29.10.2014 Views

Hydro-ecological relations in the Delta Waters

Hydro-ecological relations in the Delta Waters

Hydro-ecological relations in the Delta Waters

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ne<strong>the</strong>rlands<br />

organkation fw<br />

applied scientik<br />

research<br />

TNO f2omdtee<br />

on Hydrdogical<br />

t?eseach<br />

8 hyara <strong>ecological</strong> <strong>relations</strong><br />

<strong>in</strong> <strong>the</strong> <strong>Delta</strong> <strong>Waters</strong> of <strong>the</strong><br />

South-West Ne<strong>the</strong>rlands


<strong>Hydro</strong>-<strong>ecological</strong> <strong>relations</strong><br />

<strong>in</strong> <strong>the</strong> <strong>Delta</strong> <strong>Waters</strong> of <strong>the</strong><br />

South-West Ne<strong>the</strong>rlands


TNO Commlitee<br />

on <strong>Hydro</strong>logical<br />

Research<br />

<strong>Hydro</strong>-<strong>ecological</strong> <strong>relations</strong><br />

<strong>in</strong> <strong>the</strong> <strong>Delta</strong> <strong>Waters</strong> of <strong>the</strong><br />

South-West Ne<strong>the</strong>rlands<br />

Proceed<strong>in</strong>gs and <strong>in</strong>formation No. 41<br />

Verslagen en Mededel<strong>in</strong>gen No. 41<br />

Editors<br />

J.C. Hooghart<br />

C.W.S. Posthumus<br />

Technical Meet<strong>in</strong>g 46<br />

Rotterdam, The Ne<strong>the</strong>rlands<br />

8 March 1989<br />

Publ~shed wlth support of<br />

Rijkswaterstaat, Directorate Zeeland<br />

The Hague 1989


COLOPHON<br />

Photographa<br />

- Rijkswaterstaat, DirectorateZeeland:<br />

- Rijkswaterstaat,Tidal <strong>Waters</strong> Division:<br />

reverseof<strong>the</strong>title<br />

page, l l b, 82b, 1 oOb,<br />

I 52a<br />

- R~jrtswaterstaat,lnstitutefor nlana<br />

Water Management and Waste WaterTreatment<br />

- K<strong>in</strong>g Air<br />

- BureauWaardenburg<br />

- W. Oorthuysen<br />

- P.L. Me<strong>in</strong><strong>in</strong>ger<br />

- E.Sterckel<br />

- L. Peperzak<br />

- M.Veldhuis<br />

- W. Riemens, National Forest<br />

Service<strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands<br />

Pr<strong>in</strong>ted by:<br />

DrukkeriJ/Uitgeverij Lakeweld B.V..The Hague<br />

CIP-DATA<br />

HydM-ecoiog~cal <strong>relations</strong> <strong>in</strong> <strong>the</strong> <strong>Delta</strong> <strong>Waters</strong> of <strong>the</strong><br />

