01.11.2014 Views

Download (6Mb) - Etheses - Saurashtra University

Download (6Mb) - Etheses - Saurashtra University

Download (6Mb) - Etheses - Saurashtra University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Saurashtra</strong> <strong>University</strong><br />

Re – Accredited Grade ‘B’ by NAAC<br />

(CGPA 2.93)<br />

Patel, Anilkumar S., 2011, “Studies on Novel Bioactive Heterocyclic<br />

Compounds”, thesis PhD, <strong>Saurashtra</strong> <strong>University</strong><br />

http://etheses.saurashtrauniversity.edu/id/eprint/544<br />

Copyright and moral rights for this thesis are retained by the author<br />

A copy can be downloaded for personal non-commercial research or study,<br />

without prior permission or charge.<br />

This thesis cannot be reproduced or quoted extensively from without first<br />

obtaining permission in writing from the Author.<br />

The content must not be changed in any way or sold commercially in any<br />

format or medium without the formal permission of the Author<br />

When referring to this work, full bibliographic details including the author, title,<br />

awarding institution and date of the thesis must be given.<br />

<strong>Saurashtra</strong> <strong>University</strong> Theses Service<br />

http://etheses.saurashtrauniversity.edu<br />

repository@sauuni.ernet.in<br />

© The Author


STUDIES ON NOVEL BIOACTIVE<br />

HETEROCYCLIC COMPOUNDS<br />

A THESIS SUBMITTED TO THE<br />

Re-Accredited Grade-B by<br />

NAAC (CGPA 2.93)<br />

IN<br />

THE FACULTY OF SCIENCE<br />

FOR<br />

THE DEGREE<br />

OF<br />

Doctor of Philosophy<br />

IN<br />

CHEMISTRY<br />

BY<br />

ANILKUMAR S. PATEL<br />

UNDER THE GUIDANCE OF<br />

Dr. YOGESH T. NALIAPARA<br />

DEPARTMENT OF CHEMISTRY<br />

SAURASHTRA UNIVERSITY<br />

RAJKOT – 360 005<br />

GUJARAT, INDIA<br />

NOVEMBER 2011


Statement under O.Ph.D.7 of <strong>Saurashtra</strong> <strong>University</strong><br />

The work included in the thesis is done by me under the supervision of Dr.<br />

Yogesh T. Naliapara and the contribution made there of is my own work.<br />

Date:<br />

Place: Rajkot<br />

Anilkumar S. Patel


SAURASHTRA UNIVERSITY<br />

Department of Chemistry<br />

Rajkot – 360 005<br />

Phone: (O) +91-281-2576802<br />

(Cell) +91-94280 36310<br />

E mail: naliaparachem@yahoo.com<br />

Re-Accredited Grade-B by<br />

NAAC (CGPA 2.93)<br />

CERTIFICATE<br />

This is to certify that the present work “Studies on Novel Bioactive Heterocyclic<br />

Compounds” submitted for the Degree of Ph. D. in the subject Chemistry is done by<br />

Mr. Anilkumar S. Patel at Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot,<br />

under my supervision and is a significant contribution in the field of synthetic organic<br />

chemistry and medicinal chemistry. His thesis is recommended for acceptance for the<br />

award of the Ph.D. degree by the <strong>Saurashtra</strong> <strong>University</strong>.<br />

Date:<br />

Place: Rajkot<br />

Dr. Yogesh T. Naliapara<br />

Assistant Professor,<br />

Department of Chemistry,<br />

<strong>Saurashtra</strong> <strong>University</strong>,<br />

Rajkot-360005<br />

Gujarat, India.


Wxw|vtàxw<br />

àÉ<br />

`ç YtÅ|Äç


Acknowledgement<br />

Firstly, I bow my head humbly before the Almighty God for making me<br />

capable of completing my Ph.D. Thesis; with his blessings only I have accomplished<br />

this huge task.<br />

I express deep sense of gratitude and thankfulness to my supervisor Dr.<br />

Yogesh T. Naliapara who has helped me at each and every point of my research work<br />

with patience and enthusiasm. I am much indebted to him for his inspiring guidance,<br />

affection, generosity and everlasting enthusiasm throughout the tenure of my<br />

research work.<br />

I am very thankful to the faculties of Department of Chemistry namely, Prof.<br />

P. H. Parsania, Prof. Anamik Shah, Prof. V. H. Shah, Prof. H. S. Joshi, Prof. Shipara<br />

Baluja, Dr. M. K. Shah, Dr. R. C. Khunt, for their encouragement and providing<br />

adequate research facilities.<br />

I sincerely grateful to Dr. Naval Kapuriya (jiju) and Mrs. Kalpana Kapuriya<br />

(sister) for their continuous support and inspiration during my research work and as<br />

a result, I am capable to complete this work. They had helped me all along to speed<br />

up my research work.<br />

My heartily thanks to my colleagues and labmates Piyush Pipaliya, Vipul<br />

Audichya and Gami Sagar for their kind help and support. My special thanks to Dr.<br />

Chirag Bhuva, Dr. Akshay Pansuriya, Dr. Jyoti Singh and Dr. Mahesh Savant.<br />

I offer my gratitude to my friends Dr. Satish, Dr. Rajesh, Dr. Rupesh, Dr.<br />

Bhavin, Dr. Ravi, Dr, Mehul, Dr. Jignesh, Dr. Renish, Dr. Harshad, Dr. Amit, Dr.<br />

Bhavesh, Dr. Pooja, Dr. Yogesh, Dr. Naimish, Krunal, Rakesh, Vipul, Ashish, Paresh,<br />

Bharat, Piyush(motabhai), Ramani, Punit, Gaurang, Satish, Batuk, Ashish and all the<br />

Ph.D. students for their fruitful discussion at various stages. I am also thankful to my<br />

best friends Mehul, Dr. Dinesh, Bipin(moto), Pankaj, Pintu, Parag, Sumit, Kalpesh,<br />

Nilesh and Rinkal for their help, entertainment & coordination extended by them.


I am thankful to FIST/DST and SAP/UGC for their generous financial and<br />

instrumentation support. Special thanks are due to “National Facility for Drug<br />

Discovery through New Chemical Entities (NCE's) Development & Instrumentation<br />

Support to Small Manufacturing Pharma Enterprises” Programme under Drug &<br />

Pharma Research Support (DPRS) jointly funded by Department of Science &<br />

Technology, New Delhi, Government of Gujarat Industries Commissionerate &<br />

<strong>Saurashtra</strong> <strong>University</strong>, Rajkot. I am also thankful to SAIF, CIL, Chandigarh and NRC,<br />

IISc, Bangalore for providing spectroscopic analysis.<br />

Special thanks to Open Source of Drug Discover project for giving me<br />

financial support and <strong>University</strong> of Grant Commission for finding me as Meritorious<br />

Research Fellow which is really an achievement and helpful task for me.<br />

At Last, I have no words to state anything about my parents but at this<br />

occasion, I would like to thanks my father and mother, without their support,<br />

motivation and understanding it would have been impossible for me to finish my<br />

research work. I sincerely thank to my whole family for encouraging me and<br />

providing every help to fulfill my task. My special gratitude is due to my sister and<br />

their families for their loving support during tenure of my work. To them I dedicate<br />

this thesis.<br />

Anilkumar S. Patel


Content<br />

Chapter 1<br />

Palladium Catalyzed Synthesis of Novel Highly Functionalized<br />

Pyrimidines via Suzuki-Miyaura Coupling Reaction.<br />

1.1 Introduction 1<br />

1.2 Biological Activity Associated with 4-Aryl dihydropyrimidine derivatives 2<br />

1.3 Synthetic strategies for the dihydropyrimidines (DHPMs) 7<br />

1.4 Current research work 20<br />

1.5 Results and discussion 21<br />

1.6 Conclusion 24<br />

1.7 Experimental section 25<br />

1.8 References 40<br />

Chapter 2<br />

Synthesis and Biological Activity of Novel Pyrimidine Derivatives via<br />

Wittig Reaction in Aqueous Media.<br />

2.1 Introduction 44<br />

2.2 A literature review on the biological activity associated with pyrimidine<br />

derivatives 45<br />

2.3 Various synthetic approaches for highly substituted pyrimidines 50<br />

2.4 Applications of Wittig reaction 52<br />

2.5 Application of sodium tripolyphosphate 55<br />

2.6 Current research work 56<br />

2.7 Results and discussion 57<br />

2.8 Antimicrobial sensitivity testing 60<br />

2.9 Conclusion 63<br />

2.10 Experimental section 64<br />

2.11 References 79<br />

Chapter 3<br />

Rapid Synthesis and Characterization of Novel Tri-substituted<br />

Pyrazoles/Isoxazoles Library Using Ketene Dithioacetals.<br />

3.1 Introduction 82<br />

3.2 Biological activity associated with pyrazoles and isoxazoles 83<br />

3.3 Synthetic methods for the pyrazole and isooxazole derivatives 89<br />

3.4 Some pharmaceutical molecules related to pyrazoles and isoxazoles 94<br />

3.5 Current research work 95<br />

3.6 Results and discussion 96<br />

3.7 Conclusion 100<br />

3.8 Experimental section 101<br />

3.9 References 118


Chapter 4<br />

Synthesis and Characterization of Novel Substituted and Fused<br />

Pyrazolo[1,5-a] pyrimidines Derivatives.<br />

4.1 Introduction 121<br />

4.2 Biological activity related to pyrazopyrimidine derivatives 122<br />

4.3 Various synthetic approaches for substituted pyrazolopyrimidine derivatives 126<br />

4.4 Current research work 132<br />

4.5 Results and discussion 133<br />

4.6 Conclusion 138<br />

4.7 Experimental section 139<br />

4.8 Reference 155<br />

Chapter 5<br />

Rapid Synthesis of Highly Substituted Pyrrole Derivatives: Analogs of<br />

Atorvastatin.<br />

5.1 Introduction 158<br />

5.2 Various synthetic approaches for highly substituted pyrroles 159<br />

5.3 Biological activity associated with pyrrole derivatives 167<br />

5.4 Some drugs from pyrrole nucleus 167<br />

5.5 Current research work 168<br />

5.6 Results and discussion 169<br />

5.7 Antimicrobial sensitivity testing 173<br />

5.8 Conclusion 176<br />

5.9 Experimental section 177<br />

5.10 References 197<br />

Chapter 6 Synthesis and Characterization of Some New Benzodiazepine<br />

Derivatives.<br />

6.1 Introduction 201<br />

6.2 Biological activities associated with diazepine derivatives 203<br />

6.3 Some pharmaceutical molecules related to benzodiazepines 207<br />

6.4 Synthetic methods for benzodiazepines derivatives 208<br />

6.5. Current research work 211<br />

6.6 Results and discussion 212<br />

6.7 Conclusion 215<br />

6.8 Experimental section 216<br />

6.9 References 231<br />

Summary 234<br />

List of Publications and Conferences participated 236


Abbreviations<br />

AIDS<br />

CS 2<br />

CDK<br />

DABCO<br />

DMSO<br />

DMF<br />

DMS<br />

DHP<br />

DHPM<br />

DIBAL<br />

EGFR<br />

GABA<br />

HDAC<br />

HIV<br />

HCV<br />

MDC<br />

mCPBA<br />

PAF<br />

STPP<br />

THF<br />

TMS<br />

VEGFR<br />

iPA<br />

h<br />

min<br />

rt<br />

mp<br />

Aquired immune deficiency syndrome<br />

Carbon disulfide<br />

Cyclin-dependent kinase<br />

1,4-diazabicyclo[2.2.2]octane<br />

Dimethyl sulfoxide<br />

Dimethyl formamide<br />

Dimethyl sulfate<br />

Dihydropyridine<br />

Dihydropyrimidine<br />

Diisobutylaluminium hydride<br />

Epidermal Growth Factor Receptor<br />

Gamma-aminobutyric acid<br />

Histone deacetylase<br />

Human immunodeficiency virus<br />

Hepatitis C virus<br />

Methylene dichloride<br />

meta-chloro perbenzoic acid<br />

Platelet-activating factor<br />

Sodium tripolyphosphate<br />

Tetrahydrofuran<br />

Trimethyl silane<br />

Vascular Endothelial Growth Factor Receptor<br />

iso-propyl alcohol<br />

hour (time)<br />

minute (time)<br />

room temperature<br />

melting point


Chapter – 1<br />

Palladium Catalyzed Synthesis of Novel<br />

Highly Functionalized Pyrimidines via<br />

Suzuki-Miyaura Coupling Reaction


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

1.1 Introduction<br />

The pyrimidine fragment is present in the molecules of a series of biologically<br />

active compounds, many of which have found use in medical practice (soporific, antiinflammatory,<br />

antitumor, and other products). 1,2 In this connection, great attention has<br />

recently been paid to the derivatives of pyrimidine, including their hydrogenation<br />

products. The first investigation into the synthesis of pyrimidine nucleus appeared<br />

more than a hundred years ago and subsequently several methods for the synthesis of<br />

dihydropyrimidine were reported and their physicochemical properties has been<br />

studied (e.g., the Biginelli reaction). 3 Further, the high reactivity and wide range of<br />

biological activity associated with these scaffolds have been demonstrated in the<br />

literature. For example, 2-substituted 5-alkoxycarbonyl-4-aryl-l,4-dihydropyrimidines<br />

(structural analogs of Hantzsch esters) are modulators of the transport of calcium<br />

through membranes. 4-7 Many hydrogenated pyrimidines exhibit antimicrobial, 8<br />

hypoglemic, 9 herbicidal, 10 and pesticidal 11 activity. Publications devoted to these<br />

problems have been summarized in a number of reviews. 9-14<br />

Pyrimidines have a long and distinguished history extending from the days of<br />

their discovery as important constituents of several biological molecules such as<br />

nucleic acids, cofactors, various toxins, to their current use in the chemotherapy of<br />

AIDS. All these compounds yield great promise for the treatment of retro virus<br />

infections in humans.<br />

Alloxan (1) is known for its diabetogenic action in a number of animals. 15<br />

Uracil (2), thymine (3) and cytosine (4) are the three important constituents of nucleic<br />

acids (Figure-1).<br />

Figure-1<br />

The pyrimidine ring is also found in vitamins such as thiamine (5), riboflavin<br />

(6) (Figure-2) and folic acid (7). 16 Barbitone (8) is the first barbiturate hypnotic,<br />

sedative and anticonvulsant are pyrimidine derivatives (Figure-3).<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 1


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Figure-2<br />

Figure-3<br />

1.2 Biological Activity Associated with 4-Aryl dihydropyrimidine<br />

derivatives<br />

Among the dihydropyrimidines, 4-Aryl-1,4-dihydropyridines (DHPs, e.g.<br />

nifedipine) are the most studied class of organic calcium channel modulators. More<br />

than 30 years after the introduction of nifedipine many DHP analogs have now been<br />

synthesized and numerous second-generation commercial products have appeared on<br />

the market. 17,18<br />

Nowadays, interest has also been focused on aza-analogs such as<br />

dihydropyrimidines (DHPMs) which showed a very similar pharmacological profile<br />

to the classical dihydropyridine calcium channel modulators. 5-7, 19-20 Over the past few<br />

years several lead-compounds were developed (i.e. SQ 32,926) that are superior in<br />

potency and duration of antihypertensive activity to classical DHP drugs, and<br />

compare favorable with second-generation analogs such as amlodipine and<br />

nicardipine (Figure-4).<br />

Figure-4<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 2


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Barrow et al. has reported in vitro and in vivo evaluation of<br />

dihydropyrimidinone C-5 amides as potent and selective r1A receptor antagonists for<br />

the treatment of benign prostatic hyperplasia (Figure-5). R1 Adrenergic receptors<br />

mediate both vascular and lower urinary tract tone, and R1 receptor antagonists such<br />

as terazosin are used to treat both hypertension and benign prostatic hyperplasia<br />

(BPH). Recently, three different subtypes of this receptor have been identified, with<br />

the R1A receptor being most prevalent in lower urinary tract tissue. Barrow et al. has<br />

also reported 4-aryldihydropyrimidinones attached to an aminopropyl-4-<br />

arylpiperidine via a C5 amide as selective R1A receptor subtype antagonists. In<br />

receptor binding assays, these types of compounds generally display Ki values for the<br />

R1a receptor subtype 20%) and half-life (>6 h) in<br />

both rats and dogs. Due to its selectivity for the R1a over the R1b and R1d receptors<br />

as well as its favorable pharmacokinetic profile, it has the potential to relieve the<br />

symptoms of BPH without eliciting effects on the cardiovascular system. 21,22<br />

F<br />

F<br />

N<br />

R 3 R 2<br />

Figure-5<br />

The 4-aryldihydropyrimidinone attached to an aminopropyl-4-arylpiperidine<br />

via a C5 amide has proved to be an excellent template for selective R1A receptor<br />

subtype antagonists. Those compounds are exceptionally potent in both cloned<br />

receptor binding studies as well as in vivo pharmacodynamic models of prostatic tone.<br />

Atwal et al. have examined a series of novel dihydropyrimidine calcium<br />

channel blockers that contain a basic group attached to either C5 or N3 of the<br />

heterocyclic ring (Figure-6).<br />

N<br />

H<br />

O<br />

R 1<br />

N<br />

H<br />

NH<br />

O<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 3


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Structure-activity studies showed that l-(phenylmethyl)-4-piperidinylcarbamate<br />

moiety at N3 and sulfur at C2 are optimal for vasorelaxant activity in vitro and impart<br />

potent and long-acting antihypertensive activity in vivo. One of these compounds was<br />

identified as a lead, and the individual enantiomers were synthesized. Two key steps<br />

of the synthesis were (1) the efficient separation of the diastereomeric ureido<br />

derivatives and (2) the high-yield transformation of 2-methoxy intermediate to the<br />

(p-methoxybenzyl)thio intermediates. Chirality was demonstrated to be a significant<br />

determinant of biological activity, with the DHP receptor recognizing the enamines<br />

ester moiety but not the carbamate moiety. DHPM is equipotent to nifidepine and<br />

amlodipine in vitro. In the spontaneously hypertensive rat, DHPM is more potent and<br />

longer acting than both nifidepine and the long-acting amlodipine (DHP derivative).<br />

DHPM has the potential advantage of being a single enantiomer. 23,24<br />

F 3 C<br />

i-PrO 2 C<br />

N<br />

H<br />

N<br />

O 2<br />

C<br />

S<br />

N<br />

F 3 C<br />

R i-PrO 2 C<br />

Figure-6<br />

N<br />

H<br />

N<br />

O 2<br />

C<br />

S<br />

N<br />

HCl<br />

F<br />

In order to explain the potent antihypertensive activity of the modestly active<br />

(ICw = 3.2 pM) DHPM calcium channel blocker, Atwal et al. carried out drug<br />

metabolism studies in the rat and found that two of the metabolites (ICw = 16 nM)<br />

and (ICw = 12 nM), were responsible for antihypertensive activity of compound.<br />

Potential metabolism in vivo precluded interest in pursuing compounds related to it.<br />

Structure-activity studies aimed at identifying additional aryl-substituted analogues<br />

led to comparable potential in vivo, though these compounds were less potent in vitro.<br />

To investigate the effects of absolute stereochemistry on potency, authors resolved via<br />

diastereomeric ureas, prepared by treatment with (R)-α-methylbenzylamine. The<br />

results demonstrate that the active R-(-)-enantiomer is more potent and longer acting<br />

than nifedipine as an antihypertensive agent in the SHR. The in vivo potency and<br />

duration is comparable to the long-acting DHP amlodipine. The superior oral<br />

antihypertensive activity compared to that of previously described carbamates<br />

(R 2 =COOEt) could be explained by its improved oral bioavailability, possibly<br />

resulting from increased stability of the urea functionality (Figure-7). 6<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 4


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Figure-7<br />

Authors modified the structure of previously described DHPM i.e. 3-<br />

substituted 1,4-dihydropyrimidines. Structure-activity studies using potassiumdepolarized<br />

rabbit aorta show that ortho, meta-disubstituted aryl derivatives are more<br />

potent than either ortho or meta-monosubstituted compounds. While vasorelaxant<br />

activity was critically dependent on the size of the C5 ester group, isopropyl ester<br />

being the best, a variety of substituents (carbamate, acyl, sulfonyl, and alkyl) were<br />

tolerated at N3. The results showed that DHPMs are significantly more potent than<br />

corresponding 2- heteroalkyl-l,4-dihydropyrimidines and only slightly less potent than<br />

similarly substituted 2-heteroalkyl-1-4-dihydropyridines (Figure-8). Where as DHP<br />

enantiomer usually show 10-15-fold difference in activity, the enantiomer of DHPM<br />

show more than a 1000-fold difference in activity. These results strengthen the<br />

requirement of an enaminoester for binding to the dihydropyridine receptor and<br />

indicate a nonspecific role for the N3-substituent.<br />

Figure 8<br />

2-Heterosubstituted-4-aryl-l,4-dihydro-6-methyl-5-pyrimidinecarboxylicesters<br />

(Figure 9), which lack the potential symmetry of DHP calcium channel blockers,<br />

were prepared and evaluated for biological activity. Biological assays using<br />

potassium-depolarized rabbit aorta and radio ligand binding techniques showed that<br />

some of these compounds are potent mimics of DHP calcium channel blockers. 25<br />

Figure 9<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 5


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Bryzgalov A. O. et al. has studied the antiarrhythmic activity of 4,6-<br />

di(het)aryl-5-nitro-3,4-dihydropyrimidin-(1H)-2-ones (Figure-10) toward two types<br />

of experimental rat arrhythmia. With CaCl 2 induced arrhythmia model, several agents<br />

have demonstrated high antiarrhythmic activity and the lack of influence on arterial<br />

pressure of rats. 26 Figure 10<br />

Remennikov G. et al. 27 has synthesized some novel 4-aryl-5-nitro substituted<br />

DHPMs (Figure 11) using nitro acetone and screened as calcium modulators. They<br />

have studied the pharmacological properties of 6-methyl- and 1,6-dimethyl-4-aryl-5-<br />

nitro-2-oxo-l,2,3,4-tetrahydropyrimidines with different substituents in the aryl<br />

fragment, i.e. unsubstituted, ortho, meta, para, di, and tri-substituted compounds and<br />

observed that 5-nitro DHPMs bearing unsubstituted, ortho and tri-substitution on aryl<br />

moieties at C4 position reduced blood pressure and inhibited myocardial contractile<br />

activity. The second group consisted meta, para and di-substituted aryl moieties with<br />

DHPMs increased blood pressure and had positive inotropic effects. The compounds<br />

with the highest hypotensive activity were containing substituent in the ortho position<br />

of the phenyl fragment. Thus, compounds having substitution on aryl moieties which<br />

had pronounced vasodilator and weak cardio depressive actions, increased cardiac<br />

pump function (SV). When inhibition of myocardial contractile function<br />

predominated, there was a reduction in SV. The effect of compounds of the first group<br />

on heart rate was variable, though most reduced heart rate. In addition, a reflex<br />

increase in heart rate might be expected because of the reduction in blood pressure.<br />

The reference preparations for compounds of this group were the calcium antagonist<br />

nifedipine.<br />

Figure-11<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 6


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

The pharmacological profile of compounds of the first group was analogous to that of<br />

nifedipine. This suggests that they share a common mechanism of action - blockade of<br />

calcium ion influx.<br />

Brain C. Shook et al. 28 has synthesized a novel series of arylindenopyrimidines<br />

(Figure-12) identified as A 2A and A 1 receptor antagonists. The series was<br />

optimized for vitro activity by substituting the 8-and-9- positions with methylene<br />

amine substituents. The compounds show excellent activity in mouse models of<br />

parkinson’s disease when dosed orally.<br />

O<br />

Ar<br />

R'RN<br />

N<br />

Figure-12<br />

N<br />

NH 2<br />

1.3. Synthetic strategies for the dihydropyrimidines (DHPMs)<br />

Having tremendous important of DHPMs in medicinal chemistry, a literature<br />

survey on the synthetic methods for the biologically active dihydropyrimidines<br />

(DHPMs) has been carried out and described as follows. Various modifications have<br />

been applied to Biginelli reaction to get better yield and to synthesize biologically<br />

active analogs. Different catalysts have been reported to increase the yield of the<br />

reaction. Microwave synthesis strategies have also been applied to shorten the<br />

reaction time. Solid phase synthesis and combinatorial chemistry has made possible to<br />

generate library of DHPM analogs. The various modifications are discussed in the<br />

following section.<br />

Catalysts<br />

Min Yang and coworkers 29 have synthesized the different DHPMs by using<br />

various inorganic salts as a catalyst (Figure-13). They found that the yields of the<br />

one-pot Biginelli reaction can be increased from 20-50% to 81-99%, while the<br />

reaction time shorted for 18-24 hrs to 20-30 min. This modification was developed by<br />

using Yb(OTf) 3 and YbCl 3 as a catalyst under solvent free conditions. One additional<br />

important feature of this protocol is the catalyst can be easily recovered and reused.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 7


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Figure-13<br />

Lewis acid such as, Indium (III) chloride was emerged as a powerful Lewis<br />

catalyst imparting high region and chemo selectivity in various chemical<br />

transformations. B. C. Ranu and co-workers 30 have reported indium (III) chloride<br />

(InCl 3 ) as an efficient catalyst for the synthesis of 3,4-dihydropyrimidn-2(1H)-ones<br />

(Figure-14). A variety of substituted aromatic, aliphatic and heterocyclic aldehydes<br />

have been subjected to this condensation very efficiently. Thiourea has been used<br />

with similar success to provide the corresponding dihydropyrimidin-2(1H)-thiones.<br />

Figure-14<br />

Majid M. Heravi et al. has reported a simple, efficient and cost-effective<br />

method for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones by one pot<br />

three-component cyclocondensation reaction of a 1,3-dicarbonyl compound, an<br />

aldehyde and urea or thiourea using 12-tungstophosphoric acid 31 and 12-<br />

molybdophosphoric acid 32 as recyclable catalyst (Figure-15).<br />

Figure-15<br />

Hydroxyapatite doped with ZnCl 2 , CuCl 2 , NiCl 2 and CoCl 2 efficiently<br />

catalyzes the three components Biginelli reaction between an aldehyde, ethyl<br />

acetoacetate and urea in refluxing toluene to afford the corresponding<br />

dihydropyrimidinones in high yields. 33<br />

Sc(III)triflate catalyzes the three-component condensation reaction of an<br />

aldehyde, a β-ketoester and urea in refluxing acetonitrile to afford the corresponding<br />

3,4-dihydropyrimidin-2(1H)-ones in excellent yields (Figure-16). The catalyst can be<br />

recovered and reused, making this method friendly and environmentally acceptable. 34<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 8


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Figure-16<br />

Solid phase synthesis<br />

The generation of combinatorial libraries of heterocyclic compounds by solid<br />

phase synthesis is of great interest for accelerating lead discovery and lead<br />

optimization in pharmaceutical research. Multi-component reactions (MCRs) 35,36-37<br />

leading to heterocycles are particularly useful for the creation of diverse chemical<br />

libraries, since the combination of any 3 small molecular weight building blocks in a<br />

single operation leads to high combinatorial efficiency. Therefore, solid phase<br />

modifications of MCRs are rapidly become the cornerstone of combinatorial synthesis<br />

of small-molecule libraries.<br />

The first solid-phase modification of the Biginelli condensation was reported<br />

by Wipf and Cunningham 38 in 1995 (Figure-17). In this sequence, γ-aminobutyric<br />

acid derived urea was attached to Wang resin using standard procedures. The<br />

resulting polymer-bound urea was condensed with excess β-ketoester and aromatic<br />

aldehydes in THF at 55 °C in the presence of a catalytic amount of HCl to afford the<br />

corresponding immobilized DHPMs. Subsequent cleavage of product from the resin<br />

by 50 % trifluoroacetic acid (TFA) provided DHPMs in high yields and excellent<br />

purity.<br />

Figure-17<br />

Li W. and Lam Y. 39 have described the synthesis of 3,4-dihydropyrimidin-2-<br />

(1H)ones/thiones using sodium benzene sulfinate as a traceless linker (Figure-18).<br />

The key steps involved in the solid-phase synthetic procedure were sulfinate<br />

acidification, condensation of urea or thiourea with aldehydes and sulfinic acid and<br />

traceless product release by a one-pot cyclization-dehydration process. Since a variety<br />

of reagents can be used, the overall strategy appears for library generation.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 9


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Figure-18<br />

Liquid phase synthesis<br />

In the solid phase synthesis there are some disadvantages in compared to<br />

standard solution-phase synthesis, such as difficulties to monitor reaction progress,<br />

the large excess of reagents typically used in solid-phase supported synthesis, low<br />

loading capacity and limited solubility during the reaction progress and the<br />

heterogeneous reaction condition with solid phase. 40 Recently, organic synthesis of<br />

small molecular compounds on soluble polymers, i.e. liquid phase chemistry has<br />

increasingly become attractive field. 41<br />

Moreover, owing to the homogeneity of liquid-phase reactions, the reaction<br />

conditions can be readily shifted from solution-phase systems without large changes<br />

and the amount of excessive reagents is less than that in solid-phase reactions. In the<br />

recent years, Task Specific room temperature Ionic Liquids (TSILs) has emerged as a<br />

powerful alternative to conventional molecular organic solvents or catalysts. Liu Z. et<br />

al. 42 have reported cheap and reusable TSILs for the synthesis of 3,4-<br />

dihydropyrimidin-2(1H)-ones via one-pot three component Biginelli reaction. Ionic<br />

liquid-phase bound acetoacetate reacts with thiourea and various aldehydes with a<br />

cheap catalyst to afford ionic liquid-phase supported 3,4-dihydropyrimidin-2(1H)-<br />

thiones, which has been reported by Bazureau J. P. and co- workers 43 (Figure-19).<br />

3,4-Dihydropyrimidinones were synthesized in one-pot, by the reaction of aldehydes,<br />

β-dicarbonyl compounds and urea, catalyzed by non-toxic room temperature ionic<br />

liquid 1-n-butyl-3-methylimidazolium saccharinate (BMImSac). 44<br />

Figure-19<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 10


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Microwave assisted synthesis<br />

In general, the standard procedure for the Biginelli condensation involves one<br />

pot condensation of the three building blocks in a solvent such as ethanol using a<br />

strongly acidic catalyst that is hydrochloric acid. One major drawback of this<br />

procedure, apart from the long reaction time involving reflux temperature, is the<br />

moderate yields frequently observed when using more complex building blocks.<br />

Microwave irradiation (MW) has become accepted tool in organic synthesis, because<br />

the rate enhancement, higher yields and often, improved selectivity with respect to<br />

conventional reaction conditions. 45 The publication by Dandia A. et al. 46 described<br />

microwave-enhanced solution-phase Biginelli reactions employing ethyl acetoacetate,<br />

thiourea and a wide variety of aromatic aldehydes as building blocks (Figure-20).<br />

Upon irradiation of the individual reaction mixtures (ethanol, catalytic HCl) in an<br />

open glass beaker inside the cavity of a domestic microwave oven the reaction times<br />

were reduced from 2–24 hours of conventional heating 80 °C, reflux to 3–11 minutes<br />

under microwave activation (ca. 200 –300 W). At the same time the yields of DHPMs<br />

obtained were distinctly improved compared to those reported earlier using<br />

conventional conditions.<br />

Figure-20<br />

In recent years, solvent free reactions using either organic or inorganic solid<br />

supports have received more attention. 47 There are several advantages to perform<br />

synthesis in dry media: (i) short reaction times, (ii) increased safety, (iii) economic<br />

advantages due to the absence of solvent. In addition, solvent free MW processes are<br />

also clean and efficient. Gopalakrishnan M. and co-workers have reported Biginelli<br />

reaction under microwave irradiation in solvent-free conditions using activated fly ash<br />

as catalyst, an industrial waste (pollutant) is an efficient and novel catalyst for some<br />

selected organic reactions in solvent free conditions under microwave irradiation. 48<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 11


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Ultrasound assisted synthesis<br />

Ultrasound as a green synthetic approach has gradually been used in organic<br />

synthesis over the last three decades. Compared with the traditional methods, it is<br />

more convenient, easier to be controlled and consumes less power. With the use of<br />

ultrasound irradiation, a large number of organic reactions can be carried out in milder<br />

conditions with shorter reaction time and higher product yields. 49 Ultrasound<br />

irradiated and amidosulfonicacid (NH 2 SO 3 H) catalyzed synthesis of 3,4-<br />

dihydropyrimidi-2-(1H)ones have been reported by Li J. T. and co-workers 50 using<br />

aldehydes, β-ketoester and urea.<br />

Liu C. et al. 51 have synthesized a novel series of 4-substituted pyrazolyl-3,4-<br />

dihydropyrimidin-2(1H)-thiones under ultrasound irradiation using magnesium<br />

perchlorate [Mg(ClO 4 ) 2 ] as catalyst (Figure-21), by the condensation of 5-<br />

chloro/phenoxyl-3-methyl-1-phenyl-4-formylpyrazole, 1,3-dicarbonyl compound and<br />

urea or thiourea in moderate yields. The catalyst exhibited remarkable reactivity and<br />

can be recycled.<br />

Figure-21<br />

Sonication of aromatic aldehydes, urea and ethyl acetoacetate in presence of<br />

solvent (ethanol) or solvent-less dry media (bentonite clay) by supporting-zirconium<br />

chloride (ZrCl 4 ) as catalyst at 35 kHz gives 6-methyl-4-substitutedphenyl-2-oxo-<br />

1,2,3,4-tetrahydropyrimidine-5-carboxylic acid ethyl esters proficiently in high yields,<br />

which reported by Harish Kumar et al. (Figure 22). 52<br />

Figure-22<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 12


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

<br />

Synthetic Methods for the Oxidative Dehydrogenation of DHPM Ring<br />

System<br />

The production of heteroaromatics by oxidative dehydrogenations is of<br />

fundamental importance in organic synthesis. The dehydrogenation of<br />

dihydropyrimidines and dihydropyrimidinones has received much attention because<br />

of their facile access via the Biginelli three-component coupling. Different methods<br />

were reported in the literature for oxidative dehydrogenations of DHPM, which are<br />

described as under.<br />

Hamid Reza Memarian et al. 53 have developed dehydrogenation of 5-acetyl-<br />

3,4-dihydropyrimidin-2(1H)-ones by potassium peroxydisulfate in aqueous<br />

acetonitrile under thermal and sonothermal conditions (Figure-23).<br />

O<br />

R<br />

H<br />

NH<br />

N<br />

H<br />

O<br />

K 2 S 2 O<br />

CH 3 CN/H 2 O<br />

Ultrasound/<br />

Heat<br />

O<br />

R<br />

N<br />

H<br />

N<br />

O<br />

Figure-23<br />

Sam Sik Kim et al. 54 reported that oxidation of dihydropyrimidin-2(1H)-ones<br />

by KMnO 4 formed 2-hydroxypyrimidine in excellent yield, whereas attempted direct<br />

desulfurative aromatization of dihydropyrimidin-2(1H)-thiones by KMnO 4 resulted in<br />

the formation of 2-hydroxypyrimidines (Figure-24).<br />

Figure-24<br />

Masoud Nasr-Esfahani et al. 55 reported photolytic oxidation of some ethyl 3,4-<br />

dihydropyrimidin-2(1H)-one-5-carboxylates to their corresponding ethyl pyrimidin-<br />

2(1H)-one-5-carboxylates using a TiO 2 /O 2 system under UV irradiation by a 400 W<br />

high pressure mercury lamp in acetonitrile (Figure-25).<br />

Figure-25<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 13


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Rui Liang et al. 56 has shown the oxidation of 3,4-Dihydropyrimidin-2(1H)-<br />

ones (DHPMs) with 1.2 eq. of nitrosonium tetrafluoroborate (NO + BF - 4 ) to pyrimidin-<br />

2(1H)-ones in acetonitrile at room temperature in high yields (Figure-26).<br />

Figure-26<br />

Nandkishor N. Karade et al. 57 has achieved oxidative dehydrogenation of 3,4-<br />

dihydropyrimidin-2(1H)-ones to 1,2-dihydropyrimidines through a novel combination<br />

of (diacetoxyiodo)benzene and tert-butylhydroperoxide in CH 2 Cl 2 (Figure-27).<br />

Figure-27<br />

Kana Yamamoto et al. 58 has reported method for oxidative dehydrogenation of<br />

dihydropyrimidinones and dihydropyrimidines by using catalytic amounts of a Cu<br />

salt, K 2 CO 3 , and tert-butylhydroperoxide (TBHP) as a terminal oxidant (Figure-28).<br />

Figure-28<br />

Synthetic Methods for the Synthesis of 2-Chloropyrimidine Derivatives<br />

Several methods were reported in the literature for the chlorination of 2-<br />

hydroxypyrimidines, few of them are described herein.<br />

Driwedi Shriprakash Dhar et al. 59 has reported synthesis of 2-halopyrimidine<br />

derivative from 2-hydroxypyrimidine by using thionyl chloride and dimethyl<br />

formamide and toluene as a solvent at 80 o C (Figure-29).<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 14


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Figure-29<br />

Atul R. Gholap et al. 60 has described the synthesis of 2-chloropyrimidine<br />

derivatives from 2-hydroxypyrimidine derivatives using N,N-dimethylaniline and<br />

POCl 3 as chlorinating agent under reflux condition (Figure-30).<br />

Figure-30<br />

<br />

Synthetic methods for the Suzuki-Miyaura coupling<br />

The well known Suzuki reaction 61 is the organic reaction of an aryl or vinylboronicacid<br />

with an aryl or vinyl-halide catalyzed by a palladium(0)complex forming<br />

carbon-carbon bond. Some reported methods are described as under.<br />

In 1981, Suzuki and Miyaura et al. have made a breakthrough in the<br />

methodology for biaryl compounds using aryl boronicacids and aryl bromide under<br />

homogeneous palladium catalyzed conditions in the presence of base 62 (Figure- 31).<br />

Z<br />

OH<br />

Br B OH<br />

3mol%Pd(Ph 3 ) 4<br />

Aq. Na 2 CO 3<br />

Benzene, refulx<br />

Figure-31<br />

Z<br />

S. Li et al. 63 have synthesized Pd(OAc) 2 -catalyzed room temperature Suzuki<br />

cross coupling reaction in aqueous media under aerobic conditions (Figure-32).<br />

Figure-32<br />

Y. M. A. Yamada et al. 64 have prepared highly active catalyst for the<br />

heterogeneous Suzuki-Miyaura reaction by assembled complex of palladium and noncross<br />

linked amphiphilic polymer (Figure-33).<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 15


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Figure-33<br />

Zhengyin Du et al. 65 has reported an ultrafast and highly efficient ligand-free<br />

Suzuki-Miyaura cross-coupling reaction between aryl bromides/iodides and aryl<br />

boronicacids using palladium chloride as catalyst in PEG-400/H 2 O in air at room<br />

temperature. TEM showed that palladium nanoparticles were generated in situ from<br />

PdCl 2 /PEG-400/H 2 O without use of other reductants. The catalyst system can be<br />

recycled to reuse three times with good yields (Figure-34).<br />

Figure-34<br />

Yu-Long Zhao et al. 66 has prepared a highly practical and reliable Nickel<br />

catalyst for Suzuki–Miyaura coupling of aryl halides with various aryl boronicacid<br />

(Figure-35).<br />

Figure-35<br />

Sha Lou et al. 67 has developed Palladium/Tris(tert-butyl)phosphine-Catalyzed<br />

Suzuki Cross-Couplings of aryl and heteroaryl halides with aryl and heteroaryl<br />

boronic acids in the Presence of Water (Figure-36).<br />

Figure-36<br />

Ruonan Zhang et al. 68 has synthesized a series of novel 5-arylidenefuran-<br />

2(5H)-ones and 5-arylidene-4-arylfuran-2(5H)-ones via the Suzuki-Miyaura reactions<br />

(Figure-37).<br />

Figure-37<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 16


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Yongda Zhang et al. 69 has been developed one-pot process for the synthesis of<br />

8-arylquinolines via Pd-catalyzed borylation of quinoline-8-yl halides and subsequent<br />

Suzuki-Miyaura coupling with aryl halides using n-BuPAd 2 as ligand (Figure-38).<br />

Figure-38<br />

John Spencer et al. 70 has reported synthesis of a (piperazin-1-ylmethyl)biaryl<br />

library via microwave-mediated Suzuki–Miyaura cross-couplings (Figure 39).<br />

Figure-39<br />

Qing Tang et al. 71 has developed Suzuki–Miyaura coupling reactions of 5-<br />

chloro-1-phenyl-tetrazole with various functionalized aryl boronicacids in the<br />

presence of catalytic amounts of SPhos/Pd(OAc) 2 or RuPhos/Pd(OAc) 2 (Figure-40).<br />

Figure-40<br />

V. P. Mehta et al. 72 has reported a novel and versatile entry to asymmetrically<br />

substituted pyrazine derivatives (Figure 41).<br />

Figure-41<br />

Jeanne-Marie Begouin et al. 73 has reported cobalt-catalyzed cross-coupling<br />

between in situ prepared aryl zinc halides and 2-chloropyrimidine/2-chloropyrazine<br />

(Figure- 42).<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 17


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Figure-42<br />

Takahiro Itoh et al. 74 has discovered a direct synthesis of hetero-biaryl<br />

compounds containing an unprotected NH 2 group via Suzuki–Miyaura reaction by<br />

using Pd(OAc) 2 and D-t-BPF ligand as a catalyst (Figure-43).<br />

Figure-43<br />

Lisa C. W. Chang et al. 75 synthesized 2,6-disubstituted and 2,6,8-trisubstituted<br />

purines as adenosine receptor antagonists via Suzuki–Miyaura reaction (Figure-44).<br />

Figure-44<br />

Atul R. Gholap et al. 60 has developed an efficient synthesis of antifungal<br />

pyrimidines via palladium catalyzed Suzuki/Sonogashira cross-coupling reaction from<br />

Biginelli 3,4-dihydropyrimidin-2(1H)-ones (Figure-45).<br />

Figure-45<br />

Christoph A. et al. 76 has reported an efficient Suzuki-Miyaura coupling of<br />

(hetero)aryl chlorides with Thiophene- and Furan boronicacids in aqueous n-butanol<br />

(Figure-46).<br />

R<br />

Y<br />

Cl<br />

(HO) 2 B<br />

(HO) 2 B<br />

S<br />

or<br />

O<br />

Na 2 PdCl 4 (1mol%)/L<br />

(1:2)<br />

2.0 eq. K 2 CO 3<br />

n-butanol/water<br />

R'<br />

100 o C<br />

Figure-46<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 18<br />

R<br />

Y<br />

S<br />

or<br />

R<br />

Y<br />

O<br />

R'


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

David X. Yang et al. 77 has reported palladium-catalyzed Suzuki-Miyaura<br />

coupling of Pyridyl-2-boronic esters with aryl halides using highly active and airstable<br />

phosphine chloride and oxide Ligands (Figure-47).<br />

FG<br />

N<br />

O<br />

B<br />

O<br />

ArX<br />

or<br />

HetArX<br />

Dichloropalladiuym oxide/chloride<br />

Base, solvent<br />

FG<br />

N<br />

or<br />

Ar<br />

FG<br />

N<br />

HetAr<br />

Figure-47<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 19


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

1.4. Current research work<br />

The literature survey described above has demonstrated that the pyrimidine<br />

derivatives possesses a variety of biological activity, among which are the analgesic,<br />

antihypertensive, antipyretic, antiviral and anti-inflammatory activity. These agents<br />

are also associated with nucleic acid, antibiotic, antimalarial and anti cancer drugs.<br />

Many of the pyrimidine derivatives are reported to possess potential CNS depressant<br />

properties. However, to our knowledge functionalized pyrimidines such as 4-<br />

isopropyl-2,6-di-phenylsubstituted derivatives are less studied (Figure-48). The<br />

tremendous biological potential of pyrimidine derivatives encouraged us to prepare<br />

some novel highly functionalized pyrimidines bearing 4-isopropyl-2-6-disubstitutedphenylpyrimidine-5-carboxylate<br />

functions.<br />

R<br />

O<br />

N<br />

O<br />

R 1<br />

N<br />

ASM-4a-t<br />

Figure-48<br />

Herein we described a series of novel and efficient protocol for the synthesis<br />

of diversely substituted pyrimidines. A series of chlorinated pyrimidines were<br />

synthesized from easily available Biginelli 3,4-dihydropyrimidin-2(1H)-ones. The<br />

chlorinated pyrimidines were subjected to the Suzuki-Miyaura coupling reactions<br />

with various phenylboronicacid derivatives to obtain C-phenyl pyrimidines. The<br />

newly synthesized compounds are characterized by IR, Mass, 1 H NMR, 13 C NMR<br />

spectroscopy and elemental analysis.<br />

.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 20


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

1.5. Results and discussion<br />

Scheme:-1 Synthesis of substituted pyrimidines via Suzuki-Miyaura coupling.<br />

R<br />

R<br />

R<br />

O<br />

NH 2<br />

NH 2<br />

O<br />

+<br />

O<br />

O<br />

O<br />

DMF<br />

O<br />

HN<br />

N<br />

H<br />

O<br />

ASM-01a-e<br />

O<br />

Con. HNO 3<br />

O<br />

N<br />

N<br />

H<br />

ASM-2a-e<br />

O<br />

O<br />

POCl 3<br />

R<br />

R<br />

OH<br />

R<br />

O<br />

1 B OH<br />

O<br />

N O<br />

N O<br />

R 1<br />

N<br />

Pd(Ph 3 ) 4<br />

K Cl N<br />

2 CO 3<br />

ASM-4a-t<br />

ASM-3a-e<br />

The synthetic route for the targeted compounds (ASM-4a-t) is shown in<br />

scheme 1. Initially, various substituted 3,4-dihydropyrimidine-2-(1H)-ones (DHPMs)<br />

(ASM-01a-e) were synthesized by well-known multi-component Biginelli reaction of<br />

substituted benzaldehyde, methyl isobutyrate acetate and urea fusion at 150 o C in the<br />

presence of 2-3 drops of DMF as a catalyst (scheme-01). Thus obtained DHPMs<br />

(ASM-01a-e) were subjected the oxidative dehydrogenation using 60% Con. HNO 3 to<br />

furnish corresponding 2-hydroxypyrimidines (ASM-02a-e) in excellent yield. The<br />

reaction of compounds ASM-02a-e with POCl 3 under reflux for 2-3 hrs afforded 2-<br />

chloropyrimidine derivatives ASM-03a-e up to 85-95% yield. The chlorinated<br />

pyrimidines ASM-03a were subjected to Suzuki-Miyaura carbon-carbon coupling<br />

reaction with various phenylboronicacid derivatives using tetrakis(triphenylphosphine)<br />

palladium(0) as a catalyst in 1,4-dioxane:water (6:4) and K 2 CO 3 as a base to achieve<br />

the cross-coupled final products ASM-04a-t with good yields.<br />

The structures of ASM-02a-e, ASM-03a-e and ASM-04a-t were established<br />

on the basis of their elemental analysis and spectral data (MS, IR, 1 H NMR and 13 C<br />

NMR). Some representative examples for each step are described here.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 21


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

The analytical data for ASM-02a revealed a molecular formula C 15 H 16 N 2 O 3<br />

(m/z 273). The 1 H NMR spectrum revealed one doublet at δ = 1.42-1.44 ppm assigned<br />

to isopropyl-CH 3 , a multiplet at δ = 3.20-3.26 ppm assigned to the isopropyl-CH<br />

protons, a singlet at δ = 3.57 ppm assigned to the –OCH 3 protons, a multiplet at δ =<br />

7.44–7.51 ppm assigned to the aromatic protons, and also a doublet at δ = 7.58–7.60<br />

ppm (j=6.9Hz) assigned to the aromatic protons, one singlet at δ = 12.94 ppm<br />

assigned to -OH group.<br />

Table 1: Synthesis of substituted pyrimidines via Suzuki-Miyaura coupling.<br />

Entry R R 1 Yield Time hrs.<br />

ASM-04a H 4-CN 82 6.0<br />

ASM-04b 4-CH 3 3-N(CH 3 ) 2 80 8.0<br />

ASM-04c 4-OCH 3 4-F 87 6.5<br />

ASM-04d 3-NO 2 4-OCH 3 92 6.0<br />

ASM-04e 4-F H 83 7.5<br />

ASM-04f H 3-N(CH 3 ) 2 78 8.5<br />

ASM-04g 4-CH 3 4-F 86 7.5<br />

ASM-04h 4-OCH 3 4-OCH 3 82 7.0<br />

ASM-04i 3-NO 2 H 89 7.0<br />

ASM-04j 4-F 4-CN 87 5.5<br />

ASM-04k H 4-OCH 3 83 6.5<br />

ASM-04l 4-CH 3 H 85 7.0<br />

ASM-04m 4-OCH 3 4-CN 82 6.5<br />

ASM-04n 3-NO 2 3-N(CH 3 ) 2 75 7.5<br />

ASM-04o 4-F 4-F 80 6.0<br />

ASM-04p H H 84 7.5<br />

ASM-04q 4-CH 3 4-CN 89 6.0<br />

ASM-04r 4-OCH 3 3-N(CH 3 ) 2 80 7.5<br />

ASM-04s 3-NO 2 4-F 90 6.5<br />

ASM-04t 4-F 4-OCH 3 86 6.0<br />

The structures of ASM-03a was supported by its mass (m/z 291), which agrees<br />

with its molecular formula C 15 H 15 FN 2 O 3, its 1 H NMR spectrum had signals at δ =<br />

1.32-1.35 (d, 6H, 2 x i prCH 3 ), 3.14-3.20 (m, 1H, i prCH), 3.72 (s, 3H, OCH 3 ), 7.43-<br />

7.48 (m, 3H, Ar-H), 7.65-7.67 (t, 2H, Ar-H).<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 22


Pd(II)<br />

Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

The analytical data for ASM-04a revealed a molecular formula C 22 H 19 N 3 O 2<br />

(m/z 358). Its 1 H NMR spectrum had signals at δ = 1.16-1.32 (d, 6H, 2 x i prCH 3 ),<br />

3.15-3.19 (m, 1H, i prCH), 3.66 (s, 3H, OCH 3 ), 7.39-7.42 (m, 3H, Ar-H), 7.65-7.70<br />

(m, 4H, Ar-H), 8.61-8.63 (d, 2H, Ar-H).<br />

The proposed mechanism of the Suzuki-Miyaura coupling reaction for the<br />

formation of C-phenyl pyrimidines is depicted in figure 35.<br />

N<br />

N<br />

R<br />

Pd (0)<br />

N<br />

N<br />

Cl<br />

N<br />

R<br />

N<br />

N<br />

Pd(II)<br />

N<br />

Pd(II)<br />

Cl<br />

HO<br />

OCOOK<br />

B OH<br />

OCOOK<br />

K 2 CO 3<br />

HO B OH<br />

OCOOK<br />

HO B OH<br />

N<br />

N<br />

-KCl<br />

K 2 CO 3<br />

KOOCO<br />

Figure 35: Mechanism of Suzuki-Miyaura coupling reaction leading<br />

to the formation of C-phenyl pyrimidines.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 23


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

1.6 Conclusion<br />

In conclusion, we have developed an efficient four step protocols for the<br />

synthesis of diversely substituted novel pyrimidines. A series of chlorinated<br />

pyrimidines were synthesized from easily available biginelli 3,4-dihydropyrimidin-<br />

2(1H)-ones. The chlorinated pyrimidines were then subjected to condition normally<br />

employed Suzuki-Miyaura coupling reaction with various phenylboronicacid<br />

derivatives in the presence of palladium catalyst to obtain C-phenyl pyrimidines with<br />

good yields. A variety of commercially available 1,3-diketones and various<br />

substituted aldehydes and boronic acids can be used as building blocks to generate<br />

diversity on the core pyrimidine ring systems.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 24


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

1.7 Experimental section<br />

Thin-layer chromatography was accomplished on 0.2-mm precoated plates of<br />

silica gel G60 F 254 (Merck). Visualization was made with UV light (254 and 365nm)<br />

or with an iodine vapor. IR spectra were recorded on a FTIR-8400 spectrophotometer<br />

using DRS prob. 1 H (300 MHz), 1 H (400 MHz), 13 C (75 MHz) and 13 C (100 MHz)<br />

NMR spectra were recorded on a Bruker AVANCE II spectrometer in CDCl 3 and<br />

DMSO. Chemical shifts are expressed in δ ppm downfield from TMS as an internal<br />

standard. Mass spectra were determined using direct inlet probe on a GCMS-QP 2010<br />

mass spectrometer (Shimadzu). Solvents were evaporated with a BUCHI rotary<br />

evaporator. Melting points were measured in open capillaries and are uncorrected.<br />

<br />

General synthetic procedure for the 3,4-dihydropyrimidine-2-(1H)-ones<br />

(ASM-01a-e).<br />

A 100mL round bottom flask equipped with magnetic stirrer and septum was<br />

charged with the methyl 4-methyl-3-oxopentanoate (0.01M), aldehyde (0.01M) and<br />

urea (0.015M). Few drops of DMF were added to the reaction mixture as a catalyst.<br />

The reaction mixture was then heated at 145-150 o C for 15-30 minutes. The progress<br />

of reaction was monitored by thin layer chromatography. The reaction mixture was<br />

allowed to cool at rt. Then, methanol (20 mL) was added and the resulting mixture<br />

was refluxed for 30 min. The solid separated upon cooling was filtered, washed with<br />

methanol and dried. The products thus obtained (ASM-01a-e) were directly used for<br />

the next step.<br />

<br />

General synthetic procedure for the 2-hydroxypyrimidine derivatives<br />

(ASM-02a-e).<br />

In a 100mL round bottom flask equipped with magnetic stirrer and<br />

thermometer was added nitric acid (60%) (10 mL). To the nitric acid slowly added<br />

ASM-01a-e (10 mmol) at 0 o C. After complete addition, the mixture was stirred at<br />

this temperature for 30 min. The progress of reaction was monitored by thin layer<br />

chromatography. The reaction mixture was poured into cold water and neutralized<br />

with saturated sodium bicarbonate solution. The solid separated was filtered, washed<br />

with water and dried. The crude products (ASM-02a-e) were directly used for the<br />

next step.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 25


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

<br />

General synthetic procedure for the 2-chloropyrimidine derivatives<br />

(ASM-03a-e).<br />

In a 50mL round bottom flask equipped with magnetic stirrer and thermometer<br />

was placed ASM-02a-e (10 mmol) and POCl 3 (15 mL). Reaction mixture heated up to<br />

reflux temperature and maintain for 2-3 hrs. The progress of reaction was monitored<br />

by thin layer chromatography. After completion of reaction, the mixture was poured<br />

in to crushed ice and neutralized with saturated sodium bicarbonate solution. The<br />

products was filtered, washed with water and dried. Crystallize crude product from<br />

methanol and used for next step without further purification.<br />

<br />

General synthetic procedure for the 2-substitutedpyrimidine derivatives<br />

via Suzuki-Miyaura coupling (ASM-03a-e).<br />

A mixture of 2-choropyrimidine derivatives ASM-03a-e (1.0 mmol) and<br />

phenylboronicacid derivatives (1.2 mmol) in 1,4-dioxane (12 mL) was stirred for 10<br />

min at rt. To this mixture, saturated solution of K 2 CO 3 (8 mL) was added followed by<br />

tetrakis(triphenylphosphine)palladium(0) (5 mol%). The reaction mixture was heated<br />

at 110 o C for 5-8 hrs. After completion, the reaction mixture was cooled to room<br />

temperature, diluted with ethyl acetate and filtered through pad of celite. The filtrate<br />

was washed with water (2 x 100 mL) and brine solution (100 mL). The organic layer<br />

was separated, dried over anhydrous sodium sulfate, and filtered. The filtrate was<br />

evaporated to dryness under vacuo. The residue was purified by using column<br />

chromatography using EtOAc/Ether (0.5:9.5) to afford analytically pure products<br />

ASM-04a-e.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 26


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

<br />

Spectral data for the newly prepared compounds.<br />

Methyl 1,2-dihydro-6-isopropyl-2-oxo-4-phenylpyrimidine-5-carboxylate (ASM-<br />

02a). White solid; R f 0.45 (1:1 hexane-EtOAc); mp 158-160 ° C; IR (KBr): 3459, 3070,<br />

2930, 2850, 1730, 1650, 1583, 1470, 1335, 1064, 760, 700 cm -1 ; 1 H NMR (300 MHz,<br />

CDCl 3 ): δ 1.42-1.44 (d, 6H, 2 x i prCH 3 ), 3.20-3.26 (m, 1H, i prCH), 3.57 (s, 3H,<br />

OCH 3 ), 7.44-7.51 (m, 3H, Ar-H), 7.58-7.60 (d, 2H, Ar-H, j=6.9Hz), 12.94 (s, 1H,<br />

OH); 13 C NMR (DEPT):(75 MHz, CDCl 3 ): 21.40, 31.31, 56.47, 56.58, 114.99,<br />

115.28, 131.85, 131.96; MS (m/z): 273 (M + ); Anal. Calcd for C 15 H 16 N 2 O 3 : C, 66.16;<br />

H, 5.92; N, 10.29; Found: C, 66.13; H, 5.97; N, 10.27.<br />

Methyl 4-(4-fluorophenyl)-1,2-dihydro-6-isopropyl-2-oxopyrimidine-5-carboxylate<br />

(ASM-2e). White solid; R f 0.48 (1:1 hexane-EtOAc); mp 180-182 ° C; IR (KBr):<br />

3470, 3093, 2999, 1735, 1648, 1586, 1450, 1261, 755, 700, cm -1 ; 1 H NMR (300 MHz,<br />

CDCl 3 ): δ 1.14-1.16 (d, 6H, 2 x i prCH 3 ), 3.06-3.11 (m, 1H, i prCH), 3.54 (s, 3H,<br />

OCH 3 ), 6.92-6.98 (t, 2H, Ar-H), 7.29-7.40 (d, 2H, Ar-H), 8.0 (s, 1H, NH); 13 C NMR<br />

(DEPT):(75 MHz, CDCl 3 ): 20.82, 31.98, 52.28, 115.28, 115.56, 129.82, 129.93; MS<br />

(m/z): 291 (M + ); Anal. Calcd for C 15 H 15 FN 2 O 3 : C, 62.06; H, 5.21; N, 9.65; Found: C,<br />

62.13; H, 5.17; N, 9.67.<br />

Methyl 2-chloro-4-isopropyl-6-phenylpyrimidine-5-carboxylate (ASM-03a).<br />

White solid; R f 0.62 (8:2 hexane-EtOAc); mp 138-142 ° C; IR (KBr): 3057, 3034,<br />

2972, 2931, 2872, 1828, 1726, 1687, 1572, 1541, 871, 767, 730, 702 cm -1 ; 1 H NMR<br />

(300 MHz, CDCl 3 ): δ 1.32-1.35 (d, 6H, 2 x i prCH 3 ), 3.14-3.20 (m, 1H, i prCH), 3.72<br />

(s, 3H, OCH 3 ), 7.43-7.48 (m, 3H, Ar-H), 7.65-7.67 (t, 2H, Ar-H); 13 C NMR (100<br />

MHz, CDCl 3 ): 21.63, 33.62, 52.96, 123.49, 128.29, 128.78, 130.79, 136.37, 161.26,<br />

166.15, 167.88, 176.53; MS (m/z): 291 (M + ); Anal. Calcd for C 15 H 15 FN 2 O 3 : C, 61.97;<br />

H, 5.20; N, 12.19; Found: C, 61.90; H, 5.17; N, 12.27.<br />

Methyl 2-(4-cyanophenyl)-4-isopropyl-6-phenylpyrimidine-5-carboxylate (ASM-<br />

