02.11.2014 Views

Optical phonon properties, Fano interference and charged-phonon ...

Optical phonon properties, Fano interference and charged-phonon ...

Optical phonon properties, Fano interference and charged-phonon ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1° Workshop on Nanoscience: Graphene, NCKU, Tainan City, Taiwan, 16 December 2011<br />

Emmanuele Cappelluti<br />

Instituto de Ciencia de Materiales de Madrid (ICMM) , CSIC, Madrid, Spain<br />

Institute of Complex Systems (ISC), CNR, Rome, Italy,<br />

Lara Benfatto<br />

ISC, CNR, Rome, Italy<br />

Alexey B. Kuzmenko<br />

Dept. Physics Uni. Geneve, Switzerl<strong>and</strong><br />

<strong>and</strong>: Z.Q. Li, C.H. Lui, T. Heinz (Columbia, NY, USA)


Outline<br />

motivations (limits of Raman spectroscopy)<br />

experimental measurements in bilayer graphene<br />

(intensity <strong>and</strong> <strong>Fano</strong> asymmetry of ph peak in optical conductivity)<br />

theoretical approach<br />

unified theory for <strong>phonon</strong> intensity (<strong>charged</strong> <strong>phonon</strong>)<br />

<strong>and</strong> <strong>Fano</strong> asymmetry<br />

tunable <strong>phonon</strong> switching effect<br />

multilayer graphenes<br />

conclusions


Probing interactions (<strong>and</strong> characterization) in graphenes<br />

electronic states<br />

ARPES<br />

- dispersion anomalies<br />

- renormalization<br />

- linewidth<br />

A Bostwick et al., NJP 9, 385 (2007)<br />

DC Elias et al., Nat Phys 7, 701 (2011)


Probing interactions (<strong>and</strong> characterization) in graphenes<br />

optical conductivity<br />

electronic states<br />

ZQ Li et al., Nat. Phys. 4, 532 (2008)<br />

- doping dependence<br />

- electronic interb<strong>and</strong> features<br />

- possible to extract b<strong>and</strong>gap Δ<br />

KF Mak et al, PRL 102, 256405 (2009)


Probing interactions (<strong>and</strong> characterization) in graphenes<br />

optical transitions<br />

lattice dynamics<br />

single layer<br />

in-plane<br />

in-plane<br />

out-of-plane <br />

E 2g (G)<br />

bilayer<br />

E g<br />

Raman<br />

E u<br />

IR


Raman spectroscopy<br />

<strong>phonon</strong> intensity<br />

C Casiraghi, PRB 80, 233407 (2009)<br />

I Calizo et al, JAP 106, 043509 (2009)<br />

difficult access to absolute <strong>phonon</strong> intensity<br />

relative intensity between different peaks instead used


Raman spectroscopy<br />

focus on:<br />

ph. frequency<br />

ph. linewidth<br />

J Yan et al, PRL 98, 166802 (2007)


Raman spectroscopy<br />

- not only characterization, also fundamental physics<br />

doping dependence<br />

of <strong>phonon</strong> frequency <strong>and</strong> linewidth:<br />

evidence of nonadiabatic<br />

breakdown of Born-Oppenheimer<br />

S Pisana et al, Nat Mat 6, 198 (2007)


Raman spectroscopy<br />

investigation tools:<br />

peak frequency<br />

peak linewidth<br />

relative (non absolute) peak intensity<br />

but<br />

no modulation of intensity<br />

no asymmetric peak lineshape<br />

J Yan et al, PRL 98, 166802 (2007)


IR <strong>phonon</strong> spectroscopy<br />

suitable tool???


