01.11.2014 Views

Molecular Modeling in Chemical Education and ... - Wavefunction, Inc.

Molecular Modeling in Chemical Education and ... - Wavefunction, Inc.

Molecular Modeling in Chemical Education and ... - Wavefunction, Inc.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Molecular</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong><br />

<strong>Chemical</strong> <strong>Education</strong> <strong>and</strong> Research<br />

Summer Tour 2005<br />

Professor Richard Johnson<br />

Chemistry Department<br />

University of New Hampshire<br />

rpj@cisunix.unh.edu<br />

Sean Ohl<strong>in</strong>ger<br />

<strong>Wavefunction</strong>, <strong>Inc</strong>.<br />

18401 Von Karman, Suite 370<br />

Irv<strong>in</strong>e, CA 92612<br />

sean@wavefun.com<br />

www.wavefun.com


What are we go<strong>in</strong>g to do today?<br />

• Introduce you to molecular model<strong>in</strong>g <strong>and</strong> some of<br />

its many applications <strong>in</strong> teach<strong>in</strong>g <strong>and</strong> research.<br />

• Introduce the newest versions of Spartan as tools <strong>in</strong> teach<strong>in</strong>g.<br />

• Introduce Odyssey, a new program for dynamic models.<br />

• Demonstrate the Cambridge Crystal Structure Database<br />

(CCSD) <strong>and</strong> its <strong>in</strong>terface with Spartan.<br />

• Give you plenty of time to have fun.<br />

• Exchange ideas


What we won’t do today!<br />

1. Overwhelm you.<br />

2. Teach you the <strong>in</strong>tricacies of Spartan <strong>and</strong> Odyssey.<br />

3. Present the details of computational chemistry.


The Essential Elements<br />

• Fast computers are now readily available. Today’s Pentium or PowerMac laptop is<br />

much faster than yesterday’s ma<strong>in</strong>frame computer.<br />

• Sophisticated computational models are based on quantum mechanics <strong>and</strong> classical<br />

mechanics.<br />

• Recent development of the graphical user <strong>in</strong>terface permits rapid construction of<br />

models <strong>and</strong> spectacular visualization of the results. This has made molecular<br />

model<strong>in</strong>g accessible to anyone.


Some th<strong>in</strong>gs we often forget.....<br />

• chemistry is about molecules<br />

• molecules are three dimensional<br />

• we can’t solve the Schröd<strong>in</strong>ger equation exactly for<br />

molecules but the approximate solutions are excellent


Sir John Pople 1925-2004<br />

"I could have done it <strong>in</strong> a much more<br />

complicated way," said the red Queen,<br />

immensely proud.<br />

- Lewis Carroll<br />

“The essence of John Pople . . . to take<br />

what is, or what seems to be, <strong>in</strong>tractable<br />

<strong>and</strong> make it so, so simple. Thank you,<br />

s<strong>in</strong>cerely thank you, for shar<strong>in</strong>g your<br />

precious gift with me, <strong>and</strong> with the<br />

scientific world. You will be sorely<br />

missed.”<br />

Warren Hehre, President/CEO,<br />

<strong>Wavefunction</strong>, <strong>Inc</strong>.


Essentials of <strong>Model<strong>in</strong>g</strong><br />

Build Structures: Many programs are just visualizers. Spartan allows<br />

the rapid construction of virtually any structure <strong>in</strong> three dimensions.<br />

Odyssey allows you to build your own molecular dynamics simulations.<br />

Perform Computations: Force-field <strong>and</strong> quantum mechanical models<br />

offer sophisticated descriptions of molecules, both known <strong>and</strong><br />

unknown. We can’t solve the Schröd<strong>in</strong>ger equation exactly for<br />

molecules but the approximate solutions are excellent.<br />

Visualize <strong>and</strong> Interpret Results: Results <strong>in</strong>clude structure, energies,<br />

molecular orbitals, electron densities, vibrational modes, dynamics<br />

simulations, etc.<br />

Recycle: Each answer often will lead to more questions <strong>and</strong> new<br />

calculations.


