07.11.2014 Views

In Situ Rumen Degradability Methods - Department of Animal ...

In Situ Rumen Degradability Methods - Department of Animal ...

In Situ Rumen Degradability Methods - Department of Animal ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>In</strong> <strong>Situ</strong> <strong>Rumen</strong><br />

<strong>Degradability</strong> <strong>Methods</strong><br />

Dr Gbola Adesogan<br />

,<br />

<strong>Department</strong> <strong>of</strong> <strong>Animal</strong> Sciences,<br />

University <strong>of</strong> Florida


<strong>In</strong> situ rumen degradability (ISD)<br />

Determines the disappearance <strong>of</strong> feeds incubated in<br />

a porous bag within the rumen<br />

Measures degradability (≠ digestibility)<br />

(digested feeds > pore size not considered degraded)<br />

Estimates the extent & rate <strong>of</strong> degradation<br />

Basis <strong>of</strong> formulating rations to meet protein<br />

requirements <strong>of</strong> livestock in many countries


<strong>In</strong> situ degradability graph<br />

<strong>Degradability</strong> (g/kg)<br />

c<br />

b<br />

a<br />

0<br />

12 24 36 48 72<br />

Time (h)


<strong>In</strong> situ degradability calculations<br />

<strong>Degradability</strong> = a + b ( 1 – e ct )<br />

a= zero time intercept<br />

b = slowly degradable fraction<br />

c = degradation rate<br />

t = time<br />

To account for feed outflow from rumen, (which reduces<br />

the actual rumen degradability ) we use<br />

‘Effective’ degradability = p =a+(b x c)/ (c+k p )<br />

Where k p = rate <strong>of</strong> passage (%/h)


When a, b & c values are generated<br />

for protein dissappearance:<br />

RDP = a + b (c/c+k<br />

)<br />

p<br />

UDP = b [k p / (c + kp)]<br />

a, % b, % c, /h<br />

Fishmeal 13 77 0.01<br />

Ryegrass silage 63 26 0.14<br />

Soybean meal 8 90 0.11<br />

Calculate the RDP and UDP for these feeds


Accuracy (r 2 ) <strong>of</strong> predicting<br />

digestibility & intake from ISD<br />

Factors Digestibility DM intake<br />

a + b 0.82 0.77<br />

(a+b) + c 0.86 0.88<br />

(Khazaal et al., 1993)


N degradability<br />

N degradability<br />

0.8<br />

0.6<br />

Grass silage<br />

hay<br />

Differences in the N<br />

degradability & a and<br />

b fractions <strong>of</strong> feeds<br />

0.4<br />

0.2<br />

Urea<br />

0<br />

12 24 36<br />

Time (h)<br />

48<br />

0.8<br />

Soyabean meal<br />

0.6<br />

fishmeal<br />

0.4<br />

0.2<br />

0<br />

12 24 36<br />

Time (h)<br />

48


Benefits <strong>of</strong> knowing feed N<br />

degradability<br />

Allows partitioning <strong>of</strong> protein sources according to<br />

whether they contain predomininantly:<br />

1. <strong>Rumen</strong> degradable protein (RDP)<br />

E.g. soybean meal, alfalfa,<br />

2. Undegradable protein (RUP or UDP)<br />

E.g Fish meal, bone meal,


Benefits <strong>of</strong> knowing the N<br />

degradation <strong>of</strong> feeds<br />

Allows UDP supplementation at high performance levels<br />

Allows formulation <strong>of</strong> diets to ensure synchronous<br />

ruminal supply <strong>of</strong> energy and protein<br />

1. Feed readily degradable N feeds with readily<br />

fermentable energy sources e.g.<br />

• Soybean meal and grass silage<br />

2. Feed undegradable N feeds with feeds high in slowly<br />

fermentable energy e.g<br />

• Hay / maize silage and fishmeal


Factors affecting degradability results<br />

Host animal spp & diet.<br />

Sample processing<br />

Particle size / form / fine particle losses<br />

Sample size to surface bag area ratio<br />

Bag pore size<br />

Data modelling<br />

Microbial N contamination <strong>of</strong> bags<br />

<strong>In</strong>cubation sequence


DM disappearance (%)<br />

DM disappearance<br />

(%)<br />

Effect <strong>of</strong> host animal on wheat silage<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

