30.10.2014 Views

Dirac structures TJ Courant: Dirac Manifolds, Trans. AMS, 319 (1990 ...

Dirac structures TJ Courant: Dirac Manifolds, Trans. AMS, 319 (1990 ...

Dirac structures TJ Courant: Dirac Manifolds, Trans. AMS, 319 (1990 ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

✬<br />

✩<br />

<strong>Dirac</strong> <strong>structures</strong><br />

Juan Carlos Marrero<br />

XVIII International Workshop on Geometric Methods in<br />

Theoretical Mechanics, Jaca 2003, August 2003<br />

T.J. <strong>Courant</strong>: <strong>Dirac</strong> <strong>Manifolds</strong>, <strong>Trans</strong>. A.M.S.,<br />

<strong>319</strong> (<strong>1990</strong>), 631-661.<br />

✫<br />

✪<br />

1


✬<br />

✩<br />

Scheme of the talk<br />

I LINEAR DIRAC STRUCTURES<br />

I.1 Linear <strong>Dirac</strong> <strong>structures</strong> on a vector space<br />

I.2 Basis of a linear <strong>Dirac</strong> structure<br />

I.3 Induced linear <strong>Dirac</strong> <strong>structures</strong><br />

II SMOOTH DIRAC STRUCTURES<br />

II.1 Lie algebroids<br />

II.2 Almost-<strong>Dirac</strong> <strong>structures</strong> on manifolds<br />

II.3 <strong>Dirac</strong> <strong>structures</strong> on manifolds<br />

II.4 The Poisson bracket on admissible functions<br />

II.5 <strong>Dirac</strong> <strong>structures</strong> as Poisson <strong>structures</strong> on<br />

quotient manifolds<br />

II.6 Darboux coordinates around a regular point<br />

II.7 Induced <strong>Dirac</strong> <strong>structures</strong><br />

✫<br />

✪<br />

2


✬<br />

✩<br />

Linear <strong>Dirac</strong> Structures<br />

I.1 <strong>Dirac</strong> <strong>structures</strong> on a vector space<br />

V a real vector space of finite dimension<br />

< , > + the natural symmetric pairing on V ⊕ V ∗<br />

< (x, α), (y, β) > + = 1 ∗<br />

{α(y)+β(x)}, (x, α), (y, β) ∈ V ⊕V<br />

2<br />

< , > − the natural skew-symmetric pairing on V ⊕ V ∗<br />

< (x, α), (y, β) > − = 1 ∗<br />

{α(y)−β(x)}, (x, α), (y, β) ∈ V ⊕V<br />

2<br />

L a subspace of V ⊕ V ∗<br />

L a linear <strong>Dirac</strong> structure on V<br />

⇕<br />

L is maximally isotropic under < , > +<br />

L a subspace of V ⊕ V ∗<br />

dim L = r dim L ∩ V ∗ = r − s<br />

⇓<br />

{(e 1 , α 1 ), . . . , (e s , α s ), (0, α s+1 ), . . . , (0, α r )} a basis of L<br />