Applications of molecular<br />

model<strong>in</strong>g <strong>and</strong> visualization<br />

•Research <strong>in</strong> <strong>in</strong>dustry <strong>and</strong> academics.<br />

•Design of new pharmaceuticals.<br />

•College graduate level coursework.<br />

•College undergraduate coursework.<br />

•On the worldwide web!<br />

•Even <strong>in</strong> high school classrooms.


What can I do with model<strong>in</strong>g <strong>and</strong> visualization<br />

<strong>in</strong> my classroom <strong>and</strong> laboratory?<br />

•Enhance teach<strong>in</strong>g of selected concepts <strong>and</strong> content.<br />

•Emphasize the molecular nature of chemistry.<br />

•Move from two dimensions <strong>in</strong>to three.<br />

•Show real 3 dimensional dynamic models – not just movies.<br />

•Prepare course material <strong>and</strong> WWW images.<br />

•Computational experiments <strong>in</strong> place of selected wet labs.<br />

•Motivate students to be excited about chemistry.<br />

•Research, enrichment <strong>and</strong> special projects.<br />

•Advanced courses.<br />

•Better prepare students for graduate school <strong>and</strong> future<br />

careers <strong>in</strong> chemistry.


What can I do with model<strong>in</strong>g <strong>and</strong><br />

visualization <strong>in</strong> my research?<br />

•Build <strong>and</strong> visualize complex structures <strong>in</strong> three dimensions.<br />

•Import/export structures from/to other sources or projects.<br />

•Use computations to model structure, conformation,<br />

energetics, thermodynamics <strong>and</strong> chemical reactivity.<br />

•Predict spectral properties: IR, UV-VIS, NMR shifts<br />

•Predict new chemical reactions.<br />

•Build <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong> a library of structures.<br />

•Prepare images for presentations, web pages, publications<br />

<strong>and</strong> proposals.<br />

•Enhance my own professional tra<strong>in</strong><strong>in</strong>g <strong>and</strong> credentials.<br />

•Enhance my underst<strong>and</strong><strong>in</strong>g of the literature.


Current <strong>Wavefunction</strong> Software<br />

SpartanModel<br />

an electronic model kit<br />

Spartan ST<br />

Student Edition<br />

Spartan ’04<br />

’06 is on the way….


What is<br />

?<br />

A New Set of Programs + Associated<br />

Chemistry Content<br />

for Teach<strong>in</strong>g Concepts <strong>in</strong><br />

Introductory Chemistry<br />

Odyssey is set to an accurate molecular scale<br />

with time <strong>and</strong> molecular size greatly exp<strong>and</strong>ed.


An Introduction to Spartan


Spartan Architecture<br />

Density<br />

Functional<br />

Semi-Empirical<br />

<strong>Molecular</strong> Orbital<br />

Ab Initio<br />

<strong>Molecular</strong> orbital<br />

Graphical<br />

User<br />

Interface<br />

<strong>Molecular</strong><br />

Mechanics<br />

External<br />

Graphical<br />

Surfaces<br />

Properties


Build<strong>in</strong>g <strong>and</strong> Visualiz<strong>in</strong>g Structures:<br />

<strong>Chemical</strong> evolution from methane to DNA


Current <strong>Wavefunction</strong> Software<br />

SpartanModel<br />

Spartan ST Student Edition<br />

Spartan Essential<br />

Spartan ’04<br />

’06 is on the way….