s<br />

c<br />

cs<br />

degradation<br />

Effect <strong>of</strong> animal spp. on rumen degradability<br />

80<br />

in WCW<br />

c<br />

c<br />

75<br />

c<br />

c<br />

s<br />

s<br />

s<br />

70 c s s s<br />

c<br />

65 c<br />

c c= cow<br />

60 s<br />

cs<br />

s<br />

55<br />

c<br />

s=sheep<br />

s<br />

50 cs<br />

s<br />

c<br />

45<br />

40<br />

0 20 0 4020 4060 60 80 80 100 100<br />

(Adesogan et al., 1998)<br />

Time (h)<br />

Time (h)<br />

Host animal should be identical to those that will<br />

receive the test feed


Host animal diet<br />

Determines ruminal microbial composition<br />

Recommendations<br />

– Ensure diet is balanced<br />

– Feed it at level that supports target production level<br />

– Ensure diet & test feed are ……………………….


Sample size to bag surface ratio<br />

Overfilling bags<br />

– Delays bacterial attachment & reduces. digestion<br />

Underfilling bags<br />

– May leave insufficient residue for analysis<br />

Ideal ratio<br />

= 10 – 15 mg/cm 2 <strong>of</strong> bag surface area<br />

Note : Count both bag sides (leave room for seal)<br />

e.g 4 g <strong>of</strong> DM weighed into an 8 x 14 cm bag = 4000<br />

mg/224cm 2 = 17.9 mg/cm 2


Pore size<br />

Varied sizes in literature (< 15 µm to 52 µm) due to:<br />

Conflicting aims:<br />

– Maximising bacterial colonization & fluid ingress<br />

– Minimizing loss <strong>of</strong> undigested substrates<br />

Implications<br />

– Variable particulate losses<br />

– Pressure build up which decreases<br />

digestibility.


Effect <strong>of</strong> washing procedure<br />

Forage type<br />

Parameter<br />

Washing procedure<br />

Machine<br />

Manual<br />

Corn silage a 0.48 0.16<br />

“ p 0.79 0.47<br />

Grass silage a 0.31 0.16<br />

“ p 0.62 0.47<br />

Implication: concentrates, starch-rich feeds are susceptible to<br />

fine particle losses which overestimate degradability


Microbial N contamination <strong>of</strong> bags<br />

Underestimates degradability in low N, high fiber<br />

feeds (can be up to 25%<br />

Less important in concentrates (< 10%) high in CP<br />

Causes erroneous lag and rate estimates<br />

Solution : remove microbes by<br />

• Thorough washing / Dip in ice<br />

• DAPA / nucleic acids<br />

• Correction equations<br />

• Sonication / Stomaching


Cloth type & weave pattern<br />

Mon<strong>of</strong>ilamentous vs. multifilamentous<br />

<strong>In</strong> mon<strong>of</strong>ilamentous mesh types, pore sizes are more<br />

prone be rearranged by stresses<br />

Polyester fabric is preferable to dacron


<strong>In</strong> situ method - Summary<br />

Biologically it is the most meaningful & accurate method for<br />

estimating kinetics <strong>of</strong> digestion<br />

However<br />

Difficult to standardize & laborious<br />

Has low reproducibility<br />

<strong>In</strong>accurate for soluble or small particulate feeds<br />

Requires fistulated animals<br />

Handles few samples & protracted<br />

Loss <strong>of</strong> soluble non-degradable matter<br />

<strong>In</strong>nacurate for estimating the effect <strong>of</strong> anti-nutrients


Recommend in situ procedures<br />

Diet<br />

Feeding level<br />

Bag material & pore size<br />

60:40 hay:concentrate<br />

Maintenance<br />

Polyester, 40 -60 μm<br />

Sample size: bag area 10-15 mg/cm 2<br />

Particle size<br />

No. <strong>of</strong> replicate animals > 2<br />

<strong>In</strong>cubation sequence<br />

Microbial correction<br />

> 2 mm<br />

All in, sequential removal<br />

(with machine washing)<br />

Yes, if detectable<br />

(Broderick & Cochran, 2000)