IR <strong>phonon</strong> spectroscopy<br />

IR <strong>phonon</strong> peak best resolved in ionic systems<br />

-Z +Z<br />

Z: dipole effective charge<br />

(related to oscillator strength S, f)<br />

ex. Na + Cl - → Z = 1<br />

VG Baonza, SSC 130, 383 (2004)<br />

W'=<br />

integrated area<br />

∫<br />

[ ]<br />

dω σ'(ω) − σ' BG<br />

W' ∝ Z 2


IR <strong>phonon</strong> spectroscopy<br />

bilayer graphene<br />

one allowed in-plane IR mode: antisymmetric (A) E u<br />

homo-atomic compound<br />

first approximation: all the C atoms equal<br />

charge equally distributed<br />

no net dipole<br />

q q<br />

no IR activity<br />

q<br />

q


IR <strong>phonon</strong> spectroscopy<br />

taking into account the slight difference<br />

between atomic sites<br />

small charge disproportion<br />

finite dipole Z ≈ (q 1 -q 2 )<br />

q 1<br />

q 2<br />

however<br />

q 1 , q 2 < n<br />

limited by the total amount<br />

of doped charge n<br />

Z ≈ 10 -3<br />

(static dipole)<br />

q 2<br />

q 1<br />

no hope, thus..... but.....


Exp. results: Geneve group<br />

tunable <strong>phonon</strong><br />

peak intensity<br />

W’ (integrated area)<br />

Z ∝<br />

W'<br />

AB Kuzmenko et al, PRL 103, 116804 (2009)<br />

effective Born charge: Z max ~ 1.2!! huge!<br />

as large as 1 electron over N=4 (sp 3 ) !!


Exp. results: Geneve group<br />

tunable <strong>phonon</strong><br />

peak intensity<br />

neutrality point (NP) n=0<br />

also problem: negative peak area…<br />

Z not defined…?<br />

AB Kuzmenko et al, PRL 103, 116804 (2009)


Negative peak: <strong>Fano</strong> effect <strong>and</strong> quantum <strong>interference</strong><br />

arising from quantum <strong>interference</strong> (coupling)<br />

between a discrete state (<strong>phonon</strong>) with continuum spectrum (electronic)<br />

A=A BG<br />

+A' q2 -1-2qz<br />

q 2 ( z 2 +1) z=ω -ω 0<br />

Γ<br />

q =<br />

asymmetry<br />

<strong>Fano</strong> parameter<br />

non coupled <strong>phonon</strong><br />

weakly coupled<br />

strongly coupled<br />

symmetric lineshape<br />

|q| ≈ ∞<br />

asymmetric lineshape<br />

|q| ≈ 1<br />

negative peak<br />

|q| ≈ 0


Exp. results: Geneve group<br />

four independent parameter fit<br />

σ'(ω) − σ' BG<br />

(ω) = ω 2<br />

p<br />

4πΓ<br />

⎡<br />

z= ω -ω ⎤<br />

0<br />

⎣<br />

⎢<br />

Γ ⎦<br />

⎥<br />

q 2 -1-2qz<br />

q 2 z 2 +1<br />

( )<br />

ω p : related to intensity<br />

q : <strong>Fano</strong> asymmetry<br />

ω 0 : <strong>phonon</strong> frequency<br />

Γ : <strong>phonon</strong> linewidth<br />

W'= ω 2<br />

⎛<br />

p<br />

⎜<br />

8 1 − 1 ⎝ q 2<br />

⎞<br />

⎟<br />

⎠<br />

W= ω 2<br />

p<br />

8<br />

“bare” intensity (in the absence of <strong>Fano</strong>)<br />

AB Kuzmenko et al, PRL 103, 116804 (2009)


Exp. results: Geneve group<br />

<strong>phonon</strong> softening with doping:<br />

ok with LDA <strong>and</strong> TB theory<br />

E g (S) mode<br />

E u (A) mode<br />

T Ando, JPSJ 76, 104711 (2007)<br />

AB Kuzmenko et al, PRL 103, 116804 (2009)


Exp. results: Geneve group<br />

<strong>phonon</strong> linewidth: strong<br />

increase at NP: why??<br />

E u (A) mode?<br />

T Ando, JPSJ 76, 104711 (2007)<br />

AB Kuzmenko et al, PRL 103, 116804 (2009)


Exp. results: Geneve group<br />

linear dependence of bare<br />

intensity with doping:<br />

where from? why so huge Z?<br />

NB: tight-binding<br />

calculations<br />

AB Kuzmenko et al, PRL 103, 116804 (2009)


Exp. results: Geneve group<br />

linear dependence of bare<br />

intensity with doping:<br />

where from? why so huge Z?<br />

<strong>Fano</strong> asymmetry: where from?<br />

related to el. optical background?<br />

points out finite intensity at n=0…!<br />

AB Kuzmenko et al, PRL 103, 116804 (2009)


