02.11.2014 Views

z- Transforms - MetaLab

z- Transforms - MetaLab

z- Transforms - MetaLab

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

z- <strong>Transforms</strong><br />

• Frequency domain representations of discretetime<br />

signals and LTI discrete-time systems are<br />

made possible with the use of DTFT.<br />

• However not all discrete-time signals ( e.g. unit<br />

step sequence) are guaranteed to have DTFT<br />

because of convergence condition.<br />

• As a result for these cases we are not able to<br />

use such frequency domain characterization.


Definition of z-Transform.<br />

DTFT is given by -<br />

G(e<br />

jω<br />

)<br />

=<br />

Certain function of g[n] will not allow the above summation to converge.<br />

Therefore we need to find a way of overcoming this non - convergence.<br />

Let us modified the signal g[n] to g[n]r<br />

DTFT of<br />

∞<br />

∑<br />

n=−∞<br />

g[n]r<br />

g[<br />

n]<br />

e<br />

-n<br />

− jω<br />

n<br />

is G(e<br />

.<br />

jω<br />

)<br />

=<br />

∞<br />

∑<br />

n=−∞<br />

g[<br />

n]<br />

r<br />

-n<br />

−n<br />

e<br />

− jω<br />

n<br />

=<br />

∞<br />

∑<br />

n=−∞<br />

g[<br />

n](<br />

re<br />

jω<br />

)<br />

−n<br />

.<br />

Letting<br />

re<br />

jω<br />

=<br />

z,<br />

therefore G(z)<br />

=<br />

∞<br />

∑<br />

n=−∞<br />

g[<br />

n]<br />

z<br />

−n<br />

..... Eqn.6.1


where z = re<br />

Region of Convergence .<br />

Another way looking at the transform G(z)<br />

z - transform is the DTFT of modified signal<br />

jω<br />

.<br />

∞ = ∑ g[<br />

n]<br />

z<br />

n=<br />

−∞<br />

g[n]r<br />

By choosing the right value of r,<br />

we can make the summation above to converge.<br />

The values of r that make this convergence possible<br />

is known as Region of Convergence (ROC).<br />

ROC are circles or annular rings in the z - plane.<br />

-n<br />

.<br />

−n<br />

.-


Point z in a<br />

Complex z-<br />

plane<br />

Imaginary Axis<br />

z = re<br />

jω<br />

r<br />

ω<br />

1<br />

Real Axis<br />

Unit Circle


Annular ring<br />

in a<br />

Complex z-<br />

plane<br />

Imaginary Axis<br />

r<br />

ω<br />

z = re<br />

jω<br />

ROC<br />

1<br />

Real Axis<br />

Unit Circle


Example 6.1 z-Transform of Causal<br />

What is<br />

X(z)<br />

∴X(z)<br />

Exponential Sequence.<br />

Using eqn.6.1,<br />

=<br />

the z - transform of<br />

∞<br />

∑<br />

n=−∞<br />

x[<br />

n]<br />

z<br />

G(z)<br />

(The above summation is a sum of<br />

1<br />

=<br />

1- ( αz<br />

only if<br />

The z - transform here is an algebraic expression<br />

but must be accompany with the<br />

convergence or else it is<br />

-1<br />

−n<br />

)<br />

,<br />

=<br />

=<br />

∞<br />

∑<br />

n=−∞<br />

∞<br />

∑<br />

n=−∞<br />

x[n]<br />

g[<br />

n]<br />

z<br />

n<br />

α µ [ n]<br />

z<br />

| αz<br />

not valid.<br />

| < 1.<br />

( αz<br />

geometric series)<br />

condition of<br />

ROC here is outside a circle(annular region)| z | > | α |<br />

-1<br />

n<br />

= α µ [ n]?<br />

−n<br />

−n<br />

=<br />

∞<br />

∑<br />

n=<br />

0<br />

−1<br />

)<br />

n<br />

.


