31.10.2014 Views

TiO 2 Nanocomposite Ammonia Vapor Sensor - International ...

TiO 2 Nanocomposite Ammonia Vapor Sensor - International ...

TiO 2 Nanocomposite Ammonia Vapor Sensor - International ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Sensor</strong>s & Transducers<br />

Volume 125, Issue 2,<br />

February 2011<br />

www.sensorsportal.com ISSN 1726-5479<br />

Editors-in-Chief: professor Sergey Y. Yurish, tel.: +34 696067716, fax: +34 93 4011989, e-mail: editor@sensorsportal.com<br />

Editors for Western Europe<br />

Meijer, Gerard C.M., Delft University of Technology, The Netherlands<br />

Ferrari, Vittorio, Universitá di Brescia, Italy<br />

Editor South America<br />

Costa-Felix, Rodrigo, Inmetro, Brazil<br />

Editor for Eastern Europe<br />

Sachenko, Anatoly, Ternopil State Economic University, Ukraine<br />

Editors for North America<br />

Datskos, Panos G., Oak Ridge National Laboratory, USA<br />

Fabien, J. Josse, Marquette University, USA<br />

Katz, Evgeny, Clarkson University, USA<br />

Editor for Asia<br />

Ohyama, Shinji, Tokyo Institute of Technology, Japan<br />

Editor for Asia-Pacific<br />

Mukhopadhyay, Subhas, Massey University, New Zealand<br />

Editorial Advisory Board<br />

Abdul Rahim, Ruzairi, Universiti Teknologi, Malaysia<br />

Ahmad, Mohd Noor, Nothern University of Engineering, Malaysia<br />

Annamalai, Karthigeyan, National Institute of Advanced Industrial Science<br />

and Technology, Japan<br />

Arcega, Francisco, University of Zaragoza, Spain<br />

Arguel, Philippe, CNRS, France<br />

Ahn, Jae-Pyoung, Korea Institute of Science and Technology, Korea<br />

Arndt, Michael, Robert Bosch GmbH, Germany<br />

Ascoli, Giorgio, George Mason University, USA<br />

Atalay, Selcuk, Inonu University, Turkey<br />

Atghiaee, Ahmad, University of Tehran, Iran<br />

Augutis, Vygantas, Kaunas University of Technology, Lithuania<br />

Avachit, Patil Lalchand, North Maharashtra University, India<br />

Ayesh, Aladdin, De Montfort University, UK<br />

Azamimi, Azian binti Abdullah, Universiti Malaysia Perlis, Malaysia<br />

Bahreyni, Behraad, University of Manitoba, Canada<br />

Baliga, Shankar, B., General Monitors Transnational, USA<br />

Baoxian, Ye, Zhengzhou University, China<br />

Barford, Lee, Agilent Laboratories, USA<br />

Barlingay, Ravindra, RF Arrays Systems, India<br />

Basu, Sukumar, Jadavpur University, India<br />

Beck, Stephen, University of Sheffield, UK<br />

Ben Bouzid, Sihem, Institut National de Recherche Scientifique, Tunisia<br />

Benachaiba, Chellali, Universitaire de Bechar, Algeria<br />

Binnie, T. David, Napier University, UK<br />

Bischoff, Gerlinde, Inst. Analytical Chemistry, Germany<br />

Bodas, Dhananjay, IMTEK, Germany<br />

Borges Carval, Nuno, Universidade de Aveiro, Portugal<br />

Bousbia-Salah, Mounir, University of Annaba, Algeria<br />

Bouvet, Marcel, CNRS – UPMC, France<br />

Brudzewski, Kazimierz, Warsaw University of Technology, Poland<br />

Cai, Chenxin, Nanjing Normal University, China<br />

Cai, Qingyun, Hunan University, China<br />

Campanella, Luigi, University La Sapienza, Italy<br />

Carvalho, Vitor, Minho University, Portugal<br />

Cecelja, Franjo, Brunel University, London, UK<br />

Cerda Belmonte, Judith, Imperial College London, UK<br />

Chakrabarty, Chandan Kumar, Universiti Tenaga Nasional, Malaysia<br />

Chakravorty, Dipankar, Association for the Cultivation of Science, India<br />

Changhai, Ru, Harbin Engineering University, China<br />

Chaudhari, Gajanan, Shri Shivaji Science College, India<br />

Chavali, Murthy, N.I. Center for Higher Education, (N.I. University), India<br />

Chen, Jiming, Zhejiang University, China<br />

Chen, Rongshun, National Tsing Hua University, Taiwan<br />

Cheng, Kuo-Sheng, National Cheng Kung University, Taiwan<br />

Chiang, Jeffrey (Cheng-Ta), Industrial Technol. Research Institute, Taiwan<br />

Chiriac, Horia, National Institute of Research and Development, Romania<br />

Chowdhuri, Arijit, University of Delhi, India<br />

Chung, Wen-Yaw, Chung Yuan Christian University, Taiwan<br />

Corres, Jesus, Universidad Publica de Navarra, Spain<br />

Cortes, Camilo A., Universidad Nacional de Colombia, Colombia<br />

Courtois, Christian, Universite de Valenciennes, France<br />

Cusano, Andrea, University of Sannio, Italy<br />

D'Amico, Arnaldo, Università di Tor Vergata, Italy<br />

De Stefano, Luca, Institute for Microelectronics and Microsystem, Italy<br />

Deshmukh, Kiran, Shri Shivaji Mahavidyalaya, Barshi, India<br />

Dickert, Franz L., Vienna University, Austria<br />

Dieguez, Angel, University of Barcelona, Spain<br />

Dimitropoulos, Panos, University of Thessaly, Greece<br />

Ding, Jianning, Jiangsu Polytechnic University, China<br />

Djordjevich, Alexandar, City University of Hong Kong, Hong Kong<br />

Donato, Nicola, University of Messina, Italy<br />

Donato, Patricio, Universidad de Mar del Plata, Argentina<br />

Dong, Feng, Tianjin University, China<br />

Drljaca, Predrag, Instersema <strong>Sensor</strong>ic SA, Switzerland<br />

Dubey, Venketesh, Bournemouth University, UK<br />

Enderle, Stefan, Univ.of Ulm and KTB Mechatronics GmbH, Germany<br />

Erdem, Gursan K. Arzum, Ege University, Turkey<br />

Erkmen, Aydan M., Middle East Technical University, Turkey<br />

Estelle, Patrice, Insa Rennes, France<br />

Estrada, Horacio, University of North Carolina, USA<br />

Faiz, Adil, INSA Lyon, France<br />

Fericean, Sorin, Balluff GmbH, Germany<br />

Fernandes, Joana M., University of Porto, Portugal<br />

Francioso, Luca, CNR-IMM Institute for Microelectronics and Microsystems, Italy<br />

