07.11.2014 Views

Dynamic water quality modeling in support of a ... - PBS&J - Atkins

Dynamic water quality modeling in support of a ... - PBS&J - Atkins

Dynamic water quality modeling in support of a ... - PBS&J - Atkins

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Texas Water 2012<br />

conference program<br />

April 10 – 13<br />

Henry B. Gonzalez Convention Center<br />

San Antonio<br />

2012 Conference Schedule....4-5<br />

Conference Highlights..........8-9<br />

Competitions........................24-25<br />

Exhibitor List..........................36-44<br />

Facility Tours.................................58<br />

Gloyna Breakfast........................19<br />

Where to f<strong>in</strong>d...<br />

Guest Program............................58<br />

Special Guests................................6<br />

Host Committee.........................22<br />

Maps..........................................27-29<br />

Match the Name Game..........25<br />

Presenter Contacts.............48-52<br />

Quick Exhibitor Index.......31-34<br />

Sponsors........................................26<br />

TAWWA....................................56-57<br />

Tech Sessions Schedule...12-19<br />

WEAT.........................................54-55


TECHNICAL SESSIONS • THURSDAY MORNING, APRIL 12<br />

ROOM 203-B<br />

Moderators<br />

Roger Schenk<br />

CDM Smith<br />

Water Conservation<br />

ROOM 204-A<br />

Moderators<br />

Katie McCa<strong>in</strong><br />

Wachs Utility Service<br />

Dean Sharp<br />

Water Resources Management<br />

Utility Management<br />

& Workforce Issues<br />

ROOM 204-B<br />

Moderators<br />

Tom Ray<br />

Lockwood Andrews and Newnam<br />

Watershed Management<br />

ROOM 101-A/B<br />

Moderators<br />

Steve Fife<br />

Baytown Water Authority<br />

Operator Forum<br />

Demand Management<br />

Strategies for Tarrant<br />

Regional Water District<br />

Brian McDonald<br />

Alan Plummer Associates<br />

Mark Olson<br />

Tarrant Regional Water District<br />

Remov<strong>in</strong>g the Bl<strong>in</strong>ders: Us<strong>in</strong>g<br />

<strong>Dynamic</strong> Model<strong>in</strong>g to Promote<br />

F<strong>in</strong>ancial Susta<strong>in</strong>ability<br />

Jennifer Ivey<br />

Red Oak Consult<strong>in</strong>g<br />

Skipper Shook<br />

City <strong>of</strong> Fort Worth<br />

Watershed Management<br />

To Address Nutrient<br />

and Sediment Issues<br />

Paul Jensen<br />

Atk<strong>in</strong>s North America<br />

Ka-Leung Lee<br />

Atk<strong>in</strong>s North America<br />

David Buzan<br />

Atk<strong>in</strong>s North America<br />

Field Test<strong>in</strong>g Addresses<br />

Operations and<br />

Budget Challenges<br />

Kathy Fretwell<br />

Kennedy Jenks Consultants<br />

Aurora Gonzales<br />

Kennedy Jenks Consultants<br />

9:30 - 10:00 am<br />

Tools to Determ<strong>in</strong>e Water<br />

Sav<strong>in</strong>gs – Eng<strong>in</strong>eer<strong>in</strong>g End-Use<br />

Models vs. <strong>Dynamic</strong> Models:<br />

A Dallas Case Study<br />

Fujiang Wen<br />

Dallas Water Utilities<br />

Gett<strong>in</strong>g It Right: A Study <strong>of</strong><br />

Cost <strong>of</strong> Service Waste<strong>water</strong><br />

Treatment Allocations<br />

Skipper Shook<br />

City <strong>of</strong> Fort Worth<br />

Jennifer Ivey<br />

Red Oak Consult<strong>in</strong>g<br />

Eng<strong>in</strong>eer<strong>in</strong>g a Natural Solution<br />

to an Unnatural Challenge:<br />

Shorel<strong>in</strong>e Stabilization and<br />

Beautification on Lady<br />

Bird Lake Trail, Aust<strong>in</strong><br />

Heather Harris<br />

CH2M HILL<br />

Morgan Byars<br />

City <strong>of</strong> Aust<strong>in</strong><br />

Compar<strong>in</strong>g Solid State<br />

Water Meters to Positive<br />

Displacement Meters<br />

<strong>in</strong> Residential Services<br />

Craig Hannah<br />

Johnson Controls<br />

10:00 - 10:30 am<br />

Untapped Potential:<br />

The Effectiveness <strong>of</strong><br />

Municipally-Driven ICI<br />

Water Audit Programs<br />

Micah Reed<br />

City <strong>of</strong> Fort Worth Water Department<br />

Decision Mak<strong>in</strong>g <strong>in</strong> the Face<br />

<strong>of</strong> Risk and Uncerta<strong>in</strong>ty<br />

Jeffrey Edmonds<br />

URS Corporation<br />

Evaluation Of Water Quality Models<br />

and Development <strong>of</strong> Example<br />

EPDRiv1 and IWRS Models<br />

for San Antonio River<br />

Sheeba Thomas<br />

San Antonio River Authority<br />

Yu-Chun Su<br />

Atk<strong>in</strong>s North America<br />

X<strong>in</strong> He<br />

Atk<strong>in</strong>s North America<br />

Ka-Leung Lee<br />

Atk<strong>in</strong>s North America<br />

Cost Effective<br />

Automated Dead End<br />

Water Ma<strong>in</strong> Flush<strong>in</strong>g<br />

Aaron Russell<br />

City <strong>of</strong> Burleson<br />

10:30 - 11:00 am<br />

When the Ra<strong>in</strong> Stopped:<br />

Two Cities’ Pursuit <strong>of</strong> Water<br />

Dur<strong>in</strong>g Historic Drought<br />

Conditions <strong>in</strong> Central Texas<br />

Aaron Archer<br />

HDR Eng<strong>in</strong>eer<strong>in</strong>g<br />

Kenneth Wheeler<br />

City <strong>of</strong> Cedar Park<br />

Wayne Watts<br />

City <strong>of</strong> Leander<br />

Hir<strong>in</strong>g Texas Veterans<br />

Bryan Daye<br />

Texas Veterans Commission<br />

Effects <strong>of</strong> the<br />

2011 Drought <strong>in</strong> Texas<br />

Karl W<strong>in</strong>ters<br />

U.S. Geological Survey<br />

Gregory Stanton<br />

U.S. Geological Survey<br />

Water Supply<br />

Management Us<strong>in</strong>g<br />

AMI Technology<br />

Bernard Dunham<br />

Delta Eng<strong>in</strong>eer<strong>in</strong>g Sales<br />

11:00 - 11:30 am<br />

North Texas Demonstrates<br />

Correlation Between<br />

Public Education and<br />

Conservation Behavior<br />

Denise Hickey<br />

North Texas Municipal Water District<br />

Valerie Davis<br />

EnviroMedia Social Market<strong>in</strong>g<br />

Creat<strong>in</strong>g Your Own Workforce:<br />

City <strong>of</strong> Waco Partnership<br />

for Water Education<br />

Teresa Bryant<br />

City <strong>of</strong> Waco<br />

Jonathon Echols<br />

City <strong>of</strong> Waco<br />

<strong>Dynamic</strong> Water Quality Model<strong>in</strong>g<br />

<strong>in</strong> Support <strong>of</strong> a Watershed<br />

Protection Plan for Bastrop<br />

Bayou <strong>in</strong> Brazoria County<br />

Yu-Chun Su<br />

Atk<strong>in</strong>s North America<br />

Paul Jensen<br />

Atk<strong>in</strong>s North America<br />

Ka-Leung Lee<br />

Atk<strong>in</strong>s North America<br />

Just<strong>in</strong> Bower<br />

Houston-Galveston Area Council<br />

Operators and Eng<strong>in</strong>eers<br />

Work<strong>in</strong>g Together Provides<br />

for Project Success<br />

Jeff Sober<br />

Carollo Eng<strong>in</strong>eers<br />

John Bennett<br />

Tr<strong>in</strong>ity River Authority <strong>of</strong> Texas<br />

11:30 am - Noon<br />

www.texas-<strong>water</strong>.com 15


4/16/2012<br />

<strong>Dynamic</strong> Water Quality Model<strong>in</strong>g <strong>in</strong><br />

Support <strong>of</strong> a Watershed Protection<br />

Plan for Bastrop Bayou<br />

Atk<strong>in</strong>s: Yu‐Chun Su, PhD,PE,CFM,CPSWQ,CPESC<br />

Paul Jensen, PhD,PE,BCEE<br />

Ka‐Leung Lee, PhD,PE,CFM,CPSWQ<br />

H‐GAC: Just<strong>in</strong> Bower<br />

The Bastrop<br />

Bayou Watershed<br />

• Located on Upper<br />

Texas Coast<br />

• with<strong>in</strong> 13‐county H‐<br />

GAC Region<br />

• Dra<strong>in</strong>s to Bastrop<br />

Bay/West Bay<br />

Part <strong>of</strong> Galveston Bay<br />

system<br />

1


4/16/2012<br />

The Bastrop Bayou Watershed<br />

• Includes Bastrop Bayou<br />

(1105), and tributaries: tib t i<br />

Brushy Creek (1105E)<br />

Flores Bayou (1105A)<br />

Aust<strong>in</strong> Bayou (1105B/C<br />

• Pi Primary Land uses:<br />

Agriculture<br />

Undeveloped land<br />

Urban/suburban (limited)<br />

Project Background<br />

• Primary <strong>water</strong> <strong>quality</strong><br />

challenge is bacteria<br />

• Watershed Protection<br />

Plan began <strong>in</strong> 2006; no<br />

impairment then.<br />

• Impetus was concern<br />

about impact <strong>of</strong> future<br />

growth, public health<br />

• As <strong>of</strong> 2010 303d, Flores<br />

and Brushy Bayou<br />

impaired<br />

2


4/16/2012<br />

Project Background<br />

• Sources <strong>of</strong> Bacteria<br />

established through:<br />

SELECT <strong>model<strong>in</strong>g</strong><br />

Literature values<br />

Stakeholder <strong>in</strong>put<br />

• Primary sources<br />

Agriculture (Cattle)<br />

Pets/Urban run<strong>of</strong>f<br />

OSSFs<br />

• WPP focus on voluntary<br />

efforts/prevention<br />

Project Background<br />

• WPP was stakeholder‐based<br />

effort<br />

• Identified BMPs to reduce<br />

/prevent bacteria load<strong>in</strong>gs<br />

• EPA requires evaluation <strong>of</strong><br />

impact with monitor<strong>in</strong>g and<br />

<strong>model<strong>in</strong>g</strong>, <strong>in</strong>clud<strong>in</strong>g:<br />

