06.11.2014 Views

The Effect of Soil Properties on Toxic Metal Bioavailability: Field ...

The Effect of Soil Properties on Toxic Metal Bioavailability: Field ...

The Effect of Soil Properties on Toxic Metal Bioavailability: Field ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Soil</str<strong>on</strong>g> <str<strong>on</strong>g>Properties</str<strong>on</strong>g> <strong>on</strong> <strong>Toxic</strong><br />

<strong>Metal</strong> <strong>Bioavailability</strong>: <strong>Field</strong> Scale<br />

Validati<strong>on</strong> to Support Regulatory<br />

Acceptance<br />

Mark Barnett Ph.D.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering<br />

208 Harbert Engineering Center<br />

Auburn University, AL 36849-5337<br />

Ph<strong>on</strong>e (334) 844-6291<br />

Amy Hawkins<br />

Naval Facilities Engineering Service Center<br />

1100 23 rd Ave<br />

Port Hueneme, CA 93043<br />

Ph<strong>on</strong>e (805) 982-4890<br />

1


Background<br />

• Project funded by ESTCP for FY05 – FY07<br />

• Capitalizing <strong>on</strong> previous research by taking two<br />

completed SERDP projects to the dem<strong>on</strong>strati<strong>on</strong> phase<br />

– CU-1166 Quantifying the <strong>Bioavailability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Toxic</strong> <strong>Metal</strong>s in<br />

<str<strong>on</strong>g>Soil</str<strong>on</strong>g>s (Barnett, Fendorf, Jardine)<br />

– CU-1210 Determining the <strong>Bioavailability</strong>, <strong>Toxic</strong>ity, and<br />

Bioaccumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Organic Chemicals and <strong>Metal</strong>s for the<br />

Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Eco-SSLs (Basta, Chekai, Kuperman, Lanno)<br />

2


Problem Statement<br />

• <strong>Toxic</strong> metals As(III/V), Cr(III/VI), Cd, and Pb exist at<br />

thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> DoD sites<br />

• By default As, Cr, and Cd are assumed to be 100%<br />

bioavailable in human health and ecological risk<br />

assessments<br />

• Need to be able to determine appropriateness <str<strong>on</strong>g>of</str<strong>on</strong>g>:<br />

– In vivo studies<br />

– Excavati<strong>on</strong>/Removal<br />

– <str<strong>on</strong>g>Soil</str<strong>on</strong>g> stabilizati<strong>on</strong> technologies<br />

3


Problem Statement<br />

• <strong>Metal</strong> sequestering properties <str<strong>on</strong>g>of</str<strong>on</strong>g> soil can<br />

significantly lower or alter the bioavailability and<br />

risk to human and ecological receptors<br />

• In vitro bioaccessibility, in vivo swine metal<br />

bioavailability, and molecular-level metal<br />

speciati<strong>on</strong> studies all suggest that key soil<br />

properties c<strong>on</strong>trol metal bioavailability<br />

• Models to help predict metal bioavailability and<br />

toxicity can be developed based up<strong>on</strong> these key<br />

soil properties<br />

4


Objectives<br />

• Dem<strong>on</strong>strate how soil properties can be incorporated into a screening<br />

tool to help predict bioavailability and toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> As, Cd, Cr, and Pb<br />

• Dem<strong>on</strong>strate that in vitro methods can be used to prioritize sites,<br />

affect risk decisi<strong>on</strong>s, or justify in vivo studies<br />

• Seek regulatory acceptance <str<strong>on</strong>g>of</str<strong>on</strong>g> in vitro methods and the <str<strong>on</strong>g>Soil</str<strong>on</strong>g><br />

BioAccessibility Tool (SBAT) for initial human RA, and the suite <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ecological metal bioavailability methods for ecological RA through<br />

validati<strong>on</strong> studies with field-c<strong>on</strong>taminated soils<br />