Francis, Laurent, University Catholique de Louvain, Belgium<br />

Fu, Weiling, South-Western Hospital, Chongqing, China<br />

Gaura, Elena, Coventry University, UK<br />

Geng, Yanfeng, China University of Petroleum, China<br />

Gole, James, Georgia Institute of Technology, USA<br />

Gong, Hao, National University of Singapore, Singapore<br />

Gonzalez de la Rosa, Juan Jose, University of Cadiz, Spain<br />

Granel, Annette, Goteborg University, Sweden<br />

Graff, Mason, The University of Texas at Arlington, USA<br />

Guan, Shan, Eastman Kodak, USA<br />

Guillet, Bruno, University of Caen, France<br />

Guo, Zhen, New Jersey Institute of Technology, USA<br />

Gupta, Narendra Kumar, Napier University, UK<br />

Hadjiloucas, Sillas, The University of Reading, UK<br />

Haider, Mohammad R., Sonoma State University, USA<br />

Hashsham, Syed, Michigan State University, USA<br />

Hasni, Abdelhafid, Bechar University, Algeria<br />

Hernandez, Alvaro, University of Alcala, Spain<br />

Hernandez, Wilmar, Universidad Politecnica de Madrid, Spain<br />

Homentcovschi, Dorel, SUNY Binghamton, USA<br />

Horstman, Tom, U.S. Automation Group, LLC, USA<br />

Hsiai, Tzung (John), University of Southern California, USA<br />

Huang, Jeng-Sheng, Chung Yuan Christian University, Taiwan<br />

Huang, Star, National Tsing Hua University, Taiwan<br />

Huang, Wei, PSG Design Center, USA<br />

Hui, David, University of New Orleans, USA<br />

Jaffrezic-Renault, Nicole, Ecole Centrale de Lyon, France<br />

Jaime Calvo-Galleg, Jaime, Universidad de Salamanca, Spain<br />

James, Daniel, Griffith University, Australia<br />

Janting, Jakob, DELTA Danish Electronics, Denmark<br />

Jiang, Liudi, University of Southampton, UK<br />

Jiang, Wei, University of Virginia, USA<br />

Jiao, Zheng, Shanghai University, China<br />

John, Joachim, IMEC, Belgium<br />

Kalach, Andrew, Voronezh Institute of Ministry of Interior, Russia<br />

Kang, Moonho, Sunmoon University, Korea South<br />

Kaniusas, Eugenijus, Vienna University of Technology, Austria<br />

Katake, Anup, Texas A&M University, USA<br />

Kausel, Wilfried, University of Music, Vienna, Austria<br />

Kavasoglu, Nese, Mugla University, Turkey<br />

Ke, Cathy, Tyndall National Institute, Ireland<br />

Khelfaoui, Rachid, Université de Bechar, Algeria<br />

Khan, Asif, Aligarh Muslim University, Aligarh, India<br />

Kim, Min Young, Kyungpook National University, Korea South<br />

Ko, Sang Choon, Electronics. and Telecom. Research Inst., Korea South<br />

Kockar, Hakan, Balikesir University, Turkey<br />

Kong, Ing, RMIT University, Australia<br />

Kotulska, Malgorzata, Wroclaw University of Technology, Poland<br />

Kratz, Henrik, Uppsala University, Sweden


Kumar, Arun, University of South Florida, USA<br />

Kumar, Subodh, National Physical Laboratory, India<br />

Kung, Chih-Hsien, Chang-Jung Christian University, Taiwan<br />

Lacnjevac, Caslav, University of Belgrade, Serbia<br />

Lay-Ekuakille, Aime, University of Lecce, Italy<br />

Lee, Jang Myung, Pusan National University, Korea South<br />

Lee, Jun Su, Amkor Technology, Inc. South Korea<br />

Lei, Hua, National Starch and Chemical Company, USA<br />

Li, Genxi, Nanjing University, China<br />

Li, Hui, Shanghai Jiaotong University, China<br />

Li, Xian-Fang, Central South University, China<br />

Liang, Yuanchang, University of Washington, USA<br />

Liawruangrath, Saisunee, Chiang Mai University, Thailand<br />

Liew, Kim Meow, City University of Hong Kong, Hong Kong<br />

Lin, Hermann, National Kaohsiung University, Taiwan<br />

Lin, Paul, Cleveland State University, USA<br />

Linderholm, Pontus, EPFL - Microsystems Laboratory, Switzerland<br />

Liu, Aihua, University of Oklahoma, USA<br />

Liu Changgeng, Louisiana State University, USA<br />

Liu, Cheng-Hsien, National Tsing Hua University, Taiwan<br />

Liu, Songqin, Southeast University, China<br />

Lodeiro, Carlos, University of Vigo, Spain<br />

Lorenzo, Maria Encarnacio, Universidad Autonoma de Madrid, Spain<br />

Lukaszewicz, Jerzy Pawel, Nicholas Copernicus University, Poland<br />

Ma, Zhanfang, Northeast Normal University, China<br />

Majstorovic, Vidosav, University of Belgrade, Serbia<br />

Marquez, Alfredo, Centro de Investigacion en Materiales Avanzados, Mexico<br />

Matay, Ladislav, Slovak Academy of Sciences, Slovakia<br />

Mathur, Prafull, National Physical Laboratory, India<br />

Maurya, D.K., Institute of Materials Research and Engineering, Singapore<br />

Mekid, Samir, University of Manchester, UK<br />

Melnyk, Ivan, Photon Control Inc., Canada<br />

Mendes, Paulo, University of Minho, Portugal<br />

Mennell, Julie, Northumbria University, UK<br />

Mi, Bin, Boston Scientific Corporation, USA<br />

Minas, Graca, University of Minho, Portugal<br />

Moghavvemi, Mahmoud, University of Malaya, Malaysia<br />

Mohammadi, Mohammad-Reza, University of Cambridge, UK<br />

Molina Flores, Esteban, Benemérita Universidad Autónoma de Puebla,<br />

Mexico<br />

Moradi, Majid, University of Kerman, Iran<br />

Morello, Rosario, University "Mediterranea" of Reggio Calabria, Italy<br />

Mounir, Ben Ali, University of Sousse, Tunisia<br />

Mulla, Imtiaz Sirajuddin, National Chemical Laboratory, Pune, India<br />

Nabok, Aleksey, Sheffield Hallam University, UK<br />

Neelamegam, Periasamy, Sastra Deemed University, India<br />

Neshkova, Milka, Bulgarian Academy of Sciences, Bulgaria<br />

Oberhammer, Joachim, Royal Institute of Technology, Sweden<br />

Ould Lahoucine, Cherif, University of Guelma, Algeria<br />

Pamidighanta, Sayanu, Bharat Electronics Limited (BEL), India<br />

Pan, Jisheng, Institute of Materials Research & Engineering, Singapore<br />

Park, Joon-Shik, Korea Electronics Technology Institute, Korea South<br />

Penza, Michele, ENEA C.R., Italy<br />

Pereira, Jose Miguel, Instituto Politecnico de Setebal, Portugal<br />

Petsev, Dimiter, University of New Mexico, USA<br />

Pogacnik, Lea, University of Ljubljana, Slovenia<br />

Post, Michael, National Research Council, Canada<br />

Prance, Robert, University of Sussex, UK<br />

Prasad, Ambika, Gulbarga University, India<br />

Prateepasen, Asa, Kingmoungut's University of Technology, Thailand<br />