Charge-<strong>phonon</strong> effect<br />

doped insulators: organic <strong>and</strong> C 60 systems<br />

K x C 60<br />

huge intensity increase<br />

of selected IR modes<br />

upon electron doping x<br />

doping<br />

SC Erwin, in Backminsterfullerenes (1993)<br />

K-J Fu et al, PRB 46, 1937 (1992)


Charge-<strong>phonon</strong> effect<br />

σ el<br />

(ω) = −iωχ(ω)<br />

χ: el. polarizability (interb<strong>and</strong> transitions)<br />

χ(ω) =<br />

electronical background<br />

of optical conductivity<br />

direct light-<strong>phonon</strong> coupling<br />

but these no polar materials:....


Charge-<strong>phonon</strong> effect<br />

σ el<br />

(ω) = −iωχ(ω)<br />

χ: el. polarizability (interb<strong>and</strong> transitions)<br />

χ(ω) =<br />

electronical background<br />

of optical conductivity<br />

direct light-<strong>phonon</strong> coupling<br />

but these no polar materials:....<br />

no intrinsic dipole<br />

further channels to be considered


Rice (Michael) theory<br />

electronic polarizability provides finite IR intensity to<br />

<strong>phonon</strong> modes allowed but otherwise not active<br />

σ el<br />

(ω) = −iωχ(ω)<br />

χ: el. polarizability (interb<strong>and</strong> transitions)<br />

χ(ω) =<br />

irreducible diagrams<br />

electronical background<br />

of optical conductivity<br />

<strong>phonon</strong> mediated contribution<br />

giving rise to resonance at <strong>phonon</strong> energy<br />

no <strong>phonon</strong> resonance


Rice (Michael) theory<br />

fundamental ingredients:<br />

σ tot<br />

(ω) = −iω[ χ(ω) + λ ν<br />

xχ(ω)χ(ω)D ph<br />

(ω)]<br />

<strong>phonon</strong> resonance


Rice (Michael) theory<br />

fundamental ingredients:<br />

current/<br />

electron-<strong>phonon</strong><br />

response function<br />

σ tot<br />

(ω) = −iω[ χ(ω) + λ ν<br />

xχ(ω)χ(ω)D ph<br />

(ω)]<br />

intensity ruled by the current/electron-<strong>phonon</strong> response function


Rice theory in bilayer graphene<br />

χ: real function (α doping) tuning the <strong>phonon</strong> intensity


Rice theory in bilayer graphene<br />

χ: real function (α doping) tuning the <strong>phonon</strong> intensity<br />

Rice theory: in its original application: semiconductors<br />

effective theory:<br />

interesting peculiarities of bilayer graphene:<br />

zero gap semiconductor:<br />

low energy interb<strong>and</strong> transitions<br />

<strong>Fano</strong> asymmetry<br />

χ: complex quantity<br />

tunable <strong>charged</strong>-<strong>phonon</strong> effects controlled by external<br />

voltage biases (doping <strong>and</strong> gap)


Microscopic Rice theory in bilayer graphene<br />

three different response functions:<br />

χ jj (el.background)<br />

χ AA (ph. self-energy)<br />

χ jA (<strong>charged</strong>-<strong>phonon</strong> effect)<br />

we can compute microscopically each of them


<strong>Fano</strong>-Rice theory in bilayer graphene<br />

interb<strong>and</strong> transitions at low energy:<br />

D AA<br />

(ω) =<br />

χ jA = Reχ jA +iImχ jA<br />

1<br />

ω − ω A<br />

+ iΓ A<br />

σ' ep<br />

(ω) = 2 [ χ' (ω ) ] 2<br />

jA A<br />

ω ≈ωA<br />

ω A<br />

Γ A<br />

χ jA complex quantity!!!<br />

(in gapped systems: Imχ jA = 0)<br />

q 2 A<br />

−1 + 2zq A q A<br />

= − χ' (ω ) jA A<br />

q 2 A<br />

(1 + z 2 )<br />

χ" jA<br />

(ω A<br />

)<br />

<strong>Fano</strong> formula!<br />

<strong>Fano</strong> <strong>and</strong> <strong>charged</strong>-<strong>phonon</strong> effects same origin!<br />

