30.10.2014 Views

Schiff Base Complexes - International Journal of Research in ...

Schiff Base Complexes - International Journal of Research in ...

Schiff Base Complexes - International Journal of Research in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>International</strong> <strong>Journal</strong> <strong>of</strong> <strong>Research</strong> <strong>in</strong> Pharmaceutical and Biomedical Sciences ISSN: 2229-3701<br />

_____________________________________________<strong>Research</strong> Article<br />

Synthesis and Characterization <strong>of</strong> Tetradentate Co(II) <strong>Schiff</strong><br />

<strong>Base</strong> <strong>Complexes</strong> : Antimicrobial & DNA Cleavage Studies<br />

A. Nagajothi, A. Kiruthika, S. Chitra * and K. Parameswari<br />

Department <strong>of</strong> Chemistry, P.S.G.R.Krishnammal College for Women, Peelamedu,<br />

Coimbatore, Tamil Nadu, India.<br />

ABSTRACT<br />

Tetradentate N 2 O 2 type complexes <strong>of</strong> Co(II) have been synthesized by the condensation <strong>of</strong> o-<br />

phenylenediam<strong>in</strong>e, salicylaldehyde and isat<strong>in</strong> / naphthaldehyde / acetyl acetone. The complexes were<br />

characterized by elemental analyses, molar conductance, magnetic susceptibility, IR, Uv-Vis spectral data and<br />

thermal analyses. The elemental analysis <strong>of</strong> the complexes conf<strong>in</strong>e to the stoichiometry <strong>of</strong> the type<br />

[ML(H 2 O)(OAc)]. The complexes were found to be non-electrolytic <strong>in</strong> nature on the basis <strong>of</strong> low value <strong>of</strong> molar<br />

conductance. From the spectral datas an octahedral geometry has been proposed for all the complexes. The<br />

possible geometries <strong>of</strong> metal complex were evaluated us<strong>in</strong>g 3D molecular modell<strong>in</strong>g picture. The metal<br />

complexes have been screened for their antibacterial and antifungal activity. DNA cleavage activities <strong>of</strong> <strong>Schiff</strong><br />

bases and their metal complexes were monitored by agarose gel electrophoresis method <strong>in</strong> the presence <strong>of</strong><br />

H 2 O 2 .<br />

Key Words: o-phenylenediam<strong>in</strong>e, Salicylaldehyde, 2-hydroxy Naphthaldehyde, Isat<strong>in</strong>.<br />

1. INTRODUCTION<br />

<strong>Schiff</strong> bases have been play<strong>in</strong>g an important part <strong>in</strong><br />

the development <strong>of</strong> Co-ord<strong>in</strong>ation chemistry. <strong>Schiff</strong><br />

base metal complexes have been studied<br />

extensively because <strong>of</strong> their attractive chemical and<br />

physical properties and their wide range <strong>of</strong><br />

applications <strong>in</strong> numerous scientific areas. They<br />

play an important role <strong>in</strong> both synthetic and<br />

structural research, because <strong>of</strong> their preparative<br />

accessibility and structural diversity 1 . <strong>Schiff</strong> bases<br />

<strong>of</strong> o-phenylenediam<strong>in</strong>e and its complexes have a<br />

variety <strong>of</strong> applications <strong>in</strong>clud<strong>in</strong>g biological, cl<strong>in</strong>ical<br />

and analytical 2 .<br />

In this paper we report the synthesis,<br />

characterization, antimicrobial & DNA cleavage<br />

studies <strong>of</strong> new type tetradentate <strong>Schiff</strong> base ligands<br />

derived from ortho phenylene diam<strong>in</strong>e,<br />

salicylaldehyde and isat<strong>in</strong> / acetyl acetone / 2-<br />

hydroxy naphthaldehyde. The ligand has both<br />

oxygen and nitrogen donor sites. It coord<strong>in</strong>ates<br />

with the metal ion <strong>in</strong> a tetradentate manner.<br />

2. EXPERIMENTAL<br />

MATERIALS, METHODS AND<br />

INSTRUMENTS<br />

Elemental analyses were performed by us<strong>in</strong>g<br />

Elementar Vario EL III at STIC, CUSAT, Coch<strong>in</strong>.<br />

The IR spectra were recorded <strong>in</strong> KBr pellets us<strong>in</strong>g<br />

Shimadzu FTIR spectrometer (4000 – 400 cm -1 ).<br />

The UV-Vis electronic spectra (200 – 800 nm)<br />

were recorded us<strong>in</strong>g Lab India 3000 + double beam<br />

spectrophotometer. The magnetic susceptibility <strong>of</strong><br />

the complexes was recorded at room temperature<br />

us<strong>in</strong>g Gouy balance. The thermal analysis were<br />

performed with a Perk<strong>in</strong> Elmer (TGS-2 model)<br />

thermal analyzer at a heat<strong>in</strong>g rate <strong>of</strong> 10°C / m<strong>in</strong> <strong>in</strong><br />

the temperature range 40 - 800°C. The AFM<br />

images were recorded us<strong>in</strong>g Nova s<strong>of</strong>tware by<br />

Multimode Scann<strong>in</strong>g probe microscope (NTMDT,<br />

NTEGRA prima, Russia) with cantilever length,<br />

width and thickness 135, 30 and 2µm respectively<br />

and 0.35 – 6.06N/m force constant. The geometries<br />

<strong>of</strong> metal complex were evaluated us<strong>in</strong>g the<br />

molecular calculations with Argus lab 4.0.1<br />

version.<br />

Synthesis <strong>of</strong> <strong>Schiff</strong> <strong>Base</strong> Ligand L 1 / L 2 / L 3<br />