Pullini, Daniele, Centro Ricerche FIAT, Italy<br />

Pumera, Martin, National Institute for Materials Science, Japan<br />

Radhakrishnan, S. National Chemical Laboratory, Pune, India<br />

Rajanna, K., Indian Institute of Science, India<br />

Ramadan, Qasem, Institute of Microelectronics, Singapore<br />

Rao, Basuthkar, Tata Inst. of Fundamental Research, India<br />

Raoof, Kosai, Joseph Fourier University of Grenoble, France<br />

Reig, Candid, University of Valencia, Spain<br />

Restivo, Maria Teresa, University of Porto, Portugal<br />

Robert, Michel, University Henri Poincare, France<br />

Rezazadeh, Ghader, Urmia University, Iran<br />

Royo, Santiago, Universitat Politecnica de Catalunya, Spain<br />

Rodriguez, Angel, Universidad Politecnica de Cataluna, Spain<br />

Rothberg, Steve, Loughborough University, UK<br />

Sadana, Ajit, University of Mississippi, USA<br />

Sadeghian Marnani, Hamed, TU Delft, The Netherlands<br />

Sandacci, Serghei, <strong>Sensor</strong> Technology Ltd., UK<br />

Schneider, John K., Ultra-Scan Corporation, USA<br />

Sengupta, Deepak, Advance Bio-Photonics, India<br />

Shah, Kriyang, La Trobe University, Australia<br />

Sapozhnikova, Ksenia, D.I.Mendeleyev Institute for Metrology, Russia<br />

Saxena, Vibha, Bhbha Atomic Research Centre, Mumbai, India<br />

Seif, Selemani, Alabama A & M University, USA<br />

Seifter, Achim, Los Alamos National Laboratory, USA<br />

Silva Girao, Pedro, Technical University of Lisbon, Portugal<br />

Singh, V. R., National Physical Laboratory, India<br />

Slomovitz, Daniel, UTE, Uruguay<br />

Smith, Martin, Open University, UK<br />

Soleymanpour, Ahmad, Damghan Basic Science University, Iran<br />

Somani, Prakash R., Centre for Materials for Electronics Technol., India<br />

Srinivas, Talabattula, Indian Institute of Science, Bangalore, India<br />

Srivastava, Arvind K., NanoSonix Inc., USA<br />

Stefan-van Staden, Raluca-Ioana, University of Pretoria, South Africa<br />

Sumriddetchka, Sarun, National Electronics and Computer Technology Center,<br />

Thailand<br />

Sun, Chengliang, Polytechnic University, Hong-Kong<br />

Sun, Dongming, Jilin University, China<br />

Sun, Junhua, Beijing University of Aeronautics and Astronautics, China<br />

Sun, Zhiqiang, Central South University, China<br />

Suri, C. Raman, Institute of Microbial Technology, India<br />

Sysoev, Victor, Saratov State Technical University, Russia<br />

Szewczyk, Roman, Industrial Research Inst. for Automation and Measurement,<br />

Poland<br />

Tan, Ooi Kiang, Nanyang Technological University, Singapore,<br />

Tang, Dianping, Southwest University, China<br />

Tang, Jaw-Luen, National Chung Cheng University, Taiwan<br />

Teker, Kasif, Frostburg State University, USA<br />

Thirunavukkarasu, I., Manipal University Karnataka, India<br />

Thumbavanam Pad, Kartik, Carnegie Mellon University, USA<br />

Tian, Gui Yun, University of Newcastle, UK<br />

Tsiantos, Vassilios, Technological Educational Institute of Kaval, Greece<br />

Tsigara, Anna, National Hellenic Research Foundation, Greece<br />

Twomey, Karen, University College Cork, Ireland<br />

Valente, Antonio, University, Vila Real, - U.T.A.D., Portugal<br />

Vanga, Raghav Rao, Summit Technology Services, Inc., USA<br />

Vaseashta, Ashok, Marshall University, USA<br />

Vazquez, Carmen, Carlos III University in Madrid, Spain<br />

Vieira, Manuela, Instituto Superior de Engenharia de Lisboa, Portugal<br />

Vigna, Benedetto, STMicroelectronics, Italy<br />

Vrba, Radimir, Brno University of Technology, Czech Republic<br />

Wandelt, Barbara, Technical University of Lodz, Poland<br />

Wang, Jiangping, Xi'an Shiyou University, China<br />

Wang, Kedong, Beihang University, China<br />

Wang, Liang, Pacific Northwest National Laboratory, USA<br />

Wang, Mi, University of Leeds, UK<br />

Wang, Shinn-Fwu, Ching Yun University, Taiwan<br />

Wang, Wei-Chih, University of Washington, USA<br />

Wang, Wensheng, University of Pennsylvania, USA<br />

Watson, Steven, Center for NanoSpace Technologies Inc., USA<br />

Weiping, Yan, Dalian University of Technology, China<br />

Wells, Stephen, Southern Company Services, USA<br />

Wolkenberg, Andrzej, Institute of Electron Technology, Poland<br />

Woods, R. Clive, Louisiana State University, USA<br />

Wu, DerHo, National Pingtung Univ. of Science and Technology, Taiwan<br />

Wu, Zhaoyang, Hunan University, China<br />

Xiu Tao, Ge, Chuzhou University, China<br />

Xu, Lisheng, The Chinese University of Hong Kong, Hong Kong<br />

Xu, Sen, Drexel University, USA<br />

Xu, Tao, University of California, Irvine, USA<br />

Yang, Dongfang, National Research Council, Canada<br />

Yang, Shuang-Hua, Loughborough University, UK<br />

Yang, Wuqiang, The University of Manchester, UK<br />

Yang, Xiaoling, University of Georgia, Athens, GA, USA<br />

Yaping Dan, Harvard University, USA<br />

Ymeti, Aurel, University of Twente, Netherland<br />

Yong Zhao, Northeastern University, China<br />

Yu, Haihu, Wuhan University of Technology, China<br />

Yuan, Yong, Massey University, New Zealand<br />

Yufera Garcia, Alberto, Seville University, Spain<br />

Zakaria, Zulkarnay, University Malaysia Perlis, Malaysia<br />

Zagnoni, Michele, University of Southampton, UK<br />

Zamani, Cyrus, Universitat de Barcelona, Spain<br />

Zeni, Luigi, Second University of Naples, Italy<br />

Zhang, Minglong, Shanghai University, China<br />

Zhang, Qintao, University of California at Berkeley, USA<br />

Zhang, Weiping, Shanghai Jiao Tong University, China<br />

Zhang, Wenming, Shanghai Jiao Tong University, China<br />

Zhang, Xueji, World Precision Instruments, Inc., USA<br />

Zhong, Haoxiang, Henan Normal University, China<br />

Zhu, Qing, Fujifilm Dimatix, Inc., USA<br />

Zorzano, Luis, Universidad de La Rioja, Spain<br />

Zourob, Mohammed, University of Cambridge, UK<br />

<strong>Sensor</strong>s & Transducers Journal (ISSN 1726-5479) is a peer review international journal published monthly online by <strong>International</strong> Frequency <strong>Sensor</strong> Association (IFSA).<br />

Available in electronic and on CD. Copyright © 2011 by <strong>International</strong> Frequency <strong>Sensor</strong> Association. All rights reserved.