04a). White solid; R f 0.72 (8:2 hexane-EtOAc); mp 108-110 ° C; IR (KBr): 3194, 3154,<br />

2976, 2929, 2290, 1722, 1683, 1456, 1300, 858, 829, 777, 698 cm -1 ; 1 H NMR (400<br />

MHz, CDCl 3 ): δ 1.16-1.32 (d, 6H, 2 x i prCH 3 ), 3.15-3.19 (m, 1H, i prCH), 3.66 (s, 3H,<br />

OCH 3 ), 7.39-7.42 (m, 3H, Ar-H), 7.65-7.70 (m, 4H, Ar-H), 8.61-8.63 (d, 2H, Ar-H,<br />

j=7.8Hz); 13 C NMR (100 MHz, CDCl 3 ): 21.93, 29.69, 33.55, 52.80, 114.18,<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 27


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

118.87, 123.36, 128.34, 128.72, 129.07, 130.34, 132.31, 137.82, 141.45, 162.01,<br />

163.63, 168.77, 172.48; MS (m/z): 358 (M + ); Anal. Calcd for C 22 H 19 N 3 O 2 : C, 73.93;<br />

H, 5.36; N, 11.76; Found: C, 73.90; H, 5.37; N, 11.77.<br />

Methyl 2-(3-(dimethylamino)phenyl)-4-isopropyl-6-p-tolylpyrimidine-5-carboxylate<br />

(ASM-04b). White solid; R f 0.76 (8:2 hexane-EtOAc); mp 122-124 ° C; IR (KBr):<br />

3150, 2980, 2867, 1728, 1578, 1520, 1480, 1258, 780, 708 cm -1 ; 1 H NMR (300 MHz,<br />

DMSO): δ 1.30-1.32 (d, 6H, 2 x i prCH 3 ), 2.38 (s, 3H, CH 3 ), 2.97 (s, 6H, CH 3 ), 3.13-<br />

3.15 (m, 1H, i prCH), 3.74 (s, 3H, OCH 3 ), 6.94-6.95 (d, 1H, Ar-H, j=2.1Hz), 7.32-<br />

7.37 (m, 3H, Ar-H), 7.60-7.63 (m, 2H, Ar-H, j=8.4Hz), 7.78-7.80 (d, 1H, Ar-H,<br />

j=7.8Hz), 7.85-7.87 (m, 1H, Ar-H); MS (m/z): 391 (M + ); Anal. Calcd for C 24 H 27 N 3 O 2 :<br />

C, 74.01; H, 6.99; N, 10.79; Found: C, 74.02; H, 6.97; N, 10.77.<br />

Methyl 2-(4-fluorophenyl)-4-isopropyl-6-(4-methoxyphenyl)pyrimidine-carboxylate<br />

(ASM-04c). White solid; R f 0.80 (8:2 hexane-EtOAc); mp 148-150 ° C; IR (KBr):<br />

3158, 2967, 2850, 1735, 1558, 1503, 1430, 1268, 748, 698 cm -1 ; MS (m/z): 381 (M + );<br />

Anal. Calcd for C 22 H 21 FN 2 O 3 : C, 69.46; H, 5.56; N, 7.36; Found: C, 69.45; H, 5.57;<br />

N, 7.37.<br />

Methyl 4-isopropyl-2-(4-methoxyphenyl)-6-(3-nitrophenyl)pyrimidine-5-carboxy<br />

-late (ASM-04d). Yellow solid; R f 0.75 (8:2 hexane-EtOAc); mp 104-106 ° C; IR<br />

(KBr): 3130, 3053, 2986, 2832, 1726, 1548, 1498, 1369, 1238, 700 cm -1 ; MS (m/z):<br />

408 (M + ); Anal. Calcd for C 22 H 21 FN 2 O 3 : C, 64.86; H, 5.20; N, 10.31; Found: C,<br />

64.84; H, 5.20; N, 10.32.<br />

Methyl 4-(4-fluorophenyl)-6-isopropyl-2-phenylpyrimidine-5-carboxylate (ASM-<br />

04e). White solid; R f 0.84 (8:2 hexane-EtOAc); mp 134-136 ° C; IR (KBr): 3030, 2925,<br />

2832, 1726, 1553, 1430, 1238, 720, 678 cm -1 ; MS (m/z): 352 (M + ); Anal. Calcd for<br />

C 21 H 19 FN 2 O 2 : C, 71.98; H, 5.47; N, 8.00; Found: C, 71.94; H, 5.46; N, 8.02.<br />

Methyl 2-(3-(dimethylamino)phenyl)-4-isopropyl-6-phenylpyrimidine-5-carboxylate<br />

(ASM-04f). White solid; R f 0.69 (8:2 hexane-EtOAc); mp 162-168 ° C; IR (KBr):<br />

3093, 2999, 1648, 1586, 1261, 1061, 758 cm -1 ; MS (m/z): 376 (M + ); Anal. Calcd for<br />

C 23 H 25 N 3 O 2 : C, 73.57; H, 6.71; N, 11.19; Found: C, 73.56; H, 6.72; N, 11.22.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 28


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Methyl 2-(4-fluorophenyl)-4-isopropyl-6-p-tolylpyrimidine-5-carboxylate (ASM-<br />

04g). White solid; R f 0.73 (8:2 hexane-EtOAc); mp 117-119 ° C; IR (KBr): 3083, 2958,<br />

1731, 1503, 1430, 1352, 1282, 1050 698 cm -1 ; MS (m/z): 365 (M + ); Anal. Calcd for<br />

C 22 H 21 FN 2 O 2 : C, 72.51; H, 5.21; N, 7.69; Found: C, 72.56; H, 5.22; N, 7.62.<br />

Methyl 4-isopropyl-2,6-bis(4-methoxyphenyl)pyrimidine-5-carboxylate (ASM-<br />

04h). Yellow solid; R f 0.77 (8:2 hexane-EtOAc); mp 171-173 ° C; IR (KBr): 3028,<br />

2924, 2868, 1729, 1523, 1480, 1430, 1268, 720 cm -1 ; MS (m/z): 392 (M + ); Anal.<br />

Calcd for C 23 H 24 N 2 O 4 : C, 70.39; H, 6.16; N, 7.14; Found: C, 70.40; H, 6.12; N, 7.12.<br />

Methyl 4-isopropyl-6-(3-nitrophenyl)-2-phenylpyrimidine-5-carboxylate (ASM-<br />

04i). Yellow solid; R f 0.80 (8:2 hexane-EtOAc); mp 182-184 ° C; IR (KBr): 3056,<br />

2967, 2850, 1735, 1505, 1480, 1320, 1252, 763 cm -1 ; MS (m/z): 378 (M + ); Anal.<br />

Calcd for C 21 H 19 N 3 O 4 : C, 66.83; H, 5.07; N, 11.13; Found: C, 66.84; H, 5.06; N,<br />

11.12.<br />

Methyl 2-(4-cyanophenyl)-4-(4-fluorophenyl)-6-isopropylpyrimidine-5-carboxylate<br />

(ASM-04j). White solid; R f 0.85 (8:2 hexane-EtOAc); mp 98-100 ° C; IR (KBr):<br />

3058, 2931, 2858, 2235, 1725, 1522, 1492, 1268, 758, 704 cm -1 ; MS (m/z): 376 (M + );<br />

Anal. Calcd for C 22 H 18 FN 3 O 2 : C, 70.39; H, 4.83; N, 11.19; Found: C, 70.37; H, 4.86;<br />

N, 11.17.<br />

Methyl 4-isopropyl-2-(4-methoxyphenyl)-6-phenylpyrimidine-5-carboxylate (AS<br />

M-04k). White solid; R f 0.74 (8:2 hexane-EtOAc); mp 131-133 ° C; IR (KBr): 3083,<br />

2954, 2825, 1731,1600, 1536, 1458, 1368, 1020, 738 cm -1 ; MS (m/z): 362(M + ); Anal.<br />

Calcd for C 22 H 22 N 2 O 3 : C, 72.91; H, 6.12; N, 7.73; Found: C, 72.91; H, 6.14; N, 7.74.<br />

Methyl 4-isopropyl-2-phenyl-6-p-tolylpyrimidine-5-carboxylate (ASM-04l).<br />

Yellow solid; R f 0.83 (8:2 hexane-EtOAc); mp 143-145 ° C; IR (KBr): 3126, 2999,<br />

1740, 1648, 1586, 1261, 1061, 720, 658 cm -1 ; MS (m/z): 346(M + ); Anal. Calcd for<br />

C 22 H 22 N 2 O 2 : C, 76.28; H, 6.40; N, 8.09; Found: C, 76.29; H, 6.41; N, 8.11.<br />

Methyl 2-(4-cyanophenyl)-4-isopropyl-6-(4-methoxyphenyl)pyrimidine-5-carboxylate<br />

(ASM-04m). Brown solid; R f 0.72 (8:2 hexane-EtOAc); mp 177-179 ° C; IR<br />

(KBr): 3064, 2935, 2831, 1728, 1558, 1503, 1430, 1268, 883, 778 cm -1 ; MS (m/z):<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 29


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

387 (M + ); Anal. Calcd for C 23 H 21 N 3 O 3 : C, 71.30; H, 5.46; N, 10.85; Found: C, 71.31;<br />

H, 5.44; N, 10.86.<br />

Methyl 2-(3-(dimethylamino)phenyl)-4-isopropyl-6-(3-nitrophenyl)pyrimidine-5-<br />

carboxylate (ASM-04n). Yellow solid; R f 0.82 (8:2 hexane-EtOAc); mp 152-157 ° C;<br />

IR (KBr): 3123, 2999, 2863,1731,1648, 1586, 1261, 1053, 850, 738, cm -1 ; MS (m/z):<br />

420 (M + ); Anal. Calcd for C 23 H 24 N 4 O 4 : C, 65.70; H, 5.75; N, 13.33; Found: C, 65.71;<br />

H, 5.74; N, 13.36.<br />

Methyl 2,4-bis(4-fluorophenyl)-6-isopropylpyrimidine-5-carboxylate (ASM-04o).<br />

White solid; R f 0.68 (8:2 hexane-EtOAc); mp 194-196 ° C; IR (KBr): 3135, 3089,<br />

2856, 1726, 1580, 1436, 1358, 1050, 780, cm -1 ; MS (m/z): 368 (M + ); Anal. Calcd for<br />

C 21 H 18 F 2 N 2 O 2 : C, 68.47; H, 4.93; N, 7.60; Found: C, 68.48; H, 4.94; N, 7.61.<br />

Methyl 4-isopropyl-2,6-diphenylpyrimidine-5-carboxylate (ASM-04p). White<br />

solid; R f 0.74 (8:2 hexane-EtOAc); mp 132-134 ° C; IR (KBr): 3120, 3025, 2868, 1745<br />

1600, 1480, 1380, 1068, 790, 745, cm -1 ; MS (m/z): 332 (M + ); Anal. Calcd for<br />

C 21 H 20 N 2 O 2 : C, 75.88; H, 6.06; N, 8.43; Found: C, 75.87; H, 6.06; N, 8.44.<br />

Methyl 2-(4-cyanophenyl)-4-isopropyl-6-p-tolylpyrimidine-5-carboxylate (ASM-<br />

04q). Yellow solid; R f 0.78 (8:2 hexane-EtOAc); mp 114-116 ° C; IR (KBr): 3051,<br />

2967, 2850, 2253, 1725, 1568, 1503, 1430, 1268, 748, 698 cm -1 ; MS (m/z): 371 (M + );<br />

Anal. Calcd for C 23 H 21 N 3 O 2 : C, 74.37; H, 5.70; N, 11.31; Found: C, 74.38; H, 5.71;<br />

N, 11.34.<br />

Methyl 2-(3-(dimethylamino)phenyl)-4-isopropyl-6-(4-methoxyphenyl)pyrimidine-5-carboxylate<br />

(ASM-04r). White solid; R f 0.84 (8:2 hexane-EtOAc); mp 198-200<br />

o C; IR (KBr): 3068, 2983, 2899, 1728, 1648, 1586, 1261, 1061, 780, 712 cm -1 ; 1 H<br />

NMR (300 MHz, DMSO): δ 1.30-1.32 (d, 6H, 2 x i prCH 3 ), 2.97 (s, 6H, CH 3 ), 3.11-<br />

3.16 (m, 1H, i prCH), 3.76-7.83 (s, 6H, OCH 3 ), 6.91-6.95 (dd, 1H, Ar-H, j=2.1Hz,<br />

j=2.7Hz), 7.09-7.12 (d, 2H, Ar-H, j=9.0Hz), 7.32-7.37 (t, 2H, Ar-H), 7.69-7.72 (d,<br />

2H, Ar-H, j=9.0Hz), 7.78-7.80 (d, 1H, Ar-H, j=7.8Hz); 7.86 (s, 1H, Ar-H); MS (m/z):<br />

406 (M + ); Anal. Calcd for C 24 H 27 N 3 O 3 : C, 71.09; H, 6.71; N, 10.36; Found: C, 71.07;<br />

H, 6.73; N, 10.37.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 30


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Methyl 2-(4-fluorophenyl)-4-isopropyl-6-(3-nitrophenyl)pyrimidine-5-carboxylate<br />

(ASM-04s). White solid; R f 0.73 (8:2 hexane-EtOAc); mp 145-147 ° C;IR (KBr):<br />

3021, 2856, 1725, 1648, 1422, 1369, 1254, 1068, 790, 720 cm -1 ; MS (m/z): 395 (M + );<br />

Anal. Calcd for C 21 H 18 FN 3 O 4 : C, 63.79; H, 4.59; N, 10.63; Found: C, 63.79; H, 4.58;<br />

N, 10.64.<br />

Methyl 4-(4-fluorophenyl)-6-isopropyl-2-(4-methoxyphenyl)pyrimidine-5-carboxylate<br />

(ASM-04t). White solid; R f 0.85 (8:2 hexane-EtOAc); mp 103-105 ° C; IR<br />

(KBr): 3158, 3036, 2869, 1735, 1658, 1450, 1356, 800, 720 cm -1 ; MS (m/z): 380<br />

(M + ); Anal. Calcd for C 22 H 21 FN 2 O 3 : C, 69.46; H, 5.56; N, 7.36; Found: C, 69.45; H,<br />

5.58; N, 7.34.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 31


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

1 H NMR spectrum of compound ASM-02a<br />

1 H NMR spectrum of compound ASM-03a<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 32


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

1 H NMR spectrum of compound ASM-04a<br />

Expanded 1 H NMR spectrum of compound ASM-04a<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 33


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

1 H NMR spectrum of compound ASM-04b<br />

Expanded 1 H NMR spectrum of compound ASM-04b<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 34


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

1 H NMR spectrum of compound ASM-04r<br />

Expanded 1 H NMR spectrum of compound ASM-04r<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 35


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

13 C NMR spectrum of compound ASM-04a<br />

Expanded 13 C NMR spectrum of compound ASM-04a<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 36


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Mass spectrum of compound ASM-03b<br />

Mass spectrum of compound ASM-03e<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 37


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Mass spectrum of compound ASM-04a<br />

Mass spectrum of compound ASM-04s<br />

NO 2<br />

O<br />

N<br />

O<br />

N<br />

F<br />

m/z-396<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 38


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

IR spectrum of compound ASM-03a<br />

100<br />

%T<br />

80<br />

60<br />

40<br />

3057.27<br />

3034.13<br />

2931.90<br />

1828.58<br />

2872.10<br />

1687.77<br />

1670.41<br />

1622.19<br />

1572.04<br />

1410.01<br />

1116.82<br />

1031.95<br />

999.16<br />

977.94<br />

854.49<br />

823.63<br />

729.12<br />

675.11<br />

648.10<br />

623.03<br />

563.23<br />

538.16<br />

522.73<br />

482.22<br />

457.14<br />

434 00<br />

20<br />

2972.40<br />

1494.88<br />

1444.73<br />

1338.64<br />

1296.21<br />

1182.40<br />

1076.32<br />

920.08<br />

871.85<br />

767.69<br />

702.11<br />

0<br />

1726.35<br />

1541.18<br />

1519.96<br />

1383.01<br />

1220.98<br />

-20<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

1/cm<br />

IR spectrum of compound ASM-04a<br />

110<br />

%T<br />

100<br />

90<br />

80<br />

70<br />

3194.23<br />

3151.79<br />

2976.26<br />

2929.97<br />

1737.92<br />

1722.49<br />

1683.91<br />

1649.19<br />

1558.54<br />

1506.46<br />

1456.30<br />

1398.44<br />

1330.93<br />

1259.56<br />

1228.70<br />

1076.32<br />

858.35<br />

829.42<br />

777.34<br />

761.91<br />

698.25<br />

611.45<br />

561.30<br />

60<br />

1535.39<br />

50<br />

449.43<br />

1<br />

542.02<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

1/cm<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 39


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

1.8 References<br />

1. Mashkovskii, M. D.; Medicinals [in Russian], 12th ed., Meditsina, Moscow 1993, Part 1, p.<br />

736; 1993, Part 2, p. 688.<br />

2. Nikolaeva, N. B. (ed.), Medicinal Products from Foreign Firms in Russia [in Russian],<br />

Astrafarmservis, Moscow, 1993, p. 720.<br />

3. Biginelli, P. Berichte, 1891, 24, 1317.<br />

4. Khanina, E. L.; Silinietse, G. O.; Ozol, Y. Y.; Dubur, G. Y.; Kimenis, A. A. Khim. Farm. Zh.,<br />

1978, 10, 72.<br />

5. Cho, H.; Ueda, M.; Shima, K.; Mizuno, A.; Hayashimatsu, M.; Ohnaka, Y.; Nakeuchi, Y.;<br />

Hamaguchi, M.; Aisaka, K.; Hidaka, T.; Kawai, M.; Takeda, M.; Ishihara, T.; Funahashi, K.;<br />

Satoh, F.; Morita, M.; Noguchi, T. J. Med. Chem., 1989, 32, 2399.<br />

6. Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.; Moreland, S.; Hedberg, A.;<br />

O'Reilly, B. C. J. Med. Chem., 1991, 34, 806.<br />

7. Rovnyak, G. C.; Kimball, S. D.; Beyer, B.; Cucinotta, G.; DiMarco, J. D.; Gougoutas, J.;<br />

Hedberg, A.; Malley, M.; McCarthy, J. P.; Zhang, R.; Moreland, S.; J. Med. Chem., 1995, 38,<br />

119.<br />

8. Amine, M. S.; Nassar, S. A.; El-Hashash, M. A.; Essawy, S. A.; Hashish, A. A. Ind.J. Chem.,<br />

Sect. B, 1996, 35, 388.<br />

9. Desenko, S. M.; Lipson, V. V.; Gorbenko, N. I.; Livovarevich, L. P.; Ryndina, E. N.; Moroz,<br />

V. V.; Varavin, V. P. Khim. Farm. Zh., 1995, 4, 37.<br />

10. Jelich, K.; Babczinski, P.; Sartel, H. J.; Smidt, R.; Strang, H.; German Patent No. 3,808,122;<br />

Ref. Zh. Khim., 1990, 160433P.<br />

11. Gsell, L. Eur. Pat. Appl. EP 375,613; Chem. Abs., 1990, 113, 231399.<br />

12. Weis, A. L.; Van der Plas, H. C. Heterocycles, 1986, 24, 1433.<br />

13. Weis, A. L.; Advances in Heterocyclic Chemistry, A. R. Katritzky (ed.), Academic Press,<br />

Orlando, etc., 1985, Vol. 38, p. 3.<br />

14. Evans, R. F.; The Pyrimidines, D. J. Brown (ed.), Wiley, New York, Chichester, Brisbane,<br />

Toronto, Singapore, 1994, p. 737.<br />

15. Eussell, J. A. Annu. Rev. Biochem. 1945, 14, 309.<br />

16. Cox, R. A. Quart. Rev. 1968, 22, 499.<br />

17. Van der Plas, H. C.; Charushin, V. N.; Van Veldhuizen, B. J. Org. Chem., 1983, 48, 1354.<br />

18. Janis, R. A.; Silver, P. J.; Triggle, D. J. Adv. Drug Res. 1987, 16, 309.<br />

19. Rovnyak, G. C.; Atwal, K. S.; Hedberg, A.; Kimball, S. D.; Moreland, S.; Gougoutas, J. Z.;<br />

O´Reilly, B. C.; Schwartz, J.; Malley, M. F. J. Med. Chem. 1992, 35, 3254.<br />

20. Forray, C.; Bard, J. A.; Wetzel, J. M.; Chiu, G.; Shapiro, E.; Tang, R.; Lepor, H.; Hartig, P.<br />

R.; Weinshank, R. L.; Branchek, T. A.; Gluchowski, C.; Mol. Pharmacol. 1994, 45, 703.<br />

21. Barrow, J. C.; Nantermet, P. G.; Selnick, H. G.; Glass, K. L.; Rittle, K. E.; Gilbert, K. F.;<br />

Steele, T. G.; Homnick, C. F.; Freidinger, R. M.; Ransom, R. W.; Kling, P.; Reiss,<br />

D.;Broten,T. P.; Schorn, T. W.; Chang, R. S. L.; O’Malley, S. S.; Olah, T. V.; Ellis, J. D;<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 40


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

Barrish, A.; Kassahun, K.; Leppert, P.; Nagarathnam, D.; Forray, C. J. Med. Chem. 2000, 43,<br />

2703.<br />

22. Nagarathnam, D.; Miao, S. W.; Lagu,, B.; Chiu, G.; Fang, J.; Murali Dhar, T. G.; Zhang, J.;<br />

Tyagarajan, S.; Marzabadi, M. R.; Zhang, F.; Wong, W. C.; Sun, W.; Tian, D.; Wetzel, J. M.;<br />

Forray, C.; Chang, R. S. L.; Broten, T. P.; Ransom, R. W.; Schorn, T. W.; Chen, T. B.;<br />

O’Malley, S.; Kling, P.; Schneck, K.; Bendesky, R.; Harrell, C. M.; Vyas, K. P.; Gluchowski,<br />

C. J. Med. Chem. 1999, 42, 4764.<br />

23. Atwal, K.; Rovnyak, G. C.; Schwartz, J.; Moreland, S.; Hedberg, A.; Gougoutas, J. Z.;<br />

Malley, M. F.; Floyd, D. M. J. Med. Chem. 1990, 33, 1510.<br />

24. Atwal, K. S.; Rovnyak, G. C.; Kimball, S. D.; Floyd, D. M.; Moreland, S.; Swanson, B. N.;<br />

Gougoutas, J. Z.; Schwartz, J.; Smillie, K. M.; Malley, M. F. J. Med. Chem. 1990, 33, 2629.<br />

25. Tetko, I. V.; Tanchuk, V. Y.; Chentsova, N. P.; Antonenko, S. V.; Poda, G. I.; Kukhar, V. P.;<br />

Luik, A. I. J. Med. Chem., 1994, 37, 2520.<br />

26. Bryzgalov, A. O.; Dolgikh, M. P.; Sorokina, I. V.; Tolstikova, T. G.; Sedova, V. F.; Shkurko,<br />

O. P. Bioorg. Med. Chem. Lett., 2006, 16, 1418.<br />

27. Remennikov, G. Y.; Shavaran, S. S.; Boldyrev, I. V.; Kapran, N. A.; Kurilenko, L. K.;<br />

Sevchuk, V. G.; Klebanov, B. M. Pharm. Chem. Journal, 1994, 28, 322.<br />

28. Brian C. Shook, Stefanie Rassnick, Daniel Hall, Kennth C. Rupert, Geoffrey R. Heintzelman,<br />

Bioorganic & medicinal chemistry letters. 2010, 20, 2864<br />

29. Ma, Y.; Qian, C.; Wang, L.; Yang, M. J. Org. Chem., 2000, 65, 3864.<br />

30. Ranu, B. C.; Hajra, A.; Jana, U. J. Org. Chem. 2000, 65, 6270.<br />

31. Heravi, M. M.; Derikvand, F.; Bamoharram, F. F. J. Mol. Catal. A: Chem., 2005, 242, 173.<br />

32. Heravi, M. M.; Bakhtiari, K.; Bamoharram, F. F. Catal. Comm., 2006, 7, 373.<br />

33. Badaoui, H.; Bazi, F.; Sokori, S.; Boulaajaj, S.; Lazrek, H. B.; Sebti, S; Lett. in Org. Chem.,<br />

2005, 2, 561.<br />

34. De, S. K.; Gibbs, R. A. Syn Comm, 2005 35, 2645.<br />

35. Rusinov, V. L.; Chupakhin, O. N. Nitroazines, B. M. Vlasov (ed.), Nauka, Novosibirsk, 1991,<br />

347.<br />

36. Shirini, F.; Marjani, K.; Nahzomi, H. T. ARKIVOC, 2007, 1, 51.<br />

37. Dax, S. L.; McNally, J. J.; Youngman, M. A.; Curr. Med. Chem., 1999, 6, 255.<br />

38. Wipf, P.; Cunningham, A. Tet. Lett., 1995, 36, 7819.<br />

39. Li, W.; Lam, Y.; J. Comb. Chem., 2005, 7, 721.<br />

40. Toy, P. H.; Janda, K. D. Acc. Chem. Res., 2000, 33¸546.<br />

41. (a) Gravert, D. J.; Janda, K. D. Chem. Rev., 1997, 97, 489. (b) Wentworth, P.; Janda, K. D.<br />

Chem. Comm., 1999, 19, 1917.<br />

42. Fang, D.; Luo, J.; Zhou, X.; Ye, Z.; Liu, Z. J. Mol. Catal. A: Chem., 2007, 27, 208.<br />

43. Jean, C. L.; Jean, J. V. E.; Loic, T.; Jean, P. B. ARKIVOC, 2007, 3, 13.<br />

44. Ming, L.; Si, G. W.; Rong, W. L.; Feng, L. Y.; Y. H. Zheng, J. Mol. Catal. A: Chem., 2006,<br />

258, 133.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 41


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

45. (a) Caddick, S. Tetrahedron, 1995, 51, 10403. (b) Deshayes, S.; Liagre, M.; Loupy, A.;<br />

Luche, J.; Petit, A. Tetrahedron, 1999, 55, 10851. (c) Lidstrom, P.; Tierney, J.; Wathey, B.;<br />

Westman, J.; Tetrahedron, 2001, 57, 9225. (d) Kirschning, A.; Monenschein, H.; Wittenberg,<br />

R. Angew. Chem. Int. Ed., 2001, 40, 650. (e) Varma, R. S. Pure Appl. Chem., 2001, 73, 193.<br />

(f) Loupy, A. Microwaves in Organic Synthesis, 2002, pp. 499 Wiley-VCH: Weinheim.<br />

46. Dandia, A.; Saha, M.; Taneja, H. J. Fluorine Chem., 1998, 90, 17.<br />

47. Diddams, P.; Butters, M. Solid Supports and Catalysts in Organic Synthesis, K. Smith; Ed.;<br />

Ellis Harwood and PTR Prentice Hall: New York and London, 1992, pp. 3-39.<br />

48. Gopalakrishnan, M.; Sureshkumar, P.; Kanagarajan, V.; Thanusu, J.; Govindaraju, R.<br />

ARIKVOC, 2006, 13, 130.<br />

49. (a) Stefani, H. A.; Pereira, C. M. P.; Almeida, R. B.; Braga, R. C.; Guzen, K. P.; Cella, R. Tet.<br />

Lett., 2005, 46, 6833. (b) Shen, Z. L.; Ji, S. J.; Wang, S. Y.; Zeng, X. F. Tetrahedron, 2005,<br />

61, 10552.<br />

50. Li, J. T.; Han, J. F.; Yang, J. H.; Li, T. S. Ultrasonics Sonochem, 2003, 10, 119.<br />

51. Zhang, X.; Li, Y.; Liu, C.; Wang, J. J. Mol. Catal. A: Chem., 2006, 253, 207.<br />

52. Kumar, H.; Parmar, A. Ultrasonics Sonochem., 2007, 15, 129.<br />

53. Memarian, H. R.; Farhadi, A.; Sabzyan, H.; Ultrasonics Sonochemistry, 2010, 17, 579.<br />

54. Kim, S. S.; Choi, B. S.; Lee, J. H.; Lee, K. K.; Lee, T. H.; Kim, Y. H.; Shin, H. Synlett, 2009,<br />

No. 4, 599.<br />

55. Nasr-Esfahani, M.; Montazerozohori, M.; Abdi, K. ARKIVOC, 2009 (x) 255.<br />

56. Liang, R. R.; Wu, G. L.; Wu, W. T.; Wu, L. M.; Chinese Chemical Letters, 2009, 20, 1183.<br />

57. Karade , N. N.; Gampawar, S. V.; Kondre, J. M.; Tiwari, G. B.; Tetrahedron Letters, 2008,<br />

49, 6698.<br />

58. Yamamoto, K.; Chen, Y. G.; Buono, F. G.; Org. Lett., 2005, 7, 21.<br />

59. Driwedi S. D.; Holkar A. G.; Patel D. j.; Rupapara M. L.; Patel M. R.; WO 2009/157014 A2,<br />

2009.<br />

60. Gholap, A. R.; Toti, K. S.; Shirazi, F.; Deshpande, M. V.; Srinivasan, K. V.; Tetrahedron,<br />

2008, 64, 10214.<br />

61. (a) Miyaura, N.; Yamada, K.; Suzuki, A.; Tetrahedron Letters, 1979, 20, 36, 3437.<br />

(b) Miyaura, N.; Suzuki, A.; Chem. Comm. 1979, 19, 866.<br />

62. Miyaura, N.; Yanagi, T.; Suzuki, A.; Synth. Commun. 1981, 11, 513.<br />

63. Li, S.; Lin, Y.; Cao, J.; Zhang, S.; J. Org. Chem., 2007, 72, 4067.<br />

64. Yamada, Y. M. A.; Takeda, K.; Takashashi, H.; Ikegami, S.; J. Org. Chem. 2003, 68, 7733.<br />

65. Zhengyin Du; Wanwei Zhou; Fen Wang; Jin-Xian Wang; Tetrahedron, 2011, 67, 4914.<br />

66. Yu-Long Zhao; You Li; Shui-Ming Li; Yi-Guo Zhou; Feng-Yi Sun; Lian-Xun Gao; Fu-She<br />

Hana; Adv. Synth. Catal. 2011, 353, 1543.<br />

67. Sha Lou; Gregory C. Fu; Adv. Synth. Catal. 2010, 352, 2081.<br />

68. Zhang, R.; Iskander, G.; Silva, P.; Chan, D.; Vignevich, V.; Nguyen, V.; Bhadbhade, M. M.;<br />

Black, D.; StC, Kumar, N.; Tetrahedron, 2011, 67 3010.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 42


Chapter 1<br />

Synthesis of functionalized pyrimidines<br />

69. Zhang, Y.; Gao, J.; Li, W.; Lee, H.; Lu, B.Z.; Senanayake. C. H.; J. Org. Chem. 2011, 76,<br />

6394.<br />

70. Spencer, J.; Baltus, C. B.; Press, N. J.; Harrington, R. W.; Clegg, W.; Tetrahedron Letters,<br />

2011, 52, 3963.<br />

71. Tang, Q.; Gianatassio, R.; Tetrahedron Letters, 2010, 51, 3473–3476.<br />

72. Mehta, V. P.; Sharma, A.; Hecke, K. V.; Meervelt, L. V.; Eycken, E. V.; J. Org. Chem.,<br />

2008, 73, 2382.<br />

73. Begouin, J-M.; Gosmini, C.; J. Org. Chem. 2009, 74, 8.<br />

74. Itoh, T.; Mase, T.; Tetrahedron Letters, 2005, 46, 3573.<br />

75. Chang, Lisa C. W.; Spanjersberg, R. F.; Von, J. K.; Kunzel, F. D.; Thea Mulder-Krieger,;<br />

Brussee, J.; IJzerman, A. P.; J. Med. Chem. 2006, 49, 2861.<br />

76. Fleckenstein, C. A.; Plenio, H.; J. Org. Chem. 2008, 73, 3236.<br />

77. Yang, D. X.; Colletti, S. L.; Wu, K.; Song, M.; Li, G.Y.; Shen, H.C.; Org. Lett, 2009, 11, 2.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 43


Chapter – 2<br />

Synthesis and Biological Activity of<br />

Novel Pyrimidine Derivatives via Wittig<br />

Reaction in Aqueous Media


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

2.1 Introduction<br />

As described in chapter-1 the pyrimidine scaffold represents an important<br />

pharmacophore endowed with a wide range of pharmacological activities according to<br />

the specific decoration of the heterocycle. Nitrogen-containing heterocycles are<br />

widely distributed in nature and are essential to life, playing a vital role in the<br />

metabolism of all living cells. Among these, pyrimidines represent one of the most<br />

prevalent heterocycles found in natural products such as amino acid derivatives<br />

(willardiine, tingitanine), 1 vitamins (vitamin B1), 2 antibiotics (bacimethrin,<br />

sparsomycin, bleomycin), 3 alkaloids (heteromines, crambescins, manzacidins,<br />

variolins, meridianins, psammopemmins etc.), 4 and toxins. 5 From a synthetic point of<br />

view, the first pyrimidine derivative (alloxan) was obtained as early as 1818, by<br />

Brugnatelli, oxidizing uric acid with HNO 3 . 6 In 1848, a second pyrimidine synthesis<br />

was pioneered by Frankland and Kolbe, who heated propionitrile with metallic<br />

potassium to give a pure product (2,6-diethyl-5-methyl-4-pyrimidinamine), 7 while in<br />

1878 Grimaux prepared barbituric acid by condensation of malonic acid with urea.<br />

The latter procedure has been later named after Pinner who gave the name to the<br />

pyrimidine scaffold and was the first to understand the chemical nature of this<br />

structure. Pyrimidine nucleus present in rosuvastatin (Figure-1), 8 which is member of<br />

drug class of statins, used to treat high cholesterol and related condition to prevent<br />

cardiovascular diseases.<br />

Figure-1<br />

Due to the long-lasting interest in pyrimidine derivatives as potential drugs,<br />

the synthetic community has dedicated much effort to the investigation of new<br />

approaches to those derivatives. Accordingly, we have described here an overview of<br />

the most interesting synthetic strategies recently reported for the generation of highly<br />

functionalized pyrimidines.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 44


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

2.2 A literature review on the biological activity associated with<br />

pyrimidine derivatives<br />

In medicinal chemistry pyrimidine derivatives have been very well known for<br />

their therapeutic applications. Many pyrimidine derivatives have been developed as<br />

chemotherapeutic agents. Over the years, the pyrimidine system turned out to be an<br />

important pharmacophore endowed with drug like properties and a wide range of<br />

pharmacological activities depending on the decoration of the scaffold. A few<br />

illustrative examples of pyrimidine derivatives active as inhibitors of HIV, 9 HCV, 10<br />

CDK, 11 CB2, 12 VEGFR 13 and Adenosine A1/A2a/A3 14 are reported in Figure-2.<br />

Figure-2<br />

Microbes are causative agents for various types of disease like pneumonia,<br />

amoebiasis, typhoid, malaria, common cough and cold various infections and some<br />

severe diseases like tuberculosis, influenza, syphilis, and AIDS as well. Various<br />

approaches were made to check the role of pyrimidine moiety as antimicrobial agent<br />

from the discovery of molecule to the present scenario. Naik et al. 15 synthesized 2-[{2<br />

(Morpholino)-3-pyridinyl-5-thio}-2-oxoethyloxadiazolyl]-amino-4-(2,4-dichloro-5-<br />

fluorophenyl)-6-(aryl)pyrimidines, which exhibit maximum zone of inhibition against<br />

E.coli, S. aureus, S.typhiiand B.subtilis (Figure-3).<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 45


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

Figure-3<br />

Mishra et al. 16 have synthesized various derivatives of pyrimidines. The<br />

fungicidal activities of the compound were evaluated against P. infestans and C.<br />

falcatum by the usual agar plate method (Figure-4).<br />

R'<br />

N<br />

O<br />

O<br />

N NH<br />

R<br />

N NH<br />

Figure-4<br />

The pyrimidine moiety with some substitution showed to have promising<br />

antitumor activity as there are large numbers of pyrimidine based antimetabolites. The<br />

structural modification may be on the pyrimidine ring or on the pendant sugar groups.<br />

Early metabolite prepared was 5-fluorouracil, 17 a pyrimidine derivative followed by<br />

5-thiouracil which also exhibits some useful antineoplastic activities (Figure-5). 18<br />

Figure-5<br />

Palwinder Singh et al. 19 has reacted 5-benzoyl/5-carbaldehyde-/5-(3-phenyl<br />

acryloyl)-6-hydroxy-1H-pyrimidine-2,4diones with amines provided the<br />

corresponding enamines (Figure-6). The investigation for anticancer activity of<br />

molecule at 59 human tumor cell lines was done representing leukemia, melanoma<br />

and cancer of lung, colon, brain, ovary, breast as well as kidney.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 46


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

Figure-6<br />

Stephanepedeboscq et al. 20 has synthesized 4-(2-Methylanilino)<br />

benzo[b]thieno[2,3-d]pyrimidine (1) and 4-(2-Methoxyanilino)benzo[b]thieno[2,3-d]<br />

pyrimidine (2) (Figure-7), which showed a similar cytotoxicity to the standard anti-<br />

EGFR geftinib suggesting a blockade of the EGFR pathway by binding to the tyrosine<br />

kinase receptor.<br />

R 2<br />

R 1<br />

N<br />

NH<br />

NH 2<br />

N<br />

S<br />

R 1 =CH 3 , R 2 =H for (1)<br />

R 1 =OCH 3 ,R 2 =H for (2)<br />

Figure-7<br />

Fathalla et al. 21 has synthesized a series of some new pyrimidine derivatives<br />

like 7-(2-methoxyphenyl)-3-methyl-5-thioxo-5, 6-dihydro[1, 2, 4]-triazolo[4,3-c]<br />

pyrimidine-8-carbo-nitrile via reaction of ethyl cyanoacetate with thiourea and the<br />

appropriate aldehydes namely 2-methyl-benzaldehyde and 2-methoxy-benzaldehyde<br />

followed reaction with different reagents. All structures were than screened for<br />

bacterial activity and anticancer activity (Figure-8).<br />

N<br />

N<br />

N<br />

S<br />

CN<br />

NH<br />

OCH 3<br />

Figure-8<br />

Pyrimidine has a remarkable pharmacological efficiency and therefore an<br />

intensive research has been focused on anti-inflammatory activity of pyrimidine<br />

nucleus. Recently two PCT international applications have been filed for 2-<br />

thiopyrimidine derivatives possessing potent activity against inflammation and<br />

immune disorders. 22<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 47


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

Padama shale et al. 23 have been reported Naphtho[2,1-b]furo[3,2-d]pyrimidine<br />

and Carrageen induced rat paw edema method was employed for evaluating the antiinflammatory<br />

activity. The compounds were given at a dose of 80 mg/kg body weight<br />

in albino rats weighing between 150 and 200 g. The oedema was produced by<br />

injecting carrageenan solution at the left hind paw (Figure-9).<br />

O<br />

N<br />

N<br />

R<br />

R 1<br />

Figure-9<br />

Lee et al. 24 has synthesized some novel pyrimidines derivative having<br />

thiazolidinedione. These compounds were evaluated for their glucose and lipid<br />

lowering activity using pioglitazone and rosiglitazone as reference compound.<br />

Desenko et al. 25 has synthesized azolopyrimidine derivatives and compounds were<br />

evaluated for hypoglycemic activity (Figure-10).<br />

N<br />

N<br />

N<br />

Figure-10<br />

Many pyrimidine ring containing drugs have exhibited antihypertensive<br />

activity. A quinozoline derivative, prazosin, is a selective α1-adrenergic antagonist. 26<br />

Its related analogues bunazosin, 27 trimazosin 28 and terazosin 29 are potent<br />

antihypertensive agents(Figure-11).<br />

O<br />

O<br />

NH 2<br />

N<br />

N<br />

N<br />

N R<br />

Et<br />

R= O<br />

for Prazocin<br />

R= CH 2 OOCH 2 COH(CH 3 ) 2 for Bunazosin<br />

R= COCH 2 CH 2 CH 3 for Trimazosin<br />

O<br />

R=<br />

O<br />

for Terazosin<br />

Figure-11<br />

Ketanserin 30 has a similar effect and is an antagonist of both a1-adrenergic and<br />

serotonin-S2 receptors. A triaminopyrimidine derivative, minoxidil,<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 48


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

whose mechanism of action and therapeutic action are similar to prazosin, has been<br />

introduced in therapy for its side effects, in the treatment of alopecia, male baldness<br />

etc (Figure-12). 31<br />

Figure-12<br />

Rahaman et al. 32 has synthesized novel pyrimidines by the condensation of<br />

chalcones of 4΄-piperazine acetophenone with guanidine HCl (Figure-13). It showed<br />

significant antihistaminic activity when compared to the reference antihistaminic drug<br />

mepiramine.<br />

HN<br />

N<br />

R<br />

N<br />

N<br />

NH 2<br />

Figure-13<br />

A small library of 20 tri-substituted pyrimidines was synthesized by Anu et<br />

al. 33 evaluated for their in vitro anti-malarial and anti-tubercular activities. Out of all<br />

screened compound, 16 compounds have shown in-vitro anti-malarial activity against<br />

Plasmodium falciparum in the range of 0.25- 2μg/ml and 8 compounds have shown<br />

anti-tubercular activity against Mycobacterium tuberculosis at a concentration 12.5<br />

μg/ml (Figure-14).<br />

Figure-14<br />

Apart from these activities, pyrimidines also possess diuretic, antianthelmentic<br />

and calcium channel blocking activity. 34<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 49


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

2.3 Various synthetic approaches for highly substituted<br />

pyrimidines<br />

A brief literature review on the new synthetic strategies for pyrimidine<br />

derivatives is presented as follows.<br />

In recent years, several interesting Pinner-like approaches have been<br />

developed: Karpov and Muller have been reported the employment of alkynones (βketo<br />

aldehydes’ synthetic equivalents) in a three-component one-pot pyrimidine<br />

synthesis (Figure-15). 35 The coupling of acid chlorides (1) with terminal alkynes (2)<br />

under modified Sonogashira conditions (Et 3 N used in stoichiometric amount)<br />

followed by the addition of aminium or guanidinium salts (4) in the presence of<br />

sodium carbonate gave the 2,4-disubstituted or 2,4,6-trisubstituted pyrimidines (5).<br />

Figure-15<br />

Kiselyov 36 was reported an efficient one-pot approach for the synthesis of<br />

2,4,5,6-tetrasubstituted pyrimidines (Figure-16). Reaction of alkyl- or<br />

benzylphosphonates with aryl nitriles formed unstable aza-Wittig species which were<br />

converted into α,β-unsaturated imines by reaction with aromatic aldehydes. The latter<br />

intermediates were converted into the desired pyrimidine derivatives after<br />

nucleophilic attack by a bidentate nuclophile, usually guanidine or amidine.<br />

Figure-16<br />

Mohammad Movassaghi et al. 37 has described a procedure for the synthesis of<br />

pyrimidine derivatives. It was applicable to a wide range of secondary amides and<br />

nitriles using 2-chloropyridine as a base additive in the presence of Tf 2 O (Figure-17).<br />

Figure-17<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 50


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

T. Sasada et al. 38 have been reported a ZnCl 2 -catalyzed three-component<br />

coupling reaction allows the synthesis of various 4,5-disubstituted pyrimidine<br />

derivatives in a single step from functionalized enamines, triethylorthoformate, and<br />

ammonium acetate (Figure-18). The procedure can be successfully applied to the<br />

efficient synthesis of mono- and disubstituted pyrimidine derivatives, using methyl<br />

ketone derivatives instead of enamines.<br />

R<br />

H 2 N<br />

or<br />

R'<br />

R<br />

R'<br />

O<br />

3 eq. HC(OEt) 3<br />

2eq.NH 4 OAc<br />

0.1 eq. ZnCl 2<br />

Toluene<br />

100 o C, 3- 72 hrs<br />

R<br />

R'<br />

N<br />

N<br />

Figure-18<br />

M. G. Barthakur et al. 39 have been developed a novel and efficient synthesis of<br />

pyrimidine from β-formylen amide involves samarium chloride catalyzed cyclization<br />

of β-formelene amides using urea as source of ammonia under microwave irradiation<br />

(Figure-19).<br />

Figure-19<br />

P. Zhichkin et al. 40 described a method for the synthesis of 2-substituted<br />

pyrimidine-5-carboxylic esters. The sodium salt of 3, 3-dimethoxy-2-<br />

methoxycarbonylpropen-1-ol has been found to react with a variety of amidinium<br />

salts to afford the corresponding 2-substituted pyrimidine-5-carboxylic esters<br />

(Figure-20).<br />

Figure-20<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 51


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

2.4 Applications of Wittig reaction<br />

The Wittig reaction occupies a central role in organic synthesis as it generates<br />

double bond with high level of stereocontrol: non stabilized ylides give high Z-<br />

selectivity, where as stabilized ylides furnish high E-selectivity. 41 Here we discuss<br />

various synthetic approaches for synthesize new chemical entities via Wittig reaction.<br />

R. Antonioletti et al. 42 have developed a mild and practical procedure for the<br />

Wittig olefination, promoted by lithium hydroxide and triphenylbenzyl phosphonium<br />

bromide, has been set up for the synthesis of stilbenes and styrenes (Figure-21).<br />

Ph<br />

Ph<br />

P<br />

Br R CHO<br />

Ph<br />

LiOH·H2O<br />

Solvent, refulx<br />

E/Z isomer<br />

Figure-21<br />

Jesse Dambacher et al. 43 has reported that water is demonstrated to be an<br />

excellent medium for the Wittig reaction employing stabilized ylides and aldehydes.<br />

Although the solubility in water appears to be an unimportant characteristic in<br />

achieving good chemical yields and E/Z-ratios, the rate of reactions in water is<br />

unexpectedly accelerated (Figure-22).<br />

R<br />

Figure-22<br />

Elsie Ramirez et al. 44 have been developed a highly efficient and rapid<br />

protocol for the preparation of the unsaturated 7,3-lactone-a-D-xylofuranose<br />

derivatives (Versatile chiral synthon for naturally important compounds) via selective<br />

Wittig olefination in aqueous media (Figure-23).<br />

Figure-23<br />

James McNulty et al. 45 has reported direct synthesis of 1,3-dienes and 1,3,5-<br />

trienes from the reaction of semi-stabilized ylides via Wittig reaction under aqueous<br />

media employing sodium hydroxide as base (Figure-24).<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 52


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

Figure-24<br />

De-Jun Dong et al. 46 have developed a simple and efficient protocol to<br />

improve the stereoselectivity significantly for the olefination reaction of semistabilized<br />

triphenylphosphonium ylides by replacing the aldehydes used in the Wittig<br />

reaction with N-sulfonyl imines, which possess distinct electronic and steric<br />

properties relative to aldehydes (Figure-25).<br />

Figure-25<br />

Douglass F. Taber et al. 47 were utilized a Potassium hydride in paraffin KH(P)<br />

as a base in Wittig condensation of phosphonium salt with aromatic, aliphatic, and<br />

α,β-unsaturated aldehydes in THF proceeds with high Z selectivity (Figure-26).<br />

Figure-26<br />

Fulvia Orsini et al. 48 has synthesized α,β-unsaturated esters in open<br />

atmosphere via mild and efficient one-pot Wittig reactions performed in both water<br />

and sodium dodecyl sulfate (SDS)-water solution(Figure-27).<br />

Figure-27<br />

Y.k. Liu et al. 49 has discovered a highly stereoselective tandem Michael<br />

addition-Wittig reaction of (3-carboxy-2-oxopropylidene) triphenylphosphorane and<br />

α,β-unsaturated aldehydes gives multifunctional 6-carboxycyclohex-2-en-1-ones in<br />

excellent diastereo- and enantioselectivities by employing the combined catalysis of a<br />

bulky chiral secondary amine, LiClO 4 , and DABCO (Figure-28).<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 53


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

Figure-28<br />

Peter Shu-Wai Leung et al. 50 have developed chromatography free Wittig<br />

reaction by utilizing newly prepared bifunctional polymeric reagents , in this<br />

phosphine and amine functionalized material was used in one-pot Wittig reactions<br />

with an aldehyde and either an r-halo-ester, -ketone, or -amide. Due to the<br />

heterogeneous nature of the polymer, the desired alkene product of these reactions<br />

could be isolated in excellent yield in essentially pure form (Figure-29).<br />

Figure-29<br />

A. El-Batta et al. 51 was carried out Wittig reactions in water media employing<br />

stabilized ylides with aldehydes. They described the use of a saturated aqueous<br />

NaHCO 3 solution to achieve the aqueous one pot Wittig reactions at +20 to 90°Cusing<br />

Ph 3 P, R-bromoesters, and aromatic carboxaldehydes (Figure-30).<br />

Figure-30<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 54


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

2.5 Application of sodium tripolyphosphate<br />

Sodium tripolyphosphate (STPP) is white powder an inorganic compound<br />

with formula Na 5 P 3 O 10 . It is the sodium salt of the polyphosphate penta-anion, which<br />

is the conjugate base of triphosphoric acid (Figure-31). STPP is widely used in<br />

detergents, and as a preservative for seafood, meats, poultry, and animal feeds. It is<br />

also use in ceramics, anticaking, setting retarders, flame retardants, paper,<br />

anticorrosion pigments, textiles, rubber manufacture, fermentation, antifreeze.<br />

Figure-31<br />

There is some limited application of STTP in organic synthesis; however<br />

Zhiqiang Zhang et al. 52 have described a conversion of methyl lactate to acrylic acid,<br />

methyl acrylate and lactic acid via various reactions such as dehydration,<br />

decomposition, decarbonylation, hydrolysis and esterification has been determined by<br />

using sodium tripolyphosphate as a catalyst.<br />

Tert-butyl-2-bromoacetate was synthesized by a reaction of 2-bromoacetyl<br />

chloride with tert-butanol at room temp used stoichiometric sodium tripolyphosphate<br />

as catalyst and acid-scavenger, chloroform as solvent to afford 93% yield. 53 α-<br />

Bromoisobutyric acid tert-butyl ester was synthesized by reaction of tert-Bu alc. with<br />

α-bromoisobutyryl bromide using stoichiometric sodium tripolyphosphate as a base to<br />

afford 96.5% yield. 54<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 55


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

2.6 Current research work<br />

As described in earlier, the chemistry of pyrimidines is one of the most widely<br />

studied subjects because of the occurrence of such heterocycles in biologically<br />

relevant systems such as nucleic acids, cofactors, various toxins, and other products.<br />

Pyrimidine derivatives are biologically interesting molecules that have established<br />

utility for the treatment of Alzheimer’s disease and proliferative disorders; they are<br />

also capable of showing antiviral activity, anti-HIV agents, anti hypertensive agents,<br />

antimicrobial agents and fungicide. The witting product of pyrimidine derivatives<br />

such as rosuvastatin and its salt, which are HMG-CoA reductase inhibitor and useful<br />

in treatment of hypercholesteromia, hyperlipoproteinemia and atherosclerosis.<br />

The Wittig olefination reaction is regarded as one of the most strategic, widely<br />

applicable carbon–carbon double bond-forming processes available in organic<br />

synthesis. This reliable reaction allows for olefination with complete positional<br />

selectivity, predictable chemoselectivity and may be conducted in many cases with<br />

reliable and high stereocontrol.<br />

Nowadays, a great deal of effort has been focused on the field of green<br />

chemistry in adopting methods and processes. As a part of this “green” concept, toxic<br />

and/or flammable organic solvents are replaced by alternative non-toxic and<br />

nonflammable media. In this context, many efforts have been made to use aqueous<br />

media. Among alternative green solvents, water has been the solvent of choice for a<br />

variety of transformations.<br />

During the course of our ongoing interest on the synthesis various<br />

heterocycles and development of useful synthetic methodology, we have developed a<br />

small library of pyrimidines via Wittig reaction using sodium tripolyphosphate as<br />

base in aqueous media. The newly synthesized compounds were characterized by IR,<br />

Mass, 1 H NMR, 13 C NMR spectroscopy and elemental analysis. All the newly<br />

synthesized compounds were evaluated for their antimicrobial activity.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 56


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

2.7 Results and discussion<br />

Scheme:-1 Synthesis of pyrimidine derivatives via Wittig reaction in aqueous<br />

media.<br />

F<br />

F<br />

F<br />

O<br />

Cl<br />

N<br />

N<br />

O<br />

DIBAL<br />

Toluene<br />

Cl<br />

N<br />

N<br />

OH<br />

1) PBr 3 /MDC<br />

2) TPP/Toluene<br />

Cl<br />

N<br />

N<br />

P<br />

Br<br />

ASM-3e INT-01 INT-02<br />

R-CHO<br />

STPP<br />

Water<br />

F<br />

Wittig reaction<br />

N<br />

R<br />

Cl<br />

N<br />

AW-01 to AW-20<br />

The synthetic route for the targeted compounds (AW-01 to AW-20) is shown<br />

in Scheme 1. Compound ASM-03e was prepared by following the methods described<br />

in chapter-1. The reaction of ASM-03e with diisobutylaluminium hydride (DIBAL) in<br />

toluene at 0 o C for 3 h. afforded (2-chloro-4-(4-fluorophenyl)-6-isopropyl pyrimidin-<br />

5-yl)methanol (INT-01) in good yield. INT-01 was then treated with phosphorous<br />

tribromide in MDC at 0-5 o C for 2-3 h. The crude oily residue was reacted with<br />

triphenyl phosphine in toluene at reflux temperature for 3-4 h. to afford triphenyl[2-<br />

chloro-{4-(4-flourophenyl)-6-isopropyl-pyrimidin-5-ylmethyl}phosphonium]bromide<br />

(INT-02) in excellent yield.<br />

Optimization for reaction condition the pyrimidine phosphorous ylide (INT-<br />

02) was treated with benzaldehyde using various bases such as NaH 2 PO 4 , Na 2 HPO 4 ,<br />

and sodium tripolyphosphate in three different solvents, DMSO, THF, and water<br />

(Table-1). Sodium tripolyphosphate as base in aqueous media was found to be an<br />

effective method to afford highly (E)-selective product of AW-01 in moderate to good<br />

yield (Table-1).<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 57


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

Table 1: Optimization of reaction condition for synthesis of Aw-01 using variety<br />

of bases and solvents.<br />

Entry Base Solvents Yield Time hrs.<br />

1 NaH 2 PO 4 DMSO 65 7.0<br />

2 NaH 2 PO 4 THF 70 7.5<br />

3 NaH 2 PO 4 water 76 5.0<br />

4 Na 2 HPO 4 DMSO 68 6.5<br />

5 Na 2 HPO 4 THF 77 6.0<br />

6 Na 2 HPO 4 water 80 4.5<br />

7 Na 5 P 3 O 10 DMSO 85 7.0<br />

8 Na 5 P 3 O 10 THF 83 5.0<br />

9 Na 5 P 3 O 10 water 90 3.0<br />

The structure of INT-01 was established on the basis of their elemental<br />

analysis and spectral data (MS, IR, 1 HNMR, and 13 C NMR). The analytical data for<br />

INT-01 revealed a molecular formula C 14 H 14 ClFN 2 O (m/z 280). The 1 H NMR<br />

spectrum revealed doublet at δ = 1.30-1.33 ppm assigned to isopropyl-CH 3 , a singlet<br />

at δ = 2.09 ppm assigned to the –OH protons, a multiplet at δ = 3.67-3.69 ppm<br />

assigned to the isopropyl -CH protons, a singlet at δ = 4.69 ppm assigned to the –CH 2<br />

protons, two triplet at δ = 7.28-7.34 ppm and 7.88-7.92 assigned to the aromatic<br />

protons.<br />

The structure of INT-02 was established on the basis of their elemental<br />

analysis and spectral data (MS, IR, 1 H NMR, and 13 C NMR). Structure INT-02 was<br />

supported by its mass (m/z 605), which agrees with its molecular formula<br />

C 32 H 28 BrClFN 2 P , its 1 H NMR spectrum had signals at δ = 0.90 (s, 6H, 2 x i prCH 3 ),<br />

2.99-3.03 (m, 1H, i prCH), 5.67 (s, 2H, CH 2 ), 6.97-7.02 (t, 2H, Ar-H), 7.26-7.33 (m,<br />

8H, Ar-H), 7.57 (s, 6H, Ar-H), 7.75-7.80 (m, 3H, Ar-H).<br />

Reaction of pyrimidine phosphorous ylide (INT-02) with various<br />

benzaldehydes using Sodium tripolyphosphate as base in aqueous media to afford<br />

highly (E)-selective product AW-01 to AW-20 in moderate to excellent yield.<br />

Require reaction time and obtained (%) of yield summarized in Table-2.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 58


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

Table-2: Synthesis of substituted pyrimidines via Wittig reaction using sodium<br />

tripolyphosphate under aqueous media.<br />

Entry R Yield (%) Time hrs<br />

AW-01 C 6 H 4 90 3.0<br />

AW-02 4-NO 2 C 6 H 4 92 2.5<br />

AW-03 4-ClC 6 H 4 84 3.0<br />

AW-04 C 5 H 4 S 89 3.5<br />

AW-05 C 5 H 4 O 90 4.0<br />

AW-06 C 8 H 7 N 82 3.5<br />

AW-07 2-NO 2 C 6 H 4 79 3.0<br />

AW-08 4-ClC 6 H 4 85 3.5<br />

AW-09 3-0CH 3 ,4-OHC 6 H 4 93 3.5<br />

AW-10 3,4-di-OCH 3 C 6 H 3 95 3.0<br />

AW-11 4-N(CH 3 ) 2 C 6 H 4 82 3.0<br />

AW-12 4-FC 6 H 4 83 3.5<br />

AW-13 3-NO 2 C 6 H 4 94 4.0<br />

AW-14 4-BrC 6 H 4 90 4.5<br />

AW-15 2-OHC 6 H 4 88 3.0<br />

AW-16 4-OCH 3 C 6 H 4 76 3.5<br />

AW-17 2,5-di-OCH 3 C 6 H 3 89 3.0<br />

AW-18 3-BrC 6 H 4 83 4.0<br />

AW-19 4-ClC 6 H 4 81 3.0<br />

AW-20 3-OHC 6 H 4 77 4.0<br />

The structure of AW-01 to AW-20 was established on the basis of their<br />

elemental analysis, spectral data (MS, IR, 1 H NMR, and 13 C NMR) and (E)-selectivity<br />

of products was supported by NMR spectrum. Structure of AW-02 was supported by<br />

its mass (m/z 398), which agrees with its molecular formula C 21 H 17 ClFN 3 O 2, its 1 H<br />

NMR spectrum had signals at δ = 1.34-1.36 (d, 6H, 2 x i prCH 3 ), 3.44-3.49 (m, 1H,<br />

i prCH), 6.55-6.61 (d, 1H, j=16.5Hz, ethylene-H), 7.08-7.17 (m, 3H, Ar-H & ethylene-<br />

H), 7.48-7.51 (d, 2H, j=20.4Hz, Ar-H), 7.64-7.68 (t, 2H, Ar-H), 8.19-8.22 (d, 2H,<br />

j=8.4Hz, Ar-H).<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 59


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

2.8 Antimicrobial sensitivity testing<br />

WELL DIFFUSION / AGAR CUP METHOD (Lt. General Raghunath D. 1998,<br />

Ashok Rattan, 1998; Patel R., Patel K. 2004,)<br />

In vitro effectivity of antimicrobial agents can be demonstrated by observing<br />

their capacity to inhibit bacterial growth on suitable media. The production of a zone<br />

depends on two factors namely bacterial growth and concentration of antimicrobial<br />

agent. The hole/well punch method was first used by Bennett. This diffusion method<br />

has proved more effective than many other methods. According to Lt. General<br />

