01.11.2014 Views

A comprehensive tool-wear/tool-life performance model in the ...

A comprehensive tool-wear/tool-life performance model in the ...

A comprehensive tool-wear/tool-life performance model in the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ARTICLE IN PRESS<br />

P.W. Marksberry, I.S. Jawahir / International Journal of Mach<strong>in</strong>e Tools & Manufacture 48 (2008) 878–886 881<br />

3. The new <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong> relationship for NDM<br />

A recent advance <strong>in</strong> <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong> <strong>model</strong><strong>in</strong>g for<br />

dry mach<strong>in</strong><strong>in</strong>g is <strong>the</strong> work of Jawahir et al. [31] and Li<br />

et al. [32]:<br />

<br />

km V ð1=nc Þ<br />

R<br />

T ¼ T R<br />

f n 1<br />

d n , (1)<br />

2<br />

V<br />

where T is <strong>tool</strong>-<strong>life</strong> or <strong>tool</strong>-<strong>wear</strong>, T R is <strong>the</strong> reference<br />

<strong>tool</strong>-<strong>life</strong> or <strong>tool</strong>-<strong>wear</strong> for 1 m<strong>in</strong>, V is <strong>the</strong> cutt<strong>in</strong>g speed,<br />

V R is <strong>the</strong> reference cutt<strong>in</strong>g speed for 1 m<strong>in</strong> of <strong>tool</strong>-<strong>life</strong><br />

or <strong>tool</strong>-<strong>wear</strong>, n c is <strong>the</strong> coat<strong>in</strong>g effect factor and W g is<br />

<strong>the</strong> chip-groove effect factor, represented as km=f n 1<br />

d n 2<br />

. W g<br />

is a function of feed (f), depth of cut (d), <strong>tool</strong> nose radius,<br />

chip breaker configurations and <strong>the</strong> type of mach<strong>in</strong><strong>in</strong>g<br />

operation (m) with m ¼ 1 for turn<strong>in</strong>g. n 1 , n 2 and k are<br />

empirical constants. Outputs and constants of this <strong>model</strong><br />

can be easily generated us<strong>in</strong>g a series of mach<strong>in</strong><strong>in</strong>g trials<br />

(o10) while vary<strong>in</strong>g depth of cut, feed, and cutt<strong>in</strong>g speed<br />

while achiev<strong>in</strong>g accuracies on <strong>the</strong> order of 90%.<br />

Modifications to <strong>the</strong> <strong>tool</strong>-coat<strong>in</strong>g effect factor, n c , is<br />

possible by <strong>in</strong>clud<strong>in</strong>g NDM parameters to <strong>the</strong> series of<br />

trial experiments.<br />

Extension to <strong>the</strong> dry mach<strong>in</strong><strong>in</strong>g <strong>model</strong> is shown<br />

below:<br />

<br />

km V ð1=nc Þð1=N NDM Þ<br />

R<br />

T ¼ T R<br />

f n 1<br />

d n , (2)<br />

2<br />

V<br />

where N NDM is <strong>the</strong> NDM effect factor and is expressed as<br />

N NDM ¼ n mist<br />

n c<br />

, (3)<br />

where n mist is <strong>the</strong> modified coat<strong>in</strong>g factor for NDM mist<br />

spray. n mist can be def<strong>in</strong>ed as <strong>the</strong> follow<strong>in</strong>g:<br />

log V 1 log V 2<br />

n mist ¼<br />

, (4)<br />

logðG F;W;N;MZX ;M ZY<br />

Þ log T 1<br />

where G F;W;N;MZX ;N ZY<br />

is <strong>the</strong> new modified <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong><br />

value <strong>in</strong> NDM, empirically derived while vary<strong>in</strong>g MWF type,<br />

MWF volumetric flow rate and nozzle(s) position. Subscripts<br />

of <strong>the</strong> G function: F, W, N, M ZX and M ZY each represent a<br />

modified <strong>tool</strong>-<strong>wear</strong> value that is empirically derived. Table 3<br />

expla<strong>in</strong>s each mapp<strong>in</strong>g function and how it is derived.<br />

