01.11.2014 Views

A comprehensive tool-wear/tool-life performance model in the ...

A comprehensive tool-wear/tool-life performance model in the ...

A comprehensive tool-wear/tool-life performance model in the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

880<br />

ARTICLE IN PRESS<br />

P.W. Marksberry, I.S. Jawahir / International Journal of Mach<strong>in</strong>e Tools & Manufacture 48 (2008) 878–886<br />

reduce mach<strong>in</strong><strong>in</strong>g cost associated <strong>in</strong> NDM and lesson <strong>the</strong><br />

environmental impact of manufactur<strong>in</strong>g operations.<br />

2. Mach<strong>in</strong><strong>in</strong>g <strong>model</strong><strong>in</strong>g background<br />

Several attempts have been made to develop methods<br />

[19–23] for accurately predict<strong>in</strong>g <strong>the</strong> effects of mach<strong>in</strong><strong>in</strong>g<br />

operations over <strong>the</strong> past several decades. A common<br />

approach for assess<strong>in</strong>g mach<strong>in</strong><strong>in</strong>g <strong>performance</strong> is <strong>tool</strong><strong>wear</strong>/<strong>tool</strong>-<strong>life</strong>.<br />

Tool-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong> is one of <strong>the</strong> most<br />

significant and necessary parameters required for process<br />

plann<strong>in</strong>g and total mach<strong>in</strong><strong>in</strong>g economics. A review of<br />

numerous <strong>the</strong>oretical and experimental techniques for<br />

predictive assessment of <strong>tool</strong>-<strong>wear</strong> and <strong>tool</strong>-<strong>life</strong> reveals<br />

that eight different types of <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong> relationships<br />

are commonly be<strong>in</strong>g used for dry mach<strong>in</strong><strong>in</strong>g, as<br />

shown <strong>in</strong> Table 2.<br />

The trend <strong>in</strong> <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-wife <strong>model</strong><strong>in</strong>g has been to<br />

extend Taylor’s basic equation. This is ma<strong>in</strong>ly due to <strong>the</strong><br />

direct relationship between cutt<strong>in</strong>g speed and <strong>tool</strong>-<strong>wear</strong>/<br />

<strong>tool</strong>-<strong>life</strong>. This relationship holds true for all mach<strong>in</strong><strong>in</strong>g<br />

operations and is considered as a basis for more advanced<br />

<strong>model</strong>s. Currently, a <strong>model</strong> does not exist for NDM and no<br />

attempts have been made to extend dry mach<strong>in</strong><strong>in</strong>g <strong>tool</strong><strong>wear</strong>/<strong>tool</strong>-<strong>life</strong><br />

<strong>model</strong>s. It is <strong>the</strong> author’s goal <strong>in</strong> this work to<br />

select <strong>the</strong> most appropriate dry mach<strong>in</strong><strong>in</strong>g <strong>model</strong> and<br />

extend it for NDM.<br />

The appropriate selection of a dry mach<strong>in</strong><strong>in</strong>g <strong>model</strong> for<br />

extension to NDM depends on various factors. First, it is<br />

important that <strong>the</strong> <strong>model</strong> be robust to accommodate a wide<br />

range of mach<strong>in</strong><strong>in</strong>g parameters and applications. The<br />

<strong>model</strong> should be easily modified and practical for <strong>in</strong>dustry<br />

applications where complete mach<strong>in</strong><strong>in</strong>g data is not available.<br />

Lastly, <strong>the</strong> <strong>model</strong> should be accurate, repeatable and<br />

suited for <strong>in</strong>dustrial use where experimental constants can<br />

be generated without us<strong>in</strong>g sophisticated equipment; such<br />

as <strong>tool</strong> dynameters to calculate forces, high-speed film to<br />

understand complicated chip flow paths and electron<br />

microscopes to determ<strong>in</strong>e residual stress patterns and<br />

material structure.<br />

Table 2<br />

Summary of <strong>tool</strong>-<strong>wear</strong> and <strong>tool</strong>-<strong>life</strong> <strong>model</strong>s for dry mach<strong>in</strong><strong>in</strong>g<br />