Raghunath the well technique is 5-6 times more sensitive than using disk method.<br />

Principle<br />

When antimicrobial substance is added in agar cup (made in a medium<br />

previously inoculated with test organism) the redial diffusion of an antimicrobial<br />

agent through the agar, produces a concentration gradient. The test organism is<br />

inhibited at the minimum inhibitory concentration (MIC), giving rise to a clear zone<br />

of inhibition.<br />

Requirements<br />

1. Young broth culture of a standard test organism<br />

2. Sterile Mueller Hinton Agar plate<br />

3. Solution of antimicrobial substance<br />

4. Cup borer<br />

5. Alcohol etc.<br />

Inoculum preparation<br />

Inoculum was prepared by selecting 4-5 colonies from slope of stock culture<br />

of the indicator organism and emulsifying them in a suitable broth. The inoculated<br />

broth was incubated at 37ºC till it equals turbidity of a 0.5 McFarland standard. This<br />

happens in 2-8 h.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 60


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

Procedure<br />

1. Inoculate test organism on the top of Mueller Hinton Agar plate with help of<br />

sterile swab. (it can be inoculated in melted agar also )<br />

2. The swab was dipped in the inoculum and surface of plate was streaked with<br />

swab.<br />

3. Streaking was repeated for 3 times and each time the plate was rotated at angle<br />

of 60º.<br />

4. Sterilize the cup-borer make four cups of the diameter of 8-10 mm. at equal<br />

distance in the plate previously inoculated with seed culture.<br />

5. The depth of well was 2.5-5.0 mm.<br />

6. The wells have been clearly punched so the surrounding medium is not lifted<br />

when the plug was removed out.<br />

7. The plates were incubated at 37ºC for 24 h. Then the zone of inhibition<br />

measured and the size of zone cited in table.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 61


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

Antibiotic Sensitivity Assay<br />

Sr.<br />

No.<br />

CODE<br />

No.<br />

Pseudomonas<br />

aeruginosa<br />

Proteus vulgaris<br />

Escherichia<br />

coli<br />

(Concentration250/500/ 1000 µG/ml)<br />

Staphylococcus<br />

aureus<br />

Candida<br />

albicans<br />

250 500 1000 250 500 1000 250 500 1000 250 500 1000 250 500 1000<br />

1. AW-01 R R 1.2 1.0 1.4 2.0 1.1 1.5 2.0 1.0 1.4 2.0 R 1.3 2.0<br />

2. AW-02 1.5 1.8 2.0 1.4 1.6 2.0 R R 1.8 R 1.2 1.8 1.0 1.4 2.0<br />

3. AW-03 1.1 1.4 2.0 1.0 1.3 2.0 R R R R R R R 1.3 2.0<br />

4. AW-04 R 1.3 1.8 R 1.1 1.4 R R 1.2 1.1 1.4 2.0 1.1 1.4 2.0<br />

5. AW-05 R 1.2 1.8 R 1.3 2.0 R 1.1 1.8 R 1.2 1.9 1.2 1.4 2.0<br />

6. AW-06 R R 1.2 R 1.2 1.8 R 1.1 1.8 1.0 1.3 2.0 R 1.2 2.0<br />

7. AW-07 1.1 1.4 2.0 R 1.2 1.8 1.0 1.3 2.0 1.1 1.4 2.0 R R 1.2<br />

8. AW-08 R 1.2 2.0 1.0 1.3 2.0 R 1.1 2.0 R 1.2 2.0 1.0 1.3 2.0<br />

9. AW-09 R R 1.2 R 1.2 2.0 1.0 1.3 2.0 R 1.0 2.0 R 1.4 2.0<br />

10. AW-10 1.1 1.3 1.8 1.5 1.8 2.0 R 1.0 1.7 R 1.2 2.0 1.0 1.3 2.0<br />

11. AW-11 R R 1.2 R R R 1.0 1.4 2.0 R 1.1 1.8 1.0 1.3 2.0<br />

12. AW-12 1.5 1.8 2.0 1.1 1.4 2.0 R 1.0 1.8 R 1.2 2.0 R 1.3 2.0<br />

13. AW-13 1.6 1.8 2.0 1.5 1.8 2.0 R 1.2 2.0 1.0 1.3 2.0 R 1.2 2.0<br />

14. AW-14 1.4 1.8 2.0 1.3 1.5 2.0 R R R R R R 1.0 1.3 2.0<br />

15. AW-15 R 1.2 1.5 R R R R R R R R R R 1.2 2.0<br />

16. AW-16 1.3 1.6 1.8 1.0 1.2 1.6 R 1.0 1.3 1.2 1.5 1.7 R 1.1 1.8<br />

17. AW-17 1.1 1.4 1.6 1.0 1.3 1.5 1.2 1.5 2.0 1.3 1.5 2.0 1.5 1.7 2.0<br />

18. AW-18 1.0 1.3 1.8 1.1 1.3 1.6 1.5 1.8 2.0 1.4 1.6 2.0 R 1.5 1.9<br />

19. AW-19 R R 1.2 R 1.3 1.8 1 1.2 2.0 1.1 1.6 2.0 1.3 1.6 2.0<br />

20. AW-20 R 1.3 1.8 1.1 1.3 1.2 1.0 1.2 1.4 1.0 1.2 1.5 1.2 1.5 1.7<br />

21. A 1.8 1.8 1.9 1.9 -<br />

22. CPD 2.2 2.1 2.1 2.2 -<br />

23. GF 1.8 1.9 2.0 2.0 -<br />

24. GRF - - - - 2.6<br />

25. FLC - - - - 2.8<br />

Note: Zone of inhibition interpretation is as follows<br />

1. Zone size < 1.0 cm- Resistent (R)<br />

2. Zone size 1.0 to 1.5 cm – Intermediate<br />

3. Zone size > 1.5 – Sensitive<br />

STD Antibiotic Sensitivity Assay Concentration 40 µg/ml<br />

A: Ampicillin GRF: Gresiofulvin<br />

CPD: Cefpodoxime FLC: Fluconazole<br />

GF: Gatifloxacin<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 62


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

2.9 Conclusion<br />

We have described a versatile synthesis of novel 2-chloro-4-(4-fluorophenyl)-<br />

6-isopropyl-5-(E)-substituted pyrimidines from triphenyl[2-chloro-{4-(4-flouro<br />

phenyl)-6-isopropyl-pyrimidin-5-ylmethyl}phosphonium]bromide with different<br />

aldehydes via Wittig reaction in the presence of sodium tripolyphosphate as a base in<br />

aqueous media. Inorganic base sodium tripolyphosphate has the further advantage of<br />

low cost, stability and low toxicity. All the synthesized compounds were evaluated<br />

for their antimicrobial activity. The investigation of antibacterial and antifungal<br />

screening data revealed that all the tested compounds AW-01 to AW-20 showed<br />

moderate to significant activity. For example, compounds AW-02, 12, 13 and 18<br />

showed comparatively good activities against all the bacterial strains and thus<br />

warrant further study.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 63


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

2.10 Experimental section<br />

Thin-layer chromatography was accomplished on 0.2-mm precoated plates of<br />

silica gel G60 F 254 (Merck). Visualization was made with UV light (254 and 365nm)<br />

or with an iodine vapor. IR spectra were recorded on a FTIR-8400 spectrophotometer<br />

using DRS prob. 1 H (300 MHz), 1 H (400 MHz), 13 C (100 MHz) and 13 C (75 MHz)<br />

NMR spectra were recorded on a Bruker AVANCE II spectrometer in CDCl 3 and<br />

DMSO. Chemical shifts are expressed in δ ppm downfield from TMS as an internal<br />

standard. Mass spectra were determined using direct inlet probe on a GCMS-QP 2010<br />

mass spectrometer (Shimadzu). Solvents were evaporated with a BUCHI rotary<br />

evaporator. Melting points were measured in open capillaries and are uncorrected.<br />

Synthesis of (2-chloro-4-(4-fluorophenyl)-6-isopropylpyrimidin-5-yl)<br />

methanol. (INT-01)<br />

To a solution of ASM-03e (0.003 mole) in toluene (100 mL) at 0 o C was<br />

added drop wise a 20% solution of diisobutylaluminium hydride (DIBAL) in toluene<br />

(85 mL). The reaction mixture was further stirred for 2-3 h. at 0 o C. The progress of<br />

reaction was monitored by thin layer chromatography. After completion, the reaction<br />

mixture was quenched with saturated ice cold hydrochloric acid. The toluene layer<br />

was washed with water and brine. The organic layer was separated, dried over<br />

anhydrous sodium sulfate and filtered. The filtrate was dried under vacuum. The solid<br />

product was purified by stirring in hexane or diisopropylether (DIPE) to give<br />

analytically pure product INT-01 with 85% yield.<br />

Synthesis of triphenyl[2-chloro-{4-(4-flourophenyl)-6-isopropylpyrimidin-5-ylmethyl}phosphonium]bromide.<br />

(INT-02)<br />

A solution of 2-chloro-4-(4-fluorophenyl)-6-isopropylpyrimidin-5-yl)<br />

methanol (INT-01, 16mmol) in MDC (50 mL) was cooled to 0-5 o C. Phosphorus<br />

tribromide (13mmol) was slowly added in to the reaction mixture at 0-5 o C and stirred<br />

for 2-3 h. The progress of reaction was monitored by thin layer chromatography.<br />

After completion, the reaction mixture was washed with 10% sodium bicarbonate<br />

solution and sodium thiosulphate solution. The organic layer was separated, dried<br />

over anhydrous sodium sulfate and filtered. The filtrate was evaporated to dryness<br />

under vacuo.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 64


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

The oily residue was dissolve in toluene (80 mL) and triphenyl phosphine<br />

(30mmol) was added. The reaction mixture was heated at 115 o C for 3-4 h. After<br />

completion of the reaction determined by TLC, the reaction mixture was cooled to<br />

room temperature. The solid separated was filtered, washed with toluene and dried to<br />

afford 90% yield.<br />

<br />

General synthetic procedure for the Wittig reaction of pyrimidine yilde<br />

and aldehyde using STTP as a base in aqueous media. (AW-01 to AW-20)<br />

A mixture of pyrimidine phosphonium bromide ylide (INT-02, 1 mmol),<br />

benzaldehyde (1.3 mmol), and Sodium tripolyphosphate (3 mmol) in water (20 mL)<br />

was refluxed at 60-70 o C for 2-5 h. The progress of reaction was monitored by thin<br />

layer chromatography. After completion, the reaction mixture was cooled to room<br />

temperature, diluted with water (50 mL) and extracted with MDC (2x 50mL). The<br />

organic layer was washed with water (2 x 50 mL), organic layer dried over sodium<br />

sulfate and evaporated to dryness under vacuo. The residue was crystallized from<br />

isopropyl alcohol to afford analytically pure products AW-01 to AW-20.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 65


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

Spectral data of the synthesized compounds<br />

Methyl 2-chloro-4-(4-fluorophenyl)-6-isopropylpyrimidine-5-carboxylate (ASM-<br />

03e). White solid; R f 0.83 (8:2 hexane-EtOAc); mp 130-132 ° C; IR (KBr): 3070, 2930,<br />

2850, 1730, 1650, 1583, 1470, 1335, 1064, 830 cm -1 MS (m/z): 309 (M + ); Anal. Calcd<br />

for C 15 H 14 ClFN 2 O 2 : C, 58.35; H, 4.57; N, 9.07; Found: C, 58.38; H, 4.47; N, 9.07.<br />

(2-Chloro-4-(4-fluorophenyl)-6-isopropylpyrimidin-5-yl)methanol (INT-01).<br />

White solid; R f 0.52 (8:2 hexane-EtOAc); mp 110-112 ° C; IR (KBr): 3459, 3327, 3193,<br />

2999, 1648, 1586, 1261, 1061, 832 cm -1 ; 1 H NMR (300 MHz, CDCl 3 ): δ 1.30-1.33 (d,<br />

6H, 2 x i prCH 3 ), 2.09 (s, 1H, OH), 3.67-3.69 (m, 1H, i prCH), 4.69 (s, 2H, CH 2 ), 7.28-<br />

7.34 (t, 2H, Ar-H), 7.88-7.92 (t, 2H, Ar-H); 13 C NMR (DEPT):(75 MHz, CDCl 3 ):<br />

21.40, 31.31, 56.47, 56.58, 114.99, 115.28, 131.85, 131.96; MS (m/z): 280 (M + );<br />

Anal. Calcd for C 14 H 14 ClFN 2 O: C, 59.90; H, 5.03; N, 9.98; Found: C, 59.93; H, 5.07;<br />

N, 9.97.<br />

Triphenyl[2-chloro-{4-(4-flourophenyl)-6-isopropyl-pyrimidin-5-ylmethyl}-<br />

phosphonium]bromide (INT-02). White solid; R f 0.16 (1;1 hexane-EtOAc); mp<br />

>320 o C ; IR (KBr): 3193, 3070, 3024, 2999, 2830, 1648, 1586, 1261, 1061, 830, 780,<br />

770, 700 cm -1 ; 1 H NMR (300 MHz, CDCl 3 ): δ 0.90 (s, 6H, 2 x i prCH 3 ), 2.99-3.03 (m,<br />

1H, i prCH), 5.67 (s, 2H, CH 2 ), 6.97-7.02 (t, 2H, Ar-H), 7.26-7.33 (m, 8H, Ar-H), 7.57<br />

(s, 6H, Ar-H), 7.75-7.80 (m, 3H, Ar-H); 13 C NMR (DEPT):(75 MHz, CDCl 3 ): 24.92,<br />

25.53, 33.42, 116.24, 116.53, 130.35, 130.52, 131.17, 131.28, 133.97, 134.10, 135.42,<br />

135.46; MS (m/z): 605 (M + ); Anal. Calcd for C 32 H 28 BrClFN 2 P: C, 63.43; H, 4.66; N,<br />

4.62; Found: C, 63.45; H, 4.67; N, 5.67.<br />

2-Choloro-4-(4-flurophenyl)-6-isopropyl-5-(E)-styrylpyrimidine (AW-01). White<br />

solid; R f 0.75 (8:2 hexane-EtOAc); mp 80-82 ° C; IR (KBr): 3087, 3070, 3040, 2930,<br />

2856, 1658, 1450, 1430, 1368, 830, 753, 700 cm -1 ; 1 H NMR (300 MHz, CDCl 3 ): δ<br />

1.30-1.33 (d, 6H, 2 x i prCH 3 ), 3.03-3.08 (m, 1H, i prCH), 6.75-6.81 (d, 1H,<br />

j=16.4Hz,ethylene-H), 7.04-7.23 (m, 3H, Ar-H & ethylene-H), 7.53-7.56 (d, 2H, Ar-<br />

H), 7.72-7.74 (t, 2H, Ar-H), 8.23-8.26 (d, 2H, Ar-H); MS (m/z): 353 (M + ); Anal.<br />

Calcd for C 21 H 18 ClFN 2 : C, 71.49; H, 5.14; N, 7.94; Found: C, 71.43; H, 5.17; N, 7.97.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 66


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

5-((E)-(4-nitrostyryl))-2-chloro-4-(4-fluorophenyl)-6-isopropylpyrimidine (AW-<br />

02). Yellow solid; R f 0.72 (8:2 hexane-EtOAc); mp 110-112 ° C; IR (KBr): 3077, 3065,<br />

3031, 2932, 2856, 1664, 1450, 1430, 1368, 830 cm -1 ; 1 H NMR (300 MHz, CDCl 3 ): δ<br />

1.34-1.36 (d, 6H, 2 x i prCH 3 ), 3.44-3.49 (m, 1H, i prCH), 6.55-6.61 (d, 1H, j=16.5Hz,<br />

ethylene-H), 7.08-7.17 (m, 3H, Ar-H & ethylene-H), 7.48-7.51 (d, 2H, Ar-H), 7.64-<br />

7.68 (t, 2H, Ar-H), 8.19-8.22 (d, 2H, Ar-H); 13 C NMR (DEPT):(75 MHz, CDCl 3 ):<br />

21.73, 32.38, 115.48, 115.77, 124.29, 126.16, 127.09, 132.00, 132.11, 135.01; MS<br />

(m/z): 398 (M + ); Anal. Calcd for C 21 H 17 ClFN 3 O 2 : C, 63.40; H, 4.31; N, 10.56; Found:<br />

C, 63.43; H, 4.37; N, 10.50.<br />

5-((E)-(4-chlorostyryl))-2-chloro-4-(4-fluorophenyl)-6-isopropylpyrimidine (AW-<br />

03). White solid; R f 0.65 (8:2 hexane-EtOAc); mp 56-58 ° C; IR (KBr): 3095, 3084,<br />

3035, 2938, 2850, 1668, 1434, 1434, 1373, 830 cm -1 ; 1 H NMR (300 MHz, CDCl 3 ): δ<br />

1.32-1.34 (d, 6H, 2 x i prCH 3 ), 3.45-3.50 (m, 1H, i prCH), 6.43-6.49 (d, 1H, j=16.5Hz,<br />

ethylene-H), 6.88-6.93 (d, 1H, j=16.5Hz, ethylene-H), 7.05 -7.11 (t, 2H, Ar-H), 7.26-<br />

7.38 (q, 4H, Ar-H), 7.64-7.69 (t, 2H, Ar-H); 13 C NMR(DEPT):(75 MHz, CDCl 3 ):<br />

21.47, 32.19, 115.33, 115.62, 122.00, 127.71, 129.09, 132.01, 132.12, 136.01;MS<br />

(m/z): 388 (M + ); Anal. Calcd for C 21 H 17 Cl 2 FN 2 : C, 65.13; H, 4.42; N, 7.23; Found: C,<br />

65.23; H, 4.37; N, 7.35.<br />

2-Choloro-4-(4-flurophenyl)-6-isopropyl-5-[(E)-2-(thiophene-2-yl)vinyl]-<br />

pyrimidine (AW-04). White solid; R f 0.79 (8:2 hexane-EtOAc); mp 114-116 ° C; IR<br />

(KBr): 3093, 3086, 3016, 2942, 2834, 1658, 1445, 1403, 1368, 830 cm -1 ; 1 H NMR<br />

(300 MHz, CDCl 3 ): δ 1.34-1.36 (d, 6H, 2 x i prCH 3 ), 3.52 (m, 1H, i prCH), 6.67-6.73<br />

(dd, 2H, j=17.4Hz), 6.98-7.02 (d, 2H, Thiophene-H), 7.08-7.14 (t, 2H, Ar-H), 7.27-<br />

7.26 (d, 1H, Thiophene-H), 7.69-7.74 (t, 2H, Ar-H); 13 C NMR (DEPT):(75 MHz,<br />

CDCl 3 ): 21.76, 32.14, 115.35, 115.63, 120.59, 125.77, 127.23, 127.88, 130.22,<br />

132.05, 132.16; MS (m/z): 359 (M + ); Anal. Calcd for C 19 H 17 ClFN 2 S: C, 63.59; H,<br />

4.49; N, 7.81; Found: C, 63.43; H, 4.37; N, 7.70.<br />

2-Choloro-4-(4-flurophenyl)-5-[(E)-2-(furan-2-yl)vinyl]-6-isopropylpyrimidine<br />

(AW-05). White solid; R f 0.82 (8:2 hexane-EtOAc); mp 119-121 ° C; IR (KBr): 3113,<br />

2972, 1730, 1683, 1070, 881, 796, 744 cm -1 ; 1 H NMR (300 MHz, CDCl 3 ): δ 1.34-1.36<br />

(d, 6H, 2 x i prCH 3 ), 3.44-3.49 (m, 1H, i prCH), 6.44-6.55 (d, 2H, Furan), 6.93-6.99<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 67


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

(d, 1H, j=16.2Hz, ethylene-H), 7.19-7.25 (d, 1H, j=16.2Hz, ethylene-H), 7.51-7.78 (t,<br />

3H, Ar-H & Furan), 8.19-8.22 (t, 2H, Ar-H), MS (m/z): 343 (M + ); Anal. Calcd for<br />

C 19 H 16 ClFN 2 O: C, 65.67; H, 4.70; N, 8.17; Found: C, 65.70; H, 4.77; N, 8.07.<br />

3-((E)-2(2-chloro-4-(4-flurophenyl)-6-isopropylpyrimidyl-5-yl)vinyl-1H-indole<br />

(AW-06). Yellow solid; R f 0.87 (8:2 hexane-EtOAc); mp 134-136 ° C;IR (KBr): 3063,<br />

3015, 2957, 2834, 1670, 1445, 1368, 830, 750 cm -1 ; MS (m/z): 392 (M + ); Anal. Calcd<br />

for C 23 H 19 ClFN 3 : C, 70.49; H, 4.89; N, 10.72; Found: C, 70.59; H, 4.92; N, 10.77.<br />

5-((E)-(2-nitrostyryl))-2-chloro-4-(4-flurophenyl)-6-isopropylpyrimidine(AW-07)<br />

Yellow solid; R f 0.69 (8:2 hexane-EtOAc); mp 96-98 ° C; IR (KBr): 3037, 3016, 2952,<br />

2822, 1657, 1453, 1403, 1368, 835, 753 cm -1 ; MS (m/z): 398 (M + ); Anal. Calcd for<br />

C 21 H 17 ClFN 3 O 2 : C, 63.40; H, 4.31; N, 10.56; Found: C, 63.39; H, 4.32; N, 10.57.<br />

5-((E)-(2-chlorostyryl))-2-chloro-4-(4-flurophenyl)-6-isopropylpyrimidine (AW-<br />

08). Yellow solid; R f 0.73 (8:2 hexane-EtOAc); mp 64-65 ° C; IR (KBr): 3067, 3013,<br />

2947, 2830, 1652, 1453, 1403, 1376, 838, 748 cm -1 ; MS (m/z): 388 (M + ); Anal. Calcd<br />

for C 21 H 17 Cl 2 FN 2 : C, 65.13; H, 4.42; N, 7.23; Found: C, 65.23; H, 4.37; N, 7.35.<br />

4-((E)-2-(2-chloro-4-(4-fluorophenyl)-6-isopropylpyrimidin-5-yl)vinyl)-2-<br />

methoxyphenol (AW-09). Yellow solid; R f 0.79 (8:2 hexane-EtOAc); mp 88-89 ° C;<br />

IR (KBr): 3442, 3093, 3086, 3016, 2942, 2834, 1658, 1445, 1403, 1368, 830, 783,<br />

708, cm -1 ; MS (m/z): 399 (M + ); Anal. Calcd for C 22 H 20 ClFN 2 O 2 : C, 66.25; H, 5.05; N,<br />

7.02; Found: C, 66.25; H, 5.06; N, 7.07.<br />

5-((E)-(3,4-dimethoxystyryl)-2-chloro-4-(4-flurophenyl)-6-isopropylpyrimidine<br />

(AW-10). White solid; R f 0.83 (8:2 hexane-EtOAc); mp 78-80 ° C; IR (KBr): 3028,<br />

2999, 2964, 2839, 1728, 1638, 1558, 1444, 1026, 842, 758, 702 cm -1 ; 1 H NMR (300<br />

MHz, CDCl 3 ): δ 1.25-1.34 (d, 6H, 2 x i prCH 3 ), 3.51-3.55 (m, 1H, i prCH), 3.90 (S, 6H,<br />

2 x OCH 3 ), 6.42-6.48 (d, 1H, j=16.5Hz, ethylene-H), 6.71-6.93 (m, 4H, Ar-H<br />

&ethylene-H), 7.06 -7.12 (t, 2H, Ar-H), 7.70 (s, 2H, Ar-H); 13 C NMR (DEPT):(75<br />

MHz, CDCl 3 ): 21.80, 32.03, 55.96, 56.01, 108.83, 111.22, 115.24, 115.52, 119.27,<br />

119.89, 132.05, 132.16, 136.96; MS (m/z): 413 (M+); Anal. Calcd for<br />

C 23 H 22 ClFN 2 O 2 : C, 66.91; H, 5.37; N, 6.78; Found: C, 66.93; H, 5.37; N, 6.75.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 68


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

4-((E)-2-(2-chloro-4-(4-fluorophenyl)-6-isopropylpyrimidin-5-yl)vinyl)-N,Ndimethylbenzenamine<br />

(AW-11). Yellow solid; R f 0.75 (8:2 hexane-EtOAc); mp 118-<br />

120 ° C; IR (KBr): 3092, 3028, 2966, 2823, 1660, 1428, 1368, 835, cm -1 ; MS (m/z):<br />

396 (M + ); Anal. Calcd for C 23 H 23 ClFN 3 : C, 69.78; H, 5.86; N, 8.96; Found: C, 69.75;<br />

H, 5.76; N, 8.77<br />

5-((E)-(4-fluorostyryl))-2-chloro-4-(4-fluorophenyl)-6-isopropylpyrimidine (AW-<br />

12). White solid; R f 0.73 (8:2 hexane-EtOAc); mp 54-56 ° C; IR (KBr): 3096, 3065,<br />

2952, 2869, 1675, 1468, 1442, 1353, 836, cm -1 ; 1 H NMR (400 MHz, CDCl 3 ): δ 1.15-<br />

1.26 (d, 6H, 2 x i prCH 3 ), 3.36-3.43 (m, 1H, i prCH), 6.35-6.39 (d, 1H, j=16.6Hz,<br />

ethylene-H), 6.73-6.77 (dd, 1H, j=16.6Hz, ethylene-H), 6.91-7.00 (m, 4H, Ar-H), 7.21<br />

-7.24 (m, 2H, Ar-H), 7.55-7.60 (m, 2H, Ar-H); 13 C NMR (100 MHz, CDCl 3 ): 21.72,<br />

32.17, 115.53, 115.54, 115.80, 116.01, 121.11, 121.13, 125.99, 126.39, 128.13,<br />

128.21, 128.49, 128.61, 132.04, 132.12,132.35, 132.39, 133.28, 133.31, 133.38,<br />

133.41, 136.10, 150.98, 159.22, 161.62, 162.30, 164.10, 164.79, 165.66, 165.86,<br />

177.22, 177.44; MS (m/z): 372 (M + ); Anal. Calcd for C 21 H 17 ClF 2 N 2 : C, 68.02; H,<br />

4.62; N, 7.55; Found: C, 68.05; H, 4.66; N, 7.77<br />

5-((E)-(3-nitrostyryl))-2-chloro-4-(4-fluorophenyl)-6-isopropylpyrimidine (AW-<br />

13). White solid; R f 0.72 (8:2 hexane-EtOAc); mp 63-65 ° C; IR (KBr): 3130, 3083,<br />

2932, 2856, 1652, 1428, 1426, 1375, 833, 780 cm -1 ; 1 H NMR (300 MHz, CDCl 3 ): δ<br />

1.34-1.36 (d, 6H, 2 x i prCH 3 ), 3.45-3.49 (m, 1H, i prCH), 6.53-6.59 (d, 1H, j=16.5Hz,<br />

ethylene-H), 7.08-7.15 (m, 3H, Ar-H & ethylene-H), 7.52 -7.70 (m, 4H, Ar-H), 8.14-<br />

8.22 (s d, 2H, Ar-H); 13 C NMR (DEPT):(75 MHz, CDCl 3 ): 21.71, 32.37, 115.46,<br />

115.75, 121.01, 123.08, 124.68, 129.95 131.97, 132.09, 132.29, 134.90; MS (m/z):<br />

398 (M+); Anal. Calcd for C 21 H 17 ClFN 3 O 2 : C, 63.40; H, 4.31; N, 10.56; Found: C,<br />

63.43; H, 4.37; N, 10.55<br />

5-((E)-(4-bromostyryl))-2-chloro-4-(4-fluorophenyl)-6-isopropylpyrimidine(AW-<br />

14). White solid; R f 0.75 (8:2 hexane-EtOAc); mp 96-98 ° C; IR (KBr): 3082, 3057,<br />

2933, 1643, 1449, 1403, 1368, 835 cm -1 ; 1 H NMR (400 MHz, CDCl 3 ): δ 1.23-1.25 (d,<br />

6H, 2 x i prCH 3 ), 3.35-3.40 (m, 1H, i prCH), 6.34-6.38 (d, 1H, j=16.6Hz, ethylene-H),<br />

6.82-6.86 (dd, 1H, j=16.6Hz, ethylene-H), 6.97-7.02 (t, 2H, Ar-H), 7.12-7.17 (d, 2H,<br />

Ar-H), 7.37-7.39 (d, 2H, Ar-H), 7.55-7.59 (m, 2H, Ar-H); 13 C NMR (100 MHz,<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 69


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

CDCl 3 ): 21.74, 32.20, 115.38, 115.60, 121.12, 122.58, 125.80, 126.20, 127.99,<br />

132.02, 132.05, 132.10, 133.19, 133.29, 133.32, 135.02, 136.08, 151.11, 159.34,<br />

162.33, 164.83, 165.66, 165.87, 177.15, 177.38; MS (m/z): 431 (M + ); Anal. Calcd for<br />

C 21 H 17 BrClF 2 N 2 : C, 58.42; H, 3.97; N, 6.49; Found: C, 58.55; H, 3.96; N, 6.47<br />

2-((E)-2-(2-chloro-4-(4-fluorophenyl)-6-isopropylpyrimidin-5-yl)vinyl)phenol<br />

(AW-15) White solid; R f 0.64 (8:2 hexane-EtOAc); mp 52-54 ° C; IR (KBr): 3452,<br />

3048, 2942, 1648, 1441, 1408, 1359, 835 ,785 cm -1 ; MS (m/z): 369 (M + ); Anal. Calcd<br />

for C 21 H 18 ClF 2 N 2 O: C, 68.38; H, 4.92; N, 7.60; Found: C, 68.35; H, 4.96; N, 7.57<br />

5-((E)-(4-methoxystyryl))-2-chloro-4-(4-fluorophenyl)-6-isopropylpyrimidine<br />

(AW-16). Yellow solid; R f 0.71 (8:2 hexane-EtOAc); mp 67-69 ° C; IR (KBr): 3052,<br />

3042, 2948, 1638, 1449, 1401, 1348, 835 ,782 cm -1 ; MS (m/z): 384 (M + ); Anal. Calcd<br />

for C 22 H 20 ClFN 2 O: C, 69.02; H, 5.27; N, 7.32; Found: C, 69.05; H, 5.26; N, 7.27<br />

5-((E)-(2,5-dimethoxystyryl)-2-chloro-4-(4-flurophenyl)-6-isopropylpyrimidine<br />

(AW-17). White solid; R f 0.81 (8:2 hexane-EtOAc); mp 78-80 ° C; IR (KBr): 3048,<br />

3046, 2939, 1641, 1438, 1412, 1378, 838, 754, 779 cm -1 ; MS (m/z): 414 (M+); Anal.<br />

Calcd for C 23 H 22 ClFN 2 O 2 : C, 66.91; H, 5.37; N, 6.78; Found: C, 66.93; H, 5.37; N,<br />

6.75.<br />

5-((E)-(3-bromostyryl))-2-chloro-4-(4-fluorophenyl)-6-isopropylpyrimidine (AW-<br />

18). White solid; R f 0.78 (8:2 hexane-EtOAc); mp 87-88 ° C; IR (KBr): 3043, 3051,<br />

2942, 1652, 1431, 1422, 1371, 831 ,786 cm -1 ; MS (m/z): 432 (M + ); Anal. Calcd for<br />

C 21 H 17 BrClF 2 N 2 : C, 58.42; H, 3.97; N, 6.49; Found: C, 58.55; H, 3.96; N, 6.47.<br />

5-((E)-(3-chlorostyryl))-2-chloro-4-(4-flurophenyl)-6-isopropylpyrimidine (AW-<br />

19). Yellow solid; R f 0.73 (8:2 hexane-EtOAc); mp 50-52 ° C; IR (KBr): 3052, 3061,<br />

2936, 1648, 1438, 1428, 1364, 838, 778 cm -1 ; MS (m/z): 373 (M + ); Anal. Calcd for<br />

C 21 H 17 Cl 2 FN 2 : C, 65.13; H, 4.42; N, 7.23; Found: C, 65.23; H, 4.37; N, 7.35.<br />

3-((E)-2-(2-chloro-4-(4-fluorophenyl)-6-isopropylpyrimidin-5-yl)vinyl)phenol<br />

(AW-20). White solid; R f 0.83 (8:2 hexane-EtOAc); mp 59-61 ° C; IR (KBr): 3468,<br />

3058, 2932, 1641, 1442, 1432, 1357, 832, 781 cm -1 ; MS (m/z): 369 (M + ); Anal. Calcd<br />

for C 21 H 18 ClF 2 N 2 O: C, 68.38; H, 4.92; N, 7.60; Found: C, 68.35; H, 4.96; N, 7.57.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 70


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

1 H NMR spectrum of compound AW-02<br />

F<br />

NO 2<br />

N<br />

Cl<br />

N<br />

Expanded 1 H NMR spectrum of compound AW-02<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 71


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

1 H NMR spectrum of compound AW-03<br />

F<br />

Cl<br />

N<br />

Cl<br />

N<br />

Expanded 1 H NMR spectrum of compound AW-03<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 72


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

1 H NMR spectrum of compound AW-05<br />

F<br />

N<br />

O<br />

Cl<br />

N<br />

Expanded 1 H NMR spectrum of compound AW-05<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 73


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

1 H NMR spectrum of compound AW-14<br />

F<br />

Br<br />

N<br />

Cl<br />

N<br />

Expanded 1 H NMR spectrum of compound AW-14<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 74


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

13 C NMR spectrum of compound AW-12<br />

F<br />

F<br />

N<br />

Cl<br />

N<br />

Expanded 13 C NMR spectrum of compound AW-12<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 75


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

MASS spectrum of compound AW-01<br />

F<br />

N<br />

Cl<br />

N<br />

m/z-352<br />

MASS spectrum of compound AW-06<br />

F<br />

NH<br />

N<br />

Cl<br />

N<br />

m/z-392<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 76


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

MASS spectrum of compound AW-09<br />

F<br />

O<br />

OH<br />

N<br />

Cl<br />

N<br />

m/z-398<br />

MASS spectrum of compound AW-20<br />

F<br />

OH<br />

N<br />

Cl<br />

N<br />

m/z-368<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 77


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

IR spectrum of compound AW-05<br />

90<br />

%T<br />

3113.21<br />

2972.40<br />

1730.21<br />

1683.91<br />

1635.69<br />

1070.53<br />

881.50<br />

75<br />

1604.83<br />

1558.54<br />

1383.01<br />

1321.28<br />

1261.49<br />

1159.26<br />

60<br />

45<br />

1508.38<br />

846.78<br />

418 57<br />

1014.59<br />

744.55<br />

796.63<br />

671.25<br />

30<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

1/cm<br />

IR spectrum of compound AW-10<br />

100<br />

%T<br />

80<br />

60<br />

40<br />

3028.34<br />

2999.41<br />

2964.69<br />

F<br />

2839.31<br />

1728.28<br />

1683.91<br />

1635.69<br />

1600.97<br />

1558.54<br />

1467.88<br />

1444.73<br />

1413.87<br />

1381.08<br />

1338.64<br />

1163.11<br />

1139.97<br />

1026.16<br />

976.01<br />

927.79<br />

842.92<br />

788.91<br />

765.77<br />

702.11<br />

567.09<br />

522.73<br />

480.29<br />

451.36<br />

428 21<br />

20<br />

N<br />

O<br />

O<br />

1246.06<br />

0<br />

Cl<br />

N<br />

1516.10<br />

1267.27<br />

-20<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

1/cm<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 78


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

2.11 References<br />

1. (a) Gmelin, R.; Hoppe-Seyler’s, Z.; Physiol. Chem., 1959, 316, 164. (b) Bell, E. A.; Foster,<br />

R. G.; Nature, 1962, 194, 91.<br />

2. Jansen, B. C. P.; Donath, W. F.; Chem. Weekblad., 1926, 23, 201.<br />

3. Tanaka, F.; Takeuchi, S.; Tanaka, N.; Yonehara, H.; Umezawa, H.; Sumiki, Y. J.; Antibiot.<br />

A, 1961, 14, 161.<br />

4. (a) Lin, Y.-L.; Huang, R.-L.; Chang, C.-M.; Kuo, Y.-H.; J. Nat. Prod., 1997, 60, 982; (b)<br />

Gerlinck, R. G. S.; Braekman, J. C.; Daloze, D.; Bruno, I.; Riccio, R.; Rogeau D.; Amade,<br />

P.; J. Nat. Prod., 1992, 55, 528.<br />

5. (a) Ohtani, I.; Moore, R. E.; Runnegar, M. T. C.; J. Am. Chem. Soc., 1992, 114, 7941; (b)<br />

Banker, R.; Teltsch, B.; Sukenik A.; Carmeli, S.; J. Nat. Prod., 2000, 63, 387.<br />

6. (a) Brugnatelli, G.; Giornale di fisica chimica, et storia Naturale (Pavia) decada seconda,<br />

1818, 1, 117; (b) Brugnatelli, G.; Ann. Chim. Phys., 1818, 8, 201.<br />

7. Frankland, E.; Kolbe, H.; Justus Liebigs Ann. Chem., 1848, 65, 269.<br />

8. Davidson, M.H.; Expert Opin Investig Drugs, 2002, 11, 125.<br />

9. Radi, M.; Maga, G.; Alongi, M.; Angeli, L.; Samuele, A.; Zanoli, S.; Bellucci, L.; Tafi, A.;<br />

Casaluce, G.; Giorgi, G.; Armand-Ugon, M.; Gonz´alez-Ortega, E.; Est´e, J. A.; Baltzinger,<br />

M.; Bec, G.; Dumas, P.; Ennifar E.; Botta, M.; J. Med. Chem., 2009, 52, 840.<br />

10. Koch, U.; Attenni, B.; Malancona, S.; Colarusso, S.; Conte, I.; DiFilippo, M.; Harper, S.;<br />

Pacini, B.; Giomini, C.; F.Thomas, S.; Incitti, I.; Tomei, L.; De Francesco, R.; Altamura, S.;<br />

Matassa ,V. G.; Narjes, J., Med. Chem., 2006, 49, 1693.<br />

11. Chu, X.-J.; DePinto, W.; Bartkovitz, D.; So, S.-S.; Vu, B. T.; Packman, K.; Lukacs, C.; Ding,<br />

Q.; Jiang, N.; Wang, K.; Goelzer, P.; Yin, X.; Smith, M. A.; Higgins, B. X.; Chen, Y.; Xiang,<br />

Q.; Moliterni, J.; Kaplan, G.; Graves, B.; Lovey, A.; Fotouhi, N.; J. Med. Chem., 2006, 49,<br />

6549.<br />

12. Giblin, G. M. P.; O’Shaughnessy, C. T.; Naylor, A.; Mitchell, W. L.; Eatherton, A. J.;<br />

Slingsby, B. P.; Rawlings, D. A.; Goldsmith, P.; Brown, A. J.; Haslam, C. P.; Clayton, N.<br />

M.; Wilson, A. W.; Chessell, I. P.; Wittington, A. R.; Green, R.; J. Med. Chem., 2007, 50,<br />

2597.<br />

13. Harris, P. A.; Boloor, A.; Cheung, M.; Kumar, R.; Crosby, R. M.; Davis-Ward, R. G.;.<br />

Epperly, A. H.; Hinkle, K.W.; Hunter, R. N.; Johnson, J. H.; Knick, V. B.; Laudeman, C. P. ;<br />

Luttrell, D. K.; Mook, R. A.; Nolte, R. T.; Rudolph, S. K.; Szewczyk, J. R.; Truesdale, A. T.;<br />

Veal, J. M.; Wangand, L.; Stafford, J. A.; J. Med. Chem., 2008, 51, 4632.<br />

14. (a) Chang, L. C. W.; Spanjersberg, R. F.; von FrijtagDrabbe, J. K.; unzel, T. K.; Mulder-<br />

Krieger.; van den Hout, G.; Beukers, M. W.; Brusseeand, J. A.; Ijzerman, P.; J. Med. Chem.,<br />

2004, 47, 6529; (b) Lanier, M. C.; Moorjani, M.; Luo, Z.; Chen, Y.; Lin, E.; Tellew, J. E.;<br />

Zhang, X.; Williams, J. P.; Gross, R. S.; Lechner, S. M.; Markison, S.; Joswig, T.; Kargo,<br />

W.; Piercey, J.; Santos, M.; Malany, S.; Zhao, M.; Petroski, R.; Crespo, M. I.; Diaz J.-L.;<br />

Saunders, J.; Wen, J.; Brien Z. O.; Jalali, K.; Madan, A.; Slee, D. H.; J. Med. Chem., 2009,<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 79


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

52, 709; (c) Cosimelli, B.; Greco, G.; Ehlardo, M.; Novellino, E.; Da Settimo, F.; Taliani, S.;<br />

La Motta, C.; Bellandi, M.; Tuccinardi, T.; Martinelli, A.; Ciampi, O.; Trincavelli M. L.;<br />

Martini, C.; J. Med. Chem., 2009, 51, 1764.<br />

15. Naik, T.A.; Chikhalia, K. H.; E-Journal of Chem., 2007, 4(1), 60.<br />

16. Mishra, A.; Singh, D.V.; Indian J. Hetero. Chem., 2004, 14, 43.<br />

17. Callery, P.; Gannett, P.; Cancer and Cancer Chemotherapy., Williams, L.; Wilkins, 2002,<br />

934.<br />

18. Safarjalani, O. N.; Zhou, X. J.; Ras, R. H.; Shi, J.; Schinazi, R. F.; Naguib, F. N.; Kouni, M.<br />

H.; Cancer Chemotherapy Pharmacology., 2005, 55, 541.<br />

19. Singh , P.; Kaur, J.; Paul, K.; Indian J. Chem., 2008, 47B, 291.<br />

20. Pedeboscq, S.; Gravier, D.; Casadebaig, F.; Hou, G.; Gissot, A.; Giorgi, F. D.; Ichas, F.;<br />

Cambar, J.; Pometan, J.; Eur. J. Med. Chem., 2010, 45, 2473.<br />

21. Fathalla, O. A.; Zeid, I. F.; Haiba, M. E.; Soliman, A. M.; Abd- Elmoez.; Serwy, W. S.;<br />

World J. Chem., 2009, 4 (2), 127.<br />

22. Belema, M.; Bunker, A.; Nguyen, V.; Beaulieu, F.; Ouellet, C.; Marinier, A.; Roy, S.;<br />

Yung, X.; Zhang Y, Martel, Zuci C.; PCT Int. Appl. WO 2003084, Through Chem. Abstr.;<br />

2003; 139; 337987x.<br />

23. Martel, Y., Zuci, C.; PCT Int. Appl. WO 2003084, Through Chem. Abstr.; 2003; 139;<br />

337987x.<br />

24. Padmashali, B.; Vaidya, V. P.; Vijaya Kumar, M. L.; Indian J. Hetero. Chem., 2002, 12, 89.<br />

25. Lee, H. W.; Kim, B. Y.; Euro. J. Med. Chem., 2005, 4, 662.<br />

26. Desenko, S. M.; Lipsum, V. V.; Gorbenko, N. I.; J. Pharm. Chem., 1995, 29, 265.<br />

27. Pfizer; US Patent; 3 511 836; 1970.<br />

28. Hara, H,.; Ichikawa, M.; Oku, H.; Shimazawa, M.; Araie, M.; Cardiovasc. Drug Rev.,<br />

2005, 23, 43.<br />

29. Meredith, P. A.; Scott, P.J.; Kelman, A.W.; Hughes, D. M.; Reid, J. L.; Am. J. Ther., 1995,<br />

2, 541.<br />

30. Honkanen, E.; Pipuri, A.; Kairisalo, P.; Nore, P.; Karppaness, H.; Paakari, I.; J. Med. Chem.,<br />

1983, 26, 143.<br />

31. Ganzevoort, W.; Rep, A.; Bonsel, G. J.; Vries, D. J.; Wolf, H;. Hypertension., 2004, 22,<br />

1235.<br />

32. Wong, W. M.; Ann. Pharmacotherapy., 1994, 28, 290.<br />

33. Rahaman, S. A.; RajendraPasad, Y.; Phani Kumar.; Bharath Kumar.; Saudi Pharmaceutical<br />

J., 2009, 17(3), 259.<br />

34. Agrawal, A.; Srivastava, K.; Puri, S. K.; Bio. Org, and Med. ChemLett., 2005, 15,5218.<br />

35. Jain, K. S.; Chitre, T.S.; Miniyar, P.B.; Kathiravan, M.K.; Bendre, V. S.; Veer, V.S.;<br />

Shahane, S. R .; Shishoo, C. J.; Current Science., 2006, 90, (6).<br />

36. Karpov, A. S.;. M¨uller, T. J. J.; Synthesis., 2003, 18, 2815.<br />

37. Kiselyov, A. S.; Tetrahedron Lett., 2005, 46, 1663.<br />

38. Movassaghi, M.; Hill, M. D.; J. Am. chem. soc.,2006, 128, 14254.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 80


Chapter 2<br />

Synthesis of substituted pyrimidines via Wittig<br />

39. Sasada, T.; Kobayashi, F.; Sakai, N.; Konakahara, T.; Org. Lett., 2009, 11, 2161.<br />

40. Barthakur, M. G.; Borthakur, M.; Devi, P.; Saikia, C. J.; Saikia, A.; Bora, U.;. Chetia A.;<br />

Boruah, R. C.; Synlett., 2007, 223.<br />

41. Zhichkin, P. ; Fairfax, D. J.; Eisenbein, S. A.; Synthesis., 2002, 720..<br />

42. Maryanoff, B. E.; Reitz, A. B.; Chem. Rev., 1989, 89, 863.<br />

43. Antonioletti, R.; Bonadies, F.; Ciammaichella, A.; Viglianti, A.; Tetrahedron., 2008, 64<br />

4644.<br />

44. Dambacher, J.; Zhao,W.; El-Batta, A.; Anness, R.; Jiang, C.; Bergdahl, M.; Tetrahedron<br />

Letters., 2005, 46, 4473.<br />

45. Ramirez, E.; Sánchez, M.; Rosa L.; Leon, M.; Quintero, L.; Sartillo-Piscil, F.; Tetrahedron<br />

Letters., 2010, 51, 2178.<br />

46. McNult, J.; Das, P.; Tetrahedron Letters., 2009, 50, 5737.<br />

47. Dong, D. J.; Li, H.-H.;Tian, S.-K.; J. Am. Chem. Soc., 2010, 132, 5018.<br />

48. Douglass F. Taber, Christopher G. Nelson, J. Org. Chem., 2006, 71, 8973-8974<br />

49. Orsini, F.; Sello, G.; Fumagalli, T.; Synlett., 2006, 1717.<br />

50. Liu,Y.-k.; Ma, C.; Jian, K.; Liu, T.-Y.; Chen, Y.-C.; Org. Lett., 2009, 11, 2848.<br />

51. Leung, P. S.-W.; Teng, Y.; Toy, P. H.; Org. Lett., 2010, 12, 4996.<br />

52. Batta, A. El.; Jiang, C.; Zhao, W.; Anness, R.; Cooksy, A. L.; Bergdahl, M.; J. Org. Chem.,<br />

2007, 72, 5244.<br />

53. Zhang, Z.; Qu, Y.; Wang, S.; Wang, J., Journal of Molecular Catalysis A: Chemical., 2010,<br />

323, 91.<br />

54. Fuxian, W.; Jichao W.; Fangfang,W.; Yanjiu, H.; 2008, 19(4), 41.<br />

55. Zhen-wang, Q.; Guang-you, Z.; Geng-xiu, Z.; Cheng-ping, L.; Xue-bo, Z.; Huagong, S.;<br />

2005, 34(2), 1.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 81


Chapter - 3<br />

Rapid Synthesis and Characterization of<br />

Novel Tri-substituted Pyrazoles/Isoxazoles<br />

Library Using Ketene Dithioacetals


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

3.1 Introduction<br />

The development of new methods for the synthesis of five member<br />

heterocyclic compound libraries, both in solution and on solid phase, is an everexpanding<br />

area in combinatorial chemistry. Specifically, those containing the<br />

pyrazole and isoxazole nucleus have been widely used as key building blocks for<br />

pharmaceutical agents. Its derivatives are endowed with high pharmacological<br />

properties, for example, hypoglycemic, analgesic, anti-inflammatory, antibacterial,<br />

anti-HIV, and anticancer activity, 1 as well as useful activities in conditions like<br />

schizophrenia, hypertension, and Alzheimer’s disease. 2 In addition, they also have<br />

agrochemical properties including herbicidal and soil fungicidal activity, thus they<br />

have been used as pesticides and insecticides. 3 Recently, pyrazoles containing aryl<br />

substituted emerged as p38 Kinase inhibitors, antiparasitic activities. 4<br />

Pyrazoles and isoxazoles are well known five member heterocyclic<br />

compounds and several procedures for its synthesis have been extensively studied.<br />

The pyrazole ring system consists of a doubly unsaturated five member ring<br />

containing two adjacent nitrogen atoms. Isoxazole ring system consist two hetero<br />

atoms oxygen at position 1 and nitrogen at position 2 (Figure-1).<br />

Figure-1<br />

Pyrazoles and isoxazoles bearing sulfone and carboxamide moieties<br />

demonstrated to have significant pharmacological applications. For examples,<br />

cyclooxygenase-2 (COX-2) selective inhibitors, celecoxib 5 , rofecoxib 6 and<br />

valdecoxib 7 are currently prescribed for the treatment of arthritis and inflammatory<br />

diseases. These COX-2 inhibitors exhibited anti-inflammatory activity with reduced<br />

gastrointestinal side effects. Oxacillin and its derivatives are useful compounds due to<br />

their narrow spectrum antibiotic properties 8 . Recently, pyrrolyl aryl sulfones have<br />

been reported by Silvestri et al. 9 and Artico et al. 10 as a new class of human<br />

immunodeficiency virus type 1 (HIV-1) RT inhibitors acting at the non-nucleoside<br />

binding site of this enzyme. Haruna et al. 11 have been synthesized the propargylic<br />

sulfones with various planar molecules and evaluated for their DNA binding<br />

properties and DNA cleavage activity.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 82


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

Moreover, the 1-(4-methylsulfonyl)benzene and 4-(4-methylsulfonyl)benzene<br />

substituted pyrazole compound containing a nitric oxide donating group at the 3-<br />

position of the pyrazole ring, respectively, have been synthesized and evaluated for its<br />

ability to inhibit COX isoenzymes in human whole blood. 12 Pyrazoles containing<br />

sulfone group at N position have been exhibited promising antimicrobial activity. 13<br />

Further more, amide group linked with isoxazole derivatives found to have combined<br />

α 2 -adrenoceptor antagonistic and serotonine reuptake inhibiting activities. 14 The<br />

Isoxazoles containing aryl and carboxamide were also shown to have potent in vivo<br />

antithrombotic efficacy. 15<br />

3.2 Biological activity associated with pyrazoles and isoxazoles<br />

As mentioned above, pyrazoles and isoxazoles nucleus have been widely used<br />

as key building blocks for pharmaceutical agents. Its derivatives are endowed with<br />

high pharmacological properties, for example, hypoglycemic, GABA A antagonist’s<br />

analgesic, anti-inflammatory, anti-HIV, and anticancer activity as well as useful<br />

activities in conditions like schizophrenia, hypertension, and Alzheimer’s disease.<br />

Thomas D. Penning et al. 16 has described a series of pyrazole and isoxazole<br />

analogs (Figure-2) as antagonists of the α v β 3 receptor. These compounds showed low<br />

to sub-nanomolar potency against α v β 3 , as well as good selectivity against α IIb β 3 . In<br />

HT29 cells, most analogs also demonstrated significant selectivity against α v β 6 .<br />

Several compounds showed good pharmacokinetic properties in rats, in addition to<br />

anti-angiogenic activity in a mouse corneal micro pocket model. Compounds were<br />

synthesized in a straightforward manner from readily available glutarate precursors.<br />

Figure-2<br />

Ebraheem Abdu Musad et al. 17 has synthesized pyrazoles and isoxazoles<br />

(Figure-3) were screened for antioxidant and anti-microbial activities. Among that<br />

some of compounds showed higher antioxidant activity at 10μg/ml and some<br />

compounds exhibited better anti-microbial activity at 100μg/ml compared with<br />

standard vitamin C and ciprofloxacin, respectively.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 83


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

N X<br />

N<br />

N<br />

Antioxidant activity<br />

N N<br />

H H<br />

R 1 =R 3 =H,<br />

R 2 =OH,N(CH 3 ) 2<br />

Antimicrobial activity<br />

R 3 R 1 R 3 R 1<br />

R 1 =R 3 =H,<br />

R 2 R R 2 2 =N(CH 3 ) 2 ,OCH<br />

X=O,NH<br />

3<br />

Figure-3<br />

Annamaria Lilienkampf et al. 18 has developed isoxazole-based anti-TB<br />

compounds by applying rational drug design approach (Figure-4). The biological<br />

activity and the structure-activity relationships (SAR) for a designed series of 5-<br />

phenyl-3-isoxazolecarboxylic acid ethyl ester derived anti-TB compounds were<br />

investigated. Several compounds were found to exhibit nanomolar activity against the<br />

replicating bacteria (R-TB) and low micromolar activity against the non replicating<br />

bacteria (NRP-TB). The series showed excellent selectivity toward Mtb, and in<br />

general, no cytotoxicity was observed in Vero cells (IC 50 >128 μM). Notably, selected<br />

compounds also retained their activity against isoniazid (INH), rifampin (RMP), and<br />

streptomycin (SM) resistant Mtb strains. Hence, benzyloxy, benzylamino, and<br />

phenoxy derivatives of5-phenyl-3-isoxazolecarboxylic acid ethyl esters represent a<br />

highly potent, selective, and versatile series of anti-TB compounds and as such<br />

present attractive lead compounds for further TB drug development.<br />

R 1<br />

R 5<br />

R 2<br />

R 3<br />

O<br />

O N<br />

O<br />

O<br />

R 4<br />

R 1 =H, CF 3 ,Cl,F,NO 2<br />

R 2 =OCF 3 ,CH 3 ,NH 2 ,OCH 3 , CON(CH 2 CH 2 ) 2 O, H,Cl, F,<br />

R 3 =H, CF 3 ,Cl,F,<br />

R 4 =R 5 =H,F<br />

Figure-4<br />

Recently, biological evaluation of novel potent HDAC3 and HDAC8<br />

isoxazole and pyrazole-based diazide probes (Figure-5) suitable for binding ensemble<br />

profiling with photo affinity labeling (BEProFL) experiments in cells is described.<br />

Both the isoxazole and pyrazole-based probes exhibit low nanomolar inhibitory<br />

activity against HDAC3 and HDAC8, respectively. The pyrazole-based one of the<br />

most active HDAC8 inhibitors reported in the literature with an IC 50 of 17 nM.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 84


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

Docking studies suggest that unlike the isoxazole-based ligands the pyrazolebased<br />

ligands are flexible enough to occupy the second binding site of HDAC8.<br />

Probes/inhibitors some compounds exerted the antiproliferative and neuroprotective<br />

activities at micromolar concentrations through inhibition of nuclear HDACs,<br />

indicating that they are cell permeable and the presence of an azide or a diazide group<br />

does not interfere with the neuroprotection properties, orenhance cellular cytotoxicity,<br />

or affect cell permeability. 19<br />

Figure-5<br />

Maria Barceló et al. 20 has described synthesis of binding affinities on D 2 , 5-<br />

HT 2A and 5-HT 2C receptors of 6-aminomethyl-6,7-dihydro-1H-indazol-4(5H)-ones<br />

and 6-aminomethyl-6,7-dihydro-3-methyl-benzo[d]isoxazol-4(5H)-ones, as<br />

conformationallly constrained butyrophenone analogues. One of the new compounds<br />

(Figure-6) showed good in vitro binding features, and a Meltzer’s ratio characteristic<br />

of an atypical antipsychotic profile.<br />

Figure-6<br />

Celecoxib and rofecoxib analogues (Figure-7), in which the respective<br />

SO 2 NH 2 and SO 2 Me hydrogen-bonding pharmacophores were replaced by dipolar<br />

azido bioisosteric substituents, were investigated. Molecular modeling (docking)<br />

studies showed that the azido substituent of these two analogues was inserted deep<br />

into the secondary pocket of the human COX-2 binding site where it undergoes<br />

electrostatic interaction with Arg513. The azido analogue of rofecoxib is the most<br />

potent and selective inhibitor of COX-2 (COX-1 IC 50 = 159.7 µM; COX-2 IC 50 = 0.196<br />

µM; COX-2 selectivity index = 812), exhibited good oral anti-inflammatory and<br />

analgesic activity.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 85


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

Figure-7<br />

Amgad G. Habeeb et al. 21<br />

also reported a 4,5-diphenyl-4-isoxazolines<br />

(Figure-8) possessing a variety of substituents (H, F, MeS, MeSO 2 ) at the para<br />

position of one of the phenyl rings were synthesized for evaluation as analgesic and<br />

selective cyclooxygenase-2 (COX-2) inhibitory anti-inflammatory (AI) agents.<br />

Although the 4,5-phenyl-4-isoxazolines (Figure-8), which do not have a C-3 Me<br />

substituent, exhibited potent analgesic and AI activities, those compounds evaluated<br />

were not selective inhibitors of COX-2. In contrast, 2,3-dimethyl-5-(4-<br />

methylsulfonylphenyl)-4-phenyl-4-isoxazoline exhibited excellent analgesic and AI<br />

activities, and it was a potent and selective COX-2 inhibitor (COX-1, IC 50 ) 258 μM;<br />

COX-2, IC 50 ) 0.004 μM).<br />

R 1<br />

R 2<br />

R 3<br />

N Me<br />

O<br />

R 1 =H,Me<br />

R 2 ,R 3 =H,F,SMe,SO 2 Me<br />

Figure-8<br />

A related compound (Figure-8) having a F substituent at the para position of<br />

the 4-phenyl ring was also a selective (SI =3162) but less potent (IC 50 =0.0316 μM)<br />

inhibitor of COX-2 than 2,3-dihydro-2,3-dimethyl-5-(4-(methylsulfonyl)phenyl)-4-<br />

phenyl isoxazole. A molecular modeling (docking study) for 4-(4-fluorophenyl)-2,3-<br />

dihydro-2,3-dimethyl-5-(4-(methylsulfonyl)phenyl)-4-phenylisoxazole showed that<br />

the S atom of the MeSO 2 substituent is positioned about 6.46 Å inside the entrance to<br />

the COX-2 secondary pocket (Val 523 ) and that a C-3 Me (2,3-dihydro-2,3-dimethyl-5-<br />

(4-(methylsulfonyl)phenyl)-4-phenylisoxazole,4-(4-fluorophenyl)-2,3-dihydro-2,3dimethyl-5-(4-(methylsulfonyl)phenyl)-4-phenylisoxazole)<br />

central isoxazoline ring<br />

substituent is crucial to selective inhibition of COX-2 for this class of compounds.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 86


