31.10.2014 Views

in electron-proton collision at HERA - Zeus - Desy

in electron-proton collision at HERA - Zeus - Desy

in electron-proton collision at HERA - Zeus - Desy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

EXCLUSIVE PHOTOPRODUCTION OF ψ(2S) IN<br />

ELECTRON-PROTON COLLISION AT <strong>HERA</strong><br />

ZULIDZA BINTI ZULKAPLY<br />

FACULTY OF SCIENCE<br />

UNIVERSITY OF MALAYA<br />

KUALA LUMPUR<br />

2012


EXCLUSIVE PHOTOPRODUCTION OF ψ(2S) IN<br />

ELECTRON-PROTON COLLISION AT <strong>HERA</strong><br />

ZULIDZA BINTI ZULKAPLY<br />

DISSERTATION SUBMITTED IN FULFILMENT OF THE<br />

REQUIREMENT FOR THE DEGREE OF<br />

MASTER OF SCIENCE<br />

DEPARTMENT OF PHYSICS<br />

FACULTY OF SCIENCE<br />

UNIVERSITY OF MALAYA<br />

KUALA LUMPUR<br />

2012


ABSTRACT<br />

The exclusive photoproduction of ψ (2 S)<br />

mesons, γ p ψ ' p , has been<br />

studied <strong>in</strong> <strong>electron</strong>-<strong>proton</strong> <strong>collision</strong>s with the ZEUS detector <strong>at</strong> <strong>HERA</strong>, <strong>in</strong> the<br />

k<strong>in</strong>em<strong>at</strong>ic range of 30


ABSTRAK<br />

Pengeluaran dari photon bagi zarah meson ψ (2 S)<br />

secara ekslusif,<br />

γ p ψ ' p telah dikaji dalam pelanggaran <strong>electron</strong>-<strong>proton</strong> menggunakan detector<br />

ZEUS di <strong>HERA</strong>, dalam jul<strong>at</strong> k<strong>in</strong>em<strong>at</strong>ik 30


ACKNOWLEDGEMENT<br />

First and foremost, thanks to Allah. I dedic<strong>at</strong>e this thesis to my mother,<br />

Puan Saerah Bt Mohd Salleh, for her help, love and p<strong>at</strong>ience. Next, to my<br />

supervisor, Prof. Dr. Wan Ahmad Tajudd<strong>in</strong> Wan Abdullah, for all his guidance<br />

and p<strong>at</strong>ience. Not forgettable I dedic<strong>at</strong>e this work to my former co-supervisor,<br />

Allahyarham Prof. Madya Dr. Burhanudd<strong>in</strong> Kamaludd<strong>in</strong>, ZEUS Collabor<strong>at</strong>ion<br />

members, UM Physics Department, ZEUSMal colleagues, all my family<br />

members, friends and everyth<strong>in</strong>g <strong>in</strong>spired me. Last but not least, to Charlie. Thank<br />

you all.<br />

iv


TABLE OF CONTENTS<br />

Abstract…………………………………………………………………......<br />

Abstrak………………………………………………………………………<br />

Acknowledgement…………………………………………………………..<br />

Table of Contents……………………………………………………………<br />

List of Figures……………………………………………………………….<br />

List of Tables………………………………………………………………..<br />

List of Symbols and Abbrevi<strong>at</strong>ions…………………………………………<br />

ii<br />

iii<br />

iv<br />

v<br />

ix<br />

xiv<br />

xv<br />

Chapter 1: Introduction<br />

1.1 Photoproduction <strong>in</strong> Diffractive Sc<strong>at</strong>ter<strong>in</strong>g……………………………… 1<br />

1.2 The Standard Model……………………………………………………. 3<br />

1.3 Thesis Overview………………………………………………………... 7<br />

Chapter 2: Electron-Proton Collision<br />

2.1 Electron-<strong>proton</strong> <strong>collision</strong> <strong>at</strong> <strong>HERA</strong>…………………………………….. 9<br />

2.2 K<strong>in</strong>em<strong>at</strong>ics of <strong>electron</strong>-<strong>proton</strong> (ep) sc<strong>at</strong>ter<strong>in</strong>g………………………….. 10<br />

2.3 Diffraction………………………………………………………………. 11<br />

2.3.1 Regge Phenomenology………………………………………… 13<br />

2.3.2 Vector Dom<strong>in</strong>ance Model (VDM)……………………………... 16<br />

2.4 Photon-<strong>proton</strong> <strong>collision</strong>s………………………………………………... 18<br />

2.5 Rel<strong>at</strong>ion between ep and γ * p sc<strong>at</strong>ter<strong>in</strong>g………………………………… 20<br />

2.6 Exclusive Vector Meson Photoproduction……………………………... 22<br />

2.7 Acceptance and γp Cross Section………………………………………. 23<br />

2.7.1 Acceptance Calcul<strong>at</strong>ion on Monte Carlo (MC)………………... 23<br />

2.7.2 γp Cross-Section Calcul<strong>at</strong>ion…………………………………... 24<br />

Chapter 3: Experimental Setup<br />

v


3.1 ZEUS Experiment………………………………………………………. 26<br />

3.2 <strong>HERA</strong> Collider…………………………………………………………. 26<br />

3.3 ZEUS Detector………………………………………………………….. 29<br />

3.4 Muon Detection System………………………………………………... 32<br />

3.5 Central Track<strong>in</strong>g Detector (CTD)………………………………………. 35<br />

3.6 Micro Vertex Detector (MVD)…………………………………………. 37<br />

3.7 Forward and Rear Track<strong>in</strong>g Detectors (FTD, RTD)…………………… 38<br />

3.8 Uranium Calorimeter (CAL)…………………………………………… 39<br />

3.9 Monte Carlo Gener<strong>at</strong>or for Vector Meson……………………………… 43<br />

Chapter 4: Track<strong>in</strong>g Effiency<br />

4.1 Track<strong>in</strong>g concepts <strong>in</strong> detector…………………………………………... 45<br />

4.1.1 Forward or fixed-target geometry and parameters…………….. 45<br />

4.1.2 Collider detector geometry and parameters……………………. 49<br />

4.2 Parameter estim<strong>at</strong>ion…………………………………………………… 51<br />

4.2.1 Least squares estim<strong>at</strong>ion……………………………………….. 51<br />

4.2.2 The Kalman Filter Technique………………………………….. 53<br />

4.3 Typical track<strong>in</strong>g devices………………………………………………... 57<br />

4.3.1 S<strong>in</strong>gle-coord<strong>in</strong><strong>at</strong>e measurement………………………………... 5<br />

4.3.1.1 Silicon Strip detector………………………………….. 57<br />

4.3.1.2 Drift chambers................................................................ 59<br />

4.3.2 Stereo angle……………………………………………………. 62<br />

4.3.3 Three-Dimentional (3D) measurement………………………… 64<br />

4.4 Performance Evalu<strong>at</strong>ion............................................................................ 65<br />

4.4.1 The reference set……………………………………………….. 65<br />

4.4.2 Track f<strong>in</strong>d<strong>in</strong>g efficiency……………………………………….. 67<br />

4.4.3 Ghosts………………………………………………………….. 68<br />

4.4.4 Clones………………………………………………………….. 68<br />

4.4.5 Parameter resolution…………………………………………… 69<br />

vi


Chapter 5: D<strong>at</strong>a Analysis and Results<br />

5.1 ORANGE (Overly<strong>in</strong>g Rout<strong>in</strong>e Analysis of Ntuple Gener<strong>at</strong>ion)……….. 70<br />

5.2 D<strong>at</strong>a Analysis Software………………………………………………… 72<br />

5.2.1 Physics Analysis Worst<strong>at</strong>ion (PAW)…………………………... 72<br />

5.2.2 ROOT………………………………………………………….. 75<br />

5.2.3 <strong>Zeus</strong> Event Visualiz<strong>at</strong>ion (ZEVIS)…………………………….. 77<br />

5.3 Grand Reprocess (GR) D<strong>at</strong>a……………………………………………. 78<br />

5.4 Monte Carlo (MC) D<strong>at</strong>a………………………………………………… 78<br />

5.5 ψ ' Photoproduction (PHP)……………………………………………... 82<br />

5.6 Results…………………………………………………………………... 85<br />

Chapter 6: Conclusion and Discussion 88<br />

Bibliography………………………………………………………………... 91<br />

vii


LIST OF FIGURES<br />

Figure 1.1: The picture shows the diagram of ψ ( 2S)<br />

photoproduction <strong>in</strong><br />

<strong>electron</strong>-<strong>proton</strong> <strong>collision</strong> where the sc<strong>at</strong>tered <strong>electron</strong> and <strong>proton</strong> escape<br />

undetected <strong>in</strong> the beampipe.<br />

Figure 1.2: The diagram of the Standard Model (SM) of elementary particles<br />

Figure 1.3: The Standard Model development <strong>in</strong> historical perspective. The idea<br />

of quarks as the constituents of m<strong>at</strong>ter and their subsequent experimental<br />

confirm<strong>at</strong>ion are shown.<br />

Figure 2.1: Feynman diagram of ep sc<strong>at</strong>ter<strong>in</strong>g.<br />

Figure 2.2: The classific<strong>at</strong>ion of diffractive processes: (a) Elastic, (b) S<strong>in</strong>gle<br />

diffraction, (c) Double diffraction.<br />

Figure 2.3: Total cross section measured <strong>in</strong> hadronic sc<strong>at</strong>ter<strong>in</strong>g as a function of<br />

centre-of-mass energy for (a) pp,<br />

pp and (b) π p sc<strong>at</strong>ter<strong>in</strong>g. The total crosssections<br />

drop <strong>at</strong> energy s < 10 GeV and <strong>in</strong>crease consistently for higher energy<br />

0.08<br />

level with the form ofσ s .<br />

viii


Figure 2.4: The total cross-section of photon-hadron sc<strong>at</strong>ter<strong>in</strong>g,<br />

function of different W 2 and Q 2 .<br />

σ<br />

tot<br />

, as a<br />

Figure 2.5: The schem<strong>at</strong>ic present<strong>at</strong>ion of energy flow <strong>in</strong> non-diffractive and<br />

diffractive event with large rapidity gap <strong>at</strong> <strong>HERA</strong>.<br />

Figure 2.6: Schem<strong>at</strong>ic diagram of VM production.<br />

Figure 3.1: The aerial view of <strong>HERA</strong> show<strong>in</strong>g the r<strong>in</strong>g loc<strong>at</strong>ion of the<br />

acceler<strong>at</strong>ors.<br />

Figure 3.2: The picture shows the direction of <strong>electron</strong> and <strong>proton</strong> <strong>in</strong>jection<br />

flows. The red arrow represents the <strong>electron</strong> and the blue arrows represent the<br />

<strong>proton</strong>.<br />

Figure 3.3: The picture shows a 3-dimentional view of a ZEUS detector, its ma<strong>in</strong><br />

components and the <strong>electron</strong> <strong>proton</strong> directions. The circled area <strong>in</strong>dic<strong>at</strong>es the<br />

<strong>in</strong>teraction po<strong>in</strong>t of the <strong>electron</strong> <strong>proton</strong> <strong>collision</strong>.<br />

Figure 3.4: The picture shows the coord<strong>in</strong><strong>at</strong>e system of the ZEUS detector.<br />

Figure 3.5 : Cross section of the ZEUS detector <strong>in</strong> x − y plane<br />

ix


Figure 3.6: Cross section of the ZEUS detector <strong>in</strong> z − y plane<br />

Figure 3.7 : 3D structure of BRMUON<br />

Figure 3.8 : Cross section of FMUON<br />

Figure 3.9: Layout of a CTD octant. The superlayers are numbered and the stereo<br />

angles of their sense wires are shown.<br />

Figure 3.10: Cross sections of the MVD along the beam pipe (left) and <strong>in</strong> the x-y<br />

plane (right).<br />

Figure 3.11: The Layout of the FTD drift chambers <strong>in</strong> (left) overall view and<br />

(right) view of the 3 layers <strong>in</strong>side of one of the chambers.<br />

Figure 3.12: (left) a view of the track<strong>in</strong>g detectors, <strong>in</strong> the forward area the four<br />

track<strong>in</strong>g detectors planes are shown, which were replaced with two straw-tube<br />

tracker (STT) wheels, (right) the angular coverage of the STT compared to the<br />

CTD and forward MVD wheels.<br />

Figure 3.13: Cross section of the ZEUS CAL <strong>in</strong> the y-z plane.<br />

Figure 3.14: View of an FCAL module. The towers conta<strong>in</strong><strong>in</strong>g the EMC and<br />

HAC sections are shown.<br />

x


Figure 4.1 : Typical geometry of a forward spectrometer<br />

Figure 4.2: Typical setup of a cyl<strong>in</strong>drical or collider detector.<br />

Figure 4.3 : Lower half barrel of the <strong>Zeus</strong> micro-vertex detector<br />

Figure 4.4: Schem<strong>at</strong>ic view of a drift chamber cell. The closed circle <strong>in</strong>dic<strong>at</strong>es<br />

wires, with sense wires <strong>in</strong> the middle and field wires on the outside. The long and<br />

thick arrow represents a trajectory of a particle while the small arrows denote<br />

primary ioniz<strong>at</strong>ion charges drift<strong>in</strong>g towards the sense wire.<br />

Figure 4.5: Event display from the ZEUS central track<strong>in</strong>g detector where the<br />

closeup view given <strong>in</strong> the square. The blue l<strong>in</strong>e is the trajectory and the red dot is<br />

the drift distance end po<strong>in</strong>ts on both side of the correspond<strong>in</strong>g wire.<br />

Figure 4.6 : Top left : The real hit po<strong>in</strong>ts with two stereo views on x plane (0°)<br />

and u plane (45°). Top right : S<strong>in</strong>gle view on x and u plane with two ghost po<strong>in</strong>ts<br />

<strong>in</strong> blue. Bottom left : Ambiguity hits observed on x and u plane.<br />

Figure 4.7 : TPC of the STAR experiment.<br />

xi


Figure 5.1: Example of <strong>in</strong>itial page of control cards which show selection of<br />

several rout<strong>in</strong>es applicable <strong>in</strong> ORANGE.<br />

Figure 5.2: PAW and its components<br />

Figure 5.3: ROOT framework directories<br />

Figure 5.4: Zevis display of trimuon event. One of the muons is identified <strong>in</strong> the<br />

outer barrel muon chambers and <strong>in</strong> BAC (both hits and pads), embedded <strong>in</strong>to a<br />

jet. The second is seen <strong>in</strong> BAC only (pads only).The third is seen <strong>in</strong> the forward<br />

muon chambers (clean long track start<strong>in</strong>g <strong>in</strong> the <strong>in</strong>ner chambers) and <strong>in</strong> the<br />

forward BAC, embedded <strong>in</strong>to a forward jet.<br />

Figure 5.6: Figure shows the reconstructed mass of<br />

ψ ' gener<strong>at</strong>ed by PAW us<strong>in</strong>g<br />

+ −<br />

the simul<strong>at</strong>ed ZEUS MC d<strong>at</strong>a for ψ ' → J /ψπ π decay channel.<br />

Figure 5.7: Figure shows the reconstructed mass of<br />

ψ ' gener<strong>at</strong>ed by PAW us<strong>in</strong>g<br />

+ − + −<br />

the ZEUS GR d<strong>at</strong>a for ψ ' → µ µ π π decay channel <strong>in</strong> 2003-2007 events.<br />

Figure 5.8: Cross section of<br />

2003-2007 events.<br />

ψ ' <strong>in</strong> e-p <strong>collision</strong> <strong>at</strong> <strong>HERA</strong> for ZEUS GR d<strong>at</strong>a <strong>in</strong><br />

Figure 6.1: The cross section for<br />

ψ ' <strong>at</strong> ZEUS highlighted <strong>in</strong> yellow, <strong>in</strong><br />

comparison with H1 experiment and other vector mesons.<br />

xii


LIST OF TABLES<br />

Table 1.0: Rough comparison between PAW and ROOT.<br />

Table 2.0: Size of GR ntuple for v02 and v04.<br />

Table 3.0: Properties of<br />

ψ ' photoproduction with number of<br />

ψ ' particles,<br />

Nψ(2S), acceptance, A, photon flux, Ф and the cross section, σ, <strong>in</strong> different W<br />

range.<br />

xiii


LIST OF SYMBOLS AND ABBREVIATIONS<br />

Ψ’ / ψ (2S) Psi particle<br />

J/ ψ J/psi particle<br />

μ Muon particle<br />

π Pi particle<br />

2D 2-Dimensional<br />

3D 3-Dimensional<br />

BMUON Barrel Muon Detector<br />

BNL Brookhaven N<strong>at</strong>ional Labor<strong>at</strong>ory<br />

BRMUON Barrel Rear Muon Detector<br />

CAL Calorimeter<br />

CC Charged Current<br />

CTD Central Track<strong>in</strong>g Detector<br />

DESY Deutch Elektronen Synchotron<br />

DIS Deep Inelastic Sc<strong>at</strong>ter<strong>in</strong>g<br />

FMUON Forward Muon<br />

FTD Forward Track<strong>in</strong>g Detector<br />

GMUON Global Muon System<br />

GR Grand Reprocess<br />

<strong>HERA</strong> Hadron Electron R<strong>in</strong>g Acceler<strong>at</strong>or<br />

MC Monte Carlo<br />

MIP M<strong>in</strong>imum ioniz<strong>in</strong>g particle<br />

MVD Micro Vertex Detector<br />

NC Neutral Current<br />

ORANGE Overly<strong>in</strong>g Rout<strong>in</strong>e Analysis of Ntuple Gener<strong>at</strong>ion<br />

PAW Physics Analysis Workst<strong>at</strong>ion<br />

PHP Photoproduction<br />

xiv


QCD<br />

QED<br />

RMUON<br />

RTD<br />

SLAC<br />

SM<br />

VM / VMs<br />

ZEVIS<br />

Quantum Chromodynamics<br />

Quantum Electrodynamics<br />

Rear Muon Detector<br />

Rear Track<strong>in</strong>g Detector<br />

Stanford L<strong>in</strong>ear Acceler<strong>at</strong>or Center<br />

Standard Model<br />

Vector Meson / Vector Mesons<br />

<strong>Zeus</strong> Event Displays<br />

xv


CHAPTER 1<br />

INTRODUCTION<br />

1.1 Photoproduction <strong>in</strong> Diffractive Sc<strong>at</strong>ter<strong>in</strong>g<br />

Photoproduction refers to particle production th<strong>at</strong> orig<strong>in</strong><strong>at</strong>es from photon.<br />

The word photoproduction itself is rephrased from the word ‘photon’ and<br />

‘production’. The sign<strong>at</strong>ure of exclusive photoproduction <strong>in</strong> <strong>electron</strong>-<strong>proton</strong><br />

<strong>collision</strong> events strictly consists of only the decay products of the searched<br />

particle, with no other significant activity <strong>in</strong> other detector components, s<strong>in</strong>ce the<br />

sc<strong>at</strong>tered <strong>electron</strong> and <strong>proton</strong> escape undetected down the beampipe <strong>at</strong> small<br />

angles portray<strong>in</strong>g a diffractive sc<strong>at</strong>ter<strong>in</strong>g. Diffractive sc<strong>at</strong>ter<strong>in</strong>g is a process where<br />

the collid<strong>in</strong>g particles sc<strong>at</strong>ter <strong>at</strong> a very small angles and have no connect<strong>in</strong>g color<br />

flux <strong>in</strong> the f<strong>in</strong>al st<strong>at</strong>e. This <strong>in</strong>volves a propag<strong>at</strong>or carry<strong>in</strong>g the vacuum quantum<br />

numbers, called the Pomeron [1] and described, <strong>in</strong> the soft regime, with<strong>in</strong> the<br />