<strong>Sensor</strong>s & Transducers Journal<br />

Contents<br />

Volume 125<br />

Issue 2<br />

February 2011<br />

www.sensorsportal.com ISSN 1726-5479<br />

Research Articles<br />

Microcantilever <strong>Sensor</strong>s in Biological and Chemical Detections<br />

Qing Zhu............................................................................................................................................. 1<br />

Design of a Low Voltage 0.18 um CMOS Surface Acoustic Wave Gas <strong>Sensor</strong><br />

M. Moghavvemi and A. Attaran .......................................................................................................... 22<br />

Glucose Monitoring System Based on Osmotic Pressure Measurements<br />

Alexandra Leal, António Valente, Ana Ferreira, Salviano Soares, Vitor Ribeiro, Olga<br />

Krushinitskaya, and Erik A. Johannessen .......................................................................................... 30<br />

Chemical <strong>Vapor</strong> Identification by Plasma Treated Thick Film Tin Oxide Gas <strong>Sensor</strong> Array<br />

and Pattern Recognition<br />

J. K. Srivastava, Preeti Pandey, Sunil K. Jha, V. N. Mishra, R. Dwivedi ........................................... 42<br />

A Preliminary Test for Skin Gas Assessment Using a Porphyrin Based Evanescent Wave<br />

Optical Fiber <strong>Sensor</strong><br />

Roman Selyanchyn, Sergiy Korposh, Wataru Yasukochi and Seung-Woo Lee. ............................... 54<br />

Optical Characterization and Humidity Sensing Properties of Praseodymium Oxide<br />

B. C. Yadav, Monika Singh and C. D. Dwivedi................................................................................... 68<br />

Nanocrystalline SnO 2 -Pt Thick Film Gas <strong>Sensor</strong> for Air Pollution Applications<br />

M. H. Shahrokh Abadi, M. N. Hamidon, Abdul Halim Shaari, Norhafizah Abdullah,<br />

Rahman Wagiran and Norhisam Misron. ........................................................................................... 76<br />

Characterization of WO 3 -SnO 2 <strong>Nanocomposite</strong>s and Application in Humidity Sensing<br />

N. K. Pandey, Akash Roy, Alok Kumar. ............................................................................................. 89<br />

Detections of Water Content Changes in a Nitrocellulose Membrane Based on Polarized<br />

Reflection Spectroscopy<br />

Hariyadi Soetedjo ............................................................................................................................... 100<br />

Fabrication of Polyaniline/ <strong>TiO</strong> 2 <strong>Nanocomposite</strong> <strong>Ammonia</strong> <strong>Vapor</strong> <strong>Sensor</strong><br />

S. G. Pawar, S. L. Patil, M. A. Chougule, B. T. Raut, S. A.Pawar and V. B. Patil ............................. 107<br />

Impact of Mineral Composition on the Distribution of Natural Radionuclides in Rigosol-<br />

Anthrosol<br />

Z P. Tomić, A. R. Djordjević, M. B. Rajković, I. Vukašinović, N. S. Nikolić, V. Pavlović<br />

and Č. M. Lačnjevac........................................................................................................................... 115<br />

Design of Photoreactor and Study of Modeling Parameters for Removal of Pesticides in<br />

Water: a Case Study of Malathion<br />

Amit K. Sharma, R. K. Tiwari and M. S. Gaur .................................................................................... 131<br />

Studies on Gas Sensing Performance of Cr-doped Indium Oxide Thick Film <strong>Sensor</strong>s<br />

D. N. Chavan, G. E. Patil, D. D. Kajale, V. B. Gaikwad, G. H. Jain ................................................... 142<br />

Preparation and Studies on Gas Sensing Performance of Pure and Modified Sn-<strong>TiO</strong> 2 Thick<br />

Film Resistor<br />

P. D. Hire, V. B. Gaikwad, N. U. Patil, R. L. Patil, R. M. Chaudhri, S. D. Shinde G. H. Jain ............. 156<br />

Electrocoductivity Studies of Grafted Polymer Thin Film 168


Muhammed Mizher Radhi ..................................................................................................................<br />

Ester Sensing with Poly (Aniline-co-m-aminobenzoic Acid) Deposited on Poly (Vinyl<br />

Alcohol)<br />

S. Adhikari, J. Singh, R. Banerjee and P. Banerji .............................................................................. 177<br />

Fiber Bragg Grating <strong>Sensor</strong> for Detection of Nitrate Concentration in Water<br />

A. S. Lalasangi, J. F. Akki, K.G. Manohar, T. Srinivas, P. Radhakrishnan, Sanjay Kher,<br />

N. S. Mehla and U. S. Raikar ............................................................................................................. 187<br />

Study on Gas Sensing Performance of In 2 O 3 Thick Film Resistors Prepared by Screen<br />

Printing Technique<br />

S. C. Kulkarni, R. Y. Borse ................................................................................................................. 194<br />

Periodically Tapered LPFG for Ethanol Concentration Detection in Ethanol-Gasoline Blend<br />

J. Linesh, T. M. Libish, M. C. Bobby, P. Radhakrishnan and V. P. N. Nampoori............................... 205<br />

Chemically Deposited n-CuInSe 2 / Polyiodide Based PEC Solar Cells<br />

R. H. Bari and L. A. Patil..................................................................................................................... 213<br />

Sensitivity and Selectivity Studies on Polyaniline / Molybdenum Trioxide Composites to<br />

Liquid Petroleum Gas<br />

Aashis S. Roy, Machappa T, M. V. N. Ambika Prasad and Koppalkar R. Anilkumar ........................ 220<br />

Long-term Biosensors for Metabolite Monitoring by using Carbon Nanotubes<br />

Cristina Boero, Sandro Carrara, Giovanni De Micheli........................................................................ 229<br />

Modeling of a Bio <strong>Sensor</strong> Based on Detection of Antigens Concentration Using an<br />

Electrically Actuated Micro Cantilever<br />

Hadi Madinei, Ali-Asghar Keyvani-Janbahan, Mehdi Atashparva, Rasool Shabani,<br />

Ghader Rezazadeh ............................................................................................................................ 238<br />

A SAW Delay Line <strong>Sensor</strong> Combined with Micro-hotplate for Bio-chemical Applications<br />

Babak Vosoughi Lahijani, Habib Badri Ghavifekr............................................................................... 247<br />

Bioelectrical Impedance Analysis Device: Measurement of Bioelectrical Tissue<br />

Conductivity in Dengue Patients<br />

Herlina Abdul Rahim, Mohd Nasir Taib, Fatimah Ibrahim and Ruzairi Abdul Rahim......................... 256<br />

Authors are encouraged to submit article in MS Word (doc) and Acrobat (pdf) formats by e-mail: editor@sensorsportal.com<br />

Please visit journal’s webpage with preparation instructions: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm<br />

<strong>International</strong> Frequency <strong>Sensor</strong> Association (IFSA).