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

Chih Y. Ho et al. 22 have repoted a series of (6,7-dimethoxy-2,4-<br />

dihydroindeno[1,2-c]pyrazol-3-yl)phenylamines (Figure-9) has been optimized to<br />

preserve both potent kinase inhibition activity against the angiogenesis target, the<br />

receptor tyrosine kinase of Platelet-Derived Growth Factor-BB (PDGF-BB), and to<br />

improve the broad tumor cell antiproliferative activity of these compounds. This<br />

series culminates in the discovery of (JNJ-10198409), a compound with anti-PDGFRα<br />

kinase activity (IC 50 = 0.0042 µM) and potent antiproliferative activity in six of<br />

eight human tumor cell lines (IC 50 = 0.033 µM).<br />

Figure-9<br />

Chih Y. Ho has developed antiangiogenic compounds with an additional<br />

antiproliferative activity capable of inhibiting tumor progression by controlling both<br />

the vascularization and proliferation of the tumor mass. Tumors may be regarded as a<br />

two-compartment system consisting of the vasculature supporting tumor growth<br />

composed of ‘normal’ homogeneous vascular endothelial cells, smooth muscle cells,<br />

and pericytes that are surrounded by colonies of neoplastic cancer cells. To find<br />

molecules that would affect both the vascular and transformed compartments, we<br />

identified several compounds with the potential to inhibit the PDGFR-β kinasemediated<br />

angiogenic effect and then assayed them for collateral antiproliferative<br />

activity against a panel of human tumor cell lines.<br />

Christian Peifer et al. 23 have been reported on the discovery of isoxazole<br />

(Figure-10) as a potent dual inhibitor of p38α (IC 50 = 0.45 μM) and CK1δ (IC 50 = 0.23<br />

μM). Because only a few effective small molecule inhibitors of CK1 have been<br />

described so far, we aimed to develop this structural class toward specific agents.<br />

Molecular modeling studies comparing p38α/CK1δ suggested an optimization<br />

strategy leading to design, synthesis, biological characterization, and SAR of highly<br />

potent compounds including possessing differentiated specificity. Selected<br />

compounds were profiled over 76 kinases and evaluation of their cellular efficacy<br />

showed 18 (CKP138) to be a highly potent and dual-specific inhibitor of CK1δ and<br />

p38α.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 87


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

Figure-10<br />

Small molecule inhibitors of various protein kinases are utilized extensively in<br />

research and drug development. The human kineme consists of more than 500 protein<br />

kinases, and kinase inhibitors typically bind in the highly conserved ATP pocket of<br />

these enzymes. 24 Thus the specificity of ATP competitive kinase inhibitors is of<br />

significant interest and represents a crucial factor for their use in, e.g., signal<br />

transduction research or therapeutic applications.<br />

A series of 4-aryl-5-(4-piperidyl)-3-isoxazolol GABA A antagonists have been<br />

synthesized and pharmacologically characterized. 25 The meta-phenyl-substituted<br />

compounds and the para-phenoxy-substituted compound (Figure 11) all display high<br />

affinities (K i = 10-70 nM) and antagonist potencies in the low nanomolar range (K i =<br />

9-10 nM). These potencies are significantly higher than those of previously reported<br />

4-PIOL antagonists and considerably higher than that of the standard GABA A<br />

antagonist SR 95531.<br />

Figure 11<br />

In contrast to the all osteric modulatory sites, the GABA binding site has very<br />

distinct and specific structural requirements for recognition and activation. Thus, very<br />

few different classes of structures have been reported. Within the series of compounds<br />

showing agonist activity at the GABA A receptor site are the selective GABA A<br />

agonists muscimol 26 and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol, 26-27 which<br />

have been used for the characterization of the GABA A receptors (Figure 11). 28<br />

Recently, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol has been shown to be<br />

functionally selective for a subpopulation of GABA A receptors and is currently in<br />

clinical trials as a therapeutic for the regulation of sleep.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 88


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

3.3 Synthetic methods for the pyrazole and isoxazole derivatives<br />

There are several methods reported in the literature for the preparation of<br />

pyrazoles and isoxazoles described as under.<br />

Pranab K. Mahata et al. 29 has synthesized 3-dimethoxymethyl-5-(methylthio)<br />

pyrazole/ isoxazole derivative (Figure-12) shown to be useful three carbon synthon<br />

for efficient regiospecific synthesis of a variety of five (pyrazole/isoxazole) with mask<br />

or unmask aldehyde functionality by cyclocondensation with bifunctional<br />

nucleophiles such as hydrazine and hydroxylamine respectively.<br />

Figure-12<br />

Sabine Kuettel et al. 30 has synthesized 4-(3-phenylpyrazole/isoxazol-5-<br />

yl)morpholine derivatives (Figure-13) by two synthetic routes, in which substituted<br />

acetophenones were reacted with carbon disulfide and methyl iodide in the presence<br />

of sodium hydride to give 4-phenoxyphenyl-2,2-bis(methylthio)vinylketones,<br />

followed by in situ cyclization of the resulting N,S-acetals with hydrazine<br />

hydrate/hydroxylamine.<br />

Figure-13<br />

Scott R. Tweedie et al. 31 has synthesized a pyrazole and isoxazole derivatives<br />

via palladium-catalyzed couplings of heteroaryl amines with aryl halides using<br />

sodium phenolate as the stoichiometric base (Figure-14).<br />

Figure-14<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 89


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

Kewei Wang et al. 32 has reported an efficient and divergent one-pot synthesis<br />

of fully substituted 1H-pyrazoles and isoxazole derivatives. Substituted 1H-pyrazoles<br />

were synthesized from 1-carbamoyl, 1-oximyl cyclopropanes via sequential ringopening,<br />

chlorovinylation, and intramolecular aza-cyclization under Vilsmeier<br />

conditions (POCl 3 /DMF). Isoxazoles were synthesized from the cyclopropyl oximes<br />

via ring-opening and intramolecular nucleophilic vinylic substitution (S N V) reactions<br />

in the presence of POCl 3 /CH 2 Cl 2 (Figure-15).<br />

Figure-15<br />

Ebraheem Abdu Musad et al. 33 has prepared a new 3,5-(substituted) pyrazoles<br />

and isoxazoles by reaction of (N’¹E , N’³E)- N’¹, N’³-bis(3,4,5-substitutedbenzylidene)malonohydrazide<br />

with hydrazine hydrate and hydroxylamine<br />

hydrochloride respectively under solvothermal conditions involving an ecofriendly<br />

method without any environmental pollution (Figure-16).<br />

Figure-16<br />

Ch brajakishor singh et al. 34 have been synthesized a steroidal pyrazole and<br />

isoxazole derivatives form 2-ethoxymethelene-4-androsten-3-one and 2-<br />

bis(methylthio)methelene-4-androsten-3-one (Figure-17).<br />

Figure-17<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 90


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

Alex F. C. Flores et al. 35 have been synthesized a new series of hydroxyl<br />

pyrazoles and 2-methyl-3-isoxazolones from the cyclocondensation reaction of<br />

trichloromethyl-substituted 1,3-dielectrophiles with dry hydrazine and N-methyl<br />

hydroxylamine respectively (Figure-18).<br />

Figure-18<br />

Sarvesh Kumar et al. 36 has synthesized pyrazole and isoxazole derivatives via<br />

hetero annulations of 10,11-Dihydro-11-[bis(methylthio)methylene]dibenzoxepin-10-<br />

one (α-oxoketene dithioacetal) (Figure-19).<br />

Figure-19<br />

Valentina Molteni et al. 37 have been developed an extremely simple one pot<br />

reaction for transforming diketones into the corresponding pyrazoles and isoxazoles<br />

promoted by microwave irradiation (Figure-20).<br />

O<br />

O<br />

O<br />

H 3 CO OCH<br />

R-NHNH 3<br />

2<br />

NH 2 OH<br />

n N<br />

n n N<br />

N MW H 2 O<br />

N<br />

MW<br />

O<br />

O<br />

R<br />

n= 0, 1, 2<br />

Figure-20<br />

Thomas Kurz et al. 38 has synthesized novel fluorinated ketene N,S-acetals<br />

were readily prepared by the reaction of fluorosubstituted cyanoacetamide derivatives<br />

with arylisothiocyanate in the presence of potassium hydroxide, followed by the<br />

alkylation of the produced salts with methyl iodide. The reaction of fluorinated ketene<br />

N,S-acetals with hydrazine afforded different fluorosubstituted pyrazole (Figure-21).<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 91


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

Figure-21<br />

Galal H. Elgemeie et al. 39 have been synthesized a variety of novel α-<br />

cyanoketene S,S-acetals, readily prepared by the reaction of cyanoacetanilides or<br />

cyanothioacetamide with carbon disulfide, followed by alkylation, react smoothly<br />

with nucleophile to afford variously substituted methylthio derivatives of pyrazole<br />

(Figure-22).<br />

MeS<br />

SMe<br />

CN<br />

RNHNH 2<br />

H 2 N<br />

S<br />

EtOH, PiP, heat<br />

NH 2<br />

H 2 N<br />

N<br />

N<br />

R<br />

R= H, Ph<br />

Figure-22<br />

Jesse P. Waldo et al. 40 have been synthesized of isoxazoles (Figure-23) via<br />

electrophilic cyclization under mild reaction conditions by the reaction of 2-alkyn-1-<br />

one O-methyl oximes with ICl, I 2 , Br 2 , or PhSeBr.<br />

O<br />

SMe<br />

Figure-23<br />

David J. Burkhart et al. 41 have been synthesized ethyl 4-acetyl-5-methyl-3-<br />

isoxazoyl carboxylate (Figure-24) was smoothly lithiated at the 5-methyl position.<br />

The anion was quenched with a variety of electrophiles such as alkyl halides,<br />

aldehyde, TMSCl and Me 3 SnCl in good to excellent yields.<br />

Figure-24<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 92


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

V. P. Kislyi et al. 42 were prepared 4-amino-5-benzoyl (acetyl) isoxazole-3-<br />

carboxamides (Figure 25) by cyclization of α-hydroxyimino nitriles O-alkylated with<br />

bromoacetophenones (bromoacetone). The purity of the target 4-aminoisoxazoles can<br />

be substantially increased by treating O-alkylated oximes with LiClO 4 before<br />

cyclization.<br />

Figure 25<br />

Wenli Ma et al. 43 have been developed an efficient three-component, two-step<br />

“catch and release” solid-phase synthesis of 3,4,5-trisubstituted pyrazoles and<br />

isoxazoles (Figure-26). The first step involves a base-promoted condensation of a 2-<br />

sulfonyl- or a 2-carbonyl-acetonitrile derivative (1 or 7) with an isothiocyanate 2 and<br />

in situ immobilization of the resulting thiolate anion on Merrifield resin. Reaction of<br />

the resin-bound sulfonyl intermediate 4 with hydrazine or hydroxylamine, followed<br />

by release from the resin and intramolecular cyclization, affords 3,5-diamino-4-<br />

(arylsulfonyl)-1H-pyrazoles 5 or isoxazoles 6, respectively. Reaction of the resinbound<br />

carbonyl intermediate 9 with hydrazine, on the other hand, leads to 3-<br />

(arylamino)-5-aryl-1H-pyrazole-4-carbonitriles 10.<br />

Figure-26<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 93


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

3.4 Some pharmaceutical molecules related to pyrazoles and<br />

isoxazoles<br />

Pyrazole and isoxazole nucleus have been widely used as key building blocks<br />

for pharmaceutical agents. Its derivatives are endowed with high pharmacological<br />

properties, for example, hypoglycemic, analgesic, anti-inflammatory, antibacterial,<br />

anti-HIV, and anticancer activity, 3 as well as useful activities in conditions like<br />

schizophrenia, hypertension, and Alzheimer’s disease. 4<br />

N<br />

N<br />

CF 3<br />

H 3 CO 2 S<br />

N O<br />

HO NH 2<br />

SO 2 NH 2<br />

O N<br />

Celocoxib<br />

O<br />

Rofecoxib<br />

O<br />

Muscimol<br />

Agonist of GABA A<br />

receptor<br />

Cl<br />

Cl<br />

N<br />

Cl<br />

N<br />

O<br />

HN N<br />

Rimonabant<br />

anoretic antiobesity drug<br />

N<br />

N<br />

H<br />

Fomepizole<br />

inhibitor of alcohole dehydrogenase<br />

H 2 NO 2 S<br />

O<br />

R R''<br />

NH<br />

O N<br />

R'<br />

HO<br />

N O<br />

O<br />

NH 2<br />

OH<br />

Valdecoxib<br />

Oxacillin<br />

Cloxacillin<br />

Dicloxacillin<br />

Flucloxacillin<br />

Ibotenic acid<br />

Nurotoxin<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 94


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

3.5 Current research work<br />

α-Oxoketene dithioacetals especially the dimethylthioacetals have recently<br />

received considerable attention due to their synthetic importance for the construction<br />

of a variety of alicyclic, aromatic and heterocyclic compounds. 44,45 Ketene<br />

dithioacetals, in the presence of various regents, undergo different types of reactions<br />

to yield other heterocyclic compounds, e.g., isoxazole, pyrazole, thiophenes,<br />

pyrimidines, pyridines, etc. Consequently we were interested in surveying the<br />

synthetic utility of ketene dithioacetals.<br />

Recently, we have reported solution-phase library of pyrazoles and isoxazoles<br />

functionalized with methyl, sulfone and carboxamide moieties in two steps with<br />

excellent yield and chemical purity for medicinally interesting molecules. Water was<br />

emerged as an efficient and green solvent in the condensation reaction of various<br />

ketene dithioacetals with hydrazine hydrate or hydroxyl amine hydrochloride. 46<br />

Figure-27<br />

In an extension to this work, we describe here a novel synthesis of solvent free<br />

library of trisubstituted pyrazoles (B) and isoxazoles (C) (Figure-27) by the reaction<br />

of ketene dithioacetals with hydrazine hydrate and hydroxylamine hydrochloride<br />

under microwave irradiations Thus, it has been found that reaction of substituted<br />

acetoacetanilide derivatives with carbon disulfide in the presence of potassium<br />

carbonate followed by the alkylation with methyl iodide gives the novel ketene<br />

dithioacetals (A) (Figure 27), the structures of which have been established on the<br />

basis of their elemental analysis and spectral data.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 95


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

3.6 Results and discussion<br />

Scheme: Synthesis of novel trisubstitited pyrazoles and isoxazoles from ketene<br />

dithioacetals<br />

Scheme-1<br />

Scheme-2<br />

R<br />

N<br />

H<br />

O<br />

O<br />

1) CS 2 /K 2 CO 3 /DMF<br />

2) CH 3 I<br />

R<br />

N<br />

H<br />

O<br />

S<br />

O<br />

S<br />

3a-o<br />

4a-o<br />

Scheme-3<br />

Where R=CH 3 , OCH 3 , F, NO 2 , Cl<br />

Various substituted 3-cyclopropyl-3-oxo-N-arylpropanamide (3a-o) were<br />

prepared by reacting substituted amines (1a-h) and methyl 3-cyclopropyl-3-<br />

oxopropanoate (2) in toluene with a catalytic amount of NaOH or KOH (Scheme 1).<br />

The reaction mixture was refluxed for 15-20 h. Fifteen different acetoacetanilide were<br />

synthesized bearing various electron donating and electron withdrawing groups such<br />

as 2,3-diCH 3 ; 3,4-diCH 3 ; 4-CH 3 ; H; 2,5-diCH 3 ; 2,4-diCH 3 ; 3-Cl-4-F; 4-F; 4-Cl; 2-Cl;<br />

2-F; 4-OCH3; 2,5-diCl and 3-NO 2 on the phenyl ring. The reaction of substituted<br />

acetoacetanilide 3a-o derivatives with carbon disulfide in the presence of potassium<br />

carbonate followed by the alkylation with methyl iodide (Scheme 2) gave the novel<br />

ketene dithioacetals 4a-o. Further treatment of 4a-o with hydrazine hydrate or<br />

hydroxyl amine hydrochloride in the presence of potassium hydroxide (Scheme-3) to<br />

furnish pyrazoles 5a-o and isoxazoles 6a-o in excellent yield. As a part of ‘green<br />

chemistry’ approaches, we have done all reaction in solvent free reaction condition and<br />

under microwave irradiation. Comparative study of reaction time and yield in<br />

conventional and microwave irradiation methods are summarized in Table-1.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 96


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

Table-1: 3-cyclopropyl, 5-methylthio, 4-carboxamide substituted pyrazoles and<br />

isoxazoles.<br />

Reaction time<br />

Entry R Conventional<br />

(hrs)<br />

Yield<br />

(%)<br />

MW<br />

(min.)<br />

Yield<br />

(%)<br />

5a 4-CH 3 Ph 2.0 85 13.0 88<br />

5b 4-ClPh 1.5 88 12.5 90<br />

5c 4-FPh 1.5 87 10.0 92<br />

5d 4-OCH 3 Ph 2.0 83 12.0 90<br />

5e 3,4-diClPh 2.0 90 13.0 95<br />

5f 3,Cl,4-FPh 1.5 85 12.5 88<br />

5g 2,3-diCH 3 Ph 2.0 87 14.0 90<br />

5h 4-NO 2 Ph 2.5 82 17.0 95<br />

5i 2-OCH 3 Ph 1.5 85 14.5 97<br />

5j 2-CH 3 Ph 2.0 83 13.0 93<br />

5k 4-CH 2 CH 3 Ph 2.5 80 12.5 91<br />

5l 5,Cl,2-OCH 3 Ph 2.0 82 13.5 95<br />

5m 2,5-diClPh 1.0 87 12.0 90<br />

5n 2,5-diCH 3 Ph 2.0 80 13.0 88<br />

5o 3,4-diFPh 2.5 81 14.0 87<br />

6a 4-CH 3 Ph 2.5 79 12.5 85<br />

6b 4-ClPh 2.0 83 15.0 93<br />

6c 4-FPh 3.0 82 14.5 90<br />

6d 4-OCH 3 Ph 1.5 87 13.0 92<br />

6e 3,4-diClPh 2.0 85 14.0 91<br />

6f 3,Cl,4-FPh 2.5 82 13.0 87<br />

6g 2,3-diCH 3 Ph 3.0 81 13.5 89<br />

6h 4-NO 2 Ph 2.5 90 14.0 95<br />

6i 2-OCH 3 Ph 3.0 89 15.0 94<br />

6j 2-CH 3 Ph 2.5 87 17.5 92<br />

6k 4-CH 2 CH 3 Ph 3.0 85 15.0 90<br />

6l 5,Cl,2-OCH 3 Ph 1.5 80 12.5 84<br />

6m 2,5-diClPh 1.0 88 13.0 96<br />

6n 2,5-diCH 3 Ph 2.5 87 15.5 94<br />

6o 3,4-diFPh 3.0 85 14.0 92<br />

The structures of 4a-o were established on the basis of their elemental analysis<br />

and spectral data (MS, IR, and 1 H NMR). The analytical data for 4b revealed a<br />

molecular formula C 15 H 16 ClNO 2 S 2 (m/z 342). The 1 H NMR spectrum revealed a two<br />

multiplet at δ = 1.02-1.06 and 1.21-1.24 ppm assigned two –CH 2 groups in<br />

cyclopropane ring, a multiplet at δ = 2.37-2.43 ppm assigned to the –CH protons,<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 97


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

a singlet at δ = 2.47 ppm assigned to (2 × SCH 3 ) , a multiplet at δ = 7.26–7.59 ppm<br />

assigned to the aromatic protons, and one broad singlet at δ = 8.69 ppm assigned to -<br />

CONH groups.<br />

The structures of 5a-o were established on the basis of their elemental analysis<br />

and spectral data (MS, IR, 1 H NMR and 13 C NMR).Structure 5a was supported by its<br />

mass (m/z 287), which agrees with its molecular formula C 15 H 17 N 3 OS; its 1 H NMR<br />

spectrum had signals at δ = 0.81-0.82 and 0.96-0.99 (m, 2x CH 2 ) in cyclopropane<br />

ring, a multiplet at δ = 2.24 ppm assigned to the cyclopropyl-CH protons, a singlet at<br />

δ=2.40 assigned to -CH 3 protons, a singlet at δ=2.48 ppm assigned to (SCH 3 ), a<br />

multiplet signal at δ = 7.09-7.53 ppm related to the aromatic protons, 9.36 (broad, -<br />

CONH) and 12.84 (broad, pyrazole NH).<br />

The structures of 6a-o were established on the basis of their elemental analysis<br />

and spectral data (MS, IR, 1 H NMR and 13 C NMR).The analytical data for 6b<br />

revealed a molecular formula C 15 H 16 ClNO 2 S 2 (m/z 342). The 1 H NMR spectrum<br />

revealed a two multiplets at δ = 1.14-1.06 and 1.21-1.16 ppm assigned two –CH 2<br />

groups in cyclopropane ring, a multiplet at δ = 2.16-2.20 ppm assigned to the –CH<br />

protons, a singlet at δ = 2.68 ppm assigned to (SCH 3 ) , a multiplet at δ = 7.26–7.56<br />

ppm assigned to the aromatic protons, and one broad singlet at δ = 8.19 ppm assigned<br />

to -CONH groups.<br />

The proposed mechanism for the formation of 5a-o and isoxazoles 6a-o from<br />

the corresponding 3-cyclopropyl-3-oxo-N-arylpropanamide (3a-o) is shown in Figure<br />

28 & 29. In the ketene dithioacetal system the carbonyl carbon and β-carbon atoms<br />

regarded as hard and soft electrophilic centers, since the carbonyl carbon is adjacent<br />

to the hard-base oxygen while the β-carbon is flanked by the soft-base methylthio<br />

groups. Thus, the nucleophile hydrazine hydrate or hydroxyl amine hydrochloride<br />

may attack on β-carbon of systems and formed heterocyclic product by removal of<br />

methylthio and group as good leaving group and water molecule.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 98


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

Mechanism<br />

Figure 28: Proposed mechanism for the formation of pyrazole<br />

Figure 29: Proposed mechanism for the formation of isoxazole<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 99


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

3.7 Conclusion<br />

In summary, we have synthesized a library of pyrazoles and isoxazoles<br />

functionalized with cyclopropyl, thiomethyl and carboxamide moieties in single steps<br />

with excellent yield under microwave irradiation. As a part of ‘green chemistry’<br />

approach condensation reaction of various ketene dithioacetals with hydrazine hydrate<br />

or hydroxyl amine hydrochloride in solvent free condition under microwave<br />

irradiation. The present procedure is significant over the existing methods to develop<br />

this class of molecules with excellent yield, purity and simple isolation of products.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 100


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

3.8 Experimental section<br />

Thin-layer chromatography was accomplished on 0.2-mm precoated plates of<br />

silica gel G60 F 254 (Merck). Visualization was made with UV light (254 and 365nm)<br />

or with an iodine vapor. IR spectra were recorded on a FTIR-8400 spectrophotometer<br />

using DRS prob. 1 H (300 MHz), 1 H (400 MHz), 13 C (75 MHz) and 13 C (100 MHz)<br />

NMR spectra were recorded on a Bruker AVANCE II spectrometer in CDCl 3 and<br />

DMSO. Chemical shifts are expressed in δ ppm downfield from TMS as an internal<br />

standard. Mass spectra were determined using direct inlet probe on a GCMS-QP 2010<br />

mass spectrometer (Shimadzu). Solvents were evaporated with a BUCHI rotary<br />

evaporator. Melting points were measured in open capillaries and are uncorrected.<br />

General synthesis of 3-cyclopropyl-3-oxo-N-arylpropanamide (3a-o).<br />

A mixture containing the primary amine (1a-h, 10 mmol), methyl 3-<br />

cyclopropyl-3-oxopropanoate (2, 10 mmol), and catalytic amount of sodium or<br />

potassium hydroxide (10 %) in toluene (50 mL) was reflux at 110 o C for the<br />

approximately 12-15 h. The reaction was monitored by TLC. After completion of<br />

reaction, the solvent was removed under vaccuo and the solid or oil was crystallized<br />

from methanol which afforded pure products.<br />

General synthesis of ketene dithioacetals (4a-o).<br />

A 100mL conical flask equipped with magnetic stirrer and septum was charged<br />

with a solution of 3-cyclopropyl-3-oxo-N-arylpropanamide (3a-o, 10 mmol) in DMF<br />

(10 mL). Dried K 2 CO 3 (20 mmol) was added and the mixture was stirred for 2 h at<br />

room temperature. CS 2 (10 mmol) was added and the mixture was stirred for an<br />

additional 2 h at room temperature. Methyl iodide (20 mmol) was added at 0-5 o C and<br />

the mixture was stirred for 4 h at room temperature. The reaction was monitored by<br />

TLC. After completion, the mixture poured into water (40 mL). The precipitated<br />

crude product was purified by filtration followed by crystallization from EtOH. When<br />

the product was oil, the organic phase was extracted with Et 2 O (3 × 10 mL). The<br />

combined organic extracts were washed with H 2 O (2 × 10 mL), dried (MgSO 4 ), and<br />

concentrated in vaccuo to afford ketene dithioacetals directly used for the next step.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 101


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

General procedure for the synthesis of trisubstituted pyrazoles5a-o.<br />

‣ Conventional method:<br />

A 25mL conical flask equipped with magnetic stirrer and septum was charged<br />

hydrazine hydrate (15 mmol) and various ketene dithioacetals (3a-o, 10 mmol) and<br />

heated up to 75-85 o C for appropriate times (Table-1). After completion of the<br />

reaction, the reaction mixture was allowed to come to room temperature and add cold<br />

water (50 mL). The separated suspension was filtered, washed with water, dried and<br />

crystallized from methanol to afford analytically pure products with 80-90% yield.<br />

‣ Microwave assisted method:<br />

A one neck flat bottom flask charged with the hydrazine hydrate (15 mmol),<br />

and various ketene dithioacetals 3a-o (10 mmol), was heated at 90 o C under<br />

microwave irradiation for appropriate time (Table-1). After completion of the<br />

reaction, the reaction mixture was allowed to attain room temperature and added cold<br />

water (50 mL). The suspension was filtered, washed with water, dried and crystallized<br />

from methanol to afford analytically pure products with 85-95% yield.<br />

General procedure for the synthesis of trisubstituted isoxazoles6a-o.<br />

‣ Conventional method:<br />

A 25mL conical flask equipped with magnetic stirrer and septum was charged<br />

with hydroxyl amine hydrochloride (15 mmol), potassium hydroxide (15 mmol) and<br />

various ketene dithioacetals (3a-o, 10mmol) and heated up to 75-85 o C for appropriate<br />

times (Table-1). After completion of the reaction, the reaction mixtures were cooled<br />

to room temperature and add cold water (50 mL). The separated solid was filtered,<br />

washed with water, dried and crystallized from methanol to afford analytically pure<br />

products with 80-90% yield.<br />

‣ Microwave assisted method:<br />

A one neck flat bottom flask charged with hydroxyl amine hydrochloride (15<br />

mmol), potassium hydroxide (15 mmol) and various ketene dithioacetals 3a-o (10<br />

mmol) and reaction mixture heated at 90 o C under microwave irradiation for<br />

appropriate time (Table-1). After completion of the reaction, the reaction mixture was<br />

allowed to come to room temperature and add cold water (50 mL). The separated<br />

solid was filtered, washed with water, dried and crystallized from methanol to afford<br />

analytically pure products with 85-95% yield.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 102


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

Spectral data of the synthesized compounds<br />

3-Cyclopropyl-N-(4-fluorophenyl)-3-oxopropanamide 3c.White solid; R f 0.42 (8:2<br />

hexane-EtOAc); IR (KBr): 3364, 2927, 1674, 1533, 1462, 1281, 1112, 873 cm -1 ; 1 H<br />

NMR (300 MHz, CDCl 3 ): δ 1.07-1.13 (q, 2H, CH 2 ), 1.14-1.20 (q, 2H, CH 2 ), 2.00-<br />

2.06 (m, 1H, CH), 3.71 (s, 2H, CH 2 ), 6.97-7.03 (m, 2H, Ar-H), 7.48-7.53 (m, 2H, Ar-<br />

H), 9.43 (s, 1H, NH); MS (m/z): 221 (M + ); Anal. Calcd for C 12 H 12 FNO 2 : C, 65.15; H,<br />

5.47; N, 6.33; Found: C, 65.17; H, 5.45; N, 6.34.<br />

N-(4-chlorophenyl)-2-(cyclopropylcarbonyl)-3,3-bis(methylsulfanyl)prop-2-<br />

enamide 4b. Yellow solid; R f 0.48 (8:2 hexane-EtOAc); IR (KBr): 3033, 2927, 1674,<br />

1533, 1462, 1281, 1112, 873 cm -1 ; 1 H NMR (400 MHz, CDCl 3 ): δ 1.02-1.06 (m, 2H,<br />

CH 2 ), 1.21-1.24 (m, 2H, CH 2 ), 2.37-2.43 (m, 1H, CH), 2.47 (s, 6H, 2xSCH 3 ), 7.26-<br />

7.29 (d, 2H, j=9.6Hz, Ar-H), 7.53-7.59 (d, 2H, j=8.7Hz, Ar-H), 8.69 (s, 1H, NH); MS<br />

(m/z): 342 (M + ); Anal. Calcd for C 15 H 16 ClNO 2 S 2 : C, 52.70; H, 4.72; N, 4.10; Found:<br />

C, 52.72; H, 4.75; N, 4.12.<br />

2-(Cyclopropylcarbonyl)-N-(4-methoxyphenyl)-3,3-bis(methylsulfanyl)prop-2-<br />

enamide 4d. Yellow solid; R f 0.42 (9:1 Chloroform: Methanol); IR (KBr): 3364,<br />

2927, 1674, 1533, 1462, 1281, 1112, 873 cm -1 ; 1 H NMR (400 MHz, CDCl 3 ): δ 1.02-<br />

1.04 (m, 2H, CH 2 ), 1.22 (m, 2H, CH 2 ), 2.39-2.42 (m, 1H, CH), 2.47 (s, 6H, 2x<br />

SCH 3 ), 3.84 (s, 3H, OCH 3 ), 6.85-6.88 (d, 2H, j=8.7Hz,Ar-H), 7.48-7.51 (d, 2H,<br />

j=8.7Hz,Ar-H), 8.35 (s, 1H, NH); MS (m/z): 337 (M + ); Anal. Calcd for C 16 H 19 NO 3 S 2 :<br />

C, 56.95; H, 5.68; N, 4.15; Found: C, 56.92; H, 5.65; N, 4.12.<br />

3-Cyclopropyl-5-(methylthio)-N-p-tolyl-1H-pyrazole-4-carboxamide 5a. White<br />

solid; R f 0.71 (9:1 Chloroform: Methanol); mp 155-157 o C; IR (KBr): 3284, 3151,<br />

3083, 3031, 2968, 2841, 1628, 1586, 1408, 1238, 1037, 887, 834 cm -1 ; 1 H NMR (300<br />

MHz, CDCl 3 ): δ 0.81-0.82 (m, 2H, CH 2 ), 0.96-0.99 (m, 2H, CH 2 ), 2.24 (m, 1H, CH),<br />

2.40 (s, 3H, CH 3 ), 2.48 (s, 3H, SCH 3 ), 7.09-7.11 (d, 2H, j=8.1Hz, Ar-H), 7.51-7.53<br />

(d, 2H, j=8.1Hz, Ar-H), 9.36 (s, 1H, NH), 12.84 (s, 1H, NH); MS (m/z): 287 (M + );<br />

Anal. Calcd for C 15 H 17 N 3 OS: C, 62.69; H, 5.96; N, 14.62; Found: C, 62.68; H, 5.95;<br />

N, 14.62.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 103


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

N-(4-chlorophenyl)-3-cyclopropyl-5-(methylthio)-1H-pyrazole-4-carboxamide<br />

5b. White solid; R f 0.68 (9:1 Chloroform: Methanol); mp 133-135 o C; IR (KBr): 3294,<br />

3259, 3153, 3020, 2953, 2895, 1681, 1589, 1485, 1251, 1006, 898, 821, 759, 732, 690<br />

cm -1 ; 13 C NMR (100 MHz, CDCl 3 ): 7.52, 120.82, 127.03, 128.23, 137.74, 161.69; MS<br />

(m/z): 307 (M + ); Anal. Calcd for C 14 H 14 ClN 3 OS: C, 54.63; H, 4.58; N, 13.65; Found:<br />

C, 54.62; H, 4.55; N, 13.62.<br />

3-Cyclopropyl-N-(4-fluorophenyl)-5-(methylthio)-1H-pyrazole-4-carboxamide<br />

5c. White solid; R f 0.71 (9:1 Chloroform: Methanol); mp 122-124 o C; IR (KBr): 3287,<br />

3136, 3081, 3014, 2968, 2833, 1641, 1584, 1251, 1024, 882, 832 cm -1 ; 1 H NMR (300<br />

MHz, CDCl 3 ): δ 0.82-0.83 (m, 2H, CH 2 ), 0.96-1.03 (m, 2H, CH 2 ), 2.26 (m, 1H, CH),<br />

2.40 (s, 3H, SCH 3 ), 7.11-7.17 (m, 2H, Ar-H), 7.63-7.67 (d, 2H, j=13.2Hz, Ar-H), 9.53<br />

(s, 1H, NH), 12.88 (s, 1H, NH); MS (m/z): 291 (M + ); Anal. Calcd for C 14 H 14 ClN 3 OS:<br />

C, 57.72; H, 4.84; N, 14.42; Found: C, 57.74; H, 4.85; N, 14.46.<br />

3-Cyclopropyl-N-(4-methoxyphenyl)-5-(methylthio)-1H-pyrazole-4-carboxamide<br />

5d. White solid; R f 0.42 (9:1 Chloroform: Methanol); mp 141-143 o C; IR (KBr): 3292,<br />

3147, 3090, 2962, 2835, 1635, 1031, 896, 830 cm -1 ; MS (m/z): 303 (M + ); Anal. Calcd<br />

for C 15 H 17 N 3 O 2 S: C, 59.38; H, 5.65; N, 13.85; Found: C, 59.36; H, 5.65; N, 13.82.<br />

N-(3,4-dichlorophenyl)-3-cyclopropyl-5-(methylthio)-1H-pyrazole-4-carboxamide<br />

5e. White solid; R f 0.69 (9:1 Chloroform: Methanol); mp 179-181 o C; IR (KBr):<br />

3298, 3142, 3086, 3001, 2956, 2829, 1631, 1415, 1245, 1023, 828, 782 cm -1 ; MS<br />

(m/z): 342 (M + ); Anal. Calcd for C 14 H 13 Cl 2 N 3 OS: C, 49.13; H, 3.83; N, 12.28; Found:<br />

C, 49.15; H, 3.85; N, 12.26.<br />

N-(3-chloro-4-fluorophenyl)-3-cyclopropyl-5-(methylthio)-1H-pyrazole-4-carboxamide<br />

5f. White solid; R f 0.65 (9:1 Chloroform: Methanol); mp 179-181 o C; IR<br />

(KBr): 3287, 3082, 2961, 1628, 1041, 835, 789 cm -1 ; 1 H NMR (300 MHz, CDCl 3 ): δ<br />

0.80-0.82 (m, 2H, CH 2 ), 0.95-1.03 (m, 2H, CH 2 ), 2.24 (m, 1H, CH), 2.41 (s, 3H,<br />

SCH 3 ), 7.33-7.39 (m, 1H, Ar-H), 7.55-7.58 (d, 1H, j=4.2Hz, Ar-H), 7.93-7.96 (d, 1H,<br />

j=6.9Hz, Ar-H), 9.71 (s, 1H, NH), 12.90 (s, 1H, NH); MS (m/z): 325 (M + ); Anal.<br />

Calcd for C 14 H 13 ClFN 3 OS: C, 51.61; H, 4.02; N, 12.90; Found: C, 51.64; H, 4.05; N,<br />

12.96.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 104


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

3-Cyclopropyl-N-(2,3-dimethylphenyl)-5-(methylthio)-1H-pyrazole-4-carboxamide<br />

5g. White solid; R f 0.81 (9:1 Chloroform: Methanol); mp 183-185 o C; IR (KBr):<br />

3289, 3136, 3094, 3013, 2958, 2826, 1638, 1587, 1418, 1239, 1028, 758, 785 cm -1 ;<br />

MS (m/z): 301 (M + ); Anal. Calcd for C 16 H 19 N 3 O 2 S: C, 63.76; H, 6.35; N, 13.94;<br />

Found: C, 63.76; H, 6.35; N, 13.93.<br />

3-Cyclopropyl-5-(methylthio)-N-(4-nitrophenyl)-1H-pyrazole-4-carboxamide 5h.<br />

White solid; R f 0.86 (9:1 Chloroform: Methanol); mp 212-215 o C; IR (KBr): 3278,<br />

3145, 3097, 3015, 2947, 2832, 1641, 1584, 1408, 1233, 1021, 834 cm -1 ; MS (m/z):<br />

318 (M + ); Anal. Calcd for C 14 H 14 N 4 O 3 S: C, 52.82; H, 4.43; N, 17.60; Found: C,<br />

52.86; H, 4.45; N, 17.63.<br />

3-Cyclopropyl-N-(2-methoxyphenyl)-5-(methylthio)-1H-pyrazole-4-carboxamide<br />

5i. White solid; R f 0.76 (9:1 Chloroform: Methanol); mp 111-113 o C; IR (KBr): 3287,<br />

3139, 3085, 3011, 2955, 2824, 1631, 1587, 1417, 1241, 1026, 744 cm -1 ; MS (m/z):<br />

303 (M + ); Anal. Calcd for C 15 H 17 N 3 O 2 S: C, 59.38; H, 5.65; N, 13.85; Found: C,<br />

59.36; H, 5.65; N, 13.82.<br />

3-Cyclopropyl-5-(methylthio)-N-o-tolyl-1H-pyrazole-4-carboxamide 5j. White<br />

solid; R f 0.63 (9:1 Chloroform: Methanol); mp 142-144 o C; IR (KBr): 3283, 3141,<br />

3088, 3016, 2967, 2836, 1641, 1593, 1412, 1231, 1037, 755 cm -1 ; MS (m/z): 287<br />

(M + ); Anal. Calcd for C 15 H 17 N 3 OS: C, 62.69; H, 5.96; N, 14.62; Found: C, 62.68; H,<br />

5.95; N, 14.62.<br />

3-Cyclopropyl-N-(4-ethylphenyl)-5-(methylthio)-1H-pyrazole-4-carboxamide<br />

5k.White solid; R f 0.71 (9:1 Chloroform: Methanol); mp 187-189 o C; IR (KBr):<br />

3287, 3147, 3091, 3008, 2958, 2828, 1638, 1584, 1410, 1248, 1028, 837 cm -1 ; MS<br />

(m/z): 301 (M + ); Anal. Calcd for C 16 H 19 N 3 O 2 S: C, 63.76; H, 6.35; N, 13.94; Found: C,<br />

63.76; H, 6.35; N, 13.93<br />

N-(5-Chloro-2-methoxyphenyl)-3-cyclopropyl-5-(methylthio)-1H-pyrazole-4-carboxamide<br />

5l. White solid; R f 0.69 (9:1 Chloroform: Methanol); mp 205-207 o C; IR<br />

(KBr): 3285, 3141, 3088, 3013, 2964, 2838, 1634, 1587, 1415, 1238, 1034, 878, 748<br />

cm -1 ; MS (m/z): 338 (M + ); Anal. Calcd for C 15 H 16 ClN 3 O 2 S: C, 53.33; H, 4.77; N,<br />

12.44; Found: C, 53.36; H, 4.75; N, 12.43<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 105


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

N-(2,5-dichlorophenyl)-3-cyclopropyl-5-(methylthio)-1H-pyrazole-4-carboxamide<br />

5m. White solid; R f 0.62 (9:1 Chloroform: Methanol); mp 188-187 o C; IR (KBr):<br />

3279, 3136, 3079, 3021, 2959, 2831, 1628, 1581, 1422, 1242, 1039, 892, 761 cm -1 ;<br />

MS (m/z): 342 (M + ); Anal. Calcd for C 14 H 13 Cl 2 N 3 OS: C, 49.13; H, 3.83; N, 12.28;<br />

Found: C, 49.15; H, 3.85; N, 12.26.<br />

3-Cyclopropyl-N-(2,5-dimethylphenyl)-5-(methylthio)-1H-pyrazole-4-carboxamide<br />

5n. White solid; R f 0.78 (9:1 Chloroform: Methanol); mp 177-178 o C; IR (KBr):<br />

3281, 3087, 2955, 2841, 1631, 1591, 886, 748 cm -1 ; MS (m/z): 301 (M + ); Anal. Calcd<br />

for C 16 H 19 N 3 O 2 S: C, 63.76; H, 6.35; N, 13.94; Found: C, 63.76; H, 6.35; N, 13.93.<br />

3-Cyclopropyl-N-(3,4-difluorophenyl)-5-(methylthio)-1H-pyrazole-4-carboxamide<br />

5o. White solid; R f 0.63 (9:1 Chloroform: Methanol); mp 202-204 o C; IR (KBr):<br />

3287, 3142, 3093, 3014, 2969, 2838, 1628, 1587, 1410, 1248, 1034, 833, 786 cm -1 ;<br />

MS (m/z): 309 (M + ); Anal. Calcd for C 14 H 13 F 2 N 3 OS: C, 54.36; H, 4.24; N, 13.58;<br />

Found: C, 54.36; H, 4.25; N, 13.59.<br />

3-Cyclopropyl-5-(methylthio)-N-p-tolylisoxazole-4-carboxamide 6a. White solid;<br />

R f 0.61 (8:2 hexane-EtOAc); mp 144-146 o C; IR (KBr): 3282, 3149, 3081, 3033, 2978,<br />

2839, 1630, 1584, 1410, 1236, 1039, 883, 837 cm -1 ; MS (m/z): 288 (M + ); Anal. Calcd<br />

for C 14 H 13 F 2 N 3 OS: C, 62.48; H, 5.59; N, 9.71; Found: C, 62.49; H, 5.57; N, 9.72.<br />

N-(4-Chlorophenyl)-3-cyclopropyl-5-(methylthio)isoxazole-4-carboxamide 6b.<br />

White solid; R f 0.70 (8:2 hexane-EtOAc); mp 125-127 o C; IR (KBr): 3294, 3149,<br />

3018, 2895, 1695, 1591, 1496, 1253, 1058, 810, 759, 715, 690 cm -1 ; 1 H NMR (300<br />

MHz, CDCl 3 ): δ 1.14-1.16 (m, 2H, CH 2 ), 1.25 (m, 2H, CH 2 ), 2.16-2.20 (m, 1H, CH),<br />

2.68 (s, 3H, SCH 3 ), 7.26-7.33 (m, 1H, Ar-H), 7.53-7.56 (d, 1H, j=8.7Hz, Ar-H), 8.19<br />

(broad, 1H, CONH); 13 C NMR (100 MHz, CDCl 3 ): 6.85, 13.66, 22.72, 29.18, 110.84,<br />

121.05, 129.13, 136.09, 159.32, 162.66, 172.03; MS (m/z): 308 (M + ); Anal. Calcd for<br />

C 14 H 13 ClFN 2 OS: C, 54.46; H, 4.24; N, 9.07; Found: C, 54.44; H, 4.25; N, 9.06.<br />

3-Cyclopropyl-N-(4-fluorophenyl)-5-(methylthio)isoxazole-4-carboxamide 6c.<br />

White solid; R f 0.59 (8:2 hexane-EtOAc); mp 133-138 o C; IR (KBr): 3289, 3139,<br />

3083, 3017, 2966, 1643, 1410, 1249, 885, 836 cm -1 ; MS (m/z): 292 (M + ); Anal. Calcd<br />

for C 14 H 13 FN 2 OS: C, 57.52; H, 4.48; N, 9.58; Found: C, 57.49; H, 4.47; N, 9.52.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 106


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

3-Cyclopropyl-N-(4-methoxyphenyl)-5-(methylthio)isoxazole-4-carboxamide 6d.<br />

White solid; R f 0.67 (8:2 hexane-EtOAc); mp 120-123 o C; IR (KBr): 3288, 3147,<br />

3095, 3031, 2965, 2837, 1637, 1592, 1409, 1247, 1036, 891, 833 cm -1 ; MS (m/z): 304<br />

(M + ); Anal. Calcd for C 15 H 16 N 2 O 3 S: C, 59.19; H, 5.30; N, 9.20; Found: C, 59.19; H,<br />

5.31; N, 9.22.<br />

N-(3,4-dichlorophenyl)-3-cyclopropyl-5-(methylthio)isoxazole-4-carboxamide 6e.<br />

White solid; R f 0.62 (8:2 hexane-EtOAc); mp 180-182 o C; IR (KBr): 3295, 3148,<br />

3091, 3011, 2951, 2831, 1625, 1587, 1418, 1241, 1029, 832, 779 cm -1 ; MS (m/z): 343<br />

(M + ); Anal. Calcd for C 14 H 12 Cl 2 N 2 O 2 S: C, 48.99; H, 3.52; N, 8.16; Found: C, 48.97;<br />

H, 3.53; N, 8.12.<br />

N-(3-chloro-4-fluorophenyl)-3-cyclopropyl-5-(methylthio)isoxazole-4-carboxamide<br />

6f. White solid; R f 0.69 (8:2 hexane-EtOAc); mp 197-199 o C; IR (KBr): 3288,<br />

3139, 3072, 3017, 2969, 2834, 1631, 1587, 1417, 1237, 1046, 839, 791 cm -1 ; MS<br />

(m/z): 327 (M + ); Anal. Calcd for C 14 H 12 ClFN 2 O 2 S: C, 51.46; H, 3.70; N, 8.57;<br />

Found: C, 51.47; H, 3.73; N, 8.54.<br />

3-Cyclopropyl-N-(2,3-dimethylphenyl)-5-(methylthio)isoxazole-4-carboxamide<br />

6g. White solid R f 0.72 (8:2 hexane-EtOAc); mp 181-183 o C; IR (KBr): 3297, 3138,<br />

3089, 3015, 2952, 2823, 1631, 1591, 1421, 1237, 1025, 754, 787;MS (m/z): 302 (M + );<br />

Anal. Calcd for C 16 H 18 N 2 O 2 S: C, 63.55; H, 6.00; N, 9.26; Found: C, 63.57; H, 6.03;<br />

N, 9.24.<br />

3-Cyclopropyl-5-(methylthio)-N-(4-nitrophenyl)isoxazole-4-carboxamide 6h.<br />

White solid R f 0.58 (8:2 hexane-EtOAc); IR mp 177-179 o C; IR (KBr): 3277, 3148,<br />

3091, 3004, 2942, 2839, 1636, 1591, 1419, 1241, 1033, 837 cm -1 ;MS (m/z): 319 (M + );<br />

Anal. Calcd for C 14 H 13 N 3 O 4 S: C, 52.66; H, 4.10; N, 13.16; Found: C, 52.65; H, 4.13;<br />

N, 13.14.<br />

3-Cyclopropyl-N-(2-methoxyphenyl)-5-(methylthio)isoxazole-4-carboxamide 6i.<br />

White solid R f 0.63 (8:2 hexane-EtOAc); mp 131-133 o C; IR (KBr): 3285, 3142, 3083,<br />

3013, 2964, 2833, 1637, 1591, 1414, 1246, 1028, 746 cm -1 ;MS (m/z): 304 (M + ); Anal.<br />

Calcd for C 15 H 16 N 2 O 3 S: C, 59.19; H, 5.30; N, 9.20; Found: C, 59.19; H, 5.31; N,<br />

9.22.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 107


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

3-Cyclopropyl-5-(methylthio)-N-o-tolylisoxazole-4-carboxamide 6j. White solid;<br />

R f 0.67 (8:2 hexane-EtOAc); mp 155-157 o C; IR (KBr): 3285, 3145, 3091, 3003,<br />

2964, 2831, 1639, 1589, 1413, 1237, 1029, 761 cm -1 ; MS (m/z): 288 (M + ); Anal.<br />

Calcd for C 14 H 13 F 2 N 3 OS: C, 62.48; H, 5.59; N, 9.71; Found: C, 62.49; H, 5.57; N,<br />

9.72.<br />

3-Cyclopropyl-N-(4-ethylphenyl)-5-(methylthio)isoxazole-4-carboxamide 6k.<br />

White solid; R f 0.72 (8:2 hexane-EtOAc); mp 160-162 o C; IR (KBr): 3282, 3143,<br />

3093, 3013, 2952, 2822, 1631, 1586, 1418, 1241, 1031, 839 cm -1 ; MS (m/z): 302<br />

(M + ); Anal. Calcd for C 16 H 18 N 2 O 2 S: C, 63.55; H, 6.00; N, 9.26; Found: C, 63.57; H,<br />

6.03; N, 9.24.<br />

N-(5-chloro-2-methoxyphenyl)-3-cyclopropyl-5-(methylthio)isoxazole-4-carboxamide<br />

6l. White solid; R f 0.65 (8:2 hexane-EtOAc); mp 220-222 o C; IR (KBr): 3291,<br />

3139, 3092, 3005, 2968, 2842, 1639, 1582, 1425, 1231, 1029, 872, 739 cm -1 ; MS<br />

(m/z): 338 (M + ); Anal. Calcd for C 15 H 15 ClN 2 O 3 S: C, 53.17; H, 4.46; N, 8.27; Found:<br />

C, 53.19; H, 4.43; N, 8.29.<br />

N-(2,5-dichlorophenyl)-3-cyclopropyl-5-(methylthio)isoxazole-4-carboxamide<br />

6m. White solid; R f 0.73 (8:2 hexane-EtOAc); mp 202-204 o C; IR (KBr): 3281, 3139,<br />

3081, 3019, 2951, 2829, 1632, 1584, 1426, 1238, 1037, 894, 763 cm -1 ; MS (m/z): 343<br />

(M + ); Anal. Calcd for C 14 H 12 Cl 2 N 2 O 2 S: C, 48.99; H, 3.52; N, 8.16; Found: C, 48.97;<br />

H, 3.53; N, 8.12.<br />

3-Cyclopropyl-N-(2,5-dimethylphenyl)-5-(methylthio)isoxazole-4-carboxamide<br />

6n. White solid; R f 0.58 (8:2 hexane-EtOAc); mp 208-210 o C; IR (KBr): 3287, 3139,<br />

3091, 3007, 2959, 2839, 1634, 1594, 1419, 1243, 1029, 882, 742 cm -1 ; MS (m/z): 302<br />

(M + ); Anal. Calcd for C 16 H 18 N 2 O 2 S: C, 63.55; H, 6.00; N, 9.26; Found: C, 63.57; H,<br />

6.03; N, 9.24.<br />

3-Cyclopropyl-N-(3,4-difluorophenyl)-5-(methylthio)isoxazole-4-carboxamide 6o.<br />

White solid; R f 0.67 (8:2 hexane-EtOAc); mp 223-225 o C; IR (KBr): 3292, 3139,<br />

3089, 3008, 2964, 2842, 1632, 1591, 1417, 1239, 1041, 839, 779 cm -1 ; MS (m/z): 310<br />

(M + ); Anal. Calcd for C 14 H 12 Cl 2 N 2 O 2 S: C, 54.19; H, 3.90; N, 9.03; Found: C, 54.17;<br />

H, 3.93; N, 9.02.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 108


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

1 H NMR spectrum of compound 4b<br />

1 H NMR spectrum of compound 4d<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 109


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

1 H NMR spectrum of compound 5b<br />

Expanded 1 H NMR spectrum of compound 5b<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 110


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

1 H NMR spectrum of compound 5e<br />

Expanded 1 H NMR spectrum of compound 5e<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 111


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

1 H NMR spectrum of compound 5c<br />

F<br />

O<br />

N<br />

H<br />

S<br />

N<br />

NH<br />

1 H NMR spectrum of compound 6b<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 112


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

13 C NMR spectrum of compound 5b<br />

Expanded 13 C NMR spectrum of compound 5b<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 113


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

13 C NMR spectrum of compound 6b<br />

Expanded 13 C NMR spectrum of compound 6b<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 114


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

MASS spectrum of compound 5a<br />

N<br />

H<br />

O<br />

S<br />

N<br />

NH<br />

m/z-287<br />

MASS spectrum of compound 5d<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 115


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

MASS spectrum of compound 6c<br />

MASS spectrum of compound 6d<br />

O<br />

O<br />

N<br />

H<br />

S<br />

m/z-304<br />

N<br />

O<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 116


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

IR spectrum of compound 5b<br />

90<br />

%T<br />

75<br />

60<br />

3294.53<br />

3279.10<br />

3259.81<br />

3153.72<br />

3099.71<br />

3020.63<br />

2953.12<br />

2895.25<br />

2839.31<br />

1728.28<br />

1681.98<br />

1589.40<br />

1429.30<br />

1400.37<br />

1350.22<br />

1309.71<br />

1251.84<br />

1091.75<br />

1006.88<br />

898.86<br />

759.98<br />

732.97<br />

690.54<br />

661.61<br />

626.89<br />

45<br />

30<br />

9<br />

1639.55<br />

1508.38<br />

1485.24<br />

821.70<br />

592.17<br />

497.65<br />

516.94<br />

470.65<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

1/cm<br />

IR spectrum of compound 6b<br />

100<br />

%T<br />

80<br />

1695.49<br />

60<br />

1095.60<br />

1058.96<br />

968.30<br />

40<br />

2895.25<br />

1558.54<br />

1350.22<br />

1253.77<br />

1004.95<br />

896.93<br />

759.98<br />

715.61<br />

690.54<br />

430 14<br />

20<br />

0<br />

3294.53<br />

3277.17<br />

3149.86<br />

3093.92<br />

3018.70<br />

1633.76<br />

1591.33<br />

1516.10<br />

1496.81<br />

1404.22<br />

1311.64<br />

810.13<br />

-20<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

1/cm<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 117


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

3.9 References<br />

1. Shin, K. D.; Lee, M. Y.; Shin, D. S.; Lee, S.; Son, K. H.; Koh, S.; Paik, Y. K.; Kwon, B. M.;<br />

Han, D. C. J. Biol. Chem. 2005, 280, 41439. (b) Demers, J.; Hageman, W.; Johnson, S.;<br />

Klaubert, D.; Look, R.; Moore, J. Bioorg. Med. Chem. Lett. 1994, 4, 2451. (c) Simoni, D.;<br />

Roberti, M.; Paolo, I. F.; Rondanin, R.; Baruchello, R.; Malagutti, C.; Mazzali, A.; Rossi, M.;<br />

Grimaudo, S.; Capone, F.; Dusonchet, L.; Meli, M.; Raimondi, M. V.; Landino, M.;<br />

D’Alessandro, N.; Tolomeo, M.; Arindam, D.; Lu, S.; Benbrook, D. M. J. Med. Chem. 2001,<br />

44, 2308. (d) Liu, X. H.; Cui, P.; Song, B. A.; Bhadury, P. S.; Zhu, H. L.; Wang, S. F. Bioorg.<br />

Med. Chem. 2008, 16, 4075. (e) Velaparthi, S.; Brunsteiner, M.; Uddin, R.; Wan, B.;<br />

Franzblau, S. G.; Petukhov, P. A. J. Med. Chem. 2008, 51, 1999. (f) Magedov, I. V.; Manpadi,<br />

M.; Van slambrouck, S.; Steelant, W. F. A.; Rozhkova, E.; Przheval’skii, N. M.; Rogelj, S.;<br />

Kornienko, A. J. Med. Chem. 2007, 50, 5183.<br />

2. (a) Rowley, M.; Broughton, H. B.; Collins, I.; Baker, R.; Emms, F.; Marwood, R.; Patel, S.;<br />

Ragan, C. I.; Freedman, S. B.; Leeson, P. D. J. Med. Chem. 1996, 39, 1943. (b) Wittenberger,<br />

S. J. J. Org. Chem. 1996, 61, 356. (c) Dannhardt, G.; Dominiak, P.; Laufer, S. Arznei-<br />

Forschung. 1993, 43, 441.<br />

3. (a) Pinho, E. M.; Teresa, M. V. D. Curr. Org. Chem. 2005, 9, 925. (b) Colliot, F.;<br />

Kukorowski, K. A.; Hawkins, D. W.; Roberts, D. A. Brighton Crop Prot. Conf. Pests Dis.<br />

1992, 1, 29. (c) Chen, H. S.; Li, Z. M.; Han, Y. F. J. Agric. Food. Chem. 2000, 48, 5312. (d)<br />

Vicentini, C. B.; Romagnoli, C.; Reotti, E.; Mares, D. J. Agric. Food Chem. 2007, 55, 10331.<br />

(e) Vicentini, C. B.; Mares, D.; Tartari, A.; Manfrini, M.; Forlani, G. J. Agric. Food Chem.<br />

2004, 52, 1898.\<br />

4. (a) Graneto, M. J.; Kurumbail, R. G.; Vazquez, M. L.; Shieh, H. S.; Pawlitz, J. L.; Williams,<br />

J. M.; Stallings, W. C.; Geng, L.; Naraian, A. S.; Koszyk, F. J.; Stealey, M. A.; Xu, X. D.;<br />

Weier, R. M.; Hanson, G. J.; Mourey, R. J.; Compton, R. P.; Mnich, S. J.; Anderson, G. D.;<br />

Monahan, J. B.; Devraj R. J. Med. Chem. 2007, 50, 5712. (b) Kuettel, S.; Zambon, A.; Kaiser,<br />

M.; Brun, R.; Scapozza, L.; Perozzo, R. J. Med. Chem., 2007, 50, 5833.<br />

5. Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.;<br />

Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu,<br />

S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.;<br />

Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C. J. Med. Chem.<br />

1997, 40, 1347.<br />

6. Prasit, P.; Wang, Z.; Brideau, C.; Chan, C. C.; Charleson, S.; Cromilish, W.; Ethier, D.;<br />

Evans, J. F.; Ford-Hutchinson, A. W.; Gauthier, J. Y.; Gordon, R.; Guay, J.; Gresser, M.;<br />

Kargman, S.; Kennedy, B.; Leblanc, Y.; Leger, S.; Mancini, J.; O'Neill, G. P.; Ouellet, M.;<br />

Percival, M. D.; Perrier, H.; Riendeau, D.; Rodger, I.; Tagari, P.; Therien, M.; Vickers, P.;<br />

Wong, E.; Xu, L. J.; Young, R. N.; Zamboni, R.; Boyce, S.; Rupniak, N.; Forrest, M.; Visco,<br />

D.;Patrick, D. Bioorg. Med. Chem. Lett. 1999, 9, 1773.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 118


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

7. Talley, J. A.; Brown, D. L.; Carter, J. S.; Masferrer, M. J.; Perkins, W. E.; Rogers, R. S.;<br />

Shaffer, A. F.; Zhang, Y. Y.; Zweifel, B. S.; Seibert, K. J. Med. Chem. 2000, 43, 775.<br />

8. (a) Lawrence, S. A.; Roth, V.; Slinger, R.; Toye, B.; Gaboury, I.; Lemyre, B. BMC<br />

Pediatr2005, 5, 49. (b) Miranda, N. G.; Leanos, M. B. E.; Vilchis, P. M.; Solorzano, S. F.<br />

Ann. Clin. Microbiol. Antimicrob.2006, 5, 25. (c) Sutherland, R.; Croydon, E. A.; Rolinson, G.<br />

N. Br. Med. J. 1970, 4, 455.<br />

9. Silvestri, R.; Artico, M.; Regina, G. L.; Martino, G. D.; Colla, M. L.; Loddo, R.; Colla, P. L.<br />

IlFarmaco2004, 59, 201.<br />

10. (a) Artico, M.; Silvestri, R.; Stefancich, G.; Massa, S.; Pagnozzi, E.; Musiu, D.; Scintu, F.;<br />

Pinna, E.; Tinti, E.; Colla, P. L. Arch. Pharm. 1995, 328, 223. (b) Artico, M.; Silvestri, R.;<br />

Massa, S.; Loi, A. G.; Corrias, S.; Piras, G.; Colla, P. L. J. Med. Chem. 1996, 39, 522. (c)<br />

Artico, M.; Silvestri, R.; Pagnozzi, E.; Bruno, B.; Novellino, E.; Greco, G.; Massa, S.; Ettorre,<br />