it permits a microscopical identification


Peak parameters in <strong>Fano</strong> systems<br />

<strong>Fano</strong> fit<br />

σ' ep<br />

(ω)<br />

ω ≈ωA<br />

= 2W A<br />

πΓ A<br />

q A 2 −1 + 2zq A<br />

q A 2 (1 + z 2 )<br />

W A<br />

= π [ χ' (ω ) ] 2<br />

jA A<br />

ω A<br />

ω-integrated area<br />

W' A<br />

=<br />

{[ ] 2 − [ χ" jA<br />

(ω A<br />

)] 2<br />

}<br />

π χ' jA<br />

(ω A<br />

)<br />

ω A<br />

|q A | ≈ 0 (Reχ jA =0) ⇒ negative peak but W A =0<br />

not good<br />

|q A | ≈ 1 (Reχ jA = Imχ jA ) ⇒ asymmetric peak but W’ A =0 not good<br />

p A<br />

=<br />

{[ ] 2 + [ χ" jA<br />

(ω A<br />

)] 2<br />

}<br />

π χ' jA<br />

(ω A<br />

)<br />

ω A<br />

<strong>phonon</strong><br />

strength


Theory vs. experiments<br />

n c = αV g<br />

Au contacts<br />

modelling field effect:<br />

gating induces doping<br />

but also vertical electric field E z<br />

(inducing gap)<br />

SiO 2<br />

Si<br />

GRAPHENE<br />

step by step analysis:<br />

(1) we first consider only the doping effects induced by gate<br />

(2) we later consider only the electric effects induced by gate


Phonon intensity in bilayer graphene<br />

(1) gating induces doping but not E z<br />

in this case no low-energy transitions between 2 <strong>and</strong> 3<br />

system like a gapped semiconductor<br />

Imχ = 0 no <strong>Fano</strong> effect<br />

4<br />

γ<br />

1<br />

3<br />

2<br />

doping depedence of ω-integrated area W’<br />

perfectly reproduced<br />

what about W A ?<br />

negative area?<br />

E Cappelluti et al, PRB 82, 041402 (2010)


Exp. results: Berkeley group<br />

double-gated device<br />

possible tuning doping <strong>and</strong><br />

Δ in independent way<br />

n = 0<br />

n = 0 <strong>and</strong> Δ ≠ 0: negative peak like us<br />

<strong>Fano</strong> effect as a function of Δ<br />

they attribute origin<br />

of negative peak at n = 0<br />

to E g (S) (Raman-active) mode<br />

(S allowed by symmetry in IR when Δ ≠ 0)<br />

T-Ta Tang et al, Nat Nanotechn 5, 32 (2010)


Different <strong>phonon</strong> channels in optical conductivity<br />

gating induces z-axis asymmetry E z<br />

two main IR channels present<br />

Δ > 0<br />

E g (S) mode also IR active!<br />

probes D AA ph. propagator<br />

probes D SS ph. propagator<br />

relative “intensity” ruled by p A <strong>and</strong> p S<br />

total spectra dependent on the relative dominance<br />

of one channel vs. the other one


<strong>Optical</strong> channels <strong>and</strong> <strong>phonon</strong> switching in optical conductivity<br />

Δ-μ phase diagram<br />

Berkeley<br />

E u -A <strong>and</strong> E g -S modes<br />

dominant in different regions<br />

of phase diagram:<br />

possible switching of intensity<br />

from one mode to other one<br />

Geneve<br />

E Cappelluti et al, PRB 82, 041402 (2010)


Phonon switching in optical conductivity<br />

E u (A)<br />

Geneve group<br />

E g (S) <br />

E u (A)<br />

E Cappelluti et al, PRB 82, 041402 (2010)<br />

AB Kuzmenko et al, PRL 103, 116804 (2009)<br />

experimental integrated area <strong>and</strong> <strong>Fano</strong> asymmetry<br />

interpolates <strong>and</strong> switches from A to S mode


Multilayer graphenes<br />

N=3,..,6 layer with different stacking order on substrate (no gating)<br />

intensity <strong>and</strong> <strong>Fano</strong> asymmetry strong depending on N-layer <strong>and</strong> stacking order<br />