and {e 1 , . . . , e s } are linearly independent<br />

✫<br />

3<br />


✬<br />

✩<br />

Theorem: L a subspace of V ⊕ V ∗<br />

L a linear <strong>Dirac</strong> structure on V ⇔ L = L ⊥<br />

⇔ L is isotropic and dim L = dim V<br />

Examples:<br />

i) A : V → V ∗ a linear skew-symmetric map<br />

⇓<br />

graphA = {(x, A(x)) ∈ V ⊕ V ∗ /x ∈ V }<br />

linear <strong>Dirac</strong> structure on V<br />

ii) B : V ∗ → V a linear skew-symmetric map<br />

⇓<br />

graphB = {(B(x), α) ∈ V ⊕ V ∗ /α ∈ V ∗ }<br />

linear <strong>Dirac</strong> structure on V<br />

✫<br />

✪<br />

4


✬<br />

✩<br />

Characteristic equations of a linear <strong>Dirac</strong> structure<br />

ρ : V ⊕V ∗ → V, ρ ∗ : V ⊕V ∗ → V ∗ canonical projections<br />

L a linear <strong>Dirac</strong> structure<br />

L ∩ V ∗ ⊆ ρ(L) 0 , dim ρ(L) 0 = dim L ∩ V ∗<br />

⇓<br />

ρ(L) 0 = L ∩ V ∗<br />

ρ ∗ (L) ⊆ (L ∩ V ) 0 , dim ρ ∗ (L) = dim(L ∩ V ) 0<br />

⇓<br />

ρ ∗ (L) = (L ∩ V ) 0<br />

✫<br />

✪<br />

5


✬<br />

✩<br />

Theorem:<br />

A <strong>Dirac</strong> structure on a vector space V<br />

is equivalently defined as a subspace together with<br />

a skew-symmetric 2-form on it<br />

• E a subspace of V, Ω E : E × E → R a 2-form on E<br />

⇓<br />

L = {(x, α) ∈ V ⊕ V ∗ /x ∈ E, α |E = i(x)Ω E }<br />

linear <strong>Dirac</strong> structure on V<br />

• L a <strong>Dirac</strong> structure on V<br />

⇓<br />

E = ρ(L)<br />

Ω E : E × E → R a 2-form on E<br />

Ω E (x, y) = α(y) if (x, α) ∈ L<br />

Remark:<br />

L a <strong>Dirac</strong> structure on V<br />

⇓<br />

ker Ω ρ(L) = L ∩ V<br />

✫<br />

✪<br />

6


✬<br />

✩<br />

L ⊆ V ⊕ V ∗ a linear <strong>Dirac</strong> structure on V<br />

⇓<br />

π L a 2-vector on V/L ∩ V<br />

(V/L ∩ V ) ∗ ∼ = (L ∩ V ) 0 = ρ ∗ (L)<br />

π L : ρ ∗ (L) × ρ ∗ (L) → R<br />

π L (α, β) = β(u),<br />

if (u, α) ∈ L<br />

π L (α, β) = 0, ∀β ⇔ α(v) = 0, ∀v ∈ ρ(L) ⇔ α ∈ ρ(L) 0 =L ∩ V ∗<br />

ker π L = L ∩ V ∗<br />

rank π L = dim(V/V ∩ L) ∗ − dim(L ∩ V ∗ )<br />

= dim V − (dim L ∩ L + dim L ∩ V ∗ )<br />

✫<br />

7<br />


✬<br />

I.2 Basis of a linear <strong>Dirac</strong> structure<br />

L ⊆ V ⊕ V ∗ a linear <strong>Dirac</strong> structure on V<br />

✩<br />

a : R n → V,<br />

dim V = n<br />

A basis of L<br />

⇓<br />

b : R n → V ∗ linear maps<br />

{(ae 1 , be 1 ), . . . , (ae n , be n )} basis of L<br />

Isotropic character of L<br />

⇓<br />

dim L = n<br />

⇓<br />

a ∗ ◦ b + b ◦ a ∗ = 0 ker a ∩ ker b = {0} (1)<br />

a : R n → V, b : R n → V ∗ linear maps which satisfy (1)<br />

L = {(ax, bx)/x ∈ R n } a linear <strong>Dirac</strong> structure on V<br />

An application:<br />

V a real vector space of finite dimension<br />

< , >: V × V → R an scalar product onV<br />

♭ < , > : V → V ∗ linear isomorphism<br />

I(V ) = {φ : V → V/φ is a linear isometry}<br />

⇓<br />

✫<br />

Theorem: There exists a one-to-one correspondence<br />

between the set of linear <strong>Dirac</strong> <strong>structures</strong><br />