A solution <strong>of</strong> o-phenylenediam<strong>in</strong>e (0.1 mol) <strong>in</strong><br />

alcohol was added to a mixture <strong>of</strong> isat<strong>in</strong>/Acetyl<br />

acetone/ 2-hydroxy naphthaldehyde (0.1 mol) and<br />

salicylaldehyde (0.1 mol) <strong>in</strong> 20 ml alcohol. The<br />

mixture was refluxed for about 30 m<strong>in</strong>utes. The<br />

mixture was cooled <strong>in</strong> ice. The result<strong>in</strong>g precipitate<br />

was then filtered, washed with ethanol and dried.<br />

Synthesis <strong>of</strong> metal complexes (ML 1 / M 1 L 2 /<br />

M 1 L 3 )<br />

To an ethanolic solution <strong>of</strong> the <strong>Schiff</strong> <strong>Base</strong> Ligand<br />

L 1 / L2/ L 3 an ethanolic solution <strong>of</strong> the metal acetate<br />

[Cobalt Acetate] was added <strong>in</strong> a molar ratio (1:1).<br />

The mixture was refluxed for about 30 m<strong>in</strong>utes.<br />

The mixture was cooled <strong>in</strong> ice. The result<strong>in</strong>g<br />

precipitate was collected by filtration, washed with<br />

ethanol and dried.<br />

Vol. 3 (4) Oct – Dec 2012 www.ijrpbsonl<strong>in</strong>e.com 1768


<strong>International</strong> <strong>Journal</strong> <strong>of</strong> <strong>Research</strong> <strong>in</strong> Pharmaceutical and Biomedical Sciences ISSN: 2229-3701<br />

Antimicrobial studies<br />

The <strong>in</strong> vitro biological screen<strong>in</strong>g effects <strong>of</strong> the<br />

<strong>in</strong>vestigated compounds were tested aga<strong>in</strong>st the<br />

bacteria Staphylococcus Aureus, Escherichia Coli<br />

and Fungi Candida Albicans. Stock solutions were<br />

prepared by dissolv<strong>in</strong>g the compounds <strong>in</strong> DMSO<br />

and serial dilutions <strong>of</strong> the compounds were<br />

prepared <strong>in</strong> sterile distilled water to determ<strong>in</strong>e the<br />

m<strong>in</strong>imum <strong>in</strong>hibition concentration (MIC). The<br />

nutrient agar medium was poured <strong>in</strong>to Petri plates.<br />

A suspension <strong>of</strong> the tested microorganism (0.5 ml)<br />

was spread over the solid nutrient agar plates with<br />

the help <strong>of</strong> a spreader. Different dilutions <strong>of</strong> the<br />

stock solutions were applied on the 10 mm<br />

diameter sterile disc. After evaporat<strong>in</strong>g the solvent,<br />

the discs were placed on the <strong>in</strong>oculated plates. The<br />

Petri plates were placed at low temperature for two<br />

hours to allow the diffusion <strong>of</strong> the chemical and<br />

then <strong>in</strong>cubated at a suitable optimum temperature<br />

for 30 – 36 hrs. The diameter <strong>of</strong> the <strong>in</strong>hibition<br />

zones was measured <strong>in</strong> millimeters 3<br />

DNA studies<br />

DNA cleavage activities <strong>of</strong> <strong>Schiff</strong> base L 1 and their<br />

complexes (Ia, IIa & IIIa) with calf thymus DNA<br />

(CT DNA) were monitored by agarose gel<br />

electrophoresis method. The experiments were<br />

performed under aerobic conditions with H 2 O 2 as<br />

an oxidant by <strong>in</strong>cubation at 35 C for 2 h as<br />

follows: CT DNA 50 M <strong>of</strong> each <strong>Schiff</strong> base<br />

ligand L 1 and its Co complexes, 50 M <strong>of</strong> H 2 O 2 <strong>in</strong><br />

0.05 M Tris–HCl buffer (pH = 7.2). After<br />

<strong>in</strong>cubation, 1 μL <strong>of</strong> load<strong>in</strong>g buffer (bromophenol<br />

blue <strong>in</strong> H 2 O) was added to each tube and the mixed<br />

samples were loaded on 1 % agarose gel. The<br />

samples were electrophoresed at a constant voltage<br />

(50 V) for 2 h <strong>in</strong> Tris–acetic acid–EDTA buffer<br />

(pH 8.3). After electrophoresis, the gel was sta<strong>in</strong>ed<br />

for 30 m<strong>in</strong> by immers<strong>in</strong>g it <strong>in</strong> 1 g / cm 3<br />

ethidiumbromide (EB) solution. The cleavage was<br />

visualized by view<strong>in</strong>g the gel under UV light and<br />

photographed 4 .<br />

Synthesis <strong>of</strong> Nano Metal oxides<br />

The transition metal complexes were placed <strong>in</strong> a<br />

silica crucible and ignited <strong>in</strong> a muffle furnace at<br />

800ºC. The dehydrated mixture undergoes a<br />

vigorous, exothermic oxidation reduction reaction.<br />

The heat created causes a flame for several<br />

m<strong>in</strong>utes, result<strong>in</strong>g <strong>in</strong> volum<strong>in</strong>ous and foamy<br />

powder product occupy<strong>in</strong>g the entire reaction<br />

conta<strong>in</strong>er. The exothermic combustion reaction<br />

releases a large amount <strong>of</strong> heat, which can quickly<br />

heat up the system to reach a temperature higher<br />

than 1600ºC. The combustion method results <strong>in</strong><br />

uniform and pure powders <strong>of</strong> high surface to<br />

volume ratio. The size <strong>of</strong> the metal oxide was<br />

determ<strong>in</strong>ed us<strong>in</strong>g Atomic force Microscope.<br />

3. RESULTS AND DISCUSSION<br />

<strong>Schiff</strong> bases <strong>of</strong> o-phenylenediam<strong>in</strong>e and its<br />

complexes have a variety <strong>of</strong> applications <strong>in</strong>clud<strong>in</strong>g<br />

biological, cl<strong>in</strong>ical and analytical. Earlier work has<br />

shown that some drugs showed <strong>in</strong>creased activity<br />

when adm<strong>in</strong>istered as metal chelates rather that as<br />

organic compounds. The Co-ord<strong>in</strong>at<strong>in</strong>g possibility<br />