Load Duration Curves<br />

SELECT<br />

Tidal Prism/EPDRIV‐1<br />

• Atk<strong>in</strong>s selected as consultant<br />

for f<strong>in</strong>al <strong>model<strong>in</strong>g</strong> effort<br />

3


4/16/2012<br />

Model<strong>in</strong>g Project Goals<br />

The goals <strong>of</strong> the EPDRIV‐1<br />

<strong>model<strong>in</strong>g</strong> effort were to<br />

evaluate:<br />

• Effect <strong>of</strong> <strong>in</strong>‐stream processes on<br />

potential bacteria loads<br />

• Tidal processes effects on<br />

contam<strong>in</strong>ant removal from the<br />

<strong>water</strong>shed.<br />

• Impact <strong>of</strong> projected load<br />

reductions from stakeholder<br />

BMPs on <strong>in</strong>dicator bacteria<br />

concentrations.<br />

Subbas<strong>in</strong>s<br />

and<br />

Monitor<strong>in</strong>g<br />

Stations <strong>in</strong><br />

Bastrop<br />

Bayou<br />

Watershed<br />

4


4/16/2012<br />

XP-SWMM Watershed Model<strong>in</strong>g<br />

EPDRIV1 Background<br />

<strong>Dynamic</strong> 1D Hydrodynamic and WQ stream/river<br />

model (not <strong>in</strong>clud<strong>in</strong>g <strong>water</strong>shed <strong>model<strong>in</strong>g</strong>)<br />

Based upon CE-QUAL-RIV1 by USACE.<br />

Developed by Lloyd Chris Wilson, Wilson<br />

Eng<strong>in</strong>eer<strong>in</strong>g<br />

Sponsored by Roy Burke III, Georgia EPD<br />

Funded by US EPA, Region IV<br />

Riv1H and Riv1Q by Robert Olson, NRE, Inc.<br />

5


4/16/2012<br />

EPDRIV1 Setup<br />

Hydrodynamic Input File<br />

WQ Input File<br />

Lateral Inflows<br />

Withdrawals/Diversions<br />

Cross Sections<br />

Boundary Conditions<br />

Meteorological<br />

6


4/16/2012<br />

EPDRIV1 Stream Network<br />

EPDRIV1 Hydrodynamic Input<br />

7


4/16/2012<br />

EPDRIV1 Variable Time Steps<br />

EPDRIV1 Lateral Inflow<br />

8


4/16/2012<br />

EPDRIV1 WQ Constituents<br />

EPDRIV1 WQ Parameters<br />

9


4/16/2012<br />

EPDRIV1 WQ Parameters at XS<br />

10


4/16/2012<br />

11


4/16/2012<br />

12


4/16/2012<br />

13


4/16/2012<br />

Future Conditions<br />

Population to <strong>in</strong>crease by 50% with<strong>in</strong> the next 30<br />

years<br />

Increase impervious cover <strong>in</strong> each subbas<strong>in</strong> by 50%.<br />

Reduce die-<strong>of</strong>f rate <strong>of</strong> all bacteria by 50%:<br />

Higher waste<strong>water</strong> flows.<br />

Reduced settl<strong>in</strong>g <strong>in</strong> pools.<br />

Higher nutrient concentrations.<br />

Effects <strong>of</strong> BMPs<br />

Exist<strong>in</strong>g Condition Results<br />

Bastrop Bayou Watershed Protection Plan ‐ EPDRIV1 Model<strong>in</strong>g Results ‐ Exist<strong>in</strong>g Condition with 0.30/day Decay<br />

Simulation Period: From 6/10/2009 To 9/16/2010<br />

Flow<br />

(cfs)<br />

TDS<br />

(mg/L)<br />

Bacteria*<br />

(#/dL)<br />

Bayou Stream<br />

Miles<br />

EPDRIV1<br />

XS<br />

Contribut<strong>in</strong>g<br />

SWQM<br />

Area<br />

Station<br />

(sq. miles)<br />

% Imp<br />

Avg Max M<strong>in</strong> Avg Max M<strong>in</strong> Geomean Max<br />

Parameter<br />

Bastrop 19.56 1‐6 18502 15.2 23.4% 77.7 1,062 201 215 290 6.7 16.9 1,897 Enterococci<br />

Bastrop 16.67 1‐12 18503 29.8 22.5% 97.0 1,744 200 215 310 5.3 17.0 2,333 Enterococci<br />

Bastrop 14.81 1‐14 18504 34.6 20.8% 103.6 1,948 201 215 342 4.3 16.6 2,088 Enterococci<br />

Bastrop 11.26 1‐19 18505 46.0 17.4% 116.3 2,334 200 234 1,778 1.9 13.4 1,491 Enterococci<br />

Bastrop 7.65 1‐25 18507 196.5 10.3% 219.4 2,932 192 1,206 17,498 0.6 10.9 1,149 Enterococci<br />

Bastrop 6.09 1‐27 11475 203.6 10.1% 322.3 4,379 191 2,519 18,386 0.6 10.0 1,101 Enterococci<br />

Bastrop 0.00 1‐39 11474 217.4 10.5% 341.8 4,623 192 24,234 35,000 0.5 6.1 1,000 Enterococci<br />

Aust<strong>in</strong> 17.05 2‐29 18506 56.7 72% 7.2% 63.7 1,819 201 309 586 21.9 52.0 3301 3,301 E. coli<br />

Aust<strong>in</strong> 10.53 2‐40 none 101.6 7.8% 104.5 2,488 89 336 16,192 7.4 42.9 3,560 E. coli<br />

Aust<strong>in</strong> 5.91 2‐49 18048 128.4 8.8% 150.7 3,530 176 334 9,304 2.5 27.9 6,552 E. coli<br />

Aust<strong>in</strong> 0.00 2‐57 18507 144.1 8.3% 190.3 3,722 188 452 18,673 0.6 17.0 888 Enterococci<br />

Flores 2.26 4‐28 18508 24.3 10.8% 38.1 1,020 201 297 404 3.1 40.0 8,990 E. coli<br />

Brushy 5.65 3‐2 18509 15.8 15.0% 16.4 821 202 423 697 44.9 99.0 7,664 E. coli<br />

*Enterococci numbers were obta<strong>in</strong>ed by multiply<strong>in</strong>g EPDRIV1 output E. coli numbers by a reduction factor <strong>of</strong> 0.28.<br />

14


4/16/2012<br />

Proposed Condition Results<br />

Bastrop Bayou Watershed Protection Plan ‐ EPDRIV1 Model<strong>in</strong>g Results ‐ Projected Condition with 0.15/day Decay<br />

Simulation Period: From 6/10/2009 To 9/16/2010<br />

Bayou Stream<br />

Miles<br />

EPDRIV1<br />

XS<br />

SWQM<br />

Station<br />

Contribut<strong>in</strong>g<br />

Area % Imp<br />

(sq. (q miles)<br />

Flow<br />

(cfs)<br />

TDS<br />

(mg/L)<br />

Bacteria*<br />

(#/dL)<br />

Avg Max M<strong>in</strong> Avg Max M<strong>in</strong> Geomean Max<br />

Parameter<br />

Bastrop 19.56 1‐6 18502 15.2 23.4% 80.5 1,223 201 215 290 7.3 18.9 2,142 Enterococci<br />

Bastrop 16.67 1‐12 18503 29.8 22.5% 102.3 1,917 200 215 310 6.0 19.8 2,499 Enterococci<br />

Bastrop 14.81 1‐14 18504 34.6 20.8% 109.5 1,992 200 215 342 5.0 20.2 2,285 Enterococci<br />

Bastrop 11.26 1‐19 18505 46.0 17.4% 123.1 2,293 200 233 1,778 2.6 20.8 1,719 Enterococci<br />

Bastrop 7.65 1‐25 18507 196.5 10.3% 232.9 3,382 189 1,170 17,498 1.2 24.9 1,397 Enterococci<br />

Bastrop 6.09 1‐27 11475 203.6 10.1% 342.4 4,521 188 2,438 18,386 1.1 24.2 1,295 Enterococci<br />

Bastrop 0.00 1‐39 11474 217.4 10.5% 362.6 4,627 192 23,812 35,000 1.1 9.4 1,104 Enterococci<br />

Aust<strong>in</strong> 17.05 2‐29 18506 56.7 7.2% 68.1 1,827 201 307 586 35.3 78.9 4,178 E. coli<br />

Aust<strong>in</strong> 10.53 2‐40 none 101.6 7.8% 111.3 2,515 84 333 16,192 8.0 81.7 4,531 E. coli<br />

Aust<strong>in</strong> 5.91 2‐49 18048 128.4 8.8% 161.2 3,511 167 331 9,304 7.1 79.4 8,027 E. coli<br />

Aust<strong>in</strong> 0.00 2‐57 18507 144.1 8.3% 202.8 3,784 179 449 18,673 1.1 30.3 1,186 Enterococci<br />

Flores 2.26 4‐28 18508 24.3 10.8% 40.8 1,039 201 296 404 3.5 51.2 9,155 E. coli<br />