• Dem<strong>on</strong>strate applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> in vitro methods and SBAT screening to<br />

prioritize and justify site-specific studies that may significantly reduce<br />

cleanup costs<br />

5


Methodology<br />

Scientists<br />

Regulatory<br />

agencies, EPA<br />

End users<br />

Coordinati<strong>on</strong>/Workshop<br />

Dem<strong>on</strong>strati<strong>on</strong> Plan<br />

DoD soil selecti<strong>on</strong><br />

Speciati<strong>on</strong> by SEM-<br />

EDX and XAS<br />

Stanford University<br />

C<strong>on</strong>taminant Bioaccessibility<br />

(PBET and DTPA) ORNL and<br />

Auburn University<br />

Ecological Bioassays<br />

Ohio State University<br />

Swine Dosing Trials<br />

Univ. <str<strong>on</strong>g>of</str<strong>on</strong>g> Missouri<br />

Plant bioassays<br />

Basta<br />

Earthworm bioassays<br />

Lanno<br />

Cross-correlati<strong>on</strong> and model validati<strong>on</strong><br />

6


Methodology<br />

DoD soils<br />

Models developed from 1166 and 1210<br />

& USEPA-NCEA<br />

Measure soil phys/chem characteristics;<br />

total and extractable metals<br />

Established relati<strong>on</strong>ships between soil<br />

phys/chem characteristics and<br />

bioavailability and bioaccessibility<br />

Compare parameters in DoD soils with<br />

models and make predicti<strong>on</strong> regarding<br />

toxicity<br />

C<strong>on</strong>duct swine, earthworm, plant<br />

bioassays to validate predicti<strong>on</strong><br />

7


Technology Maturity – Case Study<br />

log HgT<br />

Remediati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lower East Fork<br />

Poplar Creek (LEFPC) in Oak<br />

Ridge, TN, a Hg-c<strong>on</strong>taminated<br />

CERCLA site in early 1990s.<br />

5<br />

0<br />

-5<br />

-10<br />

HgCl 2 (s)<br />

% bioavailable<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

soils HgCl 2<br />

-15<br />

HgS(s)<br />

-20<br />

0 2 4 6 8 10 12 14<br />

pH<br />

In vitro bioaccessibility and<br />

speciati<strong>on</strong> studies led to the<br />

adopti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a site-specific<br />

relative Hg bioavailability.<br />

8


Technology Maturity – Case Study<br />

• Default bioavailability <str<strong>on</strong>g>of</str<strong>on</strong>g> 100%<br />

and RfD for HgCl 2 .<br />

– Cleanup level <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 mg/kg.<br />

100<br />

150<br />

• Proposed relative<br />

bioavailability <str<strong>on</strong>g>of</str<strong>on</strong>g> 30% based <strong>on</strong><br />

speciati<strong>on</strong> and bioavailability<br />

studies.<br />

– Cleanup level <str<strong>on</strong>g>of</str<strong>on</strong>g> 180<br />

mg/kg.<br />

cost (10 6 $)<br />

75<br />

50<br />

25<br />

cost<br />

yd 3<br />

100<br />

50<br />

1000 yd 3 excavated<br />

• After comments from the<br />

public, used bioavailability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

10%.<br />

– Cleanup level <str<strong>on</strong>g>of</str<strong>on</strong>g> 400<br />

mg/kg.<br />

0<br />

0<br />

0 20 40 60 80 100<br />

<strong>Bioavailability</strong> (%)<br />

9


Technology Maturity – CU-1210<br />

<str<strong>on</strong>g>Soil</str<strong>on</strong>g> Characterizati<strong>on</strong><br />

•21 soils from 5 soil orders<br />

•Broad range in chemical properties associated with binding metal<br />

•Spiked with Cd 300 mg/kg as Cd (NO 3 ) 2, 300 mg/kg Zn as Zn(NO 3 ) 2, or<br />

2000 mg/kg Pb as Pb(NO 3 ) 2 , 250 mg/kg As as Na 2 HAsO 4<br />

Lettuce Bioassay<br />

(Lactuca sativa var, Paris Island<br />

Cos)<br />

•20 seeds per pot<br />

•Harvest at 40 days<br />

Endpoints Measured<br />

•Tissue metal<br />

•Dry matter growth<br />

10


Technology Maturity – CU-1210<br />

Range in<br />

soil<br />

<str<strong>on</strong>g>Properties</str<strong>on</strong>g><br />

3<br />

2<br />

1<br />

0<br />

45<br />

30<br />

15<br />

0<br />

180<br />

120<br />

60<br />

0<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Organic Carb<strong>on</strong> (OC)<br />

(0.5 to 3.0 %)<br />

Cati<strong>on</strong> Exchange Capacity (CEC)<br />

(3.0 to 32.4 cmol c/kg)<br />

Amorphous Al/Fe (FEAL)<br />

(9.0 to 195 mmol/kg)<br />

<str<strong>on</strong>g>Soil</str<strong>on</strong>g> pH<br />

1 2 3 4 5 6 7 8 9 101112131415161718192021<br />

<str<strong>on</strong>g>Soil</str<strong>on</strong>g><br />

11


Technology Maturity – CU-1210<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Tissue As<br />