Regge theory . Figure 1.1 shows a schem<strong>at</strong>ic diagram of a photon emission <strong>in</strong><br />

<strong>electron</strong> <strong>proton</strong> <strong>collision</strong> which subsequently produces a ψ ( 2S)<br />

particle th<strong>at</strong><br />

decays to a J / ψ and a pion pair.<br />

S<strong>in</strong>ce the first oper<strong>at</strong>ion period <strong>in</strong> 1992, ZEUS and H1, the two<br />

experiments dedic<strong>at</strong>ed to the deep <strong>in</strong>elastic sc<strong>at</strong>ter<strong>in</strong>g (DIS) physics <strong>at</strong> Hadron<br />

Electron R<strong>in</strong>g Acceler<strong>at</strong>or (<strong>HERA</strong>), observed th<strong>at</strong> approxim<strong>at</strong>ely about 10% of<br />

lepton-<strong>proton</strong> DIS events had a diffractive orig<strong>in</strong>. It opens a new area of studies <strong>in</strong><br />

1


particle production mechanism <strong>in</strong>clud<strong>in</strong>g the photoproduction events , provid<strong>in</strong>g a<br />

hard scale which can be varied over a wide range and therefore it is an ideal<br />

test<strong>in</strong>g ground for Quantum Chromodynamics (QCD) models. Diffractive<br />

production of Vector Mesons (VMs) and real photons, γ, allows studies on the<br />

transition from the soft to the hard regime <strong>in</strong> strong <strong>in</strong>teractions. The hard regime<br />

(high energy and low Bjorken-x, x<br />

Bj<br />

) is sensitive to the gluon content and well<br />

described by perturb<strong>at</strong>ive-QCD, while <strong>in</strong> the soft regime (low-x) the <strong>in</strong>teraction is<br />

well described with<strong>in</strong> the Regge phenomenology. The diffractive production of<br />

real photons, a process known as Deeply Virtual Compton Sc<strong>at</strong>ter<strong>in</strong>g (DVCS),<br />

leads to the extraction of the Generalized Parton Distribution functions (GPDs),<br />

conta<strong>in</strong><strong>in</strong>g comb<strong>in</strong>ed <strong>in</strong>form<strong>at</strong>ion about the longitud<strong>in</strong>al momentum distribution<br />

of partons and their position on the transfer plane. The GPD-based calcul<strong>at</strong>ions<br />

will be very helpful <strong>in</strong> the description of the Higgs boson diffractive production<br />

mechanism, which will be experimentally studied with the Large Hadron Collider<br />

(LHC) acceler<strong>at</strong>or.<br />

2


Figure 1.1: The picture shows the schem<strong>at</strong>ic diagram of ψ ( 2S)<br />

photoproduction<br />

<strong>in</strong> <strong>electron</strong>-<strong>proton</strong> <strong>collision</strong> where the sc<strong>at</strong>tered <strong>electron</strong> and <strong>proton</strong> escape<br />

undetected <strong>in</strong> the beampipe.<br />

1.2 The Standard Model<br />

For many years, the development of particle physics research has been of<br />

huge <strong>in</strong>terest for the physicists <strong>in</strong> explor<strong>in</strong>g the quantum field theory. Beg<strong>in</strong>n<strong>in</strong>g<br />

with the establishment of the basic particle found<strong>at</strong>ion <strong>in</strong> the Standard Model<br />

(SM) as illustr<strong>at</strong>ed <strong>in</strong> Figure 1.2, the journey of particle search had changed<br />

rapidly through the subsequent years. Although it was strongly suggested th<strong>at</strong><br />

there are only three gener<strong>at</strong>ions of fundamental particles accord<strong>in</strong>g to SM, the<br />

l<strong>at</strong>est and highest energy of collider, LHC is giv<strong>in</strong>g hope for the discovery of the<br />

new neutral current (NC) which has yet to be discovered, Higgs boson.<br />

3


The history of the SM beg<strong>in</strong>s <strong>in</strong> early 1964, when the idea and discovery<br />

of quarks had extended the major believe of basic theory of structures of <strong>at</strong>oms<br />

and nuclei. In the era when scientists had put the quark as just a m<strong>at</strong>hem<strong>at</strong>ical<br />

concept, the th<strong>in</strong>k<strong>in</strong>g had grown to the higher level of determ<strong>in</strong><strong>in</strong>g the real<br />

existence of these <strong>in</strong>visible partons or quarks. Rapidly develop<strong>in</strong>g research s<strong>in</strong>ce<br />

then proved th<strong>at</strong> their hard work was rewardable as they constantly managed to<br />

put on more facts of the quarks. In 1967, We<strong>in</strong>berg and Salam had came out with<br />

the idea of unify<strong>in</strong>g electromagnetic and weak <strong>in</strong>teraction <strong>in</strong>to electroweak<br />

<strong>in</strong>teraction which required the existence of a neutral boson Z 0 . Until three years<br />

l<strong>at</strong>er, Glashow, Ilioponlos and Maiani had recognized th<strong>at</strong> the critical importance<br />

of the charm quark had allowed the theory of Z 0 -medi<strong>at</strong>ed <strong>in</strong> weak <strong>in</strong>teraction.<br />

This research of Z 0 weak force boson had cont<strong>in</strong>uously done until it was observed<br />

<strong>in</strong> 1973 by Andre Lagarrigue and his collabor<strong>at</strong>ion as the neutral manifest<strong>at</strong>ion of<br />

the weak force which had been predicted by electroweak theory [2]. Along with<br />

the Z 0 -exchange observ<strong>at</strong>ion <strong>in</strong> l<strong>at</strong>e 1973, a quantum field theory of the strong<br />

<strong>in</strong>teraction was formul<strong>at</strong>ed. It was similar <strong>in</strong> structure to quantum electrodynamic<br />

(QED) but <strong>in</strong>volved colour charges, and named <strong>in</strong> quantum chromodynamics<br />

(QCD). The quark was determ<strong>in</strong>ed to be a real particle with colour charge and the<br />

gluon as the massless quantum of the strong <strong>in</strong>teraction field. Also <strong>in</strong> the same<br />

year, Politzer, Gross and Wilczek, predef<strong>in</strong>ed the colour theory of the strong<br />

force which then <strong>in</strong>troduced a new property called the asymptotic freedom.<br />

4


In 1974, it was the first time J / ψ was discovered by two separ<strong>at</strong>e<br />

research groups, led respectively by T<strong>in</strong>g from the Brookhaven N<strong>at</strong>ional<br />

Labor<strong>at</strong>ory (BNL) and Richter from the Stanford L<strong>in</strong>ear Acceler<strong>at</strong>or Center<br />

(SLAC) [3]. This discovery had widened the understand<strong>in</strong>g of the charmonium<br />

particles or charm-anticharm bound-st<strong>at</strong>e quarks which were s<strong>in</strong>gularly<br />

discovered earlier. Not long after the first discovery, the Richter’s group aga<strong>in</strong><br />

discovered the first excited st<strong>at</strong>e of the J / ψ which was known as<br />

ψ ' or ψ ( 2S)<br />

,<br />

or occasionally ψ (3686)<br />

, <strong>in</strong>dic<strong>at</strong><strong>in</strong>g its qu<strong>at</strong>um st<strong>at</strong>e or mass <strong>in</strong> MeV/c 2 . The<br />

J /ψ family production was identified as one of the most popular particle<br />

research done <strong>in</strong> high energy physics experiments. The popularity is <strong>at</strong>tributable<br />

to the high efficiency of this particle to be seen <strong>in</strong> the experiment. Figure 1.3<br />

shows the journey of the SM history together with the <strong>in</strong>itial particle discoveries.<br />

5


Figure 1.2: The diagram of the Standard Model (SM) of elementary particles<br />

Figure 1.3: The Standard Model development <strong>in</strong> historical perspective. The idea<br />

of quarks as the constituents of m<strong>at</strong>ter and their subsequent experimental<br />

confirm<strong>at</strong>ion are shown.<br />

6


1.3 Thesis Overview<br />

In this thesis, we are go<strong>in</strong>g to study the exclusive photoproduction (PHP)<br />

of the first exited st<strong>at</strong>e of J / ψ , ψ ' or ψ ( 2S)<br />

with the rest-mass frame of<br />

3686 .093 ± 0.034 MeV/c 2 <strong>at</strong> the <strong>electron</strong>-<strong>proton</strong> collider, <strong>HERA</strong> loc<strong>at</strong>ed <strong>at</strong><br />

Deutch Elektronen Syncrothron (DESY), Hamburg, Germany. At <strong>HERA</strong>, a<br />

<strong>proton</strong> beam of energy 920 GeV collides with an <strong>electron</strong> or positron beam of<br />

energy 27.52 GeV. The <strong>in</strong>teraction between <strong>proton</strong> and <strong>electron</strong> will produce the<br />

exchange of specific gauge bosons depend<strong>in</strong>g on the <strong>in</strong>teraction force whether it<br />

be electromagnetic, weak or strong. For weak <strong>in</strong>teraction, the exchange gauge<br />

boson is either a charged current (CC), W ± or neutral current (NC), Z 0 . While for<br />

the strong and electromagnetic (EM) forces, the exchange boson will be a gluon<br />

(g) and a photon (γ ) respectively. The significant and <strong>in</strong>terest<strong>in</strong>g fe<strong>at</strong>ures of<br />

learn<strong>in</strong>g this heavy vector meson (VM) production is one unique characteristics of<br />

the daughter products, which is the the comb<strong>in</strong><strong>at</strong>ion of hadronic particles, <strong>in</strong><br />

diffractive <strong>in</strong>teraction. In the search for ψ ( 2S)<br />

, we are comb<strong>in</strong><strong>in</strong>g J / ψ (which<br />

decays to a muon pair) and a pion pair which are exclusively produced <strong>at</strong> the<br />

primary vertex of the <strong>electron</strong>-<strong>proton</strong> <strong>collision</strong>s. Muons, are prevalently known as<br />

m<strong>in</strong>imum ioniz<strong>in</strong>g particles (MIP), will behave consistently stable through the<br />

detector’s <strong>in</strong>ner components such as the calorimeter, giv<strong>in</strong>g a special sign<strong>at</strong>ure <strong>in</strong><br />

the<br />

form of free isol<strong>at</strong>ed trajectory tracks. This muon will be subsequently<br />

1<br />

In the follow<strong>in</strong>g, for simplicity we will denote the charged lepton as <strong>electron</strong>, <strong>in</strong>dependently wether it is an e + or an e - ,<br />

unless otherwise st<strong>at</strong>ed<br />

7


detected <strong>at</strong> the specific surface component called the Muon Detector. In contrast,<br />

pions will be detected rapidly near the <strong>in</strong>teraction area <strong>in</strong> the Central Track<strong>in</strong>g<br />

Detector (CTD). The particle properties of these muons of<br />

J / ψ and pion pair<br />

will be useful for the study of the production cross-section of ψ ( 2S)<br />

. Moreover,<br />

the soft to hard transition of forces can be seen by study<strong>in</strong>g the k<strong>in</strong>em<strong>at</strong>ics<br />

variables of the <strong>proton</strong>-photon <strong>in</strong>teraction or typically known as W dependence of<br />

the cross-section for exclusive VM photoproduction.<br />

The follow<strong>in</strong>g is a brief preview of to upcom<strong>in</strong>g chapters.<br />

In Chapter 2, we shall go on to the k<strong>in</strong>em<strong>at</strong>ics of the <strong>electron</strong>-<strong>proton</strong><br />

<strong>collision</strong>. Generally, the explan<strong>at</strong>ion <strong>in</strong> this chapter will focus on the process of<br />

exclusive photoproduction (PHP) <strong>at</strong> <strong>HERA</strong> which is the ma<strong>in</strong> subject m<strong>at</strong>ter <strong>in</strong><br />

this thesis. In Chapter 3, there will be reviews of the experimental setup, the<br />

ZEUS Detector and <strong>HERA</strong> Acceler<strong>at</strong>or. Meanwhile for Chapters 4, 5 and 6, the<br />

ma<strong>in</strong> discussion will focus on the track<strong>in</strong>g efficiency, ψ ( 2S)<br />

production and<br />

results, and the conclusion, respectively. For the analytical method, <strong>in</strong> this study,<br />

we shall use open source software <strong>in</strong> the L<strong>in</strong>ux Oper<strong>at</strong><strong>in</strong>g System, Physics<br />

Analysis Workst<strong>at</strong>ion or PAW which will be discussed further <strong>in</strong> Chapter 5.<br />

8


CHAPTER 2<br />

ELECTRON-PROTON COLLISION<br />

2.1 Electron-<strong>proton</strong> <strong>collision</strong> <strong>at</strong> <strong>HERA</strong><br />

The <strong>collision</strong> between <strong>electron</strong> and <strong>proton</strong> <strong>at</strong> <strong>HERA</strong> is useful to obta<strong>in</strong> the<br />

k<strong>in</strong>em<strong>at</strong>ical values of particle diffraction and <strong>in</strong>teraction <strong>at</strong> high energy. When an<br />

<strong>electron</strong> strikes a <strong>proton</strong> which conta<strong>in</strong>s quarks and gluons, the <strong>electron</strong> will<br />

transfer part of its energy and momentum to one of the quarks through the<br />

emission of a photon carry<strong>in</strong>g a certa<strong>in</strong> wavelength. The wavelength of the photon<br />

basically will reflect the strength of the <strong>in</strong>teraction whether it is a hard or soft<br />

<strong>in</strong>teraction. At <strong>HERA</strong>, the common phenomena observed are the diffractive<br />

<strong>in</strong>teractions where the constituent quarks <strong>in</strong> the <strong>proton</strong> rema<strong>in</strong> <strong>in</strong>tact, ep → Xp ,<br />

where X is the new particle produced <strong>in</strong> the <strong>in</strong>teraction. If the photon exchange<br />

between the <strong>electron</strong> and the <strong>proton</strong> only transfers a little momentum, the photon<br />

will only observe the ma<strong>in</strong> components of the <strong>proton</strong> which are the three<br />

<strong>in</strong>dividual valence quarks. However, if a gre<strong>at</strong>er momentum <strong>in</strong>volve <strong>in</strong> the<br />

<strong>in</strong>teraction, the <strong>HERA</strong> microscope will able to observe the quarks, anti-quarks<br />

and gluons <strong>in</strong> the <strong>proton</strong>. A photon-<strong>proton</strong> k<strong>in</strong>em<strong>at</strong>ics parameter called Q 2 is<br />

usually used to describe the strength of the momentum exchange. The Q 2 and the<br />

rest parameters will be expla<strong>in</strong>ed <strong>in</strong> detail the next section. The force between the<br />

quarks can also be determ<strong>in</strong>ed based on a coupl<strong>in</strong>g constant, α. An accur<strong>at</strong>e<br />

measurement was taken <strong>at</strong> ZEUS have shown th<strong>at</strong>, the coupl<strong>in</strong>g constant will<br />

9


<strong>in</strong>crease with <strong>in</strong>creas<strong>in</strong>g distance. In quantum electrodynamics theory (QED), the<br />

2 2<br />

energy scale of the <strong>in</strong>teraction, µ = Q thus, the follow<strong>in</strong>g behaviour is<br />

observed:<br />

α(<br />

Q<br />

2<br />

α<br />

0<br />

) =<br />

α<br />

0 Q<br />

1−<br />

ln<br />

3π<br />

2<br />

2<br />

m e<br />

(1)<br />

where<br />

2<br />

m<br />

e is the mass of <strong>electron</strong>, and α<br />

0 is the coupl<strong>in</strong>g constant <strong>at</strong><br />

2 2<br />

Q = m e [4].<br />

In this thesis, α will be calcul<strong>at</strong>ed to determ<strong>in</strong>e the photon flux <strong>in</strong> the cross section<br />

equ<strong>at</strong>ion.<br />

2.2 K<strong>in</strong>em<strong>at</strong>ics of <strong>electron</strong>-<strong>proton</strong> (ep) sc<strong>at</strong>ter<strong>in</strong>g<br />

The k<strong>in</strong>em<strong>at</strong>ic variables of ep sc<strong>at</strong>ter<strong>in</strong>g are the basic quantities used <strong>in</strong><br />

ZEUS analysis to describe the sc<strong>at</strong>ter<strong>in</strong>g process of the collided particles. The<br />

schem<strong>at</strong>ic diagram for the ep sc<strong>at</strong>ter<strong>in</strong>g<br />

e ( k)<br />

p(<br />

P)<br />

→ e(<br />

k'<br />

) X is shown <strong>in</strong> the<br />

Figure 2.1. Below are the relevant Lorentz <strong>in</strong>variant variables:<br />

2<br />

• s = ( k + P) , the square of the centre-of-mass energy. At <strong>HERA</strong>, the<br />

centre-of-mass energy for ep is def<strong>in</strong>ed <strong>in</strong> the square root value of s ,<br />

s = 318 GeV.<br />

• Q<br />

2<br />

2<br />

2<br />

= −q<br />

= −( k − k') , the neg<strong>at</strong>ive squared four-momentum of the<br />

exchanged virtual photon;<br />

10


2<br />

P.<br />

q W<br />

• y = = , the fraction of the positron energy transferred to the<br />

P.<br />

k s<br />

photon <strong>in</strong> the <strong>proton</strong> rest frame;<br />

• x Bj<br />

=<br />

2<br />

Q<br />

, the Bjorken variable, which can be <strong>in</strong>terpreted as the<br />

2( P.<br />

q)<br />

fraction of the <strong>proton</strong> momentum carried by the struck charged parton;<br />

2<br />

• W = ( P + q)<br />

= 2E<br />

( E − ) , the squared centre-of-mass energy of the<br />

p<br />

P z<br />

photon-<strong>proton</strong> system where E is the energy and P z is the longitud<strong>in</strong>al<br />

momentum.<br />

2.3 Diffraction<br />

The diffraction <strong>at</strong> high energy describes processes <strong>in</strong> which the quantum<br />

numbers of the vacuum are exchanged. This physics phenomenon is also used as<br />

an altern<strong>at</strong>ive approach to the problem of perturb<strong>at</strong>ive and non-perturb<strong>at</strong>ive<br />

physics and the s<strong>at</strong>ur<strong>at</strong>ion of parton densities <strong>in</strong> the <strong>proton</strong>. Moreover, diffractive<br />

event is significantly useful for two pre-QCD phenomenological frameworks,<br />

Regge phenomenology and the Vector Dom<strong>in</strong>ance Model (VDM). The<br />

comb<strong>in</strong><strong>at</strong>ion of the VDM and Regge phenomenology can be applied to describe<br />

certa<strong>in</strong> physics processes, for example diffractive events <strong>at</strong> <strong>HERA</strong>. Generally<br />

there are three common diffractive processes <strong>in</strong> hadron-hadron <strong>collision</strong>s to be<br />

seen <strong>at</strong> <strong>HERA</strong>.<br />

11


• Elastic sc<strong>at</strong>ter<strong>in</strong>g ( A + B A + B )<br />

• S<strong>in</strong>gle diffraction ( A + B B + X )<br />

• Double diffraction ( A + B X + Y )<br />

Where the quantum numbers of X and Y are rel<strong>at</strong>ed to the <strong>in</strong>com<strong>in</strong>g particles.<br />