Brushy 5.65 3‐2 18509 15.8 15.0% 17.6 965 201 423 697 51.7 106.7 8,496 E. coli<br />

*Enterococci numbers were obta<strong>in</strong>ed by multiply<strong>in</strong>g EPDRIV1 output E. coli numbers by a reduction factor <strong>of</strong> 0.28.<br />

15


4/16/2012<br />

16


4/16/2012<br />

17


4/16/2012<br />

Proposed Condition with BMPs<br />

Bastrop Bayou Watershed Protection Plan ‐ EPDRIV1 Model<strong>in</strong>g Results ‐ Load Reduction Due to BMPs<br />

Simulation Period: From 6/10/2009 To 9/16/2010<br />

Bacteria (#/dL)<br />

%<br />

Bayou Stream<br />

Contribut<strong>in</strong>g<br />

EPDRIV1 SWQM<br />

%<br />

Area<br />

Projected Condition Load Reduction with BMPs* Geomean<br />

Miles XS Station Impervous<br />

(sq. miles) M<strong>in</strong> Geomean Max M<strong>in</strong> Geomean Max Reduced<br />

Parameter<br />

Bastrop 19.56 1‐6 18502 15.2 23.4% 7.3 18.9 2,142 7.3 18.5 1,950 ‐1.9% Enterococci<br />

Bastrop 16.67 1‐12 18503 29.8 22.5% 6.0 19.8 2,499 6.0 19.3 2,274 ‐2.3% Enterococci<br />

Bastrop 14.81 1‐14 18504 34.6 20.8% 5.0 20.2 2,285 5.0 19.7 2,079 ‐2.5% Enterococci<br />

Bastrop 11.26 1‐19 18505 46.0 17.4% 2.6 20.8 1,719 2.6 20.1 1,564 ‐3.5% Enterococci<br />

Bastrop 7.65 1‐25 18507 196.5 10.3% 1.2 24.9 1,397 1.2 23.3 1,272 ‐6.3% Enterococci<br />

Bastrop 6.09 1‐27 11475 203.6 10.1% 1.1 24.2 1,295 1.1 22.6 1,178 ‐6.7% Enterococci<br />

Bastrop 0.00 1‐39 11474 217.4 10.5% 1.1 9.4 1,104 1.1 9.0 1,005 ‐3.8% Enterococci<br />

Aust<strong>in</strong> 17.05 2‐29 18506 56.7 7.2% 35.3 78.9 4,178 34.2 74.6 3,802 ‐5.5% E. coli<br />

Aust<strong>in</strong> 10.53 2‐40 none 101.6 7.8% 8.0 81.7 4,531 8.0 76.3 4,123 ‐6.6% E. coli<br />

Aust<strong>in</strong> 5.91 2‐49 18048 128.4 8.8% 7.1 79.4 8,027 6.9 73.7 7,305 ‐7.2% E. coli<br />

Aust<strong>in</strong> 0.00 2‐57 18507 144.1 8.3% 1.1 30.3 1,186 1.1 28.2 1,079 ‐6.9% Enterococci<br />

Flores 2.26 4‐28 18508 24.3 10.8% 3.5 51.2 9,155 3.5 49.0 8,331 ‐4.2% E. coli<br />

Brushy 5.65 3‐2 18509 15.8 15.0% 51.7 106.7 8,496 49.2 100.5 7,732 ‐5.8% E. coli<br />

*BMP Effects: 5% reduction on baseflow bacteria, 5% reduction on WWTP discharge bacteria, and 9% reduction on run<strong>of</strong>f bacteria.<br />

18


4/16/2012<br />

Daily Bacteria Loads from<br />

SELECT Model<br />

(Million MPN/day)<br />

WWTP Wildlife Urban Run<strong>of</strong>f Dogs Cattle OSSF Total<br />

2008 10,680 841,403 18,259,373 24,270,000 14,735,459 19,294,274 77,411,188<br />

2010 11,748 838,882 19,138,940 26,172,000 14,735,459 20,880,795 81,777,824<br />

2015 12,923 837,923 19,597,292 26,980,000 14,735,459 21,758,953 83,922,550<br />

2020 14,216 835,530 20,847,989 28,932,000 14,735,459 23,591,083 88,956,277<br />

2025 15,637 830,734 23,420,446 446 33,268,000 14,735,459 459 28,869,423869 101,139,699139 2030 17,201 825,630 26,309,130 38,044,000 14,735,459 33,391,106 113,322,525<br />

2035 18,921 819,213 29,510,488 43,386,000 14,735,459 38,717,552 127,187,633<br />

2040 20,813 814,208 32,274,813 48,102,000 14,735,459 43,543,825 139,491,118<br />

Conclusions and Recommendations<br />

• Projected BMPs should improve and ma<strong>in</strong>ta<strong>in</strong><br />

<strong>water</strong> <strong>quality</strong><br />

• Additional sampl<strong>in</strong>g/flow data needed for<br />

further analysis<br />

Clean Rivers Program cont<strong>in</strong>ued to sample<br />

Flow data source still needed<br />

19


4/16/2012<br />

Conclusions and Recommendations<br />

• EPD‐RIV1 model may be rerun if new SELECT<br />

results <strong>in</strong>dicate significant potential load<strong>in</strong>g<br />

change based on 2011 NLCD data.<br />

SELECT re‐run required by TCEQ for WPP approval<br />

Seek<strong>in</strong>g to address land use change s<strong>in</strong>ce project <strong>in</strong>ception<br />

• Additional fund<strong>in</strong>g should be sought for<br />

implementation<br />

Questions?<br />

Yu-Chun Su<br />

yc.su@atk<strong>in</strong>sglobal.com<br />

com<br />

281-529-4195<br />

Texas Water 2012<br />

San Antonio, TX<br />

April 12, 2012<br />

Just<strong>in</strong> Bower<br />

Just<strong>in</strong>.bower@h-gac.com<br />

713-499-6653<br />

20


DYNAMIC WATER QUALITY MODELING IN SUPPORT OF A WATERSHED<br />

PROTECTION PLAN FOR BASTROP BAYOU IN BRAZORIA COUNTY<br />

ABSTRACT<br />

Yu-Chun Su, Paul Jensen and Ka-Leung Lee; Atk<strong>in</strong>s North America<br />

1250 Wood Branch Park Drive Suite 300, Houston, Texas 77079<br />

Just<strong>in</strong> Bower, Houston-Galveston Area Council<br />

The population <strong>of</strong> the Bastrop Bayou Watershed <strong>in</strong> Brazoria County is projected to grow<br />

substantially <strong>in</strong> the com<strong>in</strong>g years. Absent <strong>in</strong>tervention, this growth is expected to be driven by<br />

and be similar to the pattern observed <strong>in</strong> suburban Houston. A risk assessment conducted by the<br />

Houston-Galveston Area Council (H-GAC) <strong>in</strong>dicated a high likelihood <strong>of</strong> <strong>in</strong>dicator bacteria<br />

problems similar to those <strong>in</strong> suburban Houston if no action were taken. To address this problem,<br />

the Texas Commission <strong>in</strong> Environmental Quality (TCEQ), H-GAC, and the Galveston Bay<br />

Estuary Program (GBEP) launched a Watershed Protection Plan (WPP) effort <strong>in</strong> 2006. One <strong>of</strong><br />

the major goals <strong>of</strong> the WPP is to develop effective methods to address likely <strong>in</strong>dicator bacteria<br />

problems along with develop<strong>in</strong>g public understand<strong>in</strong>g and <strong>support</strong> for the methods to address the<br />

problems.<br />

Build<strong>in</strong>g this public understand<strong>in</strong>g and <strong>support</strong> typically requires quantitative <strong>in</strong>formation to<br />

expla<strong>in</strong> the changes and the effects <strong>of</strong> actions. For this project a relatively new U.S.<br />

Environmental Protection Agency (EPA)-approved dynamic river model, EPDRiv1, was<br />

employed. This model is designed to simulate dynamic hydraulic and <strong>water</strong> <strong>quality</strong> conditions <strong>in</strong><br />

rivers, with or without tidal <strong>in</strong>fluence, for a wide variety <strong>of</strong> <strong>water</strong> <strong>quality</strong> parameters, <strong>in</strong>clud<strong>in</strong>g<br />

<strong>in</strong>dicator bacteria. For <strong>in</strong>put from the <strong>water</strong>shed such as run<strong>of</strong>f and load<strong>in</strong>g simulations,<br />

XP-SWMM model was used <strong>in</strong> this project.<br />

This paper describes the project background, <strong>model<strong>in</strong>g</strong> process us<strong>in</strong>g EPDRiv1 focus<strong>in</strong>g on its<br />

advantages and disadvantages relative to other dynamic model alternatives, and the <strong>model<strong>in</strong>g</strong><br />

results <strong>in</strong> <strong>support</strong> <strong>of</strong> the WPP development. It also describes the basic processes that occur as a<br />

<strong>water</strong>shed develops yield<strong>in</strong>g more frequent periods <strong>of</strong> higher run<strong>of</strong>f volume. Experience has<br />

shown that higher run<strong>of</strong>f volume with very high concentration <strong>of</strong> <strong>in</strong>dicator bacteria tends to raise<br />

the average concentration and the likelihood <strong>of</strong> a stream not meet<strong>in</strong>g criteria. The paper also<br />

describes the fundamental f<strong>in</strong>d<strong>in</strong>g that address<strong>in</strong>g the negative effects <strong>of</strong> urbanization on <strong>water</strong><br />

<strong>quality</strong> conditions will require some forms <strong>of</strong> Low Impact Development (LID) techniques as<br />

well as agricultural management practices reflect<strong>in</strong>g the still-rural nature <strong>of</strong> the <strong>water</strong>shed. One<br />