<strong>of</strong> o-phenylenediam<strong>in</strong>e has been improved by<br />

condens<strong>in</strong>g with a variety <strong>of</strong> carbonyl compounds.<br />

An attempt has been made to synthesize<br />

asymmetric <strong>Schiff</strong> bases from o-phenylenediam<strong>in</strong>e<br />

and salicylaldehyde with Isat<strong>in</strong> / Acetyl acetone /<br />

2-hydroxy naphthaldehyde. The synthetic routes <strong>of</strong><br />

the ligands and complexes are presented <strong>in</strong> scheme<br />

1.<br />

<strong>Schiff</strong> bases<br />

1. Isat<strong>in</strong> + o-phenylenediam<strong>in</strong>e +<br />

salicylaldehyde L 1<br />

2. Acetyl acetone + o-phenylenediam<strong>in</strong>e +<br />

sallicylaldehyde L 2<br />

3. 2-hydroxynaphthaldehyde+ o-<br />

phenylenediam<strong>in</strong>e +<br />

sallicylaldehyde L 3<br />

Metal complexes<br />

Co(OAc) 2 + L 1/ L 2 /L 3 Co(L 1/ L 2 /L 3 ) 2 [Ib, IIb,<br />

IIIb]<br />

Ib - Isat<strong>in</strong> Co complex [Co(L 1 ) 2 ]<br />

IIb - Acetyl acetone Co complex [Co(L 2 ) 2 ]<br />

IIIb - 2-hydroxy naphthadehyde Co complex<br />

[Co(L 3 ) 2 ]<br />

Scheme 1<br />

Elemental Analysis and Molar Conductance<br />

The metal complexes are <strong>in</strong>soluble <strong>in</strong> water and<br />

soluble <strong>in</strong> DMSO, DMF, CHCl 3 and acetone and<br />

slightly soluble <strong>in</strong> methanol and ethanol. The<br />

analytical data and physical properties <strong>of</strong> the<br />

ligands and complexes are presented <strong>in</strong> Table 1.<br />

The data are consistent with the calculated results<br />

from the empirical formula <strong>of</strong> each compound. The<br />

analytical data <strong>of</strong> the complexes confirm the 1:1<br />

metal to ligand stoichiometry.Cobalt complexes<br />

have a very low molar conductance < 45 ohm -1 cm -<br />

1<br />

mol -1 . The above molar conductance value<br />

confirm that the cobalt complexes are nonelectrolytes<br />

5 .<br />

IR spectra<br />

The significant IR bands for the ligands as well as<br />

its Co complex and their tentative assignments are<br />

complied and presented <strong>in</strong> Table 2 [Figs. 1-2]. In<br />

the IR spectrum <strong>of</strong> the <strong>Schiff</strong> bases ligands L 1 , L 2 ,<br />

L 3 a sharp band observed at 1616 cm -1 is assigned<br />

to the ν(C=N) mode <strong>of</strong> the azometh<strong>in</strong>e group. This<br />

shifts to lower wave numbers, 1606-1609 cm -1 <strong>in</strong><br />

all the complexes suggest<strong>in</strong>g the co-ord<strong>in</strong>ation <strong>of</strong><br />

the azometh<strong>in</strong>e nitrogen to the metal centres. This<br />

is further substantiated by the presence <strong>of</strong> a new<br />

band around 420-463 cm -1 assignable to ν(M-N) 6 .<br />

Vol. 3 (4) Oct – Dec 2012 www.ijrpbsonl<strong>in</strong>e.com 1769


<strong>International</strong> <strong>Journal</strong> <strong>of</strong> <strong>Research</strong> <strong>in</strong> Pharmaceutical and Biomedical Sciences ISSN: 2229-3701<br />

The characteristic phenolic ν(O-H) mode due to<br />

presence <strong>of</strong> a hydroxyl group at ortho position <strong>in</strong><br />

the ligand was observed around 3200-3500 cm -1 . A<br />

band at –̃ 1279 cm -1 due to ν(C-O) phenolic group<br />

was also observed <strong>in</strong> the ligand. The disappearance<br />

<strong>of</strong> phenolic ν(OH) band <strong>in</strong> all the complexes<br />

suggests the co-ord<strong>in</strong>ation by the phenolic oxygen<br />

after deprotonation to the metal ion. This is further<br />

supported by the shift<strong>in</strong>g <strong>of</strong> ν(C-O) phenolic band<br />

to lowers wave numbers –̃1250 cm -1 <strong>in</strong> the metal<br />

complex. The appearance <strong>of</strong> a new non-ligand band<br />

around 500-543 cm -1 <strong>in</strong> all the complexes due to<br />

ν(M-O) substantiates it 7 .<br />

A strong sharp band observed at 1700 cm -1 is<br />

assigned to ν(C=O) <strong>of</strong> isat<strong>in</strong> and acetyl acetone <strong>in</strong><br />

ligands L1 and L2. the <strong>in</strong>tensity <strong>of</strong> this band has<br />

not only reduced but has shifted to lower wave<br />

numbers <strong>in</strong> the correspond<strong>in</strong>g metal complexes<br />

confirm<strong>in</strong>g the <strong>in</strong>volement <strong>of</strong> the carbonyl group <strong>in</strong><br />

complexation with metal ion.<br />

In the cobalt complexes the appearance <strong>of</strong> two<br />

additional bands <strong>in</strong> the range 1610- 1578 cm -1 and<br />

1360-1310 cm -1 due to ν as(COO) and ν s(COO)<br />

modes respectively <strong>of</strong> acetate group suggest its<br />

unidentate co-ord<strong>in</strong>ation (Δ = > 200 cm -1 ) to the<br />

metal.The presence <strong>of</strong> co-ord<strong>in</strong>ated water <strong>in</strong> the Co<br />

complex is confirmed by the presence <strong>of</strong> bands<br />

around 890 –928 cm -1 8 .<br />

Electronic spectra and magnetic measurements<br />

The electronic spectral data and magnetic moments<br />

<strong>of</strong> the complexes are presented <strong>in</strong> Table 3 [Figs 3-<br />