on V and I(V )<br />

8<br />


✬<br />

✩<br />

Proof: ” ← ”) φ : V → V a linear isometry<br />

⇓<br />

L = {(x + φ(x), ♭ < , > (x) − ♭ < , > (φ(x))) ∈ V × V ∗ /x ∈ V }<br />

is a linear <strong>Dirac</strong> structure on V<br />

” → ” L ⊆ V ⊕ V ∗ a linear <strong>Dirac</strong> structure on V<br />

a : R n → V,<br />

b : R n → V ∗ a basis of L<br />

¯b = ♭< , > ◦ b : R n → V ∗ → V<br />

⇓<br />

a + ¯b, a − ¯b : R n → V are linear isomorphies<br />

φ = (a + ¯b) ◦ (ā − ¯b) −1 : V → V is a linear isometry<br />

φ does not depend on the basis (a, b) of L<br />

Corollary: There exists a one-to-one correspondence<br />

between linear <strong>Dirac</strong> <strong>structures</strong> on R n<br />

and the orthogonal group O(n) of order n<br />

✫<br />

9<br />


✬<br />

✩<br />

I.3 Induced linear <strong>Dirac</strong> <strong>structures</strong><br />

V a real vector space of finite dimension<br />

W a subspace of V<br />

L a <strong>Dirac</strong> structure on V<br />

E = ρ(L), Ω E : E × E → R the corresponding 2-form<br />

E W = E ∩ W = ρ(L) ∩ W, Ω EW = (Ω E ) |E∩W<br />

⇓<br />

L W ≡ (E W , Ω EW )) a linear <strong>Dirac</strong> structure on W<br />

An alternative description<br />

L W = L ∩ (W ⊕ V ∗ )<br />

L ∩ ({0} ⊕ W 0 )<br />

ker Ω EW = L W ∩ W ∼ = L ∩ (W ⊕ W 0 )<br />

L ∩ ({0} ⊕ W 0 )<br />

✫<br />

✪<br />

10


✬<br />

✩<br />

II. Smooth <strong>Dirac</strong> Structures<br />

II.1 Lie algebroids<br />

A → P a real vector bundle over P<br />

([ , ], ρ) a Lie algebroid structure on A<br />

i) [ , ] : Γ(A) × Γ(A) → Γ(A) is a Lie braket<br />

ii) ρ : A → T P a homomorphism of vector<br />

bundles and<br />

[X, fY ] = f [X, Y ] + ρ(X)(f)Y,<br />

X, Y ∈ Γ(A), f ∈ C ∞ (P, R)<br />

Remark: i) + ii) ⇒ ρ : Γ(A) → X(P ) is a Lie algebra<br />

homomorphism<br />

Theorem: ([ , ], ρ) Lie algebroid structure on A<br />

⇒ x ∈ M → ρ(A)(x) ⊆ T x P defines a generalized<br />

foliation on P<br />

✫<br />

11<br />


✬<br />

✩<br />

Examples: i) P a smooth manifold<br />

⇓<br />

(T P, [ , ], Id) is a Lie algebroid on P<br />

ii) (P, π) a Poisson manifold(⇔ π ∈ V 2 (M), [π, π] SN = 0)<br />

⇓<br />

(T ∗ P, [ , ] π , # π ) is a Lie algebroid<br />

[α, β ] π = L #π (α)β − L #π (β)α − d(π(α, β))<br />

β(# π (α)) = π(α, β),<br />

α, β ∈ Ω 1 (M)<br />

✫<br />

✪<br />

12


✬<br />

✩<br />

II.2 Almost-<strong>Dirac</strong> <strong>structures</strong> on manifolds<br />