<strong>of</strong> the major benefits <strong>of</strong> the WPP will be build<strong>in</strong>g the understand<strong>in</strong>g <strong>of</strong> the need for LID and<br />

good agricultural run<strong>of</strong>f practices and some <strong>of</strong> the challenges <strong>in</strong>volved <strong>in</strong> implement<strong>in</strong>g these<br />

changes.<br />

KEYWORDS<br />

Watershed Protection Plan, Water Quality Models, Tidal Streams, EPDRiv1, Bastrop Bayou<br />

1


INTRODUCTION<br />

The Bastrop Bayou <strong>water</strong>shed is located entirely with<strong>in</strong> Brazoria County, as shown on Figure 1.<br />

Ambient <strong>water</strong> <strong>quality</strong> monitor<strong>in</strong>g began for the <strong>water</strong>shed under the Clean Rivers Program <strong>in</strong><br />

August 2004. A risk assessment was completed for the <strong>water</strong>shed <strong>in</strong> June 2006. The risk<br />

assessment found that although the <strong>water</strong>shed is not currently on the 303(d) list, natural<br />

population growth <strong>in</strong> the area is a significant risk to <strong>water</strong> <strong>quality</strong>. Specifically by 2025, the<br />

<strong>water</strong>shed is expected to have a 50% growth <strong>in</strong> households. Because <strong>of</strong> the risk assessment,<br />

TCEQ, GBEP, and H-GAC began a Watershed Protection and Implementation Plan (WPIP) <strong>in</strong><br />

2006.<br />

One <strong>of</strong> the goals <strong>of</strong> the WPIP is to develop a plan to ensure that the expected growth does not<br />

result <strong>in</strong> higher concentrations <strong>of</strong> <strong>in</strong>dicator bacteria such that the <strong>water</strong>s would not atta<strong>in</strong> <strong>water</strong><br />

<strong>quality</strong> standards and thus go on the 303(d) list. This project provides bacteria <strong>model<strong>in</strong>g</strong> <strong>support</strong><br />

for the WPIP (PBS&J, 2010). Model<strong>in</strong>g was performed with a relatively new model, EPDRiv1<br />

(Georgia EPD, 2002) for the ma<strong>in</strong> channels, and XP-SWMM to represent run<strong>of</strong>f from the<br />

<strong>water</strong>sheds adjacent to each stream reach. The <strong>model<strong>in</strong>g</strong> <strong>in</strong>cluded a calibration to the current<br />

level <strong>of</strong> bacteria <strong>in</strong> the streams and identified the effect <strong>of</strong> expected population growth on future<br />

bacteria levels if no action is taken. F<strong>in</strong>ally, the model was used to show the benefits <strong>of</strong><br />

management techniques that could help the area avoid <strong>in</strong>creases <strong>in</strong> bacteria concentrations.<br />

WATERSHED WATER QUALITY MODELING<br />

LIDAR-based land elevation <strong>in</strong>formation was supplied by the H-GAC as the basis for<br />

develop<strong>in</strong>g sub<strong>water</strong>sheds. Figure 1 shows the 22 sub<strong>water</strong>sheds developed along with the land<br />

use characterization, also supplied by the H-GAC. The land use <strong>in</strong>formation is important because<br />

it provides a basis to estimate the amount <strong>of</strong> impervious cover that exists <strong>in</strong> the <strong>water</strong>sheds.<br />

With the ra<strong>in</strong> data available at the Angleton Airport, the various XP-SWMM sub<strong>water</strong>sheds were<br />

simulated for the period January 1, 2007 to September 16, 2010. These produced output files <strong>of</strong><br />

flow that were fed <strong>in</strong>to EPDRiv1.<br />

STREAM WATER QUALITY MODELING<br />

The EPDRiv1 model is based upon the CE-QUAL-RIV1 model developed by the U.S. Army<br />

Eng<strong>in</strong>eers Waterways Experiment Station (WES, now ERDC). The modifications to CE-QUAL-<br />

RIV1 to create EPDRiv1 were conducted by the Georgia Environmental Protection Division<br />

(EPD) <strong>of</strong> the Georgia Department <strong>of</strong> Natural Resources and the EPA.<br />

EPDRiv1 is a one-dimensional (longitud<strong>in</strong>al) hydrodynamic and <strong>water</strong> <strong>quality</strong> model. It consists<br />

<strong>of</strong> two major components: a hydrodynamic and a <strong>water</strong> <strong>quality</strong> (WQ) component. Each <strong>of</strong> these<br />

parts is a separate computer program, with RIV1H be<strong>in</strong>g the hydrodynamic program and the<br />

RIV1Q be<strong>in</strong>g the WQ program. The hydrodynamic model component is typically executed first,<br />

and its output is saved to a file that is read by the WQ model component. EPDRiv1 can simulate<br />

2


Figure 1 – Bastrop Bayou Watershed and Del<strong>in</strong>eated Sub<strong>water</strong>sheds<br />

3


the <strong>in</strong>teractions <strong>of</strong> 16 state variables (Georgia EPD, 2002), <strong>in</strong>clud<strong>in</strong>g <strong>water</strong> temperature, nitrogen<br />

species (or nitrogenous biochemical oxygen demand), phosphorus species, dissolved oxygen,<br />

carbonaceous oxygen demand (two types), algae, iron, manganese, coliform bacteria, and two<br />

arbitrary constituents. In addition, the model can simulate the impacts <strong>of</strong> macrophytes on<br />

dissolved oxygen and nutrient cycl<strong>in</strong>g. The model was designed for the simulation <strong>of</strong> dynamic<br />

conditions <strong>in</strong> streams.<br />

One <strong>of</strong> the complexities <strong>of</strong> the model is the need to avoid a stream go<strong>in</strong>g dry. This is a significant<br />

constra<strong>in</strong>t <strong>in</strong> smaller systems and should be addressed <strong>in</strong> future versions <strong>of</strong> the model, but for<br />

this application it is necessary to <strong>in</strong>clude a set <strong>of</strong> as small as possible background flows at the<br />

upstream end <strong>of</strong> each tributary.<br />

MODEL DEVELOPMENT AND CALIBRATION<br />

The first step <strong>in</strong> the stream <strong>model<strong>in</strong>g</strong> process is gett<strong>in</strong>g the flows simulated with acceptable<br />

accuracy. This is complicated by there be<strong>in</strong>g no flow measurement gage available <strong>in</strong> the system.<br />

The procedure followed was to select a portion <strong>of</strong> the Bastrop Bayou system that approximates<br />

the size and characteristics <strong>of</strong> the Chocolate Bayou gage 08078000, Chocolate Bayou near Alv<strong>in</strong>,<br />

with a dra<strong>in</strong>age area <strong>of</strong> 87.7 square miles.<br />

The best po<strong>in</strong>t <strong>of</strong> comparison is at the bottom <strong>of</strong> subbas<strong>in</strong>s 1, 2, and 3, close to Surface Water<br />

Quality Monitor<strong>in</strong>g Station (SWQM) 18506. The EPDRiv1 cross-section XS 2-29 is located at<br />

the spot, so the flow at that XS was exported from EPDRiv1. Us<strong>in</strong>g the GIS shapefiles, the total<br />

area <strong>of</strong> subbas<strong>in</strong>s 1, 2, and 3 is 36,291.44 acres or 56.71 square miles. An adjustment factor <strong>of</strong><br />

56.71/87.7 = 0.65 was applied to the U.S. Geological Survey daily flows for comparison to the<br />

EPDRiv1 flows, which are at 30-m<strong>in</strong>ute <strong>in</strong>tervals. The EPDRiv1 simulation period is from June<br />

1, 2009 to September 16, 2010. However, the first 10-day is the <strong>in</strong>itial sp<strong>in</strong>-down time so data<br />

between June 11, 2009 and September 16, 2010, were used to compare the two data sets.<br />

Figure 2 shows the flow comparison with both a l<strong>in</strong>ear and log scale. On the log presentation the<br />

effect <strong>of</strong> the background flows needed to avoid stream dry<strong>in</strong>g can be seen. Nevertheless, the<br />

background flows <strong>in</strong>troduced are generally consistent with the low flow <strong>of</strong> Chocolate Bayou,<br />

except for the very dry period <strong>in</strong> summer 2009. Scal<strong>in</strong>g the flow for the difference <strong>in</strong> <strong>water</strong>shed<br />

area, there is a reasonable level <strong>of</strong> agreement on both the total flow, a 2.3% difference, and the<br />

pattern <strong>of</strong> the <strong>in</strong>dividual ra<strong>in</strong> events. Consider<strong>in</strong>g that there is some distance between the<br />

Chocolate Bayou <strong>water</strong>shed and the Angleton Airport ra<strong>in</strong> gage, perfect agreement cannot be<br />

expected. Nevertheless, the level <strong>of</strong> agreement is considered to be acceptable.<br />

The <strong>in</strong>flows to the EPDRiv1 model were supplied by <strong>in</strong>puts from the contribut<strong>in</strong>g<br />

sub<strong>water</strong>sheds, us<strong>in</strong>g the model XP-SWMM. The <strong>water</strong>shed <strong>in</strong>puts reflect run<strong>of</strong>f from ra<strong>in</strong><br />

followed by a decl<strong>in</strong><strong>in</strong>g limb composed <strong>of</strong> bank flow. With cont<strong>in</strong>ued dry weather the <strong>water</strong>shed<br />

contribution will drop to zero and the only flow <strong>in</strong> the stream would be provided by upstream<br />

flows such as waste<strong>water</strong> effluent.<br />

4


Figure 2 - Flow comparison with Chocolate Bayou Gage with l<strong>in</strong>ear and log scales<br />