4]. The electronic spectrum <strong>of</strong> free <strong>Schiff</strong> base<br />

showed three bands around 240, 350 and 450 nm<br />

characteristic <strong>of</strong> - * and n- * transitions. In the<br />

metal complex, this band is shifted to a longer<br />

wave length with <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>tensity. This shift<br />

may be attributed to the donation <strong>of</strong> lone pair <strong>of</strong><br />

electrons <strong>of</strong> nitrogen <strong>of</strong> <strong>Schiff</strong> base to metal ion 9 .<br />

The cobalt(II) complexes exhibit two bands at 482<br />

– 472 nm and 350 – 306 nm <strong>in</strong> the electronic<br />

spectra. The bands can be assigned to 4 T 1g (F) →<br />

4 A 2g and 4 T 1g (F) → 4 T 1g (P) transitions respectively<br />

which are <strong>in</strong> accordance with Co(II) high sp<strong>in</strong><br />

octahedral geometry 8 . The magnetic moments <strong>of</strong><br />

Co(II) complexes (4.68 – 4.56 BM) suggest a high<br />

sp<strong>in</strong> octahedral configuration. The <strong>Schiff</strong> base L 3<br />

complexes with cobalt to give a cobalt complex <strong>in</strong><br />

which cobalt is <strong>in</strong> the +3 state. S<strong>in</strong>ce it was found<br />

to be diamagnetic with very low magnetic moment.<br />

This may be due to the oxidation <strong>of</strong> Co(II) to<br />

Co(III) dur<strong>in</strong>g complexation 10 .<br />

Thermogravimetric Analysis<br />

The TGA curve <strong>of</strong> the cobalt complex Ia is stable<br />

upto 120°C. A weight loss <strong>of</strong> 3.9% is observed<br />

around 128-163°C [Fig 5] correspond<strong>in</strong>g to the<br />

elim<strong>in</strong>ation <strong>of</strong> one coord<strong>in</strong>ation water. In the<br />

complexes IIa / IIIa this loss <strong>of</strong> coord<strong>in</strong>ated water<br />

is observed at 750°C (observed IIa-7.1% and IIIa-<br />

5.9%). In all the three cobalt complexes a weight<br />

loss <strong>of</strong> 12-14% was observed at a temperature<br />

range <strong>of</strong> 244-249°C correspond<strong>in</strong>g to the removal<br />

<strong>of</strong> one acetate group. The complexes show a step<br />

weight loss <strong>of</strong> 27 – 29% (observed Ia- 28.9%, IIa-<br />

27.9%, IIIa-29.5%). In the temperature range 343-<br />

372°C correspond<strong>in</strong>g to the elim<strong>in</strong>ation <strong>of</strong> part <strong>of</strong><br />

the <strong>Schiff</strong> base ligand viz. isat<strong>in</strong>, acetyl acetone and<br />

naphthyl groups from the coord<strong>in</strong>ation sphere <strong>of</strong><br />

the complex. The f<strong>in</strong>al residue corresponds to CoO<br />

> 800°C. The TGA data are presented <strong>in</strong> table 4.<br />

Probable structure<br />

O<br />

CH 3 COO<br />

Co<br />

O<br />

H 3 C<br />

CH 3 COO<br />

O<br />

Co<br />

O<br />

N<br />

H<br />

N<br />

H 2 O<br />

N<br />

C H 3<br />

N N<br />

H 2 O<br />

Ia<br />

[Co (L 1 ) (H 2 O)(OAC)]<br />

IIa<br />

[Co (L 2 ) (H 2 O)(OAC)]<br />

O<br />

CH 3 COO<br />

Co<br />

O<br />

N<br />

H 2 O<br />

N<br />

IIIa<br />

[Co (L 3 ) (H 2 O)(OAC)]<br />

Vol. 3 (4) Oct – Dec 2012 www.ijrpbsonl<strong>in</strong>e.com 1770


<strong>International</strong> <strong>Journal</strong> <strong>of</strong> <strong>Research</strong> <strong>in</strong> Pharmaceutical and Biomedical Sciences ISSN: 2229-3701<br />

Molecular Modell<strong>in</strong>g<br />

Molecular model<strong>in</strong>g <strong>of</strong> the studied complexes<br />

reveals m<strong>in</strong>imum energy values associated with the<br />

octahedral and square plannar geometry. This is <strong>in</strong><br />

a good agreement with the experimental results and<br />

confirmed the expected structure. The possible<br />

geometries <strong>of</strong> metal complexes were evaluated<br />

us<strong>in</strong>g the molecular calculations with Argus lab<br />

4.0.1 version s<strong>of</strong>tware. The metal complexes were<br />

built and geometry optimization was done us<strong>in</strong>g<br />

this s<strong>of</strong>tware. The molecular modell<strong>in</strong>g pictures<br />

and the energies <strong>of</strong> the metal complexes are shown<br />

<strong>in</strong> [figs 6-7].<br />

The details <strong>of</strong> important bond lengths as per 3D<br />

structure <strong>of</strong> Co(II) complex (Ia) [fig 9] are given <strong>in</strong><br />

table 5. These values are obta<strong>in</strong>ed as a result <strong>of</strong><br />

energy m<strong>in</strong>imization <strong>of</strong> Co(II) complex <strong>in</strong> Argus<br />

lab 4.0.1 version s<strong>of</strong>tware.<br />

The obta<strong>in</strong>ed bond lengths <strong>of</strong> the ligand L 1 based<br />

on the s<strong>of</strong>tware are between C(7)-O(14) and C(24)-<br />

O(13) 1.4968, C(9)-N(10) and C(12)-N(11) 1.5687,<br />

C(18)-N(10) and C(15)-N(11) 1.5895. <strong>Base</strong>d on the<br />

values from the table 5, it is observed that when<br />

these ligand are coord<strong>in</strong>ated with Co metal ion<br />

there is an <strong>in</strong>crease <strong>in</strong> the bond length between the<br />

mentioned atoms, which confirms the coord<strong>in</strong>ation<br />

<strong>of</strong> azometh<strong>in</strong>e group through nitrogen [N(10) and<br />