Now that we know how to build<br />

molecules, it’s time for bit of theory……


Theoretical Models<br />

Methods Based on Quantum Mechanics: These are approximate Solutions to<br />

the Schrod<strong>in</strong>ger equation<br />

•Semi–empirical :(CNDO, MNDO, ZINDO, AM1, PM3 etc.): based on the<br />

Hartree-Fock self-consistent field (HF-SCF) method, valence electrons only,<br />

approximations greatly simplify calculations, parameterized to fit experimental<br />

results; recent extension to many transition metals.<br />

•Ab Initio: (Non–empirical; from “first pr<strong>in</strong>ciples”): also HF-SCF but <strong>in</strong>cludes all<br />

electrons <strong>and</strong> uses m<strong>in</strong>imal approximation, large collection of methods <strong>and</strong> levels<br />

of theory; <strong>in</strong>crease <strong>in</strong> complexity for both basis functions <strong>and</strong> electron correlation.<br />

•Density Functional: Based on electron density; <strong>in</strong>cludes electron correlation.<br />

Methods Based on Classical Mechanics<br />

•Force Field Methods: (MM2, MMFF, Amber, Sybyl, UFF etc.): based on<br />

Hooke's law, van der Waals <strong>in</strong>teractions, electrostatics etc.; parameterized to fit<br />

experimental data. Also used to create dynamic models <strong>in</strong> Odyssey.


Schrod<strong>in</strong>ger Equation<br />

Nuclei don't move<br />

Electronic Schrod<strong>in</strong>ger equation<br />

Guess how electrons affect<br />

each other from idealized problem<br />

1. Electrons move <strong>in</strong>dependently<br />

2. <strong>Molecular</strong> "solutions" written<br />

<strong>in</strong> terms of atomic solutions<br />

Hartree-Fock<br />

<strong>Molecular</strong> orbital methods<br />

parameterization<br />

AB INITIO<br />

HARTREE-FOCK<br />

MODELS<br />

Mix <strong>in</strong> excited states<br />

to account for<br />

electron correlation<br />

1. Atomic orbitals don't<br />

<strong>in</strong>teract.<br />

2. Parameterization<br />

DENSITY<br />

FUNCTIONAL<br />

MODELS<br />

CONFIGURATION<br />

INTERACTION<br />

AND MOLLER-<br />

PLESSET MODELS<br />

SEMIEMPIRICAL<br />

MO MODELS


Basis Sets for Computational Models<br />

Semiempirical Methods: use Slater-type<br />

functions; one size fits all<br />

Ab Initio methods: most commonly used are Gaussian<br />

functions; comb<strong>in</strong>ation of Gaussians gives Slater-type<br />

orbitals.<br />

<strong>Inc</strong>reas<strong>in</strong>g Complexity<br />

M<strong>in</strong>imal basis set STO-3G<br />

Split-Valence or Double-Zeta 3-21G(*)<br />

Polarized basis sets 6-31G*<br />

Extended basis sets 6-311+G**<br />

Hartree-Fock limit: <strong>in</strong>f<strong>in</strong>ite basis set<br />

unreliable<br />

energetics<br />

for most<br />

accurate<br />

calculations<br />

excellent<br />

results


Correlation energy: Electrons correlate their motion better than Hartree-Fock<br />

theory allows for. This is typically a small portion of the total energy. <strong>Inc</strong>lusion<br />

of electron correlation lowers the energy of the wavefunction.<br />

Hartree Fock<br />

Energy<br />

Correlation<br />

Energy<br />

Exact<br />

Energy<br />

Example: Methane Basis Set 6-311G*<br />

Energy RelativeEnergy<br />

(hartrees) (kcal/mol)<br />

----------------------------------------------------------------------<br />

E Hartree Fock -40.202409 0.0 kcal/mol<br />

EMP2 -40.349308 -92.1<br />

EMP3 -40.365949 -102.6<br />

EMP4SDQ -40.369786 -105.0<br />

EMP4 -40.372940 -107.0<br />

B3LYP -40.527982 -204.2<br />

When do you really need electron correlation?<br />

Important for the most accurate calculations.<br />

Essential for excited states, transition states, structures with<br />

unusual bond<strong>in</strong>g schemes, high-sp<strong>in</strong> molecules….