South-West Ne<strong>the</strong>rlands: Technrcal Meet~ng 46, Rotterdam,<br />

The Ne<strong>the</strong>rlands, 8 March l989 1 eds. J.C. Hooghart,<br />

C.W.S. Posthumus.-The Haaue:TNO Committeeon Hvdrolog'cal<br />

Research. - Illustratio~s. - (Proceed'ngs and <strong>in</strong>rbrmaton<br />

ITN0 Committee on <strong>Hydro</strong>loaical Researcn: no 411<br />

With <strong>in</strong>dex. ref.<br />

ISBN 90-6743-160-5<br />

SiSO 573.3 UDC 574.5:627.51492.911<br />

Subject head<strong>in</strong>g: hydro-ecoldgy, delta<br />

COWRIGHT Q WTHE NETHERLANDS ORGANlZATlON FOR APPLIED<br />

SCIENTIFIC RESEARCH TNO, W89


2 RIVER WATER AM) THE QPALITH OF TBe DELTA WATERS<br />

L. Biflsnra md J.W.M. Kuipers<br />

Abstract<br />

1 <strong>in</strong>troduction<br />

2 Changes <strong>in</strong> <strong>the</strong> <strong>Delta</strong><br />

3 The quality of river sedimenta<br />

4 The quality of lake bed and river bed aediments <strong>in</strong><br />

<strong>the</strong> sedimentation areas<br />

5 EFfects on <strong>the</strong> environment<br />

6 Cmclusions and f<strong>in</strong>al renarks<br />

7 summary<br />

References<br />

3 EUTBOPHICATION 02 RIE RXESB WATER8 OF 7I-E DPl W<br />

J.E.W. de Roog md B.P.C. Steepkamp<br />

Abstract<br />

1 Introduction<br />

1 The &lLands DLep/aar<strong>in</strong>gvliet<br />

3 The Volkerak-Zoom Lake spstm<br />

4 Nanagrment nieeswres to prevent or lircit <strong>the</strong><br />

eutr~lphicatias of <strong>the</strong> Volkerak-Earn lake systm<br />

5 Gonelusions<br />

4 ~ P K I OF ~ ESTUARIES I ~ BND BRAGKISH LAGOONS IN<br />

m smn-WEST NETHEBtrnS<br />

P.H. Nieukuis<br />

Abstract<br />

1 Introduction<br />

2 Nutrienz cmcwtrations ad lpadws<br />

3 Effeets a£ eutrmphication<br />

References<br />

5 THE CMANGINO TIDAL LANDSCAPE IN TBE DELTA AXEA THE<br />

SODTH-WEST HETBOaI.p;NbE<br />

J.P.M. Mulder<br />

Abstract<br />

1 Utroduction<br />

E<br />

3<br />

Evolution of rhe tidal landscape durkng histosis time@<br />

Major chenges <strong>in</strong> <strong>the</strong> tidal landsaape pvef <strong>the</strong> last<br />

decades<br />

4 Eonslwa<strong>in</strong>g remark$<br />

Aoknowledgersents<br />

Bef erenoes


6 ECOLOGICAL DEVELOPMENT OF SALT MARSEES AND FOWR TRIAL<br />

FLATS IN THE SOUTH-WEST -S<br />

&.E.& van Baperen<br />

Ahstract<br />

I Introducttw<br />

2 Ecological dpamtcs <strong>in</strong> various waters<br />

3 Factors <strong>in</strong>fluenc<strong>in</strong>g ecwystem development<br />

4 Balsnoe of ecosysrem development up to now<br />

5 Future<br />

6 Spatial view<br />

7 Hanagwent<br />

Acknowledgemenrs<br />

RefelrenceS<br />

BY w m m s<br />

P.M. Meire, J. Seys, T. Ysebaert, P.L. Me<strong>in</strong><strong>in</strong>ger<br />