N(11)] and through phenolic oxygen [O(13) and<br />

O(14)]. When the atoms are coord<strong>in</strong>ated with the<br />

metal ion by donat<strong>in</strong>g a lone pair <strong>of</strong> electron there<br />

is a decrease <strong>of</strong> electron density on the<br />

coord<strong>in</strong>at<strong>in</strong>g atoms, hence bond length <strong>in</strong>creases <strong>in</strong><br />

metal complexes. This supports the proposed<br />

octahedral geometry around the cobalt metal ion 11 .<br />

Anti Microbial studies<br />

The antimicrobial activity <strong>of</strong> the cobalt complex Ia<br />

was studied aga<strong>in</strong>st two pathogenic bacterial stra<strong>in</strong>s<br />

(ie) one gram positive (staphylococcus Aureus) and<br />

one gram negative (Escherichia Coli) bacteria and<br />

one fungal stra<strong>in</strong> (Candida Albicans). [Fig 8-10]<br />

Antibacterial and antifungal potential <strong>of</strong> metal<br />

complexes were assessed <strong>in</strong> terms <strong>of</strong> zone <strong>of</strong><br />

<strong>in</strong>hibition <strong>of</strong> bacterial and fungal growth. The<br />

results <strong>of</strong> the antifungal and antibacterial activities<br />

are presented <strong>in</strong> table 6. The m<strong>in</strong>imum <strong>in</strong>hibitory<br />

concentrations (MIC) were calculated as the<br />

highest dilution show<strong>in</strong>g complete <strong>in</strong>hibition <strong>of</strong> the<br />

tested stra<strong>in</strong>s and are reported <strong>in</strong> table 7.<br />

Growth <strong>of</strong> bacterial & fungal pathogens on each<br />

concentration was checked to determ<strong>in</strong>e the<br />

m<strong>in</strong>imum concentration that <strong>in</strong>hibits the growth <strong>of</strong><br />

the organism. It is evident from the table 7 that the<br />

MIC value for the cobalt complex Ia was 125<br />

g/ml for both S.Aureus and E.Coli. Likewise the<br />

MIC value for fungi pathogen shows 62.5 g/ml<br />

for cobalt complex [Fig 11].<br />

The metal complexes were effective aga<strong>in</strong>st both<br />

bacteria and fungi. The cobalt complex shows<br />

better activity aga<strong>in</strong>st fungai, than the bacteria<br />

when compared with the standard cipr<strong>of</strong>loxac<strong>in</strong>.<br />

DNA Cleavage Studies<br />

The <strong>in</strong>vestigation <strong>of</strong> <strong>in</strong>teractions between doublestranded<br />

DNA and DNA b<strong>in</strong>d<strong>in</strong>g agents is crucial<br />

for understand<strong>in</strong>g biochemical processes as<br />

replication, repair, recomb<strong>in</strong>ation and expression <strong>of</strong><br />

genes. In pr<strong>in</strong>ciple, the possible b<strong>in</strong>d<strong>in</strong>g<br />

mechanisms <strong>of</strong> ligands to double stranded dsDNA<br />

can be divided <strong>in</strong>to sequence specific b<strong>in</strong>d<strong>in</strong>g and<br />

b<strong>in</strong>d<strong>in</strong>g modes that lack sequence specificity.<br />

Specific b<strong>in</strong>d<strong>in</strong>g between ligand (prote<strong>in</strong>) and<br />

receptor (dsDNA) <strong>of</strong>ten termed as molecular<br />

recognition is the basis for the <strong>in</strong>teraction <strong>of</strong> many<br />

transcription factors with DNA. Small agents that<br />

b<strong>in</strong>d unspecifically or with lower sequence<br />

specificity to dsDNA are <strong>of</strong>ten capable <strong>of</strong><br />

<strong>in</strong>fluenc<strong>in</strong>g or <strong>in</strong>hibit<strong>in</strong>g these processes and<br />

<strong>in</strong>tr<strong>in</strong>sically exhibit magnetic properties.<br />

Consequently these molecules f<strong>in</strong>d applications as<br />

pharmaceuticals ma<strong>in</strong>ly <strong>in</strong> the treatment <strong>of</strong> cancer.<br />

Others are employed as sta<strong>in</strong><strong>in</strong>g agents 12 .<br />

In the present study, the CT-DNA gel<br />

electrophoresis experiment was conducted at 35°C<br />

us<strong>in</strong>g the ligand L 1 & complex (Ia) <strong>in</strong> the presence<br />

<strong>of</strong> H 2 O 2 as an oxidant. It was found that at very low<br />

concentration, the complexes exhibit nuclease<br />

activity <strong>in</strong> the presence <strong>of</strong> H 2 O 2 . Control<br />

experiment us<strong>in</strong>g DNA alone does not show any<br />

significant cleavage <strong>of</strong> CT DNA even on longer<br />

exposure time. Cobalt complex cleaves DNA to a<br />

larger extent as compared with control DNA, [Fig-<br />

12]. This is due to the formation <strong>of</strong> redox couple <strong>of</strong><br />

the metal ions. In oxidative mechanism, metal ions<br />

<strong>in</strong> the complexes react with H 2 O 2 to generate the<br />

OH • which attacks at the C3 positions <strong>of</strong> the sugar<br />

moiety and f<strong>in</strong>ally cleaves DNA. Cobalt complex<br />

reacts with H 2 O 2 to form OH • , OH - and Co(III)<br />

form.<br />

Determ<strong>in</strong>ation <strong>of</strong> size <strong>of</strong> nano metal oxide<br />

The size <strong>of</strong> the metal oxide was determ<strong>in</strong>ed by<br />

