01.11.2014 Views

A comprehensive tool-wear/tool-life performance model in the ...

A comprehensive tool-wear/tool-life performance model in the ...

A comprehensive tool-wear/tool-life performance model in the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

884<br />

ARTICLE IN PRESS<br />

P.W. Marksberry, I.S. Jawahir / International Journal of Mach<strong>in</strong>e Tools & Manufacture 48 (2008) 878–886<br />

ASTMD 5619 Tapp<strong>in</strong>g Torque (N-cm)<br />

550<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

Straight Oil<br />

5.55-mm Reamed Hole<br />

(Lubricity)<br />

5.48-mm Reamed Hole<br />

(Cool<strong>in</strong>g)<br />

Soluble Oil Semisyn<strong>the</strong>tic<br />

Oil<br />

Syn<strong>the</strong>tic Oil<br />

MWF Type<br />

Fig. 4. ASTM tapp<strong>in</strong>g torque results vary<strong>in</strong>g MWF type and reamed<br />

holes.<br />

6. Discussion<br />

Tool-<strong>life</strong>/<strong>tool</strong>-<strong>wear</strong> <strong>model</strong><strong>in</strong>g us<strong>in</strong>g mist spray applications<br />

can be successfully and more accurately predicted<br />

than us<strong>in</strong>g dry mach<strong>in</strong><strong>in</strong>g equations for NDM. Fig. 5<br />

shows that predicted <strong>tool</strong>-<strong>wear</strong> values mostly fall with<strong>in</strong><br />

actual 95% mach<strong>in</strong><strong>in</strong>g confidence <strong>in</strong>tervals for actual<br />

results while vary<strong>in</strong>g MWF type and rate. Table 6 <strong>in</strong>dicates<br />

that significant improvements <strong>in</strong> <strong>tool</strong>-<strong>wear</strong> (over 400%)<br />

can be achieved us<strong>in</strong>g NDM compared to dry mach<strong>in</strong><strong>in</strong>g.<br />

This study emphasis that <strong>model</strong>s developed for dry<br />

mach<strong>in</strong><strong>in</strong>g conditions cannot accurately predict NDM<br />

<strong>performance</strong>. Equation accuracy over a broad range of<br />

MWFs, nozzle position(s) and MWF volumetric flow rates<br />

was observed to be less than 10% on <strong>the</strong> average.<br />

L<strong>in</strong>earization of MWF rate and type effect factors<br />

simplified <strong>model</strong> calculations, yet provided to be fairly<br />

accurate for shop-floor use. Modification of <strong>the</strong> <strong>tool</strong><br />

coat<strong>in</strong>g effect factor allowed <strong>the</strong> Taylor equation to be<br />

extended without deteriorat<strong>in</strong>g chip groove or <strong>tool</strong> coat<strong>in</strong>g<br />

factor accuracy.<br />

Table 6<br />

MWF rate and type effect factors for MWFs primary used for lubrication<br />

Dom<strong>in</strong>ant <strong>tool</strong><br />

<strong>wear</strong> pattern<br />

Nozzle position<br />

MWF type<br />

MWF rate<br />

( 10 4 ) M ZX ( 10 4 ) M ZY<br />

effect factor effect factor<br />

W BL R (rake face) 25.6 2.7<br />

F (flank face) 1.3 6.2<br />

C (chip) 5.1 18.9<br />

Table 7<br />

MWF rate and type effect factors for MWFs primary used for cool<strong>in</strong>g<br />

Dom<strong>in</strong>ant <strong>tool</strong><br />

<strong>wear</strong> pattern<br />

Nozzle position<br />

MWF type<br />

MWF rate<br />

( 10 4 ), M ZX ( 10 4 ), M ZY<br />

effect factor effect factor<br />

W BL R (rake face) 23.4 10.4<br />

F (flank face) 6.6 7.5<br />

C (chip) 5.7 8.3<br />

7. Conclusion<br />

It has been observed that <strong>the</strong> selection of ‘‘mist spray’’<br />

delivery parameters represents an essential element <strong>in</strong><br />

m<strong>in</strong>imiz<strong>in</strong>g <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong>. The follow<strong>in</strong>g is a summary<br />

of f<strong>in</strong>d<strong>in</strong>gs from <strong>the</strong> present work:<br />

A new <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong> relationship has been developed<br />

for NDM with coated grooved <strong>tool</strong>s by extend<strong>in</strong>g<br />

<strong>the</strong> Taylor-type equation to <strong>in</strong>clude mist spray<br />

delivery parameters by modify<strong>in</strong>g <strong>the</strong> <strong>tool</strong> coat<strong>in</strong>g effect<br />

factor.<br />

More accurate and consistent estimates of <strong>tool</strong>-<strong>wear</strong> are<br />

made by us<strong>in</strong>g <strong>the</strong> new predictive <strong>model</strong> for NDM<br />

compared to dry mach<strong>in</strong><strong>in</strong>g <strong>model</strong>s.<br />

The G mapp<strong>in</strong>g function allows users of <strong>the</strong> empiricalbased<br />

<strong>model</strong> to customize <strong>the</strong> equation to consider a<br />

wide variety of mist-spray delivery parameters, <strong>in</strong>clud<strong>in</strong>g<br />

nozzle position, MWF volumetric flow rate and<br />

MWF type.<br />

Table 8<br />

MWF rate and type effect factors for MWFs primary used for cool<strong>in</strong>g<br />

MWF<br />

type<br />

New <strong>tool</strong> coat<strong>in</strong>g for mist<br />

factor (n mist )<br />

NDM total effect factor<br />

(NDM)<br />

Predicted <strong>tool</strong>-<strong>wear</strong><br />

W BL (mm)<br />

Actual test <strong>tool</strong>-<strong>wear</strong><br />

W BL (mm)<br />

Error<br />

%<br />

Improvement % over dry<br />

mach<strong>in</strong><strong>in</strong>g<br />

Straight 0.078 0.140 0.88 0.91 3.30 102<br />

Soluble 0.060 0.135 0.77 0.74 4.05 125<br />

Semisyn<strong>the</strong>tic<br />

0.055 0.126 0.55 0.59 6.78 157<br />

Syn<strong>the</strong>tic 0.065 0.138 0.22 0.23 4.35 402<br />

Dom<strong>in</strong>ant <strong>tool</strong>-<strong>wear</strong> pattern: W BL ; nozzle position: rake face; MWF volumetric flow rate: 180 ml/h; chip-groove effect factor (W g ): 0.89; <strong>tool</strong> coat<strong>in</strong>g effect<br />

factor (n c ): 0.56; empirical constants: k ¼ 0.32, m ¼ 1 for turn<strong>in</strong>g, n 1 ¼ 0.230, n 2 ¼ 0.642.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!