1<br />

Amplitude<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

r<br />

−n<br />

= 1. 2<br />

−n<br />

0.2<br />

0.1<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

Time index n<br />

α = 1.1<br />

50<br />

45<br />

40<br />

Amplitude<br />

35<br />

30<br />

25<br />

20<br />

15<br />

n<br />

n<br />

x[ n]<br />

= α µ [ n]<br />

= (1.1) µ [ n].<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

Time index n


Imaginary Axis<br />

ROC<br />

| α | < 1<br />

1<br />

Real Axis<br />

Unit Circle


n<br />

If α = 1, x[n] = 1<br />

DTFT of<br />

=<br />

∞<br />

∑<br />

n=<br />

0<br />

X(z)<br />

1×<br />

e<br />

only if<br />

|<br />

Unit step sequence<br />

The unit step sequence is<br />

hence it DTFT does<br />

But z - transform of<br />

1<br />

=<br />

1- ( αz<br />

z<br />

µ [ n]<br />

=<br />

− jω<br />

n<br />

-1<br />

⇒ ∞(DTFT does<br />

-1<br />

)<br />

=<br />

× µ [ n]<br />

∞<br />

∑<br />

n=−∞<br />

µ [ n]:<br />

−<br />

1<br />

1- z<br />

µ [ n]<br />

e<br />

not converge.<br />

-1<br />

| < 1i.e.| z | > 1.(ROC).<br />

,<br />

= µ [ n].<br />

− jω<br />

n<br />

not exit)<br />

not absolutely summable,


Imaginary Axis<br />

ROC<br />

1<br />

Real Axis<br />

Unit Circle<br />

Since unit circle is<br />

not in ROC,<br />

DTFT of<br />

unit step does not converge.


Example 6.2 z-Transform of Anticausal<br />

Exponential Sequence.<br />

n<br />

What is the z - transform of x[n] = −α<br />

µ [ −n<br />

−1]?{left hand sequence}<br />

Using eqn.6.1, X(z) =<br />

= −<br />

−∞<br />

∑<br />

n=−1<br />

( αz<br />

−1<br />

1<br />

= 1−<br />

−<br />

1- ( α<br />

1<br />

)<br />

n<br />

,<br />

z)<br />

= −<br />

∞<br />

∑<br />

m=<br />

1<br />

∞<br />

( αz<br />

∑<br />

n=−∞<br />

−1<br />

x[<br />

n]<br />

z<br />

)<br />

−m<br />

−n<br />

= −<br />

=<br />

∞<br />

∑<br />

m=<br />

0<br />

∞<br />

∑<br />

n=−∞<br />

( αz<br />

−<br />

provided that | ( α<br />

1<br />

n<br />

−α<br />

µ [ −n<br />

−1]<br />

z<br />

−1<br />

)<br />

−m<br />

z) | < 1.<br />

+ 1 = 1−<br />

−n<br />

∞<br />

∑<br />

m=<br />

0<br />

= −<br />

−<br />

( α<br />

1<br />

−1<br />

∑<br />

n=−∞<br />

z)<br />

m<br />

( αz<br />

−1<br />

)<br />

n<br />

.<br />

−1<br />

- ( α z)<br />

X(z) = =<br />

−1<br />

1- ( α z)<br />

1 1<br />

=<br />

1<br />

+ 1<br />

1−<br />

( αz<br />

−1<br />

− ( α z)<br />

The end algebraic expression is exactly the same as in example 6.1,<br />

the only that is different here is ROC<br />

,<br />

)<br />

−<br />

| ( α<br />

z) | < 1.<br />

∴ROC is inside a circle(annular region) | z | < | α |<br />

-1<br />

1<br />

−<br />

provided that | ( α<br />

1<br />

z) | < 1.


