B - Sediment Parameters B-28 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


20<br />

Vl<br />

t:<br />

o<br />

'i


ApPENDIX C<br />

BENTHIC HABITAT MAPS


N<br />

A<br />

, Oysters<br />

I<br />

River Kilometers<br />

Wetlands<br />

MangrOlle Swamps<br />

Stream/Lake Swamps<br />

Wetland Forested Mixed<br />

Freshwater Marshes<br />

Saltwater Marshes ,;<br />

Wet Prairies<br />

Tidal Flats<br />

Appendix Figure C-l.<br />

Habitat maps for the little Alafia River.<br />

Appendix C - Benthic Habitat Maps<br />

C- l<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Substrate<br />

% Rock - dominated<br />

Z Rock - sediment mixture<br />

# Sediment - dominated<br />

N Snag<br />

"( River K~ometers<br />

Wetlands<br />

Mangrove Swamps<br />

StreamiLake Swamps<br />

Wetland Forested Mixed<br />

Freshwater Marshes<br />

Saltwater Marshes<br />

Wet Prairies<br />

Tidal Flats<br />

o<br />

0.5<br />

0.5 Kilometers<br />

~~~~~<br />

Appendix Figure C-2.<br />

Habitat maps for the little Alafia River (continued).<br />

Appendix C - Benthic Habitat Maps C-2 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Substrate<br />

% Rock - dominated<br />

Z Rock - sediment mixture<br />

# Sediment - dominated<br />

N Snag<br />

'&<br />

River Kilometers<br />

Wetlands<br />

Mangrove Swamps<br />

Stream/Lake Swamps<br />

Wetland Forested Mixed<br />

Freshwater Marshes<br />

Saltwater Marshes<br />

Wet Prairies<br />

Tidal Flats<br />

0.1 0 0.1 0.2 Kilometers<br />

~<br />

Appendix Figure C-3.<br />

Habitat maps for the little Alafia River (continued).<br />

Appendix C - Benthic Habitat Maps C-3 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Substrate<br />

% Rock - dominated<br />

Z Rock - sediment mixture<br />

1/ Sediment - dominated<br />

N Snag<br />

'I River Kilometers<br />

Wetlands<br />

Mangrove Swamps<br />

Stream/Lake Swamps<br />

Wetland Forested Mixed<br />

Freshwater Marshes<br />

Saltwater Marshes<br />

Wet Prairies<br />

tidal Flats<br />

0.1 0 0.1 0.2 Kilometers<br />

pos;<br />

Appendix Figure C-4.<br />

Habitat maps for the little Alafia River (continued).<br />

Appendix C - Benthic Habitat Maps C-4 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


ApPENDIXD<br />

MACROINFAUNAL DATA


Appendix Table D-l.<br />

Taxa/Group<br />

Phylogenetic species list for all data used within this report.<br />

Taxa/Group<br />

PHYLUM CNIDARIA<br />

CLASS HYDROZOA<br />

Hydrozoa<br />

CLASS ANTHOZOA<br />

ORDER ACTINIARIA<br />

Actiniaria<br />

Actiniaria sp. B<br />

Athenaria<br />

Athenaria sp. A<br />

PHYLUM PLATYHELMINTHES<br />

Platyhelminthes<br />

CLASS TURBELLARIA<br />

Turbellaria<br />

ORDER POL YCLADIDA<br />

FAMILY STYLOCHIDAE<br />

Stylochus<br />

Sty loch us cf ellipticus<br />

FAMILY LEPTOPLANIDAE<br />

Euplana gracilis<br />

PHYLUM NEMERTEA<br />

Nemertea<br />

Nemertea sp. U<br />

Nemertea sp. T<br />

Nemertea sp. Q<br />

Nemertea sp. N<br />

Nemertea sp. K<br />

Nemertea sp. J<br />

Nemertea sp. I<br />

Nemertea sp. F<br />

Nemertea sp. B<br />

Nemertea sp. A<br />

CLASS ANOPLA<br />

ORDERPALEONEMERTEA<br />

FAMILY TUBULANIDAE<br />

Tubulanus pellucidus<br />

PHYLUM ANNELIDA<br />

CLASSPOLYCHAETA<br />

FAMILY POL YNOIDAE<br />

Polynoidae<br />

Harmothoe sp. C<br />

M almg renie lla macc raryae<br />

Malmgreniella taylori<br />

Malmgreniella sp. A<br />

F AMIL Y SIGALIONIDAE<br />

Sthenelais sp. A<br />

FAMILY CHRYSOPETALIDAE<br />

Bhawania heteroseta<br />

FAMILY AMPHINOMIDAE<br />

Pseudeurythoe ambigua<br />

Paramphinome sp. B<br />

FAMILY PHYLLODOCIDAE<br />

Phyllodocidae<br />

Anaitides longipes<br />

Eteone heteropoda<br />

Genetyllis castanea<br />

Phyllodoce arenae<br />

FAMILY HESIONIDAE<br />

Gyptis crypta<br />

Parahesione luteola<br />

Podarkeopsis levifuscina<br />

FAMILY PILARGIDAE<br />

Ancistrosyllis jonesi<br />

Sigambra tentaculata<br />

Sigambra bassi<br />

FAMILY SYLLIDAE<br />

Exogone dispar<br />

FAMILY NEREIDAE<br />

Nereidae<br />

Nereidae sp. C<br />

Nereidae sp. B<br />

Appendix D - Macroinfaunal Data<br />

D-1<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong>· April 2003


Appendix Table D-l (continued).<br />

Taxa/Group<br />

Taxa/Group<br />

Neanthes succinea<br />

Neanthes micromma<br />

Laeonereis culveri<br />

Stenoninereis martini<br />

FAMILY NEPHTYIDAE<br />

Nephtys<br />

Nephtys picta<br />

Nephtys simoni<br />

Nephtys cryptomma<br />

Aglaophamus verrilli<br />

FAMILY GLYCERIDAE<br />

Glycera<br />

Glycera americana<br />

FAMILY GONIADIDAE<br />

Glycinde solita ria<br />

FAMILY ONUPHIDAE<br />

Onuphis<br />

Diopatra cup rea<br />

FAMILY LUMBRINERIDAE<br />

Lumbrineris verrilli<br />

Lumbrineris sp. D<br />

FAMILY DORVILLEIDAE<br />

Dorvillea pectinata<br />

Dorvillea rudolphi<br />

Schistomeringos rudolphi<br />

Schistomeringos cf rudolphi<br />

FAMILY ORBINllDAE<br />

Leitoscoloplos robustus<br />

Scoloplos rubra<br />

Scoloplos texana<br />

Leitoscoloplos<br />

Leitoscoloplos fragilis<br />

Leitoscoloplos foliosus<br />

FAMILY PARAONIDAE<br />

Aricidea philbinae<br />

Aricidea taylori<br />

Cirrophorus<br />

FAMILY SPIONIDAE<br />

Spionidae<br />

Dipolydora socialis<br />

Polydora socialis<br />

Polydora ligni<br />

Polydora comuta<br />

Prionospio<br />

Prionospio heterobranchia<br />

Apoprionospio pygmaea<br />

Prionospio pygmaea<br />

Prionospio perkinsi<br />

Scolecolepis viridis<br />

Spio pettiboneae<br />

Paraprionospio pinnata<br />

Streblospio<br />

Streblospio benedicti<br />

Scolelepis texan a<br />

Carazziella hobsonae<br />

FAMILY MAGELONIDAE<br />

Magelona pettiboneae<br />

FAMILY CHAETOPTERIDAE<br />

Spiochaetopterus costarum<br />

Spiochaetopterus costa rum oculatus<br />

FAMILY CIRRATULIDAE<br />

Caulleriella<br />

Monticellina dorsobranchialis<br />

FAMILY FLABELLIGERIDAE<br />

Piromis roberti<br />

FAMILY OPHELllDAE<br />

Armandia maculata<br />

Travisia hobsonae<br />

FAMILY CAPITELLIDAE<br />

Capitellidae<br />

Appendix D - Macroinfaunal Data<br />

D-2<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table D-l (continued).<br />

Taxa/Group<br />

Taxa/Group<br />

Capitella capitata<br />

Heteromastus filiformis<br />

Notomastus<br />

Notomastus latericeus<br />

Notomastus hemipodus<br />

Notomastus americanus<br />

M ediomastus<br />

Mediomastus ambiseta<br />

Mediomastus californiensis<br />

Capitella jonesi<br />

F AMll., Y MALDANIDAE<br />

Asychis elongata<br />

Clymenella torquata<br />

Sabaco american us<br />

FAMll., Y PECTINARllDAE<br />

Pectinaria gouldii<br />

FAMll., Y AMPHARETIDAE<br />

Ampharetidae<br />

Amphicteis gunneri<br />

Hobsonia florida<br />

Melinna cristata<br />

Melinna maculata<br />

[solda pulchella<br />

F AMll., Y TEREBELLIDAE<br />

Loimia medusa<br />

FAMll., Y SABELLIDAE<br />

Chone cf americana<br />

Megalomma pigmentum<br />

Branchiomma<br />

FAMll., Y SPIRORBIDAE<br />

Spirorbidae<br />

CLASS OLIGOCHAET A<br />

Oligochaeta<br />

FAMll., Y LUMBRICULIDAE<br />

Eclipidrilus palustris<br />

FAMILY ENCHYTRAEIDAE<br />

Enchytraeidae<br />

FAMll.,Y TUBIFICIDAE<br />

Tubificidae<br />

Tubificidae wlo cap. setae<br />

Tubificidae (immature) sp. B<br />

Tubificidae (immature) sp. A<br />

Limnodrilus hoffmeisteri<br />

Aulodrilus<br />

Aulodrilus pigueti<br />

Aulodrilus limnobius<br />

Aulodrilus pluriseta<br />

Tubificoides brownae<br />

Tubificoides wasselli<br />

Thalassodrilides gurwitschi<br />

F AMll., Y NAIDIDAE<br />

cf Slavina appendiculata<br />

Paranais littoralis<br />

Pristina proboscidea<br />

Dero<br />

Dero digitata<br />

Nais communis<br />

Nais pardalis<br />

CLASS HIRUDINEA<br />

FAMll., Y PISCICOLIDAE<br />

Myzobdella lugubris<br />

Myzobdella uraguayensis<br />

FAMll., Y GLOSSIPHONIIDAE<br />

Glossiphoniidae sp. A<br />

FAMll., Y ERPOBDELLIDAE<br />

Erpobdella punctata<br />

Mooreobdella melanostoma<br />

PHYLUM MOLLUSCA<br />

CLASS GASTROPODA<br />

Gastropoda<br />

Appendix D - Macroinfaunal Data<br />

D-3<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table D-l (continued).<br />

Taxa/Group<br />

Taxa/Group<br />

ORDER ARCHAEOGASTROPODA<br />

FAMILY NERITIDAE<br />

Neritina reclivata<br />

Neritina usnea<br />

ORDER MESOGASTROPODA<br />

FAMILY HYDROBllDAE<br />

Hydrobiidae<br />

cf Cincinnatia floridana<br />

Littoridinops<br />

Littoridinops monroensis<br />

Littoridinops palustris<br />

Onobops<br />

Pyrgophorus platyrachis<br />

FAMILY RISSOIDAE<br />

Sayella fusca<br />

Petitilla crosseana<br />

Sayella laevigata<br />

Assiminea succinea<br />

F AMIL Y VITRINELLIDAE<br />

Vitrinellidae<br />

Vitrinella floridana<br />

Teinostoma biscaynense<br />

FAMILY THIARIDAE<br />

Melanoides tuberculata<br />

FAMILY PLEUROCERIDAE<br />

cf Elimia<br />

FAMILY CREPIDULIDAE<br />

Crepidula<br />

Crepidula maculosa<br />

FAMILY NATICIDAE<br />

Natica pusilla<br />

T ectonatica pusilla<br />

Polin ices duplicatus<br />

Tectonatica pusilla<br />

Neverita duplicata<br />

ORDER NEOGASTROPODA<br />

FAMILY MURICIDAE<br />

Eupleura sulcidentata<br />

FAMILY PYRENIDAE<br />

Astyris lunata<br />

Parvanachis obesa<br />

FAMILY NASSARllDAE<br />

Nassarius vibex<br />

Nassarius albus<br />

ORDER PYRAMIDELLOIDA<br />

FAMILY PYRAMIDELLIDAE<br />

Odostomia<br />

Odostomia laevigata<br />

Turbonilla cf punicea<br />

Fargoa cf gibbosa<br />

ORDER CEPHALASPIDEA<br />

FAMILY ACTEONIDAE<br />

Rictaxis punctostriatus<br />

FAMILY CYLICHNIDAE<br />

Acteocina canaliculata<br />

FAMILY HAMINOEIDAE<br />

Haminoea succinea<br />

Atys riiseana<br />

ORDERBASOMMATOPHORA<br />

FAMILY ANCYLIDAE<br />

Hebetancylus excentricus<br />

ORDER NUDIBRANCHIA<br />

Nudibranchia<br />

FAMILY AEOLIDllDAE<br />

Aeolidoidea<br />

CLASS BIY AL VIA<br />

Bivalvia<br />

Bivalvia sp. A<br />

Appendix D - Macroinfaunal Data<br />

D-4<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table D-l (continued).<br />

Taxa/Group<br />

Taxa/ Group<br />

ORDER NUCULOIDEA<br />

F AMll.., Y NUCULIDAE<br />

Nucula proxima<br />

Nucula crenulata<br />

. ORDER ARCOIDA<br />

FAMll.., Y ARCIDAE<br />

Anadara transversa<br />

ORDER MYTll..,OIDA<br />

F AMll.., Y MYTll..,IDAE<br />

Mytilidae<br />

Brachidontes exustus<br />

Amygdalum papyrium<br />

ORDER OSTREIDA<br />

FAMll.., Y OSTREIDAE<br />

Crassostrea virginica<br />

ORDER VENEROIDA<br />

FAMll.., Y LUCINIDAE<br />

Lucinidae<br />

Parvilucina multilineata<br />

F AMll.., Y UNGULINIDAE<br />

Diplodonta semiaspera<br />

FAMll..,Y CYRENOIDIDAE<br />

Cyrenoida floridana<br />

Erycina floridana<br />

FAMll..,Y MONTACUTIDAE<br />

Mysella planulata<br />

FAMll.., Y MACTRIDAE<br />

Mulinia lateralis<br />

Mactra fragilis<br />

FAMll.., Y SOLENIDAE<br />

Ensis minor<br />

F AMll.., Y TELLINIDAE<br />

Tellinidae<br />

Macoma tenta<br />

Macoma constricta<br />

Tellina<br />

Tellina versicolor<br />

Tellina cf versicolor<br />

Tellina cf alternata<br />

Tellina tampaensis<br />

Tellina mera<br />

FAMll..,Y PSAMMOBIIDAE<br />

Tagelus<br />

Tagelus plebe ius<br />

Tagelus cf plebe ius<br />

Tagelus divisus<br />

F AMll.., Y SEMELIDAE<br />

Semele proficua<br />

Abra aequalis<br />

FAMll.., Y DREISSENIDAE<br />

Mytilopsis leucophaeata<br />

FAMll.., Y CORBICULIDAE<br />

Polymesoda caroliniana<br />

Corbicula fluminea<br />

FAMll..,Y SPHAERIIDAE<br />

Sphaeriidae<br />

Sphaerium<br />

F AMll.., Y VENERIDAE<br />

Veneridae<br />

Dosinia discus<br />

Dosinia elegans<br />

ORDER MYINA<br />

F AMll.., Y MYIDAE<br />

Sphenia antillensis<br />

F AMll.., Y CORBULIDAE<br />

Corbula contracta<br />

Corbula swiftiana<br />

FAMll.., Y LYONSIIDAE<br />

Lyonsia floridana<br />

Appendix D - Macroinfaunal Data<br />

D-5<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table D-l (continued).<br />

Taxa/Group<br />

Taxa/Group<br />

FAMll.. Y THRACllDAE<br />

Bushia elegans<br />

PHYLUM CHELICERA TA<br />

CLASS MEROSTOMATA<br />

ORDER XIPHOSURIDA<br />

FAMll.. Y LIMULIDAE<br />

Limulus polyphemus<br />

CLASS ARACHNIDA<br />

ORDER ACARINA<br />

Trornbidiformes<br />

PHYLUM CRUSTACEA<br />

CLASSCEPHALOCARIDA<br />

. Cephalocarida<br />

CLASS OSTRACODA<br />

Ostracoda<br />

CLASS CIRRIPEDIA<br />

ORDER THORACICA<br />

FAMll.. Y BALANIDAE<br />

Balanus improvisus<br />

CLASS MALACOSTRACA<br />

ORDER MYSIDACEA<br />

Mysidacea<br />

FAMll.. Y MYSIDAE<br />

Mysidopsis<br />

Americamysis cf bigelowi<br />

Mysidopsis bahia<br />

Americamysis almyra<br />

Bowmaniella<br />

Taphromysis louisianae<br />

Taphromysis bowmani<br />

FAMll.. Y MYSIDAE<br />

Americamysis<br />

Americamysis bahia<br />

ORDER CUMACEA<br />

Curnacea<br />

FAMll..Y LEUCONIDAE<br />

Leucon acutirostris<br />

FAMll..Y DIASTYLIDAE<br />

Oxyurostylis<br />

Oxyurostylis smithi<br />

Oxyurostylis cf smithi<br />

FAMll..Y NANNASTACIDAE<br />

Almyracuma proximoculae<br />

FAMll.. Y BODOTRllDAE<br />

Cyclaspis varians<br />

Cyclaspis cf varians<br />

ORDER TANAIDACEA<br />

Tanaidacea<br />

FAMll..Y PSEUDOZEUXIDAE<br />

Leptochelia<br />

Hargeria rapax<br />

ORDER ISOPODA<br />

FAMll.. Y ANTHURIDAE<br />

Cyathura<br />

Cyathura polita<br />

Xenanthura brevitelson<br />

Amakusanthura magnifica<br />

FAMll..Y SPHAEROMATIDAE<br />

Sphaeroma terebrans<br />

Cassidinidea ovalis<br />

Harrieta faxoni<br />

FAMll.. Y CYMOTHOIDAE<br />

Aegathoa oculata<br />

F AMll.. Y IDOTHEIDAE<br />

Erichsonella attenuata<br />

Edotea montosa<br />

Edotea triloba<br />

F AMll.. Y ASELLIDAE<br />

Asellus<br />

Appendix D - Macroinfaunal Data<br />

D-6<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table D-l (continued).<br />

Taxa/ Group<br />

Taxa/Group<br />

FAMILY MUNNIDAE<br />

Munna<br />

Uromunna reynoldsi<br />

ORDER AMPHIPODA<br />

Amphipoda<br />

FAMILY AMPELISCIDAE<br />

Ampelisca<br />

Ampelisca abdita<br />

Ampe/isca cf. abdita<br />

Ampelisca cf. vadorum<br />

Ampelisca vadorum<br />

Ampelisca verrilli<br />

Ampelisca holmesi<br />

Ampelisca cf. holmesi<br />

FAMILY AMPITHOIDAE<br />

Cymadusa compta<br />

FAMILY AORIDAE<br />

Aoridae<br />

Acuminodeutopus nag lei<br />

Rudilemboides naglei<br />

FAMILYBATEIDAE<br />

Batea catharinensis<br />

FAMILY COROPHIIDAE<br />

Corophiidae<br />

Cerapus cf. tubularis<br />

Apocorophium<br />

Apocorophium lacustre<br />

Apocorophium louisianum<br />

Erichthonius brasiliensis<br />

Grandidierella bonnieroides<br />

F AMIL Y MELITIDAE<br />

Gammarus<br />

Gammarus cf. tigrinus<br />

Gammarus mucronatus<br />

Melita<br />

cf. Melita dentata<br />

Melita nitida complex<br />

Melita elongata<br />

F AMIL Y HAUSTORIIDAE<br />

Acanthohaustorius<br />

FAMILY LILJEBORGIIDAE<br />

Listriella bamardi<br />

FAMILY OEDICEROTIDAE<br />

Monoculodes edwardsi<br />

Monoculodes nyei<br />

FAMILY CAPRELLIDAE<br />

Caprellidae<br />

Caprella<br />

Paracaprella pusilla<br />

ORDER DECAPODA<br />

Decapoda (unid. shrimp)<br />

Decapoda (zoea)<br />

FAMILY PENAEIDAE<br />

Penaeidae<br />

Penaeus duorarum<br />

FAMILY PALAEMONIDAE<br />

Palaemonidae<br />

Palaemonetes paludosus<br />

Palaemonetes pugio<br />

FAMILY ALPHEIDAE<br />

Alpheidae<br />

Alpheus<br />

FAMILY PROCESSIDAE<br />

Ambidexter symmetricus<br />

FAMILY CAMBARIDAE<br />

Cambaridae<br />

FAMILY CALLIANASSIDAE<br />

Callichirinae<br />

cf. Callianassa biformis<br />

Appendix D - Macroinfaunal Data D-7<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table D-l (continued).<br />

Taxa/ Group<br />

Taxa/Group<br />

FAMll..Y PAGURIDAE<br />

Paguridae<br />

FAMll.. Y PORCELLANIDAE<br />