3.1. Derivations of <strong>the</strong> M ZX and M ZY effect factors<br />

M ZX and M ZY effect factors can be solved by l<strong>in</strong>earization<br />

of actual <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong> results as shown <strong>in</strong> Fig. 1.<br />

MWF rate (denoted X rate <strong>in</strong> units ml/h along <strong>the</strong> X-axis)<br />

represents <strong>the</strong> actual volumetric flow rate of <strong>the</strong> MWF. The<br />

<strong>performance</strong> and l<strong>in</strong>kage of MWF type can be accomplished<br />

by us<strong>in</strong>g a standard MWF evaluation method. In<br />

this work, a standard tapp<strong>in</strong>g torque test method was used<br />

(denoted as Y typ <strong>in</strong> units N cm along <strong>the</strong> Y-axis). Variations<br />

of <strong>the</strong> standard method were also developed to characterize<br />

cool<strong>in</strong>g and lubrication behaviors of MWFs.<br />

Hav<strong>in</strong>g obta<strong>in</strong>ed M ZX and M ZY , G F;W;N;MZX ;M ZY<br />

can be<br />

solved us<strong>in</strong>g Eq. (5):<br />

G F;W;N;MZX ;M ZY<br />

¼ T NDM ½ðM ZX ÞðX rate b m<strong>in</strong> Þ<br />

þðY type a m<strong>in</strong> ÞðM ZY ÞþZ 1 Š, ð5Þ<br />

where G F;W;N;MZX ;M ZY<br />

40, T NDM is <strong>the</strong> predom<strong>in</strong>ate <strong>tool</strong><strong>life</strong><br />

of <strong>the</strong> cutt<strong>in</strong>g <strong>tool</strong>, Z 1 is <strong>the</strong> <strong>in</strong>tercept of <strong>the</strong> effect<br />

Table 3<br />

G function explanation<br />

Mapp<strong>in</strong>g<br />

function<br />

(subscript)<br />

Def<strong>in</strong>ition Comment Categories Method to calculate<br />

F Ideal MWF function MWFs are often classified as<br />

‘‘coolants’’ or ‘‘lubricants’’<br />

W<br />

Dom<strong>in</strong>ant <strong>tool</strong>-<strong>wear</strong><br />

pattern<br />

Tool-<strong>wear</strong> pattern responsible for<br />

catastrophic failure or end of <strong>life</strong><br />

N Nozzle(s) position MWF source direction and<br />

distance to cutt<strong>in</strong>g zone<br />

M ZX MWF rate effect factor L<strong>in</strong>earization of <strong>tool</strong>-<strong>wear</strong> and<br />

MWF vol. flow rate data<br />

M ZY MWF type effect factor L<strong>in</strong>earization of <strong>tool</strong>-<strong>wear</strong> and<br />

tapp<strong>in</strong>g torque data from MWF<br />

G C , cool<strong>in</strong>g (water<br />

miscible); G L , lubrication<br />

(non-water miscible)<br />

W BL , length of groove<br />

backwall <strong>wear</strong><br />

S<strong>in</strong>gle nozzle: R, rake<br />

face; F, flank face; C, chip<br />

M ZX<br />

M ZY<br />

Collect torque test data (N m) for<br />

each MWF us<strong>in</strong>g <strong>the</strong> ASTM D 5619<br />

tapp<strong>in</strong>g torque test standard with<br />

reamed holes at 5.48 and 5.55 mm.<br />

Measurements us<strong>in</strong>g new method for<br />

assess<strong>in</strong>g <strong>tool</strong>-<strong>wear</strong>.<br />

Vector representation of nozzle to<br />

cutt<strong>in</strong>g zone (<strong>in</strong>clude three<br />

dimensional angle and distance to<br />

cutt<strong>in</strong>g zone from nozzle tip)<br />

Calculate slope of axis:<br />

1. Tool-<strong>wear</strong><br />

2. MWF volume flow rate<br />

Calculate slope of axis:<br />

1. Tool-<strong>wear</strong><br />

2. Tapp<strong>in</strong>g torque results from<br />

MWF

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!