<strong>Sensor</strong>s & Transducers Journal, Vol. 125, Issue 2, February 2011, pp. 107-114<br />

<strong>Sensor</strong>s & Transducers<br />

ISSN 1726-5479<br />

© 2011 by IFSA<br />

http://www.sensorsportal.com<br />

Fabrication of Polyaniline/ <strong>TiO</strong> 2 <strong>Nanocomposite</strong><br />

<strong>Ammonia</strong> <strong>Vapor</strong> <strong>Sensor</strong><br />

S. G. Pawar, S. L. Patil, M. A. Chougule, B. T. Raut, S. A. Pawar and * V. B. Patil<br />

Materials Research Laboratory, School of physical Sciences, Solapur University,<br />

Solapur (MS), India<br />

Tel.: +912172744771, fax: +912172744770<br />

E-mail: drvbpatil@gmail.com<br />

Received: 23 November 2010 /Accepted: 15 February 2011 /Published: 28 February 2011<br />

Abstract: Polyaniline/Titanium dioxide (PANi/<strong>TiO</strong> 2 ) nanocomposite was fabricated from PANi,<br />

prepared by oxidative chemical polymerization and <strong>TiO</strong> 2 , synthesized by sol gel method. The<br />

PANi/<strong>TiO</strong> 2 thin film sensors were prepared by spin coating technique. PANi/<strong>TiO</strong> 2 nanocomposites<br />

were characterized by XRD and SEM. The cross sensitivity of thin film sensor indicate that the sensor<br />

exhibit selectivity to ammonia (NH 3 ). The gas sensing measurements were carried out for different<br />

concentrations of NH 3 . The gas sensing study revealed that the response value increases with<br />

increasing concentration of NH 3 . Moreover, as concentration of NH 3 increases, the response time<br />

decreases while recovery time increases, which can be attributed to the varying adsorption and<br />

desorption rates of an ambient gas with increasing concentration. Copyright © 2011 IFSA.<br />

Keywords: PANi/<strong>TiO</strong> 2 nanocomposite, Response, Selectivity, Response time, Recovery time.<br />

1. Introduction<br />

In recent years, the demand for gas sensors for safety control requirements and environmental<br />

monitoring has expanded enormously. Choice of suitable sensing material along with efficient<br />

microelectronics for the detection system is the key step in such efforts [1]. The use of conducting<br />

polymers as sensing elements in chemical sensors is attracting attention due to their high sensitivity in<br />

change of the electrical and optical properties when exposed to different types of gases or liquids. The<br />

ease in synthesis of these polymers and sensitivity at room temperature add to the sensor’s advantages.<br />

This can be of importance particularly as ammonia sensors that are used in different applications such<br />

as industrial process, fertilizers, food technology, clinical diagnosis, farms and environmental pollution<br />

107


<strong>Sensor</strong>s & Transducers Journal, Vol. 125, Issue 2, February 2011, pp. 107-114<br />

monitoring [2]. Polyaniline is one of the most attractive materials among the variety of conducting<br />

polymers due to its unique electrical properties, environmental stability, easy fabrication process and<br />

intrinsic redox reaction [3-5]. Polyaniline has also been used in different applications such as light<br />

emitting diodes [6], rechargeable batteries [7] and photovoltaic cells [8]. However, the problems with<br />

these conducting polymers are their low processing ability, poor chemical stability and mechanical<br />

strength [9]. There is a tremendous approach for the enhancement of the mechanical strength and<br />

characteristics of sensors by combining the organic materials with inorganic counterparts to form<br />

composites [10, 11]. Accordingly, organic inorganic nanocomposite sensors have been developed by<br />

several research groups. Dhawale et al [12] fabricated polyaniline titanium dioxide heterostructure gas<br />

sensor for LPG sensing, Tai et al [13] fabricated a polyaniline titanium dioxide nanocomposite for NH 3<br />

and CO sensors and reported that the resistance of the composite increased with increasing<br />

concentration of the gases. The PANi/SnO 2 hybrid material was prepared by a hydrothermal method<br />

and studied for gas sensing of ethanol and acetone by L. Geng et al [14]. Parvatikar et al [15]<br />

fabricated polyaniline/WO 3 composite based sensor and reported that the film conductivity increased<br />

with increasing humidity. Among the inorganic materials, nanocrystalline <strong>TiO</strong> 2 is one of the most<br />

attractive and extensively used materials for detection of H 2 , LPG, NO 2 and NH 3 gases [12].<br />

In the present paper, we report fabrication of polyaniline/ <strong>TiO</strong> 2 nanocomposite thin film gas sensors<br />

working at room temperature. The cross sensitivity of the sensor to various gases indicate the<br />

selectivity of the sensor to ammonia. The nanocomposites were characterized by X-ray diffraction<br />

(XRD) in 2θ range of 10–70 o using X-ray Diffractometer (Model: Philips PW3710). Morphological<br />

study of PANi/<strong>TiO</strong> 2 (0 – 50 wt %) composite films was carried out using scanning electron microscopy<br />

(SEM Model: JEOL JSM 6360) operating at 20 kV. The gas sensing measurements were made using<br />

gas sensor set up at room temperature.<br />

2. Experimental<br />

2.1. Fabrication of PANi/<strong>TiO</strong> 2 <strong>Nanocomposite</strong> <strong>Sensor</strong> Films<br />

The <strong>TiO</strong> 2 nanocomposites with PANi were prepared by adding <strong>TiO</strong> 2 in different weight percentage<br />

(0 - 50 weight %) in smooth agate mortar and pestle. The nanocomposite powder was put in m-cresol<br />

and stirred for 11 hrs to get casting solution. Thin films were prepared on glass substrates by spin<br />

coating method at 3000 rpm for 40 s and dried on hot plate at 100 0 C for 10 min [16]. The silver paste<br />

strips of 1 mm wide and 1 cm apart from each other were made on films for contacts.<br />

3. Results and Discussion<br />

3.1. X- ray Diffraction Studies<br />

Fig. 1 denotes X-ray diffraction patterns of the PANi, <strong>TiO</strong> 2 and PANi/<strong>TiO</strong> 2 nanocomposites<br />

(20-50 wt %) materials. The XRD pattern of PANi (Fig. 1a) shows a broad peak at 2θ= 25.30˚ which<br />

corresponds to (110) plane of PANi [17]. The diffraction pattern of <strong>TiO</strong> 2 (Fig. 1b) show sharp and well<br />

defined peaks, indicate the crystallinity of synthesized material. The intensities of diffraction peaks for<br />