3,000<br />

2,500<br />

EPD‐RIV1 Flow Calibration<br />

EPDRIV1‐XS2‐29 Flow Adjusted Chocolate Bayou Flow<br />

Total Volumes:<br />

Adjusted EPD‐RIV1: 2.55x10 9 ft 3<br />

Adjusted Chocolate Bayou: 2.49x10 9 ft 3<br />

2,000<br />

Flow (cfs)<br />

1,500<br />

1,000<br />

500<br />

0<br />

Jun 2009 Dec 2009 Jun 2010 Dec 2010<br />

10,000<br />

1,000<br />

EPD‐RIV1 Flow Calibration<br />

EPDRIV1‐XS2‐29 Flow Adjusted Chocolate Bayou Flow<br />

Total Volumes:<br />

Adjusted EPD‐RIV1: 2.55x10 9 ft 3<br />

Adjusted Chocolate Bayou: 2.49x10 9 ft 3<br />

Flow (cfs)<br />

100<br />

10<br />

1<br />

Jun 2009 Dec 2009 Jun 2010 Dec 2010<br />

5


Typically the concentrations <strong>of</strong> parameters <strong>of</strong> <strong>in</strong>terest <strong>in</strong> the run<strong>of</strong>f are represented by an Event<br />

Mean Concentration (EMC), which is the total load <strong>of</strong> a constituent dur<strong>in</strong>g a run<strong>of</strong>f event divided<br />

by the total volume <strong>of</strong> run<strong>of</strong>f flow or a flow-weighted concentration. The typical pattern is for<br />

constituents such as the total suspended solids (TSS) and <strong>in</strong>dicator bacteria to be highest at the<br />

early part <strong>of</strong> a run<strong>of</strong>f event (first flush) and decl<strong>in</strong>e as the ra<strong>in</strong> ends and the flow drops. The EMC<br />

values will tend to vary greatly from event to event, be<strong>in</strong>g highest when ra<strong>in</strong> <strong>in</strong>tensity is highest<br />

and with a prolonged dry period prior to the storm event.<br />

The City <strong>of</strong> Aust<strong>in</strong> (2006) reported on a long-term program <strong>of</strong> run<strong>of</strong>f monitor<strong>in</strong>g from small<br />

<strong>water</strong>sheds (


Figure 3 - Suspended Solids Concentration <strong>in</strong> Run<strong>of</strong>f versus Impervious Cover<br />

450.0<br />

400.0<br />

Total Suspended Solids (mg/l)<br />

350.0<br />

300.0<br />

250.0<br />

200.0<br />

150.0<br />

100.0<br />

50.0<br />

0.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Impervious Cover<br />

Volume<br />

Weighted<br />

Means<br />

Figure 4 - Total Nitrogen Concentration <strong>in</strong> Run<strong>of</strong>f versus Impervious Cover<br />

3.5<br />

3.0<br />

Total Nitrogen (mg/l)<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

Volume<br />

Weighted<br />

Means<br />

0.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Impervious Cover<br />

7


Figure 5 – Fecal Coliform Concentration <strong>in</strong> Run<strong>of</strong>f versus Impervious Cover<br />

120,000<br />

100,000<br />

Fecal Col. (col/100ml)<br />

80,000<br />

60,000<br />

40,000<br />

20,000<br />

Volume<br />

Weighted<br />

Means<br />

0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Impervious Cover<br />

Figure 6 – Fecal Strep Concentration <strong>in</strong> Run<strong>of</strong>f versus Impervious Cover<br />

300,000<br />

250,000<br />

Fecal Strep. (col/100ml)<br />

200,000<br />

150,000<br />

100,000<br />

50,000<br />

Volume<br />

Weighted<br />

Means<br />

0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Impervious Cover<br />

8


Figure 7 - Run<strong>of</strong>f Coefficient versus Impervious Cover Percentage<br />

1.0<br />

Run<strong>of</strong>f Coefficien<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

L<strong>in</strong>ear Model for All Watersheds<br />

95% Confidence Level L<strong>in</strong>es<br />

All Watersheds<br />

Model from CRWR Report<br />

0.0<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br />

Impervious Cover<br />

<strong>in</strong> the CoA run<strong>of</strong>f sampl<strong>in</strong>g, and a m<strong>in</strong>imum value that would be associated with bank flow at<br />

the end <strong>of</strong> the run<strong>of</strong>f event. The flow values are arbitrarily selected as 100 cubic feet per second<br />

(cfs)/square miles as sufficient to reflect a pure run<strong>of</strong>f condition and 0.1 cfs/square mile to<br />

represent a relatively clean <strong>water</strong> or bank flow condition. The flows from XP-SWMM are output<br />

to a spreadsheet for each sub<strong>water</strong>shed on an hourly basis. In the spreadsheet, each hourly flow<br />

is converted to a unit flow and the function applied to yield the <strong>in</strong>dicator bacteria value for that<br />

time step.<br />

This method <strong>of</strong> sett<strong>in</strong>g the <strong>in</strong>dicator bacteria levels for <strong>water</strong>shed run<strong>of</strong>f requires some<br />

calibration. Because the study area <strong>in</strong>cludes streams with both Enterococci and E. coli criteria<br />

and the model has a s<strong>in</strong>gle parameter <strong>in</strong> its <strong>in</strong>ternal calculations, the Enterococci geomeans are<br />

multiplied by 0.28 (35/126) to convert to EC for comparison purpose.<br />

The <strong>in</strong>itial values used for the dynamic concentration determ<strong>in</strong>ation function were 10 MPN/dL<br />

for the lower concentration limit and 10,000 MPN/dL for the upper or pure run<strong>of</strong>f concentration<br />

limit. The 10,000 MPN/dL is the CoA value for FC <strong>in</strong> undeveloped <strong>water</strong>sheds, converted to EC.<br />

If specific flows are above or below the selected end po<strong>in</strong>ts, these concentrations are held<br />

constant. These values were tested and adjusted dur<strong>in</strong>g the calibration process. Ultimately, the<br />

lower end was adjusted from 10 to 50 MPN/dL. The result<strong>in</strong>g values for the calibration period<br />

are close to the EC criteria values, that is a reasonable approximation to the current conditions.<br />

The total dissolved solids (TDS) calibration process was similar, except that there is little<br />

variation <strong>in</strong> run<strong>of</strong>f TDS concentration dur<strong>in</strong>g a ra<strong>in</strong> event. A run<strong>of</strong>f concentration <strong>of</strong> 200<br />

milligram per liter (mg/L) was employed for run<strong>of</strong>f, and a value <strong>of</strong> 500 mg/L employed for<br />

9


waste<strong>water</strong> flow. A background 10-cfs flow is needed to avoid dry<strong>in</strong>g and a 200 mg/L TDS is<br />

assigned to the flow. The ma<strong>in</strong> source <strong>of</strong> TDS <strong>in</strong> the system is upstream dispersion <strong>of</strong> salt from<br />

the downstream boundary. This boundary was set at 35,000 mg/L (35 parts per thousand [ppt],<br />

sea <strong>water</strong> sal<strong>in</strong>ity). The ma<strong>in</strong> calibration process <strong>in</strong>volved adjust<strong>in</strong>g the dispersion coefficient <strong>in</strong><br />

the model to try to match observed levels <strong>of</strong> TDS <strong>in</strong> the more upstream tidally <strong>in</strong>fluenced<br />

stations.<br />

Table 1 presents the calibration results for the ma<strong>in</strong> stations plus some locations at confluence<br />

locations. The bacteria values are geometric means over the calibration period with the 0.28<br />

adjustment to reflect the stations with Enterococci criteria. Figures 8 and 9 show example TDS<br />

and bacteria model results, respectively, at a major monitor<strong>in</strong>g station along Bastrop Bayou with<br />

data available dur<strong>in</strong>g the calibration period. Figures 10 and 11 show similar results for an Aust<strong>in</strong><br />

Bayou station. There were frequent ra<strong>in</strong>s dur<strong>in</strong>g the calibration period, and model bacteria levels<br />

respond rapidly. The model appears to cover the observed values reasonably well. While<br />

agreement is not perfect, the general pattern <strong>of</strong> salt <strong>in</strong>trusion up Bastrop Bayou dur<strong>in</strong>g low flow<br />

periods is shown.<br />

Table 1 - Calibration Results for the Ma<strong>in</strong> Stations<br />

Bastrop Bayou Watershed Protection Plan ‐ EPDRIV1 Model<strong>in</strong>g Results ‐ Exist<strong>in</strong>g Condition with 0.30/day Decay<br />

Simulation Period: From 6/10/2009 To 9/16/2010<br />

Flow<br />

(cfs)<br />

TDS<br />

(mg/L)<br />

Bacteria*<br />

(#/dL)<br />

Bayou Stream<br />

Miles<br />

EPDRIV1<br />

XS<br />

SWQM<br />

Station<br />

Contribut<strong>in</strong>g<br />

Area<br />

(sq. miles)<br />

% Imp<br />

Avg Max M<strong>in</strong> Avg Max M<strong>in</strong> Geomean Max<br />

Parameter<br />

Remarks<br />

Bastrop 19.56 1‐6 18502 15.2 23.4% 77.7 1,062 201 215 290 6.7 16.9 1,897 Enterococci<br />

Bastrop 16.67 1‐12 18503 29.8 22.5% 97.0 1,744 200 215 310 5.3 17.0 2,333 Enterococci<br />

Bastrop 14.81 1‐14 18504 34.6 20.8% 103.6 1,948 201 215 342 4.3 16.6 2,088 Enterococci<br />

Bastrop 11.26 1‐19 18505 46.0 17.4% 116.3 2,334 200 234 1,778 1.9 13.4 1,491 Enterococci<br />

Bastrop 7.65 1‐25 18507 196.5 10.3% 219.4 2,932 192 1,206 17,498 0.6 10.9 1,149 Enterococci Conf. w/ Aust<strong>in</strong> B.<br />

Bastrop 6.09 1‐27 11475 203.6 10.1% 322.3 4,379 191 2,519 18,386 0.6 10.0 1,101 Enterococci<br />

Bastrop 0.00 1‐39 11474 217.4 10.5% 341.8 4,623 192 24,234 35,000 0.5 6.1 1,000 Enterococci<br />