Which computational method do you need?<br />

<strong>Inc</strong>reas<strong>in</strong>g level of theory<br />

Correlated methods<br />

(DFT, MP etc.<br />

Ab Initio Hartree Fock<br />

(3-21G, 6-31G* etc)<br />

Semiempirical<br />

(AM1, MNDO, PM3)<br />

Force-Field<br />

(MMF, Syby)<br />

excited states, UV spectra, transition<br />

state energies, structures with unusual<br />

bond<strong>in</strong>g schemes, most accurate<br />

predictions of structure <strong>and</strong> properties<br />

more accurate prediction of structure<br />

<strong>and</strong> properties, NMR spectra, relative<br />

energies of isomers, qualitative description<br />

of transition states <strong>and</strong> reactions<br />

basic description of structure <strong>and</strong> bond<strong>in</strong>g,<br />

vibrational spectra,, start<strong>in</strong>g geometries for<br />

higher level calculations<br />

conformational analysis, start<strong>in</strong>g<br />

geometries for other calculations,<br />

basic questions of structure <strong>and</strong> shape


<strong>Model<strong>in</strong>g</strong> Carbohydrate Complexes at Multiple levels of Theory


Approximate relationship between molecular<br />

size <strong>and</strong> computational dem<strong>and</strong>s<br />

AB INITIO<br />

METHODS<br />

CPU <strong>and</strong> MEMORY DEMANDS<br />

SEMI-EMPIRICAL<br />

METHODS<br />

FORCE-FIELD<br />

METHODS<br />

MOLECULAR SIZE


Visualization


Vibrational Frequency Analysis<br />

Stationary po<strong>in</strong>ts on a potential surface are characterized by<br />

vibrational frequency analysis. Vibrational modes may be<br />

calculated <strong>and</strong> animated.<br />

Energy m<strong>in</strong>ima will have all positive vibrational modes.<br />

Energy maxima (first order transition states) will have a<br />

s<strong>in</strong>gle negative or imag<strong>in</strong>ary mode. This corresponds to<br />

the reaction coord<strong>in</strong>ate. Higher order transition states exist<br />

but they are rare. (L<strong>in</strong>ear water for example!)<br />

Calculated vibrational frequencies usually are ca. 10% too<br />

high relative to experiment.


What is the significance of this structure?


Back to work…….What can we calculate?<br />

Sample calculations on a simple molecule.<br />

• Optimized structure<br />

• Vibrational modes<br />

• Surfaces


Charge <strong>and</strong> Multiplicity<br />

s<strong>in</strong>glet doublet s<strong>in</strong>glet<br />

CH 3<br />

+<br />

CH 3 CH 3<br />

-


Electrostatic Potential Maps<br />

The electrostatic potential is the energy of<br />

<strong>in</strong>teraction of a po<strong>in</strong>t positive charge (an<br />

electrophile) with the nuclei <strong>and</strong> electrons of a<br />

molecule. As a three dimensional isosurface, this<br />

easily shows lone pairs. Hydraz<strong>in</strong>e is shown here.<br />

The electrostatic potential can be mapped onto<br />

the electron density surface by us<strong>in</strong>g color to<br />

represent the value of the potential. The<br />

result<strong>in</strong>g model displays molecular size <strong>and</strong><br />

shape (from the density map) <strong>and</strong> is colored to<br />

represent relative positive <strong>and</strong> negative regions<br />

of the surface. Colors toward red <strong>in</strong>dicate<br />

negative values of the ESP, while colors toward<br />

blue represent positive potential values. Sodium<br />

chloride is shown <strong>in</strong> this example.


Visualiz<strong>in</strong>g Biomolecules:<br />

Carboxypeptidase from a PDB File


Gett<strong>in</strong>g the word out….<br />

Images <strong>and</strong> structures are easily transferred to:<br />

• Powerpo<strong>in</strong>t presentations like this one<br />

• Word-process<strong>in</strong>g programs<br />

• JPEG files www pages<br />

• AVI animations<br />

• PDB files www pages <strong>and</strong> other programs<br />

• Browser plug<strong>in</strong>s like Chime (MDLI) offer<br />

structure visualization on <strong>and</strong> off the WWW.