PANi/<strong>TiO</strong> 2 nanocomposites (Fig. 1 c) are lower than that for <strong>TiO</strong> 2 . The presence of amorphous PANi<br />

reduces the mass volume percentage of <strong>TiO</strong> 2 and sequentially weakens diffraction peaks of <strong>TiO</strong> 2 . It has<br />

also been observed that the crystallinity of PANi is improved by the addition of <strong>TiO</strong> 2 nanoparticles.<br />

XRD diffractograms of PANi/<strong>TiO</strong> 2 nanocomposites have shown that all major diffraction peaks of<br />

nanocrystalline <strong>TiO</strong> 2 and are in the same peak angle positions. The observed 2θ values are consistent<br />

with the standard JCPDS values (JCPDS No. 78-1285 & 86) which enumerate the mixed anatase and<br />

rutile tetragonal structure of <strong>TiO</strong> 2 .<br />

108


<strong>Sensor</strong>s & Transducers Journal, Vol. 125, Issue 2, February 2011, pp. 107-114<br />

(a)<br />

Pure PANi<br />

(b)<br />

101 A<br />

<strong>TiO</strong>2<br />

Intensity (a.u)<br />

Intensity (a.u)<br />

101 R<br />

111 R<br />

004 A<br />

200 A<br />

105 A<br />

211 A<br />

204 A<br />

116 A<br />

220 A<br />

215A<br />

110<br />

10 20 30 40 50 60 70<br />

2 (degree)<br />

20 30 40 50 60 70 80<br />

2 (degree)<br />

(a)<br />

(b)<br />

(c)<br />

101 A<br />

PANi:<strong>TiO</strong> 2<br />

Intensity (a.u.)<br />

50 %<br />

40 %<br />

110 PANi<br />

004 A<br />

112 A<br />

105 A<br />

211 A<br />

204 A<br />

116 A<br />

30 %<br />

20 %<br />

10 20 30 40 50 60 70<br />

2 q (degree)<br />

(c)<br />

Fig. 1. X ray diffraction patterns of a) Pure PANi b) <strong>TiO</strong> 2 and C) PANi/<strong>TiO</strong> 2 (0 - 50 wt %).<br />

3.2. Scanning Electron Microscopy<br />

Fig. 2 a, b and c shows the scanning electron micrographs of PANi, <strong>TiO</strong> 2 and PANi/<strong>TiO</strong> 2 (50 wt %)<br />

films at x 20,000 magnification, respectively. The SEM image of the polyaniline film (Fig. 2a) exhibits<br />

a fibrous structure with many pores and gaps among the fibers. Fig. 2b shows the surface morphology<br />

of the <strong>TiO</strong> 2 nanoparticles film, annealed at 700˚C for 1 h. The image shows that the nanoparticles are<br />

fine with an average grain size of about 60 nm. The image of the nanocomposite (Fig. 2c) shows that<br />

there is no agglomeration and uniform distribution of the <strong>TiO</strong> 2 particles in the PANi matrix. It was<br />

considered that the nanostructured <strong>TiO</strong> 2 particles embedded within the netlike structure built by PANi<br />

chains.<br />

The morphology plays an important role in sensitivity of the gas sensing films. The grain sizes,<br />

structural formation, surface to volume ratio and film thickness are important parameters for gas<br />

sensing films. It can be seen that the PANi and PANi/<strong>TiO</strong> 2 films have a very porous structure,<br />

interconnected network of fibers and high surface area. It has also been pointed out that such structure<br />

contributes to a rapid diffusion of dopants into the film.<br />

109


<strong>Sensor</strong>s & Transducers Journal, Vol. 125, Issue 2, February 2011, pp. 107-114<br />

(a)<br />

(b)<br />

(c)<br />

Fig. 2. Scanning electron micrographs of a) PANi; b) <strong>TiO</strong> 2 and c) PANi/<strong>TiO</strong> 2 (50 wt %) films.<br />

3.3. Gas Sensing Measurements<br />

In order to record response to different gases, contacts were made on the silver paste strips, 1mm wide<br />

and 1cm apart from each other. The films deposited on the glass substrates were mounted in an airtight<br />

SS housing of 250 cc and measured quantity of desired gas (from a standard canister of 1000 ppm<br />

concentration) was injected through syringe so as to yield desired gas concentration in the housing.<br />

The room temperature gas response to various concentrations of different oxidizing and reducing<br />

(ammonia, ethanol, methanol, nitrogen dioxide and hydrogen sulfide) gases were measured by<br />

recording the resistance of the film in air and in presence of any particular ambient. A Rigol 3062<br />

(6 ½ digit) DMM was used to measure the resistance variation of the sensor films. The sensor response<br />

(S) was defined as S = (Rg – Ra)/Ra, where Rg and Ra are the resistance of sensor film in a measuring<br />

gas and in clean air respectively [13]. The gas sensing measurement set up used is as shown in Fig. 3.<br />

An attempt was made to study selectivity of PANi/<strong>TiO</strong> 2 films for lower concentration of NH 3 (20 ppm)<br />

as compared to the sensitivities for higher concentration of CH 3 -OH, C 2 H 5 -OH, NO 2 and H 2 S<br />

(100 ppm). The bar chart for selectivity is as shown in Fig. 4. It is observed that PANi/<strong>TiO</strong> 2 thin films<br />

can sense lower concentration of NH 3 with higher sensitivity value as compared to large concentration<br />

of other gases. The plausible mechanism of selectivity for NH 3 may be traced to the characteristics of<br />

vapor adsorbed over the surface of PANi/<strong>TiO</strong> 2 nanocomposite.<br />

110


<strong>Sensor</strong>s & Transducers Journal, Vol. 125, Issue 2, February 2011, pp. 107-114<br />

Fig. 3. Gas sensing measurement set up.<br />

20 pp m PANi/ Ti O2<br />

10<br />

8<br />

Response %<br />

6<br />

4<br />

2<br />

0<br />

100 pp m<br />

100 pp m 100 pp m 100 pp m<br />

NH3 CH3-OH C2H5-OH NO2 H2S<br />

Gas<br />

Fig. 4. Gas responses of PANi/<strong>TiO</strong> 2 sensor film to 20 ppm of NH 3 and 100 ppm<br />

of CH 3 -OH, C 2 H 5 -OH, NO 2 and H 2 S.<br />

Therefore the sensing capability of PANi/<strong>TiO</strong> 2 (50 wt %) nanocomposite sensor towards different<br />

concentrations (20 -100 ppm) of ammonia vapour has been explored and compared with the results<br />

obtained for PANi sensor film. Fig. 5 (a) shows electrical response of PANi to 100 ppm of NH 3 and<br />

Fig. 5 (b) of PANi/<strong>TiO</strong> 2 to 20, 40, 60, 80 and 100 ppm of NH 3 . As seen for both the sensor films, the<br />

resistance increases dramatically upon exposure to ammonia vapor, attains stable value and decreases<br />

gradually after being transferred to clean air.<br />

Moreover, the nanocomposite sensor exhibit high response to ammonia than pure PANi sensor. The<br />

increase in resistance after exposure to NH 3 may be because of porous structure of PANi/<strong>TiO</strong> 2 films<br />

leads to the predominance of surface phenomena over bulk material phenomena, which may again be<br />

