31.10.2014 Views

T.S 550 Sub-Atmospheric Module - Turbo & Jet Engine Research ...

T.S 550 Sub-Atmospheric Module - Turbo & Jet Engine Research ...

T.S 550 Sub-Atmospheric Module - Turbo & Jet Engine Research ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

SAM<br />

SUB ATMOSPHERIC MODULE<br />

Prof. David Lior – R-<strong>Jet</strong> <strong>Engine</strong>ering Ltd.<br />

1


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

SAM - Objective<br />

• Increasing the Electricity Generation Efficiency<br />

of the OCN TS-450 <strong>Turbo</strong>generator in view of<br />

the rising Natural Gas prices.<br />

• Attaining the goal of 36+ % HHV Electric<br />

Generation Efficiency set by the US DOE by<br />

2010.<br />

2


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

SAM - Description<br />

Two packaging solutions result in the same total<br />

system performance:<br />

• A separate unit added to the OCN TG-450<br />

turbogenerator connected to its exhaust duct,<br />

driving an high speed 100 kW alternator (Fig. 1)<br />

• An integral stage to the basic OCN TG-450 gas<br />

turbine driving a common alternator. (Fig. 4)<br />

3


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Fig. 1 – Separate SAM Unit<br />

To Ambient<br />

Gas Turbine Exhaust<br />

Cold Water In<br />

Heat Exchanger<br />

2<br />

Hot Water Out<br />

Heat Exchanger 1<br />

100 kW<br />

Generator<br />

Turbine<br />

Compressor<br />

Hot Water Out<br />

4


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Technical Concept<br />

Fig. 2 – TS Diagram<br />

1<br />

P Turbine<br />

Temperature - T<br />

4<br />

2<br />

Heat extraction<br />

P Compressor<br />

Heat Extraction<br />

5<br />

3<br />

Entropy - S<br />

5


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

OPTIMUM CYCLE PRESSURE RATIO<br />

(see Fig 3)<br />

• A parametric analysis has been done to find the<br />

expansion pressure ratio which results in<br />

maximum power gain.<br />

• For each pressure ratio the compressor and<br />

turbine efficiencies have been re-calculated.<br />

• Following analysis for two (2) values of heat<br />

exchanger relative pressure drop (∆P/P), the<br />

optimum cycle pressure ratio of three (3) was<br />

6


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Fig. 3 - Turbine Pressure Ratio Optimization<br />