Other degradability methods<br />

contd.<br />

<strong>In</strong>cubation in rumen fluid<br />

– Labour intensive<br />

– <strong>In</strong>volves animal experimentation except if rumen fluid<br />

sourced from abattoirs<br />

– History <strong>of</strong> abattoir rumen fluid unknown<br />

– Batch culture<br />

<strong>In</strong>cubation in<br />

– Buffers<br />

– Proteolytic enzymes


Buffer degradability methods<br />

MacDougal’s buffer solubility<br />

Burrough’s buffer solubility<br />

Saline solutions<br />

TCA precipitation<br />

Tungstic acid precipitation<br />

Cold water solubility<br />

Correlation between selected buffer methods and in situ degradability<br />

Method<br />

Burroughs buffer<br />

0.15M NaCl<br />

Autoclaved rumen fluid<br />

r<br />

0.66<br />

0.47<br />

0.54


Buffer methods - summary<br />

Pros<br />

– Simple to use<br />

– OK for ranking e.g. effect <strong>of</strong> heat treatment<br />

– OK for estimating ‘a’ fraction<br />

– OK if good relationship b/w solubility & degradability<br />

• albumin is soluble but not easily degradable<br />

• Casein is degradable but not readily soluble


Buffer methods - summary<br />

Cons<br />

– Imprecise estimates <strong>of</strong> degradability especially for forages<br />

Equations are species-specific,<br />

Precipitation methods measure true protein, yet ruminants<br />

also use NPN<br />

Do not accurately estimate degradation rates


Enzyme-based degradability<br />

Bacterial<br />

Bacteroides amyliphilus<br />

Streptomyces griseus<br />

Bacillus subtilis<br />

Plant proteases<br />

Papain & bromelain<br />

Fungal proteases<br />

Aspergillus oryzae<br />

<strong>Animal</strong> proteases<br />

Pancreatin & pepsin


<strong>In</strong>-situ versus protease degradability<br />

R 2<br />

Reference<br />

S. Griseus (n= 21) 0.79 Aufrere & Cartailler ‘88<br />

Ficin (n=38) 0.85 Kosmala et al. (1996)<br />

Bromelain (n=41) 0.53 Tomankeva et al. 1995<br />

Bromelain (n=68) 0.55 Tomankeva et al. 1995<br />

(Broderick, 1999)<br />

Little success in predicting the rate <strong>of</strong> degradation


14<br />

C-Casein hydrolysis (mg/ml)<br />

0.5 Co-culture<br />

0.0 0.25<br />

S. bovis<br />

0.0<br />

S. ruminantium<br />

10 20<br />

Time (h)<br />

Single proteases can’t fully simulate microbial<br />

activity <strong>of</strong> mixed rumen microbes


<strong>Degradability</strong> references<br />

Broderick and Cochran 2000. <strong>In</strong> vitro and in situ methods for measuring<br />

digestibility with reference to protein degradability. <strong>In</strong>: Feeding Systems<br />

and feed evaluation models. M.K. Theodorou and J. France. (Editors). CABI<br />

Publishing.<br />

Noziere, P. and Michalet-Doreau, B., 2000. <strong>In</strong> sacco methods. <strong>In</strong>: J.P.F.<br />

D'Mello (Editor), Farm animal metabolism and nutrition. CAB<br />

<strong>In</strong>ternational, Wallingford, pp. 233-254.<br />

Huntington, J.A. and Givens, D.I., 1995. The in situ technique for studying the<br />

rumen degradation <strong>of</strong> feeds: A review <strong>of</strong> the procedure. Nutrition Abstracts<br />

and Reviews (Series B), 65: 65-93.<br />

Orskov, E.R., 2000. The in situ technique for the estimation <strong>of</strong> forage<br />

degradability. <strong>In</strong>: D.I. Givens, E. Owen, R.F.E. Axford and H.M. Omed<br />

(Editors), Forage Evaluation in Ruminant Nutrition. CABI Publishing,<br />

Wallingford, UK, pp. 175-188.<br />

Orskov, E.R., Hovell, F.D.D. and Mould, F., 1980. The use <strong>of</strong> the nylon bag<br />

technique for the evaluation <strong>of</strong> feedstuffs. Tropical <strong>Animal</strong> Production, 5:<br />

195-213.<br />

Adesogan, A. T. Givens, D. I, and Owen, E. 2000. Chemical composition and<br />

Nutritive Value <strong>of</strong> Forages. Field and Laboratory <strong>Methods</strong> for Grassland<br />

and <strong>Animal</strong> Production Research (eds L t’Mannetje and R M Jones) pp 263-<br />

278. CABI Publishing. Wallingford UK

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!