Figure 2.1: The picture shows a schem<strong>at</strong>ic diagram of ep sc<strong>at</strong>ter<strong>in</strong>g with the<br />

relevant k<strong>in</strong>em<strong>at</strong>ic variables.<br />

12


Figure 2.2: The classific<strong>at</strong>ion of diffractive processes: (a) Elastic, (b) S<strong>in</strong>gle<br />

diffraction, (c) Double diffraction.<br />

2.3.1 Regge Phenomenology<br />

A simple spherically symmetric potential with discrete energy levels k and<br />

angular momentum l was def<strong>in</strong>ed <strong>in</strong> 1957 by Regge [5,6]. Then a complex value<br />

of l was recognized to obta<strong>in</strong> an <strong>in</strong>terpol<strong>at</strong><strong>in</strong>g function a( l, k ) which reduced to<br />

al<br />

( k ) for l = 0,1,2,... n. The s<strong>in</strong>gularities of a( l, k ) turned out to be Regge poles<br />

[10] for Yukawa type potentials. It is loc<strong>at</strong>ed <strong>at</strong> values def<strong>in</strong>ed by a rel<strong>at</strong>ion of the<br />

k<strong>in</strong>d l = α( k)<br />

where α ( k)<br />

is a function of the energy called the Regge trajectory.<br />

The Regge poles contributes to the sc<strong>at</strong>ter<strong>in</strong>g amplitude an asymptotically term<br />

13


(i.e for s and t fixed, where t is the four-momentum transfer between A and<br />

B) as<br />

lim( ) ( , ) ~<br />

( t )<br />

s A s t s α (2)<br />

where α ( t)<br />

is the Regge trajectory, assumed to be l<strong>in</strong>ear <strong>in</strong> t,<br />

α( t) α(0)<br />

α<br />

'<br />

= + t<br />

(3)<br />

The <strong>in</strong>tercept, α (0)<br />

'<br />

, and the slope, α , of the trajectory are determ<strong>in</strong>ed<br />

experimentally. The forward differential cross-section of the AB sc<strong>at</strong>ter<strong>in</strong>g is<br />

expressed by the follow<strong>in</strong>g rel<strong>at</strong>ions:<br />

<br />

= <br />

<br />

2<br />

dσ<br />

el<br />

| A( s, t) | b( s)<br />

t s<br />

( t 0) ~ ~ e<br />

2<br />

dt s s0<br />

2( α ( t) −1)<br />

(4)<br />

where b( s ) is a parameters, which can be rel<strong>at</strong>ed to the transverse size of the<br />

<strong>in</strong>teraction region similar to optical theorem,<br />

σ<br />

AB X<br />

~ Im A( AB AB, s, t = 0)<br />

(5)<br />

Hence the energy dependence of the total hadron-hadron cross-sections may be<br />

derived with<strong>in</strong> the Regge theory (see Figure 2.3) and gives:<br />

σ tot<br />

~ s α<br />

(0) −1<br />

(6)<br />

14


(a)<br />

(b)<br />

Figure 2.3: Total cross section measured <strong>in</strong> hadronic sc<strong>at</strong>ter<strong>in</strong>g as a function of<br />

centre-of-mass energy for (a) pp,<br />

pp and (b) π p sc<strong>at</strong>ter<strong>in</strong>g. The total crosssections<br />

drop <strong>at</strong> energy s < 10 GeV and <strong>in</strong>crease consistently for higher energy<br />

0.08<br />

level with the form ofσ s .<br />

15


A global fit of hadron-hadron <strong>collision</strong>s was analysed by Donnachie and<br />

Lanshoff [7-9] to give the follow<strong>in</strong>g rel<strong>at</strong>ion,<br />

α<br />

(0) 1<br />

R (0) −<br />

σ<br />

1 p<br />

tot<br />

Xs Ys α −<br />

= + (7)<br />

where the first term corresponds to the exchange of all Reggeons dom<strong>in</strong><strong>at</strong><strong>in</strong>g <strong>at</strong><br />

low energies and the second terms accounts for the exchange Pomeron <strong>at</strong> high<br />

energies. Donnachie and Landshoff also performed fits to the |t| dependence of<br />

pp and pp cross sections follow<strong>in</strong>g the parameteriz<strong>at</strong>ion. The result of the fits is<br />

given by the follow<strong>in</strong>g trajectory:<br />

α ( t P<br />

) = 1.08 + 0.25 t<br />

(8)<br />

where t is given <strong>in</strong> GeV/c 2 , is often referred to as a Soft Pomeron.<br />

2.3.2 Vector Dom<strong>in</strong>ance Model (VDM)<br />

In VDM, a photon is a superposition of a QED photon and a hadronic<br />

component. This st<strong>at</strong>ement supports the appearance of a hadronic structure of the<br />

photon which was <strong>in</strong>terpreted through the similarity of the measurement of the<br />

total cross section energy dependence <strong>in</strong> photon-hadron and hadron-hadron<br />

<strong>collision</strong>s. The hadronic component arises due to the quantum fluctu<strong>at</strong>ions ruled<br />

by the uncerta<strong>in</strong>ty pr<strong>in</strong>ciple. In the orig<strong>in</strong>al VDM, the hadronic component is<br />

assumed to be a superposition of light vector mesons (VMs), which are ρ, ω andφ<br />

particles. In the Generalized VDM (GVDM) [11], when<br />

M is<br />

2 2<br />

Q >> M v (where v<br />

the mass of a particular VMs) the higher mass st<strong>at</strong>es are <strong>in</strong>cluded as well. In<br />

16


some events, the photon fluctu<strong>at</strong>es <strong>in</strong>to VM long before it <strong>in</strong>teracts with the<br />

<strong>proton</strong>. In this case, a hadron-hadron type of <strong>in</strong>teraction occurs between the VM<br />

and the <strong>proton</strong>. The similarity of energy dependence for hadron-hadron and<br />

photon-hadron <strong>in</strong>teraction can be observed <strong>in</strong> Figure 2.4.<br />

Figure 2.4: The total cross-section of photon-hadron sc<strong>at</strong>ter<strong>in</strong>g,<br />

function of different W 2 and Q 2 .<br />

σ<br />

tot<br />

, as a<br />

17


2.4 Photon-<strong>proton</strong> <strong>collision</strong>s<br />

A comb<strong>in</strong><strong>at</strong>ion of VDM and Regge phenomenology can be applied to<br />

describe the diffractive physics processes <strong>at</strong> <strong>HERA</strong>. Photon-<strong>proton</strong> <strong>in</strong>teraction <strong>at</strong><br />

<strong>HERA</strong> can be c<strong>at</strong>egorized <strong>in</strong> four processes;<br />

• Elastic sc<strong>at</strong>ter<strong>in</strong>g ( γ * p → Vp)<br />

- the photon fluctu<strong>at</strong>es <strong>in</strong>to a vector meson,<br />

which sc<strong>at</strong>ters quasi-elastically off the <strong>proton</strong><br />

• Photon dissoci<strong>at</strong>ion ( γ<br />

* p → Xp)<br />

- the photon fluctu<strong>at</strong>es <strong>in</strong>to a vector<br />

meson, which dissoci<strong>at</strong>es <strong>in</strong>to a higher mass st<strong>at</strong>e, X, while the <strong>proton</strong> stay<br />

<strong>in</strong>tact<br />

• Proton dissoci<strong>at</strong>ion ( γ<br />

* p → VY)<br />

- the photon fluctu<strong>at</strong>es <strong>in</strong>to a vector<br />

meson, which rema<strong>in</strong> <strong>in</strong>tact, while the <strong>proton</strong> dissoci<strong>at</strong>es <strong>in</strong>to a higher<br />

mass st<strong>at</strong>e, Y<br />

• Double dissoci<strong>at</strong>ion ( γ<br />

* p → XY ) - the photon fluctu<strong>at</strong>es <strong>in</strong>to a vector<br />

meson, which dissoci<strong>at</strong>es <strong>in</strong>to a higer mass st<strong>at</strong>e, X, and the <strong>proton</strong><br />

dissoci<strong>at</strong>es <strong>in</strong>to a higher mass st<strong>at</strong>e, Y.<br />

A typical sign<strong>at</strong>ure of diffractive events <strong>at</strong> high energies is a large rapidity gap.<br />

The schem<strong>at</strong>ic present<strong>at</strong>ion of energy flow for non-diffractive and diffractive<br />

events is shown <strong>in</strong> Figure 2.5 below.<br />

18


(a) non-diffractive event<br />

(b) diffractive event<br />

Figure 2.5: The schem<strong>at</strong>ic present<strong>at</strong>ion of energy flow <strong>in</strong> non-diffractive and<br />

diffractive event with large rapidity gap <strong>at</strong> <strong>HERA</strong>.<br />

19


2.5 Rel<strong>at</strong>ion between ep and γ * p sc<strong>at</strong>ter<strong>in</strong>g<br />

In the one photon exchange (Born) approxim<strong>at</strong>ion the <strong>electron</strong>-<strong>proton</strong><br />

sc<strong>at</strong>ter<strong>in</strong>g may be regarded as a sc<strong>at</strong>ter<strong>in</strong>g of the virtual photon off the <strong>proton</strong>. The<br />

<strong>in</strong>clusive double differential ep cross section may be described <strong>in</strong> terms of two<br />

absorption cross sections,<br />

*<br />

γ p<br />

σ and σ , correspond<strong>in</strong>g to the transverse and<br />

*<br />

γ p<br />

T<br />

L<br />

longitud<strong>in</strong>al polaris<strong>at</strong>ions of the virtual photon:<br />

2 ep<br />

d σ<br />

2<br />

dQ dy<br />

*<br />

*<br />

*<br />

γ p γ p<br />

γ p γ p<br />

= Γ σ + Γ σ = Γ ( σ + ∈σ<br />

) , (9)<br />

T<br />

T<br />

L<br />

L<br />

T<br />

T<br />

L<br />

*<br />

where Γ L and Γ L are the longitud<strong>in</strong>al and transverse photon fluxes [12]:<br />

Γ<br />

Γ<br />

L<br />

T<br />

( y,<br />

Q<br />

( y,<br />

Q<br />

2<br />

2<br />

α<br />

) =<br />

2πQ<br />

α<br />

) =<br />

2πQ<br />

2<br />

2<br />

2(1 − y)<br />

,<br />

y<br />

⎛1+<br />

(1 − y)<br />

⎜<br />

⎝ y<br />

2<br />

2<br />

2(1 − y)<br />

Q<br />

−<br />

y Q<br />

m<strong>in</strong><br />

2<br />

⎞<br />

⎟<br />

⎠<br />

(10)<br />

Where<br />

is the m<strong>in</strong>imum of<br />

(0< ∈


The total γ * p cross section:<br />

*<br />

γ p<br />

σ = σ + σ<br />

(13)<br />

*<br />

γ p<br />

T<br />

*<br />

γ p<br />

L<br />

is rel<strong>at</strong>ed to the <strong>in</strong>clusive ep cross section as follows:<br />

2 ep<br />

d σ<br />

2<br />

dQ dy<br />

⎛ 1 + ∈ R ⎞ *<br />

γ p<br />

= Γ<br />

( y,<br />

Q<br />

2<br />

T ⎜ ⎟σ<br />

)<br />

(14)<br />

⎝ 1+<br />

R ⎠<br />

where R is the r<strong>at</strong>io of cross sections for the longitud<strong>in</strong>ally and transversely<br />

polarised virtual photons:<br />

*<br />

γ p<br />

σ<br />

L<br />

R<br />

*<br />

γ p<br />

σ<br />

T<br />

= (15)<br />

The <strong>proton</strong> structure functions are rel<strong>at</strong>ed to γ * p cross sections by the<br />

follow<strong>in</strong>g rel<strong>at</strong>ions:<br />

F ( x,<br />

Q<br />

2<br />

2<br />

F ( x,<br />

Q<br />

L<br />

2<br />

2<br />

Q<br />

*<br />

γ<br />

) = σ<br />

2<br />

4π<br />

α<br />

2<br />

Q<br />

) = σ<br />

2 L<br />

4π<br />

α<br />

γ<br />

p<br />

( x,<br />

Q<br />

*<br />

p<br />

2<br />

( x,<br />

Q<br />

),<br />

2<br />

)<br />

(16)<br />

21


2.6 Exclusive Vector Meson Photoproduction<br />

Photoproduction (PHP) process ma<strong>in</strong>ly describe the <strong>in</strong>teraction of photon<br />

to <strong>proton</strong> after the ep <strong>collision</strong> <strong>at</strong> low energy of Q 2


Figure 2.6: Schem<strong>at</strong>ic diagram of VM production.<br />

2.7 Acceptance and γp<br />

Cross Section<br />

The acceptance (A) and particle cross-section (σ) are the variables used to<br />

determ<strong>in</strong>e the production r<strong>at</strong>es of the particular search particle and the likelihood<br />

of <strong>in</strong>teraction between particles. Calcul<strong>at</strong>ions and results of this analysis are<br />

shown <strong>in</strong> chapter 5 of this thesis.<br />

2.7.1 Acceptance Calcul<strong>at</strong>ion on Monte Carlo (MC)<br />

The acceptance or production r<strong>at</strong>e of a particle can be determ<strong>in</strong>ed based on<br />

the r<strong>at</strong>io of the particle entries <strong>in</strong> the signal compared to the particle gener<strong>at</strong>ed<br />

number us<strong>in</strong>g MC. The number of reconstructed particle N p , is determ<strong>in</strong>ed by<br />

calcul<strong>at</strong><strong>in</strong>g the particle entries of the signal which usually done by graph fitt<strong>in</strong>g<br />

23


procedure. The fitt<strong>in</strong>g algorithm will be describe l<strong>at</strong>er <strong>in</strong> analysis part of this<br />

thesis.<br />

Acceptance (A)<br />

can be obta<strong>in</strong>ed from the follow<strong>in</strong>g rel<strong>at</strong>ion;<br />

N<br />

N<br />

P<br />

A = (17)<br />

G<br />

Where<br />

N<br />

P is the number of particle produced <strong>in</strong> the signal and<br />

of particle gener<strong>at</strong>ed <strong>in</strong> events.<br />

N<br />

G is the number<br />

2.7.2 γ p Cross-Section Calcul<strong>at</strong>ion<br />

The γ p cross-section def<strong>in</strong>es as the r<strong>at</strong>io of ep cross-section over the<br />

effective photon flux <strong>in</strong> the specific value of W and Q 2 measured <strong>in</strong> the range of<br />

W(m<strong>in</strong>:max) and Q 2 (m<strong>in</strong>:max).<br />

The calcul<strong>at</strong>ion can be done us<strong>in</strong>g the formula:<br />

2<br />

σ ( Q , W )<br />

σ<br />

= ep<br />

Where Φ is the effective photon flux and<br />

Φ<br />

(18)<br />

σ<br />

ep is the cross section for ep<br />

<strong>in</strong>teraction.<br />

The<br />

σ<br />

ep can be obta<strong>in</strong>ed by,<br />

ψ ( 2S<br />

) p<br />

N ψ (2S<br />

σ<br />

→ =<br />

ABL<br />

ep )<br />

(19)<br />

Where A is the acceptance, B <strong>in</strong>dic<strong>at</strong>es the branch<strong>in</strong>g r<strong>at</strong>io of the decay channel<br />

and L is the lum<strong>in</strong>osity measured <strong>in</strong> the experiment.<br />

24


ep→ψ<br />

(2S<br />

) p<br />

γp→ψ<br />

(2S<br />

) p σ<br />

σ =<br />

(20)<br />

Φ<br />

And the effective photon flux, Φ can be calcul<strong>at</strong>ed us<strong>in</strong>g follow<strong>in</strong>g formula [12];<br />

∫ Φ<br />

Φ γ p →ψ (2S<br />

) p<br />

=<br />

2 2<br />

eff<br />

( y,<br />

Q ) dydQ<br />

(21)<br />

Φ(<br />

y,<br />

Q<br />

2<br />

α<br />

) =<br />

2πQ<br />

2<br />

⎡1+<br />

(1 − y)<br />

⎢<br />

⎢⎣<br />

y<br />

2<br />

2(1 − y)<br />

⎛<br />

⎜<br />

Q<br />

−<br />

y<br />

⎝ Q<br />

2<br />

m<strong>in</strong><br />

2<br />

Q<br />

−<br />

M<br />

2<br />

2<br />

ψ (2S<br />

)<br />

⎞⎤⎛ ⎟ ⎜<br />

Q<br />

⎥ 1 +<br />

⎥<br />

⎠⎦⎝<br />

M<br />

2<br />

2<br />

ψ (2S<br />

)<br />

⎞<br />

⎟<br />

⎠<br />

−2<br />

(22)<br />

Where,<br />

2<br />

W<br />

y = andQ<br />

s<br />

2<br />

m<strong>in</strong><br />

2<br />

2 y<br />

= M<br />

el .<br />

(1 − y)<br />

These equ<strong>at</strong>ions will be implemented <strong>in</strong> the analysis part of this thesis and the<br />

results are shown <strong>in</strong> chapter 5.<br />

25


CHAPTER 3<br />

EXPERIMENTAL SETUP<br />

3.1 ZEUS Experiment<br />

ZEUS experiment began its first oper<strong>at</strong>ion <strong>in</strong> 1992. The experiment<br />

ma<strong>in</strong>ly consists of two ma<strong>in</strong> giant equipments, the <strong>HERA</strong> collider and ZEUS<br />

detector, which used to acceler<strong>at</strong>e and detect particle from <strong>electron</strong> and <strong>proton</strong><br />

<strong>collision</strong> respectively. Generally, the experiment is dedic<strong>at</strong>ed to observe the<br />

particles productions <strong>at</strong> high energy physics events of lepton-hadron <strong>collision</strong> as<br />

well as observ<strong>in</strong>g the particle characters.<br />

3.2 <strong>HERA</strong> Collider<br />

The <strong>HERA</strong> r<strong>in</strong>g is loc<strong>at</strong>ed <strong>at</strong> DESY, Hamburg. It was constructed 30m<br />

underground deep and 6.3km long <strong>in</strong> circumference. It was the first e-p collider<br />

designed to acceler<strong>at</strong>e the <strong>electron</strong> and <strong>proton</strong> from opposite direction before<br />

<strong>collision</strong>s take place <strong>in</strong>side the detection system or detector.<br />

The <strong>electron</strong> and <strong>proton</strong> beampipe are placed on top of each other along<br />

the <strong>HERA</strong> r<strong>in</strong>g. The <strong>electron</strong> beampipe consist of normal conduct<strong>in</strong>g dipolemagnets<br />

with 0.3T and super-conduct<strong>in</strong>g cavities to acceler<strong>at</strong>e <strong>electron</strong> beam up<br />

to 27.5 GeV. Meanwhile the <strong>proton</strong> beampipe has the fe<strong>at</strong>ure of 4.7 T dipole-<br />

26


magnets conductivity and can be acceler<strong>at</strong>ed up to 920 GeV <strong>in</strong> <strong>HERA</strong> r<strong>in</strong>g. The<br />

squared centre-of-mass energy for e-p <strong>collision</strong>,<br />

s was measured to be 300 until<br />

year 1997 and then changed to 318 after the e-p acceler<strong>at</strong>ion energy upgrad<strong>in</strong>g<br />

until the oper<strong>at</strong>ion stopped <strong>in</strong> 2007. <strong>HERA</strong> was built with four <strong>in</strong>teraction po<strong>in</strong>ts<br />

where detectors are placed. The H1 and ZEUS detectors are designed for the e-p<br />

<strong>in</strong>teraction. Meanwhile HERMES is used for research on the sp<strong>in</strong> structure which<br />

only utilizes an <strong>electron</strong> beam. The forth detector, <strong>HERA</strong>-B <strong>in</strong>vestig<strong>at</strong>es CP<br />

viol<strong>at</strong>ion <strong>in</strong> the<br />

0 0<br />

B B -system by us<strong>in</strong>g the <strong>proton</strong> beam together with a fixed wire<br />

target. Each of these experiments have contributed significantly to for particle<br />

physics research.<br />

The <strong>proton</strong> and <strong>electron</strong> orig<strong>in</strong><strong>at</strong>e <strong>at</strong> different start<strong>in</strong>g po<strong>in</strong>ts. Protons were<br />