Aust<strong>in</strong> 17.05 2‐29 18506 56.7 7.2% 63.7 1,819 201 309 586 21.9 52.0 3,301 E. coli<br />

Aust<strong>in</strong> 10.53 2‐40 none 101.6 7.8% 104.5 2,488 89 336 16,192 7.4 42.9 3,560 E. coli Conf. w/ Flores B.<br />

Aust<strong>in</strong> 5.91 2‐49 18048 128.4 8.8% 150.7 3,530 176 334 9,304 2.5 27.9 6,552 E. coli Conf. w/ Brushy B.<br />

Aust<strong>in</strong> 0.00 2‐57 18507 144.1 8.3% 190.3 3,722 188 452 18,673 0.6 17.0 888 Enterococci<br />

Flores 2.26 4‐28 18508 24.3 10.8% 38.1 1,020 201 297 404 3.1 40.0 8,990 E. coli<br />

Brushy 5.65 3‐2 18509 15.8 15.0% 16.4 821 202 423 697 44.9 99.0 7,664 E. coli<br />

*Enterococci numbers were obta<strong>in</strong>ed by multiply<strong>in</strong>g EPDRIV1 output E. coli numbers by a reduction factor <strong>of</strong> 0.28.<br />

Based on hav<strong>in</strong>g a reasonably good agreement for run<strong>of</strong>f flows as compared with the Chocolate<br />

Bayou gage, hav<strong>in</strong>g bacteria levels that both match the criteria <strong>in</strong>dicat<strong>in</strong>g a marg<strong>in</strong>al level <strong>of</strong><br />

atta<strong>in</strong>ment, and follow the pattern <strong>of</strong> be<strong>in</strong>g higher <strong>in</strong> run<strong>of</strong>f events, and the TDS levels<br />

approximat<strong>in</strong>g the observed values, the EPDRiv1 model was considered calibrated to the Bastrop<br />

Bayou <strong>water</strong>shed.<br />

10


Figure 8 – Example Bastrop Bayou TDS Calibration Result<br />

Figure 9 – Example Bastrop Bayou Bacteria Calibration Results<br />

11


Figure 10 – Example Aust<strong>in</strong> Bayou TDS Calibration Results<br />

Figure 11 – Example Aust<strong>in</strong> Bayou Bacteria Calibration Results<br />

12


SIMULATION OF FUTURE CONDITIONS<br />

With the model calibrated to conditions observed dur<strong>in</strong>g 2009–2010, it was then used to assess<br />

the likely effects <strong>of</strong> growth <strong>in</strong> the <strong>water</strong>shed, assum<strong>in</strong>g that growth followed a pattern observed<br />

historically. That pattern is for new developments to be constructed on land that is currently<br />

undeveloped, typically <strong>in</strong> agricultural use. This new development would have impervious cover<br />

and more efficient dra<strong>in</strong>age systems, which would produce more run<strong>of</strong>f and allow less <strong>water</strong> to<br />

be absorbed <strong>in</strong> the ground. It also <strong>in</strong>volves smaller waste<strong>water</strong> treatment facilities, which would<br />

discharge all the time, alter<strong>in</strong>g the natural distribution <strong>of</strong> flows. The projected growth <strong>in</strong> the<br />

study area is for population to <strong>in</strong>crease by 50% with<strong>in</strong> the next 30 years. Model<strong>in</strong>g results were<br />

used to evaluate how these projected future developments could be expected to affect <strong>water</strong><br />

<strong>quality</strong>.<br />

First <strong>of</strong> all, any new development will require new and efficient dra<strong>in</strong>age systems, which will<br />

cause ra<strong>in</strong>fall run<strong>of</strong>f to occur more rapidly. While the bacteria concentration <strong>of</strong> run<strong>of</strong>f will be<br />

high regardless <strong>of</strong> the type <strong>of</strong> land use, a greater volume and speed <strong>of</strong> run<strong>of</strong>f will tend to make<br />

high bacteria concentrations <strong>in</strong> the stream a more common circumstance. Ultimately, this can be<br />

expected to <strong>in</strong>crease the monitored bacteria levels.<br />

To address this effect, the calibrated model is modified to <strong>in</strong>crease the impervious cover <strong>in</strong> each<br />

sub<strong>water</strong>shed by 50%. The only exception is subbas<strong>in</strong> 22 where the impervious cover is from a<br />

<strong>water</strong> surface. These were left unchanged. With the higher impervious cover percentages be<strong>in</strong>g<br />

the only changes, the XP-SWMM model was re-run to yield run<strong>of</strong>f flows that are <strong>in</strong>creased to<br />

some extent. The magnitude <strong>of</strong> the change was limited because the soil type <strong>in</strong> the area falls <strong>in</strong>to<br />

hydrologic group D, with high clay content and relatively little <strong>in</strong>filtration. The model output is<br />

used to calculate the amount <strong>of</strong> <strong>in</strong>crease <strong>in</strong> bacteria levels associated with the higher level <strong>of</strong><br />

run<strong>of</strong>f due to higher impervious cover.<br />

Secondly, the regulation and control <strong>of</strong> domestic waste<strong>water</strong> discharges has been a central focus<br />

<strong>of</strong> the environmental eng<strong>in</strong>eer<strong>in</strong>g pr<strong>of</strong>ession s<strong>in</strong>ce the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> environmental awareness. As<br />

a consequence <strong>of</strong> this focus, the level <strong>of</strong> treatment now provided is arguably better than it ever<br />

has been <strong>in</strong> the past. The traditional <strong>quality</strong> issues <strong>of</strong> high oxygen demand, odors, and disease<br />

risk are now largely under control. Modern waste<strong>water</strong> plants now provide a high level <strong>of</strong><br />

oxidation <strong>of</strong> waste and chlor<strong>in</strong>ate the effluent for dis<strong>in</strong>fection. When chlor<strong>in</strong>e residual levels<br />

specified <strong>in</strong> the permits are achieved, which is normally the case, detections <strong>of</strong> <strong>in</strong>dicator bacteria<br />

are rare.<br />

While the level <strong>of</strong> waste<strong>water</strong> treatment is such that effluent dom<strong>in</strong>ated streams now <strong>support</strong><br />

aquatic life uses, and a diverse aquatic ecosystem is now expected, they still can produce<br />

changes that are seen <strong>in</strong> monitor<strong>in</strong>g <strong>of</strong> bacteria <strong>in</strong> effluent dom<strong>in</strong>ated streams. The entire process<br />

is not fully understood, but one mechanism appears to be an alteration <strong>of</strong> the stream itself. For<br />

example, a small stream that would normally be <strong>in</strong>termittent can be converted to a perennial<br />

stream with waste<strong>water</strong> discharges. While this may have a positive effect on many forms <strong>of</strong><br />

aquatic life, it can alter the stream bed from a varied geomorphology <strong>of</strong> pools, riffles and runs to<br />

one where there is a pilot channel that flows at a near constant pace. This provides less pooled<br />

area that can allow settl<strong>in</strong>g <strong>of</strong> particulate matter, which <strong>in</strong>cludes bacteria. In addition, when a<br />

stream is dom<strong>in</strong>ated by effluent, the concentrations <strong>of</strong> essential nutrients are greater than for<br />

13


natural flows. The net result for effluent-dom<strong>in</strong>ated streams such as exist <strong>in</strong> the Houston area, is<br />

for bacteria concentrations to be relatively high even <strong>in</strong> dry weather when the only flow is<br />

dis<strong>in</strong>fected waste<strong>water</strong>.<br />

The EPDRiv1 model does not have the capability <strong>of</strong> directly simulat<strong>in</strong>g the process <strong>of</strong> settl<strong>in</strong>g <strong>in</strong><br />

pools and the differences that come with reductions <strong>in</strong> settl<strong>in</strong>g opportunity along with higher<br />

nutrient concentrations. To approximate this effect, the die-<strong>of</strong>f rate <strong>of</strong> all bacteria <strong>in</strong> the <strong>water</strong> is<br />

reduced by 50%. This change <strong>in</strong> die-<strong>of</strong>f rate approximates the hydraulic effect <strong>of</strong> higher base<br />

flows with less settl<strong>in</strong>g dur<strong>in</strong>g dry conditions, and the effect <strong>of</strong> higher run<strong>of</strong>f that would result <strong>in</strong><br />

higher turbulent level <strong>in</strong> the bayous and therefore less settl<strong>in</strong>g dur<strong>in</strong>g and after storm events.<br />

A tabular presentation <strong>of</strong> the projected future flow, TDS, and bacteria concentrations for the<br />

system is shown <strong>in</strong> Table 2. An example plot <strong>of</strong> Bastrop Bayou exist<strong>in</strong>g and projected future<br />

bacteria levels is shown <strong>in</strong> Figures 12. Figure 13 shows a similar plot for the Aust<strong>in</strong> Bayou<br />

system.<br />

Table 2 - EPDRiv1 Model<strong>in</strong>g Results for Projected Condition<br />

Bastrop Bayou Watershed Protection Plan ‐ EPDRIV1 Model<strong>in</strong>g Results ‐ Projected Condition with 0.15/day Decay<br />

Simulation Period: From 6/10/2009 To 9/16/2010<br />

Flow<br />

(cfs)<br />

TDS<br />

(mg/L)<br />

Bacteria*<br />

(#/dL)<br />

Bayou Stream<br />

Miles<br />

EPDRIV1<br />

XS<br />

SWQM<br />

Station<br />

Contribut<strong>in</strong>g<br />

Area<br />

(sq. miles)<br />

% Imp<br />

Avg Max M<strong>in</strong> Avg Max M<strong>in</strong> Geomean Max<br />

Parameter<br />

Remarks<br />

Bastrop 19.56 1‐6 18502 15.2 23.4% 80.5 1,223 201 215 290 7.3 18.9 2,142 Enterococci<br />

Bastrop 16.67 1‐12 18503 29.8 22.5% 102.3 1,917 200 215 310 6.0 19.8 2,499 Enterococci<br />