This is cool, but<br />

is there a version<br />

for<br />

Mac<strong>in</strong>tosh?


What is<br />

?<br />

A New Set of<br />

Programs +<br />

Associated Chemistry Content<br />

for Teach<strong>in</strong>g Concepts <strong>in</strong><br />

Introductory Chemistry<br />

Run Odyssey


…<strong>in</strong> the Introductory/General<br />

Chemistry/High School Curriculum:<br />

• Thermochemistry<br />

.<br />

• Gases<br />

• Liquids/Solids/Intermolecular Forces<br />

• Solutions<br />

• K<strong>in</strong>etics<br />

• <strong>Chemical</strong> Thermodynamics


SPARTAN<br />

vs.<br />

Molecules / Small Clusters<br />

Energy M<strong>in</strong>imization<br />

(T = 0)<br />

Small Molecule Chemistry<br />

(Organic / Inorganic /<br />

Medic<strong>in</strong>al / Biological)<br />

Quantum Mechanics<br />

Eng<strong>in</strong>e<br />

Also:<br />

Bulk Matter<br />

Dynamics at Given<br />

Temperature<br />

Introductory / General /<br />

Physical Chemistry<br />

Classical<br />

<strong>Molecular</strong> Dynamics<br />

SImulation Eng<strong>in</strong>e<br />

Integrated (DHTML)<br />

Chemistry Content


…is <strong>in</strong>teractive:<br />

• Stop-’N-Go Dynamics<br />

• Sample Manipulation<br />

• Property Queries<br />

• Plott<strong>in</strong>g<br />

…all “on-the-fly”,<br />

<strong>in</strong>itiated <strong>and</strong> controlled<br />

by the student


<strong>Molecular</strong> Dynamics<br />

Simulation Eng<strong>in</strong>e:<br />

Newton:<br />

F = m • a<br />

dE (x 1 ,y 1 ,z 1 ,…)<br />

dx 1<br />

= m 1 •<br />

dv x1<br />

dt<br />

Run Odyssey


Customization:<br />

…annotate pages<br />

…change sample(s)<br />

…change text<br />

…even create your own page !<br />

Models can be created <strong>in</strong> Spartan <strong>and</strong> brought directly <strong>in</strong>to Odyssey<br />

to create new molecular dynamics simulations.


MD Simulations: Input<br />

1. Positions x 1 ,y 1 ,z 1 ,… but really output <strong>in</strong><br />

“equilibrium” situations<br />

2. Velocities v x1<br />

,v y1<br />

,v z1<br />

, … basically temperature !<br />

3. Force field force field:<br />

E (x 1 ,y 1 ,z 1 ,…)<br />

MMFF with extensions,<br />

~ sufficient for pedagogical purposes


MD Simulations: Output<br />

• Equilibrium structure<br />

• Hydrogen bonds<br />

• Spontaneous changes<br />

• Response to perturbations<br />

• Energetics / Thermodynamics<br />

• Particle trajectories<br />

• Diffusive behavior<br />

• Rotational motion<br />

…for the<br />

chosen<br />

temperature


Search<strong>in</strong>g the Cambridge<br />

Structure Database (CSD)<br />

<strong>Wavefunction</strong> is now responsible for distribution of the Cambridge<br />

Structural Database (CSD) System (on W<strong>in</strong>dows <strong>and</strong> Unix) to academic<br />

<strong>in</strong>stitutions <strong>in</strong> the United States.<br />

The CSD currently conta<strong>in</strong>s more than 280,000 published X-ray crystal<br />

structures for organic <strong>and</strong> organometallic compounds. About 20,000 new<br />

structures are added annually. New versions of the CSD are released every<br />

six months. The CSD System <strong>in</strong>cludes the ConQuest search software used to<br />

<strong>in</strong>terrogate all CSD <strong>in</strong>formation fields (bibliographic, chemical <strong>and</strong><br />

crystallographic), <strong>and</strong> also <strong>in</strong>cludes IsoStar, a knowledge-base of<br />

<strong>in</strong>termolecular <strong>in</strong>teractions <strong>and</strong> Mercury, a visualization <strong>and</strong> analysis<br />

program.<br />

Structure search<strong>in</strong>g can be done directly through<br />

Spartan <strong>and</strong> structures are easily imported.