A.; Loi, A. G.; Scintu, F.; Colla, P. L. J. Med. Chem.2000, 43, 1886.<br />

11. Haruna, K.; Kanezaki, H.; Tanabe, K.; Daib, W. M.; Nishimotoa, S. Bioorg. Med. Chem.2006,<br />

14, 4427.<br />

12. (a) Ezawa, M.; Garvey, D. S.; Janero, D. R.; Khanapure, S. P.; Letts, L. G.; Martino, A.;<br />

Ranatunge, R. R.; Schwalb, D. J.; Young, D. V. Let. in Drug Design & Disc.2005, 2, 40. (b)<br />

Ranatunge, R. R.; Augustyniak, M.; Bandarage, U. K.; Earl, R. A.; Ellis, J. L.; Garvey, D. S.;<br />

Janero, D. R.; Letts, L. G.; Martino, A. M.; Murty, M. G.; Richardson, S. K.; Schroeder, J. D.;<br />

Shumway, M. J.; Tam, S. M.; Trocha, A. M.; Young, D. V.; J. Med. Chem. 2004, 47, 2180.<br />

13. Bonacorso, H. G.; Wentz, A. P.; Lourega, R. V.; Cechinel, C. A.; Moraes, T. S.; Coelho, H.<br />

S.; Zanatta, N.; Martins, A.P.; Hoerner , M.; Alves, S. H. J. Fluorine Chem.2006, 127, 1066.<br />

14. Andre, I.; Alcazar, J.; Alonso, J. M.; Lucas, A. I. D.; Iturrino, L.; Biesmansb, I.; Megens, A.<br />

A. Bioorg. Med. Chem. 2006, 14, 4361.<br />

15. Pruitt, J. R.; Pinto, D. J.; Estrella, M. J.; Bostrom, L. L.; Knabb, R. M.; Wong, P. C.; Wright,<br />

M. R.; Wexler, R. R.; Bioorg. Med. Chem. Lett. 2000, 10, 685.<br />

16. Penning, T. D.; Khilevich, A.; Chen, B. B.; Russell, M. A.; Boys, M. L.; Wang, Y.; Duffin, T.;<br />

Engleman, V. W.; Finn, M. B.; Freeman, S. K.; Hanneke, M. L.; Keene, J. L.; Klover, J. A.;<br />

Nickols, G. A.; Nickols. M. A.; Rader, R. K.; Settle, S. L.; Shannon, K. E.; Steininger, C. N.;<br />

Westlinc, M. M.; Westlinc, W. F.; Bioorg. Med. Chem. Lett. 2006, 16, 3156.<br />

17. Musad, E. A.; Mohamed, R.; Saeed, B. A.; Vishwanath, B. S.; Lokanatha Rai, K. M.; Bioorg.<br />

Med. Chem. Lett. 2011, 21, 3536.<br />

18. Lilienkampf, A.; Pieroni, M.; Wan, B.; Wang, Y.; Franzblau, S. G.; Kozikowski, A. P.; J.<br />

Med. Chem. 2010, 53, 2.<br />

19. Neelarapu, R.; Holzle, D. L.; Velaparthi, S.; Bai, H.; Brunsteiner, M.; Blond, S. Y.; Petukhov,<br />

P. A.; J. Med. Chem. 2011, 54, 4350.<br />

20. Barcelo, M.; Ravina, E.; Masaguer. C. F.; Dominguez, E.; Areias, F. M.; Maria, J. B.; Lozab,<br />

I.; Bioorg. Med. Chem. 2007, 17, 4873.<br />

21. Habeeb, A. G.; Rao, P. N.; Knaus, E. E.; J. Med. Chem. 2001, 44, 3039.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 119


Chapter 3<br />

Synthesis of trisubstituted pyrazoles/isoxazoles<br />

22. Ho, C. Y.; Ludovici, D. W.; Maharoof, U. S. M.; Mei, J.; Sechler, J. L.; Tuman, R. W.;<br />

Strobel, E. D.; Andraka, L.; J. Med. Chem.2005, 48, 8163.<br />

23. Peifer, C.; Abadleh, M.; Bischof, J.; Hauser, D; Schattel, V.; Hirner H., Knippschild, U.;<br />

Laufer, S.; J.Med. Chem. doi: 10.1021/jm9005127<br />

24. Zhang, J.; Yang, P. L.; Gray, N. S.; Nat. Rev. Cancer, 2009, 9, 28.<br />

25. Frølund, B.; Jensen, L. S.; Storustovu, S. I.; Stensbøl, T. B.; Ebert, B.; Kehler, J.; Larsen, P.<br />

K.; Liljefors, T.; J. Med. Chem. 2007, 50, 1988.<br />

26. Krogsgaard-Larsen, P.; Johnston, G. A. R.; Curtis, D. R.; Game, C. J. A.; McCulloch, R. M.;<br />

J. Neurochem. 1975, 25, 803.<br />

27. Larsen, P. K.; Johnston, G. A. R.; Lodge, D.; Curtis, D. R.; Nature. 1977, 268, 53.<br />

28. Frølund, B.; Ebert, B.; Kristiansen, U.; Liljefors, T.;. Larsen, P. K; Curr. Top. Med. Chem.<br />

2002, 2, 817.<br />

29. Mahata, P. K.; SyamKumar, U. K.; Sriram, V.; Junjappa I, H.; Junjappa, H.; Tetrahedron,<br />

2003, 59, 2631.<br />

30. Kuettel, S.; Zambon, A.; Kaiser, M.; Brun, R.; Scapozza, L.; Perozzo, R.; J. Med. Chem.<br />

2007, 50, 5833.<br />

31. Tweedie, S. R.; Schulte J. P.; Synlett, 2007, 15, 2331.<br />

32. Wang, K.; Xiang, D.; Liu, J.;. Pan, W.; Dong, D.; Organic Letters. 2008, 10, 1691. .<br />

33. Musad, E. A.; Rai, K. M. L.; Byrappa,. K.; Int J Biomed Sci. 2010, 6(1), 45-48<br />

34. Singh, C.; Singh, L W.; Indian journal of chem. 2006, 45(B), 959.<br />

35. Flores, Alex F. C.; Zanatta, N.; Rosa, A.; Brondani, S.; Martins, M. A. P.; Tetrahedron Lett ,<br />

2002, 43,5005.<br />

36. Kumar, S.; Ila, H.; Junjappa, H.; Tetrahedron., 2007, 63 10067.<br />

37. Molteni, V.; Hamilton, M. M.; Mao, L.; Crane, C. M.; Termin, A. P.; Wilson, D. M.;<br />

Synthesis., 2002, 12, 1669.<br />

38. Kurz, T.; Widyan, K.;. Elgemeie, G. H.; Phosphorus, Sulfur, and Silicon, 2006, 181, 299.<br />

39. Elgemeie, G. H.; Elghandour, A. H.; Elaziz, G. W.; Ahmed, S. A.; J. Chem. Soc. Perkin<br />

Trans., 1997, 1, 3285.<br />

40. Waldo, J. P.;. Larock, R. C.; Organic Letters, 2005, 7, 5203.<br />

41. Burkhart, D. J.; Zhou, P.; Blumenfeld, A.; Twamley, B.; Natale, N. R.; Tetrahedron 2001, 57,<br />

8039.<br />

42. Lautens, M.; Roy, A.; Organic Letters, 2000, 2 (4), 555.<br />

43. Ma, W.; Peterson, B.; Kelson, A.; Laborde, E.; J. Comb. Chem., 2009, 11 (4), 697.<br />

44. Dieter, R. K.; Tetrahedron, 1986, 42, 3029.<br />

45. Junjappa, H.; Ila, H.; Asokan, C. V.; Tetrahedron, 1990, 46, 5423.<br />

46. Savant, M. M.; Pansuriya, A. M.; Bhuva, C.V.; Kapuriya, N.; Patel, A. S.; Audichya, V. B.;<br />

Pipaliya, P. V.; Naliapara, Y. T.; J. Comb. Chem., 2010, 12, 176.<br />

Department of Chemistry <strong>Saurashtra</strong> university, Rajkot-360005 120


Chapter - 4<br />

Synthesis and Characterization of<br />

Novel Substituted and Fused<br />

Pyrazolo[1,5-a] pyrimidines Derivatives


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

4.1 Introduction<br />

Biaryls and heterobiaryls have attracted significant attention from the<br />

scientific community because of their relevance in medicinal chemistry. Heterobiaryls<br />

frequently can be observed in numerous bioactive small molecules, and in particular,<br />

heterobiaryls fused with various heterocycles, such as pyrazole, pyridine, and<br />

pyrimidine, have been used as key pharmacophores. 1 Pyrazolo[1,5-a]pyrimidines have<br />

attracted considerable interest because of their biological activity. For instance, this<br />

heterocyclic system is found as purine analogues and has useful properties as<br />

antimetabolites in purine biochemical reactions. 2 Several compounds of this class<br />

display interesting antitrypanosomal 3 and antischistosomal activities. 4 They are used<br />

as HMG-CoA reductaseinhibitors, 5 COX-2 selective inhibitors, 6 30,50-cyclic-AMP<br />

phosphodiesteraseinhibitors, 7 CRF 1 antagonists, 8a-d selective peripheral<br />

benzodiazepine receptor ligands, 9a-c<br />

potassium channel 10 and histamine-3 receptor<br />

ligands 11 and antianxiety agents. 12<br />

Some pyrazolopyrimidines serve as efficient sedative-hypnotic and anxiolytic<br />

drugs like zaleplon (Sonata, hypnotic), 13 indiplon (hypnotic), 14<br />

and ocinaplon<br />

(anxiolytic), 15 fasiplon (anxiolytic), 16 (Figure-1) these drugs are related to the class of<br />

nonbenzodiazepines, and their therapeutic effect is due to allosteric enhancement of<br />

the action of the inhibitory neurotransmitter GABA at the GABA A receptor. 13-14 These<br />

examples emphasize the importance of pyrazol-fused heterobiaryls, as well as<br />

pyrazolopyridines, as key pharmacophores in bioactive small molecules.<br />

N<br />

O<br />

N<br />

N N CN<br />

N<br />

N<br />

N N<br />

O<br />

N<br />

N<br />

O<br />

N N N<br />

O<br />

S<br />

O<br />

N<br />

N<br />

N<br />

N<br />

N O<br />

Zaleplon<br />

Ocinaplon<br />

Indiplon<br />

Fasiplon<br />

Figure-1<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 121


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

4.2 Biological activity related to pyrazolopyrimidine derivatives<br />

Pyrazolopyrimidines have multiple pharmacological activities including<br />

hypnotic, anti-inflammatory, anti-tumor, antimycobacterial, antidiabetic,<br />

antiphlogistic agents, antidepressants, analgesics and anti-viral. Several diverse<br />

biological activities have been reported for pyrazolopyrimidine ring systems which<br />

are described as below.<br />

Ivashchenko et al. 17 reported that substituted 3-(arylsulfonyl)pyrazolo[1,5-a]<br />

pyrimidines (Figure-2) are claimed as antagonists of serotonin 5-HT6 receptors for<br />

treating and preventing pathol. states and diseases of the central nervous system in<br />

humans and warm-blooded animals, the pathogenesis of which is caused by disorder<br />

in the serotonin 5-HT6 receptor activation.<br />

Figure-2<br />

Alexandre V. Ivachtchenko et al. 18 has described structure activity<br />

relationships for a series of novel 2-substituted 3-benzenesulfonyl-5,6-dimethylpyrazolo[1,5-a]pyrimidines.<br />

In spite of a wide, four orders of magnitude, SAR range<br />

(Ki varied from 260 pM to 2.96 mM), no significant correlation of 5-HT 6 R<br />

antagonistic potency was observed with major physiochemical characteristics, such as<br />

molecular weight, surface polar area, cLogP, or number of rotatable bonds.<br />

Statistically significant trend was only observed for size of substitute group, which<br />

was not enough to explain the deep SAR trend. Besides with the substitute group size,<br />

another factor that presumably plays a role in defining the compound potencies isa<br />

relative position of the heterocycle and sulfophenyl moieties. Among all synthesized<br />

derivatives, (3 benzenesulfonyl-5,7-dimethyl-pyrazolo[1,5-a]pyrimidin-2-yl)-methylamine<br />

(Figure-3) is the most potent(Ki ¼ 260 pM) and extremely selective, 5000 to<br />

>50,000-fold relative to 55 therapeutic targets, antagonist of the 5-HT 6 receptor.<br />

Figure-3<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 122


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

Silvia Selleri et al. 19 have been developed a new class of N,N-diethyl-(2-<br />

arylpyrazolo[1,5-a]pyrimidin-3-yl)acetamides, (Figure-4) as azaisosters of Alpidem,<br />

and their affinities for both the peripheral (PBR) and the central (CBR)<br />

benzodiazepine receptors were evaluated. Binding assays were carried out using both<br />

[ 3 H]PK 11195 and [ 3 H]Ro 5-4864 as radio ligands for PBR, whereas [ 3 H]Ro 15-1788<br />

was used for CBR, in rat kidney and rat cortex, respectively. The tested compounds<br />

exhibited a broad range of binding affinities from as low as 0.76 nM to inactivity and<br />

most of them proved to be high selective ligands for PBR. The preliminary SAR<br />

studies suggested some of the structural features required for high affinity and<br />

selectivity; particularly the substituent on the pyrimidine moiety seemed to play an<br />

important role in PBR versus CBR selectivity. A subset of the highest affinity<br />

compounds was also tested for their ability to stimulate steroid biosynthesis in C6<br />

glioma rat cells and some of these were found to increase pregnenolone formation<br />

with potency similar to RO 5-4864 and PK 11195.<br />

Figure-4<br />

John E. Tellew et al. 20 has discovered an antagonist of the corticotropinreleasing<br />

factor (CRF) neuropeptide may prove effective in treating stress and anxiety<br />

related disorders. In an effort to identify antagonists with improved physico-chemical<br />

properties a new series of CRF1 antagonists were designed to substitute the propyl<br />

groups at the C7 position of the pyrazolo[1,5-a]pyrimidine core with heterocycles.<br />

Compound (Figure-5) was identified as a high affinity ligand with a pKi value of 8.2<br />

and a functional CRF1 antagonist with IC 50 value of 7.0 in the in vitro CRF ACTH<br />

production assay.<br />

N<br />

O<br />

N<br />

H<br />

N<br />

N<br />

N<br />

N<br />

R<br />

O<br />

Figure-5<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 123


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

Song Qing Wang et al. 21 have been designed some new 5-methyl-7-<br />

substituted–pyrazolo[1,5-a]pyrimidine-3-carbonitrile derivatives on the basis of the<br />

Zaleplon structure for studies on their hypnotic activity. The preliminary<br />

pharmacological evaluations indicated that some compounds showed hypnotic<br />

activity, among that one compound (Figure-6) was the most potent one.<br />

Figure-6<br />

Robert H. Springer et al. 22 has prepared a number of 3,7-disubstituted 6-<br />

carbethoxypyrazolo[ 1,5-a]pyrimidines and 3,7-disubstituted 6-ethoxypyrazolo-[1,5-<br />

a]pyrimidines (Figure-7) have been and evaluated as adenosine cyclic 3’,5’-<br />

phosphate (cAMP) phosphodiesterase (PDE) inhibitors vs. the low K, enzyme isolated<br />

from beef heart, rabbit lung, and kidney preparations. The results were found to be<br />

between 0.5 to 13 times as potent as theophylline as inhibitors of PDE, depending on<br />

the tissue source. A number of these PDE inhibitors exhibited significant<br />

physiological effects in different animal systems, suggesting it should be possible to<br />

obtain selective PDE inhibition in various tissues. Several of these heterocycles were<br />

found superior to adenosine in inhibiting ADP-induced platelet aggregation in vitro.<br />

N<br />

R 1<br />

N<br />

R 1<br />

O<br />

R 2<br />

N<br />

N<br />

R 1 =H, C 2 H 5 ,NO 2 , Br, COOEt<br />

R 2 =OH, NH 2 ,OC 2 H 5 ,SH,SC 2 H 5<br />

Figure-7<br />

Robin R. Frey et al. 23 have discovered 7-aminopyrazolo[1,5-a]pyrimidine urea<br />

receptor tyrosine kinase inhibitors. Investigation of structure-activity relationships of<br />

the pyrazolo[1,5-a]pyrimidine nucleus led to a series of 6-(4-N,N′-diphenyl)ureas that<br />

potently inhibited a panel of vascular endothelial growth factor receptor (VEGFR)<br />

and platelet-derived growth factor receptor (PDGFR) kinases. Several of these<br />

compounds are potent inhibitors of kinase insert domain-containing receptor tyrosine<br />

kinase (KDR) both enzymatically(


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

In addition, compound (Figure-8) possesses a favorable pharmacokinetic profile and<br />

demonstrates efficacy in the estradiol-induced murine uterine edema (UE) model<br />

(ED 50 ) 1.4mg/kg).<br />

Figure-8<br />

Rui Ding et al. 24 has synthesized compound 5-((2-aminoethylamino)methyl)-<br />

7-(4-bromoanilino)-3-cyanopyrazolo[1,5-a]pyrimidine (ABCPP) via conjugated with<br />

N-mercaptoacetylglycine (MAG), N-mercaptoacetylphenylalanine (MAF) and N-<br />

mercaptoacetylvaline (MAA), (Figure-9) respectively. These three compounds were<br />

labeled successfully with [ 99m TcN] 2+ intermediate in high radiochemical purities.<br />

Biodistribution in tumor-bearing mice demonstrated that the three new complexes<br />

showed tumor accumulation, high tumor-to muscle (T/M) ratios and fast clearance<br />

from blood and muscle. Among them, the 99mTcNMAG-ABCPP showed the most<br />

favorable characteristics, with tumor/blood and tumor/muscle ratios reaching 1.51 and<br />

2.97 at 30 min post-injection, 1.84 and 2.49 at 60 min post-injection, suggesting it<br />

could be further studied as potential tumor imaging agent for single photon emission<br />

computed tomography (SPECT).<br />

Figure-9<br />

Osama M. Ahmed et al. 25 has synthesized some new pyrazolo[1,5-<br />

a]pyrimidine derivatives, (Figure-10) which showed potent anti-tumor cytotoxic<br />

activity in vitro using different human cancer cell linesHepG2 (hepatocellular<br />

carcinoma cell line), MCF7 (breastcarcinoma cell line), HCT116 (colon carcinoma<br />

cell line), HeLa (cervix carcinoma cell line).<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 125


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

Figure-10<br />

Naveen Mulakayala et al. 26 has synthesized some new 7-trifluoromethyl<br />

substituted pyrazolo[1,5-a]pyrimidines (Figure-11) with potent antitumor agents. The<br />

cytotoxic effects of the newly synthesized pyrazolo[1,5-a]pyrimidines against<br />

leukemiacells, K562 and human colon carcinoma cells, Colo-205 were evaluated.<br />

R 2<br />

R 1<br />

OH<br />

R 1<br />

R 2 O<br />

OH<br />

N<br />

O<br />

N<br />

N<br />

N<br />

N<br />

N<br />

CF 3<br />

R 1 =H, R 2 =H,Cl,Br,F,Me<br />

Figure-11<br />

CF 3<br />

4.3 Various synthetic approaches for substituted<br />

pyrazolopyrimidine derivatives<br />

As mention previously, pyrazolopyrimidine ring system is present in a variety<br />

of biologically active compounds (both naturally-occurring and synthetic). Although a<br />

large number of methods for their synthesis have been documented in the literature,<br />

many of them require multistep procedures using intermediates which are not readily<br />

available. Among them, few methods are discussed here.<br />

Abbas-Temirek, H. H. synthesized some new bridged nitrogen pyrazolo[1,5-<br />

a]pyrimidines from 5-amino-3-methylthio-1H-pyrazole-4-carboxylate (Figure-12)<br />

under refluxing with acetic acid. 27<br />

Figure-12<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 126


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

Yan-Chao Wu et al. 28 were established an efficient, fast and facile<br />

pyrazolo[1,5-a]pyrimidine (Figure-13) synthetic protocol for the condensation of<br />

aminopyrazoles with 1,3-dicarbonyl components in AcOH/H 2 SO 4 system.<br />

Figure-13<br />

G. G. Danagulyan et al. 29 have described condensation of ethyl 3-<br />

aminopyrazole-4-carboxylate (1) with ethyl ethoxymethylenecyanoacetate (2) was<br />

carried out with the aim of preparing diethyl 7-aminopyrazolo[1,5-a]pyrimidine-3,6-<br />

dicarboxylate (3) and subsequent study of its C–C recyclization to the isomeric 6-<br />

carbamoyl-7-hydroxypyrazolopyrimidine but the reaction did not go to completion,<br />

on the basis of NMR it was clear that a mixture of compounds including both the<br />

cyclization product (3)and the uncyclized condensation adduct ethyl 3-[(2-cyano-3-<br />

ethoxy-3-oxoprop-1-en-1-yl)amino]-1H-pyrazole-4-carboxylate (4) had been<br />

obtained. However, in basic medium both the condensed pyrazolopyrimidine (3) and<br />

the cyano derivative (4) were converted in high yield to the 6-carbamoyl-7-<br />

hydroxypyrazolo[1,5-a]pyrimidine-3-carboxylic acid (5) (Figure-14).<br />

Figure-14<br />

Li Ming et al. 30 was reported a convenient, rapid, and highly selective method<br />

for synthesis of new Pyrazolo[1,5-a]pyrimidines (Figure-15) via the Reaction of<br />

enaminones and5-amino-1H-pyrazoles under Microwave Irradiation.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 127


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

Figure-15<br />

Abraham Thomas et al. 31 has described a facile highly regioselective general<br />

route to substituted and fused pyrazolo[a]pyrimidines via cyclocondensation of<br />

oxoketene dithioacetals with 3-aminopyrazoles (Figure-16).<br />

Figure-16<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 128


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

Pushpak Mizar et al. 32 have been described a facile method for the synthesis of<br />

pyrazolo[1,5-a]pyrimidine (Figure-17) by reacting N-substituted or unsubstitutedpyrazol-5(4H)-one,<br />

aryl-oxoketene dithioacetals and alkyl amide.<br />

Figure-17<br />

Recently, Ibtissam Bassoude et al. 33 described one step condensation reaction<br />

of of 5(3)-amino-3(5)-arylpyrazoles with 4-hydroxy-6-methylpyran-2-one leading to<br />

new pyrazolo[1,5-a]pyrimidines(Figure-18).<br />

Figure-18<br />

V. N. Britsun was reported cyclocondensation products of N-aryl-3-<br />

oxobutanethioamides with 5-amino-3-R-4-R 1 -pyrazoles are 4-(arylamino)-2-methyl-<br />

7-R-8-R 1 -pyrazolo[1,5-a]pyrimidine and pyrazolo[1,5-a]pyrimidine-4-thione<br />

derivatives (Figure-19), the ratio of which depends on the nucleophilicity of the<br />

starting 5-amino-3-R-4-R 1 - pyrazoles and the presence of a proton donor solvent. 34<br />

Figure-19<br />

D. V. Kryl’skii et al. 35 has described Three-component condensation of 3-<br />

methyl(or methoxymethyl)-4-phenyl-1H-pyrazol-5-amine with triethylorthoformate<br />

and carbonyl compounds or nitriles containing an activated methylene group<br />

(cyclohexane-1,3-diones, acetoacetanilides, benzoylacetone, ethyl cyanoacetate,<br />

malononitrile, 1H-benzimidazol-2-yl-acetonitrile) gave substituted<br />

pyrazolopyrimidines (Figure-20).<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 129


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

Figure-20<br />

Sayed A. Ahmed et al. 36 have synthesized pyrazolo[1,5-a]pyrimidines from<br />

the appropriate 3-aminopyrazoles with the appropriate sodium (3-oxocycloalkylidene)<br />

methenolate, β-diketone, β-keto esters or 1,2-disubstitutedacrylonitrile (Figure-21).<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 130


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

Figure-21<br />

Mohamed R. Shaaban et al. 37 have described a simple, facile, efficient and one<br />

pot three-component procedure for the synthesis of pyrazolo[1,5-a]pyrimidine ring<br />

systems incorporating phenylsulfonyl moiety was developed via the reaction of 1-<br />

aryl-2-(phenylsulfonyl)ethanone derivatives with the appropriate heterocyclic amine<br />

and triethylorthoformate (Figure-22).<br />

Figure-22<br />

Baseer M. Shaikh et al. 38 has prepared pyrazolo [1, 5-a] pyrimidines derivative by the<br />

condensation of substituted of α, β- unsaturated carbonyl compounds (chalcones) with<br />

substituted 5-aminopyrazole as an alternative polyethylene glycol (PEG-400) as green<br />

reaction medium (Figure-23).<br />

Figure-23<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 131


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

4.4 Current research work<br />

The pyrazolopyrimidine derivatives have considerable chemical and<br />

pharmacological importance because of a broad range of biological activities<br />

displayed by these classes of molecules. As we demonstrated, the tremendous<br />

biological potential of pyrazolopyrimidine derivatives encouraged us to synthesize<br />

some new highly functionalized pyrazolopyrimidine derivatives. Various<br />

methodologies have been described for the synthesis of pyrazolopyrimidine<br />

derivatives. However, the existing methods are suffer with some drawbacks, such as;<br />

yield, time, product isolation, isomer formation.<br />

As a part of our ongoing interest on the synthesis of various heterocyclic<br />

compounds using ketene dithioacetals, we have demonstrated that ketene dithioacetals<br />

are versatile intermediate for the synthesis of pyrazolopyrimidine derivatives. Thus, to<br />

explore further, we sought that the reaction of various ketene dithioacetals with 5-<br />

amino-N-cyclohexyl-3-(methylthio)-1H-pyrazole-4-carboxamide in the presence of<br />

base in isopropyl alcohol could be an effective strategy to furnish the novel<br />

pyrazolopyrimidine derivatives. Here we describe the novel synthetic methodology<br />

for the fused pyrazolopyrimidines.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 132


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

4.5 Results and discussion<br />

Scheme: Synthesis of novel substituted Pyrazolo[1,5-a]pyrimidines derivatives.<br />

Scheme-01<br />

Scheme-02<br />

Scheme-03<br />

Where R= CH 3 , CH(CH 3 ) 2 , (CH 2 ) 3 , R 1 = CH 3 , OCH 3 NO 2 ,Cl<br />

Preparation of the target compounds was initiated by the reaction of<br />

ethylcynoacetate (1) with cyclohexyl amines (2) in toluene at reflux temperature to<br />

afford the cyanoacetamides (3) in 90% yields. This product undergoes reaction with<br />

carbon disulfide in the presence of base in DMF followed by methylation to afford<br />

corresponding 2-cyano-3,3-bis(methylthio)-N-phenylacrylamide (4). Which on<br />

reaction with hydrazine hydrate undergoes cyclization to form 5-amino-N-cyclohexyl-<br />

3-(methylthio)-1H-pyrazole-4-carboxamide (5) (Scheme-1).<br />

Various acetoacetanilide (8a-x) were synthesized by reacting substituted<br />

amine (7a-h) with various β-keto esters (6a-c) in toluene in the presence of catalytic<br />

amount of KOH at reflux temperature for 15-20 h.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 133


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

Twenty four different acetoacetanilide were synthesized bearing various<br />

electron donating and electron withdrawing groups such as 2,3-diCH 3 ; 3,4-diCH 3 ; 4-<br />

CH 3 ; H; 2,5-diCH 3 ; 2,4-diCH 3 ; 3-Cl-4-F; 4-F; 4-Cl; 2-Cl; 2-F; 4-OCH 3 ; 2,5-diCl and<br />

3-NO 2 on the phenyl ring. Thus, it has been found that reaction of substituted<br />

acetoacetanilide 8a-x derivatives with carbon disulfide in the presence of potassium<br />

carbonate followed by the alkylation with methyl iodide (Scheme-2) gave the novel<br />

ketene dithioacetals 9a-x. The resulting various ketene dithioacetals (9a-x) were<br />

reacted with 5-amino-N-cyclohexyl-3-(methylthio)-1H-pyrazole-4-carboxamide (5) in<br />

the presence of NaHCO 3 and methanol as a solvent to afford highly substituted<br />

pyrazolo[1,5-a]pyrimidines (10a-x) in low yield (Table-1 and 2). To optimize the<br />

reaction condition for the synthesis of compound 10a, various solvents and various<br />

bases were utilized. As a result, we found the reaction of 9a with 5 was faster and<br />

afforded the pyrazolo[1,5-a]pyrimidine10a in good yield in the presence of K 2 CO 3 as<br />

a base and isopropyl alcohol (Scheme-3).<br />

Table-1: Reaction of 9a with various solvents in the presence of base.<br />

Entry Solvent Base Time hrs Yield %<br />

1 Methanol NaHCO 3 20 65<br />

2 Ethanol NaHCO 3 18 68<br />

3 Isopropyl alcohol NaHCO 3 16 70<br />

4 Dioxane NaHCO 3 15 58<br />

5 DMF NaHCO 3 10 60<br />

6 Methanol Na 2 CO 3 14 70<br />

7 Ethanol Na 2 CO 3 13 72<br />

8 Isopropyl alcohol Na 2 CO 3 10 78<br />

9 Dioxane Na 2 CO 3 10 75<br />

10 DMF Na 2 CO 3 8 68<br />

11 Methanol K 2 CO 3 10 75<br />

12 Ethanol K 2 CO 3 10 80<br />

12 Isopropyl alcohol K 2 CO 3 8 94<br />

14 Dioxane K 2 CO 3 8 82<br />

15 DMF K 2 CO 3 7 78<br />

16 AcOH CH 3 COONa 8 65<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 134


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

Table-2: synthesis of novel substituted and fused pyrazolopyrimidine derivatives.<br />

Entry R R 1 Time hrs Yield (%)<br />

10a CH 3 4-CH 3 8.0 94<br />

10b CH 3 3-Cl 7.5 92<br />

10c CH 3 3-Cl, 4-F 7.5 90<br />

10d CH 3 4-Cl 7.0 88<br />

10e CH 3 4-F 7.0 92<br />

10f CH 3 4-NO 2 9.0 95<br />

10g CH 3 4-OCH 3 8.0 90<br />

10h CH 3 2,5diCH 3 8.5 89<br />

10i (CH 3 ) 2 CH 4-CH 3 8.0 93<br />

10j (CH 3 ) 2 CH 3-Cl 7.0 87<br />

10k (CH 3 ) 2 CH 3-Cl, 4-F 7.5 95<br />

10l (CH 3 ) 2 CH 4-Cl 7.0 94<br />

10m (CH 3 ) 2 CH 4-F 7.5 92<br />

10n (CH 3 ) 2 CH 4-NO 2 8.5 97<br />

10o (CH 3 ) 2 CH 4-OCH 3 8.0 94<br />

10p (CH 3 ) 2 CH 2,5diCH 3 8.5 90<br />

10q (CH 2 ) 2 CH 4-CH 3 8.5 88<br />

10r (CH 2 ) 2 CH 3-Cl 7.5 92<br />

10s (CH 2 ) 2 CH 3-Cl, 4-F 7.0 87<br />

10t (CH 2 ) 2 CH 4-Cl 7.5 90<br />

10u (CH 2 ) 2 CH 4-F 8.0 93<br />

10v (CH 2 ) 2 CH 4-NO 2 8.5 96<br />

10w (CH 2 ) 2 CH 4-OCH 3 7.5 90<br />

10x (CH 2 ) 2 CH 2,5diCH 3 8.0 87<br />

The structures of compound 5 were established on the basis of their elemental<br />

analysis and spectral data (MS, IR, and 1 H NMR). The analytical data for 5 revealed a<br />

molecular formula C 11 H 18 N 4 OS (m/z 254). The 1 H NMR spectrum revealed a<br />

multiplets at δ = 1.20-1.98 assigned to 10 protons of (5x CH 2 ) groups in cyclohexane<br />

ring, a singlet at δ = 2.48 ppm assigned to - SCH 3, a multiplet at δ = 3.96-3.99 ppm<br />

assigned to the –CH protons of cyclohexane ring,<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 135


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

one broad singlet at δ = 5.57 ppm assigned to –NH 2 groups, one singlet at δ = 7.28<br />

ppm assigned to –CONH groups and one broad singlet observed at δ = 11.9 ppm<br />

assigned to pyrazole -NH.<br />

The structures of 9a-x were established on the basis of their elemental analysis<br />

and spectral data (MS, IR, and 1 H NMR). The analytical data for 9i revealed a<br />

molecular formula C 16 H 21 NO 2 S 2 (m/z 323). The 1 H NMR spectrum revealed a singlet<br />

at δ = 1.18-1.20 ppm assigned to isopropyl-CH 3 , a singlet at δ = 1.57 ppm assigned to<br />

the –CH 3 protons, a singlet at δ = 2.44 ppm assigned to (2 × SCH 3 ) , a multiplet at δ =<br />

3.17-3.24 ppm assigned to the isopropyl -CH protons, a multiplets at δ = 6.99–7.54<br />

ppm assigned to the aromatic protons, and one broad singlet at δ = 8.38 ppm assigned<br />

to -CONH groups.<br />

The structures of 10a-x were established on the basis of their elemental<br />

analysis and spectral data (MS, IR, 1 H NMR and 13 C NMR). The analytical data for<br />

10b revealed a molecular formula C 23 H 26 ClN 5 O 2 S 2 (m/z 503). The 1 H NMR spectrum<br />

revealed a multiplets at δ = 1.35-1.81 assigned to 10 protons of (5x CH 2 ) groups in<br />

cyclohexane ring, a singlet at δ = 2.45 ppm assigned to - SCH 3, a singlet at δ = 2.70<br />

ppm assigned to - CH 3, a multiplet at δ = 3.79 ppm assigned to the –CH protons of<br />

cyclohexane ring, a multiplet at δ = 7.05–8.00 ppm assigned to the aromatic protons,<br />

one singlet at δ = 8.56 ppm assigned to –CONH groups attached with cyclohexane<br />

ring, and one singlet observed at δ = 12.56 ppm assigned to –CONH group attached<br />

with phenyl ring.<br />

The proposed mechanism for the cyclization is shown in Figure-24. The<br />

endocyclic-NH in compound A is the most nucleophilic center it is also the most<br />

sterically hindered site. Therefore, addition takes place at the exocyclic-NH 2 groups.<br />

The nucleophilic amino group attacks on the double bond via a Michael addition<br />

reaction, followed by loss of the thiomethane group. The intermediate D then cyclizes<br />

with subsequent dehydration E to afford the pyrazolopyrimidine derivative F.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 136


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

<br />

Mechanism:-<br />

S<br />

HN<br />

O<br />

S<br />

HN<br />

O<br />

R<br />

O<br />

R 1<br />

HN<br />

N NH 2<br />

N<br />

NH NH 2<br />

S<br />

S<br />

SCH 3<br />

HN<br />

S O<br />

N<br />

N N<br />

R 1<br />

S<br />

R<br />

F<br />

-H 2 O<br />

S<br />

A<br />

HN<br />

N<br />

N<br />

HO<br />

R 1<br />

R<br />

E<br />

O<br />

H<br />

N<br />

S<br />

B<br />

HN<br />

S<br />

N<br />

NH<br />

O<br />

R 1<br />

D<br />

O<br />

H<br />

N<br />

S<br />

R<br />

-SHCH 3<br />

N<br />

H<br />

O<br />

S<br />

H<br />

H S<br />

N<br />

NH<br />

N<br />

C<br />

O<br />

R<br />

R 1<br />

Figure 24: Proposed mechanism for the formation of pyrazolopyrimidine.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 137


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

4.6 Conclusion<br />

In summary, the heterocyclizations of various ketene dithioacetals with 5-<br />

aminopyrazole derivative were studied in details, and the influence of the reaction<br />

parameters and the aminoazole structure on the direction of the reaction was<br />

established. We found that the reaction of various ketene dithioacetal 9a-x with 5-<br />

aminopyrazole derivative 5 were faster and afforded the pyrazolo[1,5-a]pyrimidine<br />

10a-x in good yield in the presence of K 2 CO 3 as a base and isopropyl alcohol. The<br />

results of the study described above have led to the development of a simple approach<br />

for synthesis of pyrazolo[1,5-a]pyrimidines, substances that potentially interesting<br />

biological and medicinal properties.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 138


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

4.7 Experimental section<br />

Thin-layer chromatography was accomplished on 0.2-mm precoated plates of<br />

silica gel G60 F 254 (Merck). Visualization was made with UV light (254 and 365nm)<br />

or with an iodine vapor. IR spectra were recorded on a FTIR-8400 spectrophotometer<br />

using DRS prob. 1 H (300 MHz), 1 H (400 MHz), 13 C (75 MHz) and 13 C (100 MHz)<br />

NMR spectra were recorded on a Bruker AVANCE II spectrometer in CDCl 3 and<br />

DMSO. Chemical shifts are expressed in δ ppm downfield from TMS as an internal<br />

standard. Mass spectra were determined using direct inlet probe on a GCMS-QP 2010<br />

mass spectrometer (Shimadzu). Solvents were evaporated with a BUCHI rotary<br />

evaporator. Melting points were measured in open capillaries and are uncorrected.<br />

Synthesis of 2-cyano-N-cyclohexylacetamide (3).<br />

In a 250mL round bottom flask equipped with magnetic stirrer and<br />

thermometer was placed ethyl 2-cyanoacetate (0.25mol), cyclohexyl amine (0.25mol)<br />

and toluene (100 mL). The reaction mixture was heated up to 110-115 o C for 8 h. The<br />

progress of reaction was monitored by thin layer chromatography. The reaction<br />

mixture was cooled to room temperature and the solid product was filtered, washed<br />

with toluene to afford 90% yield.<br />

Synthesis of 2-cyano-N-cyclohexyl-3,3-bis(methylthio)acrylamide (4).<br />

A 100mL conical flask equipped with magnetic stirrer and septum was<br />

charged with a solution of 2-cyano-N-cyclohexylacetamide (3), (10 mmol) in DMF<br />

(10 mL). Dry K 2 CO 3 (10 mmol) was added and the mixture was stirred at room<br />

temperature for 2 h. CS 2 (30 mmol) was added and the mixture was stirred for an<br />

additional 2 h at room temperature. Then, methyl iodide (20 mmol) was added at 0-5<br />

o C and the mixture was stirred for 4 h at room temperature. The progress of the<br />

reaction was monitored by thin layer chromatography. After completion of the<br />

reaction, it was poured into 50ml cold water. The precipitated crude product was<br />

purified by filtration followed by crystallization from EtOH.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 139


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

Synthesis of 5-amino-N-cyclohexyl-3-(methylthio)-1H-pyrazole-4-<br />

carboxamide (5).<br />

A 100mL conical flask equipped with magnetic stirrer and septum was<br />

charged 2-cyano-N-cyclohexyl-3,3-bis(methylthio)acrylamide (4) (0.1mol) in<br />

isopropyl alcohol (100 mL) and hydrazine hydrate (0.1mol). The Reaction mixture<br />

was heated to reflux for 2 h. After completion of the reaction, it was poured into<br />

50mL cold water. The precipitated crude product was purified by filtration followed<br />

by crystallization from EtOH.<br />

<br />

General synthesis of Acetoacetanilide derivatives (AAA) (8a-x).<br />

A mixture containing the primary amine (7a-h) (10 mmol), β-keto esters (6ac)<br />

(10 mmol), and catalytic amount of sodium or potassium hydroxide (10 %) in<br />

toluene (50 mL) was refluxed at 110 o C for 12-15 h. The reaction was monitored by<br />

TLC. After completion of reaction, the solvent was removed under vaccuo and the<br />

residue was crystallized from methanol.<br />

General synthesis of ketene dithioacetals (9a-x).<br />

A 100mL conical flask equipped with magnetic stirrer and septum was<br />

charged with a solution of acetoacetanilide derivatives (8a-x) (10 mmol) in DMF (10<br />

mL). Dry K 2 CO 3 (20 mmol) was added and the mixture was stirred for 2 h at room<br />

temperature. CS 2 (10 mmol) was then added and the mixture was stirred for an<br />

additional 2 h at room temperature. Methyl iodide (20 mmol) was added at 0-5 o C and<br />

the mixture was stirred for 4 h at room temperature. The reaction was monitored by<br />

TLC. After completion, reaction mixture poured into water (50 mL). The precipitated<br />

crude product was purified by filtration followed by crystallization from EtOH.<br />

General synthesis of substituted and fused pyrazolopyrimidines (10a-x).<br />

A mixture of 5-amino-N-cyclohexyl-3-(methylthio)-1H-pyrazole-4-<br />

carboxamide (5) (3.0mmol), potassium carbonate (6.0mmol) and ketene dithioacetals<br />

(9a-x) (3.0mmol) in isopropyl alcohol (10 mL) was heated to reflux for 7-10 h. The<br />

progress of reaction mixture was monitored by TLC. After completion of reaction, the<br />

mixture was cooled to room temperature and solid residue was filtered and washed<br />

with 10mL of isopropyl alcohol followed by 50 ml of water. The product was<br />

crystallized from MeOH to give 10a-x in 87-97% yield.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 140


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

<br />

Spectral data of newly synthesized compounds<br />

2-(bis(methylthio) methylene)-4-methyl-3-oxo-N-p-tolylpentanamide 9i. yellow<br />

solid; mp 155-158 ° C; R f 0.54 (8:2 hexane-EtOAc); IR (KBr): 3373, 3072, 2895, 2828,<br />

1694, 1635, 1482, 1343, 1298 cm -1 ; 1 H NMR (400 MHz, DMSO): δ 1.18-1.20 (m,<br />

6H, 2 × i prCH 3 ), 1.57 (s, 3H, CH 3 ), 2.44 (s, 6H, 2 × SCH 3 ), 3.17-3.24 (m, 1H, i prCH),<br />

6.99–7.54 (m, 4H, Ar), 8.38 (br, s, 1H, -CONH); MS (m/z):323 [M + ];Anal. Calcd for<br />

C 16 H 21 NO 2 S 2 : C, 59.41; H, 6.54; N, 4.33; Found: C, 59.33; H, 6.45; N, 4.23.<br />

2-(bis(methylthio)methylene)-N-(4-methoxyphenyl)-4-methyl-3-oxopentanamide<br />

9o. yellow solid; mp 169-171 ° C; R f 0.57 (8:2 hexane-EtOAc); IR (KBr): 3439, 3007,<br />

2928, 2808, 1599, 1462, 1327, 1255 cm -1 ; 1 H NMR (400 MHz, DMSO): δ 1.18-1.20<br />

(m, 6H, 2 × i prCH 3 ), 2.44 (s, 6H, 2 × SCH 3 ), 3.17-3.24 (m, 1H, i prCH), 3.75 (s, 3H,<br />

OCH 3 ), 6.99–7.54 (m, 4H, Ar), 8.38 (br, s, 1H, -CONH); MS (m/z):339 [M + ];Anal.<br />

Calcd for C 16 H 21 NO 3 S 2 : C, 56.61; H, 6.24; N, 4.13; Found: C, 56.53; H, 6.14; N, 4.06.<br />

N-(4-chlorophenyl)-2-(cyclopropylcarbonyl)-3,3-bis(methylsulfanyl)prop-2-<br />

enamide 9t. Yello solid; mp 138-140 ° C, R f 0.52 (8:2 hexane-EtOAc); IR (KBr): 3364,<br />

2927, 1674, 1533, 1462, 1281, 1112, 873 cm -1 ; 1 H NMR (300 MHz, CDCl 3 ): δ 1.02-<br />

1.06 (m, 2H, CH 2 ), 1.21-1.24 (m, 2H, CH 2 ), 2.37-2.43 (m, 1H, CH), 2.47 (s, 6H, 2x<br />

SCH 3 ), 7.26-7.29 (d, 2H, j=9.6Hz, Ar-H), 7.53-7.55 (d, 2H, j=8.7Hz, Ar-H), 8.69 (s,<br />

1H, NH); MS (m/z): 342 (M + ); Anal. Calcd for C 15 H 16 ClNO 2 S 2 : C, 52.70; H, 4.72; N,<br />

4.10; Found: C, 52.72; H, 4.75; N, 4.12.<br />

2-(Cyclopropylcarbonyl)-N-(4-methoxyphenyl)-3,3-bis(methylsulfanyl)prop-2-<br />

ena- mide 9w. Yello solid; mp 154-156 ° C, R f 0.61 (8:2 hexane-EtOAc); IR (KBr):<br />

3354, 2925, 1684, 1525, 1450, 1285, 1112, 880, 753 cm -1 ; 1 H NMR (300 MHz,<br />

CDCl 3 ): δ 1.02-1.04 (m, 2H, CH 2 ), 1.22 (m, 2H, CH 2 ), 2.39-2.42 (m, 1H, CH), 2.47<br />

(s, 6H, 2x SCH 3 ), 3.84 (s, 3H, OCH 3 ), 6.85-6.88 (d, 2H, j=8.7Hz, Ar-H), 7.48-7.51<br />

(d, 2H, j=8.7Hz, Ar-H), 8.35 (s, 1H, NH); MS (m/z): 337 (M + ); Anal. Calcd for<br />

C 16 H 19 NO 3 S 2 : C, 56.95; H, 5.68; N, 4.15; Found: C, 56.92; H, 5.65; N, 4.12.<br />

N 3 -cyclohexyl-7-methyl-2,5-bis(methylthio)-N 6 -p-tolylpyrazolo[1,5-a]pyrimidine-<br />

3,6-dicarboxamide 10a. White solid; mp >320 o C, R f 0.31 (9:1Chloroform:<br />

Methanol); IR (KBr): 3309, 3254, 3016, 2925, 1671, 1473, 831, 807, 758 cm -1 ;<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 141


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

MS (m/z): 484 (M + ); Anal. Calcd for C 24 H 29 N 5 O 2 S 2 : C, 59.60; H, 6.04; N, 14.48;<br />

Found: C, 59.56; H, 6.03; N, 14.45.<br />

N 6 -(3-chlorophenyl)-N 3 -cyclohexyl-7-methyl-2,5-bis(methylthio)pyrazolo[1,5-a]<br />

pyrimidine-3,6-dicarboxamide 10b. Creamish solid; mp >320<br />

o C, R f 0.40<br />

(9:1Chloroform : Methanol); IR (KBr): 3379, 3024, 2902, 1651, 1516,1483, 1332,<br />

845, 800, 756, 695 cm -1 ; 1 H NMR (300 MHz, DMSO): δ 1.35-1.81 (m, 10H,CH 2 ),<br />

2.45 (s, 6H, SCH 3 ), 2.70 (s, 3H, CH3), 3.79 (m, 1H, CH), 7.05 (s, 1H, Ar-H), 7.31-<br />

7.35 (m, 2H, Ar-H), 8.0 (s, 1H, AR-H), 8.56 (s, 1H, CONH), 12.56 (s, 1H, CONH);<br />

13 C NMR (100 MHz, DMSO): 12.40, 23.86, 25.34, 27.54, 30.54, 32.55, 45.86, 98.23,<br />

98.89, 117.29, 118.69, 121.70, 129.88, 133.31, 141.26, 148.07, 154.00, 158.20,<br />

161.85, 163.79, 165.67; MS (m/z): 503 (M + ); Anal. Calcd for C 23 H 26 ClN 5 O 2 S 2 : C,<br />

54.80; H, 5.20; N, 13.89; Found: C, 54.81; H, 5.24; N, 13.89.<br />

N 6 -(3-chloro-4-fluorophenyl)-N 3 -cyclohexyl-7-methyl-2,5-bis(methylthio)<br />

pyrazolo[1,5-a]pyrimidine-3,6-dicarboxamide 10c. White solid; mp >320 ° C, R f<br />

0.48 (9:1Chloroform: Methanol); IR (KBr): 3323, 3026, 2908, 2856, 1674, 1630,<br />

1563, 1473, 1246, 927, 843, 798, 732, cm -1 ; MS (m/z): 522 (M + ); Anal. Calcd for<br />

C 23 H 25 ClFN 5 O 2 S 2 : C, 52.91; H, 4.83; N, 13.41; Found: C, 52.96; H, 4.83; N, 13.45.<br />

N 6 -(4-chlorophenyl)-N 3 -cyclohexyl-7-methyl-2,5-bis(methylthio)pyrazolo[1,5-a]<br />

pyrimidine-3,6-dicarboxamide 10d. Creamish solid; mp >320<br />

° C, R f 0.35<br />

(9:1Chloroform: Methanol); IR (KBr): 3379, 3024, 2902, 1651, 1516, 1483, 1332,<br />

1166, 954, 852, 822, 748, 709 cm -1 ; MS (m/z): 503 (M + ); Anal. Calcd for<br />

C 23 H 26 ClN 5 O 2 S 2 : C, 54.80; H, 5.20; N, 13.89; Found: C, 54.81; H, 5.24; N, 13.89.<br />

N 3 -cyclohexyl-N 6 -(4-fluorophenyl)-7-methyl-2,5-bis(methylthio)pyrazolo[1,5-a]<br />

pyrimidine-3,6-dicarboxamide 10e. White solid; mp >320<br />

° C, R f 0.28<br />

(9:1Chloroform: Methanol); IR (KBr): 3430, 3133, 3051, 2922, 1651, 1516, 1483,<br />

1232, 1166, 954, 883, 780, 743, 698 cm -1 ; MS (m/z): 487 (M + ); Anal. Calcd for<br />

C 23 H 26 FN 5 O 2 S 2 : C, 56.65; H, 5.37; N, 14.36; Found: C, 56.61; H, 5.34; N, 14.39.<br />

N 3 -cyclohexyl-7-methyl-2,5-bis(methylthio)-N 6 -(4-nitrophenyl)pyrazolo[1,5-a]<br />

pyrimidine-3,6-dicarboxamide 10f. Yellow solid; mp >320 ° C, R f 0.29 (9:1<br />

Chloroform: Methanol); IR (KBr): 3421, 3122, 3088, 2922, 1651, 1516, 1483, 1232,<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 142


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

1166, 954, 883, 780, 743, 698 cm -1 ; MS (m/z): 514 (M + ); Anal. Calcd for<br />

C 23 H 26 N 6 O 4 S 2 : C, 53.68; H, 5.09; N, 16.33; Found: C, 53.67; H, 5.04; N, 16.36.<br />

N 3 -cyclohexyl-N 6 -(4-methoxyphenyl)-7-methyl-2,5-bis(methylthio)pyrazolo[1,5-a]<br />

pyrimidine-3,6-dicarboxamide 10g. Creamish solid; mp >320 ° C, R f 0.36 (9:1<br />

Chloroform: Methanol); IR (KBr): 3422, 3127, 3085, 2942, 1628, 1483, 1237, 1158,<br />

883, 780, 743 cm -1 ; MS (m/z): 499 (M + ); Anal. Calcd for C 24 H 29 N 5 O 3 S 2 : C, 57.69; H,<br />

5.85; N, 14.02; Found: C, 57.67; H, 5.84; N, 14.03.<br />

N 3 -cyclohexyl-7-methyl-N 6 -(2,5-dimethylphenyl)-2,5-bis(methylthio)pyrazolo<br />

[1,5-a]pyrimidine-3,6-dicarboxamide 10h. Creamish solid; mp >320 ° C, R f 0.41<br />

(9:1Chloroform: Methanol); IR (KBr): 3430, 3133, 3051, 2922, 1651, 1516, 1483,<br />

1232, 1166, 954, 883, 780, 743, 698 cm -1 ; MS (m/z): 497 (M + ); Anal. Calcd for<br />

C 25 H 31 N 5 O 2 S 2 : C, 60.33; H, 6.28; N, 14.07; Found: C, 60.35; H, 6.25; N, 14.03.<br />

N 3 -cyclohexyl-7-isopropyl-2,5-bis(methylthio)-N 6 -p-tolylpyrazolo[1,5-a]<br />

pyrimidine-3,6-dicarboxamide 10i. White solid; mp >320<br />

° C, R f 0.35<br />

(9:1Chloroform: Methanol); IR (KBr): 3279, 3254, 3016, 2928, 2850, 1730, 1681,<br />

1566, 1313, 1246, 835, 810, 748, 667 cm -1 ; 1 H NM R(300 MHz, DMSO): δ 1.17-<br />

1.21(d, 6H, 2 × i prCH 3 ), 1.27-1.89 (m, 10H,CH 2 ), 2.48 (s, 6H, SCH 3 ), 2.54 (s, 3H,<br />

CH3), 3.79 (m, 1H, CH), 4.10-4.18 (m, 1H, i prCH), 7.09-7.19 (dd, 1H, Ar-H), 7.53-<br />

7.56 (d, 2H, Ar-H, J=8.1Hz), 8.21-8.23 (d, 1H, CONH), 11.94 (s, 1H, CONH); MS<br />

(m/z): 512 (M + ); Anal. Calcd for C 26 H 33 N 5 O 2 S 2 : C, 61.03; H, 6.50; N, 13.69; Found:<br />

C, 61.05; H, 6.53; N, 13.66.<br />

N 6 -(3-chlorophenyl)-N 3 -cyclohexyl-7-isopropyl-2,5-bis(methylthio)pyrazolo[1,5-<br />

a] pyrimidine-3,6-dicarboxamide 10j. White solid; mp >320<br />

° C, R f 0.44<br />

(9:1Chloroform: Methanol); IR (KBr): 3198, 3157, 3042, 2942, 2832, 1734, 1668,<br />

1654, 1257, 832, 806, 742 cm -1 ; MS (m/z): 532 (M + ); Anal. Calcd for<br />

C 25 H 30 ClN 5 O 2 S 2 : C, 56.43; H, 5.68; N, 13.16; Found: C, 56.45; H, 5.67; N, 13.16.<br />

N 6 -(3-chloro-4-fluorophenyl)-N 3 -cyclohexyl-7-isopropyl-2,5-bis(methylthio)<br />

pyrazolo[1,5-a]pyrimidine-3,6-dicarboxamide 10k. Creamish solid; mp >320 ° C, R f<br />

0.41 (9:1Chloroform: Methanol); IR (KBr): 3398, 3227, 3150, 2902, 2865, 1651,<br />

1516, 1452, 1326, 880, 828, 750, 697 cm -1 ; 1 H NMR(300 MHz, DMSO):<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 143


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

δ 1.27-1.30 (d, 6H, 2 × i prCH 3 ), 1.34-1.89 (m, 10H,CH 2 ), 2.49 (s, 6H, SCH 3 ), 3.74 (m,<br />

1H, CH), 4.10-4.18 (m, 1H, i prCH), 7.31-7.37 (m, 1H, Ar-H), 7.43-7.46 (m, 1H, Ar-<br />

H), 8.10-8.12 (m, 1H, Ar-H), 8.54-8.57 (d, 1H, CONH), 12.02(s, 1H, CONH); MS<br />

(m/z): 550 (M + ); Anal. Calcd for C 25 H 29 ClFN 5 O 2 S 2 : C, 54.58; H, 5.31; N, 12.73;<br />

Found: C, 54.59; H, 5.33; N, 12.76.<br />

N 6 -(4-chlorophenyl)-N 3 -cyclohexyl-7-isopropyl-2,5-bis(methylthio)pyrazolo[1,5-<br />

a]pyrimidine-3,6-dicarboxamide 10l. White solid; mp >320<br />

° C, R f 0.38<br />

(9:1Chloroform: Methanol); IR (KBr): 3425, 3258, 3124, 2998, 2847, 1661, 1532,<br />

1425, 1318, 867, 817, 753, 689 cm -1 ; 1 H NMR (300 MHz, DMSO): δ 1.17-1.19(d,<br />

6H, 2 × i prCH 3 ), 1.27-1.38 (m, 4H,CH 2 ), 1.66-1.89 (m, 6H,CH 2 ), 2.48 (s, 6H, SCH 3 ),<br />

3.79 (m, 1H, CH), 4.10-4.18 (m, 1H, i prCH), 7.32-7.35 (d, 2H, Ar-H, J=8.1Hz), 7.67-<br />

7.70 (d, 1H, Ar-H, J=8.4Hz), 8.53-8.57 (d, 1H, CONH), 11.96(s, 1H, CONH); MS<br />

(m/z): 532 (M + ); Anal. Calcd for C 25 H 30 ClN 5 O 2 S 2 : C, 56.43; H, 5.68; N, 13.16;<br />

Found: C, 56.45; H, 5.67; N, 13.16.<br />

N 3 -cyclohexyl-N 6 -(4-fluorophenyl)-7-isopropyl-2,5-bis(methylthio)pyrazolo[1,5-<br />

a]pyrimidine-3,6-dicarboxamide 10m. Creamish solid; mp >320 ° C, R f 0.45 (9:1<br />

Chloroform: Methanol); IR (KBr): 3454, 3260, 3142, 2978, 2850, 1645, 1542, 1425,<br />

1318, 867, 750 cm -1 ; MS (m/z): 515 (M + ); Anal. Calcd for C 25 H 30 FN 5 O 2 S 2 : C, 58.23;<br />

H, 5.86; N, 13.58; Found: C, 58.25; H, 5.87; N, 13.56.<br />

N 3 -cyclohexyl-7-isopropyl-2,5-bis(methylthio)-N 6 -(4-nitrophenyl)pyrazolo[1,5-<br />

a]pyrimidine-3,6-dicarboxamide 10n. Creamishsolid; mp >320 ° C, R f 0.34<br />

(9:1Chloroform: Methanol); IR (KBr): 3460, 3367, 3242, 2956, 2845, 1647, 1538,<br />

1420, 1318, 867, 750, 700 cm -1 ; MS (m/z): 542 (M + ); Anal. Calcd for C 25 H 30 N 6 O 4 S 2 :<br />

C, 55.33; H, 5.57; N, 15.49; Found: C, 55.35; H, 5.57; N, 15.46.<br />

N 3 -cyclohexyl-7-isopropyl-N 6 -(4-methoxyphenyl)-2,5-bis(methylthio)pyrazolo<br />

[1,5-a]pyrimidine-3,6-dicarboxamide. 10o. White solid; mp >320 ° C, R f 0.23<br />

(9:1Chloroform: Methanol); IR (KBr): 3483, 3242, 3162, 3068, 2902, 1675, 1584,<br />

1425, 1332, 1066, 954, 820, 750 cm -1 ; MS (m/z): 528 (M + ); Anal. Calcd for<br />

C 26 H 33 N 5 O 3 S 2 : C, 59.18; H, 6.30; N, 13.27; Found: C, 59.20; H, 6.32; N, 13.26.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 144


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

N 3 -cyclohexyl-7-isopropyl-N 6 -(2,5-dimethylphenyl)-2,5-bis(methylthio)pyrazolo<br />

[1,5-a]pyrimidine-3,6-dicarboxamide 10p. White solid; mp >320 ° C, R f 0.22<br />

(9:1Chloroform: Methanol); IR (KBr): 3503, 3450, 3206, 3068, 2908, 1628, 1548,<br />

1420, 1342, 1066, 825, 754 cm -1 ; MS (m/z): 525 (M + ); Anal. Calcd for C 27 H 35 N 5 O 3 S 2 :<br />

C, 61.68; H, 6.71; N, 13.32; Found: C, 61.67; H, 6.72; N, 13.36.<br />

N 3 -cyclohexyl-7-cyclopropyl-2,5-bis(methylthio)-N 6 -p-tolylpyrazolo[1,5-a]pyrimidine-3,6-dicarboxamide<br />

10q. Creamish solid; mp >320 ° C, R f 0.35 (9:1Chloroform:<br />

Methanol); IR (KBr): 3460, 3226, 3047, 2938, 1615, 1539, 1422, 1336, 1066, 834,<br />

757 cm -1 ; 1 H NMR (300 MHz, DMSO): δ 0.98-1.01 (m, 4H, 2 ×CH 2 ), 1.16-1.37 (m,<br />