Imaginary Axis<br />

| α | < 1<br />

ROC<br />

1<br />

Real Axis<br />

Unit Circle


z-Transform of Finite Sequences<br />

G(z) =<br />

If g[n]is finite e.g.g[n] = [1,-2,3,-1,0,3,7].<br />

G(z) =<br />

ROC for this G(z) is the entire z - plane except for z =<br />

If g[n]is finite e.g.g[n] = [-1,0,3,7].<br />

G(z) =<br />

ROC for this G(z) is the entire z - plane except for z =<br />

If g[n]is finite e.g.g[n] = [1,-2,3,-1]<br />

G(z) =<br />

∑<br />

3<br />

∑<br />

n=−3<br />

3<br />

∞<br />

n=−∞<br />

∑<br />

n=<br />

0<br />

0<br />

∑<br />

n=−3<br />

g[<br />

n]<br />

z<br />

g[<br />

n]<br />

z<br />

g[<br />

n]<br />

z<br />

g[<br />

n]<br />

z<br />

−n<br />

−n<br />

−n<br />

−n<br />

= 1z<br />

= 1z<br />

3<br />

= ( −1)<br />

z<br />

3<br />

+ ( −2)<br />

z<br />

0<br />

↑<br />

+ 0z<br />

+ ( −2)<br />

z<br />

+ 3z<br />

+ 3z<br />

+ 3z<br />

+ ( −1)<br />

z<br />

+ 7z<br />

−1.<br />

ROC for this G(z) is the entire z - plane except for z = ∞.<br />

2<br />

−1<br />

2<br />

↑<br />

↑<br />

1<br />

1<br />

−2<br />

0<br />

−3<br />

.<br />

+ 0z<br />

−1<br />

+ 3z<br />

−2<br />

+ 7z<br />

0 and z = ∞<br />

0.<br />

−3<br />

.