Atomic Force Microscope. AFM provides a 3D<br />

pr<strong>of</strong>ile <strong>of</strong> the surface on a nanoscale by measur<strong>in</strong>g<br />

forces between a sharp probe (


<strong>International</strong> <strong>Journal</strong> <strong>of</strong> <strong>Research</strong> <strong>in</strong> Pharmaceutical and Biomedical Sciences ISSN: 2229-3701<br />

<strong>Schiff</strong> base ligands. The ligands and complex were<br />

characterized by spectral and analytical data. <strong>Base</strong>d<br />

on these data an octahedral geometry has been<br />

assigned to the Co(II) complex. Molecular<br />

modell<strong>in</strong>g has been performed for the complexes<br />

us<strong>in</strong>g Argus 4.0.1 s<strong>of</strong>tware. The metal complexes<br />

were converted to their correspond<strong>in</strong>g nano metal<br />

oxides, the 2D and 3D AFM pictures <strong>of</strong> the oxides<br />

confirm their size to be <strong>in</strong> the range 0-100 nm. The<br />

antimicrobial studies carried out with the<br />

complexes confirm that they are good antifungal<br />

agents. Their MIC values be<strong>in</strong>g 125µg/litre. The<br />

<strong>in</strong>teraction <strong>of</strong> these complexes with CT-DNA was<br />

<strong>in</strong>vestigated by gel electrophoresis. The Co<br />

complex (Ia) cleaved DNA as compared to control<br />

and the <strong>Schiff</strong> base ligand <strong>in</strong> the presence <strong>of</strong> H 2 O 2 .<br />

Table 1: Elemental Analysis,Yield, Molar conductivity and Melt<strong>in</strong>g po<strong>in</strong>t <strong>of</strong> ligands and their Metal<br />

complexes<br />

Elemental Analysis, Found Conductance<br />

Complex Emp.Formula M.Wt<br />

(Calculated) %<br />

(ohm -1 cm -1 Melt<strong>in</strong>g po<strong>in</strong>t<br />

mol -1 (°C)<br />

C H N<br />

)<br />

L 1 C 21H 15N 3O 2 341 - - - - 277<br />

[Co(L 1) 2] C 23H 19N 3O 5.Co<br />

56 3.5 8<br />

475.93<br />

< 45 > 360<br />

(57.9) (4) (8.8)<br />

L 2 C18H 18N 2O 2 294 - - - - 298<br />

[Co(L 2) 2]<br />

C 20H 21N 2O 5.Co 427.93<br />

55<br />

(56.08)<br />

4<br />

(4.9)<br />

6<br />

(6.5)<br />

< 45 > 360<br />

L 3 C 24H 17N 2O 2 351 - - - - 326<br />

[Co(L 3) 2]<br />

C 26H 21N 2O 5.Co<br />

485.93<br />

63<br />

(64.2)<br />

4.1<br />

(4.3)<br />

5.2<br />

(5.8)<br />

< 45 > 360<br />

Table 2: IR spectral data for ligands and their metal complexes<br />

Complex (C=O) (C=N) (OH) (M-N) (M-O) (NH) (C-O) (H 2O)<br />

L 1 1707.06 1616.40 3319.60 3059.20 1279.81<br />

[Co(L 1) 2]<br />

1700.31 1607.72 421.46 500.54 3026.41 1245.09 929.72<br />

L 2 1700.31 1614.47 3228.95 1275.95<br />

[Co(L 2) 2]<br />

1699.34 1609.65 453.29 519.98 1243.16 925.86<br />

L 3 1616.40 3531.76 1279.81<br />

[Co(L 3) 2]<br />

1607.7 421.46 501.51 1254.74 928.76<br />

Table 3: Electronic Spectral & Magnetic moment data for the ligands and their complexes<br />

Ligand/<br />

Complex<br />

Absorbance<br />

nm<br />

L 1<br />

425 23529 n - *<br />

350 28571 - *<br />

L 2<br />

445 22471 n - *<br />

338 29585 - *<br />

L 3<br />

355<br />

479<br />

365<br />

28169<br />

20876<br />

27397<br />

- *<br />

n - *<br />

MLCT<br />

498 20080<br />

5 T 2g (F) 5 Eg<br />

492 20325<br />

5 T 2g (F) 5 Eg<br />

306 32679<br />

4 T 1g (F) 4 T 1g (P)<br />

[Co(L 1) 2]<br />

472 21186<br />

4 T 1g (F) 4 A 2g<br />

[Co(L 2) 2]<br />

[Co(L 3) 2]<br />

350 28571<br />

482 20746<br />

340 29411<br />

480 20833<br />

/cm -1 Assignment Geometry Magnetic moment (BM)<br />

4 T 1g (F) 4 T 1g (P)<br />

4 T 1g (F) 4 A 2g<br />

4 T 1g (F) 4 T 1g (P)<br />

4 T 1g (F) 4 A 2g<br />

- -<br />

- -<br />

- -<br />

Octahedral 4.68<br />

Octahedral 4.56<br />

Octahedral 0.85<br />

Vol. 3 (4) Oct – Dec 2012 www.ijrpbsonl<strong>in</strong>e.com 1772


<strong>International</strong> <strong>Journal</strong> <strong>of</strong> <strong>Research</strong> <strong>in</strong> Pharmaceutical and Biomedical Sciences ISSN: 2229-3701<br />