−<br />

firstly stripped off from neg<strong>at</strong>ive hydrogen ions ( H ) <strong>in</strong> LINAC III and <strong>in</strong>jected<br />

with energies of 50 MeV. Then the <strong>proton</strong> was transferred to the DESY III r<strong>in</strong>g<br />

and <strong>in</strong>jected to 7 GeV before mov<strong>in</strong>g to the bigger r<strong>in</strong>g of PETRA with a higher<br />

energy <strong>in</strong>jection of 40 GeV. Lastly, the <strong>proton</strong> was transferred to the biggest r<strong>in</strong>g,<br />

<strong>HERA</strong> with the highest energy of 920 GeV. Meanwhile, <strong>electron</strong>s started <strong>at</strong><br />

LINAC II with energies of 450 MeV before mov<strong>in</strong>g to DESY II r<strong>in</strong>g with higher<br />

energy <strong>in</strong>jection of 7.5 GeV. Mov<strong>in</strong>g on to PETRA, the energy of the <strong>electron</strong>s<br />

were subsequently <strong>in</strong>jected up to 14 GeV and ready to acceler<strong>at</strong>e <strong>at</strong> highest<br />

energies of 27.5 GeV <strong>in</strong> <strong>HERA</strong> afterwards. <strong>HERA</strong> could be filled with a<br />

maximum of 210 bunches of leptons and <strong>proton</strong>s <strong>at</strong> a time where each of them<br />

were separ<strong>at</strong>ed by 96 ns [13-16].<br />

27


Figure 3.1: An aerial view of <strong>HERA</strong> show<strong>in</strong>g the loc<strong>at</strong>ion of the acceler<strong>at</strong>ors.<br />

Figure 3.2: This diagram shows the direction of the <strong>electron</strong> and <strong>proton</strong> <strong>in</strong>jection<br />

flows. The red arrow represents the <strong>electron</strong> and the blue arrows represent the<br />

<strong>proton</strong>.<br />

28


3.3 ZEUS Detector<br />

The ZEUS detector [17] was loc<strong>at</strong>ed 30 m underground <strong>at</strong> south direction<br />

of <strong>HERA</strong>. The weight was about 3500 tons and was 12 meters <strong>in</strong> height. It was a<br />

multipurpose detector with a solid angle coverage of 99.6% and implement the<br />

right-handed schem<strong>at</strong>ic system. The centre of the system was <strong>at</strong> the nom<strong>in</strong>al<br />

<strong>in</strong>teraction po<strong>in</strong>t (IP), the z-axis was po<strong>in</strong>t<strong>in</strong>g to the forward direction (<strong>proton</strong><br />

direction), the x-axis was po<strong>in</strong>t<strong>in</strong>g towards the centre of <strong>HERA</strong> and the y-axis was<br />

po<strong>in</strong>t<strong>in</strong>g upward.<br />

Figure 3.3: The picture shows a 3-dimentional view of a ZEUS detector, its ma<strong>in</strong><br />

components and the <strong>electron</strong> <strong>proton</strong> directions. The circled area <strong>in</strong>dic<strong>at</strong>es the<br />

<strong>in</strong>teraction po<strong>in</strong>t of the <strong>electron</strong> <strong>proton</strong> <strong>collision</strong>.<br />

29


The polar angle, θ and the azimuthal angle, φ were measured rel<strong>at</strong>ive to<br />

the z and x axes respectively. Usually, θ angle was described <strong>in</strong> pseudorapidity<br />

⎛ θ ⎞<br />

form, η = − ln⎜<br />

tan ⎟ . There was an obvious symmetry imbalance between the<br />

⎝ 2 ⎠<br />

forward and rear side of the detector. The forward side was longer than the rear<br />

part. This was because of the huge different <strong>in</strong> momentum values of <strong>proton</strong> and<br />

<strong>electron</strong>, which giv<strong>in</strong>g a bigger particle boost<strong>in</strong>g towards the forward direction.<br />

Figure 3.4: The picture shows the coord<strong>in</strong><strong>at</strong>e system of the ZEUS detector.<br />

30


Figure 3.5 : Cross section of the ZEUS detector <strong>in</strong> x-y plane.<br />

Figure 3.6: Cross section of the ZEUS detector <strong>in</strong> z-y plane.<br />

31


3.4 Muon Detection System<br />

The muon is recognized as a m<strong>in</strong>imum ioniz<strong>in</strong>g particle (MIP) which<br />

leaves tracks sign<strong>at</strong>ure <strong>in</strong> many different subdetectors such as track<strong>in</strong>g,<br />

calorimeter and the external muon detection systems. It has a high penetr<strong>at</strong>ion<br />

power allow<strong>in</strong>g it to go through almost all detector layers. The range of muons <strong>in</strong><br />

iron is about 1 m/GeV. Basically <strong>in</strong> ZEUS detector, there are three ma<strong>in</strong><br />

components of muon detectors; the forward muon detector (FMUON), the barrel<br />

muon detector (BMUON) and the real muon detector (RMUON). Figure 3.7 and<br />

3.8 shows the picture of the muon detector components <strong>in</strong> ZEUS detector.<br />

The muon f<strong>in</strong>der for the ZEUS detector is called the GMUON. It is a<br />

comb<strong>in</strong><strong>at</strong>ion of all muon f<strong>in</strong>ders available <strong>at</strong> ZEUS. It establishes l<strong>in</strong>ks between<br />

f<strong>in</strong>ders and assigns a global muon quality. The GMUON is implemented <strong>in</strong> the<br />

context of ORANGE analysis environment. The cross reference to the other<br />

ORANGE <strong>in</strong>form<strong>at</strong>ion (tracks, jets, MC true and etc.) also provided.<br />

Traditionally, we need a specific selection of one or two such algorithm which<br />

was available as priv<strong>at</strong>e code <strong>in</strong> each muon analysis. Obviously, this process is a<br />

tedious way of do<strong>in</strong>g the analysis. To have more efficiency <strong>in</strong> muon analysis, the<br />

GMUON [43] f<strong>in</strong>der has been cre<strong>at</strong>ed. The purpose of GMUON is to comb<strong>in</strong>e the<br />

most important <strong>in</strong>form<strong>at</strong>ion from different f<strong>in</strong>ders <strong>in</strong>to a common form<strong>at</strong> without<br />

priv<strong>at</strong>e code. It is also able to comb<strong>in</strong>e <strong>in</strong>form<strong>at</strong>ion of the same muon from<br />

different f<strong>in</strong>ders <strong>in</strong>to s<strong>in</strong>gle entries as much as possible. Users also have freedom<br />

32


to select their f<strong>in</strong>ders and cuts as the GMUON will provide cross reference to the<br />

<strong>in</strong>dividual f<strong>in</strong>ders. GMUON also provide a global muon quality flag which allow<br />

the average user to preselect muons without need to know all the details about<br />

f<strong>in</strong>ders.<br />

Muon can be detected <strong>in</strong> different ways and sign<strong>at</strong>ure. It can be identified<br />

by the characteristic of its charge penetr<strong>at</strong>ion <strong>in</strong> the subdetector. The tracks of this<br />

penetr<strong>at</strong>ion can be seen <strong>in</strong> the <strong>in</strong>ner track<strong>in</strong>g detector such as the Micro Vertex<br />

Detector (MVD), Central Track<strong>in</strong>g Detector (CTD) [18-20], and so on. These<br />

tracks are bent <strong>in</strong> the ZEUS solenoid field and their curv<strong>at</strong>ure can be used to<br />

determ<strong>in</strong>e the muon momentum. The muons th<strong>at</strong> are famous <strong>in</strong> physics are<br />

produced either directly <strong>at</strong> the primary vertex, or <strong>in</strong> semileptonic heavy flavor<br />

decays very close to the primary vertex. Muons, as a MIP particle, lose a well<br />

def<strong>in</strong>ed amount of energy <strong>in</strong> the calorimeter along their trajectory. This energy<br />

loss is almost <strong>in</strong>dependent of muon momentum. The p<strong>at</strong>tern of this energy loss is<br />

significantly important to identify muons which do not overlap with any other<br />

particles and well isol<strong>at</strong>ed. S<strong>in</strong>ce the other particles will lose all their energy <strong>in</strong><br />

the calorimeters, therefore the separ<strong>at</strong>ion power for muon detection us<strong>in</strong>g the<br />

MIPs <strong>in</strong>creases with the <strong>in</strong>creas<strong>in</strong>g muon momentum. However, if the muon is a<br />

non-isol<strong>at</strong>ed particle which overlaps with other particles, MIPs cannot be used <strong>in</strong><br />

the detection.<br />

33


Figure 3.7 : 3D structure of BRMUON<br />

Figure 3.8 : Cross section of FMUON<br />

34


3.5 Central Track<strong>in</strong>g Detector (CTD)<br />

The CTD [18-20] is a cyl<strong>in</strong>drical wire drift chamber with a magnetic field<br />

of 1.43 T which is provided by a th<strong>in</strong> superconduct<strong>in</strong>g solenoid. The CTD is used<br />

to measure the directions and momenta of the charged particle and estim<strong>at</strong>e the<br />

energy loss dE/dx to provide <strong>in</strong>form<strong>at</strong>ion for particle identific<strong>at</strong>ion. It has 72<br />

cyl<strong>in</strong>drical drift chamber layers of sense wires, organized <strong>in</strong> 9 superlayers<br />

cover<strong>in</strong>g the polar angle<br />

<br />

15 to164 . Each superlayer consist of 8 sense wires with<br />

associ<strong>at</strong>ed field wires, called a cell. The drift cells of all superlayers are similar.<br />

There are a total of 4608 sense wires and 19584 field wires <strong>in</strong> the CTD. The <strong>in</strong>ner<br />

radius of the chamber is 79.4cm, and its active region covered the longitud<strong>in</strong>al<br />

distance of -100 cm < z < 104 cm. The sense wires were 30 μm thick while the<br />

field wires have different diameters. Each superlayer was numbered accord<strong>in</strong>gly<br />

from the <strong>in</strong>ner layer to the outer layer. The odd layer consists of tools which were<br />

used to determ<strong>in</strong>e the z-position by us<strong>in</strong>g the time different between the arrival<br />

times of the signal from the opposite end of the CTD. The CTD was filled with a<br />

mixture of argon (Ar), carbon dioxide (CO 2 ) and ethane (C 2 H 6 ) <strong>in</strong> the r<strong>at</strong>io 85 : 5 :<br />

1. A charged particle cross<strong>in</strong>g the CTD produced ioniz<strong>at</strong>ion of the gas <strong>in</strong> the<br />

chamber. The <strong>electron</strong>s from the ioniz<strong>at</strong>ion drifted towards the positive sense<br />

wires whereas the positively charged ions drifted toward the neg<strong>at</strong>ive field wires.<br />

The CTD hit resolution of <strong>HERA</strong> I was 200 μm <strong>in</strong> the<br />

r − φ plane and 2 mm <strong>in</strong><br />

the z coord<strong>in</strong><strong>at</strong>e. The resolution on<br />

pT<br />

for tracks fitted to the <strong>in</strong>teraction vertex<br />

and pass<strong>in</strong>g <strong>at</strong> least three CTD superlayers and with p<br />

T > 150 MeV, is given by:<br />

35


σ ( p T<br />

)<br />

0.<br />

= 0.0058⋅<br />

p<br />

0014<br />

T<br />

⊕ 0.0065 ⊕<br />

p<br />

p<br />

T<br />

T<br />

where p<br />

T is given <strong>in</strong> GeV and the symbol ⊕ <strong>in</strong>dic<strong>at</strong>es the quadr<strong>at</strong>ic sum.<br />

Meanwhile for <strong>HERA</strong> II, the new additional track<strong>in</strong>g equipment has been<br />

<strong>in</strong>stalled to improve the track<strong>in</strong>g resolution which is called the micro vertex<br />

detector (MVD).<br />

Figure 3.9: Layout of a CTD octant. The superlayers are numbered and the stereo<br />

angles of their sense wires are shown.<br />

36


3.6 Micro Vertex Detector (MVD)<br />

The silicon-strip micro vertex detector (MVD) [21] was <strong>in</strong>stalled <strong>in</strong> 2001.<br />

It aimed <strong>at</strong> a significant improvement of the track<strong>in</strong>g capabilities to permit the<br />

reconstruction of impact parameters and secondary vertices. Figure 3.10 displays<br />

the layout of the MVD, which is split <strong>in</strong>to a barrel and a forward region. The<br />

sensitive areas are called ladders and conta<strong>in</strong> two layers of orthogonally oriented<br />

silicon strips.<br />

Figure 3.10: Cross sections of the MVD along the beam pipe (left) and <strong>in</strong> the X-<br />

Y plane (right).<br />

The MVD measured the charge-deposit on its strips. In comb<strong>in</strong><strong>at</strong>ion with<br />

the known geometry of the detector and the orient<strong>at</strong>ion of the tracks this was used<br />

to measure the ioniz<strong>at</strong>ion r<strong>at</strong>e. It is possible to use the MVD for particle<br />

identific<strong>at</strong>ion <strong>in</strong> a similar way as the CTD. As one can observe <strong>in</strong> Fig. 3.10 a<br />

typical track passes 3 ladders, i.e. <strong>at</strong> most 6 silicon strips. This number is small<br />

compared to the number of hits for a typical track <strong>in</strong> the CTD. Performance<br />

37


comparison of the track<strong>in</strong>g used for <strong>HERA</strong> I d<strong>at</strong>a samples (CTDonly) to the<br />

track<strong>in</strong>g used for the <strong>HERA</strong> II d<strong>at</strong>a (MVD-CTD: 2003-2007, and MVD-CTD-<br />

STT: 2003-2007 exclud<strong>in</strong>g 2005) is not a trivial task.. The track transverse<br />

momentum resolution improved by ≈ 50%. The vertex position <strong>in</strong> x-y plane<br />

improved chang<strong>in</strong>g from ~ 0.1 cm (<strong>HERA</strong> I) to better than 0.01 cm (<strong>HERA</strong> II).<br />

The z-coord<strong>in</strong><strong>at</strong>e of the vertex position also improved due to a few extra hits<br />

loc<strong>at</strong>ed closer to the <strong>in</strong>teraction po<strong>in</strong>t, however hav<strong>in</strong>g no consequences for the<br />

analysis. The cuts def<strong>in</strong><strong>in</strong>g the vertex position <strong>in</strong> x, y, z coord<strong>in</strong><strong>at</strong>es were<br />

conserv<strong>at</strong>ive rema<strong>in</strong><strong>in</strong>g identical to the ones used <strong>in</strong> the analyses of <strong>HERA</strong> I d<strong>at</strong>a<br />

samples only.<br />

3.7 Forward and Rear Track<strong>in</strong>g Detectors (FTD, RTD)<br />

The FTD [22] measured the tracks of charged particles <strong>in</strong> planar drift<br />

chambers loc<strong>at</strong>ed <strong>at</strong> the ends of the central track<strong>in</strong>g detector <strong>in</strong> forward (<strong>proton</strong>)<br />

and rear (<strong>electron</strong>) directions.<br />

Figure 3.11: The Layout of the FTD drift chambers <strong>in</strong> (left) overall view and<br />

(right) view of the 3 layers <strong>in</strong>side of one of the chambers.<br />

38


A charged particle passed <strong>in</strong> the FTD through 3 chambers (RTD - 1<br />

chamber). Each chamber conta<strong>in</strong>ed 3 layers with a total of 18 wire planes. The<br />

layers consisted of drift cells which were rot<strong>at</strong>ed by 60 degrees with respect to<br />

each other. The FTD cells are rectangular with six signal wires strung<br />

perpendicular to the beam axis.<br />

Figure 3.12: (left) a view of the track<strong>in</strong>g detectors, <strong>in</strong> the forward area the four<br />

track<strong>in</strong>g detectors planes are shown, which were replaced with two straw-tube<br />

tracker (STT) [23] wheels, (right) the angular coverage of the STT compared to<br />

the CTD and forward MVD wheels.<br />

3.8 Uranium Calorimeter (CAL)<br />

The ZEUS calorimeter (CAL) [24-27] is a high-resolution compens<strong>at</strong><strong>in</strong>g<br />

calorimeter. It completely surrounds the track<strong>in</strong>g devices and the solenoid, and<br />

covers 99.7% of the 4π solid angle. It consists of 3.3 mm thick depleted uranium<br />

pl<strong>at</strong>es (98.1% U 238 , 1.7% Nb, 0.2% U 235 ) as absorber altern<strong>at</strong>ed with 2.6 mm thick<br />

organic sc<strong>in</strong>till<strong>at</strong>ors (SCSN-38 polystyrene) as active m<strong>at</strong>erial. The thickness of<br />

39


the absorber and of the active m<strong>at</strong>erial have been chosen <strong>in</strong> order to have the same<br />

response for an <strong>electron</strong> or a hadron of the same energy pass<strong>in</strong>g through the<br />

detector (e/h = 1.00±0.05). This mechanism is called compens<strong>at</strong>ion, and allows<br />

achiev<strong>in</strong>g good resolution <strong>in</strong> the determ<strong>in</strong><strong>at</strong>ion of both the electromagnetic and<br />

the hadronic energy.<br />

Figure 3.13: Cross section of the ZEUS CAL <strong>in</strong> the y-z plane.<br />

The achieved hadronic energy resolution is<br />

∆E<br />

E<br />

35%<br />

= ⊕1%<br />

E<br />

(23)<br />

while the electromagnetic resolution is<br />

40


∆E<br />

E<br />

18%<br />

= ⊕ 2%<br />

E<br />

(24)<br />

where ∆E is the particle energy, measured <strong>in</strong> GeV. The CAL is divided <strong>in</strong>to three<br />

parts: the forward (FCAL), barrel (BCAL) and rear (RCAL) calorimeters.<br />

Figure 3.14: View of an FCAL module. The towers conta<strong>in</strong><strong>in</strong>g the EMC and<br />

HAC sections are shown.<br />

The three parts are of different thickness, the thickest one be<strong>in</strong>g the FCAL<br />

(~ 7λ), then the BCAL (~ 5λ) and f<strong>in</strong>ally the RCAL (~ 4λ), where λ is the track<br />

length. Each part of the calorimeter is divided <strong>in</strong>to modules, and each module is<br />

divided <strong>in</strong>to one electromagnetic (EMC) and two (one <strong>in</strong> RCAL) hadronic (HAC)<br />

41


sections. These sections are made up of cells, whose sizes depend on the type<br />

(EMC or HAC) and position (<strong>in</strong> FCAL, BCAL or RCAL) of the cell. The FCAL<br />

consists of one EMC (first 25 uranium-sc<strong>in</strong>till<strong>at</strong>or layers) and two HAC<br />

(rema<strong>in</strong><strong>in</strong>g 160 uranium-sc<strong>in</strong>till<strong>at</strong>or layers) sections. The electromagnetic section<br />

has a depth of ≈ 26 X 0 , while each hadronic section is 3.1 λ deep.<br />

The EMC and HAC cells are superimposed to form a rectangular module,<br />

one of which is shown <strong>in</strong> Fig. 3.14 and 23 of these modules make up the FCAL.<br />

The BCAL consists of one EMC and two HAC sections, the EMC be<strong>in</strong>g made of<br />

the first 21 uranium-sc<strong>in</strong>till<strong>at</strong>or layers, the two HACs of the rema<strong>in</strong><strong>in</strong>g 98 layers.<br />