Eueeramus praelongus<br />

FAMll.. Y UPOGEBllDAE<br />

Upogebia<br />

Upogebia affinis<br />

(SECTION PAGURIDEA)<br />

Paguridea<br />

FAMll.. Y CALAPPIDAE<br />

Calippidae<br />

FAMll.. Y LEUCOSllDAE<br />

Persephona mediterranea<br />

FAMll.. Y XANTHIDAE<br />

Xanthidae<br />

Rhithropanopeus harrisii<br />

F AMll.. Y PINNOTHERIDAE<br />

Pinnixa<br />

Pinnixa ehaetopterana<br />

Pinnixa sayana<br />

PHYLUM UNIRAMIA<br />

Insecta<br />

CLASS PTERYGOTA<br />

ORDER EPHEMEROPTERA<br />

FAMll..Y HEPTAGENllDAE<br />

Heptageniidae<br />

FAMll.. Y BAETIDAE<br />

Baetidae<br />

Cereobraehys etowah<br />

FAMll.. Y TRICORYTHIDAE<br />

Trieorythodes<br />

Trieorythodes albilineatus<br />

FAMll.. Y CAENIDAE<br />

B raehyee reus<br />

Braehyeereus maeulatus<br />

Caenis<br />

Caenis hilaris<br />

Cereobraehys etowah<br />

Cereobraehys<br />

ORDERODONATA<br />

Odonata<br />

FAMll.. Y GOMPHIDAE<br />

Gomphidae<br />

F AMll.. Y LIBELLULIDAE<br />

Maeromia<br />

FAMll.. Y COENAGRIONIDAE<br />

Coenagrionidae<br />

HETEROPTERA-:HEMIPTERA<br />

FAMll.. Y GERRIDAE<br />

Rheumatobates<br />

ORDER COLEOPTERA<br />

F AMll.. Y GYRINIDAE<br />

Dineutus<br />

FAMll.. Y HYDROPHll..IDAE<br />

H ydrophilidae<br />

FAMll.. Y ELMlOAE<br />

Stenelmis<br />

Dubiraphia<br />

Dubiraphia vittata<br />

ORDER TRICHOPTERA<br />

Trichoptera<br />

FAMll..Y PHll..OPOTAMIDAE<br />

Cymellus Jratemus<br />

FAMll.. Y HYDROPSYCHIDAE<br />

Cheumatopsyehe<br />

F AMll.. Y HYDROPTll..IDAE<br />

H ydroptilidae<br />

Oxyethira<br />

FAMll.. Y LEPTOCERIDAE<br />

Oeeetis<br />

Appendix D - Macroinfaunal Data<br />

D-8<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table D-l (continued).<br />

Taxa/ Group<br />

Taxa/Group<br />

Oecetis inconspicua<br />

Oecetis noctuma<br />

Oecetis inconspicua complex sp. A<br />

FAMILY GLOSSIPHONIDAE<br />

Polycentropus<br />

Cymellus Jratemus<br />

ORDER DIPTERA<br />

Diptera<br />

FAMILY CHAOBORIDAE<br />

Chaoborus<br />

Chaoborus punctipennis<br />

FAMILY CERATOPOGONIDAE<br />

Ceratopogonidae.<br />

Dasyhelea<br />

Culicoides<br />

Mallochohlea sp. ?<br />

Probezzia<br />

Palpomyia/Bezzia<br />

Paracladopelma cf doris<br />

cf Paralauterbomiella nigrohauterale<br />

F AMIL Y CHIRONOMIDAE<br />

Chironornidae<br />

Coelotanypus<br />

Coelotanypus scapularis<br />

Coelotanypus tricolor<br />

Ablabesmyia<br />

Ablabesmyia mallochi<br />

Ablabesmyia rhamphe gpo<br />

Pentaneura inconspicua<br />

Djalmabatista<br />

Djalmabatista pulchra<br />

Procladius<br />

Procladius (Holotanypus)<br />

Tanypus clavatus<br />

Orthocladiinae<br />

Lopescladius<br />

cf Mesosmittia<br />

Parakeifferiella<br />

Chironornini<br />

Chironomus<br />

Cladopelma<br />

Cryptochironomus<br />

Cryptochironomus blarina<br />

Cryptochironomus Julvous gpo<br />

Cryptotendipes<br />

Dicrotendipes<br />

Dicrotendipes modestus<br />

Dicrotendipes neomodestus<br />

Dicrotendipes cf neomodestus<br />

Dicrotendipes tritomus<br />

Goeldichironomus<br />

Pagastiella<br />

Paracladopelma<br />

P aralaute rbomie lla<br />

Paralauterbomiella nigrohalterale<br />

Polypedilum<br />

Polypedilum halterale gpo<br />

Polypedilum illinoense gpo<br />

Polypedilum scalaenum gpo<br />

Polypedilum tritum<br />

Stenochironomus<br />

Tribelos<br />

Tribelos Juscicome<br />

Tribelos jucundum<br />

cf Tribelos<br />

Fissimentum<br />

Fissimentum sp. A<br />

Chironomini (pupae)<br />

Pseudochironomus<br />

Cladotanytarsus<br />

Appendix D - Macroinfaunal Data<br />

D-9<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table D-l (continued).<br />

Taxa/Group<br />

Taxa/Group<br />

Cladotanytarsus daviesi<br />

Cladotanytarsus cf davies<br />

Rheotanytarsus<br />

Rheotanytarsus distinctissimus gpo<br />

Rheotanytarsus exiguus gpo<br />

Stempellina<br />

Tanytarsus<br />

Tanytarsus sp. T<br />

Tanytarsus sp. S<br />

Tanytarsus sp. 0<br />

Tanytarsus sp. K<br />

Tanytarsus sp. G<br />

Tanytarsus sp. C<br />

Tanytarsus cf sp. C<br />

Tanytarsus sp. A<br />

PHYLUM SIPUNCULA<br />

Sipunculidae<br />

PHYLUM PHORONIDA<br />

FAMILY PHORONIDAE<br />

Phoronis<br />

Phoronis architecta<br />

PHYLUM BRACHIOPODA<br />

ORDER LINGULID A<br />

FAMILY LINGULIDAE<br />

Glottidia pyramidata<br />

PHYLUM ECHINODERMATA<br />

CLASSSTELLEROIDEA<br />

(SUBCLASS OPHIUROIDEA)<br />

Ophiuroidea<br />

ORDER OPHIURIDA<br />

F AMIL Y OPHIACTIDAE<br />

Hemipholis elongata<br />

FAMILY AMPHIURIDAE<br />

Amphiuridae<br />

Amphipholis squamata<br />

Amphipholis gracillima<br />

Ophiophragmus filograneus<br />

Amphioplus thrombodes<br />

Amphioplus squamata<br />

Amphioplus sepultus<br />

Amphipholis atra<br />

Micropholis atra<br />

CLASS HOLOTHUROIDEA<br />

Holothuroidea sp. F<br />

Holothuroidea sp. C<br />

PHYLUM HEMICHORDATA<br />

CLASSENTEROPNEUSTA<br />

Enteropneusta<br />

PHYLUM CHORDATA<br />

SUBPHYLUM UROCHORDATA<br />

CLASS ASCIDIACEA<br />

Ascidiacea sp. C<br />

ORDER STOLIDOBRANCHIA<br />

FAMILY MOLGULIDAE<br />

cf Molguia occidentalis<br />

SUBPHYLUM CEPHALOCHORDATA<br />

FAMILY BRANCHIOSTOMIDAE<br />

Branchiostoma floridae<br />

Appendix D - Macroinfaunal Data<br />

D-lO <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table D-2.<br />

Center of abundance for all species collected during the dry season<br />

(May 1999) and wet season (September 2001), using salinity at<br />

capture data.<br />

Both dates, cores and ponars only, num per m 2 used for abundance<br />

Abundance Centered Minimum Maximum<br />

Rank w ties Salinity Salinity Salinity<br />

Ampelisca 1.00 20.26 5.8 24.28<br />

Laeonereis culveri 2.00 12.10 0.1 24.28<br />

Mytilopsis leucophaeata 3.00 5.45 0.1 20.4<br />

Grandidierella bonnieroides 4.00 19.78 5.8 24<br />

Cyclaspis varians 5.00 22.60 20 24<br />

Chironomus 6.00 4.45 0.1 24.28<br />

cf. Cincinnatia floridana 7.00 1l.01 0.1 12.1<br />

Streblospio benedicti 8.00 22.53 5.88 24.28<br />

Polypedilum halterale gpo 9.00 0.24 0.1 8.4<br />

Apocorophium louisianum 10.00 1l.61 0.1 16<br />

Enteropneusta 11.00 23.98 22 24<br />

Tubificidae (immature) sp. A 12.00 l.84 0.1 12.1<br />

Paraprionospio pinnata 13.00 14.71 2.1 24.28<br />

Tanytarsus sp. G 14.00 l.80 0.1 8.4<br />

Prionospio perkinsi 15.00 23.74 21.97 24.28<br />

Corophium 16.00 17.13 16 24<br />

Bivalvia 17.00 17.83 0.1 24<br />

Oligochaeta 18.00 16.93 1l.61 24.28<br />

Amphicteis gunneri 19.00 17.68 5.88 20<br />

Cladotanytarsus 20.00 0.29 0.1 10.8<br />

Amygdalum papyrium 2l.00 21.44 16 24<br />

Almyracuma proximoculae 22.00 17.66 5.8 23<br />

Monticellina dorsobranchialis 23.00 23.10 2l.97 24<br />

Gastropoda 24.00 16.96 0.1 22<br />

Carazziella hobsonae 25.00 23.61 21.97 24.28<br />

Pinnixa chaetopterana 26.00 23.18 20 24<br />

Mysella planulata 27.00 22.12 16 23<br />

Hobsonia florida 28.00 1l.84 8.4 12.1<br />

Capitella capitata 29.00 23.57 5.88 24.28<br />

Edotea montosa 30.00 19.51 16 23<br />

Polydora ligni 31.00 12.13 0.1 23<br />

Polypedilum scalaenum gpo 32.00 2.41 0.1 12.1<br />

Eteone heteropoda 33.00 19.24 8.4 24.28<br />

Lirnnodrilus hoffmeisteri 34.00 3.60 0.1 5.8<br />

Tagelus plebeius 35.00 20.61 16 24<br />

Mulinia lateralis 36.00 2l.74 16 24<br />

Amakusanthura magnifica 38.00 17.48 16 23<br />

Appendix D - Macroinfaunal Data D-ll <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> · April 2003


Appendix Table D-2 (continued).<br />

Both dates, cores and ponars only, num per m 2 used for abundance<br />

Abundance Centered Minimum Maximum<br />

Rank w ties Salinity Salinity Salinity<br />

Glottidia<br />

pyramidata<br />

39.00<br />

23.70<br />

21.97<br />

24<br />

Sigambra tentaculata 40.00 23.82 21.97 24<br />

Caprellidae 41.00 21.83 20 22<br />

Melinna maculata 42.00 21.73 20 23<br />

Dicrotendipes 43.00 1.22 0.1 2.1<br />

Oxyurostylis smithi 44.00 23.41 5.8 24<br />

Cumacea 45.00 11.15 5.8 12.1<br />

Cryptotendipes 46.00 0.10 0.1 0.1<br />

Mediomastus ambiseta 47.00 22.87 21.97 23.59<br />

Macoma tenta 48.00 22.94 22 23<br />

Gammarus mucronatus 48.01 20.26 18.2 24<br />

Listriella bamardi 49.00 23.63 18.2 24<br />

Paramphinome sp. B 50.00 23.90 21.97 24<br />

Nemertea sp. F 51.00 22.98 20 24<br />

Chironomini 52.00 1.91 0.1 10.8<br />

Caprella 53.00 23.00 23 23<br />

Corbicula fluminea 54.00 0.17 0.1 0.2<br />

Nemertea 55.00 8.35 0.1 24<br />

Cyathura polita 56.00 0.69 0.19 5.8<br />

Edotea triloba 57.00 9.11 0.1 12.1<br />

Ostracoda 58.00 11.41 0.1 12.1<br />

Nemertea sp. A 59.00 23.05 18.2 24<br />

Cryptochironomus blarina 60.00 0.21 0.1 5<br />

Platyhelminthes 61.00 22.82 20 24.28<br />

Crepidula 62.00 22.64 22 24<br />

Phyllodoce arenae 63.00 22.84 20 24<br />

Tanytarsus 64.00 0.40 0.1 5<br />

Cryptochironomus 65.00 0.37 0.1 2.1<br />

Polypedilum 66.00 0.37 0.19 5.8<br />

Polydora socialis 67.00 6.68 0.2 20.4<br />

Ceratopogonidae 68.00 0.68 0.1 10.8<br />

Polypedilum illinoense gpo 69.00 0.44 0.1 5<br />

Gyptis crypta 70.00 23 .66 21.97 24<br />

Dubiraphia 71.00 0.40 0.1 5.8<br />

Leitoscoloplos foliosus 72.00 23.22 23 24<br />

Appendix D - Macroinfaunal Data D-12 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table D-2 (continued).<br />

Both dates, cores and ponars only, num per m 2 used for abundance<br />

Abundance Centered Minimum Maximum<br />

Rank w ties Salinity Salinity Salinity<br />

Haminoea succinea 72.01 22.56 22 23<br />

Stenoninereis martini 73.00 17.93 16 18.2<br />

Pinnixa 74.00 23.08 12.1 24.28<br />

Tellina versicolor 75.00 22.71 22 23<br />

Tanaidacea 75.01 22.14 20 23<br />

Aulodrilus limnobius 76.00 0.10 0.1 0.1<br />

Procladius (Holotanypus) 77.00 0.44 0.1 5<br />

Neanthes succinea 78.00 23.00 23 23<br />

Rictaxis punctostriatus 78.01 21.70 18.2 23<br />

Heteromastus filiformis 78.02 19.80 11.61 24<br />

Paguridae 79.00 23.81 23 24<br />

Oecetis 79.01 0.16 0.1 0.18<br />

Procladius 80.00 0.93 0.1 5<br />

cf. Callianassa biformis 81.00 24.28 24.28 24.28<br />

Acteocina canaliculata 81.01 23.00 22 24<br />

Micropholis atra 82.00 24.00 24 24<br />

Nereidae sp. B 83.00 10.94 10.8 12.1<br />

Leucon acutirostris 84.00 24.00 24 24<br />

Tanytarsus sp. K 84.01 0.10 0.1 0.1<br />

Fissimentum 85.00 0.20 0.19 0.2<br />

Parakeifferiella 86.00 0.10 0.1 . 0.1<br />

Glycinde solitaria 87.00 23.28 21.97 24<br />

Spiochaetopterus costarum 88.00 23.69 23 24<br />

Diopatra cuprea 89.00 21.08 20 23<br />

Podarkeopsis levifuscina 90.00 23.33 21.97 24<br />

Bivalvia sp. A 91.00 1.52 0.1 2.1<br />

Sthenelais sp. A 92.00 24.00 24 24<br />

Vitrinellidae 93.00 23.00 23 23<br />

Odostomia 93.01 22.67 22 23<br />

Xanthidae 93.02 22.00 20 23<br />

Ampelisca verrilli 94.00 22.85 21.97 24.28<br />

Corbula contracta 95.00 23.97 23.59 24<br />

Hydrobiidae 96.00 5.80 5.8 5.8<br />

Decapoda (zoea) 96.01 0.10 0.1 0.1<br />

Cladotanytarsus cf. davies 97.00 0.20 0.2 0.2<br />

Nereidae 98.00 4.65 0.19 5.8<br />

Spionidae 99.00 2.18 0.1 5.8<br />

Appendix D - Macroinfaunal Data D-13 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table D-2 (continued).<br />

Both dates, cores and ponars only, num per m 2 used for abundance<br />

Abundance Centered Minimum Maximum<br />

Rank w ties Salinity Salinity Salinity<br />

Dasyhelea 100.00 0.43 0.1 2.1<br />

Coelotanypus scapularis 101.00 0.20 0.18 0.2<br />

Aulodrilus pigueti 102.00 0.10 0.1 0.1<br />

Dero 103.00 0.46 0.1 2.1<br />

Aricidea philbinae 104.00 24.14 24 24.28<br />

Actiniaria 104.01 18.00 16 20<br />

Aoridae 104.02 5.88 5.88 5.88<br />

Tanytarsus sp. A 104.03 0.10 0.1 0.1<br />

Tanytarsus cf. sp. C 105.00 10.07 8.4 10.8<br />

Goeldichironomus 106.00 0.19 0.19 0.19<br />

Nais pardalis 107.00 1.70 0.1 2.1<br />

Chironomini (pupae) 108.00 1.86 0.2 5.8<br />

Paranais littoralis 109.00 0.10 0.1 0.1<br />

Amphipoda 110.00 7.55 5.8 12.1<br />

Malmgreniella taylori 111.00 24.00 24 24<br />

Dicrotendipes neomodestus 112.00 1.10 0.1 2.1<br />

Cercobrachys 112.01 0.19 0.19 0.19<br />

Abra aequalis 113.00 18.78 17.02 23.59<br />

Orthocladiinae 114.00 1.15 0.1 2.1<br />

Magelona pettiboneae 115.00 24.00 24 24<br />

Dero digitata 116.00 0.10 0.1 0.1<br />

Schistomeringos rudolphi 117.00 23.94 23.59 24<br />

Myzobdella lugubris 118.00 5.80 5.8 5.8<br />

Hemipholis elongata 119.00 24.00 24 24<br />

Nereidae sp. C 119.01 0.10 0.1 0.1<br />

Aulodrilus 119.02 0.10 0.1 0.1<br />

Ancistrosyllis jonesi 120.00 21.97 21.97 21.97<br />

Nassarius vibex 121.00 24.00 24 24<br />

Nephtys simoni 121.01 24.00 24 24<br />

Branchiostoma floridae 121.02 24.00 24 24<br />

Polinices duplicatus 121.03 24.00 24 24<br />

Spio pettiboneae 121.04 24.00 24 24<br />

Travisia hobsonae 121.05 24.00 24 24<br />

Ensis minor 121.06 24.00 24 24<br />

Loimia medusa 121.07 23.00 23 23<br />

Phoronis architecta 121.08 23.00 23 23<br />

Sphenia antillensis 121.09 23.00 23 23<br />

Natica pusilla 121.10 23.00 23 23<br />

Aegathoa oculata 121.11 23.00 23 23<br />

Appendix D - Macroinfaunal Data D-14 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table D-2 (continued).<br />

Both dates, cores and ponars only, num per m 2 used for abundance<br />

Abundance Centered Minimum Maximum<br />

Rank w ties Salinity Salinity Salinity<br />

Crassostrea virginica 121.12 23.00 23 23<br />

Ophiophragmus filograneus 121.13 23.00 23 23<br />

Lucinidae 121.14 22.00 22 22<br />

U pogebia affinis 121.15 22.00 22 22<br />

Parvanachis obesa 121.16 20.40 20.4 20.4<br />

Insecta 121.17 18.20 18.2 18.2<br />

Sipunculidae 121.18 18.20 18.2 18.2<br />

Aeolidoidea 121.19 18.20 18.2 18.2<br />

Hydrozoa 121.20 11.61 11.61 11.61<br />

Cyathura 121.21 11.61 11.61 11.61<br />

Enchytraeidae 121.22 0.10 0.1 0.1<br />

Oecetis inconspicua complex sp. A 121.23 0.10 0.1 0.1<br />

Stempellina 121.24 0.10 0.1 0.1<br />

Stenelrnis 121.25 0.10 0.1 0.1<br />

Tanytarsus sp. S 12l.26 0.10 0.1 0.1<br />

Trombidiformes 12l.27 0.10 0.1 0.1<br />

cf. Tribelos 121.28 0.10 0.1 0.1<br />

cf. Mesosrnittia 12l.29 0.10 0.1 0.1<br />

Acanthohaustorius 122.00 24.00 24 24<br />

Mysidopsis 123.00 4.77 0.1 8.4<br />

Aglaophamus verrilli 124.00 21.97 2l.97 21.97<br />

Amphipholis squamata 125.00 24.00 24 24<br />

Amphioplus thrombodes 125.01 24.00 24 24<br />

Dubiraphia vittata 125.02 0.19 0.19 0.19<br />

Ophiuroidea 126.00 22.42 21.97 23.59<br />

Diplodonta serniaspera 126.01 22.42 2l.97 23.59<br />

Prionospio 127.00 1.20 0.1 2.1<br />

Coelotanypus 127.01 0.14 0.1 0.18<br />

Dicrotendipes tritomus 128.00 2.12 0.1 5<br />

Capitellidae 128.01 2.12 0.1 5<br />

Cryptochironomus ful vous gpo 129.00 5.80 5.8 5.8<br />

Mysidacea 129.01 4.25 0.1 8.4<br />

Melita 129.02 0.10 0.1 0.1<br />

Pyrgophorus platyrachis 129.03 0.10 0.1 0.1<br />

Clymenella torquata 130.00 21.97 2l.97 21.97<br />

Branchiomrna 131.00 24.00 24 24<br />

Monoculodes edwardsi 131.01 24.00 24 24<br />

Pectinaria gouldii 131.02 24.00 24 24<br />

Scolelepis texana 131.03 24.00 24 24<br />

Appendix D - Macroinfaunal Data D-15 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table D-2 (continued).<br />

Both dates, cores and ponars only, num per m 2 used for abundance<br />

Abundance Centered Minimum Maximum<br />

Rank w ties Salinity Salinity Salinity<br />

Scoloplos rubra 131.04 24.00 24 24<br />

Tagelus cf. plebeius 131.05 12.10 12.1 12.1<br />

Veneridae 131.06 12.10 12.1 12.1<br />

Americamysis cf. bigelowi 132.00 23.59 23.59 23.59<br />

Nucula crenulata 132.01 23.59 23.59 23.59<br />

Parahesione luteola 132.02 23.59 23.59 23.59<br />

Munna 133.00 24.00 24 24<br />

Bhawania heteroseta 133.01 24.00 24 24<br />

Alpheus 133.02 24.00 24 24<br />

Ambidexter symmetricus 133.03 24.00 24 24<br />

Nephtys 133.04 24.00 24 24<br />