Search<strong>in</strong>g the Cambridge Database


Search<strong>in</strong>g the Spartan Database


Applications of Spartan<br />

•Teach<strong>in</strong>g basic concepts: atomic orbitals,<br />

acidity, resonance, chemical bond<strong>in</strong>g<br />

•Us<strong>in</strong>g lists<br />

•Conformational analysis<br />

•Coord<strong>in</strong>ate driv<strong>in</strong>g<br />

•Transition state search<strong>in</strong>g<br />

•Visualiz<strong>in</strong>g reactions<br />

•Examples from <strong>in</strong>organic chemistry


Atomic Orbitals: The Bromide Ion HF/3-21G Results<br />

Atomic configuration: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6<br />

Atomic Orbital Energies<br />

eigenvalues: -486.69845 1s<br />

-64.66592 -57.85828 -57.85828 -57.85828 2s,2p<br />

-9.52913 -7.10100 -7.10100 -7.10100 3s,3p<br />

-2.83570 -2.83570 -2.83570 -2.83570 -2.8357 3d<br />

-0.63114 -0.08504 -0.08504 -0.08504 4s,4p


4p<br />

4s<br />

3d<br />

ENERGY<br />

3p<br />

3s<br />

2p<br />

2s<br />

1s


Acidity: Oxoacids of Halogens<br />

hypochlorous acid<br />

chlorous acid<br />

chloric acid<br />

perchloric acid<br />

(hypochlorite ion)<br />

(chlorite ion)<br />

(chlorate ion)<br />

(perchlorate ion)<br />

HClO ↔ H + + ClO -<br />

HClO 2 ↔ H + + ClO 2<br />

-<br />

HClO 3 ↔ H + + ClO 3<br />

-<br />

HClO 4 ↔ H + + ClO 4<br />

-<br />

K a = 3.0x10 -8<br />

K a = 1.0x10 -2<br />

K a = 1.6x10 1<br />

K a = 1x10 10<br />

(weak)<br />

(strong)


Ionic vs. Covalent Bond<strong>in</strong>g: Salt<br />

Calculate sodium chloride at the ab <strong>in</strong>itio HF/3-21G(*)<br />

level of theory.<br />

Visualize electron density, electrostatic potential maps<br />

And charges.


Plott<strong>in</strong>g Data: Constra<strong>in</strong>ts, Lists <strong>and</strong> Spreadsheets


Animat<strong>in</strong>g the Inversion Barrier <strong>in</strong> Ammonia


3D Plots may also be useful


Us<strong>in</strong>g Lists <strong>and</strong> Spreadsheets: Conformations of Cyclohexane<br />

Other examples: shapes, radicals, HX polarization, alkane series, forms of carbon<br />

benzene MO’s, covalent vs. ionic bond<strong>in</strong>g, ozonolysis energetics, polyene UV,<br />

benzene isomers, benzonitrile nitration, hydroboration


NMR Spectral Calculation<br />

Another example


Example: Conformations of Octane


Visualiz<strong>in</strong>g <strong>Chemical</strong> Reactions<br />

Locate the transition state<br />

Calculate the <strong>in</strong>tr<strong>in</strong>sic reaction coord<strong>in</strong>ate<br />

