01.11.2014 Views

MACHINE LEARNING TECHNIQUES - LASA

MACHINE LEARNING TECHNIQUES - LASA

MACHINE LEARNING TECHNIQUES - LASA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

102<br />

M<br />

∂ L =<br />

*<br />

i<br />

w − ∑ ( αi<br />

− αi<br />

) φ( x ) = 0;<br />

∂w<br />

i=<br />

1<br />

(5.68)<br />

∂L<br />

C (*) (*)<br />

= − 0<br />

i( *)<br />

i i<br />

ξ M α − η =<br />

∂<br />

(5.69)<br />

Substituting in (5.66) yields the dual optimization under constraint problem:<br />

M<br />

⎧⎧ 1 * *<br />

i j<br />

⎪⎪ − ∑ ( αi − αi<br />

)( α<br />

j − α<br />

j) ⋅ k( x , x )<br />

⎪⎪ 2 i, j=<br />

1<br />

max { ⎨⎨<br />

M<br />

M<br />

*<br />

αα , ⎪⎪ −<br />

* i *<br />

ε ( αi<br />

+ αi<br />

) + y ( αi<br />

+ αi<br />

⎪⎪ ∑ ∑ )<br />

⎩⎩ i= 1 i=<br />

1<br />

M<br />

* * i ⎡⎡ C ⎤⎤<br />

subject to ∑( αi<br />

− αi<br />

) = 0 and αi<br />

, αi<br />

∈ ⎢⎢ 0,<br />

i=<br />

1<br />

M ⎥⎥<br />

⎣⎣ ⎦⎦<br />

(5.70)<br />

Solving for the above optimization problem will yield solutions for the Lagrange multipliers α * , α .<br />

These can then be used to construct our estimate of the best projection vector w by replacing in<br />

(5.68):<br />

M<br />

w= −<br />

i=<br />

1<br />

*<br />

i<br />

( αi<br />

αi<br />

) φ( x )<br />

∑ (5.71)<br />

To determine the value of the offset b , one must further solve for the Karush-Kuhn-Tucker (KKT)<br />

conditions:<br />

i<br />

i<br />

( i<br />

y w ( x ) b)<br />

i<br />

i<br />

y w ( x ) b<br />

α ε + ξ + − , φ − = 0,<br />

i<br />

(<br />

i<br />

)<br />

α ε + ξ − + , φ + = 0,<br />

* *<br />

i<br />

and<br />

⎛⎛<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

⎜⎜<br />

⎝⎝<br />

C<br />

M<br />

C<br />

M<br />

⎞⎞<br />

− αi<br />

⎟⎟ξi<br />

= 0,<br />

⎠⎠<br />

* ⎞⎞ *<br />

− αi<br />

⎟⎟ξi<br />

= 0.<br />

⎠⎠<br />

(5.72)<br />

The above optimization problem can be solved using interior-point optimization, see (Scholkopf &<br />

Smola, 2002).<br />

It is worth spending a little bit of time looking at the geometrical implication of conditions (5.72).<br />

(*) C<br />

The last two conditions show that, when the Lagrange multipliers take valueα i<br />

= , the<br />

M<br />

corresponding slack variable (*)<br />

can take arbitrary value and hence the corresponding points can<br />

ξ<br />

i<br />

be anywhere, including outside the e-insensitive tube. Vice-versa, when<br />

have ξ (*) i<br />

= 0 . These become the support vectors.<br />

(*) ⎤⎤ C ⎡⎡<br />

αi<br />

∈ ⎥⎥ 0,<br />

M ⎢⎢<br />

⎦⎦ ⎣⎣ , we<br />

© A.G.Billard 2004 – Last Update March 2011

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!