Mediomastus 133.05 24.00 24 24<br />

Stylochus 133.06 24.00 24 24<br />

H ydrophilidae 133.07 2.10 2.1 2.1<br />

Isolda pulchella 133.08 2.10 2.1 2.1<br />

cf. Elirnia 133.09 2.10 2.1 2.1<br />

cf. Paralauterbomiella 133.10 2.10 2.1 2.1<br />

nigrohauterale<br />

cf. Slavina appendiculata 133.11 2.10 2.1 2.1<br />

Caenis 133.12 0.19 0.19 0.19<br />

Rheotanytarsus exiguus gpo 133.13 0.19 0.19 0.19<br />

Dicrotendipes modestus 133.14 0.10 0.1 0.1<br />

Gammarus nr; tigrinus 133.15 0.10 0.1 0.1<br />

Tubificidae (immature) sp. B 133.16 0.10 0.1 0.1<br />

Ablabesmyia 133.17 0.10 0.1 0.1<br />

Oxyethira 133.18 0.10 0.1 0.1<br />

Rheotanytarsus distinctissimus gpo 134.00 5.80 5.8 5.8<br />

Gammarus 134.01 0.20 0.2 0.2<br />

H ydroptilidae 134.02 0.19 0.19 0.19<br />

Ablabesmyia mallochi 134.03 0.10 0.1 0.1<br />

Coenagrionidae 134.04 0.10 0.1 0.1<br />

Malmgreniella maccraryae 135.00 21.97 21.97 21.97<br />

Parvilucina multilineata 135.01 21.97 21.97 21.97<br />

Prionospio pygmaea 135.02 21.97 21.97 21.97<br />

Leitoscoloplos 135.03 21.97 21.97 21.97<br />

Notomastus hernipodus 135.04 21.97 21.97 21.97<br />

Culicoides 135.05 5.00 5 5<br />

Tectonatica pusilla 136.00 23.59 23.59 23.59<br />

Cephalocarida 136.01 23.59 23.59 23.59<br />

Appendix D - Macroinfaunal Data D-16 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table D-3. Center of abundance estimates for all data used in this report based on modeled 30<br />

day average salinity, reported by HBMP strata.<br />

XianChens salinity model for 30 day averages for weighted salinities for each species and counts of occurrences<br />

by strata.<br />

Weighted Total Collections by HBMP Strata<br />

Taxa NODC Code Salinity Collection


Appendix Table D-3 (continued).<br />

XianChens salinity model for 30 day averages for weighted salinities for each species and counts of occurrences<br />

by strata.<br />

Weighted Total Collections by HBMP Strata<br />

Taxa NODCCode Salinity CoIIect:ion-, AR-2 AR-3 AR-4 AR-5 AR-6 AR-7<br />

Thalassodrilides gurwitschi 5009022302 22.89 11 3 5 3 0 0 0<br />

Macoma tenta 5515310120 28.28 10 9 1 0 0 0 0<br />

Paramphinome sp. B 5001100498 25.28 10 7 3 0 0 0 0<br />

Pinnixa 61890604 29.01 10 7 2 1 0 0 0<br />

Prionospio perkinsi 5001430517 28.09 10 6 2 0 1 0 1<br />

Almyracuma proximoculae 6154080201 12.61 9 1 1 2 4 1 0<br />

Apocorophium 61691502 18.65 9 2 3 3 1 0 0<br />

Coelotanypus 64893902 0.85 9 0 0 0 2 4 3<br />

Neanthes succinea 5001240309 23.31 9 5 2 0 1 1 0<br />

Phyllodoce arenae 5001131410 26.19 9 8 1 0 0 0 0<br />

Polypedilum halterale gpo 6489603618gp 2.28 9 0 1 2 2 2 2<br />

Polypedilum scalaenum 6489603633 5.51 9 1 0 0 2 4 2<br />

Tubificoides brownae 5009020901 26.16 9 7 2 0 0 0 0<br />

Chaoborus punctipennis 6489050209 1.82 8 0 0 0 3 2 3<br />

Garnmarus mucronatus 6169210709 24.81 8 5 1 0 0 1<br />

Americamysis almyra 6153012103 12.85 8 1 1 2 2 1 1<br />

Tubificidae (immature) sp. A 5009020099 2.88 8 0 0 2 2 2 2<br />

Carazziella hobsonae 5001432706 26.56 7 4 3 0 0 0 0<br />

Fissimentum 64896049 2.64 7 0 0 1 0 2 4<br />

Glottidia pyramidata 8010010101 25.17 7 5 1 0 0 0 1<br />

Glycera americana 5001270104 27.47 7 6 1 0 0 0 0<br />

Polydora socialis 5001430402 15.49 7 2 2 1 1 1 0<br />

Polypedilum scalaenum gpo 6489603633gp 3.70 7 0 0 2 2 2 1<br />

Chironomini 648960 1.39 6 0 0 2 2 1 1<br />

Cryptotendi pes 64896009 0.81 6 1 0 1 1 1 2<br />

Monticellina dorsobranchialis 5001500310 26.69 6 6 0 0 0 0 0<br />

Oxyurostylis cf. smithi 6154050801cf 23.18 6 3 2 0 0 0<br />

Xanthidae 618902 12.97 6 2 0 1 1 1 1<br />

Ablabesmyia mallochi 6489420110 0.20 5 0 0 0 0 2 3<br />

Ablabesmyia rhamphe 6489420117 0.80 5 0 0 0 0 2 3<br />

Baetidae 621602 0.06 5 0 0 0 0 1 4<br />

Balanus improvisus 6134020114 15.60 5 0 2 0 2 1 0<br />

Capitella jonesi 5001600701 23.27 5 3 I I 0 0 0<br />

Ceratopogonidae 648920 0.67 5 0 0 2 1 1 I<br />

cf. Cincinnatia floridana 5103130403 7.47 5 0 0 2 2 1 0<br />

Dicrotendipes tritomus 6489601313 0.95 5 0 0 1 2 1 1<br />

Mysidopsis 61530121 20.95 5 1 1 1 1 1 0<br />

Myzobdella uraguayensis 5014010703 6.10 5 0 0 1 1 2 1<br />

Appendix D - Macroinfaunal Data D-18 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table D-3 (continued).<br />

XianChens salinity model for 30 day averages for weighted salinities for each species and counts of occurrences<br />

by strata.<br />

Weighted Total Collections bl: HBMP Strata<br />

Taxa NODC Code Salinitl: CoIle.ctiom AR-2 AR-3 AR-4 AR-5 AR-6 AR-7<br />

Podarkeopsis levifuscina 5001211902 27.28 5 4 1 0 0 0 0<br />

Polycentropus 64181801 0_59 5 0 0 0 0 2 3<br />

Pyrgophorus platyrachis 5103133401 1.41 5 0 0 0 1 2 2<br />

Scoloplos rubra 5001400307 2735 5 5 0 0 0 0 0<br />

Spionidae 500143 10.21 5 1 1 0 1 2 0<br />

Stylochus cL ellipticus 3906030101cf 27_11 5 4 1 0 0 0 0<br />

Tagelus plebeius 5515330201 18_09 5 2 2 1 0 0 0<br />

Ampelisca 61690201 21.01 4 1 1 1 1 0 0<br />

Ampelisca cL holmesi 6169020123cf 1939 4 1 1 1 0 0 1<br />

Amphioplus squamata 8129030908 2734 4 4 0 0 0 0 0<br />

Caenis 62180202 0.53 4 0 0 0 1 1 2<br />

Corbula contracta 5517020201 28 _74 4 4 0 0 0 0 0<br />

Edotea montosa 6162020701 18-48 4 2 1 1 0 0 0<br />

Leitoscoloplos robustus 5001400304 19.23 4 1 1 1 1 0 0<br />

Nemertea sp_ F 4300000094 22_15 4 2 1 1 0 0 0<br />

Nereidae 500124 4_12 4 0 0 2 1 1 0<br />

Odostomia laevigata 5108010140 17_50 4 0 3 1 0 0 0<br />

Oecetis 64181204 0.01 4 0 0 0 0 2 2<br />

Oligochaeta 5003 15.68 4 2 2 0 0 0 0<br />

Polymesoda caroliniana 5515450101 19.20 4 0 2 2 0 0 0<br />

Polypedilum 64896036 10.97 4 0 I 1 2 0 0<br />

Procladius (Holotanypus) 6489450299 0.15 4 0 0 0 1 2 1<br />

Rhithropanopeus harrisii 6189020901 9.23 4 0 1 0 2 1 0<br />

Tanytarsus sp. G 6489621394 0.04 4 0 0 1 1 1 1<br />

Amphipoda 6168 2.31 3 0 0 1 1 1 0<br />

Athenaria sp. A 3759000099 18.15 3 1 0 1 1 0 0<br />

Brachycercus maculatus 6218020105 1.01 3 0 0 1 0 1 1<br />

Chironomini (pupae) 64896099 8.03 3 0 0 1 2 0 0<br />

Coelotanypus scapularis 6489390204 7.10 3 0 0 1 1 1 0<br />

Coelotanypus tricolor 6489390205 1.46 3 0 0 0 1 1 1<br />

Cryptochironomus blarina 6489600802 0.02 3 0 0 0 1 1 1<br />

Dubiraphia vittata 6316040205 0.73 3 0 0 0 1 1 1<br />

Euplana gracilis 3906050601 26.91 3 2 1 0 0 0 0<br />

Gammarus cL tigrinus 6169210707cf 0.21 3 0 0 0 0 0 3<br />

Gastropoda 51 14.95 3 1 1 0 0 1 0<br />

Glycera 50012701 24.84 3 2 1 0 0 0 0<br />

Haminoea succinea 5110120104 25.06 3 3 0 0 0 0 0<br />

Leitoscoloplos 50014016 21.04 3 2 0 1 0 0 0<br />

Appendix D - Macroinfaunal Data D-19 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table D-3 (continued).<br />

XianChens salinity model for 30 day averages for weighted salinities for each species and counts of occurrences<br />

by strata.<br />

Weighted Total Collections by HBMP Strata<br />

Taxa NODCCode Salinity CoIIectiom AR-2 AR-3 AR-4 AR-5 AR-6 AR-7<br />

Listriella barnardi 6169330301 22.95 3 1 1 1 0 0 0<br />

Macoma constricta 5515310121 27.84 3 1 1 1 0 0 0<br />

Mactra fragilis 5515250601 25.64 3 2 1 0 0 0 0<br />

Mediomastus 50016004 21.64 3 1 2 0 0 0 0<br />

Melanoides tuberculata 5103380101 0.73 3 0 0 0 0 2 1<br />

Melita nitida complex 6169211006cx 21.25 3 1 0 0 0 1 1<br />

Neanthes micromma 5001240415 25.32 3 2 1 0 0 0 0<br />

Neritina reclivata 5102170103 7.02 3 0 0 2 0 1 0<br />

Oxyurostylis smithi 6154050801 19.83 3 2 0 0 1 0 0<br />

Pagastiella 64896030 0.09 3 0 0 0 0 0 3<br />

Pinnixa sayana 6189060409 27.73 3 3 0 0 0 0 0<br />

Polypedilum illinoense gpo 6489603619gp 0.11 3 0 0 0 1 1 1<br />

Rheotanytarsus 64896209 6.76 3 0 0 0 2 1 0<br />

Rictaxis punctostriatus 5110010403 20.33 3 1 1 0 1 0 0<br />

Sigambra tentaculata 5001220201 22.26 3 2 1 0 0 0 0<br />

Stenelmis 63160401 0.48 3 0 0 0 0 0 3<br />

Streblospio 50014318 24.87 3 1 1 1 0 0 0<br />

Tanytarsus sp. K 6489621389 0.13 3 0 0 0 1 1 1<br />

Taphromysis bowmani 6153012702 18.45 3 1 2 0 0 0 0<br />

Tribelos fuscicome 6489604302 0.32 3 0 0 0 0 1 2<br />

Tubificidae 500902 23.26 3 1 1 1 0 0 0<br />

Ablabesmyia 64894201 0.27 2 0 0 0 0 2 0<br />

Ablabesmyia rhamphe gpo 6489420117 1.14 2 0 0 1 0 0 1<br />

Actiniaria 3758 19.14 2 1 1 0 0 0 0<br />

Amakusanthura magnifica 6160012001 16.38 2 1 1 0 0 0 0<br />

Americamysis 61530315 23.44 2 1 1 0 0 0 0<br />

Americamysis bahia 6153031502 23.20 2 1 1 0 0 0 0<br />

Ampelisca abdita 6169020108 23.53 2 1 1 0 0 0 0<br />

Ampelisca cf. vadorum 6169020109 22.98 2 1 1 0 0 0 0<br />

Amphicteis gunneri 5001670303 15.21 2 1 1 0 0 0 0<br />

Apocorophium lacustre 6169150205 13.70 2 0 1 1 0 0 0<br />

Aricidea philbinae 5001410221 23.92 2 1 0 1 0 0 0<br />

Assiminea succinea 5103210103 17.37 2 0 1 1 0 0 0<br />

Atys riiseana 5110120203 28.08 2 2 0 0 0 0 0<br />

Aulodrilus pigueti 5009020801 0.08 2 0 0 0 0 2 0<br />

Caenis hilaris 6218020208 2.62 2 0 0 0 1 1 0<br />

Capitellidae 500160 0.80 2 0 0 0 1 1 0<br />

Cassidinidea ovalis 6161020802 2.13 2 0 0 1 0 1 0<br />

Appendix D - Macroinfaunal Data D-20 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table D-3 (continued).<br />

XianChens salinity model for 30 day averages for weighted salinities for each species and counts of occurrences<br />

by strata.<br />

Weighted Total Collections by HBMP Strata<br />

Taxa NODC Code Salinity Collections AR-2 AR-3 AR-4 AR-S AR-6 AR-7<br />

Chironornidae 648933 2.08 2 0 0 0 0 1 1<br />

Cladotanytarsus cf. davies 6489620107cf 9.68 2 0 0 1 1 0 0<br />

Corophiidae 616915 26.35 2 1 1 0 0 0 0<br />

Cumacea 6154 7.70 2 0 0 1 1 0 0<br />

Cymellus fratemus 6418030301 0.46 2 0 0 0 0 0 2<br />

Dero 50090306 0.00 2 0 0 0 0 1<br />

Dero digitata 5009030604 0.00 2 0 0 0 0 1 1<br />

Dicrotendipes modestus 6489601310 0.00 2 0 0 0 0 1<br />

Dicrotendipes neomodestus 6489601311 0.00 2 0 0 0 0 1 1<br />

Diopatra cuprea 5001290201 23.99 2 2 0 0 0 0 0<br />

Diptera 6481 21.60 2 1 1 0 0 0 0<br />

Djalmabatista 64894501 3.32 2 0 0 0 1 0 I<br />

Enteropneusta 8201 29.74 2 2 0 0 0 0 0<br />

Gammarus nr. tigrinus 6169210707nr 0.00 2 0 0 0 0 1 I<br />

Gomphidae 622504 5.20 2 0 0 0 1 0 1<br />

Holothuroidea sp. C 8170000097 16.98 2 1 0 1 0 0 0<br />

Littoridinops 51031305 12.86 2 0 0 1 0 0<br />

Macrornia 62260126 2.62 2 0 0 0 1 1 0<br />

MageJona pettiboneae 5001440106 29.67 2 2 0 0 0 0 0<br />

Mysidacea 6151 4.22 2 0 0 0 1 0<br />

Myzobdella lugubris 5014010701 3.53 2 0 0 1 1 0 0<br />

Nassarius vibex 5105080102 26.63 2 2 0 0 0 0 0<br />

Nemertea sp. A 4300000099 17.92 2 1 1 0 0 0 0<br />

Nemertea sp. U 4300000079 20.65 2 1 1 0 0 0 0<br />

Neritina usnea 5102170106 9. 11 2 0 1 0 0 1 0<br />

Ostracoda 6110 7.37 2 0 0 1 0 1 0<br />

Parakeifferiella 64895646 0.00 2 0 0 0 0 1 1<br />

Polydora comuta 5001430448 21.59 2 1 1 0 0 0 0<br />

Polypedilum tritum 6489603639 2.53 2 0 0 0 0 2 0<br />

Prionospio 50014305 16.81 2 1 0 0 0 1 0<br />

Rheotanytarsus distinctissimus gpo 6489620902gp 4.59 2 0 0 1 1 0 0<br />

Sphaeriidae 551546 8.94 2 0 0 1 1 0 0<br />

Tanypus clavatus 6489460101 14.81 2 0 0 2 0 0 0<br />

Tanytarsus cf. sp. C 6489621397cf 8.31 2 0 0 2 0 0 0<br />

Tellina 55153102 19.78 2 1 1 0 0 0 0<br />

Trichoptera 6418 1.14 2 0 0 1 0 0<br />

Tricorythodes 62170301 0.76 2 0 0 0 1 0<br />

Tricorythodes albilineatus 6217030102 2.06 2 0 0 0 0<br />

Appendix D - Macroinfaunal Data D-21 <strong>Mote</strong> <strong>Marine</strong> LaboratOlY - April 2003


Appendix Table D-3 (continued).<br />

XianChens salinity model for 30 day averages for weighted salinities for each species and counts of occurrences<br />

by strata.<br />

Weighted Total Collections bI HBMP Strata<br />

Taxa NODCCode SalinitI Collections AR-2 AR-3 AR-4 AR-S AR-6 AR-7<br />

Tubulanus pellucidus 4302010104 27.44 2 1 1 0 0 0 0<br />

Abra aequalis 5515350201 16.62 1 0 1 0 0 0 0<br />

Acteocina canaliculata 5110040103 23.63 1 1 . 0 0 0 0 0<br />

Aeolidoidea 51420399 14.64 1 0 1 0 0 0 0<br />

Ambidexter symmetricus 6179170301 23.18 1 0 1 0 0 0 0<br />

Ampelisca holmesi 6169020123 26.94 1 1 0 0 0 0 0<br />

Ampelisca vadorum 6169020109 30.58 1 1 0 0 0 0 0<br />

Ampharetidae 500167 25.12 1 0 1 0 0 0 0<br />

Amphioplus thrombodes 8129030904 30.58 1 1 0 0 0 0 0<br />

Amphiuridae 812903 30.58 1 1 0 0 0 0 0<br />

Aricidea taylori 5001410222 20.22 1 0 0 1 0 0 0<br />

Ascidiacea sp. C 8401000097 26.94 1 1 0 0 0 0 0<br />

Asellus 61630205 0.30 1 0 b 0 0 0 1<br />

Astyris lunata 5105030207 30.58 1 1 0 0 0 0 0<br />

Asychis elongata 5001630103 26.49 1 1 0 0 0 0 0<br />

Athenaria 3759 20.22 1 0 0 1 0 0 0<br />

Aulodrilus 50090208 0.00 1 0 0 0 0 1 0<br />

Aulodrilus limnobius 5009020802 0.00 1 0 0 0 0 1 0<br />

Aulodrilus pluriseta 5009020804 0.24 1 0 0 0 0 1 0<br />

Bivalvia sp. A 5500000099 0.00 1 0 0 0 0 1 0<br />

Bowmaniella 61530126 28.38 1 1 0 0 0 0 0<br />

Brachidontes exustus 5507010902 23.63 1 1 0 0 0 0 0<br />

Brachycercus 62180201 0.21 1 0 0 0 0 0 1<br />

Cambaridae 618105 10.54 1 0 0 1 0 0 0<br />

Caprella 61710107 23.63 1 1 0 0 0 0 0<br />

Caprellidae 617101 23.63 1 1 0 0 0 0 0<br />

Cerapus cf. tubularis 6169150102cf 27.84 1 1 0 0 0 0 0<br />

Cercobrachys 62180204 0.54 1 0 0 0 0 1 0<br />

Cercobrachys etowah 6218020301 10.54 1 0 0 1 0 0 0<br />

cf. Elirnia 51034006cf 0.00 1 0 0 0 0 1 0<br />

cf. Melita dentata 6169211003cf 0.22 1 0 0 0 0 0 1<br />

cf. Mesosrnittia 64895637cf 0.00 1 0 0 0 0 0 1<br />

cf. Paralauterbomiella 6489303302 0.00 1 0 0 0 0 1 0<br />

nigrohauterale<br />

cf. Slavina appendiculata 5009030101cf 0.00 1 0 0 0 0 1 0<br />

cf. Tribelos 6489604304cf 0.00 1 0 0 0 0 0 1<br />

Chaoborus 64890502 14.49 1 0 0 1 0 0 0<br />

Cheumatopsyche 64180402 2.93 1 0 0 0 1 0 0<br />

Appendix D - Macroinfaunal Data D-22 <strong>Mote</strong> Ma rine <strong>Laboratory</strong> - April 2003


Appendix Table D-3 (continued).<br />

XianChens salinity model for 30 day averages for weighted salinities for each species and counts of occurrences<br />

by strata.<br />

Weighted Total Collections bl: HBMP Strata<br />

Taxa NODC Code Salinitl: Collections AR-2 AR-3 AR-4 AR-5 AR-6 AR-7<br />

Chone cf. americana 5001700lO7cf 27.84 1 1 0 0 0 0 0<br />

Cladopelma 64896007 0.00 0 0 0 0 0 1<br />

Coenagrionidae 622904 0.00 0 0 0 0 1 0<br />

Corbula swiftiana 5517020205 26.94 1 0 0 0 0 0<br />

Crepidula 51036402 23.63 1 1 0 0 0 0 0<br />

Cryptochironomus fulvous gpo 6489600805 1.46 1 0 0 0 1 0 0<br />

Culicoides 64892501 1.46 1 0 0 0 1 0 0<br />

Cyathura 61600lO2 16.62 1 0 1 0 0 0 0<br />

Cyclaspis varians 6154090202 23.63 1 0 0 0 0 0<br />

Cymadusa compta 6169040201 28.04 1 0 0 0 0 0<br />

Dasyhelea 64892301 0.00 0 0 0 0 1 0<br />

Decapoda (unid. shrimp) 6175 23.63 1 0 0 0 0 0<br />

Decapoda (zoea) 6175 0.00 1 0 0 0 0 1 0<br />

Dicrotendipes cf. neomodestus 6489601311cf 16.62 1 0 1 0 0 0 0<br />

Dineutus 63050803 0.22 1 0 0 0 0 0 1<br />

Dorvillea pectinata 5001360114 26.94 1 0 0 0 0 0<br />

EcJipidrilus palustris 5005010702 0.30 0 0 0 0 0<br />

Enchytraeidae 500901 0.00 0 0 0 0 0 I<br />

Erichsonella attenuata 6162020601 19.1O 1 0 0 0 0 0<br />

Erpobdel\a punctata 5016010202 14.49 0 0 0 0 0<br />

Gammarus 61692lO7 10.54 0 0 1 0 0 0<br />

Genetyllis castanea 5001130701 30.58 1 1 0 0 0 0 0<br />

Glossiphoniidae sp. A 5014020099 2.79 1 0 0 0 0 0 1<br />

Goeldichironomus 64896018 lO.54 0 0 I 0 0 0<br />

Gyptis crypta 5001210lO8 26.94 1 0 0 0 0 0<br />

Hargeria rap ax 6157150212 24.09 1 0 0 0 0 0<br />

Harrnothoe sp. C 500lO20897 30.58 1 1 0 0 0 0 0<br />

Hebetancylus excentricus 51141lO501 0.22 1 0 0 0 0 0<br />

Heptageniidae 621601 0.22 1 0 0 0 0 0 1<br />

Holothuroidea sp. F 8170000094 20.26 0 1 0 0 0 0<br />

Hydrophilidae 630903 0.00 0 0 0 0 1 0<br />

H ydroptil idae 641805 4.34 0 0 0 1 0 0<br />

Hydrozoa 3701 16.62 0 0 0 0 0<br />