P a smooth manifold (dim P = m)<br />

Natural symmetric and skew-symmetric pairings on<br />

T P ⊕ T ∗ P<br />

< (X, α), (Y, β) > + = 1 (α(Y ) + β(X))<br />

2<br />

< (X, α), (Y, β) > − = 1 (α(Y ) − β(X))<br />

2<br />

X, Y ∈ T p P, α, β ∈ T ∗ p P<br />

L a vector subbundle of T P ⊕ T ∗ P<br />

Definition: L is an almost-<strong>Dirac</strong> structure on P ⇔<br />

L P<br />

is a linear <strong>Dirac</strong> structure on T p P , for all p ∈ P<br />

Corollary: The following conditions are equivalent:<br />

(i)L is an almost-<strong>Dirac</strong> structure on P<br />

(ii) L is a maximally isotropic vector subbundle<br />

of T P ⊕ T ∗ P under < , > +<br />

(iii) L = L ⊥<br />

(iv) L is a isotropic vector subbundle of<br />

T P ⊕ T ∗ P of rank m<br />

✫<br />

13<br />


✬<br />

L an almost-<strong>Dirac</strong> structure on P<br />

ρ : T P ⊕ T ∗ P → T P,<br />

canonical projections<br />

ρ ∗ : T P ⊕ T ∗ P → T ∗ P<br />

Characteristic equations of L<br />

ρ(L) 0 = L ∩ T ∗ P, ρ ∗ (L) = (L ∩ T P ) 0<br />

✩<br />

The 2-form Ω L : ρ(L) → ρ(L) ∗<br />

ker Ω L = L ∩ T P<br />

Examples: i) Poisson <strong>structures</strong><br />

π : T ∗ P → T P a Poisson structure on P<br />

⇓<br />

L π = graphπ = {(# π (α), α) ∈ T P ⊕ T ∗ P/α ∈ T ∗ P }<br />

almost-<strong>Dirac</strong> structure on P<br />

ρ(L π ) = im(π) symplectic foliation associated with π<br />

L π ∩ T P = {0} ⇒ ρ ∗ (L π ) = T ∗ P<br />

Ω Lπ<br />

is a non-degenerate 2-form<br />

S p the symplectic leaf passing through p<br />

⇓<br />

Ω Lπ |S p<br />

✫<br />

is the symplectic 2-form on S p<br />

14<br />


✬<br />

✩<br />

ii) Presymplectic <strong>structures</strong><br />

Ω : T P → T ∗ P a closed 2-form on P<br />

⇓<br />

L Ω = graphΩ = {(x, i(x)Ω)/x ∈ T P }<br />

an almost-<strong>Dirac</strong> structure on P<br />

ρ(Ω) = T P<br />

⇓<br />

The foliation associated with L Ω has an only leaf: P<br />

L Ω ∩ T P = ker Ω<br />

Additional <strong>structures</strong> in i) and ii)<br />

[π, π] SN = 0<br />

dΩ = 0<br />

⇓<br />

<strong>Dirac</strong> <strong>structures</strong> on manifolds<br />

✫<br />

✪<br />

15


✬<br />

✩<br />

II.3 <strong>Dirac</strong> <strong>structures</strong> on manifolds<br />

P a smooth manifold<br />

The <strong>Courant</strong> bracket on Γ(T P ⊕ T ∗ P ) ∼ = X(P ) × Ω 1 (P )<br />

