A numerical study on the thermal expansion coefficients of fiber

A numerical study on the thermal expansion coefficients of fiber A numerical study on the thermal expansion coefficients of fiber

fbe.deu.edu.tr
from fbe.deu.edu.tr More from this publisher
06.11.2014 Views

45 ⎡ Ef ⎤ ⎢ ν 2 m 2 ( ) ( 1+ ν )( ) ⎥ m ν m −1 C E m α = − − ⎢ − ⎥ 2 α m α m αf (3.24) ⎢1+ 1.1υf 2 1 E f − ν + + ⎥ ⎢ m 2ν mC ⎣1.1υ − ⎥ f 1 C E m ⎦ in which C 1.1υ 1 −1.1υ f = (3.25) f 3.4.1.9 Equation of Chamis Chamis (1984) has used a simple force balance, or strength of materials, approach to derive expression for both mechanical and thermal properties of unidirectional composites with transversely isotropic fibers. The derived expression for the longitudinal thermal expansion coefficient is again identical to Schapery’s formula. The expression for the transverse thermal expansion coefficient is α ⎛ E f1 ⎞ ( 1 − υf ) ⎜1 + υf ν m m = α υ ⎟ (3.26) ⎝ ⎠ 2 f2 f + ⎜ α E1 3.4.1.10 Equation of Sideridis Sideridis (1994) has calculated the expansion coefficients of the composite using a model which introduces the concept of the boundary interphase. This concept determines the influence of the interphase which depends on the quality of adhesion between fiber and matrix. It has been assumed that the composite has well defined material properties for the fiber and matrix, whereas the interphase material has inhomogeneous properties (thermal expansion coefficient, the elastic modulus and Poisson’s ratio) varying from the fiber surface to the matrix. He also made the following assumptions:

46 • A perfect bonding exists at all surfaces. • The fiber and the matrix materials carry only tensile stresses. • The interphase material can only carry shear stresses. The equation for the longitudinal thermal expansion coefficient is ∫ () r E () r i α ′ f Ef υf + αmEmυm + αi i r dr rf α 1 = (3.27) 2 ri E + ′ f υf Emυm + ∫ Ei () r r dr 2 r rf m r and for the transverse thermal expansion coefficient is α 2 = ri ( 1+ ν ) α υ + ( 1+ ν ) α υ′ + ( 1+ ν () r ) α ( r) f f f − α ν 1 f m υ f m + ν m m υ′ m 2 r 2 m ∫ rf 2 + 2 r m ∫ ri rf ν i i () r r dr i dr (3.28) where r f , r i , r m are the outer radii of the fiber, the interphase and the matrix circular sections respectively, then the fractions of the respective phases are υ f 2 2 2 2 r ri − rf rm − rf = , υi = , υ′ m = (3.29) r r r 2 f 2 m 2 m 2 m with υ′ = 1− υ − υ (3.30) m f i The influence of the mode of variation of the interphase material properties (linear, hyperbolic and parabolic) on the thermal expansion coefficient was studied by Sideridis. However, it is inconvenient to determine the thermal expansion coefficient of a composite using equation of Sideridis, because determination of the

45<br />

⎡<br />

Ef<br />

⎤<br />

⎢<br />

ν<br />

2<br />

m<br />

2<br />

( )<br />

( 1+<br />

ν )( )<br />

⎥<br />

m<br />

ν<br />

m<br />

−1 C E<br />

m<br />

α = − − ⎢<br />

− ⎥<br />

2<br />

α<br />

m<br />

α<br />

m<br />

αf<br />

(3.24)<br />

⎢1+<br />

1.1υf<br />

2 1 E<br />

f<br />

− ν + +<br />

⎥<br />

⎢<br />

m<br />

2ν<br />

mC<br />

⎣1.1υ<br />

−<br />

⎥<br />

f<br />

1<br />

C E<br />

m ⎦<br />

in which<br />

C<br />

1.1υ<br />

1 −1.1υ<br />

f<br />

= (3.25)<br />

f<br />

3.4.1.9 Equati<strong>on</strong> <strong>of</strong> Chamis<br />

Chamis (1984) has used a simple force balance, or strength <strong>of</strong> materials, approach<br />

to derive expressi<strong>on</strong> for both mechanical and <strong>the</strong>rmal properties <strong>of</strong> unidirecti<strong>on</strong>al<br />

composites with transversely isotropic <strong>fiber</strong>s. The derived expressi<strong>on</strong> for <strong>the</strong><br />

l<strong>on</strong>gitudinal <strong>the</strong>rmal expansi<strong>on</strong> coefficient is again identical to Schapery’s formula.<br />

The expressi<strong>on</strong> for <strong>the</strong> transverse <strong>the</strong>rmal expansi<strong>on</strong> coefficient is<br />

α<br />

⎛ E<br />

f1<br />

⎞<br />

( 1 − υf<br />

) ⎜1<br />

+ υf<br />

ν<br />

m m<br />

= α υ<br />

⎟ (3.26)<br />

⎝<br />

⎠<br />

2 f2 f + ⎜<br />

α<br />

E1<br />

3.4.1.10 Equati<strong>on</strong> <strong>of</strong> Sideridis<br />

Sideridis (1994) has calculated <strong>the</strong> expansi<strong>on</strong> <strong>coefficients</strong> <strong>of</strong> <strong>the</strong> composite using<br />

a model which introduces <strong>the</strong> c<strong>on</strong>cept <strong>of</strong> <strong>the</strong> boundary interphase. This c<strong>on</strong>cept<br />

determines <strong>the</strong> influence <strong>of</strong> <strong>the</strong> interphase which depends <strong>on</strong> <strong>the</strong> quality <strong>of</strong> adhesi<strong>on</strong><br />

between <strong>fiber</strong> and matrix. It has been assumed that <strong>the</strong> composite has well defined<br />

material properties for <strong>the</strong> <strong>fiber</strong> and matrix, whereas <strong>the</strong> interphase material has<br />

inhomogeneous properties (<strong>the</strong>rmal expansi<strong>on</strong> coefficient, <strong>the</strong> elastic modulus and<br />

Poiss<strong>on</strong>’s ratio) varying from <strong>the</strong> <strong>fiber</strong> surface to <strong>the</strong> matrix. He also made <strong>the</strong><br />

following assumpti<strong>on</strong>s:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!