Insecta 62 14.64 1 0 1 0 0 0 0<br />

Isolda pulchella 5001672lOl 0.00 0 0 0 0 1 0<br />

Leitoscolopios foliosus 5001401604 23.63 1 0 0 0 0 0<br />

Littoridinops monroensis 5103130502 20.26 0 1 0 0 0 0<br />

Littoridinops palustris 5103130503 14.49 0 0 0 0 0<br />

Appendi x D - Macroinfaunal Data D-23 <strong>Mote</strong> <strong>Marine</strong> LaboratOlY - April 2003


Appendix Table D-3 (continued).<br />

XianChens salinity model for 30 day averages for weighted salinities for each species and counts of occurrences<br />

by strata.<br />

Weighted Total Collections by HBMP Strata<br />

Taxa NODC Code Salinity CoIlectiom AR-2 AR-3 AR-4 AR-5 AR-6 AR-7<br />

Lucinidae 551501 23.63 1 1 0 0 0 0 0<br />

Lumbrineris sp. D 5001310196 27.07 1 1 0 0 0 0 0<br />

Lumbrineris verrilli 5001310124 27.07 1 1 0 0 0 0 0<br />

Mediomastus californiensis 5001600402 21.63 1 0 1 0 0 0 0<br />

Melita 61692110 0.00 1 0 0 0 0 1 0<br />

Melita elongata 6169211014 26.94 1 1 0 0 0 0 0<br />

Mooreobdella melanostoma 5016010304 20.26 1 0 1 0 0 0 0<br />

Mysidopsis bahia 6153012102 29.68 1 1 0 0 0 0 0<br />

Nais communis 5009030803 14.93 1 0 0 1 0 0 0<br />

Nais pardalis 5009030805 0.00 1 0 0 0 0 1 0<br />

Nemertea sp. K 4300000089 26.94 1 1 0 0 0 0 0<br />

Nephtys cryptomma 5001250134 26.94 1 1 0 0 0 0 0<br />

Ne·reidae sp. B 5001240098 7.86 1 0 0 1 0 0 0<br />

Nereidae sp. C 5001240097 0.00 1 0 0 0 0 1 0<br />

Notomastus latericeus 5001600306 26.49 1 1 0 0 0 0 0<br />

Nudibranchia 5127 26.94 1 1 0 0 0 0 0<br />

Odonata 6223 0.24 1 0 0 0 0 1 0<br />

Odostomia 51080101 23.63 1 1 0 0 0 0 0<br />

Oecetis inconspicua complex sp. A 6418120499mx 0.00 1 0 0 0 0 0 1<br />

Oecetis nocturna 6418120406 4.34 1 0 0 0 1 0 0<br />

Onobops 51031331 20.26 1 0 1 0 0 0 0<br />

Orthocladiinae 648956 0.00 1 0 0 0 0 1 0<br />

Oxyethira 64180505 0.00 1 0 0 0 0 1 0<br />

Oxyurostylis 61540508 26.94 1 1 0 0 0 0 0<br />

Palaemonetes paludosus 6179110302 7.86 1 0 0 1 0 0 0<br />

Palaemonetes pugio 6179110303 7.86 1 0 0 1 0 0 0<br />

Paracladopelma 64896032 0.54 1 0 0 0 0 1 0<br />

Parahesione luteola 5001210701 29.68 1 1 0 0 0 0 0<br />

Paralauterborniella 64896033 0.90 1 0 0 0 0 0 1<br />

Paralauterborniella nigrohalterale 6489603302 4.34 1 0 0 0 1 0 0<br />

Paranais littoralis 5009030301 0.00 1 0 0 0 0 1 0<br />

Parvanachis obesa 5105030303 24.09 1 1 0 0 0 0 0<br />

Pentaneura inconspicua 6489421301 10.54 1 0 0 1 0 0 0<br />

Phoronis 77000102 26.94 1 1 0 0 0 0 0<br />

Phoronis architecta 7700010203 26.49 1 1 0 0 0 0 0<br />

Pinnixa chaetopterana 6189060405 23.63 1 1 0 0 0 0 0<br />

Platyhelminthes 39 23.63 1 1 0 0 0 0 0<br />

Pristina proboscidea 5009030501 0.24 1 0 0 0 0 1 0<br />

Appendix D - Macroinfaunal Data D-24 Mole <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table D-3 (continued).<br />

XianChens salinity model for 30 day averages for weighted salinities for each species and counts of occurrences<br />

by strata.<br />

Weighted Total Collections bI HBMP Strata<br />

Taxa NODC Code SalinitI CoIIa1ions AR-2 AR-3 AR-4 AR-5 AR-6 AR-7<br />

Pseudeurythoe ambigua 5001100302 30.58 1 1 0 0 0 0 0<br />

Pseudochironomus 64896101 1.46 1 0 0 0 1 0 0<br />

Rheotanytarsus exiguus gpo 6489620903gp 0.54 1 0 0 0 0 1 0<br />

Rheumatobates 62740101 0.00 1 0 0 0 0 0 1<br />

Sayella laevigata 5103200611 14.93 1 0 0 1 0 0 0<br />

Schistomeringos cf. rudolphi 5001360504cf 30.58 1 1 0 0 0 0 0<br />

Scolecolepis viridis 5001430602 20.32 1 0 I 0 0 0 0<br />

Semele proficua 5515350103 9.35 1 0 0 1 0 0 0<br />

Sigambra bassi 5001220204 30.58 1 1 0 0 0 0 0<br />

Sipunculidae 720001 14.64 1 0 1 0 0 0 0<br />

Sphaerium 55154603 0.00 1 0 0 0 0 0 1<br />

Spiochaetopterus costarum 5001490302 26.94 1 1 0 0 0 0 0<br />

Spiochaetopterus costarum oculatus 500149030201 27.07 1 1 0 0 0 0 0<br />

Stempellina 64896210 0.00 1 0 0 0 0 0 1<br />

Sthenelais sp. A 5001060399 27.07 1 1 0 0 0 0 0<br />

Tagelus 55153302 23.63 1 0 0 0 0 0<br />

Tagelus cf. plebeius 5515330201cf 7.86 1 0 0 1 0 0 0<br />

Tanaidacea 6155 23.63 1 1 0 0 0 0 0<br />

Tanytarsus sp. A 6489621399 0.00 1 0 0 0 0 0 1<br />

Tanytarsus sp. C 6489621397 1.46 1 0 0 0 1 0 0<br />

Tanytarsus sp. S 6489621381 0.00 1 0 0 0 0 0 1<br />

Tanytarsus sp. T 6489621380 7.86 1 0 0 1 0 0 0<br />

Taphromysis louisianae 6153012701 1.46 1 0 0 0 1 0 0<br />

Tectonatica pusilla 5103760204 29.68 1 1 0 0 0 0 0<br />

Teinostoma biscaynense 5103230502 26.94 1 1 0 0 0 0 0<br />

Tellina cf. versicolor 5515310209cf 28.38 1 1 0 0 0 0 0<br />

Tellina versicolor 5515310209 23.63 1 1 0 0 0 0 0<br />

Tribelos 64896043 9.35 1 0 0 1 0 0 0<br />

Tribelos jucundum 6489604304 0.22 1 0 0 0 0 0 1<br />

Trombidiformes 5929 0.00 1 0 0 0 0 0 1<br />

Tubificidae (immature) sp. B 5009020098b 0.00 1 0 0 0 0 1 0<br />

Upogebia affinis 6183170102 23.63 1 1 0 0 0 0 0<br />

Veneridae 551547 7.86 1 0 0 I 0 0 0<br />

Vitrinella floridana 5103230205 20.26 1 0 1 0 0 0 0<br />

Xenanthura brevitelson 6160010701 30.58 1 1 0 0 0 0 0<br />

Appendix D - Macroinfaunal Data D-25 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - April 2003


Appendix Table D-4.<br />

Benthic invertebrate biomass for the Alafia River, Mai: 1999 samEles.<br />

Sample No. No. No Ash-free wt.<br />

Km Rep Location Device Area Taxa Inds Inds/m2 %Org grams/m2<br />

-5 1 L1 Core 0.00456 11 36 7,895<br />

-5 2 L2 Core 0.00456 16 77 16,886 2.33 105.7<br />

-5 4 M1 Core 0.00456 9 22 4,825<br />

-5 5 M2 Ponar 0.02320 19 139 5,991 3.37 139.1<br />

-5 6 M3 Ponar 0.02320 10 153 6,595 52.74 3.3<br />

-5 9 R1 Ponar 0.02320 17 272 11,724 16.09 19.3<br />

-5 10 R2 Core 0.00456 8 34 7,456 3.76 143.9<br />

-3 1 L1 Core 0.00456 10 54 11,842<br />

-3 2 L2 Core 0.00456 12 56 12,281<br />

-3 4 M1 Core 0.00456 12 81 17,763 3.74 62.7<br />

-3 5 M2 Ponar 0.02320 10 134 5,776 7.08 0.6<br />

-3 6 M3 Ponar 0.02320 10 126 5,431 55.36 2.7<br />

-3 9 R1 Core 0.00456 12 22 4,825 1.51 22.4<br />

-3 10 R2 Core 0.00456 4 8 1,754 0.81 60.5<br />

1 1 L1 Core 0.00456 7 9 1,974 146.10<br />

1 2 L2 Core 0.00456 14 30 6,579<br />

1 4 M1 Core 0.00456 8 19 4,167<br />

5 M2 Core 0.00456 12 37 8,114 4.41 329.6<br />

1 6 M3 Core 0.00456 11 25 5,482 10.22 1,250.2<br />

1 9 R1 Core 0.00456 7 9 1,974 3.94 759.2<br />

1 10 R2 Core 0.00456 15 154 33,772 1.69 210.5<br />

2 1 L1 Core 0.00456 25 130 28,509 46.53 1,170.2<br />

2 2 L2 Core 0.00456 12 66 14,474 3.01 123.5<br />

2 4 Ml Core 0.00456 17 34 7,456 3.79 832.2<br />

2 5 M2 Core 0.00456 9 22 4,825 2.81 648.0<br />

2 6 M3 Core 0.00456 15 43 9,430 4.16 163.8<br />

2 9 R1 Core 0.00456 16 158 34,649 1.69 274.1<br />

2 10 R2 Core 0.00456 23 156 34,211 2.38 403.5<br />

3 1 Ll Core 0.00456 18 120 26,316 24.30 602.9<br />

3 2 L2 Core 0.00456 5 35 7,675 10.71 341.4<br />

3 4 M1 Core 0.00456 7 34 7,456 11.69 548.5<br />

3 5 M2 Core 0.00456 13 99 21,711 18.08 2,206.6<br />

3 6 M3 Core 0.00456 16 191 41,886 54.38 1,474.8<br />

3 9 Rl Core 0.00456 10 39 8,553 8.71 709.0<br />

3 10 R2 Core 0.00456 11 44 9,649 7.69 550.2<br />

4 1 L1 Core 0.00456 19 118 25,877 5.74 1,493.6<br />

4 2 L2 Core 0.00456 8 31 6,798 15.47 438.8<br />

4 4 Ml Core 0.00456 16 202 44,298 9.46 507.5<br />

4 5 M2 Core 0.00456 10 109 23,904 12.18 565.8<br />

4 6 M3 Core 0.00456 12 237 51 ,974 39.66 3,418.9<br />

4 9 Rl Core 0.00456 9 47 10,307 4.07 410.7<br />

Appendix D - Macroinfaunal Data D-26 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Appendix Table D-4 (continued).<br />

Sample No. No. No Ash-free wt.<br />

Km Rep Location Device Area Taxa Inds Inds/m2 %Org grams/m2<br />

4 10 R2 Core 0.00456 11 44 9,649 22.67 556.4<br />

5 1 L1 Core 0.00456 7 32 7,018 19.82 588.4<br />

5 2 L2 Core 0.00456 11 49 10,746 16.88 966.7<br />

5 4 Ml Core 0.00456 6 35 7,675 5.05 342.5<br />

5 5 M2 Core 0.00456 10 146 32,018 22.22 2,210.5<br />

5 6 M3 Core 0.00456 15 120 26,316 20.62 1,000.7<br />

5 9 Rl Core 0.00456 11 36 7,895 36.72 821.1<br />

5 10 R2 Core 0.00456 14 109 23,904 12.38 356.6<br />

6 1 L1 Core 0.00456 11 123 26,974 4.86 1,007.5<br />

6 2 L2 Core 0.00456 18 113 24,781 8.46 584.2<br />

6 4 Ml Core 0.00456 5 16 3,509 5.69 111.6<br />

6 5 M2 Core 0.00456 8 51 11,184 4.02 1,640.4<br />

6 6 M3 Core 0.00456 12 69 15,132 34.97 1,266.9<br />

6 9 RI Core 0.00456 12 41 8,991 16.80 771.3<br />

6 10 R2 Core 0.00456 8 28 6,140 30.82 336.8<br />

7 1 L1 Ponar 0.02320 8 400 17,241 10.74 177.3<br />

7 2 L2 Core 0.00456 9 270 59,211 12.44 1,130.7<br />

7 4 Ml Ponar 0.02320 7 351 15,129 10.90 151.9<br />

7 5 M2 Core 0.00456 11 348 76,316 5.59 740.6<br />

7 6 M3 Core 0.00456 7 15 3,289 71.50 2,791.2<br />

7 9 Rl Core 0.00456 5 13 2,851 3.64 700.4<br />

7 10 R2 Core 0.00456 12 411 90,132 52.65 3,577.2<br />

8 1 L1 Ponar 0.02320 10 100 4,3 10 0.56 6.2<br />

8 2 L2 Core 0.00456 4 12 2,632 21.92 711.4<br />

8 4 Ml Core 0.00456 6 78 17,105 3.15 511.6<br />

8 5 M2 Core 0.00456 14 268 58,772 12.90 1,386.2<br />

8 6 M3 Core 0.00456 4 7 1,535 27.05 468.6<br />

8 9 Rl Core 0.00456 11 545 119,518 5.75 804.8<br />

8 10 R2 Ponar 0.02320 6 14 603 4.76 100.3<br />

9 1 L1 Ponar 0.02320 3 11 474 72.74 115.7<br />

9 2 L2 Ponar 0.02320 13 116 5,000 67.05 81.5<br />

9 4 Ml Ponar 0.02320 6 7 302 27 .75 95 .6<br />

9 5 M2 Core 0.00456 16 354 77,632 13.71 1,016.4<br />

9 6 M3 0 71.99<br />

9 9 Rl Ponar 0.02320 3 6 259 62.79 428.4<br />

9 10 R2 Core 0.00456 9 61 13,377 76.42 907.5<br />

10 1 L1 Ponar 0.02320 10 39 1,681 2.00 120.7<br />

10 2 L2 Ponar 0.02320 5 34 1,466 2.65 63.8<br />

10 4 Ml Core 0.00456 15 190 41,667 66.30 993.2<br />

10 5 M2 Core 0.00456 15 183 40,132 66.00 1,476.1<br />

10 6 M3 Ponar 0.02320 4 5 216 3.16 13.3<br />

Appendix D - Macroinfaunal Data D-27 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Appendix Table D-4 (continued).<br />

Sample No. No. No Ash-free wt.<br />

Km Rep Location Device Area Taxa Inds Inds/m2 %Org grams/m2<br />

10 9 R1 Ponar 0.02320 8 28 1,207 2.45 140.5<br />

10 10 R2 Core 0.00456 15 76 16,667 63.18 980.7<br />

11 1 L1 Ponar 0.02320 6 66 2,845 0.51 43.5<br />

11 2 L2 Ponar 0.02320 5 89 3,836 8.40 494.4<br />

11 4 Ml Ponar 0.02320 4 13 560 1.77 14.0<br />

11 5 M2 Core 0.00456 12 48 10,526 63.17 742.1<br />

11 6 M3 Ponar 0.02320 4 50 2,155 3.56 175.4<br />

11 9 RI Core 0.00456 8 49 10,746 48.11 596.9<br />

11 10 R2 Ponar 0.02320 4 79 3,405 9.62 419.8<br />

12 1 Ll Ponar 0.02320 8 215 9,267 4.40 54.7<br />

12 2 L2 Ponar 0.02320 12 279 12,026 72.46 147.3<br />

12 4 M1 Ponar 0.02320 11 680 29,310 5.14 121.1<br />

12 5 M2 Core 0.00456 17 140 30,702 63.15 766.9<br />

12 6 M3 Core 0.00456 16 208 45,614 67.39 846.5<br />

12 9 Rl Core 0.00456 5 14 3,070 64.64 163.6<br />

12 10 R2 Core 0.00456 14 165 36,184 66.86 982.7<br />

13 1 L1 Core 0.00456 17 38 8,333 19.77 118.4<br />

13 2 L2 Core 0.00456 12 33 7,237 24.70 81.6<br />

13 4 Ml Core 0.00456 6 16 3,509 65.11 244.7<br />

13 5 M2 Ponar 0.02320 20 76 3,276 1.37 62.1<br />

13 6 M3 Ponar 0.02320 5 28 1,207 1.67 74.1<br />

13 9 R1 Ponar 0.02320 4 12 517 1.12 134.9<br />

13 10 R2 Ponar 0.02320 7 159 6,853<br />

14 1 Ll Core 0.00456 14 57 12,500 59.51 1,421.9<br />

14 2 L2 Ponar 0.02320 4 5 216<br />

14 4 M1 Ponar 0.02320 11 96 4,138 0.74 41.8<br />

14 5 M2 Core 0.00456 7 35 7,675 64.91 834.0<br />

14 6 M3 Core 0.00456 21 116 25,439 80.02 537.5<br />

14 9 Rl Ponar 0.02320 21 100 4,310 0.59 33.2<br />

14 10 R2 Core 0.00456 9 94 20,614 79.29 1,526.3<br />

15 1 Ll Core 0.00456 10 30 6,579 48.17 324.1<br />

15 2 L2 Core 0.00456 11 57 12,500 65.94 468.6<br />

15 4 Ml Core 0.00456 7 22 4,825 45.18 288.8<br />

15 5 M2 Core 0.00456 6 16 3,509 78.94 550.7<br />

15 6 M3 Core 0.00456 16 81 17,763 57.33 406.4<br />

15 9 Rl Core 0.00456 7 26 5,702 60.16 336.2<br />

15 10 R2 Core 0.00456 18 112 24,561 68.48 312.1<br />

Appendix D - Macroinfaunal Data D-28 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong>· June 2003


Appendix Table D-S.<br />

Benthic invertebrate biomass for the Alafia River, Ma~ 1999 samEles.<br />

Sample No. No. No Ash-free wt.<br />

Km Rep Location Device Area Taxa Inds Inds/m2 %Org gramslm2<br />

-5 1 LI Core 0.00456 11 36 7,895<br />

-5 2 L2 Core 0.00456 16 77 16,886 2.33 105.7<br />

-5 4 Ml Core 0.00456 9 22 4,825<br />

-5 5 M2 Ponar 0.02320 19 139 5,991 3.37 139.1<br />

-5 6 M3 Ponar 0.02320 10 153 6,595 52.74 3.3<br />

-5 9 Rl Ponar 0.02320 17 272 11 ,724 16.09 19.3<br />

-5 10 R2 Core 0.00456 8 34 7,456 3.76 143.9<br />

-3 LI Core 0.00456 10 54 11 ,842<br />

-3 2 L2 Core 0.00456 12 56 12,281<br />

-3 4 Ml Core 0.00456 12 81 17,763 3.74 62.7<br />

-3 5 M2 Ponar 0.02320 10 134 5,776 7.08 0.6<br />

-3 6 M3 Ponar 0.02320 10 126 5,431 55 .36 2.7<br />

-3 9 Rl Core 0.00456 12 22 4,825 1.51 22.4<br />

-3 10 R2 Core 0.00456 4 8 1,754 0.81 60.5<br />

1 1 LI Core 0.00456 7 9 1,974 146.10<br />

1 2 L2 Core 0.00456 14 30 6,579<br />

4 Ml Core 0.00456 8 19 4,167<br />

5 M2 Core 0.00456 12 37 8,114 4.41 329.6<br />

6 M3 Core 0.00456 11 25 5,482 10.22 1,250.2<br />

9 Rl Core 0.00456 7 9 1,974 3.94 759.2<br />

1 10 R2 Core 0.00456 15 154 33,772 1.69 210.5<br />

2 1 LI Core 0.00456 25 130 28,509 46.53 1,170.2<br />

2 2 L2 Core 0.00456 12 66 14,474 3.01 123.5<br />

2 4 Ml Core 0.00456 17 34 7,456 3.79 832.2<br />

2 5 M2 Core 0.00456 9 22 4,825 2.81 648.0<br />

2 6 M3 Core 0.00456 15 43 9,430 4.16 163.8<br />

2 9 Rl Core 0.00456 16 158 34,649 1.69 274.1<br />

2 10 R2 Core 0.00456 23 156 34,211 2.38 403.5<br />

3 1 Ll Core 0.00456 18 120 26,316 24.30 602.9<br />

3 2 L2 Core 0.00456 5 35 7,675 10.7 1 341.4<br />

3 4 Ml Core 0.00456 7 34 7,456 11.69 548.5<br />

3 5 M2 Core 0.00456 13 99 21 ,711 18.08 2,206.6<br />

3 6 M3 Core 0.00456 16 191 41 ,886 54.38 1,474.8<br />

3 9 R l Core 0.00456 10 39 8,553 8.71 709.0<br />

3 10 R2 Core 0.00456 11 44 9,649 7.69 550.2<br />

4 1 Ll Core 0.00456 19 118 25,877 5.74 1,493.6<br />

4 2 L2 Core 0.00456 8 31 6,798 15.47 438.8<br />

4 4 Ml Core 0.00456 16 202 44,298 9.46 507.5<br />

4 5 M2 Core 0.00456 10 109 23,904 12.18 565.8<br />

4 6 M3 Core 0.00456 12 237 51 ,974 39.66 3,418.9<br />

4 9 R l Core 0.00456 9 47 10,307 4.07 410.7<br />

4 10 R2 Core 0.00456 11 44 9,649 22.67 556.4<br />

5 1 Ll Core 0.00456 7 32 7,018 19.82 588.4<br />

5 2 L2 Core 0.00456 11 49 10,746 16.88 966.7<br />

5 4 Ml Core 0.00456 6 35 7,675 5.05 342.5<br />

5 5 M2 Core 0.00456 10 146 32,018 22.22 2,210.5<br />

Appendix D - Macroinfaunal Data D-29 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Appendix Table D-S (continued).<br />

Sample No. No. No Ash-free wt.<br />

Km Rep Location Device Area Taxa Inds Inds/m2 %Org grams/m2<br />

5 6 M3 Core 0.00456 15 120 26,316 20.62 1,000.7<br />

5 9 Rl Core 0.00456 11 36 7,895 36.72 82l.l<br />

5 10 R2 Core 0.00456 14 109 23 ,904 12.38 356.6<br />

6 1 Ll Core 0.00456 11 123 26,974 4.86 1,007.5<br />

6 2 L2 Core 0.00456 18 113 24,781 8.46 584.2<br />

6 4 Ml Core 0.00456 5 16 3,509 5.69 111.6<br />

6 5 M2 Core 0.00456 8 51 11 ,184 4.02 1,640.4<br />

6 6 M3 Core 0.00456 12 69 15,132 34.97 1,266.9<br />

6 9 Rl Core 0.00456 12 41 8,991 16.80 771.3<br />

6 10 R2 Core 0.00456 8 28 6,140 30.82 336.8<br />

7 1 Ll Ponar 0.02320 8 400 17,241 10.74 177.3<br />

7 2 L2 Core 0.00456 9 270 59,211 12.44 1,130.7<br />

7 4 Ml Ponar 0.02320 7 351 15,129 10.90 151.9<br />

7 5 M2 Core 0.00456 11 348 76,316 5.59 740.6<br />

7 6 M3 Core 0.00456 7 15 3,289 71.50 2,791.2<br />

7 9 RI Core 0.00456 5 13 2,851 3.64 700.4<br />

7 10 R2 Core 0.00456 12 411 90,132 52.65 3,577.2<br />

8 1 Ll Ponar 0.02320 10 100 4,310 0.56 6.2<br />

8 2 L2 Core 0.00456 4 12 2,632 21.92 711.4<br />

8 4 Ml Core 0.00456 6 78 17,105 3.15 511.6<br />

8 5 M2 Core 0.00456 14 268 58,772 12.90 1,386.2<br />

8 6 M3 Core 0.00456 4 7 1,535 27 .05 468.6<br />

8 9 RI Core 0.00456 11 545 119,518 5.75 804.8<br />