[(X, α), (Y, β)] = ([X, Y ], L X β − L Y α + d <<br />

(X, α), (Y, β) > − )<br />

L an almost-<strong>Dirac</strong> structure on P<br />

T L (e 1 , e 2 , e 3 ) =< [e 1 , e 2 ], e 3 > + , e i ∈ Γ(L)<br />

Define T ∈ Γ(∧ 3 (T P ⊕ T ∗ P ) ∗ )<br />

T ((X, α), (Y, β), (Z, γ)) = −{dα(Y, Z)+dβ(Z, X)+dγ(X, Y )<br />

+X(< (Y, β), (Z, γ) > − ) + Y (< (Z, γ), (X, α) > − )+<br />

Z(< (X, α), (Y, β) > − )}<br />

Proposition T L = T |Γ(L)×Γ(L)×Γ(L) . In particular,<br />

T L ∈ Γ(∧ 3 L ∗ )<br />

Proposition: (X, α), (Y, β), (Z, γ) ∈ Γ(L), f ∈ C ∞ (P, R)<br />

⇓<br />

• [(X, α), f(Y, β)] = f[(X, α), (Y, β)] + X(f)(Y, β)<br />

• [[(X, α), (Y, β)], (Z, γ)] + [[(Y, β), (Z, γ)], (X, α)] +<br />

[[(Z, γ), (X, α)], (Y, β)] = (0, dT L ((X, α), (Y, β), (Z, γ))))<br />

✫<br />

16<br />


✬<br />

✩<br />

Definition: L a <strong>Dirac</strong> structure on P ⇔<br />

Γ(L) is closed under the bracket [ , ]<br />

Theorem: If L is an almost-<strong>Dirac</strong> structure<br />

on P , then the following conditions are<br />

equivalent:<br />

(i) L is a <strong>Dirac</strong> structure on P<br />

(ii) T L identically vanishes<br />

(iii) (L, [ , ] |Γ(L)×Γ(L) , ρ |L ) is a Lie algebroid<br />

Corollary: L a <strong>Dirac</strong> structure on P ⇒<br />

ρ(L) generates a singular foliation on P<br />

✫<br />

17<br />


✬<br />

✩<br />

L a <strong>Dirac</strong> structure on P<br />

F a leaf of ρ(L)<br />

⇓<br />

Ω F a 2-form on F<br />

y ∈ F → Ω F (y) = Ω L (y) : T y F × T y F → R<br />

X 1 (y), X 2 (y), X 3 (y) ∈ T y F/X i (y) = ρ L (e i (y))<br />

e i (y) ∈ L y , ∀i ∈ {1, 2, 3}<br />

⇓<br />

dΩ F (y)(X 1 (y), X 2 (y), X 3 (y)) =<br />

T L (y)(e 1 (y), e 2 (y), e 3 (y)) = 0<br />

Theorem: If L is a <strong>Dirac</strong> structure on P<br />

then there exits a generalized foliation<br />

on P whose leaves are presymplectic<br />

manifolds.<br />

✫<br />

✪<br />

18


✬<br />

✩<br />

Examples: i) Poisson manifolds<br />

π a Poisson structure on P<br />

⇓<br />

L π = {(# π (α), α) ∈ T P ⊕ T ∗ P/α ∈ T ∗ P } a <strong>Dirac</strong><br />

structure on P<br />

L π → T ∗ P,<br />

((# π )(α), α) → α<br />

a Lie algebroid isomorphism<br />

ρ(L π )(y) = # π (T ∗ y P ),<br />

∀y ∈ P<br />

Ω Lπ is symplectic on each leaf of ρ(L π )<br />

⇓<br />

Characteristic foliation of L π<br />

Symplectic foliation of (P, π)<br />

ii) Presymplectic <strong>structures</strong><br />

Ω a closed 2-form on P<br />

⇓<br />

L Ω = {(X, i(X)Ω) ∈ T P ⊕ T ∗ P/X ∈ T P }<br />

a <strong>Dirac</strong> structure on P<br />

L Ω → T P,<br />

(X, i(X)Ω) → X<br />

a Lie algebroid isomorphism<br />

The characteristic foliation of L Ω has a unique<br />

leaf: the manifold P<br />

✫<br />

19<br />


✬<br />

✩<br />

II.4 The Poisson bracket on admissible functions<br />

L a <strong>Dirac</strong> structure on P<br />

f ∈ C ∞ (P, R)<br />

Definition: f is admissible ⇔ df ∈ ρ ∗ (L) ⇔<br />

∃X f ∈ X(P )/e f = (X f , df) ∈ Γ(L)<br />

f admissible ⇒ X f the hamiltonian vector field of f<br />

C ∞ a (P, R) = {f ∈ C ∞ (P, R)/f is admissible}<br />

f, g ∈ C ∞ a (P, R)<br />

e f = (X f , df) ∈ Γ(L),<br />

e g = (X g , dg) ∈ Γ(L)<br />

⇓<br />

{f, g} L = X f (g) = Ω L (X f , X g )<br />

Theorem: (C ∞ a (P, R), { , } L ) is a Poisson algebra<br />

✫<br />

20<br />


✬<br />

✩<br />

Proof: f, g, h ∈ C ∞ a (P, R)<br />

e f = (X f , df) ∈ Γ(L) , e g = (X g , dg) ∈ Γ(L), e h =<br />

(X h , dh) ∈ Γ(L)<br />

i) [e f , e g ] = ([X f , X g ], d{f, g} L ) ∈ Γ(L)<br />

⇓<br />

{f, g} L ∈ C ∞ a (P, R)<br />

ii) fe g + ge f = (fX g + gX f , d(fg)) ∈ Γ(L)<br />

⇓<br />

fg ∈ C ∞ a (P, R), X fg = fX g + gX f<br />

⇓<br />

{fg, h} L = f{g, h} L + g{f, h} L<br />

iii) 0 = T L (e f , e g , e h ) = +<br />

= {f, {g, h} L } L + {g, {h, f} L } L + {h, {f, g} L } L<br />

✫<br />

21<br />


✬<br />

II.5 <strong>Dirac</strong> <strong>structures</strong> as Poisson <strong>structures</strong><br />

