02.11.2014 Views

using locas software to predict the long-term behavior of salt caverns

using locas software to predict the long-term behavior of salt caverns

using locas software to predict the long-term behavior of salt caverns

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

USING LOCAS SOFTWARE<br />

TO PREDICT<br />

THE LONG-TERM BEHAVIOR<br />

OF SALT CAVERNS<br />

Technical Class<br />

SMRI Fall Meeting – Leipzig, Germany<br />

Oc<strong>to</strong>ber 3, 2010<br />

1<br />

OUTLINE<br />

• Introduction – LOCAS main features<br />

• Example <strong>of</strong> application: cavern abandonment<br />

• Conclusions<br />

2<br />

1


QUICK INTRODUCTION<br />

WHAT IS LOCAS?<br />

• A 2D axisymetrical Finite Element code<br />

• Af fully coupled dThermo-Hydro-Mechanical h code<br />

• A powerful —but user-friendly— Windows ® <strong>s<strong>of</strong>tware</strong><br />

WHAT IS IT FOR?<br />

• Study <strong>of</strong> liquid-filled or gas-filled <strong>salt</strong> <strong>caverns</strong><br />

• Short-<strong>term</strong> and <strong>long</strong>-<strong>term</strong> <strong>behavior</strong> <strong>of</strong> <strong>caverns</strong><br />

Examples <strong>of</strong> applications:<br />

• Stability <strong>of</strong> cavern at min/max pressure, cycling<br />

• Analysis <strong>of</strong> Mechanical Integrity Tests<br />

• Abandonment <strong>of</strong> <strong>salt</strong> <strong>caverns</strong><br />

3<br />

EXAMPLE OF APPLICATION<br />

CAVERN ABANDONMENT<br />

Carresse SPR2 cavern test supported by SMRI<br />

300 m<br />

9000 m 3<br />

4<br />

2


KEY POINTS IN THE ANALYSIS OF AN ABANDONMENT TEST<br />

• PRELIMINARY TASKS<br />

Task 1: Calculate cavern pressure evolution during <strong>the</strong> test<br />

Task 2: Calculate <strong>long</strong>-<strong>term</strong> cavern temperature evolution<br />

Task 3: Assess casing/casing shoe leaks during <strong>the</strong> test<br />

• DETERMINATION OF SALT PARAMETERS<br />

- Mechanical parameters<br />

• elasticity<br />

• secondary creep (Nor<strong>to</strong>n-H<strong>of</strong>f)<br />

- Hydraulical parameters: <strong>salt</strong> permeability at cavern scale<br />

• LONG-TERM FEM COMPUTATIONS PREDICTIONS<br />

5<br />

ANALYSIS OF A PRE-ABANDONMENT TEST<br />

Wellhead measurements Sonar survey Cavern temperature measurement<br />

Cavern pressure evolution Cavern mesh Cavern temperature evolution<br />

Cavern fluid(s) properties<br />

Rock <strong>salt</strong> properties<br />

LONG-TERM COMPUTATIONS<br />

6<br />

3


ANALYSIS OF A PRE-ABANDONMENT TEST<br />

Wellhead measurements Sonar survey Cavern temperature measurement<br />

Cavern pressure evolution Cavern mesh Cavern temperature evolution<br />

Cavern fluid(s) properties<br />

Rock <strong>salt</strong> properties<br />

LONG-TERM COMPUTATIONS<br />

7<br />

Task 1: De<strong>term</strong>ination <strong>of</strong> cavern pressure evolution during <strong>the</strong> test<br />

Pressures measured at well head<br />

Cavern pressure<br />

Well data<br />

• columns composition<br />

• temperature log<br />

• fluids compressibilities<br />

• possible leaks<br />

8<br />

4


His<strong>to</strong>ry <strong>of</strong> Wellhead Pressures<br />

9<br />

His<strong>to</strong>ry <strong>of</strong> Ground Temperature<br />

10<br />

5


His<strong>to</strong>ry <strong>of</strong> Atmospheric Pressure<br />

11<br />

A FILTERING TOOL IS EMBEDDED<br />

Wellhead pressure<br />

Ground temperature<br />

Atmospheric pressure<br />

12<br />

6


Measured pressure<br />

Corrected pressure<br />

13<br />

Earth tides<br />

Right-click on corrected pressure spectrum<br />

14<br />

7


Task 1: De<strong>term</strong>ination <strong>of</strong> cavern pressure evolution during <strong>the</strong> test<br />

Corrected pressures at well head<br />

Corrected cavern pressure<br />

Well data<br />

• columns composition<br />

• temperature log<br />

• fluids compressibilities<br />

• possible leaks<br />

15<br />

Well Data in LOCAS<br />

Strings database<br />

Fluids database<br />

Rocks database<br />

Layers database<br />

Sections database<br />

Stratigraphic cross-section view<br />

Well architecture view<br />

16<br />

8


LIQUIDS DATABASE<br />

17<br />

PURE GASE DATABASE<br />

18<br />

9


NATURAL GASES DATABASE<br />

19<br />

SECTIONS DATABASE<br />

20<br />

10


WELL ARCHITECTURE<br />

Section #2<br />

Section #3<br />

Section #5<br />

21<br />

INJECTIONS/WITHDRAWALS DATABASE<br />

Data can be loaded from a flow measurement file<br />

22<br />

11


COLUMNS DATABASE<br />

It’s possible <strong>to</strong> have up <strong>to</strong> 4 different fluids in each column (3 interfaces)<br />