8 10 R2 Ponar 0.02320 6 14 603 4.76 100.3<br />

9 1 Ll Ponar 0.02320 3 11 474 72.74 115.7<br />

9 2 L2 Ponar 0.02320 13 116 5,000 67.05 81.5<br />

9 4 Ml Ponar 0.02320 6 7 302 27.75 95 .6<br />

9 5 M2 Core 0.00456 16 354 77,632 13.71 1,016.4<br />

9 6 M3 0 71.99<br />

9 9 Rl Ponar 0.02320 3 6 259 62.79 428.4<br />

9 10 R2 Core 0.00456 9 61 13,377 76.42 907.5<br />

10 1 Ll Ponar 0.02320 10 39 1,681 2.00 120.7<br />

10 2 L2 Ponar 0.02320 5 34 1,466 2.65 63.8<br />

10 4 Ml Core 0.00456 15 190 41,667 66.30 993.2<br />

10 5 M2 Core 0.00456 15 183 40,132 66.00 1,476.1<br />

10 6 M3 Ponar 0.02320 4 5 216 3.16 13.3<br />

10 9 Rl Ponar 0.02320 8 28 1,207 2.45 140.5<br />

10 10 R2 Core 0.00456 15 76 16,667 63.18 980.7<br />

11 1 Ll Ponar 0.02320 6 66 2,845 0.51 43.5<br />

11 2 L2 Ponar 0.02320 5 89 3,836 8.40 494.4<br />

11 4 Ml Ponar 0.02320 4 13 560 1.77 14.0<br />

11 5 M2 Core 0.00456 12 48 10,526 63.17 742.1<br />

11 6 M3 Ponar 0.02320 4 50 2, 155 3.56 175.4<br />

11 9 Rl Core 0.00456 8 49 10,746 48.11 596.9<br />

11 10 R2 Ponar 0.02320 4 79 3,405 9.62 419.8<br />

12 1 Ll Ponar 0.02320 8 215 9,267 4.40 54.7<br />

Appendix D - Macroinfaunal Data D-30 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Appendix Table D-S (continued).<br />

Sample No. No. No Ash-free wt.<br />

Km Rep Location Device Area Taxa Inds Inds/m2 %Org grams/m2<br />

12 2 L2 Ponar 0.02320 12 279 12,026 72.46 147.3<br />

12 4 Ml Ponar 0.02320 11 680 29,310 5.14 121.1<br />

12 5 M2 Core 0.00456 17 140 30,702 63.15 766.9<br />

12 6 M3 Core 0.00456 16 208 45,614 67.39 846.5<br />

12 9 Rl Core 0.00456 5 14 3,070 64.64 163.6<br />

12 10 R2 Core 0.00456 14 165 36,184 66.86 982.7<br />

l3 1 Ll Core 0.00456 17 38 8,333 19.77 118.4<br />

13 2 L2 Core 0.00456 12 33 7,237 24.70 81.6<br />

13 4 Ml Core 0.00456 6 16 3,509 65 . 11 244.7<br />

13 5 M2 Ponar 0.02320 20 76 3,276 1.37 62.1<br />

13 6 M3 Ponar 0.02320 5 28 1,207 1.67 74.1<br />

13 9 Rl Ponar 0.02320 4 12 517 1.12 134.9<br />

l3 10 R2 Ponar 0.02320 7 159 6,853<br />

14 1 Ll Core 0.00456 14 57 12,500 59.51 1,421.9<br />

14 2 L2 Ponar 0.02320 4 5 216<br />

14 4 Ml Ponar 0.02320 11 96 4,138 0.74 41.8<br />

14 5 M2 Core 0.00456 7 35 7,675 64.91 834.0<br />

14 6 M3 Core 0.00456 21 116 25,439 80.02 537.5<br />

14 9 Rl Ponar 0.02320 21 100 4,310 0.59 33.2<br />

14 10 R2 Core 0.00456 9 94 20,614 79.29 1,526.3<br />

15 1 Ll Core 0.00456 10 30 6,579 48.17 324.1<br />

15 2 L2 Core 0.00456 11 57 12,500 65.94 468.6<br />

15 4 Ml Core 0.00456 7 22 4,825 45.18 288.8<br />

15 5 M2 Core 0.00456 6 16 3,509 78.94 550.7<br />

15 6 M3 Core 0.00456 16 81 17,763 57.33 406.4<br />

15 9 R1 Core 0.00456 7 26 5,702 60.16 336.2<br />

15 10 R2 Core 0.00456 18 112 24,561 68.48 312.1<br />

Appendix D - Macroinfaunal Data D-31 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


27.88<br />

27.86<br />

Laeonereis e<br />

ri per m 2 - Dry Season<br />

~<br />

27.84~1----------~---------r--~-----'----------~---------r--------~----------r---------~--~<br />

-82.44 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

.8000<br />

• 4000<br />

• 1000<br />

• 10<br />

27.88 Laeonereis elllveri per m 2 - Wet Season<br />

27.86<br />

.8000<br />

• 4000<br />

• 1000<br />

• 10<br />

2 7.84 ~1----------~---------r--~-----'----------~---------r--------~----------r---------~--~<br />

-82.44 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

Appendix Figure D-l.<br />

Distribution of the polychaete Laeonereis culveri for dry (May 1999) and wet (September 200 1) season<br />

conditions. Overall rank abundance #2.<br />

Appendix D - Macroinfaunal Data D-32 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


27.88 -j<br />

"ooj<br />

Mytilopsois<br />

~<br />

2<br />

ata per m - Dry Season e 8000<br />

27.84 I<br />

-82.44 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

• 4000<br />

• 1000<br />

• 100<br />

27.88<br />

2<br />

cophaeata per m - Wet Season<br />

e 8000<br />

• 4000<br />

27.86<br />

• 1000<br />

• 100<br />

27 . 84 ~1----------.----------,--L-----~----------.----------,---------,----------,----------.--~<br />

-82.44 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

Appendix Figure D-2. Distribution of the polychaete Mytilopsis leucophaeata for dry (May 1999) and wet (September 2001)<br />

season conditions. Overall rank abundance #3.<br />

Appendix D - Macroinfaunal Data D-33 <strong>Mote</strong> Marille <strong>Laboratory</strong>· JUlie 2003


27.88<br />

27.86<br />

Chi<br />

2<br />

spp. per m - Dry Season<br />

.4000<br />

• 2000<br />

• 500<br />

• 10<br />

27 . 8441---------,r---------.--L------r---------r_--------~--------~--------~--------,_--~<br />

-82.44 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

27.88<br />

27.86<br />

Chironomulspp. per m 2 - Wet Season<br />

.4000<br />

• 2000<br />

• 500<br />

• 10<br />

27 . 84 +1 ---------,---------,r-~------.---------.---------r_--------r_--------~--------~--~<br />

-82.44 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

Appendix Figure D-3.<br />

Distribution of the polychaete Chironomus spp. for dry (May 1999) and wet (September 2001) season<br />

conditions. Overall rank abundance #6.<br />

Appendix D - Macroinfaunal Data D-34 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


2788<br />

.<br />

-l S tre bl ospw . b· Fne rd" lctl per rn 2 - D ry S eason<br />

27.86<br />

.10000<br />

• 5000<br />

• 1000<br />

• 100<br />

27.84 ~1----------.----------,--L------,----------.----------,---------,----------.----------,--~<br />

-82.44 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

27.88 Streblospio edicti per rn 2 - Wet Season<br />

27.86<br />

•<br />

27 . 84 41---------,--------~r_~------r_--------r_--------._--------,_--------._--------,_--~<br />

~~« -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

• 10000<br />

• 5000<br />

• 1000<br />

• 100<br />

Appendix Figure D-4. Distribution of the polychaete Streblospio benedicti for dry (May 1999) and wet (September 2001)<br />

season conditions_ Overall rank abundance #8.<br />

Appendix D - Macroinfaunal Data D-35 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


27.88 2<br />

lterale gpo per m - Dry Season<br />

27.86<br />

.4000<br />

• 2000<br />

• 500<br />

• 10<br />

27.84+1---------.---------.r-~------r_--------r_--------._--------._--------,_--------~--~<br />

-82.44 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

27.88 Polyp<br />

27.86<br />

2<br />

terale gpo per m - Wet Season<br />

.4000<br />

• 2000<br />

• 500<br />

• 10<br />

27 . 8441---------.r---------r_~------._--------._--------,_--------,_--------~--------,_--~<br />

-82.44 -82.42<br />

-82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

Appendix Figure D-S.<br />

Distribution of the polychaete Polypedilum halterale gp_ for dry (May 1999) and wet (September 2001)<br />

season conditions_ Overall rank abundance #9.<br />

Appendix D - Macroinfaunal Data<br />

D-36 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - Jllne 2003


27.88<br />

27.86<br />

Apocorophi louisianum per m 2 - Dry Season .6000<br />

• 2000<br />

27 . 84 +1 --------~--------~,_~------,_--------~--------~--------,_--------~--------,_--~<br />

-82.44 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

• 500<br />

• 100<br />

27.88<br />

27.86<br />

Apocorophiu?t louisianum per m 2 - Wet Season<br />

l<br />

~<br />

27 . 84 ~1----------.---------~~L------'----------.---------~--------~----------r---------~--~<br />

-82.44 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

.6000<br />

• 2000<br />

• 500<br />

• 100<br />

Appendix Figure D-6. Distribution of the polychaete Apocorophium louisianum for dry (May 1999) and wet (September 2001)<br />

season conditions. Overall rank abundance #10.<br />

Appendi x D - Macroinfaunal Data D-37 Mole <strong>Marine</strong> <strong>Laboratory</strong> - Jun e 2003


Tubificidae sl5. A per m 2 - Dry Season .2000<br />

• 1000<br />

27.86<br />

• 500<br />

27.88<br />

~ • 100<br />

27 . 84 ~1 ----------,----------,--L------'----------'---------~--------~----------r---------~--~<br />

~2A4 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

2<br />

27.88 Tubificidae . A per m - Wet Season .2000<br />

• 1000<br />

27.86 • 500<br />

• 100<br />

~<br />

27 . 84 ~1----------,----------,--L------'----------'---------~--------~----------r---------~--~<br />

~~« -82A2 -82AO -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

Appendix Figure D-7.<br />

Distribution of the polychaete Tubificidae sp. for .dry (May 1999) and wet (September 2001) season<br />

conditions. Overall rank abundance #12.<br />

Appendix D - Macroinfaunal Data D-38 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


27.88<br />

27.86<br />

Parap<br />

pinnata per m 2 - Dry Season<br />

~<br />

27.84 +1---------,--------~,_~------r_--------,_--------,_--------~--------~--------._--~<br />

·82.44 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

.1500<br />

_ 1000<br />

• 500<br />

• 50<br />

27.88 ParaprionosiJio pinnata per m 2 - Wet Season<br />

27.86<br />

.~<br />

27.84~1----------'_---------r~~----~----------'_---------r---------.----------.---------.---~<br />

-82.44 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

.1500<br />

_ 1000<br />

• 500<br />

• 50<br />

Appendix Figure D-S. Distribution of the polychaete Paraprionospio pinnata for dry (May 1999) and wet (September 2001)<br />

season conditions. Overall rank abundance #13 .<br />

Appendix D - Macroinfaunal Data D-39 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


27.88 2<br />

spp. per m - Dry Season<br />

27.86<br />

~<br />

27 . 8441---------,----------.-~------,_--------,_--------._--------~--------~--------,_--~<br />

-82.44<br />

-82.42 -82.40 -82.38 -82.36 -82.34<br />

-82.32 -82.30 -82.28<br />

.2000<br />

• 1000<br />

• 500<br />

· 10<br />

27.88<br />

27.86<br />

2<br />

CladotanytaiJus spp. per m - Wet Season<br />

• 2000<br />

• 1000<br />

• 500<br />

• 10<br />

27.8441---------,----------.-~------,_--------,_--------._--------~--------~--------,_--~<br />

-82.44 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

Appendix Figure D-9. Distribution of the polychaete Cladotanytarsus spp. for dry (May 1999) and wet (September 2001)<br />

season conditions. Overall rank abundance #20.<br />

Appendix D - Macroinfaunal Data D-40 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


27.88<br />

27.86<br />

Eteone hete<br />

2<br />

per m - Dry Season<br />

~<br />

27 . 84 41 --------~r_--------r_-L------,_--------~--------~--------._--------,_--------~--~<br />

-82.44 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 . -82.30 -82.28<br />

.500<br />

.300<br />

• 100<br />

• 10<br />

27.88<br />

27.86 i<br />

2<br />

Eteone heter1poda per m - Wet Season<br />

.500<br />

• 300<br />

• 100<br />

• 10<br />

2 7 . 84 41--------~r_--------r_-L------,_--------~--------~--------._--------,_--------~--~<br />

-82.44 -82.42 -82.40 -82.38 -82. 36 -82.34 -82.32 -82. 30 -82.28<br />

Appendix Figure D-IO.<br />

Distribution of the polychaete Eteone heteropoda for dry (May 1999) and wet (September 2001 ) season<br />

conditions. Overall rank abundance #33.<br />

Appendix D - Macroinfa unal Data 0-41 <strong>Mote</strong> Ma rine <strong>Laboratory</strong> - June 2003


2788<br />

. -l M U I' lnla 'I atera XI' lS per m 2 - D ry S eason _500<br />

27.86<br />

• 200<br />

• 100<br />

~ • 10<br />

27 . 84~1----------~---------r--~-----'----------~--------~--------~----------r---------~--~<br />

-82.44 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

27.88 lis per m 2 - Wet Season _ 500<br />

27.86<br />

• ~<br />

27.84~1----------~---------r--~-----'----------~--------~--------~----------r---------'---~<br />

-82.44 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

• 200<br />

• 100<br />

• 10<br />

Appendix Figure D-11.<br />

Distribution of the polychaete Mulinia lateralis for dry (May 1999) and wet (September 2001) season<br />

conditions. Overall rank abundance #36.<br />

Appendix D - Macroinfaunal Data D-42 Male <strong>Marine</strong> LaboralOlY - June 2003


27.88 -t<br />

,,001<br />

Phyllodoce<br />

~<br />

2<br />

per m - Dry Season .225<br />

• 100<br />

• 50<br />

27.84 I<br />

·82.44 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

• 10<br />

27.88<br />

27.86<br />

2<br />

Phyllodoce a/enae per m - Wet Season<br />

l<br />

.225<br />

• 100<br />

• 50<br />

• 10<br />

27.84 ~1 --------~----------r-~------.---------.---------~--------,---------,---------.---~<br />

-82.44 -82.42 -82.40 -82.38 -82.36 -82.34 -82.32 -82.30 -82.28<br />

Appendix Figure D-12.<br />

Distribution of the polychaete Phyllodoce arenae for dry (May 1999) and wet (September 2001) season<br />

conditions. Overall rank abundance #63.<br />

Appendix D - Macroinfaunal Data 0-43 <strong>Mote</strong> Marin e <strong>Laboratory</strong> - June 2003


Ampe/isca cf abdita<br />

10000 AR-2 ". 10000<br />

AR-3 •<br />

•<br />

•<br />

'" E lOOO •<br />

lOOO<br />

•<br />

..<br />

....<br />

••<br />

Q)<br />

0..<br />

• •<br />

....<br />

Q)<br />

100 ••<br />

~<br />

I 100<br />

E<br />

::l<br />

Z<br />

10 • 10<br />

•<br />

•<br />

I<br />

I<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

10000<br />

AR-4<br />

10000<br />

AR-5<br />

'" E<br />

....<br />

1000 lOOO<br />

Q)<br />

0..<br />

....<br />

Q)<br />

100 • 100<br />

~ .<br />

E ., .<br />

::l<br />

Z<br />

10 • • lO •<br />

•<br />

I<br />

I<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

10000<br />

AR-6<br />

10000<br />

AR-7<br />

'" E<br />

....<br />

lOOO 1000<br />

Q)<br />

0..<br />

....<br />

Q)<br />

~<br />

E<br />

::l<br />

Z<br />

100<br />

lO •<br />

100<br />

10<br />

•<br />

I<br />

I<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

Mean Salinity (30 days)<br />

Mean Salinity (30 days)<br />

Appendix Figure D-13.<br />

Abundance distribution of the amphipod Ampelisca cf Abdita by<br />

HBMP strata and salinity. Rank abundance #1.<br />

Appendix D - Macroinfaunal Data D-44 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Laeonereis culveri<br />

'" E<br />

....<br />

0)<br />

0..<br />

....<br />

0)<br />

.D<br />

E<br />

::l<br />

Z<br />

1000<br />

100<br />

10<br />

AR-2<br />

• 100<br />

• •<br />

, •<br />

• • 10<br />

1000 AR-3<br />

•<br />

•<br />

• •• • •<br />

0 5 10 15 20<br />

25 30 0 5<br />

10<br />

15 20<br />

25<br />

30<br />

•<br />

1000 AR-4<br />

'" E<br />

....<br />

•<br />

8- 100<br />

....<br />

• ,. .<br />

0)<br />

.D<br />

••<br />

• •<br />

E<br />

::l<br />

Z<br />

10 •<br />

1000<br />

•<br />

100 ...<br />

10<br />

•<br />

•<br />

• • •<br />

•<br />

•<br />

•<br />

•<br />

AR-5<br />

1000<br />

'" E<br />

....<br />

0)<br />

0.. 100 -.<br />

....<br />

0)<br />

.D<br />

E • •<br />

::l 10<br />

Z •<br />

0 5 10 15 20<br />

•<br />

• •<br />

25 30 0 5<br />

AR-6 1000 •<br />

100<br />

10<br />

10<br />

15 20<br />

25<br />

AR-7<br />

30<br />

o 5 10 15 20<br />

Mean Salinity (30 days)<br />

25 30 o 5<br />

10<br />

15 20 25<br />

Mean Salinity (30 days)<br />

30<br />

Appendix Figure D-14.<br />

Abundance distribution of the amphipod Laeonereis culveri by<br />

HBMP strata and salinity. Rank abundance #2.<br />

Appendix D - Macroinfaunal Data<br />

D-45 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


'" E<br />

Mytilopsis leucophaeata<br />

10000 AR-2 10000 AR-3<br />

•<br />

•<br />

c..<br />

.....<br />