Animate the transition state “imag<strong>in</strong>ary” vibrational mode


Start<strong>in</strong>g anwhere <strong>in</strong><br />

this region of space<br />

will usually f<strong>in</strong>d the<br />

m<strong>in</strong>imum.<br />

To f<strong>in</strong>d a transition state<br />

you MUST start with a<br />

guessed geometry <strong>in</strong><br />

this region of space


Stationary po<strong>in</strong>t: a molecular geometry where all forces on atoms are zero<br />

(or m<strong>in</strong>imized to tolerances set <strong>in</strong> programs.)<br />

1) Energy m<strong>in</strong>imum: easy to f<strong>in</strong>d but there are often many conformations.<br />

Frequency analysis will give all positive vibrational frequencies.<br />

2) First order saddle po<strong>in</strong>t or transition state: more difficult to f<strong>in</strong>d because<br />

you must start with a guessed geometry that is close to the answer.<br />

Frequency analysis will give one “imag<strong>in</strong>ary” frequency which corresponds<br />

to the reaction coord<strong>in</strong>ate.<br />

3) Higher order saddle po<strong>in</strong>t: a transition state <strong>in</strong> more than one direction.<br />

Frequency analysis will give two or more imag<strong>in</strong>ary frequencies. Simplest<br />

example may be l<strong>in</strong>ear water.<br />

TRANSITION<br />

STATE<br />

ENERGY<br />

REACTANT<br />

PRODUCT<br />

REACTION COORDINATE


<strong>Model<strong>in</strong>g</strong> Transition States<br />

Diels-Alder TS Migratory <strong>in</strong>sertion <strong>in</strong> CH 3<br />

Mn(CO) 5


Strategies for F<strong>in</strong>d<strong>in</strong>g Transition State Structures<br />

If you can f<strong>in</strong>d one TS, you have them all.<br />

F<strong>in</strong>d the simplest TS for the reaction first; then build on the rest of your molecule<br />

<strong>and</strong> partially optimize with the important structural components frozen.<br />

To exam<strong>in</strong>e regio- <strong>and</strong> stereochemical issues, build as many copies as you need<br />

<strong>in</strong> a spreadsheet <strong>and</strong> optimize them all <strong>in</strong> one job. This is an extraord<strong>in</strong>arily<br />

powerful technique.


Strategies for F<strong>in</strong>d<strong>in</strong>g Transition State Structures<br />

Use bond lengths or other constra<strong>in</strong>ts to pre-optimize a guess.<br />

Bonds that are be<strong>in</strong>g broken or made usually are 20 – 50% longer <strong>in</strong><br />

transition state structures. Look at related structures for guidance. Data<br />

often are highly transferable from related TS structures.<br />

This is almost always MUCH easier to accomplish <strong>in</strong> Spartan.<br />

NC<br />

H<br />

C<br />

Cl<br />

2.126<br />

H<br />

TS bond C--H bond length is<br />

ca. 1.4 - 1.5 Angstroms<br />

Diels-Alder TS usually has<br />

C----C bond lengths of<br />

1.9 - 2.3 Angstroms<br />

H H<br />

2.397<br />

B3LYP/6-31G*<br />

S N 2 has pentacoord<strong>in</strong>ate<br />

carbon <strong>and</strong> two long bonds


Strategies for F<strong>in</strong>d<strong>in</strong>g Transition State Structures<br />

Use the transition state library <strong>in</strong> Spartan: draw arrows correspond<strong>in</strong>g to<br />

the mechanism. The library <strong>in</strong>cludes thous<strong>and</strong>s of transition states.<br />

H<strong>in</strong>ts:<br />

1) Draw arrows <strong>in</strong> a cont<strong>in</strong>uous direction<br />

2) Use the INSERT key to place several molecules on screen<br />

3) Some arrows are drawn bond to bond<br />

4) To draw arrows to a space, hold down the<br />

shift key <strong>and</strong> click on two atoms separat<strong>in</strong>g the new bond.<br />

5) You can beg<strong>in</strong> on either side of a reaction.