Rational z-transforms<br />

Ratio of<br />

P(<br />

z)<br />

H ( z)<br />

= =<br />

D(<br />

z)<br />

Alternate Representation as ratio of polynomials in z : -<br />

H ( z)<br />

= z<br />

Factoring above equations : -<br />

H ( z)<br />

=<br />

l<br />

two polynomials P(z) and D(z) in z<br />

( N −M<br />

)<br />

p<br />

d<br />

0<br />

0<br />

Π<br />

Π<br />

M<br />

l=<br />

1<br />

N<br />

l=<br />

1<br />

p0<br />

+ p1z<br />

d + d z<br />

0<br />

0<br />

p0z<br />

d z<br />

M<br />

N<br />

(1 −ξl<br />

z<br />

(1 − λ z<br />

1<br />

−1<br />

−1<br />

−1<br />

−1<br />

+ p1z<br />

+ d z<br />

l<br />

1<br />

+ p<br />

+ d<br />

M −1<br />

N −1<br />

)<br />

= z<br />

)<br />

2<br />

z<br />

z<br />

2<br />

−2<br />

−2<br />

+ p<br />

+ d<br />

2<br />

( N −M<br />

)<br />

....... + p<br />

....... + d<br />

2<br />

z<br />

z<br />

M −2<br />

....... + p<br />

....... + d<br />

....... Eqn.6.13<br />

.......... Eqn.6.14<br />

( z −ξl<br />

)<br />

................... Eqn.6.15<br />

( z − λ )<br />

If N > M, there are additionl (N - M) zeros at z = 0(origin of z - plane.<br />

If N < M, there are additionl (M - N) poles at z = 0(origin of z - plane.<br />

N −2<br />

p<br />

d<br />

0<br />

0<br />

Π<br />

Π<br />

M<br />

l=<br />

1<br />

N<br />

l=<br />

1<br />

-1<br />

M −1<br />

N −1<br />

: −<br />

−(<br />

M −1)<br />

−(<br />

N −1)<br />

M −1<br />

N −1<br />

l<br />

+ p<br />

+ d<br />

z + p<br />

z + d<br />

z = ξl<br />

are M zeros of H(z) on z - plane. i.e.obtained by taking H(z) = 0.<br />

z = λ are N poles of H(z) on z - plane. i.e.obtained by taking H(z) = ∞.<br />

z<br />

z<br />

N<br />

M<br />

N<br />

M<br />

z<br />

z<br />

−M<br />

−N


Examples of Rational z-<strong>Transforms</strong><br />

(1)<br />

z - transform of<br />

µ<br />

[ n]:<br />

−<br />

µ<br />

( z)<br />

=<br />

1<br />

1- z<br />

having a zero at z = 0, and a pole at z = 1.<br />

(2) H(z) =<br />

-1<br />

z<br />

= , for | z | > 1.(ROC).<br />

z −1<br />

1- 2.4z<br />

1−<br />

0.8z<br />

+ 2.88z<br />

+ 0.64z<br />

−2<br />

Conjugate poles at z = 0.4 ± j0.6928,<br />

-1<br />

−1<br />

−2<br />

Conjugate zeros at z<br />

=<br />

1.2<br />

±<br />

j1.2


ROC for right-sided sequence


Methods of computing the Inverse<br />

z-transform<br />

• Using Cauchy’s Residue Theorem<br />

• Table look-up<br />

• Partial Fraction Expansion<br />

• Power Series Expansion or Long Division.


Inverse z-Transform via Table<br />

Example 6.12.<br />

H(z) =<br />

H(z) =<br />

n<br />

nα<br />

µ [ n]<br />

⇔<br />

∴h[n]<br />

=<br />

Look-Up<br />

0.5z<br />

, | z | > 5.<br />

2<br />

z − z + 0.25<br />

-1<br />

0.5z 0.5z<br />

=<br />

2<br />

−1<br />

(z − 0.5) (1−<br />

0.5z<br />

)<br />

From Table 6.1: -<br />

ZT<br />

n(0.5)<br />

−<br />

αz<br />

(1 −αz<br />

n<br />

1<br />

−1<br />

µ [ n]<br />

)<br />

2<br />

2<br />

, | z | > | α | .<br />

.


Inverse z-Transform via Partial Fraction Expansion<br />

Example 6.13.<br />

-1 -2 -3<br />

2 + 0.8z + 0.5z + 0.3z<br />

H(z) =<br />

.<br />

-1 -2<br />

1+<br />

0.8z + 0.2z<br />

This is an improper function since M = 3 > N = 2.<br />

Perform long division first by reversing order of both polynomial s<br />

-1<br />

(0.3/0.2)z − (0.7 / 0.2)<br />

H(z) =<br />

0.2z<br />

-2<br />

+ 0.8z<br />

-1<br />

+ 1<br />

0.3z<br />

-3<br />

+ 0.5z<br />

-2<br />

+ 0.8z<br />

-1<br />

+ 2<br />

to get at the<br />

proper function.<br />

∴ H(z)<br />

= 1.5z<br />

−1<br />

− 3.5 +<br />

-3 -2 -1<br />

0.3z + 1.2z + 1.5z<br />

-2 -1<br />

- 0.7z − 0.7z + 2<br />

-2 -1<br />

- 0.7z − 2.8z − 3.5<br />

-1<br />

− 2.1z + 5.5<br />

-1<br />

− 2.1z + 5.5<br />

.<br />

-2 -1<br />

0.2z + 0.8z + 1


Continue Example 6.13<br />

-1<br />

-1<br />

− 2.1z + 5.5 −10.5z<br />

+ 27.5<br />

Now from the proper function<br />

=<br />

and<br />

-2 -1<br />

-2 -1<br />

0.2(z + 4z + 5) (z + 4z + 5)<br />

2<br />

- b ± b − 4ac<br />

quadratic formula<br />

,<br />

2a<br />

- 4 ± 16 − 20<br />

Roots of denominator of proper function =<br />

= −2<br />

± j<br />

2<br />

Performining the partial fraction expansion for the proper function : -<br />

-1<br />

− 2.1z + 5.5<br />

=<br />

-2 -1<br />

0.2z + 0.8z + 1<br />

( z<br />

−1<br />

-1<br />

−10.5z<br />

+ 27.5<br />

−1<br />

− ( −2<br />

+ j))(<br />

z − ( −2<br />

− j))