•<br />

E 100 100<br />

:::l<br />

• Z • •• • • •<br />

..<br />

..... 1000 1000<br />

•<br />

(I)<br />

(I)<br />

.I:><br />

-<br />

10 I<br />

10 ••<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

10000 AR-4 10000 AR-5<br />

E<br />

• •<br />

..... 1000 • 1000 • •<br />

(I)<br />

c..<br />

.....<br />

•<br />

•<br />

(I)<br />

.I:><br />

E 100 • 100<br />

• •<br />

:::l<br />

Z<br />

•<br />

• •<br />

'"<br />

'" E<br />

10 • • • • 10<br />

•<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

•<br />

10000 AR-6 10000 AR-7<br />

..... 1000 It . 1000<br />

(I)<br />

c.. ,•<br />

....<br />

(I)<br />

.I:><br />

•<br />

~<br />

10 10 ~<br />

E 100 100<br />

:::l<br />

Z<br />

• •<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

Mean Salinity (30 days)<br />

Mean Salinity (30 days)<br />

Appendix Figure D-15.<br />

Abundance distribution of the amphipod Mytilopsis leucophaeata<br />

by HBMP strata and salinity. Rank abundance #3.<br />

Appendix D - Macroinfaunal Data D-46 MOle <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Grandidierella bonnieroides<br />

10000<br />

•<br />

10000<br />

AR-2 • AR-3 • ••<br />

'"<br />

E 1000 •• 1000<br />

....<br />

el)<br />

•<br />

0.<br />

....<br />

• • ••<br />

• ••<br />

el)<br />

.0<br />

100 100<br />

• •• •<br />

E<br />

::l<br />

•<br />

Z<br />

•<br />

10 • 10 •<br />

•<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

10000 10000<br />

AR-4<br />

AR-5<br />

'" E 1000 1000<br />

.... •<br />

•<br />

.<br />

el)<br />

0.<br />

• •<br />

....<br />

el)<br />

100<br />

•<br />

.0 ' 100<br />

• •<br />

E<br />

• •<br />

• •<br />

::l<br />

Z<br />

10 • • • 10<br />

•<br />

•<br />

•<br />

•<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

10000 10000<br />

AR-6<br />

'"<br />

E 1000 1000 •<br />

....<br />

el)<br />

~<br />

0.<br />

....<br />

•••<br />

-<br />

•<br />

E<br />

::l<br />

Z<br />

el)<br />

100 100<br />

.0<br />

10 ~ 10 ~<br />

AR-7<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

Mean Salinity (30 days)<br />

Mean Salinity (30 days)<br />

Appendix Figure D-16.<br />

Abundance distribution of the amphipod Grandidierella<br />

bonnieroides by HBMP strata and salinity. Rank abundance #4.<br />

Appendix 0 - Macroinfaunal Data D-47 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Chironomus spp.<br />

N<br />

1000 AR-2 1000 AR-3<br />

•<br />

E<br />

.... 100<br />

Q)<br />

c.<br />

....<br />

•<br />

100<br />

•<br />

Q)<br />

~<br />

E 10 10<br />

='<br />

Z<br />

••<br />

•<br />

•<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

N<br />

1000 AR-4 • 1000<br />

•• AR-5<br />

• • • • •<br />

100<br />

••<br />

• •<br />

•<br />

•<br />

E<br />

.... 100<br />

Q)<br />

c.<br />

....<br />

Q)<br />

•<br />

•<br />

~<br />

E 10 •<br />

10 ••<br />

='<br />

Z<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

1000 1000<br />

• AR-6<br />

N<br />

E • •<br />

, .... 100 • 100 .<br />

Q)<br />

c.<br />

....<br />

Q)<br />

•<br />

~<br />

E 10 10 ~<br />

='<br />

Z<br />

•<br />

AR-7<br />

o 5 10 15 20 25 30 o 5 10 15 20 25 30<br />

Mean Salinity (30 days)<br />

Mean Salinity (30 days)<br />

Appendix Figure D-17.<br />

Abundance distribution of the amphipod Chironomus spp. by<br />

HBMP strata and salinity. Rank abundance #6.<br />

Appendix D - Macroinfaunal Data<br />

D-48 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Streblospio benedicti<br />

AR-2<br />

•<br />

AR-3<br />

•<br />

•<br />

1000<br />

•<br />

1000<br />

•<br />

E<br />

.... • • •<br />

~<br />

, •• ••<br />

0..<br />

.... 100 • 100<br />

~<br />

• • •<br />

.J::J<br />

E<br />

•<br />

•<br />

:::l<br />

•<br />

'"<br />

Z 10 10<br />

.<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

•<br />

AR-4<br />

••• AR-5<br />

1000 1000<br />

E • •<br />

....<br />

•<br />

~<br />

0..<br />

• •<br />

.... 100 •<br />

100<br />

.J::J<br />

E<br />

•<br />

:::l<br />

Z 10 •<br />

10<br />

• • •<br />

'"<br />

~<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

'" E<br />

....<br />

~<br />

0..<br />

....<br />

~<br />

,<br />

.J::J<br />

AR-6<br />

1000 1000<br />

E<br />

:::l<br />

Z 10<br />

100 100<br />

10<br />

It<br />

AR-7<br />

o 5 10 15 20 25 30 o 5 10 15 20 25 30<br />

Mean Salinity (30 days)<br />

Mean Salinity (30 days)<br />

Appendix Figure D-18.<br />

Abundance distribution of the amphipod Streblospio benedicti by<br />

HBMP strata and salinity. Rank abundance #8.<br />

Appendix D - Macroinfaunal Data<br />

D-49 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Tubificidae<br />

..<br />

w/o cap. setae<br />

1000 1000<br />

AR-2<br />

•<br />

AR-3<br />

• #<br />

E<br />

... 100<br />

• 100<br />

•<br />

•<br />

Cl)<br />

0..<br />

... • •• ••<br />

•<br />

Cl)<br />

~<br />

E<br />

10<br />

10 • •<br />

N<br />

='<br />

Z<br />

1 1<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

1000 1000<br />

AR-4<br />

AR-5<br />

... 100 100<br />

N<br />

E<br />

Cl)<br />

...<br />

0..<br />

••<br />

Cl)<br />

~<br />

E<br />

•<br />

10 • •<br />

•<br />

=' 10<br />

Z<br />

N<br />

...<br />

Cl)<br />

1 1<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

1000 1000<br />

AR-6<br />

•<br />

.<br />

E 100 •<br />

100 :<br />

0..<br />

... •<br />

~<br />

:<br />

E<br />

=' 10 • 10<br />

z •<br />

•<br />

Cl)<br />

•<br />

AR-7<br />

1 1<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

Mean Salinity (30 days)<br />

Mean Salinity (30 days)<br />

Appendix Figure D-19.<br />

Abundance distribution of the amphipod Tubificidae wlo cap. setae<br />

by HBMP strata and salinity. Rank abundance #12.<br />

Appendix D - Macroinfaunal Data D-50 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Hobsonia florida<br />

1000 1000<br />

AR-2<br />

AR-3<br />

N<br />

E<br />

•<br />

100 100<br />

•<br />

....<br />

Q)<br />

0.. • •<br />

....<br />

•<br />

Q)<br />

.D<br />

••<br />

E<br />

• •<br />

:l 10 10<br />

z<br />

• •<br />

•<br />

N<br />

1 1<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

1000 1000<br />

• •<br />

AR-4 • AR-5<br />

E<br />

.... 100 100 •<br />

Q)<br />

0..<br />

....<br />

Q) •<br />

•<br />

•<br />

.D<br />

E<br />

:l<br />

Z<br />

10<br />

• •<br />

•<br />

10 •<br />

1 1<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

1000 1000<br />

AR-6<br />

N<br />

E<br />

... 100 100<br />

Q)<br />

0..<br />

....<br />

Q)<br />

.D<br />

E<br />

:l<br />

Z<br />

10 10<br />

AR-7<br />

1 1<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

Mean Salinity (30 days)<br />

Mean Salinity (30 days)<br />

Appendix Figure D-20.<br />

Abundance distribution of the amphipod Hobsonia florida by<br />

HBMP strata and salinity. Rank abundance #28.<br />

Appendix D - Macroinfaunal Data D-51 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Eteone heteropoda<br />

1000 1000<br />

AR-2 AR-3<br />

•<br />

•<br />

•<br />

• • •<br />

•<br />

•<br />

'" E<br />

.... 100 100<br />

Q)<br />

0..<br />

....<br />

Q)<br />

.J::J<br />

E<br />

Z<br />

10<br />

... • •<br />

::l 10<br />

I<br />

I<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

1000 1000<br />

AR-4<br />

'" E 100 100<br />

....<br />

•<br />

Q)<br />

•<br />

•<br />

0..<br />

....<br />

Q)<br />

• • •<br />

.J::J<br />

E •<br />

::l 10 10<br />

• •<br />

Z<br />

•<br />

AR-S<br />

I<br />

I<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

1000 1000<br />

AR-6<br />

'" E<br />

.... 100 100<br />

Q)<br />

0..<br />

....<br />

Q)<br />

.J::J •<br />

E<br />

::l 10 10<br />

Z<br />

AR-7<br />

I<br />

I<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

Mean Salinity (30 days)<br />

Mean Salinity (30 days)<br />

Appendix Figure D-21.<br />

Abundance distribution of the ampbipod Eteone heteropoda by<br />

HBMP strata and salinity. Rank abundance #33.<br />

Appendix D - Macroinfaunal Data D-S2 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Mulinia lateralis<br />

10000 10000<br />

AR-2<br />

AR-3<br />

'" 1000 1000<br />

E<br />

.... • •<br />

• •<br />


Cyathura polita<br />

1000 1000<br />

AR-2<br />

AR-3<br />

...<br />


Edotea triloba<br />

1000 1000<br />

AR-2<br />

'" E<br />

.... 100<br />

!l)<br />

0..<br />

....<br />

•<br />

•<br />

100<br />

!l)<br />

.D<br />

E<br />

Z<br />

AR-3<br />

•<br />

10 • •• • •<br />

:::l 10<br />

•<br />

1 1<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

1000 1000<br />

AR-4<br />

'" •<br />

E<br />

.... 100 100 •<br />

!l)<br />

0..<br />

....<br />

!l)<br />

•<br />

.D<br />

E<br />

•<br />

:::l 10 •<br />

10<br />

Z<br />

•<br />

•<br />

AR-5<br />

1 1<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

1000 1000<br />

AR-6<br />

'" E<br />

.... 100 100<br />

!l)<br />

0..<br />

....<br />

!l) •<br />

.D<br />

E<br />

:::l 10 10<br />

Z<br />

AR-7<br />

1 1<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

Mean Salinity (30 days)<br />

Mean Salinity (30 days)<br />

Appendix Figure D-24.<br />

Abundance distribution of the arnphipod Edotea triloba byHBMP<br />

strata and salinity. Rank abundance #57.<br />

Appendix D - Macroinfaunal Data D-55 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Polypedilum halterale<br />

1000 1000<br />

AR-2<br />

AR-3<br />

'" E<br />

... 100 100<br />

Q)<br />

c..<br />

...<br />

Q)<br />

.0<br />

E<br />

Z<br />

10<br />

:::I 10<br />

I<br />

1000<br />

I<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

AR-4<br />

1000<br />

'" E<br />

... 100<br />

Q)<br />

c..<br />

100<br />

...<br />

Q)<br />

.0<br />

E<br />

:::I<br />

Z<br />

'" E<br />

10<br />

I<br />

1000<br />

...<br />

Q) 100<br />

., •<br />

c..<br />

...<br />

Q)<br />

.0<br />

10<br />

•<br />

•<br />

AR-5<br />

I<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

AR-6<br />

1000 ~<br />

E<br />

~.<br />

:::I<br />

10 • 10 ~<br />

Z<br />

100 r<br />

.<br />

AR-7<br />

I<br />

I<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

Mean Salinity (30 days)<br />

Mean Salinity (30 days)<br />

Appendix Figure D-25.<br />

Abundance distribution of the amphipod Polypedilum halterale by<br />

HBMP strata and salinity. Rank abundance #69.<br />

Appendix D - Macroinfaunal Data D-56 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Stenoninereis martini<br />

1000 AR-2 1000 AR-3<br />

'"<br />

•<br />

E<br />

.... ...<br />

~<br />

100 ••• 100 • •<br />

0..<br />

....<br />

•<br />

~<br />

.D<br />

•<br />

E<br />

•<br />

:::l<br />

•<br />

Z 10 10<br />

'" E<br />

....<br />

1 1<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

•<br />

1000 AR-4 1000<br />

• AR-S<br />

• •<br />

••<br />

~<br />

0.. 100 100<br />

.... • ~<br />

• • •<br />

•<br />

•<br />

.D<br />

E •• • ••<br />

:::l<br />

Z 10<br />

10<br />

•<br />

•<br />

'" E<br />

....<br />

1<br />

0 5 10 15 20 25 30 0 5 lO 15 20 25 30<br />

1000 AR-6 1000 AR-7<br />

100 100<br />

~<br />

0..<br />

•<br />

....<br />

~<br />

.D<br />

E<br />

:::l<br />

Z<br />

10 10 ~<br />

1 1<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

Mean Salinity (30 days)<br />

Mean Salinity (30 days)<br />

Appendix Figure D-26.<br />

Abundance distribution of the amphipod Stenoninereis martini by<br />

HBMP strata and salinity. Rank abundance #73.<br />

Appendix D - Macroinfaunal Data D-S7 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Heteromastus liliformis<br />

1000 1000<br />

AR-2<br />

AR-3<br />

'"<br />

,<br />

E<br />

... 100 •<br />

• 100<br />


Procladius spp.<br />

1000 1000<br />

AR-2<br />

N<br />

E 100 100<br />

....<br />

a)<br />

0.<br />

....<br />

a)<br />

AR-3<br />

.0<br />

E<br />

• •<br />

::l 10 10<br />

Z<br />

1 1<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

1000 1000<br />

AR-4<br />

N<br />

E 100 100<br />

....<br />

a)<br />

0.<br />

•<br />

....<br />

a)<br />

.0<br />

E<br />

::l 10<br />

10<br />

Z<br />

•<br />

• •<br />

AR-5<br />

1 1<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

1000 1000<br />

AR-6<br />

N<br />

E<br />

.... 100 100<br />

a)<br />

•<br />

0.<br />

.... •<br />

a)<br />

.0 •<br />

E<br />

::l<br />

Z<br />

10 ~.- 10<br />

•<br />

AR-7<br />

1 1<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

Mean Salinity (30 days)<br />

Mean Salinity (30 days)<br />

Appendix Figure D-28.<br />

Abundance distribution of the amphipod Procladius spp. by<br />

HBMP strata and salinity. Rank abundance #80.<br />

Appendix D - Macroinfaunal Data D-59 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Hydrobiidae spp.<br />

1000 1000<br />

AR-2<br />

AR-3<br />

N<br />

E<br />

.... 100 100<br />

11)<br />

.... • •<br />

11)<br />

.D<br />

•<br />

E<br />

:::l 10 10<br />

• •<br />

Z<br />

0..<br />

•<br />

•<br />

N ,<br />

N<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

1000 1000<br />

AR-4<br />

• •<br />

AR-5<br />

•<br />

E<br />

.... 100 100<br />

11)<br />

0..<br />

....<br />

11)<br />

•<br />

• •<br />

.D<br />

E<br />

•<br />

:::l 10<br />

Z<br />

10 •<br />

• •<br />

1 1<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

1000 1000<br />

AR-6<br />

•<br />

E<br />

.... 100 100<br />

11)<br />

0..<br />

....<br />

11)<br />

E<br />

:::l<br />

Z<br />

.D<br />

•<br />

10 10<br />

•<br />

AR-7<br />

1 1<br />

0 5 10 15 20 25 30 0 5 10 15 20 25 30<br />

Mean Salinity (30 days)<br />

Mean Salinity (30 days)<br />

Appendix Figure D-29.<br />

Abundance distribution of the amphipod Hydrobiidae spp. by<br />

HBMP strata and salinity. Rank abundance #96.<br />

Appendix D - Macroinfaunal Data D-60 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


ApPENDIX E<br />

MOLLUSK DATA


Appendix Table E-l.<br />

Mollusk data from ponar grabs.<br />

Mollusk data from ponar grabs.<br />

Ten ponars or equivalent areas each were collected at subtidal and intertidal locations per half-kilometer.<br />

Only ponars with molluscs present are listed.<br />

Live! SubtidaU Counts Percent Median<br />

Km Taxa Dead Intertidal Rep. Count perm2 Juveniles Size (mm) Weathering<br />

0.0 Geukensia demissa granossissima D I 6 127 0 20 4<br />

0.0 Polinices duplicatus D I 4 1 21 0 22 4<br />

0.0 Crassostrea virginica L I 5 4 85 50 15 3<br />

0.0 Littorina irrorata L I 5 1 21 0 16 2<br />

0.5 Crassostrea virginica D I 5 6 127 17 22 6<br />

0.5 Geukensia demissa granossissima D I 1 10 212 30 15 7<br />

0.5 Tagelus plebe ius D I 5 2 42 50 11 5<br />

0.5 Crassostrea virginica L I 4 16 338 19 40 3<br />

0.5 Geukinsia demissa granossissima L I 1 7 148 0 17 2<br />

0.5 Littorina irrorata L I 2 2 42 50 10 3<br />

1.0 Tagelus plebe ius D I 4 1 21 0 16 7<br />

1.0 Crepidula Jornicata D S 4 2 42 100 9 4<br />

1.0 Tagelus plebeius L I 3 3 63 100 9 2<br />

1.0 Unidentifed bivalve L S 4 16 338 100 8<br />

1.5 Tagelus plebe ius D I 3 1 21 0 14 5<br />

2.0 Crassostrea virginica D I 3 10 212 10 53 5<br />

2.0 Littorina irrorata D I 1 2 42 50 12 9<br />

2.0 Littorina irrorata D I 5 1 21 100 10 6<br />

2.0 Polymesoda caroliniana D I 1 3 63 0 27 4<br />

2.0 Amygdalum papyrium D S 5 2 42 0 14 3<br />

2.0 Crassostrea virginica L I 3 38 804 45 66 4<br />

2.0 Littorina irrorata L I 4 1 21 100 10 2<br />

2.0 Littorina irrorata L I 5 8 169 0 22 2<br />

2.0 Polymesoda caroliniana L I 1 3 63 0 25 3<br />