Table 4: Thermal Analysis data for metal complexes<br />

Complex<br />

Decomposition<br />

Weight loss %<br />

Lost fragment<br />

Temp°C<br />

Experimental Theoretical<br />

128.72-163.80 H 2O 3.9 4.5<br />

200-270 CH 3COO 13 14<br />

[Co(L 1) 2]<br />

270-410 28.9 30<br />

[Co(L 2) 2]<br />

> 600 Residue CoO 38.5 35.8<br />

100-170 Lattice H 2O 4.2 4<br />

180-300 CH 3COO 14.4 12<br />

700-830 H 2O 7.1 7<br />

>830 Residue CoO 28.9 30<br />

200-310 CH 3COO 12..1 10<br />

[Co(L 3) 2]<br />

343-372<br />

29.5 27<br />

720-820 H 2O 5.9 5<br />

>830 Residue CoO 37.08 40<br />

Table 5: Data from Molecular<br />

modell<strong>in</strong>g <strong>of</strong> [Co(L 1 ) 2 ] complex<br />

S.No Bonded atoms Bond length<br />

1 2 (C) - 7(C) 1.3586<br />

2 9 (C) - 10 (N) 1.3689<br />

3 17(C) – 20(C) 1.4348<br />

4 10(N) - 18 (C) 1.3654<br />

5 21(C) - 22(C) 1.0625<br />

6 13(O) – 24(C) 1.0774<br />

7 7(C) - 14(O) 1.0798<br />

8 8(C) - 33(H) 1.2672<br />

9 14(O) – 27(Co) 2.0556<br />

10 10(N) - 27(Co) 2.0774<br />

11 27(Co) - 28(O) 2.0374<br />

12 28(O) - 34(H)<br />

1.5637<br />

13 30(C) - 31(O) 1.3476<br />

14 32(C) - 38(H) 1.2978<br />

Table 6: Antibacterial & Antifungal activity data<br />

<strong>of</strong> <strong>Schiff</strong> base metal complexes<br />

Microorganism [Co(L 1) 2(H 2O)(OAc)]<br />

STD<br />

Cipr<strong>of</strong>loxac<strong>in</strong> (50 µg/disc)<br />

(mm)<br />

Bacteria E.Coli 10 20<br />

S.Aureus 11 25<br />

Fungi C.albicans 31 18<br />

Table 7: Determ<strong>in</strong>ation <strong>of</strong> MIC for antibacterial & antifungal activity<br />

500 250 125 62.5 31.25 15.62 7.8<br />

Microorganism<br />

µg/ml µg/ml µg/ml µg/ml µg/ml µg/ml µg/ml<br />

S.Aureus - - - + + + +<br />

Bacteria<br />

E.coli - - - + + + +<br />

Fungi C.Albicans - - - - + + +<br />

Vol. 3 (4) Oct – Dec 2012 www.ijrpbsonl<strong>in</strong>e.com 1773


<strong>International</strong> <strong>Journal</strong> <strong>of</strong> <strong>Research</strong> <strong>in</strong> Pharmaceutical and Biomedical Sciences ISSN: 2229-3701<br />

Table 8: Antibacterial &<br />

Antifungal activity: MIC values<br />

Microorganism MIC value<br />

S.Aureus 125 µg/ml<br />

Bacteria<br />

E.coli 125 µg/ml<br />

Fungi C.Albicans 62.5 µg/ml<br />

IR SPECTRAL DATA<br />

Fig. 1: IR Spectrum <strong>of</strong> L 1 <strong>Schiff</strong> base<br />

Fig. 2: IR Spectrum <strong>of</strong> Co(L 1 ) 2 complex<br />

UV Spectra<br />

Fig. 3: Electronic spectrum <strong>of</strong> L 1 <strong>Schiff</strong> base Fig. 4: Electronic spectrum <strong>of</strong> Co(L 1 ) 2<br />

Vol. 3 (4) Oct – Dec 2012 www.ijrpbsonl<strong>in</strong>e.com 1774


<strong>International</strong> <strong>Journal</strong> <strong>of</strong> <strong>Research</strong> <strong>in</strong> Pharmaceutical and Biomedical Sciences ISSN: 2229-3701<br />

THERMOGRAVIMETRIC ANALYSIS<br />

Fig. 5: TGA <strong>of</strong> Co(L 1 ) 2 complex<br />

MOLECULAR MODELLING<br />

Fig. 6: schiff base L 1<br />

Energy 93.61 kcal/mol<br />

Fig. 7: Metal complex [Co. L 1 (H 2 O)(OAc)]<br />

Energy 289.51 kcal/mol<br />

Antimicrobial studies<br />

Fig. 8: Zone <strong>of</strong> <strong>in</strong>hibition – bacteria<br />

S.Aureus image <strong>of</strong> [Co.L 1 (H 2 O)(OAc)]<br />

Fig. 9: Zone <strong>of</strong> <strong>in</strong>hibition - bacteria<br />

E.Coli image <strong>of</strong> [Co.L 1 (H 2 O) (OAc)]<br />

Vol. 3 (4) Oct – Dec 2012 www.ijrpbsonl<strong>in</strong>e.com 1775


<strong>International</strong> <strong>Journal</strong> <strong>of</strong> <strong>Research</strong> <strong>in</strong> Pharmaceutical and Biomedical Sciences ISSN: 2229-3701<br />

Fig. 10: Zone <strong>of</strong> <strong>in</strong>hibition - fungi<br />

C.Albicans image <strong>of</strong> [Co.L 1 (H 2 O) (OAc)]<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

E.Coli<br />

S.Aureus C.Albicans<br />

Standard<br />

Co complex<br />

Fig. 11: Antimicrobial activity <strong>of</strong> the <strong>Schiff</strong> base complexes<br />

aga<strong>in</strong>st bacterial & fungal pathogens<br />

DNA CLEAVAGE STUDIES<br />

Fig. 12: Gel Diagram <strong>of</strong> calf-thymus DNA <strong>in</strong>duced by<br />

the <strong>Schiff</strong> base L 1 and its complex Ia <strong>in</strong> presence <strong>of</strong> oxidant<br />

H 2 O 2 by agarose gel electrophoretic pattern<br />

Lane from Left to Right<br />

(C) CT DNA alone<br />

(1) <strong>Schiff</strong> <strong>Base</strong> I + DNA + H 2O 2<br />

(2) Co(L 1) 2 +DNA + H 2O 2<br />

Vol. 3 (4) Oct – Dec 2012 www.ijrpbsonl<strong>in</strong>e.com 1776


<strong>International</strong> <strong>Journal</strong> <strong>of</strong> <strong>Research</strong> <strong>in</strong> Pharmaceutical and Biomedical Sciences ISSN: 2229-3701<br />