23<br />

HISTORY OF CAVERN PRESSURE<br />

24<br />

12


ANALYSIS OF A PRE-ABANDONMENT TEST<br />

Wellhead measurements Sonar survey Cavern temperature measurement<br />

Cavern pressure evolution Cavern mesh Cavern temperature evolution<br />

Cavern fluid(s) properties<br />

Rock <strong>salt</strong> properties<br />

LONG-TERM COMPUTATIONS<br />

25<br />

CAVERN GEOMETRY IN LOCAS<br />

2D axisymetrical <strong>caverns</strong><br />

Simple shape (sphere, cylinder) or Real shape from sonar survey<br />

Av. cavern radius as a function <strong>of</strong> depth<br />

Embedded mesher<br />

Meshing parameters<br />

Cavern mesh<br />

Meshes databases<br />

26<br />

13


CAVERN PROFILE FROM SONAR SURVEY<br />

Load file from sonar survey<br />

27<br />

MESHING PARAMETERS<br />

28<br />

14


MESH VIEW<br />

29<br />

30<br />

15


3D VIEW<br />

31<br />

SPR2<br />

32<br />

16


MESHES DATABASE<br />

33<br />

ANALYSIS OF A PRE-ABANDONMENT TEST<br />

Wellhead measurements Sonar survey Cavern temperature measurement<br />

Cavern pressure evolution Cavern mesh Cavern temperature evolution<br />

Cavern fluid(s) properties<br />

Rock <strong>salt</strong> properties<br />

LONG-TERM COMPUTATIONS<br />

34<br />

17


Task 2: De<strong>term</strong>ination <strong>of</strong> <strong>long</strong>-<strong>term</strong> cavern temperature evolution<br />

- De<strong>term</strong>ination <strong>of</strong> natural rock temperature T <br />

- Fitting <strong>of</strong> a cavern temperature measurement<br />

Accurate <strong>predict</strong>ion <strong>of</strong><br />

brine temperature evolution<br />

brine <strong>the</strong>rmal expansion<br />

35<br />

SPR2 Geo<strong>the</strong>rmal Temperature<br />

SPR2 - Logs de température et calage gradients SPR3<br />

Temperature (°C)<br />

Température (°C)<br />

13 14 15 16 17 18 19 20 21<br />

0<br />

50<br />

100<br />

<strong>of</strong>ondeur / sol (m)<br />

Depth (m)<br />

Pro<br />

150<br />

200<br />

250<br />

300<br />

350<br />

Top <strong>of</strong> <strong>salt</strong><br />

T <br />

19.5 °C<br />

12/06/2002 moyenne<br />

20/08/2002 moyenne<br />

08/10/2002 moyenne<br />

1ères inclusions sel<br />

Sabot Casing<br />

Base Cheminée<br />

Landing Nipple<br />

SPR3 : 2,5 °C/100 m<br />

SPR3 : 1,2 °C/100 m<br />

400<br />

450<br />

36<br />

18


SPR2 TEMPERATURE MEASUREMENT IN 2002<br />

reference<br />

18.35°C – 058°C/year 0.58 37<br />

Cavern Temperature<br />

measurement<br />

T <br />

19.5 °C<br />

<br />

Accurate <strong>predict</strong>ion<br />

actual<br />

virtual<br />

Time<br />

July 2002<br />

38<br />

19


SPR2 CAVERN TEMPERATURE FITTING<br />

18.35 °C<br />

+0.58 °C/year<br />

Temperature<br />

1 st June 2000<br />

763 days<br />

1 st July 2002<br />

Time<br />

39<br />

ANALYSIS OF A PRE-ABANDONMENT TEST<br />

Wellhead measurements Sonar survey Cavern temperature measurement<br />

Cavern pressure evolution Cavern mesh Cavern temperature evolution<br />

Cavern fluid(s) properties<br />

Rock <strong>salt</strong> properties<br />

LONG-TERM COMPUTATIONS<br />

40<br />

20


BRINE PROPERTIES<br />

41<br />

SALT PROPERTIES<br />

• Mechanical properties<br />

• Elasticity<br />

• Creep: stationnary + transient<br />

4 implemented creep laws<br />

Nor<strong>to</strong>n-H<strong>of</strong>f<br />

Lemaitre-Menzel-Schreiner<br />

Munson-Dawson<br />

Lubby2<br />

+ possibility <strong>of</strong> reverse creep <strong>using</strong> a modified d Munson-Dawson law<br />