The result<strong>in</strong>g depth is 21 X 0 for the electromagnetic section, and 2 λ for each<br />

hadronic section. The cells are organised <strong>in</strong> 32 wedge-shaped modules, each<br />

cover<strong>in</strong>g 11.25 o <strong>in</strong> azimuth. The RCAL is made up of 23 modules similar to those<br />

<strong>in</strong> the FCAL, but it consists of one EMC and only one HAC section. Therefore its<br />

depth is 26 X 0 for the EMC part and 3.1 λ for the HAC part. The light produced <strong>in</strong><br />

the sc<strong>in</strong>till<strong>at</strong>ors is read by 2 mm thick wavelength shifter (WLS) bars <strong>at</strong> both sides<br />

of the module, and brought to one of the 11386 photomultiplier tubes (PMT)<br />

where it is converted <strong>in</strong>to an electrical signal. This <strong>in</strong>form<strong>at</strong>ion is used for energy<br />

and time measurements. The CAL provides accur<strong>at</strong>e tim<strong>in</strong>g <strong>in</strong>form<strong>at</strong>ion, with a<br />

resolution of the order of 1 ns for tracks with an energy deposit gre<strong>at</strong>er than 1<br />

GeV. This <strong>in</strong>form<strong>at</strong>ion can be used to determ<strong>in</strong>e the tim<strong>in</strong>g of the particle with<br />

respect to the bunch-cross<strong>in</strong>g time, and it is very useful for trigger purposes <strong>in</strong><br />

order to reject background events. The stability of the PMTs and of the <strong>electron</strong>ics<br />

42


is monitored with lasers and charge pulses. In addition, the small signal com<strong>in</strong>g<br />

from the n<strong>at</strong>ural radioactivity of the depleted uranium gives a very stable signal,<br />

also used for the calibr<strong>at</strong>ion. The achieved accuracy is better than 1%.<br />

3.9 Monte Carlo Gener<strong>at</strong>or for Vector Meson<br />

The simul<strong>at</strong>ion of the vector meson production and decay is implemented<br />

<strong>in</strong> the DIFFVM 2.0 [28] software package. The software program implements<br />

Regge phenomenology and the Vector Dom<strong>in</strong>ance Model (see Chapter 2.3.2) with<br />

a set of parameters, which can be set via control cards. S-Channel Helicity<br />

Conserv<strong>at</strong>ion (SCHC) is assumed <strong>in</strong> the gener<strong>at</strong>ion of the angular distribution of<br />

the decay products. The program is primarily used to gener<strong>at</strong>e samples of elastic<br />

production of the vector mesons. Processes with dissoci<strong>at</strong>ion of the <strong>proton</strong> can be<br />

gener<strong>at</strong>ed as well. For the gener<strong>at</strong>ion of the <strong>proton</strong> remnant spectrum DIFFVM<br />

uses a parametris<strong>at</strong>ion of the experimental d<strong>at</strong>a of the mass spectra of excited<br />

st<strong>at</strong>es of hadrons. This spectrum consists of some resonances-like structures<br />

superimposed on the diffraction dissoci<strong>at</strong>ion cont<strong>in</strong>uum. The <strong>in</strong>clusive cross<br />

section for diffractive processes, <strong>at</strong> fixed t, can be parametrised as follows:<br />

dσ<br />

dM<br />

2<br />

Y<br />

f ( M<br />

)<br />

2<br />

Y<br />

~<br />

2(1+<br />

∈)<br />

M<br />

Y<br />

(25)<br />

where f( M ) is a function of the diffractive mass <strong>at</strong> the <strong>proton</strong> vertex account<strong>in</strong>g<br />

2<br />

Y<br />

for the low mass behaviour, <strong>in</strong>clud<strong>in</strong>g the resonance st<strong>at</strong>es.<br />

DIFFVM uses the follow<strong>in</strong>g parametris<strong>at</strong>ion for this function:<br />

43


• <strong>in</strong> the cont<strong>in</strong>uum region ( M ≥ 3.6 GeV 2 ), f( M ) = 1; this reproduces the<br />

2<br />

Y<br />

2<br />

Y<br />

1<br />

behaviour ~ 2(1+∈)<br />

M Y<br />

of diffractive dissoci<strong>at</strong>ion,<br />

• <strong>in</strong> the “resonance region” ( M < 3.6 GeV 2), f( M ) is the result of a fit<br />

2<br />

Y<br />

of the measured differential cross section, <strong>at</strong> fixed t, for <strong>proton</strong> diffractive<br />

dissoci<strong>at</strong>ion on deuterium pD → YD;<br />

The cont<strong>in</strong>uum st<strong>at</strong>e may dissoci<strong>at</strong>e <strong>in</strong>to a quark-diquark system (simul<strong>at</strong>ed via<br />

JETSET ) or decay isotropically. The t-distribution b parameter is set:<br />

⎛ W M ⎞<br />

Y<br />

b(<br />

W , M = +<br />

⎜ −<br />

⎟<br />

Y<br />

) b(<br />

W0,<br />

M<br />

0)<br />

4α '<br />

p<br />

ln ln<br />

(26)<br />

⎝ W0<br />

M<br />

0 ⎠<br />

and is assumed to hold <strong>at</strong> all values of Q2.<br />

The W and Q2 dependence of the cross section is given by:<br />

2<br />

Y<br />

W<br />

σ<br />

n<br />

(27)<br />

)<br />

δ<br />

γ * p 2<br />

( Q , W ) ~<br />

2 2<br />

( Q + MV<br />

where n ≈ 2.5 is an empirical parameter, δ = 4(α p (0) − 1) and M V mass of<br />

the vector meson.<br />

The r<strong>at</strong>io of the cross sections of the photons with transverse and longitud<strong>in</strong>al<br />

polaris<strong>at</strong>ion is given by:<br />

R(<br />

Q<br />

2<br />

2<br />

Q<br />

ξ<br />

2<br />

) = Λ<br />

Q<br />

1+<br />

χξ<br />

Λ<br />

2<br />

2<br />

(28)<br />

where Λ, χ, ξ are free parameters. The recommended values are Λ = M V ,<br />

χ = 0.66, ξ = 0.33 .<br />

44


CHAPTER 4<br />

TRACKING EFFICIENCY<br />

4.1 Track<strong>in</strong>g concepts <strong>in</strong> detector<br />

Track<strong>in</strong>g layout of a detector typically reflects the whole view and physics<br />

purpose of the experiment. Every s<strong>in</strong>gle part or components are constructed<br />

with<strong>in</strong> the physics event required and this will mention the structure of the<br />

track<strong>in</strong>g chambers, which is known as one of the most important part of detector.<br />

In common scenarios, there are two typical concepts of track<strong>in</strong>g structure <strong>in</strong><br />

detector, the forward or fixed-target geometry and the collider detector geometry.<br />

4.1.1 Forward or fixed-target geometry and parameters<br />

In the fixed-target geometry concept, the collid<strong>in</strong>g or <strong>in</strong>cident particle is<br />

assumed to have significantly high momentum with a huge effect of Lorentz<br />

boost. After hitt<strong>in</strong>g the st<strong>at</strong>ic target <strong>in</strong> the middle of detector, emerg<strong>in</strong>g particles<br />

will travel forward <strong>in</strong> a cone-shaped region. To cover all possible trajectory space,<br />

<strong>in</strong> this situ<strong>at</strong>ion, the detector layout must essentially manage to cover every s<strong>in</strong>gle<br />

angle of the projected cone. Meanwhile, <strong>in</strong> most practice, the backward part of the<br />

solid angle is neglected and this gives the reason why this scenario is called the<br />

forward detector geometry concept.<br />

45


Below are the ma<strong>in</strong> components of the typical forward spectrometer:<br />

• The vertex detector, whose ma<strong>in</strong> purpose is to improve track detection<br />

with higher resolution near the <strong>in</strong>teraction po<strong>in</strong>t. Reconstruction of<br />

secondary vertex or dist<strong>in</strong>ction of detached tracks is an important aspect<br />

of particle reconstruction <strong>in</strong> the detector.<br />

• The spectrometer magnet and the ma<strong>in</strong> track<strong>in</strong>g system <strong>in</strong> forward<br />

geometry which measures momentum and determ<strong>in</strong>e the sign of charged<br />

particles from the curv<strong>at</strong>ure.<br />

• The calorimeter system, measures the deposited shower energy from<br />

particle trajectories which then allows the identific<strong>at</strong>ion of <strong>electron</strong>s and<br />

hadrons. The component is split <strong>in</strong>to two parts, electromagnetic and<br />

hadronic. The calorimeter also measure energies of <strong>in</strong>dividual neutral<br />

particles, usually photons.<br />

• The muon detector, placed <strong>at</strong> the last part of spectrometer. Muons<br />

typically hav<strong>in</strong>g longer lifetime, are able to traverse the <strong>in</strong>termedi<strong>at</strong>e<br />

m<strong>at</strong>erials and will be detected <strong>at</strong> specific dedic<strong>at</strong>ed track<strong>in</strong>g layers.<br />

The design of forward spectrometer is also <strong>in</strong>fluenced by the momentum<br />

resolution as <strong>at</strong> sufficiently high momentum the resolution is <strong>in</strong>versely<br />

proportional to the <strong>in</strong>tegral of the magnetic field along the trajectories.<br />

46


Figure 4.1 : Typical geometry of a forward spectrometer<br />

In the forward geometry, the <strong>in</strong>teraction region lies very often <strong>in</strong> an area<br />

without magnetic field, s<strong>in</strong>ce the spectrometer magnet is loc<strong>at</strong>ed further<br />

downstream. The n<strong>at</strong>ural choice of parameters, assum<strong>in</strong>g th<strong>at</strong> the z coord<strong>in</strong><strong>at</strong>e<br />

po<strong>in</strong>ts down the spectrometer axis and x and y are the transverse coord<strong>in</strong><strong>at</strong>es, is<br />

then,<br />

• x<br />

0 the x coord<strong>in</strong><strong>at</strong>e <strong>at</strong> the reference z0<br />

• y0<br />

the y coord<strong>in</strong><strong>at</strong>e <strong>at</strong> the reference z0<br />

t<br />

= tanθ<br />

the track slope <strong>in</strong> the xz plane<br />

• z<br />

x<br />

t<br />

= tanθ<br />

the track slope <strong>in</strong> the yz plane<br />

• y<br />

y<br />

• Q / p the <strong>in</strong>verse particle momentum, signed accord<strong>in</strong>g to charge<br />

47


where z<br />

0 denotes the loc<strong>at</strong>ion of a suitable reference plane transverse to the<br />

beam, for example <strong>at</strong> the position of the target, or <strong>at</strong> the nom<strong>in</strong>al <strong>in</strong>teraction po<strong>in</strong>t.<br />

The slope parameters allow for a convenient transform<strong>at</strong>ion of the parameters to a<br />

different reference z value, as is needed dur<strong>in</strong>g vertex reconstruction. In cases of<br />

a very homogeneous magnetic field, it may be advantageous to substitute the<br />

parameter<br />

Q / p to Q / p⊥<br />

, where p<br />

⊥ is the momentum <strong>in</strong> the plane transverse to<br />

the magnetic field, or by к = Q / R , the signed <strong>in</strong>verse radius of the curv<strong>at</strong>ure.<br />

48


4.1.2 Collider detector geometry and parameters<br />

Collision between two particles head-on <strong>at</strong> sufficiently high momentum<br />

will require more coverage <strong>in</strong> terms of particle detection. In general, the detector<br />

needs to cover the full solid angle, which leads to a cyl<strong>in</strong>drical detector layout<br />

with a solenoid field parallel to the beam axis.<br />

Figure 4.2 : Typical setup of a cyl<strong>in</strong>drical or collider detector.<br />

Somehow <strong>at</strong> some fe<strong>at</strong>ures, cyl<strong>in</strong>drical geometry comes with different<br />

components structure <strong>in</strong> comparison with the forward geometry detector.<br />

• The vertex detector loc<strong>at</strong>ed <strong>at</strong> the central part of the detector which is<br />

called the barrel part, requires modules parallel to the beam which manage<br />

to <strong>at</strong> least cover the angular acceptance near the <strong>in</strong>teraction po<strong>in</strong>t.<br />

49


• The ma<strong>in</strong> track<strong>in</strong>g system is loc<strong>at</strong>ed with<strong>in</strong> the magnetic field; it generally<br />

consist of the coil and yoke of the magnet. The coil is preferably to be<br />

loc<strong>at</strong>ed between drift chamber and calorimeter or if possible to make it<br />

large enough to enclose the calorimeter.<br />

• To cover full solid angle, the calorimeter will require forward, barrel and<br />

rear part.<br />

• The muon detector, the yoke for the solenoid itself readily as absorber.<br />

In collider detectors with cyl<strong>in</strong>drical geometry, the magnetic field<br />

normally encompasses the whole track<strong>in</strong>g volume, <strong>in</strong>clud<strong>in</strong>g the <strong>in</strong>teraction<br />

region where the particles are produced. In a homogeneous solenoid field, the<br />

particle trajectory will be a helix curl<strong>in</strong>g around an axis parallel to the magnetic<br />

field. Assum<strong>in</strong>g the z coord<strong>in</strong><strong>at</strong>e is oriented along the detector axis, and the<br />

2 2<br />

radius is given by r = x + y , typical track parameters given <strong>at</strong> a reference<br />

value r = r0<br />

may be<br />

•<br />

φ0<br />

the azimuth angle where the trajectory <strong>in</strong>tersects the reference radius<br />

• z<br />

0 the z value where the trajectory <strong>in</strong>tersects the reference radius<br />

• ψ<br />

0 the phase angle of the helix <strong>at</strong> the reference radius <strong>in</strong>tersection, which<br />

corresponds to the angle of the tangent <strong>at</strong> this po<strong>in</strong>t<br />

• Q / R the signed <strong>in</strong>verse curv<strong>at</strong>ure radius of the helix<br />

• tan λ where λ = arctan p z<br />

/ p⊥<br />

is the dip angle of the helix<br />

50


4.2 Parameter estim<strong>at</strong>ion<br />

The k<strong>in</strong>em<strong>at</strong>ical parameters of a particle, or also referred to as track fitt<strong>in</strong>g<br />

parameters, are generally def<strong>in</strong>ed as the sp<strong>at</strong>ial measurements of a particle flight<br />

direction and momentum <strong>at</strong> its po<strong>in</strong>t of orig<strong>in</strong> along the trajectories. To discuss<br />

further on this topic, two different methods will be elabor<strong>at</strong>ed next.<br />

4.2.1 Least squares estim<strong>at</strong>ion<br />

Accord<strong>in</strong>g to least squares estim<strong>at</strong>ion, if the trajectory of a particle can be<br />

described by a closed expression f ( ) , where λ stands for the set of parameters,<br />

λ<br />

is the flight p<strong>at</strong>h and f is the coord<strong>in</strong><strong>at</strong>e which could be measured, a set of<br />

measurements {mi}<br />

with errors σ } , will provide an estim<strong>at</strong>e of the parameters,<br />

{ i<br />

giv<strong>in</strong>g<br />

= ∑<br />

−<br />

2<br />

( m ( ))<br />

2 i<br />

f<br />

i<br />

X<br />

λ<br />

2<br />

σ<br />

i<br />

( 29)<br />

If the measurements<br />

mi<br />

follow a normal distribution and the function f<br />

λ is<br />

2<br />

sufficiently l<strong>in</strong>ear, the expression X will follow a normal distribution. This<br />

property can be used for st<strong>at</strong>istical test.<br />

51


In the case of normally distributed measurements m , one can easily<br />

conv<strong>in</strong>ce th<strong>at</strong> the above impression is proportional to the neg<strong>at</strong>ive logarithm of<br />

the correspond<strong>in</strong>g likelihood function, which shows directly the equivalence of<br />

least squares pr<strong>in</strong>ciple and maximum likelihood pr<strong>in</strong>ciple for this case.<br />

i<br />

By denot<strong>in</strong>g the deriv<strong>at</strong>ive m<strong>at</strong>rix for f as<br />

∂f<br />

, where<br />

∂λ<br />

∂ f ⎞ ∂f<br />

λ i<br />

)<br />

⎛<br />

⎜ ⎟<br />

⎝ ∂λ<br />

⎠<br />

ij<br />

=<br />

(<br />

, the<br />

∂λ<br />

j<br />

symboliz<strong>in</strong>g of this m<strong>at</strong>rix with respect to the parameters as F and the (diagonal)<br />

error m<strong>at</strong>rix of the measurements as V = diag{ σ<br />

2 } , the expression to be<br />

m<strong>in</strong>imized is<br />

T − 1<br />

( m − Fλ)<br />

V ( m − Fλ)<br />

(30)<br />

and the m<strong>at</strong>rix equ<strong>at</strong>ion<br />

F<br />

V<br />

i<br />

T<br />

f = F V m<br />

(31)<br />

T −1 −1<br />

For l<strong>in</strong>ear problem<br />

f = Fλ<br />

, the above condition can be directly <strong>in</strong>verted<br />

T −1<br />

−1<br />

T −1<br />

λ = ( F V F)<br />

F V m<br />

(32)<br />

and the estim<strong>at</strong>ed parameters are a l<strong>in</strong>ear function of the measurements. The<br />

m<strong>at</strong>rix<br />

(<br />

1 −1<br />

F T V − F)<br />

is <strong>in</strong>verted <strong>in</strong> the shape of λ λ<br />

N × N , where Nλ<br />

is the number<br />

of parameters describ<strong>in</strong>g the particle.<br />

Meanwhile, the covariance m<strong>at</strong>rix of the parameter estim<strong>at</strong>e can be directly<br />

determ<strong>in</strong>ed as<br />

cov(<br />

T −1<br />

−1<br />

λ ) = Cλ<br />

= ( F V F)<br />

(33)<br />

52


The least squares method is popular due to its optimality properties of l<strong>in</strong>ear case<br />

as follow,<br />

• The estim<strong>at</strong>e is unbiased, for <strong>in</strong>stance, the expect<strong>at</strong>ion value of the<br />

estim<strong>at</strong>e is the true value<br />

• The estim<strong>at</strong>e is efficient, whereby, of all unbiased estim<strong>at</strong>es which are<br />

l<strong>in</strong>ear functions of the observables, this method has the smallest variance<br />

which is generally called the Gauss-Markov-Theorem.<br />

In fact, <strong>in</strong> most cases where the function f<br />

λ<br />

can be locally approxim<strong>at</strong>ed by a<br />

l<strong>in</strong>ear expansion, these properties are still reta<strong>in</strong>ed.<br />

4.2.2 The Kalman Filter Technique<br />

Different from the least squares parameter estim<strong>at</strong>ion which requires the<br />

global availability of all measurements <strong>at</strong> fitt<strong>in</strong>g time, the Kalman filter technique<br />

was developed to determ<strong>in</strong>e the trajectory of the st<strong>at</strong>e vector of a dynamical<br />

system from a set of measurements taken <strong>at</strong> different times. In consider<strong>in</strong>g cases<br />

such as <strong>in</strong> real-time track<strong>in</strong>g of objects, or <strong>in</strong> p<strong>at</strong>tern recognition scheme which<br />

are based on track follow<strong>in</strong>g, where it is not clear a-priori if the hit comb<strong>in</strong><strong>at</strong>ion<br />

under consider<strong>at</strong>ion does really belong to an actual track, the Kalman filter<br />

technique is more convenient for estim<strong>at</strong><strong>in</strong>g the measurements compared to the<br />

first method.<br />

53


The Kalman filter technique efficiently improves track and vertex<br />

reconstruction based on two steps. Firstly <strong>in</strong> the prediction step, an estim<strong>at</strong>e is<br />

made for the next measurement from the current knowledge of the st<strong>at</strong>e vector,<br />

where it is very useful to discard noise signals and hits from other tracks from the<br />

fit. Secondly <strong>in</strong> the filter step, the upd<strong>at</strong>es of the st<strong>at</strong>e vector does not require<br />