AFM IMAGES<br />

Fig. 13: AFM topographic images <strong>of</strong> cobalt oxide <strong>of</strong> IIa<br />

-[Co(L2)2(H2O)(OAc)] show<strong>in</strong>g 2D configuration <strong>in</strong> the<br />

material. The scanned area<br />

is 0.5 m x 0.5 m. Size <strong>of</strong> the particle = 15nm-20-nm<br />

Fig. 14: AFM topographic images <strong>of</strong> cobalt oxide <strong>of</strong> IIa-<br />

[Co(L2)2(H2O)(OAc)] show<strong>in</strong>g 3D configuration <strong>in</strong> the material.<br />

The scanned area is 0.5 m x 0.5 m.<br />

Size <strong>of</strong> the particle = 15nm-20-nm<br />

REFERENCES<br />

1. Bimal kumar, Rai BK and Nisha<br />

Ambastha. Synthesis, characterization and<br />

Antimicrobial screen<strong>in</strong>g <strong>of</strong> cobalt (II),<br />

Nickel (II) & copper(II) complexes with<br />

<strong>Schiff</strong> base derived from 2-phenyl<br />

Qu<strong>in</strong>oxal<strong>in</strong>e Thiosemicarbazone. Oriental<br />

J Chem. 2011;27:1173-1178.<br />

2. Raman N, Pitchaikani Raja Y and<br />

Kulandaisamy A. Synthesis and<br />

characterization <strong>of</strong> Cu(II), Ni(II), Mn(II),<br />

Zn(II) and Vo(II) <strong>Schiff</strong> base complexes<br />

derived from o-phenylenediam<strong>in</strong>e and<br />

acetoacetanilide. Proc Ind Acad Sci.<br />

2001;113:183-189.<br />

3. Raman N, Dhaveethu Raja J and<br />

Sakthivel A. Synthesis, spectral<br />

characterization <strong>of</strong> <strong>Schiff</strong> base transition<br />

metal complexes: DNA cleavage and<br />

antimicrobial activity studies. J Chem Sci.<br />

2007;119:303-310.<br />

4. Neelakantan MA, Russal Raj F,<br />

Dharmaraja J, Johnsonraja S and<br />

Jeyakumar T.Synthesis, Characterization<br />

and Biocidal Activities <strong>of</strong> Some <strong>Schiff</strong><br />

<strong>Base</strong> Metal <strong>Complexes</strong>, Spectrochimica.<br />

Acta. 2008; 71A:1599- 1609.<br />

5. Shilpa Sharma, Monica Bedi, Monica<br />

Gupta, Varshney S and Varshney<br />

AK.Studies <strong>of</strong> some new coord<strong>in</strong>ation<br />

compounds <strong>of</strong> Al(III) with<br />

Vol. 3 (4) Oct – Dec 2012 www.ijrpbsonl<strong>in</strong>e.com 1777


<strong>International</strong> <strong>Journal</strong> <strong>of</strong> <strong>Research</strong> <strong>in</strong> Pharmaceutical and Biomedical Sciences ISSN: 2229-3701<br />

semicarbazones<br />

and<br />

thiosemicarbazones. 2010;3:483-489.<br />

6. Bhagat TM, Swamy DK and Deshpande<br />

MN. Synthesis and characterization <strong>of</strong><br />

transition metal complexes with newly<br />

synthesized substituted benzothiazole. J<br />

Chem and Pharm <strong>Research</strong>. 2012;4:100-<br />

104.<br />

7. Kulkarni, Sangamesh Patil A and Prema<br />

Badami S.Electrochemical Properties <strong>of</strong><br />

some Transition Metal <strong>Complexes</strong>:<br />

Synthesis, Characterization and Invitroantimicrobial<br />

studies <strong>of</strong> Co(II), Ni(II),<br />

Cu(II), Mn(II) and Fe(III) <strong>Complexes</strong>, Int.<br />

J Electrochem Sci. 2009; 94:717–729.<br />

8. Figgis BN and Lewis J. Co (II) AND Fe<br />

(III) <strong>Complexes</strong> <strong>of</strong> <strong>Schiff</strong> bases derived<br />

from Isat<strong>in</strong> with some am<strong>in</strong>o acids. Prog<br />

Inorg chem.. 1964;157:37-67.<br />

9. Kalia SB, Lumba K, Kaushal G and<br />

Sharma M. Magnetic and spectral studies<br />

on Co(II) chelates <strong>of</strong> a dithiocarbazate<br />

derived from isoniazid. Ind J chem.<br />

2007;46A: 1233-1239.<br />

10. Fahmideh Shabani, Lotf Ali, Saghat<br />

foroush and Shahriar Ghammamy.<br />

Synthesis, characterization and antitumour<br />

activity <strong>of</strong> iron (iii) <strong>Schiff</strong> base<br />

complexes with unsymmetric tetradentate<br />

ligands, Bull Chem soc. ETHIOP.<br />

2010;24:193 – 199.<br />

11. Mendu Padmaja, Pragathi J and<br />

Gyanakumari C. Synthesis, spectral<br />

characterization, molecular model<strong>in</strong>g and<br />

biological activity <strong>of</strong> first row transition<br />

metal complexes with <strong>Schiff</strong> base ligand<br />

derived<br />

from chromone-3-<br />

carbaldehyde and o-am<strong>in</strong>o benzoic acid. J<br />

Chem & Pharm Res. 2011;3: 602-613.<br />

12. Raman N, Ravichandran S and<br />

Thangaraja C. Copper(II), Cobalt(II),<br />

Nickel(II) and Z<strong>in</strong>c(II) complexes <strong>of</strong><br />

<strong>Schiff</strong> base derived from benzil-2,4-<br />

d<strong>in</strong>itrophenylhydrazone with anil<strong>in</strong>e. J<br />

Chem Sci. 2004 ;116:215–219.<br />

Vol. 3 (4) Oct – Dec 2012 www.ijrpbsonl<strong>in</strong>e.com 1778

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!