111


<strong>Sensor</strong>s & Transducers Journal, Vol. 125, Issue 2, February 2011, pp. 107-114<br />

due to surface adsorption effect, and chemisorptions leads to the formation of ammonium. The<br />

resistance attains stable value when dynamic equilibrium is attained [19]. In order to explain the higher<br />

response and gas sensing mechanism of PANi/<strong>TiO</strong> 2 nanocomposite H. Tai et al [13] postulated that<br />

PANi and <strong>TiO</strong> 2 may form a p-n junction and the observed increased response of the nanocomposite<br />

material may be due to the creation of positively charged depletion layer on the surface of <strong>TiO</strong> 2 which<br />

could be formed owing to inter –particle electron migration from <strong>TiO</strong> 2 to PANi at the heterojunction.<br />

This would cause the reduction of the activation energy and enthalpy of physisorption for NH 3 gas.<br />

(a)<br />

Gas out<br />

2.2<br />

PANi<br />

100ppm NH3<br />

2.6<br />

2.4<br />

(b) PANi:<strong>TiO</strong> 2<br />

100ppm<br />

80ppm<br />

60ppm<br />

40ppm<br />

20ppm<br />

Resistance (x10 6 )/ <br />

2.1<br />

2.0<br />

1.9<br />

Resistance (x10 5 )/ <br />

2.2<br />

2.0<br />

1.8<br />

1.8<br />

Gas in<br />

0 100 200 300 400 500 600<br />

Time/ s<br />

1.6<br />

100 200 300 400 500 600 700<br />

Time/ s<br />

(a)<br />

(b)<br />

Fig. 5. Gas responses of PANi/<strong>TiO</strong> 2 sensor film to 20 ppm of NH 3 and 100 ppm<br />

of CH 3 -OH, C 2 H 5 -OH, NO 2 and H 2 S.<br />

The response values of PANi/<strong>TiO</strong> 2 sensor film is plotted as a function of NH 3 concentration in Fig. 6. It<br />

is observed that the response slows down at higher concentration; this may be due to less availability<br />

of surface area with possible reaction sites on surface of the film.<br />

50 PANi: <strong>TiO</strong> 2<br />

45<br />

40<br />

35<br />

Response%<br />

30<br />

25<br />

20<br />

15<br />

10<br />

20 40 60 80 100<br />

NH 3<br />

ppm<br />

Fig. 6. Response of PANi/<strong>TiO</strong> 2 thin film sensor to NH 3 (20- 100 ppm).<br />

112


<strong>Sensor</strong>s & Transducers Journal, Vol. 125, Issue 2, February 2011, pp. 107-114<br />

The response/recovery time is an important parameter use for characterizing a sensor. The response<br />

time and recovery time are defined as the times of 90% total resistance change [12]. Fig. 7 shows the<br />

response and recovery times of PANi/<strong>TiO</strong> 2 for different concentrations of NH 3 . It is revealed that the<br />

response time decreases from 72 s to 41 s, when NH 3 concentration increased from 20 ppm<br />

to 100 ppm, this may be because of high surface area due to porous structure of exposed film which<br />

facilitates rapid diffusion of gas molecules into the film. From the same graph, it is found that for<br />

higher concentration of NH 3 , the recovery time was long. This may probably due to lower desorption<br />

rate and reaction products are not leaving from the interface immediately after the reaction.<br />

Response time /s<br />

74<br />

72<br />

70<br />

68<br />

66<br />

64<br />

62<br />

60<br />

58<br />

56<br />

54<br />

52<br />

50<br />

48<br />

46<br />

44<br />

42<br />

40<br />

38<br />

Response<br />

Recovery<br />

20 40 60 80 100<br />

NH 3<br />

Conc./ ppm<br />

540<br />

520<br />

500<br />

480<br />

460<br />

440<br />

420<br />

400<br />

380<br />

360<br />

340<br />

Recovery time /s<br />

Fig. 7. Variation of response and recovery time of the PANi/<strong>TiO</strong> 2 thin film sensor<br />

with NH 3 concentration.<br />

4. Conclusions<br />

The PANi/<strong>TiO</strong> 2 thin film sensor was fabricated by spin coating technique. The composites have poorer<br />

crystallinity than <strong>TiO</strong> 2 , because of amorphous structure of PANi. But crystallinity of nanocomposites<br />

has been improved with increasing percentage of <strong>TiO</strong> 2 nanoparticles. It can be seen that PANi/<strong>TiO</strong> 2<br />

film has a very porous structure, interconnected network of fibers and high surface area, which<br />

contributes to a rapid diffusion of dopants into the film. The cross sensitivity of thin film sensor<br />

indicate that the sensor exhibit selectivity to ammonia (NH 3 ). The gas sensing measurements were<br />

carried out for different concentrations of NH 3 at room temperature. It is observed that the response<br />

slows down at higher concentration; this may be due less availability of surface area with possible<br />

reaction sites on surface of the film. Moreover, as concentration of NH 3 increases, the response time<br />

decreases while recovery time increases, which can be attributed to the varying adsorption and<br />

desorption rates of an ambient gas with increasing concentration.<br />

Acknowledgements<br />

Authors (VBP) are grateful to the Department of Science and Technology, New Delhi for financial<br />

support through the scheme no. SR/FTP/PS-09/2007. Thanks are also extended to Dr. Rashinkar,<br />

Department of Chemistry, SUK for FTIR facility, Prof. Lonikar, School of chemical Sciences, SUS for<br />

UV facility and Dr. P. S. Patil, Department of Physics, Shivaji University, Kolhapur for providing<br />

SEM facility.<br />

113


<strong>Sensor</strong>s & Transducers Journal, Vol. 125, Issue 2, February 2011, pp. 107-114<br />

References<br />

[1]. G. K. Prasad, T. P. Radhakrishnan, D. Sravan Kumar, M. Ghanshyam Krishna, <strong>Ammonia</strong> sensing<br />

characteristics of thin film based on polyelectrolyte template polyaniline, Sens. Actuat. B, 106, 2005,<br />

pp. 626-631.<br />

[2]. C. Wrenn, Real time measurement of ammonia gas, Occu. Health Saf., 69b, 2000, pp. 64-67.<br />

[3]. R. L. N. Chandrakanthi, M. A. Careem, Preparation and characterization of CdS and Cu 2 S<br />

nanoparticle/polyaniline composite films, Thin Solid Films, 417, 2002, pp. 51-56.<br />

[4]. P. R. Somani, R. Marimuthu, U. P. Mulik, S. R. Mulik, S. R. Sanikar, D. P. Amalnerkar, High<br />

piezorestivity and its origin in conducting polyaniline/<strong>TiO</strong> 2 composites, Synth. Met., 106, 1999, pp. 45-52.<br />