on quotient manifolds<br />

L a <strong>Dirac</strong> structure on P , dim P = m<br />

Assumption 1: L ∩ T P is a vector subbundle of T P<br />

of rank r ⇔ dim L p ∩ T p P = r, ∀p ∈ P<br />

✩<br />

ker Ω L = L ∩ T P<br />

⇓<br />

L ∩ T P defines a foliation F on P<br />

Assumption 2: F is a regular foliation on P in such<br />

a way that the space of leaves ˆP = P/F is a smooth<br />

manifold and the canonical projection τ : P → ˆP is a<br />

submersion<br />

Theorem:<br />

is a Poisson manifold<br />

The quotient space ˆP = P/F<br />

Proof:<br />

ρ ∗ (L) = (L ∩ T P ) 0<br />

⇓<br />

✫<br />

τ ∗ : C ∞ ( ˆP , R) → C ∞ a (P, R) is a bijection<br />

✪<br />

22


✬<br />

✩<br />

ˆπ L Poisson 2-vector on ˆP<br />

p ∈ P ⇒ The 2-vector π L (p) on the vector space<br />

T p P/F p ≡ T τ(p) ˆP ≡ Tτ(p) (P/F)<br />

⇓<br />

ˆπ L (τ(p)) = π L (p)<br />

rank (ˆπ L (τ(p))) = m − r − dim(L p ∩ T ∗ p P )<br />

✫<br />

✪<br />

23


✬<br />

✩<br />

II.5 Darboux coordinates around a regular<br />

point<br />

L a <strong>Dirac</strong> structure on P<br />

x ∈ P<br />

Definition: x is regular ⇔ ∃ an open<br />

subset U of P / x ∈ U and<br />

dim ρ(L)(x ′ ) = c,<br />

dim ρ ∗ (L)(x ′ ) = k<br />

for all x ′ ∈ U<br />

Theorem (Darboux theorem): x ∈ P a<br />

regular point ⇒ ∃ an open subset U such<br />

that x ∈ U and we may find coordinates<br />

(x i , q j , p j , c k ) on U in such a way that<br />

{( ∂<br />

∂x i , 0), ( ∂<br />

∂p j<br />

, dq j ), (− ∂<br />

∂q j , dp j ), (0, dc k )}<br />

is a local basis of L in U<br />

(x i , q j , p j , c k ) ≡ Darboux coordinates for L<br />

✫<br />

✪<br />

24


✬<br />

✩<br />

Proof: ∃ an open subset U of P/x ∈ U and<br />

i) Û = U/F U is a smooth manifold and<br />

τ U : U → Û is a submersion, where<br />

x ∈ U → F U (x) = L(x) ∩ T x U<br />

ii)<br />

Û is a regular Poisson manifold<br />

Darboux Theorem (Weinstein) for regular Poisson<br />

<strong>structures</strong><br />

+<br />

L is a maximally isotropic vector subbundle of<br />

T P ⊕ T ∗ P<br />

The existence of Darboux coordinates for L<br />

✫<br />

✪<br />

25


✬<br />

II.7 Induced <strong>Dirac</strong> <strong>structures</strong><br />

✩<br />

L an almost-<strong>Dirac</strong> structure on P<br />

Q a submanifold of P<br />

x ∈ Q ⇒ L Q (x) = L(x) ∩ (T xQ ⊕ T ∗ x P )<br />

L(x) ∩ (T x Q) 0<br />

L Q (x) is a linear <strong>Dirac</strong> structure of T x Q<br />

Corollary: The following conditions are<br />

equivalent:<br />

i) dim(L(x)) ∩ (T x Q ⊕ T ∗ x P )) is constant, for<br />

all x ∈ Q<br />

ii) dim((L(x) ∩ T x Q) 0 ) is constant, for all<br />

x ∈ Q<br />

i) and ii) ⇒ L Q is an almost-<strong>Dirac</strong> structure<br />