and H.3.M. Baptist<br />

Abstract<br />

1 Introduction<br />

2 Uescriptian of <strong>the</strong> area<br />

3 Occlrrrence of birds<br />

4 Distribption of waterbirds welr <strong>the</strong> different bas<strong>in</strong>s<br />

and telatims with <strong>the</strong> food supply<br />

5 Factors comglicatLng <strong>the</strong> releeion between distribution<br />

and favd supply<br />

4 Conclusion<br />

Aclmovledpements<br />

References<br />

Appendix<br />

8 HPDRO-ECOLOCtIW &EATIONS IN THE DELTA WATBRS OF<br />

THE SOUTH-WEST EEIETBERLANlXS<br />

C.W. Iedema<br />

Abstract<br />

1 Introduction<br />

2 Sedimentation and aCcumulation<br />

3 Downstream freshwater euerophicatipn<br />

4 Saltwater eutrophicati~n<br />

5 Horphological struare and dpaics<br />

6 Terrestrial nabre1 developments<br />

7 Food ecolog~ connections: bii-ds


B.J.M. Baptist BIJkswaterstaat. Tidal <strong>Waters</strong> Diviefon,<br />

Middelburg<br />

Wjkswaterstaat, Directorate Zeeland,<br />

Middelkg<br />

Bijkswaterstaat , Directorate Zeelsnd,<br />

Elideelburg<br />

A.M.M. van liaperen -$try of Agriculture and Bisheries.<br />

Beparhunt for nature Eonketvation.<br />

Environmental Pratection and Wildlife<br />

Baxlagement,<br />

6088<br />

J.E.W.<br />

C.W.<br />

J.W.M.<br />

P.L.<br />

?.M.<br />

J.P.B.<br />

P.H.<br />

de Eaog<br />

Iedema<br />

Kuipera<br />

Ee<strong>in</strong><strong>in</strong>gsr<br />

&ire<br />

Mulder<br />

Nienhuis<br />

Ftijkmaterstairr, Institute for LnLasd<br />

Water Management and Waste Water Treatment,<br />

Ma<strong>in</strong> Division Water Managwnr,<br />

Dor&reaht<br />

Rijkswaterstaat, Directotate &eland.<br />

Middeldurg<br />

Eijkwaterstaat, Directorate Zubd-Holldnd,<br />

Rotterdam<br />

Bijlcswaterstaat, Tidal Uatera Divisicmi<br />

Middelburg<br />

Dlliversity of Gent, tabosatorp of Animal Ecolo$y,<br />

Gent (Belgid<br />

Rifkswaterstaat . Tidal <strong>Waters</strong> Divisi en,<br />

Middelbur(:<br />

<strong>Delta</strong> Institute for <strong>Hydro</strong>biological Research,<br />

Yerseke<br />

J. Says<br />

University of Gent, Labor&ory of Animal Ecology,<br />

Gent IBelgim)<br />

B.P.C.<br />

Steenlcrrmp<br />

Ilijkswacerscaat, Inssitute for Inland Watex<br />

Management and Waare Water Treatment, Ma<strong>in</strong><br />

Division Wate~ Manegament, Dordrecht<br />

Vazivezaitp of Gent, Laboratory of Animal Ecology,<br />

Gent (B*iuuI)


Before human <strong>in</strong>terference <strong>in</strong> <strong>the</strong> <strong>Delta</strong> of <strong>the</strong> 1300th-West Ne<strong>the</strong>rlands.<br />

<strong>the</strong> hydro-ecal0gioal <strong>relations</strong> +n <strong>the</strong> watexs of this <strong>Delta</strong> were taken<br />

very much far granted. As a result rzf <strong>the</strong> man-made changes, thbe<br />

natural <strong>relations</strong> disappeared. The constmction df <strong>the</strong> <strong>Delta</strong> Works<br />

completely altered <strong>the</strong> face of <strong>the</strong> <strong>Delta</strong>. Thie was not <strong>the</strong> first<br />

occasion on which <strong>the</strong> <strong>relations</strong> between <strong>the</strong> waters of <strong>the</strong> <strong>Delta</strong> had<br />

been affected. Take for example <strong>the</strong> construction of <strong>the</strong> Sloe Dam and<br />

Kreekrak I)rug <strong>in</strong> <strong>the</strong> latter half of <strong>the</strong> 19th ceatury, which resulted <strong>in</strong><br />

<strong>the</strong> loss of <strong>the</strong> coneection between <strong>the</strong> Eastern aad Wsatern Scheldt.<br />

Never<strong>the</strong>less, <strong>the</strong> <strong>Delta</strong> ia its present fow ig largely <strong>the</strong> bra<strong>in</strong>child<br />

of hydraulic ag<strong>in</strong>eerr; of <strong>the</strong> lattez half of <strong>the</strong> present centuq.<br />