Specific Net Power<br />

Kg/Kg/Sec<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

214<br />

143<br />

160<br />

155.7<br />

91.8<br />

105.2<br />

152<br />

102<br />

88<br />

63<br />

55<br />

58<br />

58<br />

55<br />

52<br />

2 3<br />

236<br />

185.6<br />

181<br />

54<br />

50<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Specific Power<br />

Kg/Kg/sec<br />

Turbine Pressure Ratio<br />

Specific Net Power DP/P=5%<br />

Specific Power DP/P=5%<br />

Specific Power DP/P=2.5%<br />

Specifc Net Power DP/P=2.5%<br />

Specific Power Turbine<br />

7


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Thermodynamic Cycle<br />

(Fig. 2)<br />

Point 1- Point 2<br />

• The exhaust gas (mass flow of 1.534 Kg/sec and<br />

a temperature of 874 o K) expands through a<br />

turbine from ambient pressure to 0.344 kg/cm 2<br />

cooled to a temperature of 680 o K.<br />

• Turbine efficiency - 89.5%<br />

Expansion energy - 330 kW<br />

Temperature - T<br />

Heat extraction<br />

Fig 2<br />

4<br />

P Compressor<br />

P Turbine<br />

1<br />

2<br />

Heat Extraction<br />

5<br />

3<br />

Entropy - S<br />

8


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Thermodynamic Cycle<br />

Point 2 - Point 3<br />

• The gas is cooled in a heat-exchanger with<br />

water at 290 o K to a temperature of 330 o K at a<br />

pressure of 0.331 kg/cm 2 1<br />

.<br />

Fig 2<br />

P Turbine<br />

• Heat Exchanger Efficiency<br />

- 90%.<br />

Heat energy - 576 kW<br />

Temperature - T<br />

Heat extraction<br />

5<br />

4<br />

P Compressor<br />

3<br />

Entropy - S<br />

2<br />

Heat Extraction<br />

9


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Thermodynamic Cycle<br />

Point 3 - Point 4<br />

• The gas is compressed to a pressure of 1.054<br />

kg/cm2 and a temperature of 469 oK.<br />

Fig 2<br />

• Compressor efficiency - 84%<br />

Compression energy - 223 kW<br />

4<br />

Heat extraction<br />

P Compressor<br />

• Net mechanical energy –<br />

5<br />

3<br />

(326 kW – 223 kW) = 103 kW<br />

Entropy - S<br />

• Net electric energy -103 kW x 0.97 = 100 kW.<br />

Temperature - T<br />

P Turbine<br />

10<br />

1<br />

2<br />

Heat Extraction


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Thermodynamic Cycle<br />

Point 4 - Point 5<br />

• The gas is cooled through a secondary heat<br />

exchanger by water at 290 o K to 326 o K .<br />

• Heat exchanger efficiency<br />

- 80%.<br />

Heat energy 153 kW.<br />

Temperature - T<br />

Fig 2<br />

4<br />

Heat extraction<br />

P Compressor<br />

5<br />

3<br />

1<br />

P Turbine<br />

2<br />

Heat Extraction<br />

Entropy - S<br />

• Total heat energy - 573 kW + 153 kW = 726 kW.<br />

11


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Fig. 4 – Integrated SAM Unit<br />

540 kW OCN <strong>Turbo</strong> Shaft <strong>Engine</strong><br />

(Including SAM <strong>Module</strong>)<br />

p ,<br />

3%<br />

SAM<br />

(<strong>Sub</strong> <strong>Atmospheric</strong><br />

<strong>Module</strong>)<br />

475<br />

1700<br />

Gas<br />

Turbine<br />

Exhaust<br />

Cold<br />

Water<br />

in<br />

To Ambient<br />

Turbine<br />

Heat Exchanger<br />

Compressor<br />

Hot<br />

Water<br />

Out<br />

12


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Main components<br />

An axial stainless steel (AISI 304) turbine; 500 mm<br />

max. diameter.<br />

A water/gas finned tube heat exchanger.<br />

A centrifugal compressor made of stainless steel<br />

(AISI 304) with radial diffuser - 630 mm max.<br />

diameter, driven at 26000 rpm.<br />

A secondary water/gas finned tube heat<br />

exchanger.<br />

Total weight - (water weight excluded) - 350 kg.<br />

13


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Performance<br />

The OCN TG 450 + SAM performance:<br />

• The fuel energy input is 1513 kW<br />

• TG 450 engine electric output is 450 kW and<br />

92 kW are added by the SAM<br />

• The electrical efficiency (HHV) is thus –<br />

(450 + 92)/1513 = 36%<br />

• Total thermal efficiency 39.4%<br />

14


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Performance<br />

The OCN TG 450 + SAM performance (continued):<br />

…<br />

• The combined energy output is 1271 kW:<br />

542 kW electrical (OCN -450 kW + SAM -92 kW)<br />

and 726 kW of heat energy.<br />

• The total cogeneration efficiency is -<br />

1271 / 1513 = 84 %<br />

15


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Performance Summary<br />

• 542 kW electrical energy at 39.4% thermal<br />

efficiency or 36 % electric efficiency.<br />

• 726 kW hot water energy assignable at different<br />

proportions to heating and cooling to suit the<br />

specific client requirements.<br />

16


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Growth Potential<br />

The SAM contribution to the combined power<br />

increases with increase of the turbine inlet<br />

temperature.<br />

Fig.5 presents this improvement potential<br />

17


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

SAM - Growth Potential<br />

Fig. 5a<br />

900<br />

1050<br />

Power - kW<br />

800<br />

700<br />

600<br />

500<br />

400<br />

596<br />

500<br />

874<br />

692<br />

574<br />

933<br />

755<br />

620<br />

979<br />

825<br />

660<br />

1026<br />

1030<br />

1010<br />

990<br />

970<br />

950<br />

930<br />

910<br />

890<br />

870<br />

Exhaust Temperature<br />

Deg. Kelvin<br />

300<br />

1500 1600 1700 1800<br />

850<br />

Turbine Inlet Temperature - Deg. Kelvin<br />

Thermal Power- no SAM Thermal power with SAM Exhaust Temperature<br />

18


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

42.0%<br />

SAM - Growth Potential<br />

Fig. 5b<br />

160<br />

153<br />

150<br />

Thermal Efficiency-%<br />

41.0%<br />

40.0%<br />

39.4%<br />

96<br />

118<br />

40.1%<br />

136<br />

40.8%<br />

41.5%<br />

140<br />

130<br />

120<br />

110<br />

100<br />

Power Boost - kW<br />

39.0%<br />

90<br />

1500 1600 1700 1800<br />

Turbine Inlet Temperature - Deg. Kelvin<br />

Power Boost-kW<br />

Thermal Efficiency-%<br />

19


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

conclusions<br />

The SAM add on is a cost effective method to<br />

achieve high performance superior to future<br />

advanced IC engines.<br />

The OCN SAM CCHP configuration provides<br />

high electric efficiency combined with high heat<br />

energy utilization.<br />

The above features present a system superior<br />

to any IC or Gas Turbine performance for CCHP<br />

systems.<br />

20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!