<strong>in</strong>version of a m<strong>at</strong>rix with dimension of the st<strong>at</strong>e vector as <strong>in</strong> a global fit, but only<br />

with the dimension of the measurement.<br />

To describe Kalman filter <strong>in</strong> this thesis, implement<strong>at</strong>ion and nomencl<strong>at</strong>ure<br />

from [39-41] is referred. In this not<strong>at</strong>ion, the system st<strong>at</strong>e <strong>at</strong> the time, after<br />

<strong>in</strong>clusion of k measurements is denoted by x~<br />

k , its covariance m<strong>at</strong>rix by C<br />

k .<br />

x~<br />

k<br />

conta<strong>in</strong>s the parameters of the fitted track, given <strong>at</strong> the position of the<br />

m<strong>at</strong>rix<br />

F<br />

k describes the propag<strong>at</strong>ion of the track parameters from the<br />

th<br />

k hit. The<br />

th<br />

( k − 1)<br />

to<br />

th<br />

the k hit. For example, <strong>in</strong> a planar geometry with one-dimensional<br />

measurements and straight l<strong>in</strong>e tracks, the propag<strong>at</strong>ion takes the form<br />

⎛ x ⎞<br />

⎜<br />

⎟<br />

⎝t<br />

x ⎠<br />

k<br />

⎛1<br />

= ⎜<br />

⎝0<br />

z<br />

k<br />

− z<br />

1<br />

k −1<br />

⎞⎛<br />

x ⎞<br />

⎟<br />

⎜<br />

⎟<br />

⎠⎝t<br />

x ⎠<br />

k −1<br />

(34)<br />

where a subset of the track parameteriz<strong>at</strong>ion <strong>in</strong> section 4.1.1 has been used. The<br />

th<br />

coord<strong>in</strong><strong>at</strong>e measured by the k is denoted by m<br />

k . In general<br />

m<br />

k is a vector with<br />

the dimension of th<strong>at</strong> specific measurement. For track<strong>in</strong>g devices measur<strong>in</strong>g only<br />

one coord<strong>in</strong><strong>at</strong>e,<br />

m<br />

k is an ord<strong>in</strong>ary number. The measurement error is described by<br />

the covariance m<strong>at</strong>rix V<br />

k . The rel<strong>at</strong>ion between the track parameters x~<br />

k and the<br />

54


predicted measurement is described by the projection m<strong>at</strong>rix<br />

<strong>in</strong> section 4.3.2, the measured coord<strong>in</strong><strong>at</strong>e <strong>in</strong> the stereo view u is<br />

with<br />

⎛ x ⎞<br />

H⎜<br />

⎟ =<br />

⎝ y⎠<br />

α<br />

st as the stereo angle <strong>at</strong> 45°.<br />

( α − s<strong>in</strong>α<br />

) ⎜ ⎟<br />

H<br />

k . In the example<br />

⎛ x ⎞<br />

cos<br />

st<br />

st<br />

(35)<br />

⎝ y⎠<br />

In each filter step, the st<strong>at</strong>e vector and its covariance m<strong>at</strong>rix are propag<strong>at</strong>ed to the<br />

loc<strong>at</strong>ion or time of the next measurement with the prediction equ<strong>at</strong>ions,<br />

~ k − 1<br />

= ~<br />

k −1<br />

T<br />

x<br />

k<br />

Fk<br />

xk −1<br />

, C<br />

k<br />

= Fk<br />

Ck<br />

−1Fk<br />

+ Qk<br />

(36)<br />

and the estim<strong>at</strong>ed residual becomes,<br />

r = m − H x ,<br />

k −1 ~ k −1<br />

k k k k<br />

R<br />

= V + H C H<br />

(37)<br />

k −1 k −1<br />

k k k k<br />

T<br />

k<br />

Here<br />

Q<br />

k denotes the additional error <strong>in</strong>troduced by process noise, such as random<br />

perturb<strong>at</strong>ions of the particle trajectory, for example multiple sc<strong>at</strong>ter<strong>in</strong>g. The<br />

th<br />

upd<strong>at</strong><strong>in</strong>g of the system st<strong>at</strong>e vector with the k measurement is performed wit the<br />

filter equ<strong>at</strong>ions,<br />

K<br />

k<br />

= C<br />

k −1<br />

T<br />

( V + H C H )<br />

k −1 T<br />

−1<br />

k<br />

H<br />

k k k k<br />

(38)<br />

k 1<br />

( m − H x )<br />

~ ~ k −1 ~ −<br />

xk<br />

= xk<br />

+ Kk<br />

k k k<br />

C<br />

k<br />

=<br />

k −1<br />

( 1−<br />

K H ) C<br />

k<br />

k<br />

k<br />

with the filtered residuals<br />

k −1<br />

r = ( 1−<br />

H K ) r Rk<br />

( − H<br />

kKk<br />

) Vk<br />

k<br />

k<br />

k<br />

k<br />

= 1 (39)<br />

55


K<br />

k is sometimes called the ga<strong>in</strong> m<strong>at</strong>rix. The<br />

is then given by<br />

2<br />

χ contribution of the filtered po<strong>in</strong>t<br />

χ = r R r<br />

(40)<br />

2<br />

k , F<br />

T<br />

k<br />

−1<br />

k k<br />

The system st<strong>at</strong>e vector <strong>at</strong> the last filtered po<strong>in</strong>t always conta<strong>in</strong>s the full<br />

<strong>in</strong>form<strong>at</strong>ion from all po<strong>in</strong>ts. If one needs the full st<strong>at</strong>e vector <strong>at</strong> every po<strong>in</strong>t of the<br />

trajectory, the new <strong>in</strong>form<strong>at</strong>ion has to be passed upstream with the smoother<br />

equ<strong>at</strong>ions,<br />

A<br />

k<br />

= C F<br />

k<br />

T<br />

k + 1<br />

k −<br />

( C ) 1<br />

k + 1<br />

(41)<br />

~<br />

= ~<br />

n k<br />

x + k<br />

Ak<br />

( ~ x − ~<br />

k + 1<br />

xk<br />

+<br />

)<br />

T<br />

( )<br />

n<br />

xk<br />

1<br />

n<br />

n k<br />

C = k<br />

C + k<br />

Ak<br />

C − k + 1<br />

Ck<br />

+ 1<br />

n<br />

A<br />

k<br />

r = m − H ~ x<br />

n<br />

k<br />

k<br />

k<br />

k<br />

n k T T<br />

( C C ) A H<br />

n<br />

R = k<br />

R − k<br />

H<br />

k<br />

A −<br />

k k + 1 k + 1<br />

Thus, smooth<strong>in</strong>g is also a recursive oper<strong>at</strong>ion which proceeds step by step <strong>in</strong> the<br />

direction opposite to th<strong>at</strong> of the filter. The quantities used <strong>in</strong> each step have been<br />

calcul<strong>at</strong>ed <strong>in</strong> the preced<strong>in</strong>g filter process. If process noise is taken <strong>in</strong>to account,<br />

for example to model multiple sc<strong>at</strong>ter<strong>in</strong>g, the smoothed trajectory may <strong>in</strong> general<br />

conta<strong>in</strong> small k<strong>in</strong>ks and thus reproduce more closely the real p<strong>at</strong>h of the particle.<br />

k<br />

k<br />

In the equ<strong>at</strong>ion above, F and H are just ord<strong>in</strong>ary m<strong>at</strong>rices if both transport<br />

and projection <strong>in</strong> measurement space are l<strong>in</strong>ear oper<strong>at</strong>ions. In the case of non-<br />

56


l<strong>in</strong>ear systems, they have to be replaced by the correspond<strong>in</strong>g functions and their<br />

deriv<strong>at</strong>ives,<br />

k<br />

~ x → f ( x )<br />

H x h ( ~ x )<br />

F ~<br />

k<br />

k<br />

us<strong>in</strong>g for covariance m<strong>at</strong>rix transform<strong>at</strong>ions<br />

k<br />

k<br />

~ → (42)<br />

k<br />

k<br />

k<br />

∂f<br />

∂<br />

k<br />

F<br />

k<br />

→ ~ xk<br />

∂h<br />

H ∂ ~<br />

k<br />

k<br />

→ (43)<br />

xk<br />

The dependence of f<br />

k and h<br />

k on the st<strong>at</strong>e vector estim<strong>at</strong>e will <strong>in</strong> general require<br />

iter<strong>at</strong>ion until the trajectory converges such th<strong>at</strong> all deriv<strong>at</strong>ives are calcul<strong>at</strong>ed <strong>at</strong><br />

their proper positions.<br />

4.3 Typical track<strong>in</strong>g devices<br />

4.3.1 S<strong>in</strong>gle-coord<strong>in</strong><strong>at</strong>e measurement<br />

When a particle traverses track<strong>in</strong>g devices leav<strong>in</strong>g a s<strong>in</strong>gle coord<strong>in</strong><strong>at</strong>e <strong>at</strong><br />

specific loc<strong>at</strong>ion, the mechanism of measurement will be different depend<strong>in</strong>g on<br />

the track<strong>in</strong>g component. As for tracks nearer to the <strong>in</strong>teraction po<strong>in</strong>t, <strong>in</strong> particular<br />

solid-st<strong>at</strong>e detector such as vertex detectors and micro-vertex detector, the device<br />

used is similar to the strip detector concept which us<strong>in</strong>g semiconductor-based<br />

strips as a widespread type of track<strong>in</strong>g device. Meanwhile for tracks which<br />

slightly far from the central po<strong>in</strong>t, sense wires are chosen to detect the track signal<br />

with<strong>in</strong> the gaseous chamber.<br />

57


4.3.1.1 Silicon Strip detector<br />

The silicon strip detector is a semiconductor-based device structured <strong>in</strong><br />

strips with widths about 25 μm each. Smaller width can give better precision of<br />

the particle trajectories, for <strong>in</strong>stance micro-vertex detector strips are with widths<br />

down to 10 µ m. Each strip is function<strong>in</strong>g like a small diode, allow<strong>in</strong>g voltage to<br />

get through such th<strong>at</strong> the border between the strips is depleted eventually<br />

produc<strong>in</strong>g a high resistance volume. When a charged particle traverses the strip<br />

plane, pairs of <strong>electron</strong>s and correspond<strong>in</strong>g holes will be cre<strong>at</strong>ed, which will then<br />

be isol<strong>at</strong>ed by the voltage and registered as a pulse. The pulse height can be<br />

measured by a suitable cluster<strong>in</strong>g algorithm, for example centre-of-gravity based,<br />

and determ<strong>in</strong>es the loc<strong>at</strong>ion passed by the travers<strong>in</strong>g particle. Solid-st<strong>at</strong>e detectors<br />

are presently the track<strong>in</strong>g devices with the highest sp<strong>at</strong>ial resolution which<br />

improve the reconstruction of primary and secondary vertices. Moreover, they are<br />

very good to protect aga<strong>in</strong>st radi<strong>at</strong>ion damage. Despite these advantages, solidst<strong>at</strong>e<br />

detectors are still unaffordable to be implemented for whole detector<br />

volumes as they are presently very expensive.<br />

58


Figure 4.3 : Lower half barrel of the ZEUS micro-vertex detector<br />

4.3.1.2 Drift chambers<br />

With significantly large areas to be covered, the gaseous or drift chamber<br />

is the most suitable track<strong>in</strong>g device. To determ<strong>in</strong>e the momentum of the<br />

travers<strong>in</strong>g particle, the particle need to move with<strong>in</strong> a magnetic field, and the<br />

particle tracks will subsequently provide the leverage th<strong>at</strong> determ<strong>in</strong>es the<br />

precision of momentum reconstruction. As to th<strong>at</strong> reason, the drift chamber<br />

ma<strong>in</strong>ta<strong>in</strong>s as the largest component <strong>in</strong> track<strong>in</strong>g volume.<br />

59


Figure 4.4: Schem<strong>at</strong>ic view of a drift chamber cell. The closed circle <strong>in</strong>dic<strong>at</strong>es<br />

wires, with sense wires <strong>in</strong> the middle and field wires on the outside. The long and<br />

thick arrow represents a trajectory of a particle while the small arrows denote<br />

primary ioniz<strong>at</strong>ion charges drift<strong>in</strong>g towards the sense wire.<br />

A drift cell consists of a sense wire or <strong>in</strong> particular an anode wire <strong>in</strong> the<br />

middle and is surrounded by field wires <strong>at</strong> the edge. The cell shape is not<br />

necessarily rectangular, but adjustable to any other convenient design. Primary<br />

ioniz<strong>at</strong>ion occurs along the particle trajectories leav<strong>in</strong>g free charges which<br />

subsequently drift to the nearest sense wire. A large number of particles near the<br />

sense wire will result a multiplic<strong>at</strong>ion of ioniz<strong>at</strong>ion which is called gas<br />

amplific<strong>at</strong>ion with<strong>in</strong> a large electric field. The ris<strong>in</strong>g entries of signal pick up by<br />

the anode wire triggers a time-to-digital converter (TDC) which then measures the<br />

60


time until a common stop signal. Then, the system will measure the drift time of<br />

those charges which are considered as the first to arrive. Generally, <strong>in</strong> the case of<br />

there be<strong>in</strong>g more than one particle trajectory <strong>at</strong> a time <strong>in</strong> a same drift cell, only the<br />

nearest track to the wire will be registered. Also, the s<strong>in</strong>gle measurement is unable<br />

to dist<strong>in</strong>guish which side the particle traverses, result<strong>in</strong>g <strong>in</strong> an uncerta<strong>in</strong>ty called<br />

the left-right ambiguity. Moreover, <strong>in</strong> the worst case, the left-right ambiguity will<br />

produce a mirror track which cannot be dist<strong>in</strong>guished from the real one. However,<br />

presently there are better designs developed to overcome this problem.<br />

Drift <strong>in</strong> gases is <strong>in</strong>fluenced also by magnetic field. The devi<strong>at</strong>ion of the<br />

gas drift direction from the vector of the electric field is described by the Lorentz<br />

angle. Figure 4.5 shows an event display of the central track<strong>in</strong>g detector (CTD) of<br />

the ZEUS experiment, <strong>in</strong> the view along the beam axis. The view was taken us<strong>in</strong>g<br />

a graphic software tool <strong>in</strong> the ROOT event display. The Lorentz angle <strong>in</strong> this<br />

example is 45° and it is reflected <strong>in</strong> the design of the cell structure.<br />

61


Figure 4.5: Event display from the ZEUS central track<strong>in</strong>g detector where the<br />

closeup view is given <strong>in</strong> the square. The blue l<strong>in</strong>e is the trajectory and the red dot<br />

is the drift distance end po<strong>in</strong>ts on both side of the correspond<strong>in</strong>g wire.<br />

4.3.2 Stereo angle<br />

S<strong>in</strong>gle-coord<strong>in</strong><strong>at</strong>e measurement is only limited for s<strong>in</strong>gle trajectory with<strong>in</strong><br />

a projected space but not provid<strong>in</strong>g any 3-Dimensional views. Hence, to cre<strong>at</strong>e a<br />

three axial views, several projected space need to be comb<strong>in</strong>ed, which typically<br />

known as stereo views. In several cases which more than one track <strong>in</strong>volved,<br />

ambiguities may occur to loc<strong>at</strong>e the exact <strong>in</strong>tersection po<strong>in</strong>ts of the particles<br />

where the real po<strong>in</strong>ts will be seen hav<strong>in</strong>g a pair. These pairs which commonly<br />

recognized as ghost po<strong>in</strong>ts will cre<strong>at</strong>e ambiguities <strong>in</strong> the measurement.<br />

62


Figure 4.6 : Top left : The real hit po<strong>in</strong>ts with two stereo views on x plane (0°)<br />

and u plane (45°). Top right : S<strong>in</strong>gle view on x and u plane with two ghost po<strong>in</strong>ts<br />

<strong>in</strong> blue. Bottom left : Ambiguity hits observed on x and u plane.<br />

Figure 4.6 shows two particle <strong>in</strong>tersection on two strip detector x and u. In<br />

this case, s<strong>in</strong>ce the true tracks are well separ<strong>at</strong>ed, the uppermost ghost<br />

comb<strong>in</strong><strong>at</strong>ion is already just outside the chamber acceptance of the u view. This<br />

concept is called an all-stereo design. Ambiguities of the assignment of the<br />

measured hits <strong>in</strong> the x and u views to each other lead to the reconstruction of two<br />

ghost po<strong>in</strong>ts. In general <strong>at</strong> least three views are necessary to avoid this k<strong>in</strong>d of<br />

ambiguities. Usage of more than one measurement concepts <strong>in</strong> detector design, <strong>in</strong><br />

63


general are currently implemented to maximise particle detection capabilities of<br />

the detector as well as due to economic reasons.<br />

4.3.3 Three-Dimensional (3D) measurement<br />

Better precision measurement and higher efficiency <strong>in</strong> avoid<strong>in</strong>g ghost<br />

po<strong>in</strong>ts are the ma<strong>in</strong> advantage of us<strong>in</strong>g 3-dimentional views. Not only for solidst<strong>at</strong>e<br />

detector, 3-dimentional measurement can also be applied to gaseous<br />

detector, where the examples can be observed <strong>in</strong> CCD-based vertex detector <strong>in</strong><br />

SLD experiment and the TPC <strong>in</strong> STAR experiment [38]. In 3D views for gaseous<br />

chamber, no wires are used, but an electrode membrane is loc<strong>at</strong>ed <strong>at</strong> the middle<br />

plane <strong>in</strong> axial electric field to drift charges to the anode and be registered.<br />

64


Figure 4.7 : TPC of the STAR experiment.<br />

4.4 Performance Evalu<strong>at</strong>ion<br />

4.4.1 The reference set<br />

Tracks are normally provided by a Monte Carlo simul<strong>at</strong>ion and the<br />

selection of reference tracks usually depends on the physics motiv<strong>at</strong>ion of the<br />

experiment. However, tracks are disregarded and excluded due to the follow<strong>in</strong>g<br />

reasons,<br />

65


• Low momentum particles aris<strong>in</strong>g from secondary <strong>in</strong>teractions <strong>in</strong> the<br />

m<strong>at</strong>erial<br />

• Particles travel<strong>in</strong>g outside the geometrical acceptance, for example<br />

trajectories with<strong>in</strong> the beam hole of a collider experiment cannot be traced<br />

by the detector<br />

• Particles straddl<strong>in</strong>g the border of a detector and travers<strong>in</strong>g only a small<br />

number of track<strong>in</strong>g layers. To be regarded as constituents of reference set,<br />

particles need to traverse <strong>at</strong> least 80% of the nom<strong>in</strong>al track<strong>in</strong>g layers.<br />

The def<strong>in</strong>ition of the reference set can be referred as a def<strong>in</strong>ition of effective<br />

geometrical acceptance<br />

N<br />

ref<br />

∈<br />

geo=<br />

(44)<br />

Ntotal<br />

with<br />

N<br />

ref and N<br />

total denot<strong>in</strong>g the numbers of particles of <strong>in</strong>terest <strong>in</strong> the reference<br />

set and <strong>in</strong> total, respectively.<br />

66


4.4.2 Track f<strong>in</strong>d<strong>in</strong>g efficiency<br />

To evalu<strong>at</strong>e whether a track has been effectively identified or found by the<br />

algorithm or not, two different concepts are typically used as benchmarks. Tracks<br />

are observed by,<br />

• Hit m<strong>at</strong>ch<strong>in</strong>g. By us<strong>in</strong>g the Monte Carlo truth <strong>in</strong>form<strong>at</strong>ion, this method<br />

analyzes the simul<strong>at</strong>ed orig<strong>in</strong> of each reconstructed hit <strong>in</strong> the reconstructed<br />

track. If the qualified majority of hits are <strong>at</strong> least 70% orig<strong>in</strong><strong>at</strong>es from the<br />

same true particle, the track is said to reconstruct this particle. This<br />

method is stable <strong>in</strong> the limit of very high track densities, but requires the<br />