Continue Example 6.13<br />

]<br />

[<br />

j)<br />

(-2<br />

)<br />

2<br />

(<br />

6.875<br />

16.375<br />

]<br />

[<br />

j)<br />

(-2<br />

)<br />

2<br />

(<br />

6.875<br />

16.375<br />

1]<br />

[<br />

1.5<br />

]<br />

[<br />

3.5<br />

h[n]<br />

)<br />

2<br />

(<br />

)<br />

2<br />

(<br />

.<br />

|<br />

|<br />

z |<br />

|<br />

,<br />

)<br />

(1<br />

1<br />

]<br />

[<br />

)<br />

)<br />

2<br />

(<br />

)(1<br />

2<br />

(<br />

6.875<br />

16.375<br />

)<br />

)<br />

2<br />

(<br />

)(1<br />

2<br />

(<br />

6.875<br />

16.375<br />

))<br />

2<br />

(<br />

(<br />

6.875<br />

16.375<br />

))<br />

2<br />

(<br />

(<br />

6.875<br />

16.375<br />

))<br />

2<br />

(<br />

4)(<br />

(<br />

27.5<br />

65.5<br />

4)<br />

))(<br />

2<br />

(<br />

(<br />

27.5<br />

65.5<br />

))<br />

2<br />

(<br />

))(<br />

2<br />

)(<br />

2<br />

(<br />

(1<br />

)<br />

2<br />

27.5(<br />

10.5<br />

))<br />

2<br />

)(<br />

2<br />

(<br />

))((1<br />

2<br />

(<br />

(<br />

)<br />

2<br />

27.5(<br />

10.5<br />

))<br />

2<br />

(<br />

))(<br />

2<br />

)(<br />

2<br />

(<br />

(1<br />

)<br />

2<br />

27.5(<br />

10.5<br />

))<br />

2<br />

)(<br />

2<br />

(<br />

))((1<br />

2<br />

(<br />

(<br />

)<br />

2<br />

27.5(<br />

10.5<br />

))<br />

2<br />

(<br />

))(<br />

2<br />

(<br />

)<br />

2<br />

((<br />

27.5<br />

)<br />

2<br />

10.5(<br />

))<br />

2<br />

(<br />

)<br />

2<br />

))((<br />

2<br />

(<br />

(<br />

27.5<br />

)<br />

2<br />

10.5(<br />

-n<br />

-n<br />

1<br />

1<br />

1<br />

n<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

-1<br />

1<br />

1<br />

-1<br />

n<br />

j<br />

j<br />

n<br />

j<br />

j<br />

n<br />

n<br />

j<br />

and<br />

j<br />

z<br />

n<br />

z<br />

j<br />

j<br />

j<br />

z<br />

j<br />

j<br />

j<br />

j<br />

z<br />

j<br />

j<br />

z<br />

j<br />

j<br />

z<br />

j<br />

j<br />

z<br />

j<br />

j<br />

z<br />

j<br />

j<br />

j<br />

j<br />

j<br />

j<br />

z<br />

j<br />

j<br />

z<br />

j<br />

j<br />

j<br />

j<br />

j<br />

j<br />

z<br />

j<br />

j<br />

z<br />

j<br />

j<br />

j<br />

j<br />

j<br />

j<br />

z<br />

j<br />

ZT<br />

µ<br />

µ<br />

δ<br />

δ<br />

α<br />

α<br />

α<br />

µ<br />

α<br />

−<br />

−<br />

−<br />

−<br />

+<br />

+<br />

+<br />

+<br />

−<br />

−<br />

−<br />

+<br />

−<br />

+<br />

= −<br />

∴<br />

−<br />

−<br />

+<br />

−<br />

=<br />

><br />

−<br />

⇔<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

+<br />

+<br />

+<br />

−<br />

−<br />

+<br />

−<br />

−<br />

−<br />

=<br />

−<br />

−<br />

−<br />

+<br />

+<br />

+<br />

−<br />

−<br />

−<br />

=<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

+<br />

−<br />

+<br />

−<br />

−<br />

+<br />

−<br />

=<br />

−<br />

−<br />

−<br />

−<br />

−<br />

+<br />

−<br />

−<br />

−<br />

−<br />

+<br />

−<br />

+<br />

+<br />

−<br />

−<br />

−<br />

−<br />

+<br />

−<br />

−<br />