[5]. Y. He, Synthesis of polyaniline/nano-CeO 2 composite microspheres via a solid – stabilized emulsion route,<br />

Mater. Chem. Phys., 92, 2005, pp. 134-137.<br />

[6]. S. A. Chen, K. R. Chuang, C. I. Chao, H. T. Lee, White light emission from electroluminescence diode<br />

with polyaniline as the emitting layer, Synth. Met., 82, 1996, pp. 207-210.<br />

[7]. A. G. MacDiarmid, L. S. Yang, W. S. Huang, B. D. Humphrey, Polyaniline: electrochemistry and<br />

application to rechargeable batteries, Synth Met., 18, 1987, pp. 393-398.<br />

[8]. D. Verma, V. Datta, Role of novel microstructure of polyaniline-CSA thin film in ammonia sensing at<br />

room temperature, Sens. Actuat. B, 134, 2008, pp. 373-376.<br />

[9]. M. Mastuguchi, A. Okamoto, Y, Sakai, Effect of humidity on NH 3 gas sensitivity of polyaniline blend<br />

films, Sens. Actuators B, 94, 2003, pp. 46-42.<br />

[10]. F. Y. Chaung, S. M Yang, Titanium oxidepolyaniline core-shell nanocomposites, Synth. Met., 152, 2005,<br />

pp. 361-364.<br />

[11]. A. Z. Sadek, W. Wlodarski, K. Shin, R. Bkaner, K. Kalantar-zadeh, A layered surface acoustic wave gas<br />

sensor based on a polyaniline/ In 2 O 3 nanofibre composite, Nanotechnology, 17, 2006, pp. 4488-4492.<br />

[12]. D. S. Dhawale, R. R. Salunkhe, U. M. Patil, K. V. Gurav, A. M. More, C. D. Lokhande, Room temperature<br />

liquefied petroleum gas (LPG) sensor based on p-polyaniline/n-<strong>TiO</strong> 2 heterojunction, Sens. Actuat. B, 134,<br />

2008, pp. 988-992.<br />

[13]. H. Tai, Y. Juang, G. Xie, J. Yu, X. Chen, Fabrication and gas sensitivity of polyaniline- titanium dioxide<br />

nanocomposite thin film, Sens. Actuators B, 125, 2007, pp. 664-650.<br />

[14]. L. Geng, Y. Zhao, X. Huang, S. Wang, S. Zhang, S. Wu, Characterization and gas sensitivity study of<br />

polyaniline/SnO2 hybrid material prepared by hydrothermal route, Sens. Actuators B, 120, 2007,<br />

pp. 568-572.<br />

[15]. N. Parvatikar, S. Jain, S. Khasim, M. Ravansiddappa, S. V. Bhoraskar, M. V. N. Ambikaprasad, Electrical<br />

and humidity sensing properties of polyaniline/WO 3 composites, Thin Solid Films, 514, 2006, pp. 329-333.<br />

[16]. S. G. Pawar, S. L. Patil, M. A. Chougule, A. T. Mane, D. M. Jundale, V. B. Patil, Synthesis and<br />

Characterization of Polyaniline: <strong>TiO</strong> 2 <strong>Nanocomposite</strong>s, <strong>International</strong> Journal of Polymeric Material, 59,<br />

2010, pp. 777-789.<br />

[17]. S. G. Pawar, S. L. Patil, A. T. Mane, B. T. Raut, V. B. Patil, Growth, characterization and gas sensing<br />

properties of polyaniline thin films, Archives of Applied Science Research, 1, 2, 2009, pp. 109.<br />

[18]. S. G. Pawar, S. L. Patil, M. A. Chougule, D. M. Jundale, V. B. Patil, Synthesis and characterization of<br />

nanocrystalline <strong>TiO</strong> 2 thin films, J. Mater Sci: Mater Electron., Vol. 22, No. 3, pp.260-264.<br />

[19]. H. Tai, Y. Juang, G. Xie, J. Yu, X. Chen, Z. Ying, Influence of polymerization temperature on NH 3<br />

response of PANI/<strong>TiO</strong> 2 thin film gas sensor, Sens. Actuators B, 129, 2008, pp. 319- 326.<br />

___________________<br />

2011 Copyright ©, <strong>International</strong> Frequency <strong>Sensor</strong> Association (IFSA). All rights reserved.<br />

(http://www.sensorsportal.com)<br />

114


<strong>Sensor</strong>s & Transducers Journal<br />

Guide for Contributors<br />

Aims and Scope<br />

<strong>Sensor</strong>s & Transducers Journal (ISSN 1726-5479) provides an advanced forum for the science and technology<br />

of physical, chemical sensors and biosensors. It publishes state-of-the-art reviews, regular research and<br />

application specific papers, short notes, letters to Editor and sensors related books reviews as well as<br />

academic, practical and commercial information of interest to its readership. Because of it is a peer reviewed<br />

international journal, papers rapidly published in <strong>Sensor</strong>s & Transducers Journal will receive a very high<br />

publicity. The journal is published monthly as twelve issues per year by <strong>International</strong> Frequency <strong>Sensor</strong><br />

Association (IFSA). In additional, some special sponsored and conference issues published annually. <strong>Sensor</strong>s &<br />

Transducers Journal is indexed and abstracted very quickly by Chemical Abstracts, IndexCopernicus Journals<br />

Master List, Open J-Gate, Google Scholar, etc. Since 2011 the journal is covered and indexed (including a<br />

Scopus, Embase, Engineering Village and Reaxys) in Elsevier products.<br />

Topics Covered<br />

Contributions are invited on all aspects of research, development and application of the science and technology<br />

of sensors, transducers and sensor instrumentations. Topics include, but are not restricted to:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Physical, chemical and biosensors;<br />

Digital, frequency, period, duty-cycle, time interval, PWM, pulse number output sensors and<br />

transducers;<br />

Theory, principles, effects, design, standardization and modeling;<br />

Smart sensors and systems;<br />

<strong>Sensor</strong> instrumentation;<br />

Virtual instruments;<br />

<strong>Sensor</strong>s interfaces, buses and networks;<br />

Signal processing;<br />

Frequency (period, duty-cycle)-to-digital converters, ADC;<br />

Technologies and materials;<br />

Nanosensors;<br />

Microsystems;<br />

Applications.<br />

Submission of papers<br />

Articles should be written in English. Authors are invited to submit by e-mail editor@sensorsportal.com 8-14<br />

pages article (including abstract, illustrations (color or grayscale), photos and references) in both: MS Word<br />

(doc) and Acrobat (pdf) formats. Detailed preparation instructions, paper example and template of manuscript<br />

are available from the journal’s webpage: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm Authors<br />

must follow the instructions strictly when submitting their manuscripts.<br />

Advertising Information<br />

Advertising orders and enquires may be sent to sales@sensorsportal.com Please download also our media kit:<br />

http://www.sensorsportal.com/DOWNLOADS/Media_Kit_2011.pdf

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!