Monte Carlo truth <strong>in</strong>form<strong>at</strong>ion to be mapped meticulously through the<br />

whole simul<strong>at</strong>ion.<br />

• Parameter M<strong>at</strong>ch<strong>in</strong>g. The reconstructed parameters of a track are<br />

compared with the true particles. Although this method requires less<br />

functionality from the simul<strong>at</strong>ed cha<strong>in</strong>, it bears the danger of accept<strong>in</strong>g<br />

random co<strong>in</strong>cidence between true particles and artifacts from p<strong>at</strong>tern<br />

recognition algorithm.<br />

The reconstruction efficiency can be def<strong>in</strong>ed as,<br />

reco<br />

Nref<br />

∈<br />

reco=<br />

(45)<br />

N<br />

ref<br />

67


where<br />

reco<br />

Nref<br />

is the number of reference particles th<strong>at</strong> are reconstructed by <strong>at</strong> least<br />

one track. Otherwise for the abundance of non-reference tracks which are<br />

reconstructed,<br />

N − the rel<strong>at</strong>ion is,<br />

reco<br />

non ref<br />

N<br />

N<br />

total<br />

reco<br />

non−ref<br />

− N<br />

ref<br />

0<br />

(48)<br />

m<br />

m<br />

m<br />

68


N = 0<br />

(49)<br />

clone<br />

m<br />

where m is the given particle and<br />

reco<br />

N<br />

m is its number of reconstructed tracks for<br />

m.<br />

Hence, the clone r<strong>at</strong>e is<br />

∑<br />

N<br />

clone<br />

m m<br />

∈<br />

clone=<br />

(50)<br />

Nref<br />

4.4.5 Parameter resolution<br />

Physics performance <strong>in</strong> an experiment is extremely dependent on the<br />

quality of reconstructed particle parameters and error estim<strong>at</strong>es from the<br />

reconstruction <strong>in</strong> the detector components. Thus the parameter residual of a track<br />

parameter<br />

where<br />

X<br />

i can be def<strong>in</strong>ed as<br />

rec<br />

X<br />

i and<br />

R<br />

rec true<br />

( X ) X − X<br />

i<br />

= (51)<br />

i<br />

i<br />

true<br />

X<br />

i are the reconstructed and true track parameter respectively.<br />

Form equ<strong>at</strong>ion above, the parameter estim<strong>at</strong>e bias R ( X i<br />

)<br />

, can be obta<strong>in</strong>ed. By<br />

us<strong>in</strong>g the estim<strong>at</strong>e of the parameter covariance m<strong>at</strong>rix,<br />

C<br />

ii , the normalized<br />

parameter residual can be def<strong>in</strong>ed as<br />

P<br />

( X )<br />

i<br />

rec true<br />

X<br />

i<br />

− X<br />

i<br />

= (52)<br />

C<br />

ii<br />

69


CHAPTER 5<br />

DATA ANALYSIS AND RESULTS<br />

5.1 ORANGE (Overly<strong>in</strong>g Rout<strong>in</strong>e Analysis of Ntuple Gener<strong>at</strong>ion)<br />

ORANGE<br />

[42] is a standard analysis tool <strong>in</strong> a standard analysis<br />

environment which had been cre<strong>at</strong>ed and implemented to enhance the analysis<br />

structure <strong>at</strong> DESY s<strong>in</strong>ce 1999. In order to overcome some issues of d<strong>at</strong>a<br />

disarrangement, l<strong>in</strong>k<strong>in</strong>g and upd<strong>at</strong><strong>in</strong>g, ORANGE was cre<strong>at</strong>ed as a solution<br />

<strong>in</strong>troduc<strong>in</strong>g a system<strong>at</strong>ic d<strong>at</strong>a handl<strong>in</strong>g with specific system flows and structures.<br />

In ORANGE, there are rout<strong>in</strong>es and subrout<strong>in</strong>es available for different k<strong>in</strong>d of<br />

analysis which referred to specific events or components of the detector. One can<br />

pre-select the <strong>in</strong>form<strong>at</strong>ion th<strong>at</strong> is needed us<strong>in</strong>g control cards and gener<strong>at</strong>e the d<strong>at</strong>a<br />

accord<strong>in</strong>gly. Back then, one needed to edit their own control cards to produce<br />

d<strong>at</strong>a, however after the new <strong>in</strong>iti<strong>at</strong>ive of grand reprocessed d<strong>at</strong>a, the d<strong>at</strong>a have<br />

already been prepared accord<strong>in</strong>gly and are ready to be used by the end user. More<br />

on grand reprocessed d<strong>at</strong>a will be discussed <strong>in</strong> the com<strong>in</strong>g section 5.3. Figure 5.1<br />

shows the example of control cards for an analysis done <strong>in</strong> 2005. D<strong>at</strong>a entries for<br />

the rout<strong>in</strong>es selected then will be processed and g<strong>at</strong>hered <strong>in</strong> specific d<strong>at</strong>a files <strong>in</strong><br />

the form of ntuples.<br />

70


Figure 5.1 : Example of <strong>in</strong>itial page of control cards which show selection of<br />

several rout<strong>in</strong>es applicable <strong>in</strong> ORANGE.<br />

71


5.2 D<strong>at</strong>a Analysis Software<br />

5.2.1 Physics Analysis Worst<strong>at</strong>ion (PAW)<br />

PAW is an <strong>in</strong>teractive utility for visualiz<strong>in</strong>g experimental d<strong>at</strong>a on a<br />

computer graphics display. It may be run <strong>in</strong> b<strong>at</strong>ch mode if desired for very large<br />

and time consum<strong>in</strong>g d<strong>at</strong>a analyses; typically, however, the user will decide on an<br />

analysis procedure <strong>in</strong>teractively before runn<strong>in</strong>g a b<strong>at</strong>ch job. PAW comb<strong>in</strong>es a<br />

handful of CERN High Energy Physics Library systems th<strong>at</strong> may also used<br />

<strong>in</strong>dividually <strong>in</strong> software th<strong>at</strong> processes and displays d<strong>at</strong>a. The purpose of PAW is<br />

to provide many common analysis and display procedures th<strong>at</strong> would be<br />

duplic<strong>at</strong>ed needlessly by <strong>in</strong>dividual programmers, to supply a flexible way to<br />

<strong>in</strong>voke these common procedures, and yet also to allow user customiz<strong>at</strong>ion where<br />

necessary. Thus, PAW’s strong po<strong>in</strong>t is th<strong>at</strong> it provides quick access to many<br />

facilities <strong>in</strong> the CERN library. One of its limit<strong>at</strong>ions is th<strong>at</strong> these libraries were not<br />

designed from scr<strong>at</strong>ch to work together, so th<strong>at</strong> a PAW user must eventually<br />

become somewh<strong>at</strong> familiar with many dissimilar subsystems <strong>in</strong> order to make<br />

effective use of PAW’s more complex capabilities. As PAW evolves <strong>in</strong> the<br />

direction of more sophistic<strong>at</strong>ed <strong>in</strong>teractive graphics <strong>in</strong>terfaces and object-oriented<br />

<strong>in</strong>teraction styles, the hope is th<strong>at</strong> such limit<strong>at</strong>ions will gradually become less<br />

visible to the user.<br />

72


In ORANGE analysis, PAW will be used as an <strong>in</strong>terpreter for the<br />

processed d<strong>at</strong>a. The d<strong>at</strong>a which has been processed by ORANGE can be plotted<br />

and execute by PAW us<strong>in</strong>g its programm<strong>in</strong>g language, FORTRAN. As <strong>in</strong>teractive<br />

software, PAW will recognize the rout<strong>in</strong>e <strong>in</strong> ORANGE and display the d<strong>at</strong>a <strong>in</strong> a<br />

table called the ntuple blocks. If the network traffic can be toler<strong>at</strong>ed, PAW can be<br />

run remotely over the network from a large, multi user client mach<strong>in</strong>e to more<br />

economical servers such as an X-term<strong>in</strong>al. In case such facilities are unavailable,<br />

substantial effort has been made to ensure th<strong>at</strong> PAW can be used also <strong>in</strong> non<br />

<strong>in</strong>teractive or b<strong>at</strong>ch mode from ma<strong>in</strong>frames or m<strong>in</strong>icomputers us<strong>in</strong>g ASCII<br />

term<strong>in</strong>als. Figure 5.2 shows the components of PAW with its functions.<br />

73


Figure 5.2: PAW and its components<br />

74


5.2.2 ROOT<br />

ROOT is another software analysis used <strong>at</strong> ZEUS which is familiar with<br />

ORANGE rout<strong>in</strong>es. Compared to PAW, ROOT is a newer d<strong>at</strong>a process<strong>in</strong>g<br />

technology which was <strong>in</strong>troduced by CERN through its experiment called the<br />

NA49. The objective of ROOT development is to build software th<strong>at</strong> can gener<strong>at</strong>e<br />

and process bigger amount of d<strong>at</strong>a up to 10 Tb per run. Rough comparison<br />

between PAW and ROOT is listed <strong>in</strong> Table 1.0. As new enhanced and modern<br />

software of d<strong>at</strong>a analysis, ROOT provides pl<strong>at</strong>form <strong>in</strong>dependent access to a<br />

computer's graphics subsystem and oper<strong>at</strong><strong>in</strong>g system us<strong>in</strong>g abstract layers. Parts<br />

of the abstract pl<strong>at</strong>form are such as a graphical user <strong>in</strong>terface and a GUI builder,<br />

conta<strong>in</strong>er classes, reflection, a C++ script and command l<strong>in</strong>e <strong>in</strong>terpreter (CINT),<br />

object serializ<strong>at</strong>ion and persistence. In ZEUS analysis, ROOT plays the same<br />

function as PAW. Us<strong>in</strong>g specific command, ORANGE d<strong>at</strong>a can be l<strong>in</strong>ked and<br />

displayed <strong>in</strong> ROOT <strong>in</strong>terface. The form<strong>at</strong> of the d<strong>at</strong>a is also supported by ROOT<br />

and can be executed us<strong>in</strong>g CINT. Figure 5.3 shows the ma<strong>in</strong> systems <strong>in</strong> ROOT<br />

with its specific rout<strong>in</strong>es and execut<strong>in</strong>g files.<br />

Table 1.0 : Rough comparison between PAW and ROOT.<br />

PAW<br />

ROOT<br />

Developers CERN CERN<br />

Stable Release 16-Sep-02 22-Sep-11<br />

File Form<strong>at</strong> .ntp .root<br />

Type Particle Physics D<strong>at</strong>a Analysis<br />

Programm<strong>in</strong>g Language Fortran C++<br />

75


Figure 5.3: ROOT framework directories<br />

76


5.2.3 <strong>Zeus</strong> Event Visualiz<strong>at</strong>ion (ZEVIS)<br />

After <strong>in</strong>stall<strong>at</strong>ion of new components (MVD and STT) for <strong>HERA</strong> II, there<br />

was a challenge <strong>in</strong> event display as the available software <strong>at</strong> th<strong>at</strong> time was not<br />

ma<strong>in</strong>ta<strong>in</strong>able and portable to the new pl<strong>at</strong>forms. Therefore, ZEVIS was developed<br />

and <strong>in</strong>troduced with better resolution and specific<strong>at</strong>ions as listed below,<br />

• New facilities with <strong>in</strong>tegr<strong>at</strong>ed display of 2-Dimentional and 3-Dimentional<br />

view<br />

• Portability, able to support available and relevant ZEUS software<br />

pl<strong>at</strong>forms<br />

• Modality, able to use display without direct d<strong>at</strong>a access.<br />

Figure 5.4: ZEVIS display of trimuon event. One of the muons is identified <strong>in</strong> the<br />

outer barrel muon chambers and <strong>in</strong> BAC (both hits and pads), embedded <strong>in</strong>to a<br />

jet. The second is seen <strong>in</strong> BAC only (pads only).The third is seen <strong>in</strong> the forward<br />

muon chambers (clean long track start<strong>in</strong>g <strong>in</strong> the <strong>in</strong>ner chambers) and <strong>in</strong> the<br />

forward BAC, embedded <strong>in</strong>to a forward jet.<br />

77


5.3 Grand Reprocessed (GR) D<strong>at</strong>a<br />

In the middle of 2007, <strong>HERA</strong> oper<strong>at</strong>ion had been stopped. S<strong>in</strong>ce its<br />

launch, a huge amount of d<strong>at</strong>a has been collected. Until 2011, the ZEUS<br />

collabor<strong>at</strong>ion is confident th<strong>at</strong> the <strong>in</strong>frastructure of d<strong>at</strong>a process<strong>in</strong>g <strong>in</strong> ZEUS<br />

system can be well ma<strong>in</strong>ta<strong>in</strong>ed. However, beyond th<strong>at</strong> year, they are uncerta<strong>in</strong><br />

whether this <strong>in</strong>frastructure can be preserved. To overcome such impact, the<br />

collabor<strong>at</strong>ion has come up with the idea of general d<strong>at</strong>a set or ntuple production<br />

called the GR d<strong>at</strong>a. Thus, these GR ntuples are useful for all k<strong>in</strong>d of analysis and<br />

can be easily preserved for future reference and research. The first step of GR<br />

d<strong>at</strong>a production had been done <strong>in</strong> 2006. Now, after nearly 5 years of development,<br />

the collabor<strong>at</strong>ion has succeeded to produce GR ntuples of millions events <strong>in</strong> real<br />

d<strong>at</strong>a and Monte Carlo (MC) start<strong>in</strong>g from runn<strong>in</strong>g year 2003 to 2007 <strong>in</strong> various<br />

versions. The l<strong>at</strong>est versions are v05 and v06 which still under development and<br />

construction. There are two file form<strong>at</strong>s for GR d<strong>at</strong>a to support two common<br />

offl<strong>in</strong>e analysis softwares <strong>at</strong> ZEUS which are PAW and ROOT.<br />

5.4 Monte Carlo (MC) D<strong>at</strong>a<br />

To evalu<strong>at</strong>e the reconstruction of particle <strong>in</strong> real d<strong>at</strong>a, Monte Carlo (MC)<br />

simul<strong>at</strong>ion is used as comparison. At ZEUS, there are several MC gener<strong>at</strong>ors<br />

available for different <strong>in</strong>teractions. For exclusive vector meson production, the<br />

DIFFVM gener<strong>at</strong>or is used. The mechanism of DIFFVM simul<strong>at</strong>ion is based on<br />

78


Regge Phenomenology and Vector Dom<strong>in</strong>ance Model (See Section 3.9). When<br />

<strong>electron</strong> collides with <strong>proton</strong> <strong>at</strong> high energy, the <strong>electron</strong> will emit a photon which<br />

subsequently fluctu<strong>at</strong>es <strong>in</strong>to a vector meson.<br />

The steps of the MC simul<strong>at</strong>ion process are listed below:-<br />

• Physics gener<strong>at</strong>or. This is a program th<strong>at</strong> gener<strong>at</strong>es events com<strong>in</strong>g from<br />

the reaction<br />

ep → X<br />

. Each event consists of a table of the four momenta<br />

of all the particles <strong>in</strong>volved <strong>in</strong> the reaction: <strong>in</strong>com<strong>in</strong>g, <strong>in</strong>termedi<strong>at</strong>e and<br />

f<strong>in</strong>al st<strong>at</strong>e.<br />

• MOZART (MOnteCarlo for ZEUS Analysis, Reconstruction and Trigger)<br />

is a software th<strong>at</strong> conta<strong>in</strong>s the full simul<strong>at</strong>ion of the ZEUS detector. The<br />

<strong>in</strong>teraction of particles with the various components of the ZEUS detector<br />

is simul<strong>at</strong>ed by GEANT package. The geometrical and m<strong>at</strong>erial structure<br />

of components of the ZEUS detector as well as the mapp<strong>in</strong>g of the<br />

magnetic field <strong>in</strong> the volume of the CTD is known to MOZART. The<br />

program produces two types of tables, the table th<strong>at</strong> conta<strong>in</strong>s the full<br />

<strong>in</strong>form<strong>at</strong>ion of all particles cre<strong>at</strong>ed <strong>in</strong> the event and the tables th<strong>at</strong> conta<strong>in</strong><br />

the output of the various components of the ZEUS detector.<br />

79


• ZGANA (ZG313 ANAlysis). This is a program th<strong>at</strong> simul<strong>at</strong>es the threelevel<br />

trigger of the ZEUS detector as available <strong>at</strong> the various trigger levels.<br />

• Once the gener<strong>at</strong>ed MC file has been processed through the steps<br />

enumer<strong>at</strong>ed it is ready to go through the event reconstruction by the<br />

program ZEPHYR. After this the MC file undergoes the same off-l<strong>in</strong>e<br />

tre<strong>at</strong>ment as d<strong>at</strong>a.<br />

These steps can be viewed <strong>in</strong> simpler diagram as shown <strong>in</strong> Figure 5.5.<br />

Comparison of GR d<strong>at</strong>a and MC d<strong>at</strong>a <strong>in</strong> term of ntuple volume is shown <strong>in</strong><br />

Table 2.0. From this figure, we can see th<strong>at</strong> the volume of MC d<strong>at</strong>a gener<strong>at</strong>ed is<br />

bigger than the GR d<strong>at</strong>a as more simul<strong>at</strong>ion has been done to ensure all events<br />

scenarios are captured for reference.<br />

80


Physics Gener<strong>at</strong>or<br />

GEANT<br />

MOZART<br />

Example:<br />

DIFFVM<br />

ZEUSVM<br />

DIPSI<br />

EPSOFT<br />

ZGANA<br />

ZEPHYR<br />

MC Files<br />

Figure 5.5: Steps of Monte Carlo Simul<strong>at</strong>ion<br />

Table 2.0 : Size of GR ntuple for v02 and v04.<br />

VERSION TYPE EVENTS PAW ROOT<br />

v02d DATA 410M 1.9TB 3.0TB<br />

v02e MC 660M 14.0TB 6.6TB<br />

v02f MC 477M 2.4TB 5.6TB<br />

v04b DATA 410M 4.4TB 5.0TB<br />

v04b MC 208M 4.7TB 3.0TB<br />

v04b MC 1137M 25.7TB 16.3TB<br />

81


5.5 ψ ' Photoproduction (PHP)<br />

The production of particle th<strong>at</strong> orig<strong>in</strong><strong>at</strong>es from photon is called the<br />

photoproduction (PHP). Photon can be seen either exclusively or <strong>in</strong>clusively <strong>in</strong><br />

the <strong>in</strong>teraction. ‘Exclusive’ means the photon is produced exclusively from the<br />

first <strong>in</strong>teraction of the <strong>proton</strong> and <strong>electron</strong>. Meanwhile, ‘<strong>in</strong>clusive’ means the<br />

photon is produced with<strong>in</strong> the <strong>in</strong>teraction which may or may not come from the<br />

<strong>in</strong>cident <strong>electron</strong> or <strong>proton</strong> itself.<br />

In this analysis of<br />

ψ ' PHP, some significant aspects of the analysis should<br />

be noted. The exclusivity of the events has to be the most important aspect,<br />

whereby, <strong>in</strong> each event, the number of tracks for charged particles must be<br />

exclusively similar with the search particle decay products. In the <strong>in</strong>teraction of<br />