+<br />

−<br />

+<br />

−<br />

=<br />

−<br />

−<br />

−<br />

−<br />

−<br />

+<br />

−<br />

−<br />

−<br />

−<br />

+<br />

−<br />

+<br />

+<br />

−<br />

−<br />

−<br />

−<br />

+<br />

−<br />

−<br />

+<br />

−<br />

+<br />

−<br />

=<br />

−<br />

−<br />

−<br />

+<br />

−<br />

−<br />

−<br />

−<br />

+<br />

−<br />

−<br />

−<br />

+<br />

−<br />

−<br />

−<br />

+<br />

−<br />

+<br />

−<br />

−<br />

+<br />

+<br />

−<br />

−<br />

=<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />


Inverse z-Transform Via Power Series Expansion/Long Division<br />

........<br />

4]<br />

[<br />

0.2224<br />

3]<br />

[<br />

0.4<br />

2]<br />

[<br />

0.52<br />

1]<br />

[<br />

1.6<br />

]<br />

[<br />

1<br />

]<br />

[<br />

........<br />

0.2224<br />

0.4z<br />

0.52z<br />

1.6z<br />

1<br />

H(z)<br />

...............................<br />

0.0480<br />

0.2224<br />

0.0480<br />

0.1600<br />

0.400<br />

0.0624<br />

0.400<br />

0.0624<br />

0.208<br />

0.52<br />

0.192<br />

0.52<br />

0.192<br />

0.64<br />

1.6<br />

0.12<br />

1.6<br />

0.12<br />

0.4z<br />

1<br />

........<br />

0.2224<br />

0.4z<br />

0.52z<br />

1.6z<br />

1<br />

2.0z<br />

1<br />

0.12<br />

0.4z<br />

1<br />

.<br />

0.12<br />

0.4z<br />

1<br />

2.0z<br />

1<br />

H(z)<br />

Example 6.19<br />

4<br />

-3<br />

-2<br />

-1<br />

5<br />

4<br />

5<br />

4<br />

3<br />

4<br />

3<br />

4<br />

3<br />

2<br />

3<br />

2<br />

3<br />

2<br />

1<br />

2<br />

1<br />

2<br />

-1<br />

4<br />

-3<br />

-2<br />

-1<br />

-1<br />

2<br />

-1<br />

2<br />

-1<br />

-1<br />

+<br />

−<br />

−<br />

−<br />

+<br />

−<br />

−<br />

−<br />

+<br />

=<br />

∴<br />

+<br />

−<br />

+<br />

−<br />

+<br />

=<br />

+<br />

−<br />

−<br />

+<br />

−<br />

+<br />

−<br />

−<br />

+<br />

−<br />

−<br />

+<br />

+<br />

−<br />

+<br />

+<br />

−<br />

+<br />

−<br />

+<br />

+<br />

−<br />

+<br />

−<br />

+<br />

+<br />

=<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

h<br />

z<br />

z<br />

z<br />

z<br />

z<br />

z<br />

z<br />

z<br />

z<br />

z<br />

z<br />

z<br />

z<br />

z<br />

z<br />

z<br />

z<br />

z<br />

z<br />

z<br />

z<br />

z<br />

δ<br />

δ<br />

δ<br />

δ<br />

δ


Properties of z-Transform<br />

• Linearity<br />

• Time Shifting<br />

• Scaling in the z-domain<br />

• Time Reversal<br />

• Time Expansion<br />

• Conjugation<br />

• Convolution<br />

• Differentiation in the z-domain<br />

• The initial-value Theorem.


z-T Property associated with<br />

Linearity<br />

z−T<br />

x [ n]<br />

←⎯ →<br />

1<br />

X<br />

1<br />

( z)with ROC denoted by R<br />

1<br />

x<br />

2<br />

z−T<br />

[ n]<br />

←⎯ →<br />

X<br />

2<br />

( z)with ROC denoted by R<br />

2<br />

ax [ n]<br />

+ bx<br />

I<br />

1<br />

is<br />

2<br />

LT<br />

[ n]<br />

←⎯→ aX<br />

( z)<br />

+ bX<br />

the symbol for intersect with.<br />

1<br />

2<br />

( z)<br />

with ROC containing R<br />

1<br />

I<br />

R<br />

2<br />

.