0.76 to 39.3 mg/kg<br />

A B C D E F G H I J K L M N O<br />

<str<strong>on</strong>g>Soil</str<strong>on</strong>g><br />

Results 250 mg As/kg<br />

C<strong>on</strong>trol<br />

12<br />

As-spiked


Technology Maturity – CU-1210<br />

Earthworm mortality in soils differing in<br />

physical/chemical characteristics, BUT all spiked<br />

with Pb (2000 mg/kg)<br />

13<br />

Dennis A<br />

Dennis B<br />

Lut<strong>on</strong> A<br />

Osage A<br />

Osage B<br />

Richfield B<br />

Summit A<br />

Haskell<br />

Hanl<strong>on</strong> A<br />

Dougherty A<br />

Kirkland A<br />

P<strong>on</strong>d B<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

% M ortality<br />

P<strong>on</strong>d Creek A<br />

Efaw A<br />

Perkins A<br />

Pratt A<br />

Pratt B


<str<strong>on</strong>g>Soil</str<strong>on</strong>g> Cd (mg/kg, dwt)<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Technical Maturity – CU-1210<br />

Cd bioaccumulati<strong>on</strong> in earthworms: Total soil Cd<br />

or Ca(NO 3 ) 2 extract<br />

Ca(NO3)2 extract<br />

Total<br />

y = -0.2815x + 305.11<br />

R 2 = 0.0015<br />

y = 30.967x + 2.114<br />

R 2 = 0.4402<br />

0 2 4 6 8<br />

Body Residue (mmol Cd/kg, dwt)<br />

14


Technology Maturity – Swine Model<br />

• Versatility--assess bioavailability <str<strong>on</strong>g>of</str<strong>on</strong>g> metals,<br />

inorganic, and organic compounds<br />

• Surrogate for children, adults, and pregnant<br />

– Compare differences between ages & c<strong>on</strong>diti<strong>on</strong>s<br />

• Applicable to pharmaco-/toxicokinetic studies<br />

• Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sites <str<strong>on</strong>g>of</str<strong>on</strong>g> accumulati<strong>on</strong><br />

• Multiple resp<strong>on</strong>ses to assess RBA<br />

• Detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> untoward effects<br />

15


Technology Maturity – Swine Model<br />

16


Technology Maturity - Swine<br />

Model<br />

17


Technology Maturity – SBAT<br />

• Predictive model (SBAT) was<br />

developed under SERDP CU-<br />

1166 based <strong>on</strong> the correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil physical and chemical<br />

properties with decreased metal<br />

bioaccessibility<br />

Enter site-specific data<br />

Enter soil series name<br />

Retrieve tax<strong>on</strong>omy<br />

Retrieve relevant soil properties<br />

Aggregated<br />

NRCS data<br />

Calculate bioaccessibility<br />

estimate and uncertainty<br />

18


Technology Maturity – PBET<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> in vitro<br />

bioaccessibility<br />

method<br />

Physiologically<br />

Based Extracti<strong>on</strong><br />

Test (PBET) has<br />

been shown to<br />

correlate with the<br />

in vivo method<br />

for As and Pb<br />

19


Milest<strong>on</strong>e I - Workshop<br />

• 1 day workshop at project initiati<strong>on</strong><br />

• State regulators, DoD end-users, EPA, federal agencies,<br />

scientists, and ITRC members<br />

• Focus <strong>on</strong> past, current, and future research investigating<br />

soil metal bioavailability methodologies<br />

• Focus <strong>on</strong> appropriate use <str<strong>on</strong>g>of</str<strong>on</strong>g> in vitro bioaccessibility to aid<br />

risk assessment<br />

• Discuss end-user and regulatory needs for decisi<strong>on</strong>-making<br />

20


Milest<strong>on</strong>e II – Site Selecti<strong>on</strong><br />

– Ten soil sites will be used for ecological bioassay studies, <strong>on</strong>e<br />

c<strong>on</strong>taminated sample and <strong>on</strong>e c<strong>on</strong>trol sample will be taken from<br />

each site<br />

– Four sites will be included in the in vivo swine dosing studies<br />

– Site selecti<strong>on</strong> will be drawn from DoD sites including 40 soil sites<br />

previously studied under SERDP<br />

– Focus <strong>on</strong> obtaining a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> soil types<br />