4H, CH 2 ), 1.55-1.89 (m, 6H, CH 2 ), 2.25-2.27 (s, 3H, CH 3 ), 2.43.2.77 (m, 6H, SCH 3 ),<br />

3.64 (m, 2H, CH), 7.09-7.19 (dd, 2H, Ar-H, J=7.8Hz, J=8.4Hz), 7.67-7.70 (d, 1H,<br />

Ar-H, J=8.1Hz), 8.21-8.23 (d, 1H, CONH), 11.96 (s, 1H, CONH); MS (m/z): 509<br />

(M + ); Anal. Calcd for C 26 H 31 N 5 O 2 S 2 : C, 61.27; H, 6.13; N, 13.74; Found: C, 61.25; H,<br />

6.17; N, 13.76.<br />

N 6 -(3-chlorophenyl)-N 3 -cyclohexyl-7-cyclopropyl-2,5-bis(methylthio)pyrazolo<br />

[1,5-a]pyrimidine-3,6-dicarboxamide 10r. White solid; mp >320 ° C, R f 0.43<br />

(9:1Chloroform: Methanol); IR (KBr): 3457, 3345, 3147, 3038, 2952, 1615, 1539,<br />

1422, 1336, 1076, 828, 745 cm -1 ; MS (m/z): 530 (M + ); Anal. Calcd for<br />

C 25 H 28 ClN 5 O 2 S 2 : C, 56.64; H, 5.32; N, 13.21; Found: C, 56.62; H, 5.32; N, 13.24.<br />

N 6 -(3-chloro-4-fluorophenyl)-N 3 -cyclohexyl-7-cyclopropyl-2,5-bis(methylthio)<br />

pyrazolo[1,5-a]pyrimidine-3,6-dicarboxamide 10s. Creamish solid; mp >320 ° C, R f<br />

0.40 (9:1Chloroform: Methanol); IR (KBr): 3448, 3250, 3130, 2948, 2902, 1651,<br />

1516, 1483, 1332, 1166, 850, 772, 705 cm -1 ; MS (m/z): 548 (M + ); Anal. Calcd for<br />

C 25 H 27 ClFN 5 O 2 S 2 : C, 54.78; H, 4.97; N, 12.78; Found: C, 54.76; H, 4.95; N, 12.74.<br />

N 6 -(4-chlorophenyl)-N 3 -cyclohexyl-7-cyclopropyl-2,5-bis(methylthio)pyrazolo<br />

[1,5-a]pyrimidine-3,6-dicarboxamide 10t. Creamish solid; mp >320 ° C, R f 0.46<br />

(9:1Chloroform: Methanol); IR (KBr): 3328, 3248, 3057, 2964, 2926, 1651, 1516,<br />

1483, 1328, 1158, 850, 772 cm -1 ; MS (m/z): 530 (M + ); Anal. Calcd for<br />

C 25 H 28 ClN 5 O 2 S 2 : C, 56.64; H, 5.32; N, 13.21; Found: C, 56.62; H, 5.32; N, 13.24.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 145


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

N 3 -cyclohexyl-7-cyclopropyl-N 6 -(4-fluorophenyl)-2,5-bis(methylthio)pyrazolo<br />

[1,5-a]pyrimidine-3,6-dicarboxamide 10u. White solid; mp >320 ° C, R f 0.23<br />

(9:1Chloroform: Methanol); IR (KBr): 3408, 3340, 3277, 3070, 2928, 2852, 1672,<br />

1556, 1481, 1354, 1251, 1058, 893, 833, 792, 750, 711 cm -1 ; 13 C NMR (100 MHz,<br />

CDCl 3 ): 10.96, 12.35, 13.76, 23.32, 25.29, 46.23, 98.07, 99.87, 114.93, 115.14,<br />

120.80, 120.88, 136.19, 148.46, 153.74, 156.37, 157.47, 158.75, 161.92, 165.71,<br />

166.89; MS (m/z): 513 (M + ); Anal. Calcd for C 25 H 28 FN 5 O 2 S 2 : C, 58.46; H, 5.49; N,<br />

13.63; Found: C, 58.49; H, 5.47; N, 13.64.<br />

N 3 -cyclohexyl-7-cyclopropyl-2,5-bis(methylthio)-N 6 -(4-nitrophenyl)pyrazolo[1,5-<br />

a]pyrimidine-3,6-dicarboxamide 10v. Creamish solid; mp >320 ° C, R f 0.52<br />

(9:1Chloroform: Methanol); IR (KBr): 3422, 3205, 3169, 2964, 2856, 1658, 1522,<br />

1425, 1084, 838, 736 cm -1 ; MS (m/z): 540 (M + ); Anal. Calcd for C 25 H 28 N 6 O 4 S 2 : C,<br />

55.54; H, 5.22; N, 15.54; Found: C, 55.55; H, 5.22; N, 15.54.<br />

N 3 -cyclohexyl-7-cyclopropyl-N 6 -(4-methoxyphenyl)-2,5-bis(methylthio)pyrazolo<br />

[1,5-a]pyrimidine-3,6-dicarboxamide 10w. Creamish solid; mp >320 ° C, R f 0.48<br />

(9:1Chloroform: Methanol); IR (KBr): 3445, 3247, 3038, 2952, 1628, 1539,1422,<br />

1336, 1257, 838, 745 cm -1 ; MS (m/z): 525 (M + ); Anal. Calcd for C 26 H 31 N 5 O 3 S 2 : C,<br />

59.40; H, 5.94; N, 13.32; Found: C, 59.44; H, 5.92; N, 13.34.<br />

N 3 -cyclohexyl-7-cyclopropyl-N 6 -(2,5-dimethylphenyl)-2,5-bis(methylthio)<br />

pyrazolo[1,5-a]pyrimidine-3,6-dicarboxamide 10x. Creamish solid; mp >320 ° C, R f<br />

0.23 (9:1Chloroform: Methanol); IR (KBr): 3258, 3158, 3038, 2948, 1645, 1558,1426,<br />

1358, 1216, 835, 745,708 cm -1 ; MS (m/z): 523 (M + ); Anal. Calcd for C 27 H 33 N 5 O 2 S 2 :<br />

C, 61.92; H, 6.35; N, 13.37; Found: C, 61.94; H, 6.32; N, 13.34.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 146


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

1 H NMR spectrum of compound 9i<br />

Expanded 1 H NMR spectrum of compound 9i<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 147


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

1 H NMR spectrum of compound 10b<br />

1 H NMR spectrum of compound 10k<br />

F<br />

Cl<br />

O<br />

N<br />

H<br />

S<br />

N<br />

N N<br />

O<br />

S<br />

NH<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 148


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

1 H NMR spectrum of compound 10l<br />

Expanded 1 H NMR spectrum of compound 10l<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 149


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

13 C NMR spectrum of compound 10b<br />

Expanded 13 C NMR spectrum of compound 10b<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 150


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

13 C NMR spectrum of compound 10u<br />

Expanded 13 C NMR spectrum of compound 10u<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 151


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

MASS spectrum of compound 10a<br />

MASS spectrum of compound 10d<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 152


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

MASS spectrum of compound 10o<br />

MASS spectrum of compound 10u<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 153


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

IR Spectrum of compound 10i<br />

90<br />

%T<br />

75<br />

3279.10<br />

3254.02<br />

3016.77<br />

2928.04<br />

2850.88<br />

1730.21<br />

1681.98<br />

1411.94<br />

1369.50<br />

1313.57<br />

1246.06<br />

1193.98<br />

1111.03<br />

964.44<br />

810.13<br />

748.41<br />

667.39<br />

547.80<br />

60<br />

45<br />

1627.97<br />

1591.33<br />

1566.25<br />

1550.82<br />

1506.46<br />

530.44<br />

503.44<br />

468.72<br />

451.36<br />

30<br />

1531.53<br />

1481.38<br />

15<br />

0<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

1/cm<br />

IR Spectrum of compound 10u<br />

100<br />

%T<br />

80<br />

60<br />

40<br />

20<br />

0<br />

F<br />

3408.33<br />

3340.82<br />

3277.17<br />

3142.15<br />

3070.78<br />

3012.91<br />

N<br />

H<br />

2928.04<br />

2852.81<br />

O<br />

S<br />

N<br />

N N<br />

O<br />

S<br />

NH<br />

1672.34<br />

1620.26<br />

1604.83<br />

1556.61<br />

1533.46<br />

1504.53<br />

1481.38<br />

1444.73<br />

1354.07<br />

1317.43<br />

1251.84<br />

1209.41<br />

1095.60<br />

1058.96<br />

974.08<br />

893.07<br />

833.28<br />

792.77<br />

750.33<br />

711.76<br />

669.32<br />

557.45<br />

522.73<br />

501.51<br />

434.00<br />

-20<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

1/cm<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 154


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

4.8 Reference<br />

1. PCT Int. Appl., 2007, WO 2007076092 A2 20070705.<br />

2. (a) Alexander, J. O.; Wheeler, G. R.; Hill, P. D.; Morris, M. P. Biochem. Pharmacol.1966, 15,<br />

881; (b) Elion, G. B.; Callahan, S.; Nathan, H.; Bieher, S.; Rundles, R.W.; Hitchings, G. H.<br />

Biochem. Pharmacol. 1963, 12, 85; (c) Earl, R. A.; Pugmire, R. J.; Revanker, G. R.;<br />

Townsend, L. B. J. Org. Chem. 1975, 40, 1822.<br />

3. Novinson, T.; Bhooshan, B.; Okabe, T.; Revankar, G. R.; Wilson, H. R. J. Med. Chem. 1976,<br />

19, 512.<br />

4. Senga, K.; Novinson, T.; Wilson, H. R. J. Med. Chem. 1981, 24, 610.<br />

5. Suzuki, M.; Iwasaki, H.; Fujikawa, Y.; Sakashita, M.; Kitahara, M.; Sakoda, R. Bioorg. Med.<br />

Chem. Lett. 2001, 11, 1285.<br />

6. Almansa, C. A.; Alberto, F.; Cavalcanti, F. L.; Gomez, L. A.; Miralles, A.; Merlos, M.;<br />

Garcia-Rafanell, J.; Forn, J. J. Med. Chem. 2001, 44, 350.<br />

7. Novinson, T.; Hanson, R.; Dimmitt, M. K.; Simmon, L. N.; Robins, R. K.; O’Brien, D. E.<br />

J. Med. Chem. 1974, 17, 645.<br />

8. (a) Chen, C.; Wilcoxen, K. M.; Huang, C. Q.; Xie, Y.-F.; McCarthy, J. R.;Webb, T. R.; Zhu,<br />

Y.-F.; Saunders, J.; Liu, X.-J.; Chen, T.-K.; Bozigian, H.; Grigoriadis, D. E. J. Med. Chem.<br />

2004, 47, 4787; (b) Huang, C. Q.; Wilcoxen, K. M.; Grigoriadis, D. E.; McCarthy, J. R.;<br />

Chen, C. Bioorg. Med. Chem. Lett. 2004, 14, 3943; (c) Chen, C.; Wilcoxen, K. M.; Huang, C.<br />

Q.; McCarthy, J. R.; Chen, T.; Grigoriadis, D. E. Bioorg. Med. Chem. Lett. 2004, 14, 3669;<br />

(d) Wustrow, D. J.; Capiris, T.; Rubin, R.; Knobelsdorf, A.; Akunne, H.; Davis, M. D.;<br />

MacKenzie, R.; Pugsley, T. A.; Zoski, K. T.; Heffner, T. G.; Wise, L. D. Bioorg. Med. Chem.<br />

Lett. 1998, 8, 2067.<br />

9. (a) Selleri, S.; Gratteri, P.; Costagli, C.; Bonaccini, C.; Costanzo, A.; Melani, F.; Guerrini, G.;<br />

Ciciani, G.; Costa, B.; Spinetti, F.; Martini, C.; Bruni, F. Bioorg. Med. Chem. 2005, 13, 4821;<br />

(b) Selleri, S.; Bruni, F.; Costagli, C.; Costanzo, A.; Guerrini, G.; Ciciani, G.; Costa, B.;<br />

Martini, C. Bioorg. Med. Chem. 2001, 9, 2661; (c) Selleri, S.; Bruni, F.; Costagli, C.;<br />

Costanzo, A.; Guerrini, G.; Ciciani, G.; Costa, B.; Martini, C. Bioorg. Med. Chem. 1999, 7,<br />

2705.<br />

10. Drizin, I.; Holladay, M. W.; Yi, L.; Zhang, H. Q.; Gopalakrishnan, S.; Gopalakrishnan, M.;<br />

Whiteaker, K. L.; Buckner, S. A.; Sullivan, J. P.; Carroll, W. A. Bioorg. Med. Chem. Lett.<br />

2002, 12, 1481.<br />

11. Altenbach, R.J.; Black, L.A.; Chang, S.; Cowart, M.D.; Faghih, R.; Gfesser, G.A.; Ku, Y.;<br />

Liu, H.; Lukin, K.A.; Nersesian, D.L.; Pu, Y.; Curtis, M.P.. U.S. Patent Appl. 256,309, 2005.<br />

Chem. Abstr. 2005, 144, 36332.<br />

12. Kirkpatrick,W. E.; Okabe, T.; Hillyard, I.W.; Robin, R. K.; Dren, A. T. J. Med. Chem. 1977,<br />

20, 386.<br />

13. C.F.P. George, Lancet, 2001, 358, 1623.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 155


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

14. (a) Sullivan, S.K.; Petroski, R.E.; Verge, G.; Gross, R.S.; Foster, A.C.; Grigoriadis,<br />

D.E.; J. Pharmacol. Exp. Ther. 2004, 311, 537.(b) Wegner, F.; Deuther-Conrad, W.;.<br />

Scheunemann, M.; Brust, P.; Fischer, S.; . Hiller, A; Diekers, M.; Strecker, K.; Wohlfarth,<br />

K.; Allgaier, C.; Steinbach, J.; Hoepping, A.; Eur. J. Pharm., 2008, 580 1. (c) Hoepping, A.;<br />

Diekers, M.; Deuther-Conrad, W.; Scheunemann, M.; Fischer, S.; Hiller, A.; Wegner, F.;<br />

Steinbach, J.; Brus, P.; Bioorg. Med. Chem. 2008, 16, 1184..<br />

15. (a) Lippa, A.; Czobor, P.;. Stark, J.; Beer, B.;. Kostakis, E.; Gravielle, M.; Bandyopadhyay,<br />

S.; Russek, S.J.; Gibbs, T.T.; Farb, D.H.; Skolnick, P.; Proc. Natl. Acad. Sci. U.S.A. 2005,<br />

102, 7380. (b). Mirza, N.R.; Rodgers, R.J.; Mathiasen, L.S.; J. Pharmacol. Exp. Ther. 2006,<br />

316, 1291.<br />

16. Tully W. R.; Gardner, C. R.; Gillespie, R. J.; Westwood, R., J. Med. Chem, 1991, 34, 7<br />

17. Alexandrovich, I, A.; Vasilievich, I. A.; Filippovich, S. N. PCT Int. Appl., 2009093206,<br />

18. Ivachtchenko, A. V.; Golovina, E. S.; Kadieva, M. G.; Koryakova, A. G.; Mitkin, O. D.;<br />

Tkachenko, S. E.; Kysil, V. M.; Okun, I.; E. J. Med. Chem. 2011, 46, 1189.<br />

19. Selleri, S.; Bruni, F.; Costagli, C.; Costanzo, A.; Guerrini, G.; Ciciani, G.; Costab B.;<br />

Martinib, C.; Bioorg. Med. Chem. 2001, 9, 2661.<br />

20. Tellew, J. E.; Lanier, M.; Moorjani, M.; Lin, E.; Luo, Z.; Slee, D. H.; Zhang, X.; Hoare, S. R.<br />

J.; Grigoriadis, D. E.; Denis, Y.; Fabio, St. R. D.; Modugno, E. D.; Saunders, J.; Williams, J.<br />

P.; Bioorg. Med. Chem Lett. 2010. 20, 7259.<br />

21. Wang, S. Q.; Fang, L.; Liu, X.; Zhao, K.; Chinese Chemical Letters Vol. 2004, 15, 885.<br />

22. Springer, R. H.; Scholten, M. B.; O’Brien, D. E.; Novinson, T.; Miller, J. P.; Robins, Roland<br />

K.; J. Med. Chem. 1982, 25, 235.<br />

23. Frey, R. R.; Curtin, M. L.; Albert, D. H.; Glaser, K. B.; Pease, L. J.; Soni, N. B.; Bouska, J. J.;<br />

Reuter, D.; Stewart, K. D.; Marcotte, P.; Bukofzer, G.; Li, J.; Davidsen, S. K.; Michaelides,<br />

M. R. J. Med. Chem. 2008, 51, 3777.<br />

24. Ding, R.; He, Y.; Xu, J.; Liu, H.; Wang, X.; Feng, M.; Qi, C.; Zhang, J.; Molecules 2010, 15,<br />

8723.<br />

25. Ahmeda, O. M.; Mohamed, M. A.; Ahmed, R. R.; Ahmed, S.A; E. J. Med. Chem. 2009, 44<br />

3519,<br />

26. Mulakayala, N.; Reddy U; Chaitanya, M.; Chitta, M. H. M. Kumar, S.; Golla, N.; J. Korean<br />

Chem. Soc., 2011, 55, 4.<br />

27. Abbas-Temirek, H. H., Assiut <strong>University</strong> Journal of Chem., 35(1), 37-44; 2006<br />

28. Wu, Y.-C., Li, H.-J.; Liu, L.; Wang, D.; Yang, H.-Z.; Chen, Yong-Jun J. Fluoresc, 2008 18,<br />

357.<br />

29. Danagulyan, G. G.; Boyakhchyan, A. P.; Kirakosyan, V. G.; Chem. of Heterocyclic<br />

Compounds, 2010, 46, 6,<br />

30. Ming, L.; Shuwen, W.; Lirong, W.; Huazheng, Y.; Xiuli, Z.; J. Heterocyclic Chem. 2005, 42,<br />

925.<br />

31. Thomas, A.; Chakraborty, M.; H. Ila; Junjappa, H. Tetrahedron, 1990, 46, 577.<br />

32. Mizar, P.; Myrboh, B.; Tetrahedron Letters, 2009, 50,3088.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 156


Chapter 4<br />

Synthesis of highly substituted pyrazolopyrimidine<br />

33. Bassoude, I.; -Raboin, S.-B.; Leger, J.-M.; Jarry, C.; Essassi, E. M.; Guillaumet, G.<br />

Tetrahedron, 2011, 67, 2279.<br />

34. Britsun, V. N.; Chemistry of Heterocyclic Compounds, 2008, 44, 10.<br />

35. Kryl’skii, D. V.; Shikhaliev, Kh. S.; Chuvashlev, A. S.; Russian Journal of Organic<br />

Chemistry, 2010, 46(3), 410–416.<br />

36. Ahmeda, S. A.; Husseina, A. M.; Hozayena, W. G. M.; El-Ghandoura, A. H. H.; Abdelhamid,<br />

A.O.; J. Heterocyclic Chem.,2007. 44, 803.<br />

37. Shaabana, M. R.; Saleh, T. S.; Mayhoub, A. S.; Farag, A. M.; E. J. Med. Chem. 2011, 46<br />

3690.<br />

38. Shaikh, B. M.; Konda, S. G.; Chobe, S. S.; Mandawad, G.G.; Yemul, O.S.;. Dawane, B.S.;<br />

J. Chem. Pharm. Res., 2011, 3(2), 435.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 157


Chapter - 5<br />

Rapid Synthesis of Highly Substituted<br />

Pyrrole Derivatives: Analogs of<br />

Atorvastatin


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

5.1 Introduction<br />

Pyrrole is an important π-excessive aromatic heterocycle because this ring<br />

system is incorporated in as a basic structural unit in porphyrins;porphin (heam) and<br />

chlorine (chlorophyll) and corrins (vitamin B12) (Figure-1). More over the presence<br />

of pyrrole ring in system in porphobilinogen (intermediate in biosynthesis of<br />

porphyrins and vitamin B12), biliverdin and bilirubin (pyrrole-based bile pigments)<br />

and pyrrolnitrin (with antibiotic activity) has provided an impetus to the pyrrole<br />

chemistry.<br />

Figure-1<br />

Pyrrole has a planar pentagonal structure with four carbon atoms and nitrogen<br />

sp 2 -hybridized. Each ring atom forms two sp 2 -sp 2 σ -bonds to its neighbouring ring<br />

atoms and one sp 2 -sσ -bond to a hydrogen atom. The remaining unhybridized p-<br />

orbitals, one on each ring atom (with one electron on each carbon and two electron on<br />

nitrogen), are perpendicular to the plane of σ–bonds and overlap form a π-molecular<br />

system with three bonding orbitals. The six π-electrons form an aromatic sextet which<br />

is responsible for aromaticity and renders stability to the pyrrole ring. The C α -N and<br />

C α -C β bonds are shorter than normal single bonds, where as C α -C β bonds are normal<br />

than normal double bonds. The molecular dimentions of the pyrrole reflect cyclic<br />

delocalization with the environment of lone pair of electrons on the nitrogen atom.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 158


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

Pyrrole is extremely weak base because the lone pair of electrons on the<br />

nitrogen atom involved in the cyclic delocalization and is, therefore, less available for<br />

protonation. Moreover, pyrrole is a weaker base than pyridine and even than aniline in<br />

which lone pair on the nitrogen atom is involved in the resonance and not essentially<br />

contributes to the aromatic sexlet. The protonation of pyrrole at nitrogen or C 2 or C 3<br />

atom of the ring reduces its basicity and destroys its aromaticity. However, C- and N-<br />

alkyl substituents enhance the basicity of pyrrole but the electron withdrawing<br />

substituents on the ring make pyrrole a weaker base. 1-11<br />

5.2 Various synthetic approaches for highly substituted pyrroles.<br />

Pyrroles are generally synthesized by the cyclization reactions involving<br />

nucleophilic-electrophilic interactions. This is the most widely used method and<br />

involves the cyclizative condensation of α-aminoketones or α-amino-β-keto<br />

esters(three atom fragment with nucleophilic nitrogen and electrophilic carbonyl<br />

carbon) with β-diketones or β-ketoesters (two atom fragment with electrophilic<br />

carbonyl carbon and a nucleophilic carbon) with the formation of N-C 2 and C 3 -C 4<br />

bonds (Figure-2).<br />

Figure-2<br />

The reaction of α-aminoketones with alkynes proceeds with the nucleophilic<br />

addition of amino group to the electrophilic carbon of alkyne with the formation of<br />

enamine intermediate which on intramolecular cyclization provides pyrroles involving<br />

nucleophilc (β-carbon of the enamine intermediate)-electrophilic (carbonyl carbon)<br />

interaction with the formation of C 3 -C 4 bond (Figure-3). 12<br />

Figure-3<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 159


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

The reaction of β-amino-α,β-unsaturated esters 91(three atom fragment) with<br />

nitroalkenes (two atom fragment) provides substituted pyrrole involving (3+2)<br />

cyclization with N-C 2 and C 3 -C 4 bonds (Figure-4). 13<br />

Figure-4<br />

Base catalyzed (3+2) cyclizative condensation of α-diketones with amines<br />

substituted with electron withdrawing substituents at α, α’-positions results in the<br />

corresponding pyrroles with the formation of C 2 -C 3 and C 4 -C 5 bonds (Figure-5). 14<br />

Figure-5<br />

The reaction of β-keto esters with α-halo ketones or aldehydes in the presence<br />

of ammonia or primary amine affords pyrroles involving (2+2+1) cyclization with the<br />

formation of N-C 2 , C 3 -C 4 and N-C 5 bonds. (Hantzsch Synthesis). The reaction<br />

proceeds via stabilized enamine intermediate which on C-alkylation and N-alkylation<br />

by α-haloketone leads to the formation of corresponding pyrrole (Figure-6).<br />

Figure-6<br />

The condensation of aliphatic aldehydes or ketones with hydrazine under<br />

strongly acidic conditions affords pyrroles involving (3+3) sigmatropic rearrangement<br />

and cyclization. (Piloty-Robinson Synthesis). This reaction can also be applied for the<br />

preparation of N-substituted pyrroles by condensing ketones with methyl hydrazine or<br />

N,N’-dimethyl hydrazine (Figure-7). 15<br />

R<br />

R<br />

H 2 N NH 2<br />

O + O<br />

R<br />

R<br />

H 3 C<br />

CH 3<br />

H + H +<br />

RH 2 C<br />

N NH H<br />

CH 2 R -NH 3<br />

RH 2 C<br />

R<br />

N<br />

H<br />

R<br />

CH 2 R<br />

Figure-7<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 160


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

The reaction of benzoin with benzyl aryl ketones in the presence of<br />

ammonium acetate results in the formation of polyaryl substituted pyrroles involving<br />

(2+2+1) cyclization (Figure-8). 16 Figure-8<br />

The condensation of alkyl isocyanoacetates with aldehydes in 2:1 ratio<br />

proceeds to involve an initial conjugated addition followed by an anionic cyclization<br />

with the formation of C 2 -C 3 , C 3 -C 4 and C 4 -C 5 bonds (Figure-9). 17<br />

Figure-9<br />

It is the most general method and involves (4+1)cyclizative condensation of<br />

1,4-dikitones (enolizable) with ammonia or its derivatives with the formation of N-C 2<br />

and N-C 5 bonds 1-6, 18-19 . The reaction is considered to proceed with the successive<br />

attacks of nucleophilic nitrogen on the carbonyl carbon and finally followed by<br />

dehydration (aromatization) for which driving force is provided by the stability of the<br />

resulting pyrrole (Figure-10).<br />

Figure-10<br />

Metal ion assisted amination of 1,4-dienes or diynes with primary amines<br />

followed by cyclization provides N-substituted pyrroles (Figure 11 & 12). 20-21<br />

Figure 11<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 161


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

Figure 12<br />

2-Acylaziridines undergo ring expansion reactions to provide pyrroles<br />

involving ring-opened dipolar intermediates (Figure-13). 22<br />

Figure-13<br />

Vinylazirines also undergo ring expansion reactions, but two isomeric pyrroles<br />

are obtained depending on the reaction conditions. Thermal reactions involve a<br />

nitrene intermediate, while photochemical reaction proceeds via a nitrile ylide<br />

intermediate (Figure-14). 23<br />

Figure-14<br />

The complex ring systems, formed by (3+2) cycloaddition of activated alkynes<br />

substituted with electron-withdrawing substituents, with mesoionic heterocycles,<br />

undergo extrusion reactions with the cleavage of larger ring leaving the pyrrole ring<br />

system intact (Figure-15). 24-26<br />

Figure-15<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 162


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

Ethyl-3-amino-5-phenyl-1H-pyrrol-2-carboxylate found to be a useful<br />

intermediate in the synthesis of other nitrogen heterocycles. 27 However Elliott and coworkers<br />

28-29 have described that condensation of aldehyde with aminomalonate gave<br />

3-substituted enamine, which was cyclized in the presence of sodium methoxide to<br />

give 3-amino-4-benzyl-1H-pyrrol-2-carboxylate (Figure-16).<br />

Figure-16<br />

Using a similar approach toward the synthesis of pyrrole (Figure-17), Ning<br />

Chen, et al. 30<br />

were failed to synthesize 2-substituted enamine intermediate from<br />

benzoyl acetonitrile and diethyl aminomalonate using standard conditions such as<br />

azeotropic removal of water, 31<br />

dehydration with molecular sieves or Lawis acid<br />

catalysis(TiCl 4 32 , BF3.OEt 2 )<br />

NH 2<br />

COOEt<br />

Ph<br />

O<br />

CN<br />

EtOOC<br />

EtOOC<br />

EtOOC<br />

NC<br />

N<br />

H<br />

Ph<br />

EtOOC<br />

H 2 N<br />

N<br />

H<br />

Ph<br />

Figure-17<br />

Considering the lower electrophilicity of the aryl ketone compared to the<br />

aldehyde, an alternative strategy for preparing enamine was examined. Since amines<br />

are known to undergo substitution reactions with chloro- and alkylthio-substituted<br />

olefins to yield enamines 33 , a similar approach was considered and the reaction of p-<br />

toluenesulfonyl enol ester of α-cyano ketone with diethyl aminomalonate was<br />

investigated. Tosylate was prepared by reacting benzoyl acetonitrile with p-<br />

toluenesulfonic anhydride (1.2 eq.) in dichloromethane and triethylamine (1.5 eq.) in<br />

99% yield. When a mixture of tosylate and diethyl aminomalonate hydrochloride (1.2<br />

eq.) were treated with an ethanolic solution of sodium ethoxide (0.2 M, 3.5 eq.), 34 the<br />

pyrrole was directly obtained without isolation of enamine. Addition of the amine,<br />

cyclization and decarboxylation occurred in one-pot at room temperature to give a<br />

46% overall yield of from benzoyl acetonitrile (Figure-18).<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 163


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

Figure-18<br />

In continuation with this study prior work at <strong>Saurashtra</strong> <strong>University</strong> on 1Hpyrrole<br />

derrivatives clubed with substituted-1,3,4-Oxadiazoles, 1-[2,4-dimethyl-5-(5-<br />

phenyl-1,3,4-oxadiazol-2-yl)-1H-pyrrol-3-yl]ethanone derivatives were synthesized.<br />

The synthetic stretagy follows starting with acid catalyzed cyclocondensation of ethyl<br />

ester derivative of 3-amino-2-butenoic acid (generated insitu from ethylacetoacetate<br />

upon oximenation followed by reduction) with acetylacetone to afford ethyl-3-acetyl-<br />

2,4-dimethyl-1H-pyrrole-5-carboxylate, which was derivatized into corresponding<br />

hydrazide derivative on treatment with hydrazine hydrate. The hydrazide derivative<br />

on reaction with different aromatic and heteroaromatic acid, in the presence of<br />

phosphorous oxychloride affords 1-[2,4-dimethyl-5-(5-phenyl-1,3,4-oxadiazol-2-yl)-<br />

1H-pyrrol-3-yl]ethanone derivatives (Figure-19). 35-36<br />

Figure-19<br />

A range of 2,5-disubstituted and 2,4,5-trisubstituted pyrroles can be<br />

synthesized from dienyl azides at room temperature using ZnI 2 or Rh 2 (O 2 CC 3 F 7 ) 4 as<br />

catalysts (Figure-20). 37<br />

Figure-20<br />

The CuI/N,N-dimethylglycine-catalyzed reaction of amines with γ-bromosubstituted<br />

γ,δ-unsaturated ketones in the presence of K 3 PO 4 and NH 4 OAc gave the<br />

corresponding polysubstituted pyrroles in very good yields (Figure-20). 38<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 164


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

R<br />

O<br />

R 0.1 eq. CuI<br />

1<br />

+ H 0.2 eq. N,N-dimethylglycine.HCl<br />

2N R 3<br />

R 2<br />

Br<br />

2eq.K 3 PO 4 ,2eq.NH 4 OAc<br />

MeCN or toluene, reflux, 10 -20 R<br />

h<br />

1<br />

Figure-20<br />

Two methods for the regioselective synthesis of tetra- and trisubstituted N-H<br />

pyrroles from starting vinyl azides have been developed: A thermal pyrrole formation<br />

via the 1,2-addition of 1,3-dicarbonyl compounds to 2H-azirine intermediates<br />

generated in situ from vinyl azides and a Cu(II)-catalyzed synthesis with ethyl<br />

acetoacetate through a 1,4-addition (Figure-21). 39<br />

R<br />

R 3<br />

N<br />

R 2<br />

Figure-21<br />

An operationally simple, practical, and economical Paal-Knorr pyrrole<br />

condensation of 2,5-dimethoxytetrahydrofuran with various amines and sulfonamines<br />

in water in the presence of a catalytic amount of iron(III) chloride allows the synthesis<br />

of N-substituted pyrroles (Figure-22) under very mild reaction conditions in good to<br />

excellent yields. 40<br />

Figure-22<br />

A new and efficient three-component reaction between dialkyl<br />

acetylenedicarboxylates, aromatic amines, triphenylphosphine, and arylglyoxals<br />

afforded polysubstituted pyrrole derivatives in high yields (Figure-23). The reactions<br />

were performed in dichloromethane at room temperature and under neutral<br />

conditions. 41<br />

Figure-23<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 165


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

A three-component reactions of arylacyl bromides, amines, and dialkyl<br />

acetylene dicarboxylate in the presence of iron(III) chloride as a catalyst at room<br />

temperature afforded polysubstituted pyrroles in high yields (Figure-24). 42<br />

Ar<br />

O<br />

H 2 N R<br />

Br + or<br />

NH 4 OAc<br />

R<br />

+ 1 O 2 C<br />

CO 2 R 1<br />

15 mol - % FeCl 3<br />

CH 2 Cl 2 , rt, 14-16 h<br />

CO 2 R 1<br />

Ar N<br />

CO 2 R 1<br />

R<br />

Figure-24<br />

A new and efficient three-component reaction between dialkyl acetylene<br />

dicarboxylates, aromatic amines, triphenylphosphine, and arylglyoxals afforded<br />

polysubstituted pyrrole derivatives in high yields (Figure-25). The reactions were<br />

performed in dichloromethane at room temperature and under neutral conditions. 43<br />

Figure-25<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 166


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

5.3 Biological activity associated with pyrrole derivatives<br />

Pyrrole has its own pharmaceutical importance and various activities of<br />

pyrrole include:<br />

‣<br />

Selective Mono Amine Oxidase type A Inhibitors 44-57<br />

‣<br />

Antitubercular activities 58-66<br />

‣<br />

HIV-1 intigrase Inhibitors 67-69<br />

‣<br />

Antiproliferative activity 70-71<br />

‣<br />

Glycogen Synthase Kinase-3(GSK-3) Inhibitors 72-79<br />

‣<br />

Analgesic and Antiinflammatory activity 80-81<br />

‣<br />

Bactericidal activities 82-86<br />

‣<br />

Fungicides and Plant Growth Regulators 87-89<br />

‣<br />

Action on the Cardiovascular System 90-94<br />

‣<br />

Neuronal L-type Calcium channel activator 95<br />

.<br />

5.4 Some drugs from pyrrole nucleus 44-95<br />

H 3 CO<br />

O<br />

O<br />

CH 3<br />

O<br />

N<br />

N<br />

HH<br />

CH 3<br />

O<br />

N O<br />

O<br />

N<br />

O<br />

OH<br />

Anirolac<br />

COOH<br />

H<br />

Ramipril<br />

OH<br />

Ketorolac<br />

H<br />

N<br />

N<br />

H<br />

H<br />

N<br />

N<br />

H<br />

H<br />

N<br />

(CH 2 ) 6<br />

H<br />

N (CH 2 )<br />

N 6<br />

H<br />

Pyrextramine<br />

O<br />

NC<br />

O<br />

NH<br />

S<br />

S<br />

N<br />

H 3 CO<br />

N<br />

S<br />

O<br />

O<br />

C 2 H 5<br />

H 3 CO<br />

Pamicogrel<br />

O CH<br />

O<br />

3<br />

N N NH<br />

N<br />

Cl<br />

N<br />

Pirprofen,<br />

Rengasil<br />

HO<br />

N<br />

HN<br />

OH<br />

OH<br />

CH 3<br />

O<br />

CH 3<br />

O<br />

OH<br />

O<br />

Prinomide<br />

Zalderide<br />

Figure-26<br />

Atorvastatin<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 167


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

5.5 Current research work<br />

` The above literature study reveled that pyrrole derivatives contacting<br />

heterocyclic molecules showed significant biological potential. 44-95 One such highly<br />

functionalized pyrrole derivative is Atorvastatin. It is a class of statins, which act by<br />

inhibiting 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in the<br />

sterol by synthesis pathway; therefore, they are used in human therapy to reduce<br />

cholesterol in the level of blood. These compounds also have certain (pleiotropic)<br />

effects, e.g. decreasing inflammation and improving the endothelial functions. 96<br />

Recently reports described their inhibitory effect of the growth of different pathogenic<br />

fungi. 97-98 Sun and Singh reported that statins directly attenuate the virulence of<br />

microorganisms: modulate regulatory pathway of involved in the infection process. 99<br />

There are also sporadic new reports on the combined application of statins and<br />

different antimycotics. 100-106<br />

Figure-27<br />

Thus, to investigate the potential biological effect of some new pyrrole<br />

derivatives (AS-01 to AS-30), we set to modify position 2 and 3 of the Atrovastatin<br />

intermediate (Figure-27). To achieve the targeted compounds, we have synthesized<br />

thirty novel 1,4-diketone from easily available b-keto esters, which was further<br />

condensed with amino side chain (tert-butyl 2-((4R,6R)-6-(2-aminoethyl)-2,2-<br />

dimethyl-1,3-dioxan-4-yl)acetate) using pivalic acid as a catalyst under microwave<br />

irradiation. The newly synthesized compounds were characterized by IR, Mass, 1 H<br />

NMR, 13 C NMR spectroscopy and elemental analysis. All synthesized compounds<br />

were evaluated for their antimicrobial activity.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 168


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

5.6 Results and discussion<br />

Scheme:Synthesis of highly substituted Atorvastatin analogs<br />

Scheme-01<br />

1<br />

O<br />

OH<br />

MDC<br />

SOCl 2<br />

O<br />

Cl<br />

ZnO<br />

F<br />

O<br />

F<br />

Br 2 /CH 3 COOH<br />

2 3 4<br />

Br<br />

O<br />

F<br />

Scheme-02<br />

Scheme-03<br />

N<br />

H<br />

O<br />

R 1<br />

5<br />

R<br />

O<br />

O<br />

H 2 N<br />

O<br />

O<br />

O<br />

O<br />

R 1<br />

Pivalic acid<br />

Cyclohexane/THF<br />

MW<br />

N<br />

H<br />

O<br />

R<br />

N<br />

O<br />

O<br />

O<br />

O<br />

F<br />

ADD-01- 30<br />

F<br />

AS-01-30<br />

Where R=CH 3 , (CH 3 ) 2 CH, (CH 2 ) 2 CH, R 1 =CH 3 , OCH 3 , Cl, NO 2<br />

Scheme 1 and 2 shows the synthetic route for the requisite starting materials.<br />

First, acid chloride of phenyl acetic acid (2) was prepared from phenylacetic acid (1)<br />

using thionyl chloride in MDC as described in literature. 107 The fridle-craft reaction of<br />

Compound 2 with fluorobenzene in the presence of ZnO 108 afforded 1-(4-<br />

fluorophenyl)-2-phenylethanone (3) with good yield. The bromination of compound 3<br />

using Br 2 /AcOH provided 2-bromo-1-(4-fluorophenyl)-2-phenylethanone (4). 109<br />

Various acetoactanilide derivatives (AAA-01-30) were prepared as described<br />

in chapter-4. The condensation reaction of these acetoactanilide derivative (AAA-01-<br />

30) with 2-bromo-1-(4-fluorophenyl)-2-phenylethanone (4) using potassium<br />

carbonate as a base in isopropyl alcohol afford the requisite 1,4-dicarbonyl<br />

compounds (ADD-01-30).<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 169


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

The final coupling reaction of 1,4-dicarbonyl compounds with amino side<br />

chain (tert-butyl 2-((4R,6R)-6-(2-aminoethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate)<br />

(5) in the presence of acid catalyst under microwave irradiation afford pyrrole<br />

derivatives. For optimization of reaction condition 1,4-dicarbonyl compound (ADD-<br />

01) was react with amino side chain (5) by using various acid catalyst in various<br />

solvents or binary mixture of solvents in conventional method and under microwave<br />

irradiation method. The require reaction time and obtained (%) of yield were<br />

summarized in table-1.<br />

Table-1: Optimization of reaction condition for synthesis of AS-01 in various<br />

conditions<br />

Reaction time and yield (%)<br />

Entry Catalyst Solvents<br />

Conventional MW<br />

Time Yield Time Yield<br />

h (%) min (%)<br />

1 PTSA Toluene 38 68 120 88<br />

2 PTSA Cyclohexane 36 70 110 82<br />

3 PTSA Cyclohexane/THF (9:1) 31 78 90 86<br />

4 PTSA Toluene/THF (9:1) 32 76 96 85<br />

5 MSA Toluene 35 78 112 81<br />

6 MSA Cyclohexane 34 74 100 85<br />

7 MSA Cyclohexane/THF (9:1) 30 80 90 87<br />

8 MSA Toluene/THF (9:1) 30 77 88 82<br />

9 Sulfamic acid Toluene 40 74 140 78<br />

10 Sulfamic acid Cyclohexane 42 76 148 80<br />

11 Sulfamic acid Cyclohexane/THF (9:1) 36 72 125 75<br />

12 Sulfamic acid Toluene/THF (9:1) 35 70 130 75<br />

13 Pivalic acid Toluene 32 85 120 82<br />

14 Pivalic acid Cyclohexane 36 83 105 90<br />

15 Pivalic acid Cyclohexane/THF (9:1) 28 90 75 95<br />

16 Pivalic acid Toluene/THF (9:1) 30 84 82 88<br />

On the basis of our study we found that using pivalic acid and binary solvent<br />

Cyclohexane/THF (9:1) gave an excellent yield in short time (Table-1). Having<br />

optimized condition in our hand,<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 170


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

we carried out the reaction of various 1,4-dicarbonyl compounds (ADD-01 to 30)<br />

with amino side chain (5) in the presence of pivalic acid and cyclohexane/THF (9:1)<br />

under microwave irradiation afford pyrroles with excellent yield (Table-2).<br />

Table-2: Synthesis of highly functionalized pyrroles as atorvastatin analogs<br />

under microwave irridiation.<br />

Entry R R 1 Time (min) Yield (%)<br />

AS-01 CH 3 4-CH 3 75 95<br />

AS-02 CH 3 4-OCH 3 78 91<br />

AS-03 CH 3 4-Cl 70 94<br />

AS-04 CH 3 4-F 72 92<br />

AS-05 CH 3 4-CH 2 CH 3 80 88<br />

AS-06 CH 3 4-NO 2 82 85<br />

AS-07 CH 3 2,5diCH 3 85 86<br />

AS-08 CH 3 3-Cl,4-F 70 94<br />

AS-09 CH 3 3,4diCl 72 87<br />

AS-10 CH 3 2,3diCH 3 82 90<br />

AS-11 (CH 3 ) 2 CH 4-CH 3 78 94<br />

AS-12 (CH 3 ) 2 CH 4-OCH 3 80 90<br />

AS-13 (CH 3 ) 2 CH 4-Cl 75 95<br />

AS-14 (CH 3 ) 2 CH 4-F 73 94<br />

AS-15 (CH 3 ) 2 CH 4-CH 2 CH 3 82 90<br />

AS-16 (CH 3 ) 2 CH 4-NO 2 88 87<br />

AS-17 (CH 3 ) 2 CH 2,5diCH 3 80 92<br />

AS-18 (CH 3 ) 2 CH 3-Cl,4-F 72 94<br />

AS-19 (CH 3 ) 2 CH 3,4diCl 78 91<br />

AS-20 (CH 3 ) 2 CH 2,3diCH 3 80 85<br />

AS-21 (CH 2 ) 2 CH 4-CH 3 90 90<br />

AS-22 (CH 2 ) 2 CH 4-OCH 3 91 89<br />

AS-23 (CH 2 ) 2 CH 4-Cl 83 95<br />

AS-24 (CH 2 ) 2 CH 4-F 85 94<br />

AS-25 (CH 2 ) 2 CH 4-CH 2 CH 3 88 88<br />

AS-26 (CH 2 ) 2 CH 4-NO 2 87 95<br />

AS-27 (CH 2 ) 2 CH 2,5diCH 3 90 95<br />

AS-28 (CH 2 ) 2 CH 3-Cl,4-F 87 90<br />

AS-29 (CH 2 ) 2 CH 3,4diCl 83 94<br />

AS-30 (CH 2 ) 2 CH 2,3diCH 3 85 88<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 171


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

The structures of ADD-01-30 were established on the basis of their elemental<br />

analysis and spectral data (MS, IR, and 1 H NMR). The analytical data for (ADD-05)<br />

revealed a molecular formula C 26 H 24 FNO 3 (m/z 417). The 1 H NMR spectrum revealed<br />

a triplet at δ = 1.06-1.11 ppm assigned to isopropyl-CH 3 , a singlet at δ = 2.22 ppm<br />

assigned to the –CH 3 protons, a quartet at δ = 2.44-2.47 ppm assigned to-CH 2 protons,<br />

two doublets at δ = 4.70-4.73 ppm (j=10.8Hz) and 5.36-5.39 ppm (j=10.8Hz)<br />

assigned to the -CH protons, two multiplets at δ = 7.03-7.35 ppm and triplet at δ =<br />

8.09-8.13 ppm assigned to the aromatic protons, and one broad singlet at δ = 10.16<br />

ppm assigned to -CONH groups.<br />

The structures of AS-01-30 were established on the basis of their elemental<br />

analysis and spectral data (MS, IR, 1 H NMR and 13 C NMR). The analytical data for<br />

(AS-04) revealed a molecular formula C 38 H 42 F 2 N 2 O 5 (m/z 644). The 1 H NMR<br />

spectrum revealed a signals at δ ppm 1.03-1.07 (m, 1H, CH), 1.30-1.63 (m, 18H,<br />

CH 2 , CH & 5 x CH 3 ), 2.24-2.37 (m, 2H, CH 2 ), 2.71 (s, 3H, CH 3 ), 3.66 (m, 1H, CH),<br />

3.86-3.99 (m, 2H, CH 2 ), 4.14-4.17 (m, 1H, CH), 6.83-7.00 (m, 7H, Ar) and 7.12-<br />

7.28 (m, 7H, Ar & NH).<br />

The mechanism for the synthesis of the pyrrole proceeds via Paal-Knorr<br />

reaction, 110 in which protonated carbonyl (B) is attacked by the amine to form the<br />

hemiaminal (C). The amine attacks the other carbonyl to form a 2,5-<br />

dihydroxytetrahydropyrrole (D) derivative which undergoes dehydration in two steps<br />

give the corresponding substituted pyrrole (F).<br />

Figure 28: Proposed mechanism for the formation of pyrroles<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 172


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

5.7 Antimicrobial sensitivity testing<br />

WELL DIFFUSION / AGAR CUP METHOD (Lt. General Raghunath D. 1998,<br />

Ashok Rattan, 1998; Patel R., Patel K. 2004,)<br />

In vitro effectivity of antimicrobial agents can be demonstrated by observing<br />

their capacity to inhibit bacterial growth on suitable media. The production of a zone<br />

depends on two factors namely bacterial growth and concentration of antimicrobial<br />

agent. The hole/well punch method was first used by Bennett. This diffusion method<br />

has proved more effective then many other methods. According to Lt. General<br />

Raghunath the well technique is 5-6 times more sensitive then using disk method.<br />

Principle<br />

When antimicrobial substance is added in agar cup (made in a medium<br />

previously inoculated with test organism) the redial diffusion of an antimicrobial<br />

agent through the agar, produces a concentration gradient. The test organism is<br />

inhibited at the minimum inhibitory concentration (MIC), giving rise to a clear zone<br />

of inhibition.<br />

Requirements<br />

1. Young broth culture of a standard test organism<br />

2. Sterile Mueller Hinton Agar plate<br />

3. Solution of antimicrobial substance<br />

4. Cup borer<br />

5. Alcohol etc.<br />

Inoculum preparation<br />

Inoculum was prepared by selecting 4-5 colonies from slope of stock culture<br />

of the indicator organism and emulsifying them in a suitable broth. The inoculated<br />

broth was incubated at 37ºC till it equals turbidity of a 0.5 McFarland standard. This<br />

happens in 2-8 h.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 173


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

Procedure<br />

1. Inoculate test organism on the top of Mueller Hinton Agar plate with help of<br />

sterile swab. (it can be inoculated in melted agar also )<br />

2. The swab was dipped in the inoculum and surface of plate was streaked with<br />

swab.<br />

3. Streaking was repeated for 3 times and each time the plate was rotated at angle<br />

of 60º.<br />

4. Sterilize the cup-borer make four cups of the diameter of 8-10 mm. at equal<br />

distance in the plate previously inoculated with seed culture.<br />

5. The depth of well was 2.5-5.0 mm.<br />

6. The wells have been clearly punched so the surrounding medium is not lifted<br />

when the plug was removed out.<br />

7. The plates were incubated at 37ºC for 24 h. Then the zone of inhibition<br />

measured and the size of zone cited in table.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 174


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

Antimicrobial Sensitivity Assay<br />

(Concentration 250/500/1000 µg/ml)<br />

Sr.<br />

No.<br />

CODE<br />

No.<br />

Pseudomonas<br />

aeruginosa<br />

Proteus vulgaris Escherichia<br />

coli<br />

Staphylococcus<br />

aureus<br />

Candida<br />

albicans<br />

250 500 1000 250 500 1000 250 500 1000 250 500 1000 250 500 1000<br />

1. AS-01 R R R R R R R R R R R R R R R<br />

2. AS-02 1.5 1.7 2.0 1.4 1.6 2.0 R R R R R R R R R<br />

3. AS-03 R R R R R R R R R R R R R 1.4 2.0<br />

4. AS-04 R 1.0 1.3 R R R R R R R R R R R R<br />

5. AS-05 R R 1.0 R R R R R R 1.1 1.4 2.0 1.1 1.5 2.0<br />

6. AS-06 R R R R R R 1.3 1.6 1.8 1.5 1.8 2.0 R R R<br />

7. AS-07 1.2 1.4 1.6 1.6 1.8 2.0 1.1 1.4 2.0 1.0 1.3 2.0 R R R<br />

8. AS-08 R R R R R R R 1.2 1.8 1.1 1.4 2.0 R R R<br />

9. AS-09 R R R R R R R R 1.2 R 1.3 2.0 R R R<br />

10. AS-10 1.0 1.3 1.7 R 1.0 1.5 R R 1.2 R R 1.2 1.3 1.8 2.0<br />

11. AS-11 R R R R R R R R R R R 1.2 R R R<br />

12. AS-12 R R R R R R 1.0 1.3 1.8 1.1 1.5 2.0 R R R<br />

13. AS-13 R R R R R R 1.6 1.8 2.0 1.4 1.6 2.0 1.0 1.4 2.0<br />

14. AS-14 R R R R R R R 1.2 1.8 1.1 1.4 2.0 1.1 1.5 2.0<br />

15. AS-15 R R R R R R R 1.1 1.7 R 1.3 2.0 1.5 1.8 2.0<br />

16. AS-16 1.6 1.8 2.0 1.0 1.2 1.6 R 1.1 1.6 1.2 1.5 1.7 R 1.1 1.8<br />

17. AS-17 R 1.4 2.0 1.0 1.3 1.5 1.2 1.5 2.0 1.3 1.5 2.0 1.5 1.7 2.0<br />

18. AS-18 1.0 1.3 1.5 1.1 1.3 1.6 1.5 1.8 2.0 1.5 1.7 2.0 R 1.5 1.9<br />

19. AS-19 1.2 1.5 1.8 1.5 1.8 2.0 1 1.2 2.0 1.1 1.6 2.0 1.3 1.6 2.0<br />

20. AS-20 R 1.3 1.0 1.1 1.3 1.2 1.0 1.2 1.4 1.0 1.2 1.5 1.2 1.5 1.7<br />

21. AS-21 R 1.4 2.0 R R R R R R R R R R R R<br />

22. AS-22 R 1.4 2.0 R R R 1.2 1.4 1.6 1.5 1.7 2.0 1.6 1.8 2.0<br />

23. AS-23 1.0 1.3 2.0 R R R R R R R R R R R R<br />

24. AS-24 R 1.4 2.0 R R R R R R R 1.0 1.3 R R R<br />

25. AS-25 R 1.3 2.0 R R R 1.1 1.4 2.0 R R 1.0 R R R<br />

26. AS-26 R R 1.2 R R R 1.1 1.4 2.0 R R R R R R<br />

27. AS-27 R R 1.2 1.5 1.8 2.0 1.0 1.3 2.0 R R 1.2 R 1.5 2.0<br />

28. AS-28 1.5 1.8 2.0 R 1.2 1.8 1.1 1.4 2.0 R R R R R R<br />

29. AS-29 R 1.4 2.0 R R 1.2 R 1.3 2.0 R R R R R R<br />

30. AS-30 R 1.4 2.0 R R 1.2 R R 1.2 R R R R R R<br />

31. A 1.8 1.8 1.9 1.9 -<br />

32. CPD 2.2 2.1 2.1 2.2 -<br />

33. GF 1.8 1.9 2.0 2.0 -<br />

34. GRF - - - - 2.6<br />

35. FLC - - - - 2.8<br />

Note: Zone of inhibition interpretation is as follows<br />

1. Zone size < 1.0 cm- Resistent (R)<br />

2. Zone size 1.0 to 1.5 cm – Intermediate<br />

3. Zone size > 1.5 – Sensitive<br />

STD Antibiotic Sensitivity Assay Concentration 40 µg/ml<br />

A: Ampicillin GRF: Gresiofulvin<br />

CPD: Cefpodoxime FLC: Fluconazole<br />

GF: Gatifloxacin<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 175


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

5.8 Conclusion<br />

In summary, we have synthesized a series of highly substituted pyrroles as a<br />

atorvastain analogs from novel 1,4-dicarbonyl compounds and amino side chain using<br />

pivalic acid as a catalyst and cyclohexane and THF as binary solvent under<br />

microwave irradiation technique. All the synthesized compounds were evaluated for<br />

their antimicrobial activity. The investigation of antibacterial and antifungal screening<br />

data revealed that all the tested compounds AS-01-30 showed that some of compound<br />

gave moderate to potent activity. The compounds AS-02, 07, 16, 19, 27, and 28<br />

showed comparatively good activity against gram (+ve) bacterial stains, AS-06, 13,<br />

18, and 22 showed comparatively good activity against gram (-ve) bacterial stains and<br />

AS-15, 17 and 22 showed comparatively good activity against fungal stains.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 176


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

5.9 Experimental section<br />

Thin-layer chromatography was accomplished on 0.2-mm precoated plates of<br />

silica gel G60 F 254 (Merck). Visualization was made with UV light (254 and 365nm)<br />

or with an iodine vapor. IR spectra were recorded on a FTIR-8400 spectrophotometer<br />

using DRS prob. 1 H (300 MHz), 1 H (400 MHz), 13 C (75 MHz) and 13 C (100 MHz)<br />

NMR spectra were recorded on a Bruker AVANCE II spectrometer in CDCl 3 and<br />

DMSO. Chemical shifts are expressed in δ ppm downfield from TMS as an internal<br />

standard. Mass spectra were determined using direct inlet probe on a GCMS-QP 2010<br />

mass spectrometer (Shimadzu). Solvents were evaporated with a BUCHI rotary<br />

evaporator. Melting points were measured in open capillaries and are uncorrected.<br />

Synthesis of 2-phenylacetyl chloride 107 (2).<br />

In a 250mL round bottom flask equipped with magnetic stirrer and<br />

thermometer was placed phenylaceticacid (0.2mol) in MDC (100 mL). To this, slowly<br />

added a solution of thionyl chloride (0.25mol) in MDC (25 mL) under nitrogen<br />

atmosphere. The reaction mixture was stirred for 2 hrs. The progress of reaction was<br />

monitored by thin layer chromatography. After completion, the reaction mixture was<br />

evaporated to dryness under vacuum and the residue directly used for next step.<br />

Synthesis of 1-(4-fluorophenyl)-2-phenylethanone (3).<br />

In a 250mL round bottom flask equipped with magnetic stirrer and<br />

thermometer was placed 2-phenylacetyl chloride (2, 1 mmol) and ZnO (powder, 0.5<br />

mmol) under nitrogen atmosphere. Slowly added fluorobenzne (1 mmol) in to<br />

reaction mixture at room temperature. Color (usually pink, but in few cases green or<br />

blue) developed immediately and darkened with progress of the reaction. The reaction<br />

mixture was kept at room temperature with occasional stirring for 1 h to complete the<br />

reaction (monitored by TLC). The solid mass was then eluted with dichloromethane<br />

(20 mL) and the dichloromethane extract was then washed with an aqueous solution<br />

of sodium bicarbonate and dried over anhydrous sodium sulfate. Evaporation of<br />

solvent furnished practically pure the corresponding product with 90 % yield. 108<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 177


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

Synthesis of 2-bromo-1-(4-fluorophenyl)-2-phenylethanone (4).<br />

In a 250mL round bottom flask equipped with magnetic stirrer and<br />

thermometer was placed 1-(4-fluorophenyl)-2-phenylethanone (3, 10 mmol) in<br />

methylene chloride (80 mL), slowly added Br 2 solution (10 mmol Br 2 in acetic acid<br />

(20 mL)) at below 10 o C. Stirred reaction mixture for 2-3 hrs at below 10 o C. After<br />

completion, reaction mixture poured in to ice water and extract in methylene chloride,<br />

separated organic layer wash with saturated sodium bicarbonate solution (2 x 50 mL)<br />

and brine solution (2 x 50 mL). The organic layer was separated, dried over<br />

anhydrous sodium sulfate and evaporated to dryness under reduce pressure. The<br />

residue was crystallized from methanol to afford 87 % yield, which was directly used<br />

for next step.<br />

General synthesis of acetoacetanilide derivatives (AAA-01-30).<br />

Compounds AAA-01-30 were prepared by following the procedure described<br />

in chapter-4.<br />

General synthesis of 1,4 dicarbonyl compounds (ADD-01-30).<br />

In a 50mL round bottom flask equipped with magnetic stirrer and thermometer<br />

was placed acetoacetanilide (AAA-01-30, 10 mmol), 2-bromo-1-(4-fluorophenyl)-2-<br />

phenylethanone (4, 10mmol), potassium carbonate (15mmol) and isopropyl alcohol<br />

(20 mL). Reaction mixture was heated at 50-55 o C for 4-5 h. The progress of reaction<br />

was monitored by thin layer chromatography. After completion, the reaction mixture<br />

was cooled to rt. The precipitate was collected by filtration and washed excessively<br />

with water and dried. The recrystallized from methanol to give analytically pure<br />

products in 70-80% yield.<br />

General synthesis of highly substituted pyrroles (AS-01-30).<br />

‣ Conventional method:<br />

In a 100mL round bottom flask equipped with dean-stark apparatus, magnetic<br />

stirrer and thermometer was placed with 1,4 dicarbonyl compound (ADD-01-30, 2<br />

mmol), amino side chain (5, 2 mmol), pivalic acid (2 mmol), cyclohexane (18 mL)<br />

and THF (2 mL). The reaction mixture was heated to reflux temperature for 30-40 h.<br />

The progress of reaction was monitored by thin layer chromatography.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 178


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

After completion, the reaction mixture was cooled to rt, washed with water and 5 (%)<br />

sodium bicarbonate solution. The organic layer was separated, dried over anhydrous<br />

sodium sulfate and evaporated to dryness under reduce pressure. The residue was<br />

crystallized from isopropyl alcohol/water (11:5) to obtain the desire product (68-85 %<br />

yield).<br />

‣ Microwave assisted method:<br />

A flat bottom flask was charged with the 1,4 dicarbonyl compound (ADD-01-<br />

30, 2 mmol), amino side chain (5, 2mmol), pivalic acid (2 mmol), cyclohexane (18<br />

mL) and THF (2 mL). The reaction mixture was irradiated under microwave for<br />

appropriate time (Table-2). The progress of reaction was monitored by thin layer<br />

chromatography. After completion, the reaction mixture was cooled to and washed<br />

with water, 5 % sodium bicarbonate solution. The organic layer was separated, dried<br />

over anhydrous sodium sulfate and evaporated to dryness under reduce pressure. The<br />

residue was crystallized from isopropyl alcohol/water (11:5) to obtain the desire<br />

product (85-95 % yield).<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 179