z-T Properties continued<br />

zT<br />

x[<br />

n]<br />

←⎯→ X ( z),<br />

with ROC = R,<br />

Time Shifting : -<br />

then x[<br />

n − n<br />

0<br />

zT<br />

] ←⎯→ z<br />

−n<br />

0<br />

X ( z),<br />

with ROC = R,except for possible addition<br />

or deletion of the origin or infinity.<br />

Scaling in the z - domain : -<br />

n zT z<br />

then z0x[<br />

n]<br />

←⎯→ X (<br />

z<br />

0<br />

),<br />

with ROC = | z<br />

0<br />

| R.<br />

Time Reversal: -<br />

zT<br />

then x[<br />

−n]<br />

←⎯→ X<br />

1<br />

( ),<br />

z<br />

with ROC =<br />

1<br />

.<br />

R<br />

Time Expansion : -<br />

x<br />

( k )<br />

[ n]<br />

= x[<br />

n ] if n is a multiple of k,<br />

k<br />

= 0.if n is not a multiple of k.<br />

then x<br />

( k )<br />

zT<br />

[ n]<br />

←⎯→ X ( z<br />

k<br />

),<br />

with ROC = R<br />

1<br />

k<br />

Conjugation : -<br />

then x<br />

*<br />

zT<br />

[ n]<br />

←⎯→ X<br />

*<br />

( z<br />

*<br />

),<br />

with ROC = R.


z-T Property associated with<br />

Convolution<br />

x<br />

1<br />

zT<br />

[ n]<br />

←⎯→ X<br />

1<br />

( z)with ROC denoted by R<br />

1<br />

x<br />

2<br />

zT<br />

[ n]<br />

←⎯→<br />

X<br />

2<br />

( z)with ROC denoted by R<br />

2<br />

x<br />

1<br />

I<br />

[ n]*<br />

x<br />

is<br />

2<br />

zT<br />

[ n]<br />

←⎯→ X<br />

( z)<br />

X<br />

( z)<br />

the symbol for intersect with.<br />

1<br />

2<br />

with ROC containing R<br />

1<br />

I<br />

R<br />

2<br />

.


zT Properties continued<br />

zT<br />

x[<br />

n]<br />

←⎯→ X<br />

( z),<br />

with ROC<br />

=<br />

R,<br />

Differentiation in the z - Domain : -<br />

zT dX ( z)<br />

then nx[<br />

n]<br />

←⎯→− z , with ROC<br />

dz<br />

=<br />

R.<br />

Initial - value theorem :<br />

If x[n] = 0 for n < 0 ,<br />

then x[0]<br />

= Lim X ( z).<br />

z→∞<br />

-


Analysis & Characterization of LTI systems using<br />

z-<strong>Transforms</strong>.<br />

If<br />

x[n] =<br />

n<br />

where z<br />

n<br />

z<br />

, y [ n]<br />

=<br />

is eigenfunction of<br />

H(z) is eigenvalue of<br />

H ( z).<br />

z<br />

n<br />

,<br />

LTI system<br />

LTI system,<br />

x[n]<br />

X(z)<br />

h[n]<br />

H(z)<br />

y[n]=x[n]*h[n]<br />

Y(z)=X(z).H(z)<br />

H(z) is known as System Function or<br />

Transfer Function<br />

Frequency response = H(z)<br />

with z<br />

=<br />

e<br />

jω<br />

( unit<br />

circle in<br />

ROC)


Causality.<br />

(1) A LTI system is causal if : -<br />

Its impulse response h[n] = 0 for n < 0 ie. right -sided.<br />

or in other words : -<br />

ROC of its system function H(z) is the exterior of the circle including infinity.<br />

(2) A discrete - time LTI system with rational system function H(z)<br />

is causal if and only if : -<br />

(a) the ROC is the exterior of a circle outside the outermost pole;<br />

and (b) with H(z) expressed as a ratio of polynomials in z,<br />

the order of the numerator cannot be greater than the order<br />

of the denominator.