ABA <strong>and</strong> ABC deeply<br />

different<br />

stacking revealed<br />

ZQ Li, CH Lui, E Cappelluti, L Benfatto, KF Mak, L Carr, J Shan, TF Heinz, arXiv:1109.6367


Multilayer graphenes<br />

N=3,..,6 layer with different stacking order on substrate (no gating)<br />

intensity <strong>and</strong> <strong>Fano</strong> asymmetry strong depending on N-layer <strong>and</strong> stacking order<br />

ABA <strong>and</strong> ABC deeply<br />

different<br />

stacking revealed<br />

ZQ Li, CH Lui, E Cappelluti, L Benfatto, KF Mak, L Carr, J Shan, TF Heinz, arXiv:1109.6367


Trilayer gated graphenes <strong>and</strong> stacking order<br />

ABA <strong>and</strong> ABC deeply<br />

different<br />

stacking revealed<br />

<strong>phonon</strong> intensity<br />

<strong>and</strong> <strong>phonon</strong> frequency<br />

strongly doping dependent<br />

in ABC but not in ABA<br />

good agreement<br />

with theory<br />

CH Lui et al, preprint (2011)


Trilayer gated graphenes <strong>and</strong> stacking order<br />

fundamental ingredient: electronic b<strong>and</strong> structure<br />

reminder: <strong>phonon</strong> activity is triggered by electronic particle-hole excitations<br />

upon doping, el. transitions<br />

at ω = √2 γ 1 ≈ 0.55 eV in ABA,<br />

at ω ≤ γ 1 ≈ 0.39 eV in ABC<br />

CH Lui et al, submitted to PRL (2011)<br />

ABC closer to ω 0 ≈ 0.2 eV<br />

<strong>phonon</strong> activity amplified


Raman spectroscopy in bilayer graphene<br />

remarkable features:<br />

|q| ≈ ∞ no <strong>Fano</strong> asymmetry !!! (in IR S mode had q ≈ 0)<br />

intensity does not depend on doping !!!<br />

unlike<br />

IR probes!<br />

why?<br />

J Yan et al,<br />

PRL 98, 166802 (2007)<br />

C Casiraghi, PRB 80, 233407 (2009)


<strong>Fano</strong>-Rice theory for Raman spectroscopy<br />

effective mass approximation<br />

ˆ γ xy<br />

∝<br />

d ˆ H k<br />

dk x<br />

dk y<br />

Raman vertex<br />

χ γγ<br />

(τ) = − T τ<br />

γ(τ)γ<br />

electronic<br />

Raman background<br />

Rice theory<br />

Raman active<br />

S mode<br />

χ tot γγ<br />

(ω) = χ irr γγ<br />

(ω) + χ irr γS<br />

(ω)D SS<br />

(ω)χ irr Sγ<br />

(ω)


<strong>Fano</strong>-Rice theory for Raman spectroscopy<br />

IR Raman<br />

Reχ jA ~ const.<br />

Reχ γS ~ E C<br />

E C<br />

Imχ jA ~ const.<br />

Imχ γS ~ const.<br />

Reχ γS scaling with UV dispersion cut-off E c<br />

Reχ γS >> Imχ γS <br />

W’ S ≈ W S ∝ E c<br />

2<br />

weakly dependent on b<strong>and</strong>-structure<br />

details (doping, Δ)<br />

q S<br />

= − Reχ γS (ω A )<br />

Imχ γS<br />

(ω A<br />

) ≈ − ∞<br />

no <strong>Fano</strong> profile


Conclusions<br />

source of microscopic IR <strong>phonon</strong> intensity<br />

unified theory of IR intensity <strong>and</strong> <strong>Fano</strong> profile<br />

more information encoded in <strong>phonon</strong> intensity <strong>and</strong> <strong>Fano</strong> factor<br />

<strong>phonon</strong> mode switching predicted (<strong>and</strong> observed)<br />

differences between IR <strong>and</strong> Raman spectroscopy accounted for<br />

alternative <strong>and</strong> powerful tool to characterize ML graphenes

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!