A Research Example: Synthesis of Panepophenanthr<strong>in</strong> (2003)<br />

O<br />

HO<br />

Me<br />

Me<br />

O<br />

OH<br />

O<br />

OH<br />

O<br />

H<br />

H<br />

HO<br />

O<br />

R<br />

R<br />

O<br />

Eight possible<br />

modes of<br />

cycloaddition<br />

X. Lei., R. P. Johnson <strong>and</strong> J. A. Porco Jr.<br />

Angew. Chem. Internat. Edit. 2003,42, 3913.<br />

R = C(OH)(CH 3 ) 2<br />

O<br />

Me<br />

OH<br />

Me<br />

Me Me O<br />

OH<br />

H O<br />

H<br />

OH<br />

OH<br />

O<br />

panepophenanthr<strong>in</strong><br />

O<br />

HO<br />

Me<br />

O<br />

Me<br />

Me<br />

H<br />

H<br />

OH<br />

OH<br />

OH<br />

Me<br />

O


Intr<strong>in</strong>sic Reaction Coord<strong>in</strong>ate (IRC) Searches<br />

An IRC calculation starts with the TS geometry <strong>and</strong> Hessian, then locates the<br />

m<strong>in</strong>ima connected to this TS. This beg<strong>in</strong>s by follow<strong>in</strong>g the “imag<strong>in</strong>ary”<br />

vibrational mode. IRC calculations are time consum<strong>in</strong>g s<strong>in</strong>ce each po<strong>in</strong>t must<br />

be optimized on the surface.<br />

IRC calculations are<br />

the most reliable way to<br />

prove that you have<br />

found the correct TS.


Examples from Inorganic Chemistry<br />

Berry pseudorotation <strong>in</strong> PCl 5<br />

Zr benzyne complex<br />

ethylene <strong>in</strong>sertion<br />

Migratory <strong>in</strong>sertion <strong>in</strong><br />

CH 3<br />

Mn(CO) 5


Visualiz<strong>in</strong>g a chemical reaction: Nucleophilic Substitution<br />

NC<br />

-<br />

H<br />

H<br />

C<br />

H<br />

Br<br />

NC<br />

H<br />

C<br />

H<br />

H<br />

Br<br />

NC<br />

C<br />

H H<br />

H<br />

Br<br />

-<br />

Visualization of the HOMO best shows the negative<br />

charge location. This beg<strong>in</strong>s on the nucleophile <strong>and</strong><br />

migrates to the leav<strong>in</strong>g group. The animation also<br />

shows the <strong>in</strong>version of stereochemistry. Draw<strong>in</strong>g<br />

electron density slices shows bonds form<strong>in</strong>g <strong>and</strong> break<strong>in</strong>g.<br />

Stereocenter <strong>in</strong>version , SN2 examples


Visualiz<strong>in</strong>g an SN2 Reaction<br />

HOMO<br />

Electron Density Slice


<strong>Molecular</strong> Recognition.<br />

Base Pair<strong>in</strong>g<br />

Nonact<strong>in</strong>-Potassium<br />

Complex


Wrapp<strong>in</strong>g up: What can you do with molecular<br />

model<strong>in</strong>g <strong>and</strong> visualization <strong>in</strong> your classroom <strong>and</strong> laboratory?<br />

•Enhance teach<strong>in</strong>g of selected concepts <strong>and</strong> content.<br />

•Emphasize the molecular nature of chemistry.<br />

•Move from two dimensions <strong>in</strong>to three.<br />

•Show real 3-D dynamic models – not just movies.<br />

•Prepare course material <strong>and</strong> WWW images.<br />

•Computational experiments <strong>in</strong> place of selected wet labs.<br />

•Motivate students to be excited about chemistry.<br />

•Research, enrichment <strong>and</strong> special projects.<br />

•Advanced courses.<br />

•Better prepare students for graduate school <strong>and</strong> future careers <strong>in</strong><br />

chemistry.<br />

Now it’s up to you….

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!