+ −<br />

' → J π there will be exactly 4 tracks which represent 2 muons (from J / ψ<br />

ψ /ψπ<br />

decay) and 2 pions. The offl<strong>in</strong>e selection will <strong>in</strong>volve specific parameters from a<br />

d<strong>at</strong>a arrangement table <strong>in</strong> GR d<strong>at</strong>a, called the ntuple blocks which can be viewed<br />

us<strong>in</strong>g the software analysis PAW or ROOT. All of ORANGE rout<strong>in</strong>e are listed <strong>in</strong><br />

this table with its specific parameters. These parameters are used or called <strong>in</strong><br />

PAW or ROOT us<strong>in</strong>g the software recognized command language and can be<br />

executed <strong>in</strong> a program.<br />

82


+ −<br />

The offl<strong>in</strong>e selections for ψ ' → J /ψπ π PHP are listed as follow<strong>in</strong>g;<br />

• Exclusively 4 tracks which consist of 2 tracks of muons and 2 tracks of<br />

pions. These particles must be dist<strong>in</strong>guished correctly base on the ID<br />

to prevent overlapp<strong>in</strong>g between particles and must have a correct<br />

charges. Entries of muons are taken from the GMUON rout<strong>in</strong>e <strong>in</strong> the<br />

ntuple block which is measured by the muon detector. Meanwhile for<br />

pions, the TRACKING rout<strong>in</strong>e used where particles entries are<br />

measured by track<strong>in</strong>g detector i.e CTD, MVD.<br />

• The newest rout<strong>in</strong>e track type ZTTRACK is chosen. This rout<strong>in</strong>e can<br />

be viewed <strong>in</strong> the ntuple block. For GR d<strong>at</strong>a, the track type has already<br />

been set to this rout<strong>in</strong>e.<br />

• The <strong>in</strong>teraction area must cover <strong>in</strong> the primary vertex region. This is<br />

done by sett<strong>in</strong>g the zvtx with<strong>in</strong> the 50cm. zvtx parameter is listed<br />

under the TRACKING rout<strong>in</strong>e <strong>in</strong> ntuple blocks.<br />

• The polar angle for muon pairs are set to be with<strong>in</strong><br />

17 < 163<br />

<br />

<br />

< θ , <strong>in</strong><br />

the region of CTD acceptance. The θ parameter is listed under<br />

GMUON rout<strong>in</strong>e <strong>in</strong> ntuple blocks.<br />

83


• Coll<strong>in</strong>earity cut for J / ψ ,<br />

<br />

Ω < 174 , where Ω is the angle between the<br />

two muon tracks to reject cosmic rays events. The formula used for<br />

this cut is<br />

− P<br />

i<br />

• P<br />

<br />

j<br />

cos Ω = where P i is the momentum x,y and z for<br />

P P<br />

i<br />

j<br />

muon i and P j is the momentum x,y and z for muon j. The parameters<br />

for these momentum also can be obta<strong>in</strong>ed from the ntuple blocks under<br />

the GMUON table.<br />

• The J / ψ mass reconstruction, M<br />

J / ψ are cut with<strong>in</strong> a small region<br />

around the mass peak to decrease the background.<br />

• Trigger selection for FMUON/BRMUON are applied.<br />

ψ ' Mass reconstruction is calcul<strong>at</strong>ed us<strong>in</strong>g equ<strong>at</strong>ion below,<br />

M<br />

( 2S<br />

)<br />

= M + − + − − M + − + M<br />

ψ µ µ π π µ µ J / ψ<br />

( PDG )<br />

(53)<br />

where<br />

M is the reconstructed mass for )<br />

+ − + −<br />

ψ ( 2S<br />

µ µ π π<br />

us<strong>in</strong>g 2 muons and 2 pions,<br />

M is reconstructed mass for J / ψ and M J / ψ<br />

( PDG)<br />

is the mass value for<br />

+ µ − µ<br />

J /ψ <strong>in</strong> particle d<strong>at</strong>a group (PDG) reference. This formula is used to confirm the<br />

accuracy of the<br />

ψ ' reconstructed mass which must be balanced with the value <strong>in</strong><br />

the PDG. After ψ’ reconstructed signal is observed <strong>in</strong> the plotted graph, to obta<strong>in</strong><br />

84


the number of ψ’ entries <strong>in</strong> the mass region N ψ(2S) , some fitt<strong>in</strong>g algorithm are used<br />

i.e Gaussian. This fitt<strong>in</strong>g rout<strong>in</strong>e option is also available <strong>in</strong> PAW and ROOT.<br />

5.6 Results<br />

Figure 5.6: Figure shows the reconstructed mass of ψ ' gener<strong>at</strong>ed by PAW us<strong>in</strong>g<br />

+ −<br />

the simul<strong>at</strong>ed ZEUS MC d<strong>at</strong>a for ψ ' → J /ψπ π decay channel.<br />

85


Figure 5.7: Figure shows the reconstructed mass of ψ ' gener<strong>at</strong>ed by PAW us<strong>in</strong>g<br />

+ − + −<br />

the ZEUS GR d<strong>at</strong>a for ψ ' → µ µ π π decay channel <strong>in</strong> 2003-2007 events.<br />

86


Table 3.0: Properties of ψ ' photoproduction with number of ψ ' particles,<br />

Nψ(2S), acceptance, A, photon flux, Ф and the cross section, σ, <strong>in</strong> different W<br />

range.<br />

W<br />

Logσ Error<br />

N<br />

(GeV)<br />

ψ’ A Ф σ(Pb) σ(μb)<br />

(μb) Logσ(μb)<br />

30-50 40 47 0.107 0.056 1166.6 0.0012 -2.933 ± 0.0381<br />

50-70 60 63 0.161 0.034 1745.1 0.0017 -2.758 ± 0.0317<br />

70-90 80 71 0.105 0.023 4398.2 0.0044 -2.357 ± 0.0202<br />

90-110 100 45 0.130 0.017 3062.4 0.0031 -2.514 ± 0.0241<br />

110-130 120 55 0.150 0.013 4277.7 0.0043 -2.369 ± 0.0204<br />

130-150 140 70 0.149 0.010 6960.0 0.0070 -2.157 ± 0.0162<br />

150-170 160 26 0.117 0.008 4147.9 0.0041 -2.382 ± 0.0208<br />

Cross Se ction of Psi( 2 S) <strong>in</strong> Ele ctron­ Prot on Collision a t H ERA ( GR<br />

Da t a 0 3 ­ 0 7 v 2 )<br />

­3 )<br />

0<br />

­ 0 .5<br />

4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0<br />

Cross Se ction Log( bx 1 0<br />

­ 1<br />

­ 1 .5<br />

­ 2<br />

­ 2 .5<br />

­ 3<br />

­ 3 .5<br />

< W > ( Ge V)<br />

Figure 5.8 : Cross section of ψ ' <strong>in</strong> e-p <strong>collision</strong> <strong>at</strong> <strong>HERA</strong> for ZEUS GR d<strong>at</strong>a <strong>in</strong><br />

2003-2007 events.<br />

87


CHAPTER 6<br />

DISCUSSION AND CONCLUSION<br />

In conclusion, ZEUS experiment can be divided <strong>in</strong>to five ma<strong>in</strong> aspects.<br />

Firstly, we need to understand the physics background which is the ma<strong>in</strong> key of<br />

the whole experiment. As mentioned <strong>in</strong> Chapter 1, Standard Model has motiv<strong>at</strong>ed<br />

many physicists to do a lot of researches <strong>in</strong> particle search<strong>in</strong>g. ZEUS experiment<br />

is focus<strong>in</strong>g on the <strong>electron</strong>s and <strong>proton</strong>s <strong>collision</strong>s <strong>at</strong> high energy which is<br />

significantly suitable to observe physics events such as photoproduction and deep<br />

<strong>in</strong>elastic sc<strong>at</strong>ter<strong>in</strong>g. In order to implement th<strong>at</strong>, here comes the second aspect of<br />

ZEUS experiment which is the experiment tools; the ZEUS detector and <strong>HERA</strong><br />

collider. The ZEUS detector consists of two ma<strong>in</strong> components; the calorimeter<br />

and the track<strong>in</strong>g detectors. The calorimeter is specially designed to measure the<br />

energy of travers<strong>in</strong>g particles, meanwhile the track<strong>in</strong>g detectors detect the<br />

particles tracks as well as measur<strong>in</strong>g the momentum. In measur<strong>in</strong>g the energies<br />

and momentum of particles trajectories, ZEUS detector is equipped with many<br />

<strong>in</strong>ternal comput<strong>in</strong>g systems. This is our third aspect. Briefly, there are a lot of<br />

rout<strong>in</strong>es, files, l<strong>in</strong>ks, directories, software and programs th<strong>at</strong> had been used <strong>in</strong><br />

ZEUS experiment. These systems are implemented <strong>in</strong> detector components, d<strong>at</strong>a<br />

process<strong>in</strong>g, d<strong>at</strong>a simul<strong>at</strong>ion, <strong>in</strong>itial selection and many more. In produc<strong>in</strong>g raw<br />

d<strong>at</strong>a from the <strong>electron</strong>s and <strong>proton</strong>s <strong>collision</strong>s and extract<strong>in</strong>g it to a better d<strong>at</strong>a<br />

arrangement, ORANGE is used. The d<strong>at</strong>a will then be collected <strong>in</strong> the form of<br />

ntuples. The fourth aspect of ZEUS experiment is the particle offl<strong>in</strong>e<br />

88


econstruction. At this stage, offl<strong>in</strong>e selection will be done on the real and<br />

simul<strong>at</strong>ion d<strong>at</strong>a us<strong>in</strong>g the analysis software. Lastly, after successfully<br />

reconstruct<strong>in</strong>g a signal, results are ready for physics analysis and discussions <strong>in</strong><br />

order to understand the particle behaviours.<br />

As discussion to our results, exclusive photoproduction events are actually<br />

compromis<strong>in</strong>g specific and narrower region for particle search<strong>in</strong>g <strong>in</strong> the detector.<br />

This is because <strong>at</strong> <strong>in</strong>itial selection, we have cut off all other events which<br />

contribute much bigger percentage <strong>in</strong> the GR d<strong>at</strong>a, such as the DIS and <strong>in</strong>clusive<br />

events. Moreover, <strong>in</strong> search<strong>in</strong>g for ψ ( 2S)<br />

particle <strong>at</strong> ZEUS, the specialty of<br />

muons as MIPs and specific detector component and system provided <strong>in</strong> the<br />

experiment, leads more convenient search<strong>in</strong>g and facilities for this particle.<br />

Muons are easily recognized <strong>in</strong> the event display by its isol<strong>at</strong>ed trajectories which<br />

traverse the <strong>in</strong>ner parts of the detector, and reached to the outer layer of where the<br />

muon detector is loc<strong>at</strong>ed. After several cut off and event selection, we have seen<br />

th<strong>at</strong> the ref<strong>in</strong>ed distribution of the reconstructed mass before fitt<strong>in</strong>g procedure has<br />

already shown a remarkable peak.<br />

Our results of ψ ( 2S)<br />

are compared to the production of other VMs <strong>in</strong><br />

figure 6.1. As a conclusion, we can see th<strong>at</strong> the cross section obta<strong>in</strong>ed for ψ ( 2S)<br />

<strong>in</strong> this research is slightly lower than the H1 results, but is still withim acceptable<br />

limits. It is also consistent with the theoretical and parameteriz<strong>at</strong>ion fit given <strong>in</strong><br />

the graph.<br />

89


Figure 6.1: The cross section for ψ ' <strong>at</strong> ZEUS highlighted <strong>in</strong> yellow block, <strong>in</strong><br />

comparison with H1 experiment and other vector mesons.<br />

90


Bibliography<br />

[1] P.D.B. Coll<strong>in</strong>s, An Introduction to Regge Theory and High Energy<br />

Physics.Cambridge University Press, England, 1997.<br />

[2] F.J. Hasert et al., Phys.Lett. 46B, 138 (1973).<br />

[3] M.I. Perl et al., Phys.Rev.Lett 35, 1489 (1975).<br />

[4] Guang-jiong Ni Guo-hong Yang Rong-tang Fu Haib<strong>in</strong> Wang, Runn<strong>in</strong>g<br />

Coupl<strong>in</strong>g Constants of Fermions with Masses <strong>in</strong> Quantum Electro<br />

Dynamics and Quantum Chromo Dynamics, available on<br />

http://arxiv.org/abs/hep-ph/9906364v1.<br />

[5] P.D.B. Coll<strong>in</strong>s, An Introduction to Regge Theory and High Energy<br />

Physics. Cambridge University Press, England, 1997.<br />

[6] T. Regge, J.A. Wheeler, Phys. Rev. 108, 1063 (1957).<br />

[7] A. Donnachie and P.V. Landshoff, Nucl. Phys. B 231, 189 (1984).<br />

[8] A. Donnachie and P.V. Landshoff, Phys. Lett. B 191 (1987).<br />

[9] A. Donnachie and P.V. Landshoff, Phys. Lett. B 296, 227 (1992).<br />

[10] V. Barone and E. Predazzi,<br />

High-Energy Particle Diffraction. Spr<strong>in</strong>ger, 2002.<br />

[11] J.J. Sakurai, Phys.Rev.Lett 22, 981 (1969).<br />

[12] R. Ciesielski, Exclusive J/ψ Production <strong>in</strong> Deep Inelastic ep Sc<strong>at</strong>ter<strong>in</strong>g<br />

<strong>in</strong> the ZEUS Experiment <strong>at</strong> <strong>HERA</strong>. Ph.D. Thesis, Faculty of Physics of<br />

the Warsaw University, Institute of Experimental Physics, 2004.<br />

[13] M. Seidel. The upgraded <strong>in</strong>teraction regions of <strong>HERA</strong>.<br />

DESY-<strong>HERA</strong>-00-01.<br />

[14] U. Schneekloth (ed.). The <strong>HERA</strong> lum<strong>in</strong>osity upgrade.<br />

DESY-<strong>HERA</strong>-98-05.<br />

[15] U. Schneekloth. Recent <strong>HERA</strong> results and future prospects (1998), hepex/<br />

9806010.<br />

[16] I.Bloch, Measurement of Beauty Production from Dimuon Events <strong>at</strong><br />

<strong>HERA</strong>/ZEUS. Ph.D. Thesis, Hamburg University, Hamburg (Germany),<br />

91


2005. DESY-THESIS-05-034.<br />

[17] ZEUS Collabor<strong>at</strong>ion, U. Holm (ed.), The ZEUS Detector.<br />

St<strong>at</strong>us Report (unpublished), DESY (1993), available on<br />

http://www-zeus.desy.de/bluebook/bluebook.html.<br />

[18] N. Harnew et al., Nucl. Inst. Meth. A 279, 290 (1989).<br />

[19] B. Foster et al., Nucl. Phys. Proc. Suppl. B 32, 181 (1993).<br />

[20] B. Foster et al., Nucl. Inst. Meth. A 338, 254 (1994).<br />

[21] A. Pol<strong>in</strong>i et al., Nucl. Inst. Meth. A 581, 31 (2007).<br />

[22] ZEUS Collabor<strong>at</strong>ion, U. Holm (ed.), The ZEUS Detector.<br />

St<strong>at</strong>us Report (unpublished), DESY (1993), available on<br />

http://www-zeus.desy.de/bluebook/bluebook.html.<br />

[23] I.C. Brock, V. Bashkirov et al.for the ZEUS Collabor<strong>at</strong>ion. ZEUS Note<br />

98-046, A Straw-Tube Tracker for ZEUS.<br />

[24] M. Derrick et al., Nucl. Inst. Meth. A 309, 77 (1991).<br />

[25] A. Andresen et al., Nucl. Inst. Meth. A 309, 101 (1991).<br />

[26] A. Caldwell et al., Nucl. Inst. Meth. A 321, 356 (1992).<br />

[27] A. Bernste<strong>in</strong> et al., Nucl. Inst. Meth. A 336, 23 (1993).<br />

[28] B. List and A. Mastroberard<strong>in</strong>o, DIFFVM - A Monte Carlo Gener<strong>at</strong>or<br />

for Diffractive Processes <strong>in</strong> ep Sc<strong>at</strong>ter<strong>in</strong>g., October 16, 1998, available on<br />

https://www.desy.de/~blist/diffvm.html.<br />

[29] D.H. Perk<strong>in</strong>s, Introduction to High Energy Physics. Addison-Wesley,<br />

1982.<br />

[30] F. Halzen and A.D. Mart<strong>in</strong>, Quarks and Leptons: An Introductory Course<br />

<strong>in</strong> Modern Particle Physics. John Wiley & Sons, Inc, 1984.<br />

[31] H. Grote, Review of P<strong>at</strong>tern Recognition <strong>in</strong> High Energy Physics, Reports<br />

on Progress <strong>in</strong> Physics 50 (1987) 473-500.<br />

[32] H. Albrecht et al., Search for Rare B Decays, Phys. Lett. B 353 (1995)<br />

554-562.<br />

[33] ATLAS Collabor<strong>at</strong>ion, ATLAS Inner Detector Technical Design Report<br />

Vol.I, CERN/LHCC/97-16, CERN (1997).<br />

[34] C. Grupen, Particle Detectors, Cambridge Monographs on Particle<br />

Physics, 1996.<br />

[35] D. Green, The Physics of Particle Detectors, Cambridge University Press<br />

92


(2000)<br />

[36] R. Carl<strong>in</strong> et al. (ZEUS Collabor<strong>at</strong>ion), The ZEUS Microvertex Detector,<br />

Nucl. Instr. and Meth. A511 (2003) 23–37.<br />

[37] R. Mankel, The <strong>HERA</strong>-B Experiment: Overview And Concepts, Proc.<br />

Intern<strong>at</strong>ional Conference on High-Energy Physics (ICHEP 98), Vancouver<br />

1998 (Canada), Vol. 2, 1513–1518.<br />

[38] H. Wieman et al., STAR TPC <strong>at</strong> RHIC, IEEE Trans. Nucl. Sci. NS-44<br />

(1997) 671–678.<br />

J.H. Thomas, A TPC for Measur<strong>in</strong>g High Multiplicity Events <strong>at</strong> RHIC,<br />

Nucl. Instr. and Meth. A478 (2002) 166-169.<br />

M. Anderson et al., The STAR Time Projection Chamber: a Unique Tool<br />

for Study<strong>in</strong>g High Multiplicity Events <strong>at</strong> RHIC, Nucl. Instr. and Meth.<br />

A499 (2003) 659-678.<br />

[39] R. Fr¨uhwirth, Applic<strong>at</strong>ion of Kalman Filter<strong>in</strong>g, Nucl. Instr. and Meth.<br />

A262 (1987) 444-450.<br />

[40] P. Billoir, S. Qian, Simultaneous P<strong>at</strong>tern Recognition and Track Fitt<strong>in</strong>g<br />

by<br />

the Kalman Filter<strong>in</strong>g Method, Nucl. Instr. and Meth. A294 (1990) 219-<br />

228.<br />

[41] R.H. B¨ock, H. Grote, D. Notz and M. Regler, D<strong>at</strong>a Analysis Techniques<br />

for High-Energy Physics Experiments, Cambridge Univ. Press (1990). 2nd<br />

edition (with R. Fr¨uhwirth) (2000)<br />

[42] ma<strong>in</strong> ORANGE web page,<br />

http://www-zeus.desy.de/ZEUS_ONLY/analysis/orange/<strong>in</strong>dex.html<br />

[43] GMUON web page,<br />

93


http:// www-zeus.desy.de/~geiser/muon/gmuon.html<br />

94

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!