Stability.<br />

• An LTI system is stable if and only if:-<br />

Its Impulse response h[n] is absolutely<br />

summable.<br />

Or Fourier Transform of h[n] converges.<br />

Or the ROC of its system function H(z) includes<br />

the unit circle, |z|=1<br />

• For causal LTI system, all poles of H(z)<br />

must be in the unit circle, |z|=1


Example 6.14 Inverse z-transform , Causality & Stability.<br />

H ( z)<br />

=<br />

Determine all the possible impulse responses h[n] for the given H(z) above.<br />

Associate each one of<br />

Using Partial - Fraction Expansion : -<br />

H ( z)<br />

=<br />

z(<br />

z + 2.0)<br />

,<br />

( z − 0.2)( z + 0.6)<br />

z(<br />

z + 2.0) 2.75<br />

=<br />

( z − 0.2)( z + 0.6) 1−<br />

0.2z<br />

Poles are z = 0.2 and z = -0.6<br />

the above impulse reponses with the ROC, stability, and causality.<br />

−1<br />

1.75<br />

−<br />

1+<br />

0.6z<br />

−1<br />

.<br />

ROC1: - Right hand impulse reponse h[n] =<br />

2.75 (0.2)<br />

n<br />

µ [ n]<br />

−1.75(<br />

−0.6)<br />

n<br />

µ [ n].<br />

Causal & Stable.<br />

ROC 2 : - R.H & L.H impulse response h[n] = 2.75(0.2)<br />

ROC3 : - Left hand impulse response h[n] = 2.75(-1)(0.2)<br />

n<br />

µ [ n]<br />

−1.75(<br />

−1)(<br />

−0.6)<br />

n<br />

µ [ −n<br />

−1]<br />

−1.75(1)(<br />

−0.6)<br />

n<br />

µ [ −n<br />

−1].<br />

Not Causal & Not Stable.<br />

n<br />

µ [ −n<br />

−1].<br />

Not Causal & Not Stable.<br />

ROC 1:- |z|>0.6<br />

ROC 2:- 0.2


System Function for<br />

Interconnections of LTI Systems<br />

H(z) = H ( z).H<br />

2(<br />

1<br />

z<br />

)<br />

( H 1<br />

z)<br />

H 2<br />

( z)<br />

H 1<br />

( z)<br />

+<br />

H 2<br />

( z)<br />

H(z) = H ( z ) + H ( z)<br />

1 2


System Function for<br />

Interconnections of LTI Systems<br />

X(<br />

z )<br />

Y(<br />

z)<br />

+ H 1<br />

( z)<br />

H 2<br />

( z)<br />

Y(z)<br />

X(z)<br />

=<br />

H(z)<br />

=<br />

1+<br />

H<br />

1(z)<br />

H (z) H(z)<br />

1<br />

2


Block Diagram of Causal LTI systems described by<br />

Difference Equations and Rational System Functions.<br />

Example10.28 A Causal LTIsystem with system function : -<br />

1<br />

H(z) =<br />

1 -1<br />

x[n]<br />

1−<br />

z<br />

4<br />

Y ( z)<br />

1<br />

=<br />

X ( z)<br />

1 -1<br />

1−<br />

z<br />

4<br />

1 -1<br />

Y ( z){1<br />

− z } = X ( z)<br />

4<br />

Taking the inverse z - transform of<br />

y[<br />

n]<br />

−<br />

1<br />

4<br />

y[<br />

n −1]<br />

=<br />

x[<br />

n]<br />

or<br />

y[<br />

n]<br />

=<br />

+<br />

the above equation,<br />

x[<br />

n]<br />

+<br />

1<br />

4<br />

1<br />

4<br />

z<br />

y[<br />

n −1]<br />

-1<br />

y[n-1]<br />

y[n]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!