• Thermal properties<br />

• Hydraulical properties (micro-permeation)<br />

• Chemical properties (dissolution/crystallization)<br />

42<br />

21


Munson-Dawson Database<br />

43<br />

Salt Micro-permeation Properties<br />

44<br />

22


Calculation Steps<br />

45<br />

Phenomena that can be taken in<strong>to</strong> account:<br />

• Salt creep<br />

• Cavern fluid heating/cooling<br />

• Cavern fluid micro-permeation<br />

• Salt complementary dissolution/crystallization<br />

• Cavern fluid adiabatic compression/release<br />

Coupled through cavern compressibility<br />

Cavern pressure/temperature and casing leaks<br />

can be set or calculated<br />

46<br />

23


Example <strong>of</strong> parameters<br />

back-calculation<br />

47<br />

Salt parameters <strong>to</strong> be de<strong>term</strong>ined<br />

for <strong>long</strong>-<strong>term</strong> computations:<br />

‣ Salt elastic parameters <br />

E,<br />

<br />

<br />

‣ Salt creep parameters<br />

Stationnary creep: Nor<strong>to</strong>n-H<strong>of</strong>f parameters<br />

<br />

A, nQ , R<br />

<br />

‣ Salt hydraulical parameters<br />

<br />

hyd<br />

K <strong>salt</strong><br />

<br />

48<br />

24


Back-calculation <strong>of</strong> Salt Elastic Parameters<br />

Compressibility<br />

test<br />

V<br />

<br />

3<br />

3.97 m /MPa<br />

0.25<br />

assumed<br />

Finite Elements computation<br />

E 16,500 MPa<br />

49<br />

STATIONNARY PARAMETERS FITTED FOR TWO PERIODS<br />

Transient phase<br />

2 nd fitting period<br />

1 st fitting period<br />

50<br />

25


Selection <strong>of</strong> Parameters <strong>to</strong> be Fitted<br />

51<br />

Parameters <strong>to</strong> be Fitted<br />

Search domain<br />

52<br />

26


Selection <strong>of</strong> Fitted Periods<br />

53<br />

Selection <strong>of</strong> <strong>the</strong> Optimization Method<br />

54<br />

27


Fitting results can be emailed<br />

55<br />

Worst<br />

(hPa)<br />

lt permeability<br />

Sal<br />

Pressure<br />

computation<br />

measure<br />

Time<br />

Best<br />

Nor<strong>to</strong>n A parameter<br />

5×10 -20 m²<br />

4×10 -20 m²<br />

56<br />

28


INVESTIGATION OF FITTING SENSIBILITY<br />

57<br />

SPR2 - FITTING MAIN RESULTS<br />

hyd<br />

Salt permeability:<br />

K 3 4 <br />

10 m<br />

<strong>salt</strong><br />

20 2<br />

Salt stationnary creep:<br />

Q n<br />

<br />

<br />

Aexp<br />

<br />

RT <br />

(Nor<strong>to</strong>n-H<strong>of</strong>f law)<br />

-n<br />

A (/MPa -year)<br />

n<br />

Q R<br />

(K)<br />

2 possible sets<br />

<strong>of</strong> parameters<br />

Set #1 2.5 2.5 4100<br />

Set #2 7.8 5 4100<br />

58<br />

29


STATIONNARY PARAMETERS FITTED FOR TWO PERIODS<br />

Average pressure difference < 10 hPa<br />

59<br />

Long-<strong>term</strong> computation<br />

60<br />

30


Nor<strong>to</strong>n-H<strong>of</strong>f set #1<br />

hyd<br />

K <strong>salt</strong><br />

410 m<br />

20 2<br />

n 2.55<br />

2.5<br />

A 2.5 /MPa -year<br />

Q R 4100 K<br />

61<br />

SUBSIDENCE CALCULATION<br />

62<br />

31


NO-TENSION CRITERIA, DILATION CRITERIA…<br />

63<br />

EXAMPLE OF CONTOUR PLOTS<br />

It’s also possible <strong>to</strong> create movies (.avi)<br />

64<br />

32


CONCLUSIONS<br />

• Many features have been implemented in a <strong>s<strong>of</strong>tware</strong> called LOCAS<br />

• LOCAS can be helpful for various kinds <strong>of</strong> studies, as for instance:<br />

pressure/temperature <strong>predict</strong>ion including transient <strong>behavior</strong><br />

simulation <strong>of</strong> fast cycling loading – Natural gas, CAES<br />

<strong>long</strong>-<strong>term</strong> simulations (abandonment, subsidence)<br />

mechanical integrity tests (MITs) analysis<br />

short-<strong>term</strong> <strong>term</strong> stability (min./max. operating pressure)<br />

mechanical/<strong>the</strong>rmal/hydraulical parameters fitting from in situ tests<br />

Prediction from data at cavern scale<br />

65<br />

CONCLUSIONS<br />

‣ LOCAS supports all 32-bits Windows versions, Windows Seven included.<br />

‣ 3D & 64 bits versions under development.<br />

‣ LOCAS is not yet available for sale.<br />

Interested people, please contact Benoit Brouard:<br />

contact@Brouard-Consulting.com<br />

66<br />

33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!