No. Tool-<strong>life</strong>/<strong>tool</strong>-<strong>wear</strong> equation Determ<strong>in</strong>ation of<br />

constants<br />

1 Taylor’s basic equation: VT n ¼ C C and n are<br />

experimentally determ<strong>in</strong>ed<br />

and currently available<br />

from many reference<br />

sources<br />

2 Taylor’s reference-speed based equation: V=V R ¼ðT R =TÞ n n is experimentally<br />

determ<strong>in</strong>ed and currently<br />

available from many<br />

reference sources<br />

3 Taylor’s extended equation: T ¼ C 2 =ðV P f q d r Þ All constants (C 2 , p, q and<br />

r) are experimentally<br />

determ<strong>in</strong>ed<br />

4 Temperature-based <strong>tool</strong>-<strong>life</strong> equation: yT n ¼ C 3 n is found between 0.01<br />

and 0.1 and C 3 is<br />

experimentally determ<strong>in</strong>ed<br />

5 Taylor’s extended equation <strong>in</strong>clud<strong>in</strong>g cutt<strong>in</strong>g conditions and<br />

<strong>tool</strong> geometry: C /½ðcot b tan aÞ n Fða; bÞ 1= 1<br />

Š<br />

6 Taylor’s extended equation <strong>in</strong>clud<strong>in</strong>g cutt<strong>in</strong>g conditions and<br />

workpiece hardness: T ¼ C 4 V n f m d P r q s t i u j x<br />

7 Taylor’s extended equation <strong>in</strong>clud<strong>in</strong>g cutt<strong>in</strong>g conditions and<br />

workpiece hardness: V ¼ C 5 =ðT m f y d x ðBHN=200Þ n Þ<br />

8 Taylor’s extended equation <strong>in</strong>clud<strong>in</strong>g chip groove effect factor<br />

and a <strong>tool</strong> coat<strong>in</strong>g effect factor:<br />

The <strong>in</strong>fluence of a and b<br />

can be <strong>the</strong>oretically<br />

determ<strong>in</strong>ed as partial<br />

contribution to Taylor’s<br />

constant C<br />

Requires excessive <strong>tool</strong><strong>life</strong><br />

test<strong>in</strong>g to determ<strong>in</strong>e all<br />

constants (C 4 , n, m, p, q, t,<br />

u and x)<br />

All constants (C 5 , m, y, x<br />

and n) are experimentally<br />

determ<strong>in</strong>ed<br />

Comment<br />

Most widely used<br />

equation; however, C and<br />

n apply to a particular<br />

<strong>tool</strong>–workpiece<br />

comb<strong>in</strong>ations<br />

n applies only to<br />

particular <strong>tool</strong>–workpiece<br />

comb<strong>in</strong>ations<br />

Gives better accuracy<br />

than Taylor’s basic<br />

equation, but more <strong>tool</strong><strong>life</strong><br />

tests are required<br />

Although <strong>the</strong> equation is<br />

set only on an empirical<br />

basis, it is not convenient<br />

for practical use <strong>in</strong> <strong>the</strong><br />

shop floor environment<br />

A complicated<br />

relationship between <strong>tool</strong><strong>life</strong><br />

and rake/clearance<br />

angles<br />

It is claimed that <strong>the</strong> data<br />

for sett<strong>in</strong>g up <strong>the</strong><br />

equation are generated<br />

from both laboratory and<br />

<strong>in</strong>dustrial sources<br />

It is claimed to be a good<br />

approximation for <strong>tool</strong><strong>life</strong><br />

ranges of 10–60 m<strong>in</strong><br />

Ref.<br />

Mills and Redford<br />

[24], Schey [25]<br />

Mills and Redford<br />

[24]<br />

Niebel et al. [26],<br />

Hoffman [27]<br />

Qu<strong>in</strong>to [28], Oxley<br />

[29]<br />

Lau et al. [22]<br />

Venkatesh [21]<br />

Wang and Wysk<br />

[30], Hoffman [27]<br />

T ¼ T R W g ðV R =VÞ W cð1=nÞ ; where W c ¼ n=n c and W g ¼ km=f n 1<br />

d n 2<br />

Constants (k, n 1 , n 2 and n c ) are experimentally determ<strong>in</strong>ed; m is <strong>the</strong> mach<strong>in</strong><strong>in</strong>g<br />

operation effect factor (with m ¼ 1 considered for turn<strong>in</strong>g)Extends <strong>the</strong> Taylor-type equation to <strong>in</strong>clude two new factors: <strong>tool</strong> coat<strong>in</strong>g effect factor and<br />

chip-groove effect factor. Equation also <strong>in</strong>cludes <strong>the</strong> effects of feed, depth of cut and cutt<strong>in</strong>g speed.Jawahir et al. [31], Li et al. [32]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!