• Sandy, high pH with limited capacity to sequester As, excellent capacity to sequester<br />

Pb and Cd<br />

• Silty, neutral pH soils with good to excellent capacity to sequester metals<br />

• Acidic, Fe-oxide rich soils with excellent capacity to sequester As, and potentially<br />

poor capacity to sequester Cd, Pb, and Cr<br />

21


Milest<strong>on</strong>e III – In Vitro Assessment and<br />

<str<strong>on</strong>g>Soil</str<strong>on</strong>g> <str<strong>on</strong>g>Properties</str<strong>on</strong>g> Modeling Comparis<strong>on</strong><br />

• <strong>Metal</strong> availability for plants and invertebrates modeled based <strong>on</strong> total<br />

metal levels and soil physical/chemical characteristics and measured<br />

using several wet chemical methods<br />

– Statistical relati<strong>on</strong>ships developed from a set <str<strong>on</strong>g>of</str<strong>on</strong>g> 26 soils (US EPA-<br />

NCEA, SERDP CU-1210) will be used for this estimate<br />

Measured versus predicted Cr(VI) bioaccessibility<br />

<strong>on</strong> 22 c<strong>on</strong>taminated DoD soils<br />

Predicted Cr(VI) bioaccessibility<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1:1 line<br />

Best-fit curve to the data has<br />

a slope = 1.07, an intercept =<br />

1.76, and r 2 =0.52**<br />

Not used in regressi<strong>on</strong><br />

Treated as an outlier<br />

0 10 20 30 40<br />

22<br />

Measured Cr(VI) bioaccessibility


Milest<strong>on</strong>e III – In Vitro Assessment and<br />

<str<strong>on</strong>g>Soil</str<strong>on</strong>g> <str<strong>on</strong>g>Properties</str<strong>on</strong>g> Modeling Comparis<strong>on</strong><br />

• Mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

enhanced metal<br />

sequestrati<strong>on</strong> and<br />

solid-phase metal<br />

speciati<strong>on</strong> will be<br />

quantified using a<br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> highresoluti<strong>on</strong><br />

surface<br />

spectroscopy<br />

techniques<br />

χ(k)*k 3<br />

1.6 X 10 -5 moles Cr(III)/g soil<br />

4 X 10 -6 moles Cr(III)/g soil<br />

Cr(OH) 3<br />

4 6 8 10<br />

o<br />

K(A -1 )<br />

23


Milest<strong>on</strong>e IV – In Vitro Assessment and<br />

In Vivo Assessment Comparis<strong>on</strong><br />

• Ecological<br />

– Bioassays <str<strong>on</strong>g>of</str<strong>on</strong>g> earthworms and plants to determine metal<br />

toxicity<br />

• Human Health<br />

– SOPs using the immature swine model will be followed to<br />

assess in vivo metal bioavailability<br />

– SOP has been used successfully to assess in vivo<br />

bioavailability <str<strong>on</strong>g>of</str<strong>on</strong>g> Pb and As<br />

24


Milest<strong>on</strong>e IV – In Vitro Assessment and<br />

In Vivo Assessment Comparis<strong>on</strong><br />

• Hypothesis:<br />

Comparing in vivo<br />

and in vitro results<br />

and soil propertybased<br />

models will<br />

show that<br />

uncertainty related<br />

to the use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

models is<br />

acceptable<br />

measured bioaccessibility/<br />

bioavailability (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

% = 11.3 pH - 30.5 log Fe<br />

As(V) in vitro calibrated<br />

As(V) in vitro independent<br />

swine independent (Missouri)<br />

m<strong>on</strong>key<br />

As(III) in vitro<br />

swine independent (Syracuse)<br />

• Models can be used<br />

for initial estimates<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> toxic metal<br />

bioavailability<br />

0<br />

0 20 40 60 80 100<br />

predicted bioaccessibility (%)<br />

25


Summary<br />

• Decreased bioavailability due to soil properties<br />

must be accounted for in human health and<br />

ecological risk assessment<br />

• In vitro and modeling methods developed through<br />

SERDP require dem<strong>on</strong>strati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> their ability to<br />

justify in vivo studies moving away from 100%<br />

bioavailability<br />

• Up fr<strong>on</strong>t regulatory and end-user involvement will<br />

promote rapid and complete technology transfer<br />

26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!