2.0 Amygdalum papyrium L S 5 7 148 0 18 2<br />

2.5 Crassostrea virginica D I 4 16 338 63 29 6<br />

2.5 Geukensia demissa granossissima D I 2 17 360 88 12 5<br />

2.5 Geukensia demissa granossissima D I 4 2 42 100 10 6<br />

2.5 Polymesoda caroliniana D I 2 5 106 20 25 7<br />

2.5 Tagelus plebe ius D I 1 1 21 0 13 4<br />

2.5 Abra aequalis D S 3 1 21 100 10 6<br />

2.5 Haminoea succinea D S 2 3 63 100 8 4<br />

2.5 Macoma tenta D S 3 7 148 0 13 6<br />

2.5 Mulinia lateralis D S 5 2.1 44 10 3 0<br />

2.5 Unidentifed bivalve D S 1 1 21 100 10 3<br />

2.5 Crassostrea virginica L I 4 6 127 0 50 2<br />

2.5 Crassostrea virginica L I 5 22 465 18 43 3<br />

2.5 Geukensia demissa granossissima L I 2 28 592 0 40 2<br />

Appendix E - Mollusk Data E-l Mo te <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Appendix Table E-l (continued).<br />

Mollusk data from ponar grabs.<br />

Ten ponars or equivalent areas each were collected at subtidal and intertidal locations per half-kilometer.<br />

Only ponars with molluscs present are listed.<br />

Live! Subtidal! Counts Percent Median<br />

Km Taxa Dead Intertidal Re~. Count ~erm2 Juveniles Size {mm} Weathering<br />

2.5 Littorina irrorata L I 5 1 21 0 11 2<br />

2.5 Polymesoda caroliniana L I 1 16 338 0 38 3<br />

2.5 Polymesoda caroliniana L I 2 4 85 0 25 1<br />

2.5 Unidentifed bivalve L S 1 8 169 38 10 2<br />

3.0 Tagelus plebe ius D I 3 4 85 25 14 2<br />

3.0 Macoma tenta D S 2 21 0 16 5<br />

3.0 Littorina irrorata L I 4 1 21 100 9 1<br />

3.0 Littorina irrorata L I 5 5 106 0 12 2<br />

3.0 Macoma tenta L S 2 1 21 0 15 2<br />

3.5 Nassarius vibex D S 1 1 21 100 9 2<br />

3.5 Macoma tenta L S 4 85 0 13 1<br />

4.0 Crassostrea virginica D I 1 6 127 17 33 9<br />

4.0 Tellina spp. D S 3 16 338 100 8 3<br />

4.0 Littorina irrorata L I 4 1 21 0 18 2<br />

4.0 Littorina irrorata L I 5 1 21 0 22 1<br />

4.0 Polymesoda caroliniana L I 1 7 148 0 28 2<br />

4.5 Crassostrea virginica D I 4 8 169 38 22 7<br />

4.5 Mulinia lateralis D I 1 1 21 100 8 6<br />

4.5 Mysella planulata D I 1 3 63 100 8 5<br />

4.5 Polymesoda caroliniana D I 3 3 63 0 32 8<br />

4.5 Polymesoda caroliniana D I 4 18 381 89 14 5<br />

4.5 Tagelus plebe ius D I 2 8 169 50 11 4<br />

4.5 Crassostrea virginica L I 4 8 169 0 30 1<br />

4.5 Littorina irrorata L I 5 3 63 0 15 1<br />

4.5 Mulinia lateralis L I 1 13 275 100 10 1<br />

4.5 Polymesoda caroliniana L I 3 11 233 0 30 3<br />

4.5 Polymesoda caroliniana L I 4 19 402 0 35 3<br />

5.0 Polymesoda caroliniana D I 2 9 190 11 32 -99<br />

5.0 Tagelus plebe ius D I 1 4 85 0 19 5<br />

5.0 Tellina spp. D I 1 18 381 100 8 6<br />

5.0 Crassostrea virginica D S 16 338 0 66 6<br />

5.0 Geukensia demissa granossissima D S 4 1 21 0 12 4<br />

5.0 Tagelus plebeius D S 1 1 21 0 12 6<br />

5.0 Tellina spp. D S 5 2 42 100 9 5<br />

5.0 Geukensia demissa granossissima L I 3 15 317 0 43 2<br />

5.0 Geukensia demissa granossissima L I 4 6 127 0 59 2<br />

5.0 Littorina irrorata L I 5 2 42 0 16 1<br />

5.0 Polymesoda caroliniana L I 2 6 127 0 30 -99<br />

5.0 Tagelus plebeius L I 1 7 148 57 10 1<br />

5.0 Tagelus plebeius L I 2 4 85 50 10 1<br />

5.0 Crassostrea virginica L S 1 17 360 0 78 4<br />

5.5 Polymesoda caroliniana D I 5 106 0 28 6<br />

Appendix E - Mollusk Data B-2 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Appendix Table E-l (continued).<br />

Mollusk data from ponar grabs.<br />

Ten ponars or equivalent areas each were collected at subtidal and intertidal locations per half-kilometer.<br />

Only ponars with molluscs present are listed.<br />

Live! SubtidaV Counts Percent Median<br />

Km Taxa Dead Intertidal ReI!_ Count I!er m2 Juveniles Size {nun} Weathering<br />

5.5 Tagelus plebe ius D I 3 21 444 48 11 8<br />

5.5 Tellina spp. D S 3 2 42 100 8 6<br />

5.5 Crassostrea virginica L I 2 2 42 0 30 3<br />

5.5 Littorina irrorata L I 5 2 42 0 15 4<br />

5.5 Neritina usnea L I 5 1 21 0 17 2<br />

5.5 Tagelus plebeius L I 3 10 212 50 10 2<br />

6.0 Polymesoda caroliniana D I 2 16 338 0 25 5<br />

6.0 Polymesoda caroliniana D I 3 9 190 0 45 6<br />

6.0 Polymesoda caroliniana D I 4 3 63 0 30 5<br />

6.0 Neritina usnea L I 5 1 21 0 16 2<br />

6.0 Unidentifed bivalve L S 5 1 21 0 13 2<br />

6.5 Crassostrea virginica D I 4 2 42 0 19 9<br />

6.5 Crassostrea virginica D I 5 12 254 0 30 6<br />

. 6.5 Geukensia demissa granossissima D I 1 30 635 0 40 7<br />

6.5 Polymesoda caroliniana D I 3 21 444 0 34 5<br />

6.5 Geukensia demissa granossissima L I 2 63 1333 0 30 2<br />

6.5 Geukensia demissa granossissima L I 4 88 1862 0 43 2<br />

6.5 Neritina usnea L I 5 2 42 0 16 2<br />

6.5 Crassostrea virginica L S 5 8 169 0 44 2<br />

7.0 Polymesoda caroliniana D I 2 1 21 0 46 7<br />

7.0 Crassostrea virginica L I 4 1 21 0 38 3<br />

7.0 Neritina usnea L I 5 4 85 25 30 2<br />

7.0 Polymesoda caroliniana L I 5 4 85 0 57 4<br />

7.5 Neritina usnea D I 4 1 21 100 10 9<br />

7.5 Polymesoda caroliniana D I 2 1 21 0 27 8<br />

7.5 Unidentifed bivalve D I 1 7 148 100 9 9<br />

7.5 Crassostrea virginica L I 4 2 42 0 44 1<br />

7.5 Neritina usnea L I 5 4 85 50 23 4<br />

7.5 Polymesoda caroliniana L I 1 6 127 0 40 3<br />

7.5 Polymesoda caroliniana L I 3 14 296 0 36 3<br />

7.5 Polymesoda caroliniana L I 4 9 190 0 41 4<br />

7.5 Tagelus plebe ius L S 5 3 63 100 9 1<br />

8.0 Mytilopsis leucophaeata D I 3 2 42 0 16 8<br />

8.0 Polymesoda caroliniana D I 1 2 42 0 25 6<br />

8.0 Polymesoda caroliniana D I 2 2 42 0 30 6<br />

8.0 Polymesoda caroliniana D I 3 9 190 0 27 7<br />

8.0 Polymesoda caroliniana D I 4 7 148 0 42 6<br />

8.0 Neritina usnea L I 5 3 63 0 19 2<br />

8.0 Polymesoda caroliniana L I 1 6 127 0 38 2<br />

8.0 Polymesoda caroliniana L I 2 14 296 0 44 2<br />

8.0 Polymesoda caroliniana L I 3 3 63 0 40 3<br />

8.0 Polymesoda caroliniana L I 4 4 85 0 49 5<br />

8.5 Mysella planulata D I 4 60 1269 100 8 8<br />

Appendix E - Mollusk Data E-3 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Appendix Table E-l (continued).<br />

Mollusk data from ponar grabs.<br />

Ten ponars or equivalent areas each were collected at subtidal and intertidal locations per half-kilometer.<br />

Only ponars with molluscs present are listed.<br />

Live! SubtidaV Counts Percent Median<br />

Km Taxa Dead Intertidal Re~. Count ~erm2 Juveniles Size (mm} Weathering<br />

8.5 Mytilopsis leucophaeata D I 1 22 465 50 10 8<br />

8.5 Mytilopsis leucophaeata D I 2 60 1269 0 12 9<br />

8.5 Polymesoda caroliniana D I 3 4 85 0 35 7<br />

8.5 Corbicula fluminea D S 2 1 21 0 12 7<br />

8.5 Corbicula fluminea D S 3 1 21 0 10 8<br />

8.5 Mytilopsis leucophaeata D S 1 8 169 0 13 8<br />

8.5 Mytilopsis leucophaeata D S 2 4 85 0 11 6<br />

8.5 Neritina usnea L I 5 11 233 0 15 1<br />

8.5 Polymesoda caroliniana L I 1 4 85 0 56 4<br />

8.5 Polymesoda caroliniana L I 3 1 21 0 38 5<br />

8.5 Mysella planulata L S 1 16 338 100 7<br />

8.5 Mysella planulata L S 2 1 21 100 6<br />

9.0 Mytilopsis leucophaeata D S 3 17 360 100 8 5<br />

9.0 Mytilopsis leucophaeata L S 3 2 42 100 9 1<br />

9.5 Mytilopsis leucophaeata D I 2 8 169 25 11 5<br />

9.5 Mytilopsis leucophaeata D I 3 22 465 32 12 4<br />

9.5 Mytilopsis leucophaeata D I 5 3 63 0 14 8<br />

9.5 Corbicula fluminea D S 3 1 21 0 10 7<br />

9.5 Mytilopsis leucophaeata D S 2 3 63 0 12 8<br />

9.5 Neritina usnea L I 5 4 85 0 16 3<br />

9.5 Mytilopsis leucophaeata L S 2 25 529 0 10 4<br />

10.0 Neritina usnea D I 5 3 63 0 15 6<br />

10.0 Polymesoda caroliniana D I 1 11 233 0 40 7<br />

10.0 Mytilopsis leucophaeata D S 1 5 106 100 6 8<br />

10.0 Mytilopsis leucophaeata D S 2 20 423 0 0 0<br />

10.0 Mytilopsis leucophaeata D S 3 1 21 0 0 0<br />

10.0 Mytilopsis leucophaeata D S 4 3 63 0 0 0<br />

10.0 Neritina usnea L I 5 1 21 0 20 4<br />

10.0 Polymesoda caroliniana L I 1 6 127 0 55 3<br />

10.5 Corbicula fluminea D I 4 1 21 0 14 6<br />

10.5 Mytilopsis leucophaeata D S 1 70 1481 100 8 6<br />

10.5 Mytilopsis leucophaeata D S 2 230 4866 100 7 3<br />

10.5 Mytilopsis leucophaeata D S 3 3 63 0 14 9<br />

10.5 Neritina usnea L I 5 3 63 0 20 2<br />

11.0 Corbicula fluminea D S 3 1 21 0 14 7<br />

11.0 Mulinia lateralis D S 4 6 127 100 4 5<br />

11.0 Mytilopsis leucophaeata D S 1 140 2962 100 8 2<br />

11.0 Mytilopsis leucophaeata D S 2 3 63 100 5 8<br />

11.0 Neritina usnea L I 5 6 127 0 19 4<br />

11.5 Neritina usnea D I 4 1 21 0 22 4<br />

11.5 Neritina usnea L I 5 2 42 0 26 2<br />

12.0 No catch<br />

12.5 Corbicula fluminea L S 2 1 21 0 18 6<br />

Appendix E - Mollusk Data E-4 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Appendix Table E-l (continued).<br />

Mollusk data from ponar grabs.<br />

Ten ponars or equivalent areas each were collected at subtidal and intertidal locations per half-kilometer.<br />

Only ponars with molluscs present are listed.<br />

Live! Subtidall Counts Percent Median<br />

Km Taxa Dead Intertidal ReI!_ Count I!er m2 Juveniles Size (nun} Weathering<br />

12.5 Corbicula fluminea L S 3 1 21 0 18 7<br />

12.5 Corbicula fluminea L S 4 2 42 0 16 7<br />

l3.0 Corbicula fluminea D S 1 4 85 0 14 7<br />

13.5 Corbicula fluminea D S 4 3 63 0 18 7<br />

l3.5 Co rbicula fluminea D S 5 2 42 0 12 5<br />

14.0 Corbicula fluminea D S 1 3 63 0 14 7<br />

14.0 Corbicula fluminea D S 2 2 42 0 11 7<br />

14.5 Corbicula fluminea D S 3 21 0 14 6<br />

14.5 Corbicula fluminea D S 4 21 0 12 6<br />

14.5 Corbicula fluminea D S 5 21 0 14 8<br />

15.0 Corbicula fluminea D I 1 1 21 100 10 9<br />

15.0 Mytilopsis leucophaeata D I 1 1 21 100 10 9<br />

15.0 Corbicula fluminea D S 3 2 42 0 20 7<br />

15.0 Corbicula fluminea D S 4 2 42 0 20 6<br />

15.0 Unid. p1anospira1 gast. L I 4 1 21 0 8 9<br />

15.5 Mytilopsis leucophaeata D I 5 3 63 100 8 9<br />

16.0 No catch<br />

16.5 Corbicula fluminea D I 4 1 21 0 18 8<br />

16.5 Corbicula fluminea D S 1 2 42 0 12 6<br />

16.5 Corbicula fluminea D S 2 2 42 0 15 7<br />

17.5 Corbicula fluminea D S 4 1 21 0 10 8<br />

17.0 No catch<br />

18.0 Corbicula fluminea D S 3 1 21 0 14 7<br />

18.0 Corbicula fluminea L S 2 21 0 12 2<br />

Appendix E - Mollusk Data E-5 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


ApPENDIX F<br />

SALINITY REQUIREMENTS OF AMERICAN<br />

OYSTERS, CRASSOSTREA VIRGINICA


Published Salinity Requirements of American Oysters,<br />

Crassostrea virginica Gmelin, in Relation to Alafia River<br />

Minimum Flows and Levels<br />

Oysters once occurred in sufficient quantities to form a mineral resource of at least 33 million tons<br />

of harvestable shell in the geologic strata underlying Tampa Bay (Simon et ai., 1976) and such<br />

formations may be or may have been present in or near the mouth of the Alafia River. Historically,<br />

oysters were probably present in abundance within certain sections of the river, but cartographic<br />

analyses of the type conducted by Stevely et al. (2003) for Little Sarasota Bay have yet to be made<br />

in the Alafia.<br />

Insights from the General Literature<br />

Oyster literature is abundant (see Joyce 1972) but must be used with care when attempting to transfer<br />

salinity or other environmental limits determined from diverse estuarine settings to a particular<br />

venue, especially when the new venue falls beyond the geographic range of studied systems. The<br />

following insights are taken from the literature at large, adapted in part from Estevez and Marshall<br />

(1993).<br />

Oysters are immobile, after a larval stage, and are therefore subject to the permanent effects of<br />

salinity changes due to alterations of riverine inflow, ocean influence, or circulation. Low riverine<br />

flows of short duration result in high salinities in Apalachicola Bay and result in increased predation<br />

on newly settled spat; population sizes of adult, harvestable oysters are reduced two and three years<br />

later (Wilber, 1992). Wilber found little evidence that high flows of short duration (::; 30 days)<br />

adversely affected oyster harvests for the same or subsequent years. Her analyses were based on<br />

river flow data (kept by the Northwest Florida Water Management District) and oyster harvest data<br />

from 1960 to 1981.<br />

Oysters can avoid predation by tolerating salinity fluctuations that their natural predators cannot<br />

tolerate (Gunter, 1955). Low salinities kill oyster drills and starfish (Sellers and Stanley, 1984).<br />

Maintenance of salinities within ranges above the lower tolerance limits of oyster predators usually<br />

results in major declines in oyster abundance (Allen and Turner, 1989). Ortega and Sutherland<br />

(1992) found adequate spat settlement in both low salinity « 15.0 ppt) and high salinity (> 20.0 ppt)<br />

reaches ofParnlico and Core Sounds, North Carolina: algal turfs and poor sediment inhibited growth<br />

in low salinity areas and competition by fouling organisms retarded success in high salinity areas.<br />

Salinity requirements of Crassostrea virginica are reviewed in Sellers and Stanley (1984). Adult<br />

oysters tolerate a salinity range of 5.0 to 30.0 parts per thousand (ppt). They do best within a salinity<br />

range of 10.0 to 28.0 ppt (Loosanoff 1965a). Salinities below 7.5 ppt inhibit spawning. Maximum<br />

larval growth and survival occur above salinities of 12.5 ppt and maximum spat growth occurs<br />

between 15.0 and 20.0 ppt.<br />

Appendix F- Oyster Salinity Requirements F-l <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Oysters can tolerate salinities as low as 6.0 ppt for 14 days and 3.0 ppt for up to 30 days (Loosanoff<br />

1965b). Galtsoff (1964) stated that oysters living at salinities less than 10 ppt will be killed by fresh<br />

waters that persist for "several weeks." When flood conditions persist for 30 days or more oyster<br />

mortalities typically reach 100% (Allen and Turner, 1989). Sellers and Stanley (1984) reported<br />

major oyster mortalities in several areas that were affected by major floods when salinities remained<br />

below 2.0 ppt for extended periods.<br />

On Louisiana's state seed grounds Chatry et al. (1983) found that salinity in the setting year is the<br />

prime determining factor for the production of seed oysters. Both high and low salinities resulted<br />

in poor seed production. Low salinities resulted in poor gonadal development (see Galtsoff (1964)<br />

and insufficient setting while the negative effects of high salinities were believed due to the effects<br />

of predation on oyster spat. The maintenance of optimum setting salinities was most critical from<br />

May through September. To optimize Louisiana spat production, Chatry et al. recommended May<br />

salinities between 6.0 to 8.0 ppt; salinities should average 13.0 ppt in June and July and not increase<br />

to greater than 15.0 ppt until late August, and September salinities should not average more than 20.0<br />

ppt.<br />

In the Loxahatchee River, <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> (1990) determined that the mean size of the<br />

largest oysters among 15 oyster clumps per station was greatest where surface salinity was<br />

approximately 15.0 ppt and the standard deviation about the mean was at its greatest in the River,<br />

about 7.0 ppt. On the Florida west coast, Dawson (1955) found that oyster production near Crystal<br />

River was high along a marsh-dominated coast with salinity averaging between 10.0 and 20.0 ppt.<br />

Salinity ranged from 0.0 to 28.0 ppt across all stations.<br />

Habitat Suitability Models<br />

Habitat suitability index models specify the fitness of environmental attributes using unit-less<br />

metrics ranging from 0.0 (unfit; lethal) to 1.0 (ideal; optimal). HSI models for oyster were first<br />