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

Spectral data of synthesized compounds<br />

2-acetyl-N-(4-ethylphenyl)-4-(4-fluorophenyl)-4-oxo-3-phenylbutanamide ADD-<br />

05. White solid, yield 82%, mp 190-192 ° C; R f 0.42 (9:1 Chloroform: Methanol); IR<br />

(KBr): 3473, 3072, 2895, 2828, 1694, 1635, 1482, 850, 780 cm -1 ; 1 H NMR (300<br />

MHz, DMSO): δ 1.06-1.11 (t, 3H, CH 3 ), 2.22 (s, 3H, CH 3 ), 2.44-2.47 (q, 2H CH 2 ),<br />

4.70-4.73 (d, 1H, CH, j=10.8Hz), 5.36–5.39 (d, 1H, CH, j=10.8Hz), 7.03-7.15 (m,<br />

3H, Ar), 7.18-7.35 (m, 8H, Ar), 8.09-8.13 (t, 2H, Ar), 10.16 (s, 1H, NH); MS (m/z):<br />

417 [M + ]; Anal. Calcd for C 26 H 24 FNO 3 : C, 74.80; H, 5.79; N, 3.36; Found: C, 74.82;<br />

H, 5.75; N, 3.33.<br />

N-(4-chlorophenyl)-2-(cyclopropanecarbonyl)-4-(4-fluorophenyl)-4-oxo-3-phenyl<br />

butanamide ADD-23. White solid, yield 85%, mp 220-222 ° C; R f 0.42 (9:1<br />

Chloroform: Methanol); IR (KBr): 3430, 3045, 2895, 1635, 1482, 1343, 1298, 980,<br />

783, 732 cm -1 ; 1 H NMR (400 MHz, CDCl 3 ): δ 0.90-0.93 (m, 2H, CH 2 ), 1.05-1.13 (m,<br />

2H, CH 2 ), 2.18-2.23 (m, 1H, CH), 4.77-4.80 (d, 1H, CH, j=10.84Hz), 4.49–5.51 (d,<br />

1H, CH, j=10.84Hz), 6.84-6.89 (m, 2H, Ar), 7.00-7.09 (m, 4H, Ar), 7.18-7.27 (m,<br />

3H, Ar), 7.34-7.40 (m, 2H, Ar); 13 C NMR (100 MHz, CDCl 3 ): δ 11.82, 13.12. 20.34,<br />

53.10, 66.10, 115.42, 115.90, 121.83, 122.56, 128.13, 128.70, 129.03, 129.25, 129.39,<br />

131.66, 131.75, 123.16, 132.19, 132.92, 132.95, 160.94, 167.04, 196.70, 205.50; MS<br />

(m/z): 449 [M + ]; Anal. Calcd for C 26 H 21 ClFNO 3 : C, 69.41; H, 4.70; N, 3.11; Found:<br />

C, 69.43; H, 4.75; N, 3.13.<br />

tert-butyl 2-((4R,6R)-6-(2-(2-(4-fluorophenyl)-5-methyl-3-phenyl-4-(p-tolylcarbamoyl)-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate<br />

AS-01. White<br />

solid, mp 167-169 ° C; R f 0.42 (9:1 Chloroform: Methanol); IR (KBr): 3412, 3032,<br />

2977, 2872, 1731, 1659, 1479, 1029, 792, 737, 709 cm -1 ; MS (m/z): 625 [M + ]; Anal.<br />

Calcd for C 38 H 42 FN 2 O 5 : C, 72.94; H, 6.77; N, 4.48; Found: C, 72.95; H, 6.78; N, 4.50.<br />

tert-butyl 2-((4R,6R)-6-(2-(2-(4-fluorophenyl)-4-((4-methoxyphenyl)carbamoyl)-<br />

5-methyl-3-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate<br />

AS-02. White solid, mp 153-155 ° C; R f 0.47 (9:1 Chloroform: Methanol); IR (KBr):<br />

3477, 3037, 2981, 2928, 2878, 1729, 1665, 1567, 1542, 1482, 1288, 1083, 1035, 837,<br />

789, 741, 711 cm -1 ; MS (m/z): 656 [M + ]; Anal. Calcd for C 38 H 42 FN 2 O 6 : C, 71.32; H,<br />

6.91; N, 4.27; Found: C, 71.35; H, 6.92; N, 4.28.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 180


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

tert-butyl 2-((4R,6R)-6-(2-(3-((4-chlorophenyl)carbamoyl)-5-(4-fluorophenyl)-2-<br />

methyl-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate AS-<br />

03. White solid, mp 147-149 ° C; R f 0.47 (9:1 Chloroform: Methanol); IR (KBr): 3458,<br />

3035, 2988, 2932, 2881, 1731, 1675, 1564, 1547, 1486, 1291, 1087, 1037, 841 cm -1 ;<br />

MS (m/z): 660 [M + ]; Anal. Calcd for C 38 H 42 ClFN 2 O 5 : C, 69.03; H, 6.40; N, 4.24;<br />

Found: C, 69.05; H, 6.42; N, 4.28.<br />

tert-butyl 2-((4R,6R)-6-(2-(2-(4-fluorophenyl)-4-((4-fluorophenyl)carbamoyl)-5-<br />

methyl-3-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate AS-<br />

04. White solid, mp 153-155 ° C; R f 0.52 (9:1 Chloroform: Methanol); IR (KBr): 3411,<br />

3030, 2979, 2937, 2879, 1725, 1660, 1560, 1535, 1473, 1290, 1095, 1031, 833, 790,<br />

735, 705 cm -1 ; 1 H NMR (300 MHz, CDCl 3 ): δ 1.03-1.07 (m, 1H, CH), 1.30-1.63 (m,<br />

18H, CH 2 , CH & 5 x CH 3 ), 2.24-2.37 (m, 2H, CH 2 ), 2.71 (s, 3H, CH 3 ), 3.66 (m, 1H,<br />

CH), 3.86-3.99 (m, 2H, CH 2 ), 4.14-4.17 (m, 1H, CH), 6.83-7.00 (m, 7H, Ar), 7.12-<br />

7.28 (m, 7H, Ar & NH); 13 C NMR (DEPT): (75 MHz, CDCl 3 ): δ 11.61, 19.62. 28.09,<br />

29.96, 36.05, 37.16, 40.23, 42.46, 65.88, 65.96, 115.11, 115.26, 115.41, 115.54,<br />

120.66, 120.77, 127.31, 128.66, 131.16, 132.84, 132.95; MS (m/z): 644 [M + ]; Anal.<br />

Calcd for C 38 H 42 F 2 N 2 O 5 : C, 70.79; H, 6.57; N, 4.34; Found: C, 70.75; H, 6.52; N,<br />

4.38.<br />

tert-butyl 2-((4R,6R)-6-(2-(3-((4-ethylphenyl)carbamoyl)-5-(4-fluorophenyl)-2-<br />

methyl-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate AS-<br />

05. White solid, mp 172-174 ° C; R f 0.54 (9:1 Chloroform: Methanol); IR (KBr): 3402,<br />

3063, 2995, 2974, 2875, 1724, 1660, 1533, 1255, 842, 734, 705 cm -1 ; 1 H NMR (300<br />

MHz, CDCl 3 ): δ ppm 1.16-1.18 (m, 4H, CH & CH 3 ), 1.31-1.76 (m, 18H, CH, CH 2 &<br />

5 x CH 3 ), 2.21-2.36 (m, 2H, CH 2 ), 2.53-2.55 (m, 2H, CH 2 ), 2.71 (s, 3H, CH 3 ), 3.66<br />

(m, 1H, CH), 3.89-3.97 (m, 2H, CH 2 ), 4.17 (m, 1H, CH), 6.91-6.99 (m, 7H, Ar),<br />

7.14-7.26 (m, 7H, Ar & NH); 13 C NMR (DEPT): (75 MHz, CDCl 3 ): δ 11.61, 15.72.<br />

19.62, 28.09, 28.25, 29.97, 36.05, 37.18, 40.20, 42.48, 65.89, 65.98, 115.23, 115.51,<br />

120.66, 119.30, 128.03, 128.62, 131.15, 132.87, 132.97; MS (m/z): 654 [M + ]; Anal.<br />

Calcd for C 40 H 47 FN 2 O 5 : C, 73.37; H, 7.23; N, 4.28; Found: C, 73.35; H, 7.25; N, 4.28.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 181


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

tert-butyl 2-((4R,6R)-6-(2-(2-(4-fluorophenyl)-5-methyl-4-((4-nitrophenyl)carbamoyl)-3-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate<br />

AS-<br />

06. White solid, mp 183-185 ° C; R f 0.44 (9:1 Chloroform: Methanol); IR (KBr): 3428,<br />

3036, 2979, 2945, 2887, 1723, 1659, 1567, 1541, 1471, 1287, 1095, 1038, 834, 792,<br />

746, 712 cm -1 ; MS (m/z): 671 [M + ]; Anal. Calcd for C 38 H 42 FN 3 O 7 : C, 67.94; H, 6.30;<br />

N, 6.26; Found: C, 67.95; H, 6.25; N, 6.28.<br />

tert-butyl 2-((4R,6R)-6-(2-(3-((2,5-dimethylphenyl)carbamoyl)-5-(4-fluorophenyl)<br />

-2-methyl-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate<br />

AS-07. White solid, mp 143-145 ° C; R f 0.51 (9:1 Chloroform: Methanol); IR (KBr):<br />

3433, 3035, 2972, 2951, 2881, 1729, 1661, 1563, 1545, 1477, 1291, 1086, 1041, 882,<br />

839, 786, 751, 707 cm -1 ; MS (m/z): 654 [M + ]; Anal. Calcd for C 40 H 47 FN 2 O 5 : C,<br />

73.37; H, 7.23; N, 4.28; Found: C, 73.35; H, 7.25; N, 4.28.<br />

tert-butyl 2-((4R,6R)-6-(2-(3-((3-chloro-4-fluorophenyl)carbamoyl)-5-(4-fluorophenyl)-2-methyl-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)<br />

acetate AS-08. White solid, mp 135-138 ° C; R f 0.51 (9:1 Chloroform: Methanol); IR<br />

(KBr): 3405, 3043, 2985, 2972, 2863, 1739, 1675, 1555, 1565, 1464, 1287, 1074,<br />

1034, 839, 786, 758, 718 cm -1 ; MS (m/z): 678 [M + ]; Anal. Calcd for C 38 H 41 ClF 2 N 2 O 5 :<br />

C, 67.20; H, 6.08; N, 4.12; Found: C, 67.25; H, 6.10; N, 4.13.<br />

tert-butyl 2-((4R,6R)-6-(2-(3-((3,4-dichlorophenyl)carbamoyl)-5-(4-fluorophenyl)<br />

-2-methyl-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate<br />

AS-09. White solid, mp 157-159 ° C; R f 0.44 (9:1 Chloroform: Methanol); IR (KBr):<br />

3447, 3024, 2956, 2964, 2878, 1746, 1661, 1569, 1545, 1447, 1278, 1064, 1049, 831,<br />

775, 767, 713 cm -1 ; MS (m/z): 694 [M + ]; Anal. Calcd for C 38 H 41 Cl 2 FN 2 O 5 : C, 65.61;<br />

H, 5.94; N, 4.03; Found: C, 65.62; H, 5.95; N, 4.03.<br />

tert-butyl 2-((4R,6R)-6-(2-(3-((2,3-dimethylphenyl)carbamoyl)-5-(4-fluorophenyl)<br />

-2-methyl-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate<br />

AS-10. White solid, mp 143-145 ° C; R f 0.51 (9:1 Chloroform: Methanol); IR (KBr):<br />

3416, 3039, 2967, 2977, 2861, 1734, 1679, 1545, 1565, 1442, 1297, 1043, 1034, 842,<br />

787, 743, 719 cm -1 ; MS (m/z): 654 [M + ]; Anal. Calcd for C 40 H 47 FN 2 O 5 : C, 73.37; H,<br />

7.23; N, 4.28; Found: C, 73.34; H, 7.26; N, 4.30.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 182


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

tert-butyl 2-((4R,6R)-6-(2-(2-(4-fluorophenyl)-5-isopropyl-4-((4-methoxyphenyl)-<br />

carbamoyl)-3-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate<br />

AS-12. White solid, mp 174-176 ° C; R f 0.45 (9:1 Chloroform: Methanol); IR (KBr):<br />

3412, 3031, 2989, 2935, 2868, 1737, 1671, 1558, 1554, 1474, 1298, 1087, 1047, 845,<br />

775, 734, 703 cm -1 ; 1 H NMR (300 MHz, CDCl 3 ): δ 1.06 (m, 1H, CH), 1.30-1.65 (m,<br />

24H, CH, CH 2 & 7 x CH 3 ), 2.25-2.37 (m, 2H, CH 2 ), 3.54 (m, 3H, CH), 3.73 (m, 5H,<br />

CH 3 & 2 x CH), 4.14 (m, 2H, CH 2 ), 6.72-6.75 (d, 3H, J=7.5Hz, Ar), 6.99 (s, 4H, Ar),<br />

7.16 (s, 7H, Ar & NH); 13 C NMR (DEPT): (75 MHz, CDCl 3 ): δ 19.68, 21.64, 21.82,<br />

26.10, 28.09, 29.92, 35.97, 38.09, 40.79, 42.46, 65.90, 66.41, 113.86, 115.22, 115.50,<br />

121.47, 126.45, 128.29, 130.46, 133.14, 133.25; MS (m/z): 684 [M + ]; Anal. Calcd for<br />

C 41 H 49 FN 2 O 6 : C, 71.91; H, 7.21; N, 4.09; Found: C, 71.94; H, 7.26; N, 4.09.<br />

tert-butyl 2-((4R,6R)-6-(2-(2-(4-fluorophenyl)-5-isopropyl-3-phenyl-4-(p-tolylcarbamoyl)-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate<br />

AS-11.<br />

White solid, mp 158-160 ° C; R f 0.47 (9:1 Chloroform: Methanol); IR (KBr): 3477,<br />

3037, 2987, 2939, 2878, 1735, 1651, 1567, 1529, 1474, 1291, 1082, 1037, 837, 798,<br />

731, 704 cm -1 ; 1 H NMR (300 MHz, CDCl 3 ): δ 1.02-1.10 (m, 1H, CH), 1.30-1.66 (m,<br />

24H, CH, CH 2 & 7 x CH 3 ), 2.24-2.42 (m, 5H, CH 2 & CH 3 ), 3.53-3.84 (m, 3H, CH &<br />

CH 2 ), 4.07-4.16 (m, 2H, 2 x CH), 6.80 (s, 1H, NH), 6.98-7.26 (m, 13H, Ar); 13 C<br />

NMR (DEPT): (75 MHz, CDCl 3 ): δ 19.68, 20.83, 21.62, 21.80, 26.09, 28.09, 29.93,<br />

35.97, 38.09, 40.82, 42.46, 65.90, 66.41, 115.22, 115.51, 119.63, 126.48, 128.31,<br />

129.19, 130.47, 133.14, 133.25; MS (m/z): 668 [M + ]; Anal. Calcd for C 41 H 49 FN 2 O 5 :<br />

C, 73.63; H, 7.38; N, 4.19; Found: C, 73.64; H, 7.36; N, 4.19.<br />

tert-butyl 2-((4R,6R)-6-(2-(3-((4-chlorophenyl)carbamoyl)-5-(4-fluorophenyl)-2-<br />

isopropyl-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate.<br />

AS-13. White solid, yield 94%, mp 184-186 ° C; R f 0.46 (9:1 Chloroform: Methanol);<br />

IR (KBr): 3410, 3041, 2992, 2943, 2875, 1744, 1677, 1474, 1287, 1075, 1047, 846<br />

cm -1 ; 1 H NMR (400 MHz, CDCl 3 ): δ 0.92-1.01 (m, 1H, CH), 1.22 (s, 3H, CH 3 ), 1.26-<br />

1.28 (m, 4H, CH & CH 3 ), 1.35-137 (s, 9H, 3 x CH 3 ), 1.43-1.45 (d, 6H, 2 x CH 3 ),<br />

1.56-1.60 (m, 2H, CH 2 ), 2.07-2.18 (dd, 1H, CH), 2.27-2.33 (dd, 1H, CH), 3.48-3.53<br />

(m, 1H, CH), 3.60-3.62 (m, 1H, CH), 3.73-3.76 (m, 1H, CH), 3.96-4.09 (m, 2H, CH 2 ),<br />

6.76 (s, 1H, NH), 6.88-6.92 (m, 4H, Ar), 7.02-7.18 (m, 9H, Ar & NH);<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 183


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

13 C NMR: (100 MHz, CDCl 3 ): δ 19.68, 21.50, 21.67, 26.07, 28.09, 29.93, 35.96,<br />

38.07, 40.91, 42.45, 65.90, 66.39, 98.69, 114.88, 115.29, 115.50, 120.61, 121.77,<br />

126.70, 128.09, 128.12, 128.25, 128.43, 128.64, 128.93, 130.55, 133.14,<br />

133.22,134.62, 137.04, 141.93, 161.06, 163.52, 164.68, 170.20; MS (m/z): 688 [M + ];<br />

Anal. Calcd for C 40 H 46 ClFN 2 O 5 : C, 69.70; H, 6.73; N, 4.06; Found: C, 69.70; H, 6.74;<br />

N, 4.09.<br />

tert-butyl 2-((4R,6R)-6-(2-(2-(4-fluorophenyl)-4-((4-fluorophenyl)carbamoyl)-5-<br />

isopropyl-3-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate<br />

AS-14. White solid, mp 170-172 ° C; R f 0.48 (9:1 Chloroform: Methanol); IR (KBr):<br />

3437, 3039, 2985, 2948, 2865, 1739, 1675, 1563, 1549, 1486, 1281, 1087, 1048, 837,<br />

787, 744, 716 cm -1 ; MS (m/z): 672 [M + ]; Anal. Calcd for C 40 H 46 F 2 N 2 O 5 : C, 71.41; H,<br />

6.89; N, 4.16; Found: C, 71.41; H, 6.84; N, 4.19.<br />

tert-butyl 2-((4R,6R)-6-(2-(3-((4-ethylphenyl)carbamoyl)-5-(4-fluorophenyl)-2-<br />

isopropyl-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate<br />

AS-15. White solid, mp 202-204 ° C; R f 0.55 (9:1 Chloroform: Methanol); IR (KBr):<br />

3429, 3039, 2975, 2954, 2895, 1736, 1665, 1571, 1542, 1461, 1287, 1081, 1043, 831,<br />

784, 739, 713 cm -1 ; MS (m/z): 682 [M + ]; Anal. Calcd for C 42 H 51 FN 2 O 5 : C, 73.87; H,<br />

7.53; N, 4.10; Found: C, 73.81; H, 7.54; N, 4.10.<br />

tert-butyl 2-((4R,6R)-6-(2-(2-(4-fluorophenyl)-5-isopropyl-4-((4-nitrophenyl)<br />

carbamoyl)-3-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate<br />

AS-16. White solid, mp 188-190 ° C; R f 0.48 (9:1 Chloroform: Methanol); IR (KBr):<br />

3427, 3045, 2969, 2956, 2875, 1729, 1678, 1581, 1557, 1464, 1271, 1097, 1045, 839,<br />

781, 758, 721 cm -1 ; MS (m/z): 699 [M + ]; Anal. Calcd for C 40 H 46 FN 3 O 7 : C, 68.65; H,<br />

6.63; N, 6.00; Found: C, 68.86; H, 6.64; N, 6.05.<br />

tert-butyl 2-((4R,6R)-6-(2-(3-((2,5-dimethylphenyl)carbamoyl)-5-(4-fluorophenyl)<br />

-2-isopropyl-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate<br />

AS-17. White solid, mp 157-159 ° C; R f 0.41 (9:1 Chloroform: Methanol); IR (KBr):<br />

3415, 3048, 2979, 2948, 2875, 1739, 1678, 1579, 1555, 1464, 1276, 1071, 1049, 876,<br />

849, 765, 749, 716 cm -1 ; MS (m/z): 682 [M + ]; Anal. Calcd for C 42 H 51 FN 2 O 5 : C,<br />

73.87; H, 7.53; N, 4.10; Found: C, 73.84; H, 7.54; N, 4.12.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 184


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

tert-butyl 2-((4R,6R)-6-(2-(3-((3-chloro-4-fluorophenyl)carbamoyl)-5-(4-fluorophenyl)-2-isopropyl-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)<br />

acetate AS-18. White solid, mp 144-146 ° C; R f 0.46 (9:1 Chloroform: Methanol); IR<br />

(KBr): 3399, 3053, 2975, 2982, 2875, 1736, 1684, 1564, 1573, 1475, 1283, 1062,<br />

1041, 833, 781, 752, 703 cm -1 ; MS (m/z): 706 [M + ]; Anal. Calcd for C 40 H 45 ClF 2 N 2 O 5 :<br />

C, 67.93; H, 6.41; N, 3.96; Found: C, 67.94; H, 6.42; N, 3.97.<br />

tert-butyl 2-((4R,6R)-6-(2-(3-((3,4-dichlorophenyl)carbamoyl)-5-(4-fluorophenyl)<br />

-2-isopropyl-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate<br />

AS-19. White solid, mp 136-138 ° C; R f 0.38 (9:1 Chloroform: Methanol); IR (KBr):<br />

3425, 2964, 2974, 2863, 1756, 1672, 1575, 1549, 1457, 1288, 1068, 1053, 836, 764,<br />

772, 719 cm -1 ; MS (m/z): 722 [M + ]; Anal. Calcd for C 40 H 45 Cl 2 FN 2 O 5 : C, 66.39; H,<br />

6.27; N, 3.87; Found: C, 66.40; H, 6.30; N, 3.88.<br />

tert-butyl 2-((4R,6R)-6-(2-(3-((2,3-dimethylphenyl)carbamoyl)-5-(4-fluorophenyl)<br />

-2-isopropyl-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate<br />

AS-20. White solid, mp 180-182 ° C; R f 0.41 (9:1 Chloroform: Methanol); IR (KBr):<br />

3417, 3048, 2957, 2985, 2875, 1748, 1663, 1557, 1579, 1457, 1285, 1052, 1038, 857,<br />

757, 763, 709 cm -1 ; MS (m/z): 682 [M + ]; Anal. Calcd for C 42 H 51 FN 2 O 5 : C, 73.87; H,<br />

7.53; N, 4.10; Found: C, 73.84; H, 7.54; N, 4.12.<br />

tert-butyl 2-((4R,6R)-6-(2-(2-cyclopropyl-5-(4-fluorophenyl)-4-phenyl-3-(p-tolylcarbamoyl)-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate<br />

AS-21.<br />

White solid, mp 163-165 ° C; R f 0.35 (9:1 Chloroform: Methanol); IR (KBr): 3441,<br />

3228, 3101, 2978, 2941, 1730, 1643, 1491. 1247, 833, 738, 704 cm -1 ; 1 H NMR (300<br />

MHz, CDCl 3 ): δ 0.77 (m, 2H, CH 2 ), 0.99-1.11 (m, 3H, CH 2 & CH), 1.21-1.59 (m,<br />

19H, 2 x CH 2 & 5 x CH 3 ), 1.91 (m, 1H, CH), 2.20-2.37 (m, 5H, CH & 2 x CH 2 ), 3.63<br />

(m, 1H, CH), 4.14 (m, 3H, CH & CH 2 ), 6.84 (s, 1H, NH), 6.99-7.26 (m, 13H, Ar); 13 C<br />

NMR (DEPT): (75 MHz, CDCl 3 ): δ 6.81, 7.54, 7.63, 19.62, 20.84, 28.09, 29.96,<br />

36.01, 37.19, 40.38, 42.50, 65.91, 66.14, 115.32, 115.61, 119.50, 126.46, 128.27,<br />

129.25, 130.42, 132.80, 132.90; MS (m/z): 666 [M + ]; Anal. Calcd for C 41 H 47 FN 2 O 5 :<br />

C, 73.85; H, 7.10; N, 4.20; Found: C, 73.84; H, 7.04; N, 4.22.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 185


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

tert-butyl 2-((4R,6R)-6-(2-(2-cyclopropyl-5-(4-fluorophenyl)-3-((4-methoxyphenyl)carbamoyl)-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)<br />

acetate AS-22. White solid, mp 163-165 ° C; R f 0.35 (9:1 Chloroform: Methanol); IR<br />

(KBr): 3421, 3045, 2975, 2948, 2852, 1742, 1664, 1569, 1567, 1461, 1291, 1079,<br />

1041, 851, 781, 745, 714 cm -1 ; MS (m/z): 682 [M + ]; Anal. Calcd for C 41 H 47 FN 2 O 6 : C,<br />

72.12; H, 6.94; N, 4.10; Found: C, 72.12; H, 6.95; N, 4.12.<br />

tert-butyl 2-((4R,6R)-6-(2-(3-((4-chlorophenyl)carbamoyl)-2-cyclopropyl-5-(4-<br />

fluorophenyl)-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)<br />

acetate AS-23. White solid, mp 193-194 ° C; R f 0.45 (9:1 Chloroform: Methanol); IR<br />

(KBr): 3452, 3052, 2987, 2939, 2884, 1753, 1679, 1564, 1559, 1482, 1267, 1065,<br />

1039, 856 cm -1 ; MS (m/z): 686 [M + ]; Anal. Calcd for C 40 H 44 ClFN 2 O 5 : C, 69.91; H,<br />

6.45; N, 4.08; Found: C, 69.95; H, 6.48; N, 4.12.<br />

tert-butyl 2-((4R,6R)-6-(2-(2-cyclopropyl-5-(4-fluorophenyl)-3-((4-fluorophenyl)<br />

carbamoyl)-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate<br />

AS-24. White solid, mp 172-174 ° C; R f 0.38 (9:1 Chloroform: Methanol); IR (KBr):<br />

3499, 3052, 2975, 2957, 2854, 1742, 1665, 1572, 1556, 1478, 1271, 1073, 1053, 831,<br />

782, 754, 726 cm -1 ; MS (m/z): 670 [M + ]; Anal. Calcd for C 40 H 44 F 2 N 2 O 5 : C, 71.62; H,<br />

6.61; N, 4.18; Found: C, 71.63; H, 6.58; N, 4.12.<br />

tert-butyl 2-((4R,6R)-6-(2-(2-cyclopropyl-3-((4-ethylphenyl)carbamoyl)-5-(4-<br />

fluorophenyl)-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)<br />

acetate AS-25. White solid, mp 112-115 ° C; R f 0.45 (9:1 Chloroform: Methanol); IR<br />

(KBr): 3438, 3043, 2965, 2943, 2887, 1736, 1645, 1562, 1532, 1456, 1272, 1061,<br />

1031, 821, 774, 729, 703 cm -1 ; MS (m/z): 680 [M + ]; Anal. Calcd for C 42 H 49 FN 2 O 5 : C,<br />

74.09; H, 7.25; N, 4.11; Found: C, 74.13; H, 7.28; N, 4.12.<br />

tert-butyl 2-((4R,6R)-6-(2-(2-cyclopropyl-5-(4-fluorophenyl)-3-((4-nitrophenyl)-<br />

carbamoyl)-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate<br />

AS-26. White solid, mp 132-134 ° C; R f 0.52 (9:1 Chloroform: Methanol); IR (KBr):<br />

3413, 3052, 2972, 2961, 2865, 1739, 1688, 1571, 1562, 1476, 1269, 1084, 1051, 842,<br />

778, 768, 728 cm -1 MS (m/z): 697 [M + ]; Anal. Calcd for C 40 H 44 FN 3 O 7 : C, 68.85; H,<br />

6.36; N, 6.02; Found: C, 68.87; H, 6.38; N, 6.08.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 186


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

tert-butyl 2-((4R,6R)-6-(2-(2-cyclopropyl-3-((2,5-dimethylphenyl)carbamoyl)-5-<br />

(4-fluorophenyl)-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)<br />

acetate AS-27. White solid, mp 210-212 ° C; R f 0.38 (9:1 Chloroform: Methanol); IR<br />

(KBr): 3440, 3053, 2987, 2951, 2868, 1746, 1687, 1554, 1571, 1445, 1268, 1061,<br />

1067, 856, 859, 774, 752, 722 cm -1 ; MS (m/z): 680 [M + ]; Anal. Calcd for<br />

C 42 H 49 FN 2 O 5 : C, 74.09; H, 7.25; N, 4.11; Found: C, 74.13; H, 7.28; N, 4.12.<br />

tert-butyl 2-((4R,6R)-6-(2-(3-((3-chloro-4-fluorophenyl)carbamoyl)-2-cyclopropyl<br />

-5-(4-fluorophenyl)-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)<br />

acetate AS-28. White solid, mp 169-171 ° C; R f 0.47 (9:1 Chloroform: Methanol); IR<br />

(KBr): 3428, 3041, 2965, 2997, 2885, 1726, 1675, 1566, 1587, 1464, 1278, 1072,<br />

1052, 836, 775, 759, 713 cm -1 ; MS (m/z): 680 [M + ]; Anal. Calcd for C 40 H 43 ClF 2 N 2 O 5 :<br />

C, 68.12; H, 6.15; N, 3.97; Found: C, 68.13; H, 6.18; N, 4.01.<br />

tert-butyl 2-((4R,6R)-6-(2-(2-cyclopropyl-3-((3,4-dichlorophenyl)carbamoyl)-5-(4-<br />

fluorophenyl)-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)<br />

acetate AS-29. White solid, mp 133-135 ° C; R f 0.35 (9:1 Chloroform: Methanol); IR<br />

(KBr): 3472, 3120, 3073, 2975, 2985, 2879, 1763, 1665, 1581, 1553, 1468, 1276,<br />

1079, 1045, 842, 771, 768, 729 cm -1 ; MS (m/z): 720 [M + ]; Anal. Calcd for<br />

C 40 H 43 Cl 2 FN 2 O 5 : C, 66.57; H, 6.01; N, 3.88; Found: C, 66.49; H, 6.10; N, 3.95.<br />

tert-butyl 2-((4R,6R)-6-(2-(2-cyclopropyl-3-((2,3-dimethylphenyl)carbamoyl)-5-<br />

(4-fluorophenyl)-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)<br />

acetate AS-30. White solid, mp 123-125 ° C; R f 0.40 (9:1 Chloroform: Methanol); IR<br />

(KBr): 3423, 3039, 2948, 2981, 2865, 1769, 1678, 1547, 1587, 1443, 1278, 1064,<br />

1045, 864, 752, 768, 718 cm -1 ; MS (m/z): 680 [M + ]; Anal. Calcd for C 42 H 49 FN 2 O 5 : C,<br />

74.09; H, 7.25; N, 4.11; Found: C, 74.13; H, 7.28; N, 4.12.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 187


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

1 H NMR spectrum of compound ADD-23<br />

Cl<br />

O<br />

N<br />

H<br />

O<br />

O<br />

F<br />

Expanded 1 H NMR spectrum of compound ADD-23<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 188


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

1 H NMR spectrum of compound AS-04<br />

Expanded 1 H NMR spectrum of compound AS-04<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 189


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

1 H NMR spectrum of compound AS-13<br />

Cl<br />

N<br />

H<br />

O<br />

N<br />

O<br />

O<br />

O<br />

O<br />

F<br />

Expanded 1 H NMR spectrum of compound AS-13<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 190


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

1 H NMR spectrum of compound AS-21<br />

Expanded 1 H NMR spectrum of compound AS-21<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 191


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

1 H NMR spectrum of compound AS-11<br />

1 H NMR spectrum of compound AS-12<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 192


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

13 C NMR spectrum of compound AS-11<br />

O<br />

N<br />

H<br />

N<br />

O<br />

O<br />

O<br />

O<br />

F<br />

13 C NMR spectrum of compound AS-13<br />

Cl<br />

N<br />

H<br />

O<br />

N<br />

O<br />

O<br />

O<br />

O<br />

F<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 193


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

MASS spectrum of compound ADD-05<br />

MASS spectrum of compound ADD-11<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 194


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

MASS spectrum of compound AS-12<br />

MASS spectrum of compound AS-13<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 195


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

IR spectrum of compound AS-05<br />

100<br />

%T<br />

75<br />

50<br />

3063.06<br />

2995.55<br />

2937.68<br />

2875.96<br />

1097.53<br />

1033.88<br />

956.72<br />

920.08<br />

734.90<br />

705.97<br />

669.32<br />

601.81<br />

25<br />

0<br />

F<br />

3402.54<br />

2974.33<br />

N<br />

H<br />

O<br />

N<br />

O<br />

1724.42<br />

O<br />

1660.77<br />

1591.33<br />

1533.46<br />

1516.10<br />

O<br />

1411.94<br />

1367.58<br />

1313.57<br />

1284.63<br />

1255.70<br />

1217.12<br />

1203.62<br />

1174.69<br />

1155.40<br />

1130.32<br />

842.92<br />

532.37<br />

468.72<br />

-25<br />

O<br />

-50<br />

F<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

1/cm<br />

IR spectrum of compound AS-21<br />

100<br />

%T<br />

90<br />

80<br />

3441.12<br />

3228.95<br />

3101.64<br />

2978.19<br />

1491.02<br />

2941.54<br />

1730.21<br />

1643.41<br />

1593.25<br />

1539.25<br />

1394.58<br />

1367.58<br />

1329.00<br />

1247.99<br />

1201.69<br />

1109.11<br />

1010.73<br />

949.01<br />

761.91<br />

738.76<br />

704.04<br />

588.31<br />

70<br />

667.39<br />

60<br />

1506.46<br />

1153.47<br />

833.28<br />

532.37<br />

50<br />

505.37<br />

40<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

1/cm<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 196


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

5.10 References<br />

1. Jones, R., Bean, G.; The chemistry of pyrroles, Academic press, London 1977.<br />

2. Gossauer, A.; Die chemie der pyrrole, Springer-Verleg, Berlin 1974.<br />

3. Trofimov, B.; Usp. Chim., 1989, 58 , 1703.<br />

4. Jones, R. (Ed.); Chem. Heterocycl. Compd., 1990, 48(1), Wiley Interscience, New York.<br />

5. Jones, R. in E. C. Taylor (Ed.); Chem. Heterocycl. Compd., 1992, 48(2), Wiley Interscience,<br />

New York.<br />

6. Sundberg, R. in A. R. Kartritzky and C.W.Rees(Eds.); Comprehensive Heterocyclic Chemistry,<br />

1984, 4, 313.<br />

7. Jones, R. in A. R. Kartritzky and C. W. Rees(Eds.), Comprehensive Heterocyclic Chemistry,<br />

1984, 4, 201<br />

8. Fabino, E., Golding, B.; J. Chem. Soc. Perk. Trans., 1991, 1, 3371.<br />

9. Moss, G.; Pure Appl. Chem., 1987, 59, 807.<br />

10. Curran, D., Grimshaw J., Perera S.; Chem. Soc. Rev., 1991, 20, 391.<br />

11. Sundberg, R., Nguyen, P. in H.Suschitzky and E. Scriven(Edn.),; Progress in Heterocyclic<br />

Chemistry, 1994, 6,110.<br />

12. Khetan, S., Hiriyakkanavar, J., George, M.; Tetrahedron, 1968, 24, 1567.<br />

13. Meyer, H.; Leibigs, Ann. Chem., 1981, 1534.<br />

14. Friedman, M.; J. Org. Chem., 1965, 30, 859.<br />

15. Posvic, H., Dombro, R., Ito, H., Telinski, T.; J. Org. Chem., 1974, 39, 2575.<br />

16. Tanaseichuk, B., Vlasova, S., Morozov, E.; Org. Khim Zh., 1971, 7, 1264.<br />

17. Suzuki, M., Miyoshi, M., Matsumoto, K.; J. Org. Chem., 1974, 39, 1980.<br />

18. Kartritzky, A., Suwinski, J.; Tetrahedron, 1975, 31, 1549<br />

19. Kozlov, N., Moiseenok, L., Kozintsev, S.; Khim. Geterosikl. Soedin., 1979, 1483.<br />

20. Backvall, J., Nystrom, J.; J. Chem. Soc. Chem. Commun., 1981, 59.<br />

21. Makhsumov, A., Safaev, A., Madikhanov, N.; Khim. Geterosikl. Soedin., 1970, 125.<br />

22. Chalk, A.; Tetrahedron.Lett., 1972, 3487.<br />

23. Padwa, A., Dean D., Oine T.; J. Am. Chem. Soc., 1975, 97, 2822.<br />

24. Padwa, A., Dean D., Oine T.; J. Am. Chem. Soc., 1975, 97, 2822.<br />

25. Huisgen, R., Gotthardt H., Bayer H., Schaefer F.; Chem. Ber., 1970, 103, 2611.<br />

26. Potts, K., Chen S.; J. Org. Chem., 1977, 42, 1639.<br />

27. Niitsuma, S., Kato, K, Takita, T., Umezawa, H.; Tetrahedron Lett., 1985, 26, 5785.<br />

28. Elliott, A., Morris, P., Petty, S., Williams, C.; J. Org. Chem., 1997, 62, 8071.<br />

29. Lim, M., Klein, R., Fox, J.; J. Org. Chem., 1979, 44, 3826.<br />

30. Chen, N., Lu, Y., Gadamasetti, K., Hurt, C., Norman, M., Fotsch, C.; J. Org. Chem., 2000, 65,<br />

2603.<br />

31. (a) Furukawa, M., Okawara, T., Noguchi, Y., Terawaki, Y.; Chem. Pharm. Bull., 1979, 27,<br />

2223. (b) Birnberg, G., Fanshawe, W., Francisco, G., Epstein J.; J. Heterocycl. Chem., 1995, 32,<br />

1293.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 197


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

32. (a) Carlson, R., Nilsson, A., Stroemqvist, M.; Acta Chem. Scand., B37, 1983, 7. (b) Selva, M.,<br />

Tundo, P., Marques, C.; Synth. Commun., 1995, 25, 369.<br />

33. (a) Erdmann, B., Knoll, A., Liebscher, J.; J. Prakt. Chem., 1988, 330, 1015. (b) Gewald, K.,<br />

Schaefer, H., Bellmann, P., Hain, U., J.; Prakt. Chem., 1992, 334, 491.<br />

34. Elliott, A., Montgomery, J., Walsh, A.; Tetrahedron Lett., 1996, 37, 4339.<br />

35. Raval, K,; Ph.D. Thesis, <strong>Saurashtra</strong> <strong>University</strong> 2004.<br />

36. Upadhyay, K,; Ph.D. Thesis, <strong>Saurashtra</strong> <strong>University</strong> 2006.<br />

37. Dong, H., Shen, M., Redford, J. E., Stokes, B. J., Pumphrey, A. L., Driver, T. G.; Org. Lett.,<br />

2007, 9, 5191.<br />

38. Pan, Y., Lu, H., Fang, Y., Fang, X., Chen, L., Qian, J., Wang, J., Li, C.; Synthesis, 2007, 1242-<br />

1246.<br />

39. Chiba, S., Wang, Y.-F., Lapointe, G., Narasaka, K.; Org. Lett., 2008, 10, 313.<br />

40. Azizi, N., Khajeh-Amiri A., Ghafuri, H., Bolourtchian, M., Saidi, M. R.; Synlett, 2009, 2245.<br />

41. Anary-Abbasinejad, M., Charkhati, K., Anaraki-Ardakani, H.; Synlett, 2009, 1115.<br />

42. Das, B., Reddy, G. C., Balasubramanyam, P., Veeranjaneyulu, B.; Synthesis, 2010, 1625.<br />

43. Saito, A., Konishi, O., Hanzawa, Y.; Org. Lett., 2010, 12, 372.<br />

44. Shih, J., Chen, K., Ridd, M.; Annu. Rev. Neurosci., 1999, 22, 197.<br />

45. Shih, J., Thompson, R.; Am. J. Hum. Genet, 1999, 65, 593.<br />

46. Chiba, K., Trevor, A., Castagnoli, N.; Biochem. Biophys. Res. Commun., 1984, 120, 574.<br />

47. Fritz, R., Abell, C., Patel, N., Gessner, W., Brossi, A.; FEBS Lett., 1985, 186, 224.<br />

48. Grimsby, J., Toth, M., Chen, K., Kumazawa, T., Klaidman, L., Adams, J., Karoum, F., Gal, J.,<br />

Shih, J.; Nat. Genet; 1997, 17, 206.<br />

49. Zutter, G., Davis, R.; Proc. Natl. Acad. Sci. USA, 2001, 98, 6168.<br />

50. Bach, A., Lan, N., Johnson, D., Abell, C., Bembenek, M., Kwan, S., Seeburg, P., Shih, J.; Proc.<br />

Natl. Acad. Sci. USA, 1988, 85, 4934.<br />

51. Johnston, J.; Biochem. Pharmacol., 1968, 17, 1285.<br />

52. Kalgutkar, A., Castagnoli, N., Testa, B.; Med. Res. Rev., 1995, 15, 325.<br />

53. Westlund, R., Denney, R., Kochersperger, L., Rose, R., Abell, C.; Science 1985, 230,181.<br />

54. Knoll, J., Magyar, K.; Adv. Biochem. Psycopharmacol., 1972, 5, 393.<br />

55. Mai, A., Artico, M., Esposito, M., Ragno, R., Sbardella, G., Massa, S.; Il Farmaco, 2003, 58,<br />

231.<br />

56. Moureau, F., Wouters, J., Vercauteren, D., Collin, S., Evrard, G., Durant, F., Ducrey, F., Koenig,<br />

J., Jarreau, F.; Eur. J. Med. Chem., 1992, 27, 939.<br />

57. Moureau F., Wouters J., Vercauteren D., Collin S., Evrard G., Durant F., Ducrey F., Koenig J.,<br />

Jarreau F.; Eur. J. Med. Chem., 1994, 29, 269.<br />

58. Collins, F.; Clin. Microbiol. Rev., 1989, 2, 360.<br />

59. Dooley, S., Jarvis W., Marone W., Snider D; Ann. Intern. Med., 1992, 117, 257.<br />

60. Fischl, M., Daikos, G., Uttamchandani, R., Poblete, R., Moreno, J., Reyes, R., Boota, A.,<br />

Thompson, L., Cleary, T., Oldham, G., Saldama, M., Lai, S.; Ann. Intern. Med., 1992, 117, 184.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 198


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

61. Heym, B., Honore, N., Truffot-Pernot, C., Banerjee, A., Schurra, C., Jacobs W., Van Embden J.,<br />

Grosset J., Cole S.; Lancet, 1994, 344, 293.<br />

62. Kochi, A.; Tubercle, 1991, 72, 1.<br />

63. Pearson, M., Jereb, J., Frieden, T., Crawford, J., Davis, B., Dooley, S., Jarvis, W.; Ann. Intern.<br />

Med., 1992, 117, 191.<br />

64. Riley, L.; Clin. Infect. Dis., 1993, 17, 442.<br />

65. Ashtekar, D., Costa-Perira, R., Hagrajan K., Vishvamatham M., Bhatt A., Rittel, W.; Agents<br />

Chemother., 1993, 37, 183.<br />

66. Wayne, L., Sramek, H.; Antimicrob. Agents Chemother., 1994, 38, 2054.<br />

67. (a) Esposito, D., Craigie, R.; Adv. Virus Res., 1999, 52, 319. (b) Asante-Appiah E., Skalka A.;<br />

Adv. Virus Res., 1999, 52, 351. (c). Pommier Y., Neamati N.; Adv. Virus Res., 1999, 52, 427.<br />

68. (a) Hazuda, D., Felock, P., Witmar, M., Wolfe, A., Stillmock, K., Grobler, J., Espeseth, A.,<br />

Gabryelski, L., Schleif W., Blau C., Miller M.; Science, 2000, 287, 646. (b) Selnick, H.,<br />

Hazuda, D., Egbertson, M., Guare J., Wai, J., Young, S., Clark, D., Medina, J.; W09962513<br />

(c) Toshio, F., Tomokazu, Y.; W099-JP1547.<br />

69. Hazuda, D., Felock, P., Hastings, J., Pramanik, B., Wolfe, A.; J. Virol., 1997, 71, 7005.<br />

70. Lee, H., Lee, J., Lee, S., Shin, Y., Jung, W., Kim, J., Park, K., Kim, K., Cho H., Ro S., Lee S.,<br />

Jeong S., Choi, T., Chung H., Koh J.; Bioorg. Med. Chem. Lett., 2001, 11, 3069.<br />

71. Padro, J., Tejedor, D., Santos-Exposito A., Garcya-Tellado F., Martin, V., Villar, J.; Bioorg.<br />

Med. Chem. Lett., 2005, 15, 2487.<br />

72. Cohen, P.; The Enzymes; Academic Press: New York, 1986, 17, 461.<br />

73. Cross, D., Alessi, R., Cohen, P., Jelkovich, M., Hemmings, B.; Nature, 1995, 378, 785.<br />

74. Nikoulina, S., Ciaraldi, T., Mudaliar, S., Mohideen, P., Cartet, L., Henry, R.; Diabetes, 2000, 49,<br />

263.<br />

75. (a) Wagman, A., Johnson, K., Bussiere, D.; Curr. Pharm. Design, 2004, 10, 1.<br />

(b) Polychronopoulos, P., Magiatis, P., Skaltsounis, A., Myrianthopoulos, V., Mikros, E.,<br />

Tarricone, A., Musacchio, A., Roe, S., Pearl, L., Leost, M., Greengard, P., Meijer, L.; J. Med.<br />

Chem., 2004, 47, 935. (c) Kunick, C., Lauenroth, K., Leost, M., Meijer, L., Lemcke, T.; Bioorg.<br />

Med. Chem. Lett., 14, 2004, 413.<br />

76. Hers, I., Tavare, J., Denton R.; FEBS Lett., 1999, 460, 433.<br />

77. Coghlan, M., Culbert, A., Cross, D., Corcoran, S., Yates, J., Pearce, N., Rausch, O., Murphy, G.,<br />

Carter, P., Cox, L., Mills, D., Brown, M., Haigh, D., Ward, R., Smith, D., Murray, K., Reith, A.,<br />

Holder, J.; Chem. Biol., 2000, 7, 793.<br />

78. Kuo, G., Prouty, C., DeAngelis, A., Shen, L., O’Neill D., Shah, C., Connolly, P., Murray, W.,<br />

Conway, B., Cheung, P., Westover, L., Xu, J., Look, R., Demarest, K., Emanuel, S., Middleton,<br />

S., Jolliffe, L., Beavers, M., Chen, X.; J. Med. Chem., 2003, 46, 4021<br />

79. Engler, T., Henry, J., Malhotra, S., Cunningham, B., Furness, K., Brozinick, J., Burkholder, T.,<br />

Clay, M., Clayton, J., Briere, D., O’Toole, J., Porter, W., Queener, S., Reel, J., Owens, R., Brier,<br />

R., Eessalu, T., Wagner, J., Campbell, R., Vaughn, R.; J. Med. Chem., 2004, 47, 3934.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 199


Chapter-5<br />

Synthesis of highly substituted pyrroles<br />

80. Dean, D. K.; Naylor, A.; Takle, A. K.; Wilson, D. M.; PCT. 2003, WO 2003022833 A1<br />

81. Katagi, T., Kataoka, H., Takahashi, K., Fujioka, T., Kunimoto, M., Yamaguchi, Y., Fujiwara,<br />

M., Inoi T.; Chem. Pharm. Bull., 1992, 40, 2419.<br />

82. JP4662, 1967.<br />

83. Bailey, D. M.; PCT. 1975, US 3883516 A.<br />

84. Hania, M.; Asian J. Chem., 2002, 14, 1074.<br />

85. Glaxo Laboratories Ltd.; 1974, FR2204404.<br />

86. Laurin, P., Ferroud, D., Klich, M., Dupuis-Hamelin, C., Mauvais, P., Lassaigne, P., Bonnefoy,<br />

A., Musicki, B.; Bioorg. Med. Chem. Lett., 1999, 9, 2079.<br />

87. GR 19929086.<br />

88. Rault, S.; Robba, M.; Lancelot, J-C.; Prunier, H.; Renard, P.; Pfeiffer, B.; Guardiola-Lemaitre,<br />

B.; Rettori, M.-C.; PCT. 1996, EP 718299 A1<br />

89. GR2640484.<br />

90. Mizuno, A., Inomata, N., Miya, M., Kamei, T., Shibata, M., Tatsuoka, T., Yoshida, M.,<br />

Takiguchi, C., Miyazaki, T., Chem. Pharm. Bull., 1999, 47, 246.<br />

91. Mizuno, A., Ogata, A., Kamei, T., Shibata, M., Shimamoto, T., Hayashi, Y., Nakanishi, K.,<br />

Takiguchi, C., Oka, N., Inomata N.; Chem. Pharm. Bull., 2000, 48, 623.<br />

92. Mizuno, A.; Cho, H.; Hamaguchi, M.; Tatsuoka, T.; Takafumi, I.; PCT. 1991, EP 441349 A1.<br />

93. Mizuno, A.; Cho, H.; Hamaguchi, M.; Tatsuoka, T.; Takafumi, I.; PCT. 1993, WO 9303032 A1.<br />

94. Granados, R., Mauleon, D., Perez, M.; Ann. Quim. Ser. C, 1983, 79, 275<br />

95. Baxter, A., Dixon, J., Ince F., Manners C., Teague S.; J. Med. Chem., 1993, 36(19), 2739.<br />

96. Liao, JK.; Laufs, U.; Annu Rev Pharmacol Toxicol, 2005, 45, 89.<br />

97. Rose, LV.; Linz JE.; Fungal Genet Biol. 1998, 25, 119.<br />

98. Lukacs, Gy.; Papp, T.; Nailasi, I.; Nagy, E.; Vagvolgyi, Cs.; j. Clin. Microbiol. 2004, 42, 5400.<br />

99. Macreadie, IG; Johnson G.; Schlosser, T.; Macreadie, PI.; FEMS Microbiol Lett. 2006, 262, 9.<br />

100. Sun, H-Y.; Singh, N.; Clin Infect Dis. 2009, 48, 745.<br />

101. Lorenz, RT.; Park LW.; Antimicrob. Agents Chemother. 1990, 34, 1660.<br />

102. Chin, NX.; Weitzman, I; Della-Latta, P.; Antimicrob. Agents Chemother. 1997, 41, 850.<br />

103. Nash, JD.; Bargess, DS.; Talbert RL.; J. Med. Microbiol. 2002, 51, 105.<br />

104. Chamilos, G.; Lewis, RE.; Kantoyiannis, DP.; Antimicrob. Agents Chemother. 2006, 50, 96.<br />

105. Natesan, SK.; Chandrasekar, PH.; Alangaden, GJ.; Manavathu, EK.; Diagn Microbiol infect Dis.<br />

2008, 60, 369.<br />

106. Nailasi, I.; Kocscube, S.; Pesti, M.; Lukacs, Gy.; Papp, T.; Nagy, E.; Vagvolgyi, Cs, 2010, J.<br />

Med. Microbiol. 2010, 59, 200.<br />

107. Cui, L.; Zhibing, Z.; Cheng, J. X., Wu, Z., Song, L., Bioorganic & Medicinal Chemistry Letters,<br />

2010, 20(17), 5123.<br />

108. Sarvari, M. H.; Sharghi, H.; J. Org. Chem. 2004, 69, 6953.<br />

109. Huimin, L.; Yujun, W.; Yanan, H.; Song, Hongrui Jingxi Huagong Zhongjianti, 2009, 39(2), 38.<br />

110. Amarnath, V.; Anthony, D. C.; Amarnath, K.; Valentine, W. M.; Wetterau, L. A.; Graham, D.<br />

G.; J. Org. Chem. 1991, 56, 6924.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 200


Chapter - 6<br />

Synthesis and Characterization of Some<br />

New Benzodiazepine Derivatives<br />

1


Chapter 6<br />

Synthesis of benzodiazepines<br />

6.1 Introduction<br />

The clinical importance and commercial success associated with the 1,4-<br />

benzodiazepine class of central nervous system (CNS)-active agents and the utility of<br />

1,4-diazepines as peptide mimetic scaffolds have led to their recognition by the<br />

medicinal chemistry community as privileged structures. This ring system has<br />

demonstrated considerable utility in drug design, with derivatives demonstrating a<br />

wide range of biological activities.<br />

The ring numbering and accepted system of nomenclature for 1,4-diazepines<br />

are illustrated in the structures (Figure-1). These structures are representatives of the<br />

tautomeric forms that have been most studied. Examples of all the fully unsaturated<br />

monocyclic 1,4-diazepines have been described and all are very unstable. In the<br />

dihydro-1,4-diazepines, the 2,3-dihydro-1H compounds have been studied most. For<br />

benzo-analogues the 3H series are usually more stable than 1H and although the<br />

parent compounds of both series are unknown, there is an extensive chemistry on<br />

substituted analogous especially in 3H series. The benzodiazepine-2-ones have been<br />

widely studied as benefits their commercial importance.<br />

Figure-1<br />

On the other hand, examples of the serendipitous discovery of new drugs<br />

based on an almost random screening of chemicals synthesized in the laboratory are<br />

striking. Since 1960, when chlordiazepoxide (Librium) entered in the market, efforts<br />

to discover new biologically active compounds with limited side effects in<br />

benzodiazepines are going on which are reflected by the important number of<br />

publication focused in this subject. 1-5<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 201


Chapter 6<br />

Synthesis of benzodiazepines<br />

Diazepine derivatives constitute an important class of heterocyclic compounds<br />

which possess a wide range of therapeutic and pharmacological properties.<br />

Derivatives of benzodiazepines are widely used as anticonvulsant, antianxiety,<br />

analgesic, sedative, anti-depressive, and hypnotic agents 6-7 as well as antiinflammatory<br />

agents. 8 In the last decade, the area of biological interest of 1,5-<br />

benzodiazepines has been extended to several diseases such as cancer, viral infection<br />

and cardiovascular disorders. 9-10 In addition,1,5-benzodiazepines are key<br />

intermediates for the synthesis of various fused ring systems such astriazolo-,<br />

oxadiazolo-, oxazino- or furanobenzodiazepines. 11-14 Besides, benzodiazepine<br />

derivatives are also of commercial importance as dyes for acrylic fibers in<br />

photography. 15 Owing to their versatile applications various methods for the synthesis<br />

of benzodiazepines have been reported in the literature. These include condensation<br />

reactions of o-phenylenediamines with α,β-unsaturated carbonylcompounds, 16 with<br />

ketones in the presence of BF 3·Et 2 O, NaBH 4 , polyphosphoric acid or SiO 2 ,<br />

MgO/POCl 3 , Yb(OTf) 3 , Al 2 O 3 /P 2 O 5 or AcOH under microwave conditions,<br />

Amberlyst-15 in the ionic liquid 1-butyl-3-methylimidazoliumbromide ([bmim]Br),<br />

CeCl 3·7H 2 O/NaI supported on silica gel,InBr 3 , Sc(OTf) 3 , sulfated zirconia, InCl 3 ,<br />

CAN, ZnCl 2 under thermal conditions, AgNO 3 . 17-32<br />

Among all types of benzodiazepines (1,2-,1,3-, 1,4-, 1,5-, 2,3-, & 2,4- ) only<br />

1,4- and 1,5-benodiazepines have found wide applications in medicines, during one of<br />

the most important classes of the therapeutic agents with wide spread biological<br />

activities 33 including hypnotics, sedatives, anxiolytics and antianxiety etc, effect range<br />

from their well-documented anticonvulsive or tranquilizing properties, through<br />

pesticidal 34 or antitumor 35 action and to their more recently described peptidomimetic<br />

activity. 36<br />

Recently, structural modification has been done in diazepine ring system to<br />

enhance biological activity. Diazepine ring system modified at N and 3-position has<br />

been studied extensively. They have been tested clinically as an antitrypanosomal<br />

activity, 37 antiplasmodial falcipain-2 inhibitors, 38 antileukemic agents, 39 and<br />

endothelin Receptor Antagonists. 40 V. I. Pavlovsky et al. 41 has reported that 3-<br />

arylideneand 3-hetarylidene 1,4-diazepinederivatives afford good affinity toward CNS<br />

benzodiazepine receptors.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 202


Chapter 6<br />

Synthesis of benzodiazepines<br />

6.2 Biological activities associated with diazepine derivatives<br />

Buckle et al. 42 has prepared 1H-benzo-1,5-diazepine-2,4-(3H,5H)-diones<br />

(Figure-2) from 4,2-R 2 (NH 2 )C 6 H 3 NH 2 (R 2 = H, Cl, F, COOH) by refluxing with<br />

malonic acid in 4N HCl for half an hour followed by nitration with fuming HNO 3<br />

which is antiallergic substance useful in the treatment of rhinitis, hay fever and certain<br />

type of asthma.<br />

Figure-2<br />

K. S. Andronati et al. 43 has prepared 3-Amino-1,2-dihydro-3h-1,4-<br />

benzodiazepin-2-one derivatives (Figure-3) via interaction with 3-chloro<br />

benzodiazepines, diethylamine, 1,6-diaminohexane, or p-nitroaniline, which is exhibit<br />

a pronounced anticonvulsant activity and produce significant anorexigenic effect.<br />

H<br />

N<br />

O<br />

Br<br />

N<br />

R 2<br />

R 1<br />

R 1 =H,Cl<br />

R 2 =N(C 2 H 5 ) 2 , NH(CH 2 ) 6 NH 2<br />

Figure-3<br />

More recent analogues of the Benzodiazepines have attracted interest as anti<br />

HIV compounds, such as the clinically used nevirapine and as anticancer compounds,<br />

such as the pyrrolo fused antitumor antibiotic DC-18 (Figure-4), analogues of which<br />

are in clinical development as anticancer agents. 44<br />

Figure-4<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 203


Chapter 6<br />

Synthesis of benzodiazepines<br />

Rubin et al. 45 have synthesized 4-phenyl-2-trichloromethyl-3H-1,5-<br />

benzodiazepine hydrogen sulphate and examined its pharmacological effects in mice,<br />

keeping diazepam as reference. The data suggest that this recently synthesized<br />

compound possesses anxiolytic activity and produces motor in co-ordination similar<br />

to those observed with diazepam.<br />

The synthesis of a new class of annulated 1,4-benzodiazepines with antipsychotic<br />

activity was exemplified by preparation of 10-fluoro-3-methy1-7-(2-<br />

thieny1)-1,2,3,4,4a,5-hexahydropyrazino[1,2-a][1,4]benzodiazepine(Figure-5). The<br />

influence of variations of the fluoro-substitution pattern and variations of the fused<br />

ring system on the biological activity of the structural analogues was evaluated. 46<br />

Figure-5<br />

3-Acetyl coumarins when allowed react with isatin gave corresponding 3-(3’-<br />

hydroxy-2’-oxoindolo)acetylcoumarins, which on dehydration afforded the<br />

corresponding α,β-unsaturated ketones. Which on cyclocondensation with substituted<br />

o-phenylenediamines resulted in novel4-(2-oxo-2H-chromen-3-yl)-1,5-dihydrospiro<br />

[benzo[b][1,4]diazepine-2,3'-indolin]-2'-one (Figure-6). All the compounds have<br />

been screened for their antimicrobial and antianxiety activity in mice. 47<br />

Figure-6<br />

A library of compounds targeted to the vasopressin/oxytocin family of<br />

receptors was screened for activity at a cloned human oxytocin receptor using a<br />

reporter gene assay. Potency and selectivity were optimized to afford compound<br />

(Figure-7), EC 50 =33 nM. This series of compounds represents the first disclosed,<br />

non-peptide, low molecular weight agonists of the hormone oxytocin. 48<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 204