on Q<br />

Definition: Q is clean with respect to L<br />

if i) or (ii) holds<br />

✫<br />

✪<br />

26


✬<br />

Q is clean with respect to L<br />

⇓<br />

✩<br />

Γ(L Q ) ≡ Γ(L |Q ∩ (T Q ⊕ T ∗ P )) modulo Γ(L |Q ∩ T Q 0 )<br />

( ˜X, ˜α), (Ỹ , ˜β), ( ˜Z, ˜γ) ∈ Γ(L)<br />

⇓<br />

(X, α), (Y, β), (Z, γ) ∈ Γ(L Q )<br />

X = ˜X |Q , Y = Ỹ|Q, Z = ˜Z |Q<br />

α = i ∗ ˜α, β = i ∗ ˜β, γ = i∗˜γ<br />

T L (( ˜X, ˜α), (Ỹ , ˜β), ( ˜Z, ˜γ)) |Q = T LQ ((X, α), (Y, β), (Z, γ))<br />

⇓<br />

Theorem: i) L a <strong>Dirac</strong> structure on P , Q a<br />

clean submanifold with respect to L ⇒ L Q<br />

a <strong>Dirac</strong> structure on Q<br />

ii) The characteristic foliation associated<br />

with L Q is<br />

L Q ∩ T Q ∼ = L Q ∩ (T Q ⊕ T Q 0 )<br />

L |Q ∩ T Q 0<br />

✫<br />

✪<br />

27


✬<br />

✩<br />

Poisson reduction via <strong>Dirac</strong> <strong>structures</strong><br />

π a Poisson structure on P<br />

⇓<br />

L π = {(# π (α), α) ∈ T P ⊕ T ∗ P/α ∈ T ∗ P }<br />

a <strong>Dirac</strong> structure on P<br />

• G a Lie group<br />

φ : G × P → P a Poisson action<br />

(⇔ φ g : P → P a Poisson automorphism, ∀g ∈ G)<br />

•<br />

J : P → g ∗ an equivariant momentum map<br />

i) ξ ∈ g ⇒ ξ p = X π Ĵ(ξ)<br />

Ĵ(ξ) : P → R,<br />

x ∈ P → J(x)(ξ) ∈ R<br />

ii)<br />

P<br />

J<br />

✲ g<br />

∗<br />

✫<br />

φ g<br />

❄<br />

P<br />

J<br />

✲<br />

g ∗<br />

Ad ∗ g<br />

❄<br />

Ad ∗ g ◦ J = J ◦ φ g , ∀g ∈ G<br />

28<br />


✬<br />

µ a regular value of J<br />

⇓<br />

✩<br />

Q = J −1 (µ) a regular submanifold of P<br />

x ∈ Q<br />

i) ξ p (x) ∈ T x Q ⇔ ξ ∈ g µ = {ξ ∈ g/ξ g ∗(µ) = 0}<br />

ii) S x = {ξ ∈<br />

g/d(Ĵ(ξ))(x) = 0}<br />

g x = {ξ ∈ g/ξ p (x) = 0}<br />

⇓<br />

L π (x) ∩ (T x Q) 0 ∼ = g x /S x<br />

Q is a clean submanifold with respect to L π<br />

⇕<br />

dim g x /S x = c, ∀x ∈ Q<br />

Q is clean with respect to L π<br />

⇕<br />

(L π ) Q a <strong>Dirac</strong> structure on Q<br />

✫<br />

✪<br />

29


✬<br />

✩<br />

φ µ : G µ × Q → Q<br />

action of G µ = {g ∈ G/Ad ∗ gµ = µ} on Q<br />

i) (L π ) Q is invariant under the action φ µ<br />

ii) (L π ) Q (x) ∩ T x Q ∼ = g µ /g x , ∀x ∈ Q<br />

⇓<br />

The leaves of the characteristic foliation of (Lπ) Q are<br />

orbits of the action φ µ<br />

Assumption: The space of the orbits of the<br />

action φ µ , ˆQµ = Q/G µ , is a smooth manifold<br />

and the canonical projection Q → ˆQ µ is a<br />

submersion<br />

i)⇒ (L π ) Q induces a <strong>Dirac</strong> structure ( ̂L π ) Q on ˆQ µ<br />

ii) ⇒<br />

The characteristic distribution of ( ̂Lπ ) Q is zero<br />

⇓<br />

ˆQ µ is a Poisson manifold<br />

✫<br />

30<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!