Bastrop 14.81 1‐14 18504 34.6 20.8% 109.5 1,992 200 215 342 5.0 20.2 2,285 Enterococci<br />

Bastrop 11.26 1‐19 18505 46.0 17.4% 123.1 2,293 200 233 1,778 2.6 20.8 1,719 Enterococci<br />

Bastrop 7.65 1‐25 18507 196.5 10.3% 232.9 3,382 189 1,170 17,498 1.2 24.9 1,397 Enterococci Conf. w/ Aust<strong>in</strong> B.<br />

Bastrop 6.09 1‐27 11475 203.6 10.1% 342.4 4,521 188 2,438 18,386 1.1 24.2 1,295 Enterococci<br />

Bastrop 0.00 1‐39 11474 217.4 10.5% 362.6 4,627 192 23,812 35,000 1.1 9.4 1,104 Enterococci<br />

Aust<strong>in</strong> 17.05 2‐29 18506 56.7 7.2% 68.1 1,827 201 307 586 35.3 78.9 4,178 E. coli<br />

Aust<strong>in</strong> 10.53 2‐40 none 101.6 7.8% 111.3 2,515 84 333 16,192 8.0 81.7 4,531 E. coli Conf. w/ Flores B.<br />

Aust<strong>in</strong> 5.91 2‐49 18048 128.4 8.8% 161.2 3,511 167 331 9,304 7.1 79.4 8,027 E. coli Conf. w/ Brushy B.<br />

Aust<strong>in</strong> 0.00 2‐57 18507 144.1 8.3% 202.8 3,784 179 449 18,673 1.1 30.3 1,186 Enterococci<br />

Flores 2.26 4‐28 18508 24.3 10.8% 40.8 1,039 201 296 404 3.5 51.2 9,155 E. coli<br />

Brushy 5.65 3‐2 18509 15.8 15.0% 17.6 965 201 423 697 51.7 106.7 8,496 E. coli<br />

*Enterococci numbers were obta<strong>in</strong>ed by multiply<strong>in</strong>g EPDRIV1 output E. coli numbers by a reduction factor <strong>of</strong> 0.28.<br />

The projected <strong>in</strong>creases <strong>in</strong> bacteria concentration are not overwhelm<strong>in</strong>g large, but large enough<br />

so that if no action were taken <strong>in</strong> a system that is already close to criteria exceedance, under the<br />

present assessment procedures, list<strong>in</strong>g would be likely.<br />

14


Figure 12 – Example Exist<strong>in</strong>g and Projected Bacteria Levels <strong>in</strong> Bastrop Bayou<br />

Figure 13 – Example Exist<strong>in</strong>g and Projected Bacteria Levels <strong>in</strong> Aust<strong>in</strong> Bayou<br />

15


But it is also important to recognize that with the substantial degree <strong>of</strong> variation <strong>in</strong> ambient<br />

bacteria levels due to the effect <strong>of</strong> run<strong>of</strong>f, whether a list<strong>in</strong>g occurs or not is to a degree a matter<br />

<strong>of</strong> chance. If a sampl<strong>in</strong>g trip happens to occur dur<strong>in</strong>g or immediately after a large ra<strong>in</strong>, high<br />

bacteria levels can be expected. One or more samples with high bacteria levels will substantially<br />

<strong>in</strong>fluence a calculated geometric mean for a number <strong>of</strong> years. On the other hand, if sample trips<br />

happen to occur dur<strong>in</strong>g an extended dry weather, relatively low bacteria levels can be expected.<br />

This variability is an <strong>in</strong>herent feature <strong>of</strong> bacteria monitor<strong>in</strong>g data, and given a sufficient period <strong>of</strong><br />

monitor<strong>in</strong>g, large variations <strong>in</strong> criteria atta<strong>in</strong>ment should not be common. It is not recommended<br />

that monitor<strong>in</strong>g programs be changed to avoid wet weather as this would make all parameters <strong>in</strong><br />

the monitor<strong>in</strong>g data unrepresentative <strong>of</strong> overall stream conditions.<br />

ACTIONS TO AVOID LISTING<br />

While <strong>model<strong>in</strong>g</strong> <strong>in</strong>dicates that growth projected for the <strong>water</strong>shed will likely result <strong>in</strong> the bacteria<br />

criteria for <strong>water</strong> recreation to be exceeded, this does not have to occur. Actions are available<br />

that hold a strong promise to avoid <strong>in</strong>creases <strong>in</strong> bacteria levels when development takes place.<br />

These are <strong>in</strong> three broad areas:<br />

< M<strong>in</strong>imiz<strong>in</strong>g the effect <strong>of</strong> <strong>in</strong>creases <strong>in</strong> run<strong>of</strong>f (with high bacteria concentrations) that would<br />

occur with development and <strong>in</strong>creased impervious cover through the implementation <strong>of</strong> LID<br />

techniques;<br />

< Avoid<strong>in</strong>g the effects <strong>of</strong> future waste<strong>water</strong> discharges <strong>in</strong> caus<strong>in</strong>g stream geomorphology<br />

effects such as channelization, by foster<strong>in</strong>g waste<strong>water</strong> reuse; and<br />

< Improved management <strong>of</strong> animal and human waste through a program <strong>of</strong> Best Management<br />

Practices (BMPs).<br />

All <strong>of</strong> these measures can be implemented <strong>in</strong> the com<strong>in</strong>g years at a relatively modest cost. They<br />

don't require a significant cash outlay from a governmental unit. Rather, it would require giv<strong>in</strong>g<br />

an alternative pathway for developers to follow along with m<strong>in</strong>or modifications <strong>of</strong> exist<strong>in</strong>g<br />

regulatory efforts.<br />

LID can be encouraged by provid<strong>in</strong>g a pathway to permitt<strong>in</strong>g that makes LID a viable alternative<br />

to conventional dra<strong>in</strong>age approaches. This may be as simple as sett<strong>in</strong>g up an alternative permit<br />

system for the county and cities that requires a developer to provide an eng<strong>in</strong>eer<strong>in</strong>g evaluation<br />

and certification that run<strong>of</strong>f flows are functionally equivalent to the predevelopment condition,<br />

and <strong>in</strong> exchange <strong>of</strong>fers flexibility on dra<strong>in</strong>age criteria and storm<strong>water</strong> pond mandates.<br />

Encourag<strong>in</strong>g waste<strong>water</strong> reuse can be as simple as a policy statement from local governments<br />

that <strong>in</strong>dicates they will oppose waste<strong>water</strong> permit applications to the TCEQ, which do not<br />

conta<strong>in</strong> a program for effective waste<strong>water</strong> reuse. It would not be necessary to be overly<br />

proscriptive on exactly how much or by what method reuse is to be achieved. A certa<strong>in</strong>ty <strong>of</strong><br />

opposition from local government should be sufficient <strong>in</strong>centive to developers to <strong>in</strong>clude reuse <strong>in</strong><br />

the overall design. Details could be worked out dur<strong>in</strong>g project negotiations. The basic goal can<br />

be as simple as provid<strong>in</strong>g a plan and implementation procedures for all waste<strong>water</strong> to be used<br />

dur<strong>in</strong>g dry periods for both on-site and regional irrigation projects.<br />

16


The LID and waste<strong>water</strong> reuse measures will primarily be effective <strong>in</strong> avoid<strong>in</strong>g the <strong>in</strong>creases <strong>in</strong><br />

bacteria concentrations that experience <strong>in</strong> Houston has shown to follow urbanization. The net<br />

effect <strong>of</strong> these measures will only be apparent with the passage <strong>of</strong> time.<br />

The WPP has also identified actions to address exist<strong>in</strong>g sources. Improved management <strong>of</strong> waste<br />

with BMPs would <strong>in</strong>clude several components. One is <strong>in</strong>creased efforts to ensure that On-Site<br />

Sewage Facilities (OSSF) are properly managed, both <strong>in</strong> the permitt<strong>in</strong>g process for new<br />

facilities, and <strong>in</strong> operation and ma<strong>in</strong>tenance <strong>of</strong> exist<strong>in</strong>g units. The latter aspect would <strong>in</strong>clude<br />

public education on the importance <strong>of</strong> regular ma<strong>in</strong>tenance, and <strong>in</strong> identify<strong>in</strong>g problem<br />

<strong>in</strong>stallations. Management <strong>of</strong> animal waste can be improved through programs address<strong>in</strong>g<br />

fenc<strong>in</strong>g to keep cattle out <strong>of</strong> streams and efforts to better manage pet wastes. These are<br />

cumulatively estimated <strong>in</strong> the WPP to have a small effect (e.g., 19% reduction) as they are<br />

implemented.<br />

To assess these potential load reductions with the model, proportionate reductions <strong>in</strong> <strong>in</strong>flow<br />

bacteria concentrations were applied. S<strong>in</strong>ce the BMPs could affect both the low and high flow<br />

conditions, the overall 19% reduction was allocated as follows: baseflow-5%, Waste Water<br />

Treatment Plant (WWTP) <strong>in</strong>flow-5%, run<strong>of</strong>f-9%. Table 3 shows the <strong>model<strong>in</strong>g</strong> results <strong>of</strong> these<br />

load reductions <strong>in</strong> the evaluation period. S<strong>in</strong>ce the baseflow and WWTP loads are relatively<br />

small <strong>in</strong> the base condition, reductions <strong>in</strong> these loads has a small effect on the overall long-term<br />

geometric mean concentrations. The model predicts these load reductions from BMPs to have a<br />