Chapter 6<br />

Synthesis of benzodiazepines<br />

H<br />

N<br />

N<br />

N<br />

O<br />

N<br />

H<br />

N<br />

N<br />

O<br />

S<br />

N<br />

N<br />

Figure-7<br />

A series of 2,3-dihydro-1,5-benzodiazepines were synthesized and evaluated<br />

for anti-inflammatory effects in microglia cells. 49 Among the 1,5-benzodiazepines<br />

tested, compound (Figure-8) strongly inhibited LPS-induced nitric oxide (NO)<br />

production, with an IC 50 value of 7.0 µM in the microglia cells.<br />

Figure-8<br />

A series of 2,3-dihydro-1H-thieno[2,3-e][1,4]diazepine (Figure-9) was<br />

synthesized and evaluated for CNS activity. A new antianxiety screen for<br />

benzodiazepine-like drugs was used along with the standard anticonvulsant test.<br />

Structure activity relationships were discussed. 50<br />

Figure-9<br />

Walser A. et al. 51 have prepared [1,2,4]triazolo[4,3-a][1,4]benzodiazepines<br />

bearing an ethynyl functionality at the 8-position and the isostericthieno[3,2-f]<br />

[1,2,4]triazolo[4,3-a][1,4]diazepines (Figure-10) and evaluated as antagonists of<br />

platelet activating factor.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 205


Chapter 6<br />

Synthesis of benzodiazepines<br />

Figure-10<br />

Nakanishi et al. 52 have reported the synthesis and pharmacological activity of<br />

tetrazolo, oxadiazolo and imidazothienodiazepines derivatives (Figure-11). Some of<br />

them were found as minor tranquilizers.<br />

Figure-11<br />

Malcolm et al. 53 have been synthesized acetamido-1,4-diazepine analogs<br />

(Figure-12) which worked as inhibitor of respiratory syncytial virus(RSV) and<br />

exhibited IC 50 in the range of 10-20 íM over all three assays routinely used. This<br />

molecule also demonstrated excellent pharmacokinetic properties in the rat with a<br />

half-life of approximately 6 hand an oral bioavailability of 76%. This suggested that<br />

the core benzodiazepine was relatively stable to metabolism and a good starting point<br />

for lead optimization.<br />

Figure-12<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 206


Chapter 6<br />

Synthesis of benzodiazepines<br />

6.3 Some pharmaceutical molecules related to benzodiazepines<br />

Benzodiazepines enhance the effect of the neurotransmitter gamma-amino<br />

butyric acid (GABA), which results in sedative, hypnotic (sleep-inducing), anxiolytic<br />

(anti-anxiety), anticonvulsant, muscle relaxant and amnesic action. These properties<br />

make benzodiazepines useful in treating anxiety, insomnia, agitation, seizures, muscle<br />

spasms, alcohol withdrawal and as a premedication for medical or dental procedures.<br />

Benzodiazepines are categorized as either short-, intermediate- or long-acting. Shortand<br />

intermediate-acting benzodiazepines are preferred for the treatment of insomnia;<br />

longer-acting benzodiazepines are suggested for the treatment of anxiety. The detail<br />

of benzodiazepines related drugs is given below (Figure-13).<br />

N<br />

O<br />

H<br />

N<br />

O<br />

N<br />

O<br />

Cl<br />

N<br />

O 2 N<br />

N<br />

Cl<br />

N<br />

Cl<br />

Diazepam<br />

Anticonvulsant,<br />

muscle relaxant<br />

Clonazepam<br />

Hypnotic<br />

Tetrazepam<br />

Skeletal muscle relaxant<br />

Cl<br />

N<br />

N<br />

N<br />

N<br />

Br<br />

H 3 C<br />

S<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

S<br />

N<br />

Cl<br />

Cl<br />

Br<br />

Estazolam<br />

short-term treatment<br />

of insomnia.<br />

N<br />

Brotizolam<br />

Sedetive-Hypnotic<br />

N<br />

Ciclotizolam<br />

GABA A receptor agonist<br />

Cl<br />

N<br />

N<br />

O<br />

OH<br />

Cl<br />

N<br />

N<br />

O<br />

OH<br />

Cl<br />

N<br />

N<br />

O<br />

OH<br />

F<br />

F<br />

F<br />

Flurazepam<br />

Hypnotic<br />

Cinolazepam<br />

Hypnotic<br />

Figure-13<br />

Flutoprazepam<br />

anxiolytic<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 207


Chapter 6<br />

Synthesis of benzodiazepines<br />

6.4 Synthetic methods for benzodiazepines derivatives<br />

The most extensively used methods for preparing 1,4-benzodiazepines begins<br />

with an ortho-aminobenzophenone (1). The first method involves two-step synthesis.<br />

The first step involves treatment of the appropriate aminobenzophenone with<br />

haloacetyl halide to afford the amide (2), followed by the addition of ammonia to first<br />

displace the chlorine giving the glycinamide (3). Then cyclization by imine formation<br />

will give the benzodiazepine (4). 54-55 The other method involves treating the o-aminoketone<br />

with an amino acid ester hydrochloride in pyridine to yield (4) (Figure-14).<br />

Generally, the first method gave a higher percent yield of clean product, while the<br />

second method facilitated the conversion of o-aminoketones to benzodiazepines in<br />

one step, with a variety of substituents. 54-56<br />

Figure-14<br />

Jin-Yuan Wang et al. 57 have developed a new strategy for the synthesis of 1,4-<br />

benzodiazepine from Methyl1-arylaziridine-2-carboxylates with N-[2-Bromomethyl(phenyl)]trifluoroacetamides<br />

(Figure-15). The reaction proceeds through the<br />

N-benzylation and highly regioselective ring-opening reaction of aziridine by bromide<br />

anion followed by Et 3 N mediated intramolecular nucleophilic displacement of the<br />

bromide by the amide nitrogen.<br />

R<br />

Br<br />

NH<br />

O<br />

CF 3<br />

MeOOC<br />

N<br />

R'<br />

1) CH 3 CN, reflux 11hrs<br />

2) Et 3 N (2.0 eq.)<br />

CH 3 CN, reflux, 12hrs<br />

F 3 COC<br />

R N<br />

N<br />

COOMe<br />

R'<br />

Figure-15<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 208


Chapter 6<br />

Synthesis of benzodiazepines<br />

Recently, Joshua et al. 58 has reported the synthesis of saturated 1,4-<br />

benzodiazepines and 1,4-benzodiazepin-5-ones (Figure-16) via Pd-catalyzed<br />

carboamination reactions using sodium tert-butoxide base and xylene as a solvent at<br />

refluxing condition.<br />

Figure-16<br />

Veena Yadav et al. 59 has developed an efficient microwave assisted protocol<br />

for the exclusive one pot synthesis of N-amino-methyl substituted 1,4-<br />

benzodiazepine derivatives by the reaction of N-amino-methylsubstituted isatoic<br />

anhydride with glycine and L-proline respectively has been described (Figure-17).<br />

Figure-17<br />

Line S. Laustsen et al. 60 has developed an efficient solid-phase method has<br />

been for the parallel synthesis of 1,3-dihydro-1,4-benzodiazepine-2-one derivatives<br />

(Figure-18). A key step in this procedure involves catching crude 2-aminobenzoimine<br />

(1) products on an amino acid Wang resin (2). Mild acidic conditions then promote a<br />

ring closure and in the same step cleavage from the resin to give pure benzodiazepine<br />

products (3).These synthesis strategies involve catch and release phenomena.<br />

Figure-18<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 209


Chapter 6<br />

Synthesis of benzodiazepines<br />

New 2,4-disubstituted 1,5-benzodiazepine derivatives containing different<br />

functional groups have been synthesized and screened for their antibacterial activity.<br />

The 2,4-disubstituted 1,5-benzodiazepine derivatives were synthesized by reacting<br />

substituted chalcones synthesized using aldol condensation with o-phenylenediamine<br />

(Figure-19). QSAR studies of synthesized derivatives were performed. 61<br />

Figure-19<br />

A facile and efficient synthesis of 1,5-benzodiazepines with an aryl<br />

sulfonamido substituent at C(3) is described. 1,5-Benzodiazepine, derived from the<br />

condensation of benzene-1,2-diamine and diketene, reacts with an<br />

arylsulfonylisocyanate via an enamine intermediate to produce 1,5-benzodiazepines<br />

good yields (Figure-20). 62<br />

Figure-20<br />

Goswami and Das reports the organo catalyzed one-pot synthesis of<br />

substituted 1,5-benzodiazepinesby condensation of o-phenylenediamine, and 1,3-<br />

dicarbonyl compounds at room temperature or under reflux in the presence of<br />

catalytic amount of L-proline as shown in (Figure-20). 63<br />

Figure-20<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 210


Chapter 6<br />

Synthesis of benzodiazepines<br />

6.5. Current research work<br />

The chemistry of benzodiazepines and its derivatives has been studied for over<br />

a century due to their diverse biological activities. It has numerous pharmacological<br />

and medicinal applications viz, PAF antagonists, cardiovascular agents, CNS-active<br />

agent, hypnotic, anxiolytic, sedative and anticonvulsant. Therefore, we set to prepare<br />

some new 1H-benzo[e][1,4]diazepin-2(3H)-one derivatives for their biological studies.<br />

The requisite starting material1,4-benzodiazepines (ADZ-03) was prepared by<br />

following the reported procedure. The 2-amino-4’-flouro-benzophenone (ADZ-01)<br />

was reacted with chloroacetylchloride to afford 2-chloro-N-(2-(4’-fluorobenzoyl)<br />

phenyl)acetamide (ADZ-02). It was subsequently converted to 1,4-benzodiazepines<br />

by the modification of the known hexamethylenetetramine-(HMTM)-based<br />

cyclization reaction developed by Blazevic and Kajfez. 54-55 ADZ-03 thus obtained<br />

was reacted with a variety of alkyl halide using KOH in DMF to give 1-substituted-5-<br />

(4-fluorophenyl)-1H-benzo[e][1,4]diazepin-2(3H)-one (ADZ-04a-j). To achieve 5-<br />

substituted 1,4-benzodiazepines (ADZ-05a-j), 5-(4-fluorophenyl)-1H-benzo[e][1,4]<br />

diazepin-2(3H)-one (ADZ-03) was treated with various aromatic aldehydes in the<br />

presence of potassium hydroxide in toluene. The newly synthesized compounds were<br />

characterized by IR, Mass, 1 H NMR, 13 C NMR spectroscopy and elemental analysis.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 211


Chapter 6<br />

Synthesis of benzodiazepines<br />

6.6 Results and discussion<br />

Scheme: Synthesis of some new benzodiazepine derivatives<br />

Scheme-01<br />

Scheme-02<br />

Where R= CH 3 , CH(CH 3 ) 2 , R 1 = CH 3 , F, Cl, NO 2 , X=Br<br />

Synthesis of 1-and 3-substituted 1,4-benzodiazepinederivatives is shown in<br />

sheme 1 and 2. The starting material, 2-amino-4’-flouro-benzophenone ADZ-01 was<br />

reacted with chloroacetyl chloride in toluene at room temperature to afforded 2-<br />

chloro-N-(2-(4’-fluorobenzoyl)phenyl)acetamide. The latter was converted in to 1,4-<br />

benzodiazepines ADZ-03 by following the literature methods using ammonium<br />

acetate and hexamine in EtOH. 54-55 The N-alkylation of 1,4-benzodiazepines with<br />

various alkyl halide in DMF at below 15 o C in the presence of potassium hydroxide<br />

proceeded smoothly to furnish a series of 1-substituted-5-(4-fluorophenyl)-1Hbenzo[e][1,4]diazepin-2(3H)-one<br />

ADZ-04a-j in good yields. Reaction time and (%)<br />

of yield is summarized in Table-1.<br />

On the other hand, the condensation of of 1,4-benzodiazepines ADZ-03 with<br />

aromatic aldehydes in the presence of potassium hydroxide in reluxing provided a<br />

series of new 3-substituted-5-(4-fluorophenyl)-1H-benzo[e][1,4]diazepin-2(3H)-one<br />

ADZ-05a-j in excellent yields (Table-2).<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 212


Chapter 6<br />

Synthesis of benzodiazepines<br />

A variety of 3-arylidine benzodiazepines bearing electron donating and electron<br />

withdrawing groups such as 3,4-diOCH 3 ; 4-OCH 3 ; H; 2,5-diOCH 3 ; 2-OH; 4-F; 4-Br;<br />

4-Cl; 4-NO 2 and 3-NO 2 were prepared.<br />

Table-1: Synthesis of 1-substituted benzodiazepine derivatives<br />

Entry R Yield (%) Time hrs<br />

ADZ-04a -CH 3 87 2.0<br />

ADZ-04b -CH 2 CH 3 83 2.5<br />

ADZ-04c -(CH 2 ) 2 CH 3 88 3.0<br />

ADZ-04d -CH(CH 3 ) 2 84 2.5<br />

ADZ-04e -(CH 2 ) 3 CH 3 80 3.0<br />

ADZ-04f -CH 2 CH(CH3) 2 89 3.5<br />

ADZ-04g (CH 2 ) 4 CH 3 90 2.5<br />

ADZ-04h -(CH 2 ) 2 CH(CH 3 ) 2 88 4.0<br />

ADZ-04i C 6 H 11 79 4.5<br />

ADZ-04j -CH 2 C 6 H 4 4-NO 2 90 4.0<br />

The structures of ADZ-03 were conformed on the basis of their elemental<br />

analysis and spectral data (MS, IR, and 1 H NMR).The analytical data for ADZ-03<br />

revealed a molecular formula C 15 H 11 FN 2 O 2 (m/z 254).The 1 HNMR spectrum revealed<br />

a singlet at 4.31ppm assigned to –CH 2 group, a four multiplet signals at δ = 7.04–<br />

7.57 ppm assigned to the aromatic protons, and one broad singlet at δ = 8.83 ppm<br />

assigned to -CONH groups.<br />

Table-2: Synthesis of 3-arylidine benzodiazepine derivatives<br />

Entry R 1 Yield (%) Time hrs<br />

ADZ-05a H 90 2.0<br />

ADZ-05b 3-NO 2 85 2.5<br />

ADZ-05c 3,4-diOCH 3 83 3.0<br />

ADZ-05d 4-OCH 3 87 2.5<br />

ADZ-05e 4-Cl 94 3.0<br />

ADZ-05f 4-F 90 3.5<br />

ADZ-05g 4-NO 2 92 2.5<br />

ADZ-05h 4-Br 89 4.0<br />

ADZ-05i 2-OH 80 4.5<br />

ADZ-05j 2,5-diOCH 3 81 4.0<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 213


Chapter 6<br />

Synthesis of benzodiazepines<br />

The newly synthesized compounds ADZ-04a-j were conformed on the basis<br />

of their elemental analysis and spectral data (MS, IR, 1 H NMR and 13 C NMR). The<br />

structure of ADZ-04a was supported by its mass (m/z 268) which agree with its<br />

molecular formula C 16 H 13 FN 2 O, its 1 H NMR spectrums held a singlet at δ =3.42 ppm<br />

assigned to -CH 3 , two doublet signals observed at δ =3.75-3.78 (1H, J=10.5Hz) and<br />

4.78-4.81 (1H, J=10.5Hz) assigned to –CH 2 group, and four multiplet signal observed<br />

at δ =7.05-7.65 assigned to the aromatic protons.<br />

All synthesized compounds ADZ-05a-j were conformed on the basis of their<br />

elemental analysis and spectral data (MS, IR, 1 H NMR and 13 C NMR).The analytical<br />

data for ADZ-05a revealed a molecular formula C 22 H 15 FN 2 O(m/z 342). Its 1 H NMR<br />

signals held at δ = 6.39 (s. 1H, CH), 7.08-7.12 (m, 1H, Ar), 7.21-7.37 (m, 7H, Ar),<br />

7.46-7.53 (m, 3H, Ar), 7.76-7.79 (m, 2H, Ar), 8.15 (s, 1H, -CONH).<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 214


Chapter 6<br />

Synthesis of benzodiazepines<br />

6.7 Conclusion<br />

In summary, we have demonstrated a simple and effective strategy for the<br />

synthesis of novel1-and 3-substituted 1,4-benzodiazepines. The reaction of 1,4-<br />

benzodiazepines either with various alkyl halide or a variety of aromatic aldehydes in<br />

the presence of potassium hydroxide afforded the desired 1-and 3-substituted 1,4-<br />

benzodiazepine derivatives (ADZ-04a-j and ADZ-05a-j) in excellent yields.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 215


Chapter 6<br />

Synthesis of benzodiazepines<br />

6.8 Experimental section<br />

Thin-layer chromatography was accomplished on 0.2-mm precoated plates of<br />

silica gel G60 F 254 (Merck). Visualization was made with UV light (254 and 365nm)<br />

or with an iodine vapor. IR spectra were recorded on a FTIR-8400 spectrophotometer<br />

using DRS prob. 1 H (300 MHz), 1 H (400 MHz), 13 C (75 MHz) and 13 C (100 MHz)<br />

NMR spectra were recorded on a Bruker AVANCE II spectrometer in CDCl 3 and<br />

DMSO. Chemical shifts are expressed in δ ppm downfield from TMS as an internal<br />

standard. Mass spectra were determined using direct inlet probe on a GCMS-QP 2010<br />

mass spectrometer (Shimadzu). Solvents were evaporated with a BUCHI rotary<br />

evaporator. Melting points were measured in open capillaries and are uncorrected.<br />

General procedure for the synthesis of 2-chloro-N-(2-(4-<br />

fluorobenzoyl)phenyl) acetamide (ADZ-02).<br />

To a solution of 2-amino-4’-fluorobenzophenone (0.0046 mol) in toluene<br />

(10mL), a solution of chloroacetyl chloride (0.0049 mol) in toluene (2 mL) was added<br />

drop wise at 0 °C within 0.5 h. The reaction mixture was further stirred at room<br />

temperature for 5 h. The resulting reaction mixture was evaporated to dryness. The<br />

crude product was triturated with ethanol (10 mL) and the crystalline solid separated<br />

was collected by filtration to give desired product ADZ-02 in 87-90% yield.<br />

<br />

General procedure for the synthesis of 5-(4-fluorophenyl)-1H-beno[e]<br />

[1,4]diazepin-2(3H)-one (ADZ-03).<br />

To a solution of 2-chloro-N-(2-(4-fluorobenzoyl)phenyl)acetamide (0.0068<br />

mol) in ethanol (40 mL), hexamethylenetetramine (HMTM; 0.015 mol) and<br />

ammonium acetate (0.015 mol) were added. The reaction mixture was stirred at reflux<br />

temperature for 3 h. Then the reaction mixture was evaporated to dryness. Distilled<br />

water (30mL) was added, and the resulting suspension was stirred at 60 °C for 0.5 h.<br />

The suspension was cooled to 20 °C and filtered. The crude product was crystallized<br />

from toluene to obtained ADZ-03 in 80-85% yield.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 216


Chapter 6<br />

Synthesis of benzodiazepines<br />

General synthesis of 1-substituted-5-(4-fluorophenyl)-1H-benzo[e]<br />

[1,4]diazepin-2(3H)-one (ADZ-04a-j).<br />

To solution of 5-(4-fluorophenyl)-1H-beno[e][1,4]diazepin-2(3H)-one (0.0039<br />

mol) in DMF (10 ml), potassium hydroxide (0.0046 mol) and appropriate alkyl halide<br />

(0.0039 mol) were added at 0 o C. The reaction mixture was stirred for 3-5 h at this<br />

temperature. The progress of reaction was monitored by thin layer chromatography.<br />

After completion of reaction mixture, it was poured into cold water. The solid<br />

separated was filtered, washed with water and dried. The crude product was<br />

recrystallized from ethanol to give analytical pure product in 79-90% yield.<br />

General synthesis of 3-benzylidene-5-(4-fluorophenyl)-1Hbenzo[e][1,4]diazepin-2(3H)-one<br />

(ADZ-05a-j)<br />

5-(4-Fluorophenyl)-1H-beno[e][1,4]diazepin-2(3H)-one (0.0039 mol),<br />

potassium hydroxide (0.0039 mol) and appropriate aromatic aldehydes (0.0039 mol)<br />

were taken in toluene (20 mL). The reaction mixture was heated to reflux for 8-10 hrs.<br />

The progress of reaction was monitored by thin layer chromatography. After<br />

completion of reaction mixture cooled to room temperature and the solid separated<br />

product was filtered, washed with cold toluene and dried. The crude product was<br />

recrystallized from ethanol to give corresponding product ADZ-05a-j in 80-94% yield.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 217


Chapter 6<br />

Synthesis of benzodiazepines<br />

Spectral data of the synthesized compounds<br />

2-chloro-N-(2-(4-fluorobenzoyl)phenyl)acetamide ADZ-02. White solid, mp 126-<br />

128 ° C; R f 0.49 (8:2 hexane-EtOAc); IR (KBr): 3373, 3072, 2895, 2828, 1694, 1635,<br />

1482, 1343, 1298 cm -1 ; MS (m/z): 291 [M + ]; Anal. Calcd for C 15 H 11 ClFN 2 O 2 : C,<br />

61.76; H, 3.80; N, 4.80; Found: C, 61.74; H, 3.82; N, 4.82.<br />

5-(4-fluorophenyl)-1H-benzo[e][1,4]diazepin-2(3H)-one ADZ-03. White solid, mp<br />

172-174 ° C; R f 0.42 (8:2 hexane-EtOAc); IR (KBr): 3182, 3120, 3068, 3051, 2955,<br />

1693, 1672, 1504, 1232, 1024, 839, 810, 731, 690 cm -1 ; 1 H NMR (300 MHz, CDCl 3 ):<br />

δ 4.31 (S, 2H, CH 2 ), 7.04-7.09 (m, 2H, Ar), 7.15-7.19 (m, 2H, Ar), 7.26-7.33 (m, 1H,<br />

Ar), 7.49-7.57 (m, 3H, Ar), 8.83 (s, 1H, NH); MS (m/z): 254 [M + ]; Anal. Calcd for<br />

C 15 H 11 FN 2 O 2 : C, 70.86; H, 4.36; N, 11.02; Found: C, 70.84; H, 4.34; N, 11.03.<br />

5-(4-fluorophenyl)-1-methyl-1H-benzo[e][1,4]diazepin-2(3H)-one ADZ-04a.<br />

White solid, mp 112-114 ° C; R f 0.38 (8:2 hexane-EtOAc); IR (KBr): 3072, 2895, 2828,<br />

1694, 1635, 1482, 1343, 1298, 1050, 880, 834, 756 cm -1 ; 1 H NMR (300 MHz, CDCl 3 ):<br />

δ 3.42 (s, 3H, CH 3 ), 3.75-3.78 (d, 1H, CH, J=10.5Hz), 4.78-4.81 (d, 1H, CH,<br />

J=10.5Hz), 7.05-7.10 (m, 2H, Ar), 7.20-7.29 (m, 1H, Ar), 7.32-7.37 (m, 2H, Ar),<br />

7.54-7.65 (m, 3H, Ar); 13 C NMR: (100 MHz, CDCl 3 ): δ 34.23, 56.53, 114.83, 115.05,<br />

121.33, 123.69, 127.67, 129.62, 131.30, 131.39, 131.45, 134.72, 134.75, 143.54,<br />

162.19, 164.66, 168.13, 169.30; MS (m/z): 268 [M + ]; Anal. Calcd for C 16 H 13 FN 2 O: C,<br />

71.63; H, 4.88; N, 10.44; Found: C, 71.64; H, 4.84; N, 10.42.<br />

1-ethyl-5-(4-fluorophenyl)-1H-benzo[e][1,4]diazepin-2(3H)-one ADZ-04b. Yellow<br />

solid, mp 162-164 ° C; R f 0.44 (8:2 hexane-EtOAc); IR (KBr): 3078, 2865, 2821, 1686,<br />

1620, 1462, 1341, 1298, 1054, 834, 780 cm -1 ; MS (m/z): 282 [M + ]; Anal. Calcd for<br />

C 17 H 15 FN 2 O: C, 72.32; H, 5.36; N, 9.92; Found: C, 72.34; H, 5.38; N, 9.96.<br />

5-(4-fluorophenyl)-1-propyl-1H-benzo[e][1,4]diazepin-2(3H)-one ADZ-04c.<br />

Yellow solid, mp 123-125 ° C; R f 0.30 (8:2 hexane-EtOAc); IR (KBr): 3068, 3024,<br />

2958, 2900, 1684, 1495, 1482, 808, 732, 690 cm -1 ; MS (m/z): 296 [M + ]; Anal. Calcd<br />

for C 18 H 17 FN 2 O: C, 72.95; H, 5.78; N, 9.45; Found: C, 72.95; H, 5.78; N, 9.46.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 218


Chapter 6<br />

Synthesis of benzodiazepines<br />

5-(4-fluorophenyl)-1-isopropyl-1H-benzo[e][1,4]diazepin-2(3H)-one ADZ-04d.<br />

White solid, mp 98-100 ° C; R f 0.25 (8:2 hexane-EtOAc); IR (KBr): 3118, 3067, 3054,<br />

2958, 2901, 1683, 1582, 1469, 810, 705 cm -1 ; 1 H NMR (300 MHz, CDCl 3 ): δ 1.22-<br />

1.24 (d, 3H, CH 3 ), 1.50-1.60 (d, 3H, CH 3 ), 3.70-3.74 (d, 1H, CH), 4.53-4.58 (m, 1H,<br />

CH), 4.68-4.71 (d, 1H, CH), 7.05-7.11 (m, 2H, Ar), 7.23-7.26 (m, 1H, Ar), 7.42-7.52<br />

(m, 3H, Ar), 7.61-7.63 (m, 2H, Ar); MS (m/z): 296 [M + ]; Anal. Calcd for<br />

C 18 H 17 FN 2 O: C, 72.95; H, 5.78; N, 9.45; Found: C, 72.97; H, 5.79; N, 9.47.<br />

1-butyl-5-(4-fluorophenyl)-1H-benzo[e][1,4]diazepin-2(3H)-one ADZ-04e. Yellow<br />

solid, mp 88-90 ° C; R f 0.28 (8:2 hexane-EtOAc); IR (KBr): 3154, 3085, 2968, 2910,<br />

1685, 1564, 1420, 1350, 1232, 854, 696 cm -1 ; MS (m/z): 310 [M + ]; Anal. Calcd for<br />

C 19 H 19 FN 2 O: C, 73.53; H, 6.17; N, 9.03; Found: C, 73.57; H, 6.19; N, 9.07.<br />

5-(4-fluorophenyl)-1-isobutyl-1H-benzo[e][1,4]diazepin-2(3H)-one ADZ-04f.<br />

Yellow solid, mp 72-74 ° C; R f 0.34 (8:2 hexane-EtOAc); IR (KBr): 3156, 3058, 2968,<br />

2905, 1985, 1564, 1369, 810, 694 cm -1 ; MS (m/z): 310 [M + ]; Anal. Calcd for<br />

C 19 H 19 FN 2 O: C, 73.53; H, 6.17; N, 9.03; Found: C, 73.50; H, 6.11; N, 9.10.<br />

5-(4-fluorophenyl)-1-pentyl-1H-benzo[e][1,4]diazepin-2(3H)-one ADZ-04g. White<br />

solid, mp 93-95 ° C; R f 0.25 (9:1 Chloroform: Methanol); IR (KBr): 3110, 3056, 2956,<br />

2845, 1345, 1254, 1056, 842, 730, 698 cm -1 ; MS (m/z): 324 [M + ]; Anal. Calcd for<br />

C 20 H 21 FN 2 O: C, 74.05; H, 6.53; N, 8.64; Found: C, 74.07; H, 6.59; N, 8.67.<br />

5-(4-fluorophenyl)-1-isopentyl-1H-benzo[e][1,4]diazepin-2(3H)-one ADZ-04h.<br />

Yellow solid, mp 84-86 ° C; R f 0.23 (8:2 hexane-EtOAc); IR (KBr): 3125, 3089, 3021,<br />

2985, 1236, 1056, 854, 795, 830, 698 cm -1 ; 1 H NMR (400 MHz, CDCl 3 ): δ 0.64-0.71<br />

(dd, 6H, 2 x CH 3 ), 1.22-1.33 (m, 1H, CH), 3.51-3.57 (m, 1H, CH), 3.63-3.66 (d, 1H,<br />

CH), 4.28-4.35 (m, 1H, CH), 4.62-4.65 (d, 1H, CH), 5.19 (s, 2H, CH 2 ), 6.95-7.00 (m.<br />

2H, Ar), 7.10-7.14 (m, 1H, Ar), 7.17-7.19 (m, 1H, Ar), 7.32-7.34 (d, 1H, J=8.28Hz<br />

Ar), 7.45-7.53 (m, 3H, Ar); 13 C NMR: (100 MHz, CDCl 3 ): δ 22.10, 22.54, 25.48,<br />

36.65, 44.74, 53.52, 57.14, 115.16, 115.37, 122.17, 124.33, 129.92, 130.13, 131.33,<br />

131.42, 131.48, 134.94, 134.97, 142.63, 162.89, 165.38, 168.93, 169.36; MS (m/z):<br />

324 [M + ]; Anal. Calcd for C 20 H 21 FN 2 O: C, 74.05; H, 6.53; N, 8.64; Found: C, 74.10;<br />

H, 6.65; N, 8.77.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 219


Chapter 6<br />

Synthesis of benzodiazepines<br />

1-cyclohexyl-5-(4-fluorophenyl)-1H-benzo[e][1,4]diazepin-2(3H)-one ADZ-04i.<br />

Yellow solid, mp 137-139 ° C; R f 0.35 (8:2 hexane-EtOAc); IR (KBr): 3074, 2856,<br />

2828, 1694, 1635, 1482, 1343, 1298, 1058, 840, 732 cm -1 ; MS (m/z): 333 [M + ]; Anal.<br />

Calcd for C 21 H 21 FN 2 O: C, 74.98; H, 6.29; N, 8.33; Found: C, 74.90; H, 6.25; N, 8.37.<br />

5-(4-fluorophenyl)-1-(4-nitrobenzyl)-1H-benzo[e][1,4]diazepin-2(3H)-one ADZ-<br />

04j. Yellow solid, mp 157-159 ° C; R f 0.49 (8:2 hexane-EtOAc); IR (KBr): 3241, 3068,<br />

3015, 2956, 2881, 1330, 1268, 1054, 834, 830,756, 701 cm -1 ; MS (m/z): 389 [M + ];<br />

Anal. Calcd for C 21 H 16 FN 3 O 3 : C, 67.86; H, 4.14; N, 10.79; Found: C, 67.90; H, 4.15;<br />

N, 10.77.<br />

3-benzylidene-5-(4-fluorophenyl)-1H-benzo[e][1,4]diazepin-2(3H)-one ADZ-05a.<br />

Yellow solid, mp 192-195 ° C; R f 0.25 (8:2 hexane-EtOAc); IR (KBr): 3450, 3110,<br />

3054, 2990, 2932, 2854, 1456, 1305, 1250, 1005, 805, 732, 695 cm -1 ; 1 H NMR (400<br />

MHz, DMSO): δ 6.39 (s. 1H, CH), 7.08-7.12 (m, 1H, Ar), 7.21-7.37 (m, 7H, Ar),<br />

7.46-7.53 (m, 3H, Ar), 7.76-7.79 (m, 2H, Ar), 8.15 (s, 1H, NH); 13 C NMR: (100 MHz,<br />

DMSO): δ 115.25, 115.46, 118.09, 121.39, 122.58, 126.58, 126.74, 127.50, 128.07,<br />

128.19, 128.92, 129.90, 129.95, 131.80, 131.89, 134.41, 134.44, 134.75, 138.93,<br />

140.54, 162.45, 164.26, 164.94, 171.00; MS (m/z): 342 [M + ]; Anal. Calcd for<br />

C 22 H 15 FN 2 O: C, 77.18; H, 4.42; N, 8.18; Found: C, 77.20; H, 4.45; N, 8.22.<br />

5-(4-fluorophenyl)-3-(3-nitrobenzylidene)-1H-benzo[e][1,4]diazepin-2(3H)-one<br />

ADZ-05b. Yellow solid, mp 202-204 ° C; R f 0.28 (8:2 hexane-EtOAc); IR (KBr): 3390,<br />

3072, 2856, 2832, 1684, 1635, 1482, 1356, 1298, 830, 750, 700 cm -1 ; 1 H NMR (300<br />

MHz, DMSO): δ 6.44 (s. 1H, CH), 7.06-7.11 (m, 1H, Ar), 7.24-7.40 (m, 4H, Ar),<br />

7.50-7.67 (m, 3H, Ar), 7.82-7.93 (m, 3H, Ar), 8.08-8.11 (d, 1H, J=8.1Hz, Ar), 8.58 (s,<br />

1H, NH); 13 C NMR: (100 MHz, DMSO): δ 120.15, 120.47, 121.01, 126.53, 126.79,<br />

127.80, 129.01, 131.73, 134.32, 135.48, 137.11, 137.15, 137.24, 139.46, 141.68,<br />

143.84, 147.81, 152.92, 175.11; MS (m/z): 387 [M + ]; Anal. Calcd for C 22 H 14 FN 3 O 3 :<br />

C, 68.21; H, 3.64; N, 10.85; Found: C, 68.20; H, 3.67; N, 10.83.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 220


Chapter 6<br />

Synthesis of benzodiazepines<br />

3-(3,4-dimethoxybenzylidene)-5-(4-fluorophenyl)-1H-benzo[e][1,4]diazepin-2(3H)<br />

-one ADZ-05c. Yellow solid, mp 189-191 ° C; R f 0.21 (8:2 hexane-EtOAc); IR (KBr):<br />

3232, 2997, 2906, 2833, 1683, 1670, 1506, 1363, 1265, 1026, 848, 802, 761, 731, 690<br />

cm -1 ; MS (m/z): 402 [M + ]; Anal. Calcd for C 24 H 19 FN 2 O 3 : C, 71.63; H, 4.76; N, 6.96;<br />

Found: C, 71.67; H,4.71; N, 6.93.<br />

5-(4-fluorophenyl)-3-(4-methoxybenzylidene)-1H-benzo[e][1,4]diazepin-2(3H)-<br />

one ADZ-05d. Yellow solid, mp 223-225 ° C; R f 0.24 (8:2 hexane-EtOAc); IR (KBr):<br />

3442, 3202, 2956, 2916, 2845, 1656, 1504, 1345, 1240, 834, 803, 765, 705 cm -1 ; MS<br />

(m/z): 372 [M + ]; Anal. Calcd for C 23 H 17 FN 2 O 2 : C, 74.18; H, 4.60; N, 7.52; Found: C,<br />

74.22; H,4.61; N, 7.57.<br />

3-(4-chlorobenzylidene)-5-(4-fluorophenyl)-1H-benzo[e][1,4]diazepin-2(3H)-one.<br />

ADZ-05e.Yellow solid, mp 192-194-225 ° C; R f 0.26 (8:2 hexane-EtOAc); IR (KBr):<br />

3076, 2964, 2891, 2837, 1691, 1676, 1483, 1155, 1091, 842, 761, 734, 688 cm -1 ; MS<br />

(m/z): 376 [M + ]; Anal. Calcd for C 22 H 14 ClFN 2 O: C, 70.12; H, 3.74; N, 7.43; Found: C,<br />

70.14; H,3.75; N, 7.45.<br />

3-(4-fluorobenzylidene)-5-(4-fluorophenyl)-1H-benzo[e][1,4]diazepin-2(3H)-one<br />

ADZ-05f. Yellow solid, mp 167-169 ° C; R f 0.25 (8:2 hexane-EtOAc); IR (KBr): 3373,<br />

3072, 2895, 2828, 1694, 1635, 1482, 1298, 784, 746, 698, cm -1 ; MS (m/z): 360 [M + ];<br />

Anal. Calcd for C 22 H 14 F 2 N 2 O: C, 73.33; H, 3.92; N, 7.77; Found: C, 70.35; H, 3.95; N,<br />

7.72.<br />

5-(4-fluorophenyl)-3-(4-nitrobenzylidene)-1H-benzo[e][1,4]diazepin-2(3H)-one<br />

ADZ-05g. Yellow solid, yield 93%, mp 217-219 ° C; R f 0.23 (8:2 hexane-EtOAc); IR<br />

(KBr): 3452, 3154, 3072, 2895, 2828, 1694, 1635, 1482, 1343, 1298, 784, 765, 702,<br />

684 cm -1 ; MS (m/z): 387 [M + ]; Anal. Calcd for C 22 H 14 FN 3 O 3 : C, 68.21; H, 3.64; N,<br />

10.85; Found: C, 68.23; H, 3.62; N, 10.85.<br />

3-(4-bromobenzylidene)-5-(4-fluorophenyl)-1H-benzo[e][1,4]diazepin-2(3H)-one<br />

ADZ-05h. Yellow solid, mp 183-185 ° C; R f 0.29 (8:2 hexane-EtOAc); IR (KBr): 3420,<br />

3074, 2923, 2956, 1695, 1680, 1459, 1154, 1056, 845, 761, 734, 690 cm -1 ; MS (m/z):<br />

420 [M + ]; Anal. Calcd for C 22 H 14 BrFN 2 O: C, 62.72; H, 3.35; N, 6.65; Found: C,<br />

62.75; H, 3.34; N, 6.75.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 221


Chapter 6<br />

Synthesis of benzodiazepines<br />

5-(4-fluorophenyl)-3-(2-hydroxybenzylidene)-1H-benzo[e][1,4]diazepin-2(3H)-<br />

one ADZ-05i. Yellow solid, mp 152-154 ° C; R f 0.42 (8:2 hexane-EtOAc); IR (KBr):<br />

3485, 3078, 2854, 2831, 2685, 1456, 1256, 854, 705, 684 cm -1 ; MS (m/z): 358 [M + ];<br />

Anal. Calcd for C 22 H 15 FN 2 O 2 : C, 73.73; H, 4.22; N, 7.82; Found: C, 73.75; H, 4.24; N,<br />

7.85.<br />

3-(2,5-dimethoxybenzylidene)-5-(4-fluorophenyl)-1H-benzo[e][1,4]diazepin-2(3H)<br />

–one ADZ-05j. Yellow solid, mp 144-145 ° C; R f 0.25 (8:2 hexane-EtOAc); IR (KBr):<br />

3473, 3078, 3045, 2954, 2895, 2828, 1684, 1645, 1484, 1325, 1250, 854, 735, 697<br />

cm -1 ; MS (m/z): 402 [M + ]; Anal. Calcd for C 24 H 19 FN 2 O 3 : C, 71.63; H, 4.76; N, 6.96;<br />

Found: C, 71.67; H,4.71; N, 6.93.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 222


Chapter 6<br />

Synthesis of benzodiazepines<br />

1 H NMR spectrum of compound ADZ-03<br />

H<br />

N<br />

O<br />

N<br />

F<br />

1 H NMR spectrum of compound ADZ-04a<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 223


Chapter 6<br />

Synthesis of benzodiazepines<br />

1 H NMR spectrum of compound ADZ-04h<br />

Expanded 1 H NMR spectrum of compound ADZ-04h<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 224


Chapter 6<br />

Synthesis of benzodiazepines<br />

1 H NMR spectrum of compound ADZ-05a<br />

Expanded 1 H NMR spectrum of compound ADZ-05a<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 225


Chapter 6<br />

Synthesis of benzodiazepines<br />

1 H NMR spectrum of compound ADZ-05b<br />

1 H NMR spectrum of compound ADZ-05d<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 226


Chapter 6<br />

Synthesis of benzodiazepines<br />

13 C NMR spectrum of compound ADZ-04a<br />

13 C NMR spectrum of compound ADZ-05a<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 227


Chapter 6<br />

Synthesis of benzodiazepines<br />

MASS spectrum of compound ADZ-04i<br />

MASS spectrum of compound ADZ-04j<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 228


Chapter 6<br />

Synthesis of benzodiazepines<br />

MASS spectrum of compound ADZ-05e<br />

MASS spectrum of compound ADZ-05i<br />

H<br />

N<br />

N<br />

O<br />

OH<br />

F<br />

m/z-358<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 229


Chapter 6<br />

Synthesis of benzodiazepines<br />

IR spectrum of compound ADZ-03<br />

100<br />

%T<br />

80<br />

60<br />

40<br />

20<br />

3182.65<br />

3120.93<br />

3068.85<br />

2955.04<br />

2899.11<br />

1610.61<br />

1504.53<br />

1479.45<br />

1429.30<br />

1406.15<br />

1367.58<br />

1317.43<br />

1288.49<br />

1232.55<br />

1153.47<br />

1097.53<br />

1024.24<br />

945.15<br />

839.06<br />

810.13<br />

761.91<br />

731.05<br />

690.54<br />

665.46<br />

586.38<br />

0<br />

1693.56<br />

1672.34<br />

-20<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

1/cm<br />

IR spectrum of compound ADZ-05c<br />

105<br />

%T<br />

90<br />

3232.80<br />

3070.78<br />

2997.48<br />

2906.82<br />

2833.52<br />

943.22<br />

75<br />

1481.38<br />

1419.66<br />

1363.72<br />

1319.35<br />

1155.40<br />

1138.04<br />

1026.16<br />

731.05<br />

690.54<br />

60<br />

1608.69<br />

1591.33<br />

1506.46<br />

1265.35<br />

848.71<br />

802.41<br />

630.74<br />

45<br />

1683.91<br />

1670.41<br />

761.91<br />

557.45<br />

538.16<br />

480.29<br />

30<br />

518.87<br />

453.29<br />

441 71<br />

15<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

1/cm<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 230


Chapter 6<br />

Synthesis of benzodiazepines<br />

6.9 References<br />

1. Rohtash, K.; Lown, J. W.; Mini-Reviews in Medicinal Chemistry, 2003, 3, 323.<br />

2. Bertelli, L.; Biagi, G.; Giorgi, I.; Livi, O.; Manera, C.; Scartoni, V.; Martini, C.; Giannaccini,<br />

G.; Trincavelli, L.; Barilli, P.L.; IlFarmaco., 1998, 53, 305.<br />

3. Balakrishna, M. S.; Kaboudin, B.; Tetrahedron Lett., 2001, 42, 1127.<br />

4. Lattmann, E.; Sattayasai, J.; Billington, D. C.; Poyner, D. R.; Puapairoj, P.; Tiamkao, S.;<br />

Airarat, W.; Singh, H.; Offel, M.; J. Pharmacy and Pharmacology., 2002, 54, 827.<br />

5. Bertelli, L.; Biagi, G.; Giorgi, I.; Livi, O.; Manera, C.; Scartoni, V.; Martini, C.; Giannaccini,<br />

G.; Trincavelli, L.; Barili, P.L.; Farmaco., 2000, 53, 305.<br />

6. Schutz, H.; Benzodiazepines; Springer: Heidelberg, Germany, 1982.<br />

7. Randall, L. O.; Kamel, B.; In Benzodiazepines; Garattini, S.; Mussini, E.; Randall, L. O.; Eds.;<br />

Raven Press: New York, 1973, 27.<br />

8. De Baun, J. R.; Pallos, F. M.; Baker, D. R.; U.S. Patent 3, 978, 227, 1976, Chem. Abstr.,1977,<br />

86, 5498d.<br />

9. Merluzzi, V.; Hargrave, K. D.; Labadia, M.; Grozinger, K.; Skoog, M.; Wu, J. C.; Shih, C. K.;<br />

Eckner, K.; Hattox, S.; Adams, J.; Rosenthal, A. S.; Faanes, R.; Eckner, R. J.; Koup, R. A.;<br />

Sullivan, J. L. Science.,1990, 250, 1411.<br />

10. Di Braccio, M.; Grossi, G.; Romoa, G.; Vargiu, L.; Mura, M.; Marongiu, M. E.; Eur. J. Med.<br />

Chem., 2001, 36, 935.<br />

11. El-Sayed, A. M.; Khodairy, A.; Salah, H.; Abdel-Ghany, H.; Phosphorus Sulfur Silicon Relat.<br />

Elem., 2007, 182, 711.<br />

12. Nagaraja, G. K.; Vaidya, V. P.; Rai, K. S.; Mahadevan, K. M.; Phosphorus Sulfur Silicon<br />

Relat. Elem., 2006, 181, 2797.<br />

13. Nabih, K.; Baouid, A.; Hasnaoui, A.; Kenz, A.; Synth. Commun., 2004, 34, 3565.<br />

14. Reddy, K. V. V.; Rao, P. S.; Ashok, D.; Synth. Commun., 2000, 30, 1825.<br />

15. Haris, R. C.; Straley, J. M.U.S. Patent 1,537,757,1968; [Chem. Abstr., 1970, 73, 100054w].<br />

16. Claramunt, R. M.; Sanz, D.; Aggarwal, S.; Kumar, A.; Prakash, O.; Singh, S.P.; Elgueroc, J.;<br />

Arkivoc., 2006, 35.<br />

17. Herbert, J. A. L.; Suschitzky, H.; J. Chem. Soc.; Perkin Trans.,1974, 1,2657.<br />

18. Morales, H. R.; Ulbarela, B. A.; Contreras, R.; Heterocycles., 1986, 24, 135.<br />

19. Jung, D. I.; Choi, T. W.; Kim, Y. Y.; Kim, I. S.; Park, Y. M.; Lee, Y. G.; Jung, D. H.; Synth.<br />

Commun., 1999, 29, 1941.<br />

20. Balakrishna, M. S.; Kaboudin, B.; Tetrahedron Lett., 2001, 42, 1127.<br />

21. Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O.; Tetrahedron Lett., 2001, 42, 3193.<br />

22. Kaboudin, B.; Navaee, K.; Heterocycles, 2001, 55, 1443.<br />

23. Pozarentzi, M.; Stephanatou, J. S.; Tsoleridis, C. A.; Tetrahedron Lett., 2002, 43, 1755.<br />

24. Yadav, J. S.; Reddy, B. V. S.; Eshwaraiah, B.; Anuradha, K.; Green Chem., 2002, 4,592.<br />

25. Jarikote, D. V.; Siddiqui, S. A.; Rajagopal, R.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V.;<br />

Tetrahedron Lett., 2003, 44, 1835.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 231


Chapter 6<br />

Synthesis of benzodiazepines<br />

26. Sabitha, G.; Reddy, G. S. K. K.; Reddy, K. B.; Reddy, N. M.; Yadav, J. S.; Adv. Synth. Catal.,<br />

2004, 346, 921.<br />

27. Yadav, J. S.; Reddy, B. V. S.; Kumar, S. P.; Nagaiah, K. Synthesis., 2005, 480.<br />

28. De, S. K.; Gibbs, R. A.; Tetrahedron Lett., 2005, 46, 1811.<br />

29. Reddy, B. M.; Sreekanth, P. M.; Lakshmanan, P.; J. Mol. Catal. A: Chem., 2005, 237, 93.<br />

30. Yadav, J. S.; Reddy, B.V.S.; Satheesh, G.; Srinivasulu, G.; Kunwar, A. C.; Arkivoc, 2005, iii,<br />

221.<br />

31. Varala, R.; Ramu, E.; Sreelatha, N.; Adapa, S. R.; Synlett, 2006, 1009.<br />

32. Pasha, M. A.; Jayashankara,V. P.; Heterocycles, 2006, 68, 1017.<br />

33. Katrizky, A.R.; Abonia, R.; Yang, B.; Qi, M.; Insuasty, B.; Synthesis.,1998, 1487.<br />

34. Clifford, D. P.; Jackson, D.; Edwards, R. V.; Jefferey, P. Pestic. Sci., 1976, 7,453.<br />

35. Werner,W.; Wohlrabe,K.; Gutsche,W.; Jungstand, W.; Roemer, W. FolidaHaematol,1981,<br />

108, 637.<br />

36. Goff, D.A.; Zuckermann, R. N.; Org. Chem., 1995, 60, 5744.<br />

37. Spencer, J.; Rathnam, R. P.; Harvey, A. L.; Clements, C. J.; Clark, R. L.; Barrett, M. P.;Wong,<br />

P. E.; Male,L.; Coles,S. J.; Mackay,S. P.; Bioorganic & Medicinal Chemistry., 2011, 19<br />

1802.<br />

38. Bova, F.; Ettari, R.; Micale N.; Carnovale, C.; Schirmeister,T.; Gelhaus, C.; Leippe M.;<br />

Grasso, S.; Zappalà, M.; Bioorganic & Medicinal Chemistry., 2010, 18 4928.<br />

39. Guandalini, L.; Cellai, C.; Laurenzana, A.; Scapecchi, S.; Paoletti, F.; Romanelli, M. N.;<br />

Bioorganic & Medicinal Chemistry Letters., 2008, 18, 5071.<br />

40. Bolli, M. H.; Marfurt, J.; Grisostomi, C.; Boss, C.; Binkert, C.; Hess, P.; Treiber, A.; Thorin,<br />

E.; Morrison.; Buchmann, K. S.; Bur, D.; Ramuz, H.; Clozel, M.; Fischli, W.;Weller, T.; J.<br />

Med. Chem., 2004, 47, 2776.<br />

41. Pavlovsky, V. I.; Bachinskii, S. Yu.; Tkachuk, N. A.; Makan, S. Yu.; Andronati, S. A.;.<br />

Simonov, Yu. A.; Filippova, I. G.; Gdaniec, M.; Chemistry of Heterocyclic Compounds.,<br />

2007, 8, 43.<br />

42. Buckel, D. R.; Cantello, B. V.; Morgan, N. J.; British Patent, 1460938; Chem. Abstr.,1977,87,<br />

68438a.<br />

43. Andronati, K. S.; Kostenko, E. A.; Karaseva, T. L.; Andronati, S. A.; Pharmaceutical<br />

Chemistry Journal., 2002, 7, 36.<br />

44. Hemming, K.; Anwar, B.; Grimsey, P.; Krajniewski, M.; Loukou, C.; Tetrahedron Lett., 2007,<br />

41, 10107.<br />

45. Rubin, M. A.; Albach, C. A.; Berlese, D. B.; Braz. J. Med. Biol. Ros., 2000, 33, 1069.<br />

46. Heitmann, W.; Liepmann, H.; Matzel, U.; Zeugner, H.; Fuchs, A. M.; Krahling, H.; Ruhland,<br />

M.; Mol, F.; Tulp, M.; Th. M.; Eur. J. Med. Chem.,1988, 23, 249.<br />

47. Kusanur1, R. A.; Ghate, M.; Kulkarni, M. V.; J. Chem. Sci., 2004, 116, 265.<br />

48. Pitt, G. R. W.; Batt, A. R.; Haigh, R. M.; Penson, A. M.; Robson, P. A.; Rooker, D. P.; Tartar,<br />

A. L.; Trim, J. E.; Yeaa, C. M.; Roea, M. B. Bioorg. Med. Chem. Lett., 2004, 14, 4585.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 232


Chapter 6<br />

Synthesis of benzodiazepines<br />

49. Ha, S. K.; Shobha, D.; Moon, E.; Chari, M. A.; Mukkanti, K.; Kim, S. -H.; Ahn, K. -H.; Kim,<br />

S. Y.; Bioorg. Med. Chem. Lett., 2010, 20, 3969.<br />

50. Tinney, F. J.; Sanchez, J. P.; Nogas, J. A.; J. Med. Chem., 1974, 17, 624.<br />

51. Walser, A.; Flynn, T.; Mason, C.; Crowley, H.; Maresca, C.; Yaremko, B.; O'Donnell, M.; J.<br />

Med. Chem.,1991, 34, 1209.<br />

52. Namanishi, M.; Tahara, T.; Araki, K.; Shiroki, M.; US Patent, 3920679, 1975.<br />

53. Carter, M. C.; Alber, D. G.; Baxter, R. C.; Bithell, S. K.; Budworth, J.; Chubb, A. G.,<br />

Cockerill, S.; Verity C. L.; Dowdell, E. A.; Henderson, S. J.; Keegan, R. D.; Kelsey, M. J.;<br />

Lockyer, J. N.; Stables, L. J.; Wilson, K. L., Powell, J. Med. Chem., 2006, 49, 2311.<br />

54. Sternbach, L. H., Fryer, R. I., Metlesics, W., Reeder, E., Sach, G., Saucy, G., Stemple, A.; J.<br />

Org. Chem., 1962, 27, 3788.<br />

55. Lednicer, D.; The Organic Chemistry of Drug Synthesis; Wiley-Interscience: New-York,<br />

1998.<br />

56. Lednicer, D.; Mitschev, L. A.; The Organic Chemistry of Drug Synthesis; Wiley-Interscience:<br />

New York, 1977.<br />

57. Wang, J.Y.; FeiGuo, X.; Wang, D. X.; Huang, Z. T.; Wang, M.X.; J. Org. Chem., 2008, 73,<br />

1979.<br />

58. Joshua, D.; Neukom, A. S.; Aquino, J. P.; Wolfe.; Org. Lett., 2011, 13, 9.<br />

59. Yadav, V.; Yadav, N.; Arch. Appl. Sci. Res., 2011, 3 (1), 139.<br />

60. Laustsen, L S.; Sams,C. K.; J. Comb. Chem., 2007, 9, 1094.<br />

61. Bhatia, M. S.; Choudhari, P. B.; Ingale, K. B.; Oriental J. Chem., 2008, 24, 147.<br />

62. Alizadeh, A.; Zohreh, N.; Helv.Chim.Acta., 2010, 93, 1221.<br />

63. Goswami, P.; Das, B.; Synth. Commu., 2010, 40, 1685.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005 233


Research Summary<br />

The work comprised in the Thesis entitled “Studies on Novel Bioactive<br />

Heterocyclic Compounds” is summarized as follows.<br />

In Chapter 1, we have presented an efficient four step protocols for the<br />

synthesis of diversely substituted novel pyrimidines. A series of chlorinated<br />

pyrimidines were synthesized from easily available Biginelli 3,4-dihydropyrimidin-<br />

2(1H)-ones. The chlorinated pyrimidines were then subjected to condition normally<br />

employed Suzuki-Miyaura coupling reaction with various phenylboronicacid<br />

derivatives in the presence of palladium catalyst to obtain C-phenyl pyrimidines with<br />

good yields.<br />

In Chapter 2, we have described (E)-selective synthesis of novel pyrimidine<br />

derivatives from pyrimidine phosphorous ylide with a variety of aldehydes via Wittig<br />

reaction in the presence of sodium tripolyphosphate as a base in aqueous media.<br />

Sodium tripolyphosphate has the several advantages of being stable, low cost and less<br />

toxic. All the synthesized compounds were evaluated for their antimicrobial activity.<br />

The investigation of antibacterial and antifungal screening revealed that all the tested<br />

compounds showed moderate to significant activity.<br />

In Chapter 3, a facile synthesis of a library containing trisubstituted pyrazoles<br />

and isoxazoles functionalized with cyclopropyl, thiomethyl and carboxamide moieties<br />

has been described. As a part of ‘green chemistry’ approach, we employed<br />

condensation reaction of various ketene dithioacetals with hydrazine hydrate or<br />

hydroxyl amine hydrochloride in solvent free reaction condition under microwave<br />

irradiation. The present procedure is significant over the existing methods to develop<br />

this class of molecules with excellent yield, purity and simple isolation of products.<br />

In Chapter 4, the heterocyclizations of various ketene dithioacetals with 5-<br />

aminopyrazole derivative were studied in details, and the influence of the reaction<br />

parameters and the aminoazole structure on the direction of the reaction was<br />

established. We found that the reaction of various ketene dithioacetals with 5-amino-<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 234


pyrazole derivative were faster and afforded the pyrazolo[1,5-a]pyrimidine in good<br />

yield in the presence of K 2 CO 3 as a base and isopropyl alcohol. This study led to the<br />

development of a simple approach for synthesis of pyrazolo[1,5-a]pyrimidines,<br />

substances that potentially interesting biological and medicinal properties.<br />

Chapter 5 described the synthesis of a series of substituted pyrroles as a<br />

atorvastatin analogs. The targeted compound were achieved from novel 1,4-<br />

dicarbonyl compounds and amino side chain using pivalic acid as a catalyst and<br />

cyclohexane and THF as binary solvent under microwave irradiation technique. All<br />

the synthesized compounds were evaluated for their antimicrobial activity. The<br />

investigation of antibacterial and antifungal screening revealed that some of these<br />

agents posseses moderate to potent activity.<br />

In Chapter 6, we have demonstrated a simple and effective strategy for the<br />

synthesis of novel 1-and 3-substituted 1,4-benzodiazepines. The reaction of 1,4-<br />

benzodiazepines either with various alkyl halide or a variety of aromatic aldehydes in<br />

the presence of potassium hydroxide afforded the desired 1-and 3-substituted 1,4-<br />

benzodiazepine derivatives in excellent yields.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 235


List of Publications<br />

1. Water Mediated Construction of Trisubstituted Pyrazoles/Isoxazoles Library<br />

Using Ketene Dithioacetals.<br />

Mahesh M. Savant, Akshay M. Pansuriya, Chirag V. Bhuva, Naval Kapuriya,<br />

Anil S. Patel, Vipul B. Audichya, Piyush V. Pipaliya and Yogesh T. Naliapara*.<br />

Journal of Combinatorial Chemistry, 2010, 12, 176-180.<br />

2. Synthesis of some novel trifluoromethylated tetrahydropyrimidines using<br />

etidronic acid and evaluation for antimicrobial activity.<br />

Mahesh M. Savant, Akshay M. Pansuriya, Chirag V. Bhuva, Naval Kapuriya,<br />

Anil S. Patel, Vipul B. Audichya, Piyush V. Pipaliya and Yogesh T. Naliapara*.<br />

Der Pharmacia Lettre. 2009, 1 (2), 277-285.<br />

3. Tetraethylammoniumbromide mediated Knoevenagel condensation in water:<br />

Synthesis of 4-arylmethylene-3-methyl-5-pyrazolone.<br />

Akshay M. Pansuriya, Mahesh M. Savant, Chirag V. Bhuva, Naval Kapuriya,<br />

Piyush Pipaliya, Anil S. Patel, Vipul Audichya, Yogesh T. Naliapara*.<br />

E-Journal of Chemistry, (Accepted)<br />

4. Fuller’s earth catalyzed a rapid synthesis of Bis(indolyl)methanes under solvent<br />

free condition.<br />

Naval Kapuriya, Rajesh Kakadiya, Mahesh M. Savant, Akshay M. Pansuriya,<br />

Chirag V. Bhuva, Anil S. Patel, Piyush V. Pipaliya, Vipul B. Audichya, Sarala<br />

Gangadharaiah, Sridhar M. Anandalwar, Javaregowda S. Prasad, Anamik Shah,<br />

Yogesh T. Naliapara* Indian Journal of Chemistry B, Under Review.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 236


Conferences participated<br />

1. “15 th International conference on Bridging gaps in discovery and development:<br />

chemical and biological sciences for affordable health, wellness and<br />

sustainability” on 4-7 th Feb. 2011 at Department of Chemistry, <strong>Saurashtra</strong><br />

<strong>University</strong>, Rajkot-360005. (Poster Presentation)<br />

2. “National seminar on emerging Trends in polymer science and Technology” on 8-<br />

10 th Oct. 2009 (poly-2009) at Department of Chemistry, <strong>Saurashtra</strong><br />

<strong>University</strong>, Rajkot-360005.<br />

3. “Two Days National workshop on Patents & IPR related updates” on 19-20 th Sep.<br />

2009 at Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot-360005.<br />

4. “International seminar on recent Development in structure and ligand based Drug<br />

Design” on 23 rd Dec. 2009 at Department of Chemistry, <strong>Saurashtra</strong><br />

<strong>University</strong>, Rajkot-360005.<br />

Department of Chemistry, <strong>Saurashtra</strong> university, Rajkot-360005 237

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!