proposed by Galtsoff (1964) but no salinity evaluations were made. Cake (1983) developed an HSI<br />

model for oysters with two salinity metrics, mean summer salinity (for larvae), and historic mean<br />

water salinity (for adults, seed, and spat). An HSI value of 0.0 was assigned to mean summer water<br />

salinities less than 5.0 ppt and greater than 40 ppt. Optimal values were assigned mean summer<br />

salinity in the 10-30 ppt range. "Historic" mean water salinity was not defined operationally, but<br />

index values resemble mean summer salinity values with ideal conditions constrained to 10-20 ppt.<br />

Cake (1983) also created an HSI for time intervals between killing floods. Annual or more frequent<br />

floods had index values of zero; a recurrence interval of 3 years or more was considered optimal.<br />

Cake's models were subsequently validated by Soniat and Brody (1988).<br />

Rodgers (2001) developed an HSI model for oysters of Mobile Bay. The model had sub-models for<br />

food-availability, disease, current scouring, and predation. No salinity model was developed for<br />

oysters per se, but a salinity range of 10-20 ppt was considered best for disease (Perkinsus marinus,<br />

or Dermo) resistance, and salinities lower than 15 ppt were considered best for predator avoidance.<br />

Appendix F- Oyster Salinity Requirements F-2 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Recent Florida Studies<br />

One interesting development reported by Stevely et aI. (2003) is east-coast work by the University<br />

of Central Florida on the effects of boat wakes on oyster reef development (Walters et aI., 2003).<br />

There seems to be a retreat of oysters from areas of heightened wave energy (by wakes) to mainland<br />

or island edges of lagoons and bays. This phenomenon may be occurring in Little Sarasota Bay<br />

(Stevely et aI., 2003) and deserves to be evaluated in the Alafia River.<br />

Ongoing work by Florida Gulf Coast University, on oysters near the mouth of the Caloosahatchee<br />

River, provides some nearby insight to the role of salinity and salinity-mediated processes on reefs.<br />

Chamberlain (2003) evaluated a report by Volety et aI. (2003) and wrote:<br />

"Survival of oyster adults and juveniles were evaluated by Volety et aI. (2003) in the lab and field,<br />

as well as oyster health, the prevalence and intensity of disease, and oyster recruitment<br />

success. The results were compared to environmental factors, including salinity and<br />

freshwater flow from S-79. Oysters grow best at a salinity of 14 to 28 parts per thousand<br />

(ppt). Infection by the oyster pathogen, Perkinsus marinus, increases during higher salinity<br />

and temperature. Field studies during this research determined that the prevalence of<br />

infection was high, but disease intensity was low, because temperature and salinity act<br />

antagonistically (i.e., high summer temperature occurs during the wet season and lower<br />

salinity). Therefore, freshwater releases to diminish Perkinsus marinus is generally not<br />

advised during warm summer months because of the potential threat to oyster populations<br />

from further lowering salinity."<br />

"The greatest growth and recruitment occurs during the wet season, but slower growth, poor spat<br />

production, and excessive valve closure occurs at salinities below 14 ppt. During their study,<br />

salinity conditions were best suited for oyster growth just upstream of Shell Point. However,<br />

this upstream area is also the most vulnerable to high mortality when large releases cause<br />

salinity to fall below threshold tolerance, sometimes for prolonged periods. The Volety et aI.<br />

(2003) report suggests, "that while adult oysters are tolerant, salinities of 5 ppt or lower will<br />

result in > 95% mortality of juvenile oysters." High juvenile mortality can occur when<br />

exposed to this salinity for just a week. Experimental results indicate that adults are able to<br />

tolerate salinities as low as 5 ppt up to 8 weeks, but can not tolerate salinities lower than 3<br />

ppt, which can occur upstream of Shell Point when S-79 discharges exceed 4,000 cfs.<br />

Therefore, high discharges can limit population survival and abundance in this region where<br />

they were historically present. As a restoration note, Volety et aI. (2003) indicated that<br />

because of high spat recruitment at intermediate salinities, along with good growth rates and<br />

low disease, it is very feasible to develop oyster reefs upstream of Shell Point by strategically<br />

placing oyster clutch in suitable areas, if provided the ability to control current [high]<br />

freshwater inflows."<br />

Appendix F- Oyster Salinity Requirements F-3 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


"Oysters in southwest Florida spawn continuously, with peak recruitment (spat settlement) occurring<br />

during May to November. Recruitment near Shell Point and possibly upstream begins to peak<br />

in March, a full 3 months earlier than in San Carlos Bay, thus making these newly settled<br />

juveniles vulnerable to large releases from S-79, which has often occurred during this period<br />

to regulate Lake Okeechobee water level for flood protection. Large freshwater flows at this<br />

time and during the summer also exposes oyster larvae to lethal low salinities, or flush the<br />

larvae to more downstream locations where there may not be suitable substrate for<br />

settlement. "<br />

"In their conclusions, Volety et al. (2003) recommended freshwater inflows for the protection and<br />

enhancement of oyster recruitment and survival around Shell Point and San Carlos Bay,<br />

which are consistent with the flows outlined above for SAV. "Flows between 500 and 2000<br />

cfs would result in salinities of 16-28 ppt at all stations, conditions that are favorable to<br />

sustain and enhance oyster populations in the Caloosahatchee Estuary."<br />

Chamberlain (2003) proposed performance measures for the Caloosahatchee River including one<br />

for oysters, "Maintain salinity at Piney Point > 5 ppt, so that conditions are supportive for the<br />

recruitment, survival, and growth of juvenile oysters upstream of Shell Point during March­<br />

October."<br />

Application<br />

The literature reviewed above can be summarized with respect to salinity values associated with<br />

favorable and unfavorable conditions for oysters by developmental stage, diseases, and predators:<br />

SALINITY, PPT<br />

Low "A verage Range" High<br />

Adults 5.0 10.0-20.0 30.0<br />

10.0-28.0<br />

14.0-28.0<br />

16.0-28.0<br />

Spawning 7.5<br />

Larvae 10.0 >12.5 30.0<br />

Spat 5.0 15.0-20.0 20.0<br />

6.0-8.0<br />

Disease Avoidance 10.0-20.0<br />

Predator A voidance 20.0<br />

Appendix F- Oyster Salinity Requirements F-4 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


The literature tends to agree with respect to the effects of low salinity and favorable salinity ranges<br />

for adult oysters over a broad geographic range. Given the nature of historic management problems<br />

facing oysters, of freshets and low salinity stress, less information is available on the high-salinity<br />

limits that tend to be associated with minimum flow and level assessments.<br />

Provisional guidance for managing Alafia River flows and salinities for oysters includes these<br />

criteria:<br />

Assessment<br />

1. Salinities in areas where oyster bars are desired can be allowed to fluctuate broadly<br />

between 10.0 to 28.0 ppt, but these areas should possess strong longitudinal salinity<br />

gradients and mixing.<br />

2. Lower salinities can be briefly tolerated by adult oysters. Salinities less than 6.0 ppt<br />

should not be caused to persist longer than two weeks, nor should salinities lower<br />

than 2.0 ppt be caused for longer than a week.<br />

3. To protect recruitment, salinity during local spawning seasons should be above 10.0<br />

ppt. Optimal larval and spat growth and survival can be obtained in salinities<br />

between 12.5 and 20.0 ppt.<br />

4. Within the river area with maximum actual or desired reef development, maximum<br />

salinity values greater than 28.0 to 30.0 ppt should not be caused.<br />

The present-day salinity regime of the tidal Alafia River is suitable for oyster growth and reef<br />

development. Despite a catastrophic acid spill the river supports a number of live reefs centered on<br />

river-kilometers 2.0 to 4.0. As shown previously, large individual oysters occur throughout this<br />

range and the largest occur near the middle of the reef range. No additional data are presently<br />

available on the condition of individual oysters or oyster reefs, sensu Volety et al. (2003), but in<br />

general aspect the river appears capable of sustaining its existing oyster resource. Expansion of the<br />

resource may occur as time diminishes the acid spill's effects, if any indeed occurred.<br />

Alafia River oysters would not be safe to eat but they could serve to demonstrate the maintenance<br />

of MFL salinity criteria, once established. Oysters also accumulate a wide array of pollutants and<br />

are useful as indicator species. More importantly, oyster reefs are an important habitat for a wide<br />

variety of associated organisms. Small crabs, fish, shrimp, sponges, other mollusks, and numerous<br />

polychaete species are all typical inhabitants of healthy oyster reef communities (Bahr and Lanier,<br />

1981). An increase of oyster habitat in the tidal reaches of the Alafia River would increase the<br />

River's overall levels of biodiversity and productivity.<br />

Appendix F- Oyster Salinity Requirements F-5 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


Provisional oyster guidance should be useful as the MFL process enters its synthetic phase, of<br />

integrating physical, chemical and biological data for multi-objective optimization. The behavior<br />

of salinity under various flow scenarios should remain the primary focus for oyster protection and<br />

enhancement. As morphological data, salinity regressions, and water quality data summaries become<br />

available it will be useful to include these in the next generation of oyster assessments, especially<br />

with regard to present or future limitations caused by the availability of suitable substratum, or water<br />

quality.<br />

Water quality factors may already contribute to the regulation of Alafia River oyster populations.<br />

High levels of nutrients, primary production, harmful algal blooms, and sediment oxygen demand<br />

are known to lower dissolved oxygen (D.O.) levels in the river. Low D.O., in turn, has the potential<br />

to impact larval, juvenile, and adult oysters. Low D.O. and salinity stress may act synergistically to<br />

kill all but the most hardy adults, and may explain the paucity of subtidal reefs in the tidal river.<br />

Appendix F- Oyster Salinity Requirements F-6 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


REFERENCES


REFERENCES<br />

Bahr, L.M. and W.P. Lanier (1981). The ecology of intertidal oyster reefs of the South Atlantic<br />

coast: a community profile. U.S. Fish and Wildlife Service, Office of Biological Services,<br />

Washington, D.C. FWS/OBS-81115. 105 pp.<br />

Cake, E.W. Jr. 1983. Habitat suitability index models: Gulf of Mexico American oyster. U.S. Fish<br />

and Wildlife Service OBS-82110.57. 37 p.<br />

Chamberlain, R. 2003. Freshwater Inflow Performance Measures: S-79, Shell Point, and San Carlos<br />

Bay. South Florida Water Management District, West Palm Beach.<br />

Chatry, M., R.J. Dugas, and K.A. Easley. 1983. Optimum salinity regime for oyster production on<br />

Louisiana's state seed grounds. Contrib. Mar. Sci. 26: 81-94.<br />

Dawson, C.E. 1955. A study of the oyster biology and hydrography at Crystal River, Florida.<br />

Contrib. Inst. Mar. Sci. Univ. Texas 4(1): 279-302.<br />

Estevez, E.D. and M.J. Marshall. 1993. Sebastian River Salinity Regime, Parts III and IV:<br />

Recommended Targets. <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> Technical Report Number 308.<br />

Galtsoff, P.S. 1964. The American Oyster, Crassostrea virginica Gme1in. Fishery Bulletin 64.<br />

U.S. Fish and Wildlife Service. 480 pp<br />

Gunter, G. 1955. Mortality of oysters and abundance of certain associates as related to salinity.<br />

Eco!. 36:601-605.<br />

Joyce, E.A. Jr. 1972. A partial bibliography of oysters, with annotations. Florida DNR <strong>Marine</strong><br />

Research <strong>Laboratory</strong> Special Scientific Report No. 34. 846 p.<br />

Loosanoff, V.L. 1965(a). The American or eastern oyster. U.S. Fish. Wildlife Servo Circ. 205.<br />

36 pp.<br />

Loosanoff, V.L. 1965(b). Gonad development and discharge of spawn in oysters of Long Island<br />

Sound. Bio!. Bull. 129:546-561.<br />

Luckenbach, M.W., R. Mann, and J.A. Wesson (eds.) 1999. Oyster reef habitat restoration: a<br />

synopsis and synthesis of approaches. Proceedings from the 1995 Symposium in<br />

Williamsburg Virginia. VIMS Press. 366 p.<br />

References 1 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003


<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong>, 1990. Environmental Studies of the Tidal Loxahatchee River. <strong>Mote</strong><br />

<strong>Marine</strong> <strong>Laboratory</strong> Technical Report No. 181, submitted to Jupiter Inlet Navigation District<br />

and LAW Environmental, Inc.<br />

Sellers, M.A and J .G. Stanley. 1984. Species profiles: life histories and environmental requirements<br />

of coastal fishes and invertebrates (North Atlantic) -- American oyster. U. S. Fish Wildl. Serv.<br />

FWS/OBS-82111.23. U.S. Army Corps of Engineers, TR EL--82-4. 15pp.<br />

Simon, J.L., L.J. Doyle and W.G. Conner. 1976. Environmental impact of oyster shell dredging in<br />

Tampa Bay, Florida. University of South Florida report to Florida Department of<br />

Environmental Regulation. 104 p.<br />

Soniat, T.M. and M.S. Brody. 1998. Field validation of a habitat suitability index model for the<br />

American oyster. Estuaries 11(2): 87-95.<br />

Stevely, J., D. Fann and G.A Antonini. 2003. (Abstract) A historical perspective for determining<br />

changes in the distribution of oyster habitats in southwest Florida using archived maps and<br />

charts of federal agencies. Submerged Aquatic Habitat Restoration in Estuaries" Issues,<br />

Options and Priorities, a workshop sponsored by the Tampa Bay Estuary Program. Held at<br />

<strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> March 11-13,2003.<br />

Volety, AK., S. G. Tolley, and J. T. Winstead. 2003. Effects of seasonal and water quality parameters<br />

on oysters (Crassostrea virginica) and associated fish populations in the Caloosahatchee<br />

River: Final contract report (C-12412) to the South Florida Water Management District.<br />

Florida Gulf Coast University, Ft. Myers, Florida.<br />

Walters, L., P. Sacks, L. Wall, J. Grevert, D. Leeune, S. Fischer, and A Simpson. 2003. (Abstract)<br />

Declining intertidal oyster reefs in Florida: direct and indirect impacts of boat wakes. Florida<br />

Academy of Sciences 2003 Annual Meeting Program Issue, March 21-22, University of<br />

Central Florida.<br />

Wilber, D. 1992. Associations between freshwater inflows and oyster productivity in Apalachicola<br />

Bay, Florida. Est .. Coast. Shelf Sci. 35:179-190.<br />

References 2 <strong>Mote</strong> <strong>Marine</strong> <strong>Laboratory</strong> - June 2003

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!