2% to 7% reduction <strong>in</strong> the geometric mean <strong>in</strong>dicator bacteria concentrations relative to the<br />

current condition.<br />

CONCLUSION<br />

One part <strong>of</strong> the WPP process is to calculate changes <strong>in</strong> bacteria loads that are associated with<br />

population and land use change, and relate those to ambient stream bacteria concentrations<br />

tak<strong>in</strong>g flows and tidal prism dilution <strong>in</strong>to account. The model results describe the effect <strong>of</strong><br />

potential load reductions with BMPs. These model results implicitly <strong>in</strong>corporate the effect <strong>of</strong> the<br />

tidal prism dilution process.<br />

The WPP process has also employed a model called SELECT, which produces bacteria loads as<br />

a function <strong>of</strong> land use. Some <strong>of</strong> these bacteria loads are from animals (cattle, horses, hogs, pets),<br />

which are applied <strong>in</strong> the <strong>water</strong>shed and would only affect stream conditions dur<strong>in</strong>g heavy run<strong>of</strong>f<br />

events, and some are associated with lower flows. Table 4 presents a summary <strong>of</strong> the SELECT<br />

loads for the entire Bastrop Bayou system by year and by source. Assum<strong>in</strong>g these loads go to the<br />

stream and are not just deposited on land, they can be related to a stream concentration by simply<br />

divid<strong>in</strong>g the load with units <strong>of</strong> #/time, by an average stream flow with units <strong>of</strong> volume/time.<br />

Us<strong>in</strong>g a common time basis, a concentration, with units <strong>of</strong> #/dL can be calculated for comparison<br />

with criteria.<br />

17


Table 3 - EPDRIV1 Model<strong>in</strong>g Results – Load Reduction Due to BMPs<br />

Bastrop Bayou Watershed Protection Plan ‐ EPDRIV1 Model<strong>in</strong>g Results ‐ Load Reduction Due to BMPs<br />

Simulation Period: From 6/10/2009 To 9/16/2010<br />

Bacteria (#/dL)<br />

%<br />

Bayou Stream<br />

Contribut<strong>in</strong>g<br />

EPDRIV1 SWQM<br />

%<br />

Area<br />

Projected Condition Load Reduction with BMPs* Geomean<br />

Miles XS Station<br />

Impervous<br />

(sq. miles)<br />

M<strong>in</strong> Geomean Max M<strong>in</strong> Geomean Max Reduced<br />

Parameter Remarks<br />

Bastrop 19.56 1‐6 18502 15.2 23.4% 7.3 18.9 2,142 7.3 18.5 1,950 ‐1.9% Enterococci<br />

Bastrop 16.67 1‐12 18503 29.8 22.5% 6.0 19.8 2,499 6.0 19.3 2,274 ‐2.3% Enterococci<br />

Bastrop 14.81 1‐14 18504 34.6 20.8% 5.0 20.2 2,285 5.0 19.7 2,079 ‐2.5% Enterococci<br />

Bastrop 11.26 1‐19 18505 46.0 17.4% 2.6 20.8 1,719 2.6 20.1 1,564 ‐3.5% Enterococci<br />

Bastrop 7.65 1‐25 18507 196.5 10.3% 1.2 24.9 1,397 1.2 23.3 1,272 ‐6.3% Enterococci Conf. w/ Aust<strong>in</strong> B.<br />

Bastrop 6.09 1‐27 11475 203.6 10.1% 1.1 24.2 1,295 1.1 22.6 1,178 ‐6.7% Enterococci<br />

Bastrop 0.00 1‐39 11474 217.4 10.5% 1.1 9.4 1,104 1.1 9.0 1,005 ‐3.8% Enterococci<br />

Aust<strong>in</strong> 17.05 2‐29 18506 56.7 7.2% 35.3 78.9 4,178 34.2 74.6 3,802 ‐5.5% E. coli<br />

Aust<strong>in</strong> 10.53 2‐40 none 101.6 7.8% 8.0 81.7 4,531 8.0 76.3 4,123 ‐6.6% E. coli Conf. w/ Flores B.<br />

Aust<strong>in</strong> 5.91 2‐49 18048 128.4 8.8% 7.1 79.4 8,027 6.9 73.7 7,305 ‐7.2% E. coli Conf. w/ Brushy B.<br />

Aust<strong>in</strong> 0.00 2‐57 18507 144.1 8.3% 1.1 30.3 1,186 1.1 28.2 1,079 ‐6.9% Enterococci<br />

Flores 2.26 4‐28 18508 24.3 10.8% 3.5 51.2 9,155 3.5 49.0 8,331 ‐4.2% E. coli<br />

Brushy 5.65 3‐2 18509 15.8 15.0% 51.7 106.7 8,496 49.2 100.5 7,732 ‐5.8% E. coli<br />

*BMP Effects: 5% reduction on baseflow bacteria, 5% reduction on WWTP discharge bacteria, and 9% reduction on run<strong>of</strong>f bacteria.<br />

Table 4 - Daily Bacteria Loads from SELECT model for Bastrop Bayou Watershed<br />

Year WWTP Wildlife<br />

Urban<br />

Run<strong>of</strong>f Dogs Cattle OSSF Total<br />

2008 10,680 841,403 18,259,373 24,270,000 14,735,459 19,294,274 77,411,188<br />

2010 11,748 838,882 19,138,940 26,172,000 14,735,459 20,880,795 81,777,824<br />

2015 12,923 837,923 19,597,292 26,980,000 14,735,459 21,758,953 83,922,550<br />

2020 14,216 835,530 20,847,989 28,932,000 14,735,459 23,591,083 88,956,277<br />

2025 15,637 830,734 23,420,446 33,268,000 14,735,459 28,869,423 101,139,699<br />

2030 17,201 825,630 26,309,130 38,044,000 14,735,459 33,391,106 113,322,525<br />

2035 18,921 819,213 29,510,488 43,386,000 14,735,459 38,717,552 127,187,633<br />

2040 20,813 814,208 32,274,813 48,102,000 14,735,459 43,543,825 139,491,118<br />

Units are million MPN/day.<br />

The average flow for the analysis period from Table 3 at the lower end <strong>of</strong> the bas<strong>in</strong>, Station<br />

11474, is 341.8 cfs. This is 9,680 L/sec or 83.6 E 9 dL/day. The bacteria load <strong>in</strong> 2008 from Table<br />

4 is 77,411,188 million MPN/day. The average concentration <strong>of</strong> the specified <strong>in</strong>dicator bacteria<br />

is thus 926 MPN/dL <strong>in</strong> 2008. Of course this is not necessarily realistic because it is based on<br />

deposition by cattle and dogs all show<strong>in</strong>g up <strong>in</strong> the stream, when that is not necessarily correct.<br />

The primary use <strong>of</strong> the SELECT model is to capture changes <strong>in</strong> loads as land use changes. From<br />

Table 4, the total bacterial load is projected to nearly double by the year 2040. By this<br />

calculation, the average <strong>in</strong>dicator bacteria concentration would be near 1,668 MPN/dL. Of<br />

course this value does not necessarily reflect bacteria that enter the stream.<br />

Another limitation <strong>of</strong> this simple calculation is that it doesn’t take <strong>in</strong>to account the effect <strong>of</strong> tidal<br />

mix<strong>in</strong>g <strong>in</strong> the lower part <strong>of</strong> the bas<strong>in</strong>. To help address this aspect, the model was modified by<br />

chang<strong>in</strong>g the downstream TDS boundary condition from 35,000 mg/L (35 ppt) to 0 mg/L, but<br />

keep<strong>in</strong>g the tidal hydraulics at the boundary. The only TDS <strong>in</strong>puts to the model were the<br />

upstream values. Depend<strong>in</strong>g on the source (background, waste<strong>water</strong>, and run<strong>of</strong>f) TDS<br />

18


concentrations were <strong>in</strong> the 200–500 mg/L range. The simulation average for station 11474 with<br />

no boundary condition TDS was 85 mg/L. The lower value reflects the effect <strong>of</strong> flood tide <strong>water</strong><br />

enter<strong>in</strong>g with 0 TDS and exit<strong>in</strong>g with TDS from upstream. Next the model was operated with the<br />

tide turned <strong>of</strong>f along with the 0 TDS downstream boundary. The tidal exchange process was thus<br />

taken out <strong>of</strong> action, and flow <strong>in</strong> the bayou was downstream only. Under this circumstance, the<br />

modeled average TDS at Station 11474 was 222 mg/L. The tidal mix<strong>in</strong>g effect at this location is<br />

thus to reduce the concentration by a factor <strong>of</strong> 62%.<br />

Concentration <strong>in</strong>formation is needed for comparison with criteria. However, it needs to be<br />

emphasized that there is little value <strong>in</strong> calculat<strong>in</strong>g a concentration from a load applied to a<br />

<strong>water</strong>shed divided by an average flow, and then tak<strong>in</strong>g a tidal dilution process <strong>in</strong>to account <strong>in</strong> the<br />

lower bas<strong>in</strong>. A much more mean<strong>in</strong>gful and technically correct method to calculate a<br />

concentration is with a <strong>water</strong> <strong>quality</strong> model designed for that purpose, as has been done under<br />

this project.<br />

REFERENCES<br />

City <strong>of</strong> Aust<strong>in</strong> (CoA). 2006. Storm<strong>water</strong> Run<strong>of</strong>f Quality and Quantity from Small Watersheds <strong>in</strong><br />

Aust<strong>in</strong>, Texas. Watershed Protection Department, Water Quality Report Series COA-<br />

ERM/WQM 2006-1.<br />

Georgia EPD. 2002. A <strong>Dynamic</strong> One-Dimensional Model <strong>of</strong> Hydrodynamics and Water Quality,<br />

EPDRiv1, Version 1.0.<br />

Jensen, P.A., and K.L. Lee. 2005. Comparison <strong>of</strong> Fecal Coliform and E. Coli Indicators.<br />

Proceed<strong>in</strong>gs, Texas Water 2005.<br />

PBS&J. 2010. Water Quality Model<strong>in</strong>g <strong>in</strong> Support <strong>of</strong> the Bastrop Bayou Watershed Protection<br />

Plan. Report Prepared for H-GAC, 3555 Timmons Lane, No. 120. Houston TX 77027.<br />

19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!