The origtnal <strong>Delta</strong> Project treated <strong>the</strong> <strong>Delta</strong> as a s<strong>in</strong>gle entity, but<br />

purely from <strong>the</strong> po<strong>in</strong>t of view of safety and water control. At that<br />

time <strong>the</strong> <strong>in</strong>tegral approach of eool6giaal Interests had yet to be<br />

developadd Although <strong>ecological</strong> considerations have ga<strong>in</strong>ed <strong>in</strong><br />

impoltanoe over <strong>the</strong> years, <strong>the</strong> present compameutalizatlon ef <strong>the</strong><br />

<strong>Delta</strong> is still to s great extent <strong>the</strong> product of <strong>the</strong> orig<strong>in</strong>al <strong>Delta</strong><br />

Project.<br />

The completion of <strong>the</strong> water management <strong>in</strong>frastmcrure of <strong>the</strong> <strong>Delta</strong><br />

marks, for <strong>the</strong> tfm be<strong>in</strong>g at least, <strong>the</strong> end of an ere of major<br />

hydradie projects <strong>in</strong> <strong>the</strong> <strong>Delta</strong>. But while <strong>the</strong>se works were be<strong>in</strong>g<br />

carried ant, a new era had already begun; one which centred on careful<br />

supervision apd ~esponsib-le managwent of <strong>the</strong> newly-created systems.


This approach will put to use what has been leaned about <strong>the</strong><br />

hbaviour of compartmentallzed systems. If we respand to changes by<br />

mak<strong>in</strong>g <strong>in</strong>formed use of <strong>the</strong> scope for control and regulation presented<br />

by <strong>the</strong> <strong>Delta</strong> Works, we can develop <strong>the</strong>se new systems to <strong>the</strong>ir full<br />

patential.


RrPER WATER<br />

TRE QUALITY OF TEE DELTA WATERS<br />

L. B i j h<br />

and J.W.M.<br />

KuipeIs<br />

Extmsive hydraulic eng<strong>in</strong>eer<strong>in</strong>g projects have beerr carried out Dver <strong>the</strong><br />

last 25 years <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area famd by <strong>the</strong> rivers Rh<strong>in</strong>e. Meuse arid<br />

Scheldt. This has resulted <strong>in</strong> parts of <strong>the</strong> <strong>Delta</strong> befng divided up<br />

(c~artmentalized) while oche parts have been closed oaf. The time P J ~<br />

which rnaap oi <strong>the</strong> operations <strong>in</strong>volved<br />

divid<strong>in</strong>g up <strong>the</strong>se areas were<br />

carried out co<strong>in</strong>cided wirh a period dur<strong>in</strong>g which <strong>the</strong> pollution <strong>in</strong> <strong>the</strong><br />

three rivers reached its lnaximum level (1970-1975).<br />

34icropollutants (heavy metals and organic compounds) became aztsched to<br />

<strong>the</strong> Elms <strong>in</strong> <strong>the</strong> sadiment carried by <strong>the</strong> rivers, md this led to <strong>the</strong><br />

<strong>Delta</strong> region also be<strong>in</strong>g affected by <strong>the</strong>ae contam<strong>in</strong>ents. However.<br />

because of compartmentalhation certa<strong>in</strong> areas, namely Lake Gtevel<strong>in</strong>geu<br />

and <strong>the</strong> tidal bas<strong>in</strong> of <strong>the</strong> Eastern Scheldt, escaped <strong>the</strong> wiwe of<br />

pollution. The quantities of micropollutants ia thwe areas are vow<br />

close to natural background levels. The explansion for this is that<br />

<strong>the</strong> compartmentalization af <strong>the</strong>se areas was completed before <strong>the</strong><br />

pollution <strong>in</strong> <strong>the</strong> Rh<strong>in</strong>e an2 Wse reached snrb high levels.<br />

In oontrast, <strong>the</strong> closure of <strong>the</strong> Earfngvlfet estuary led to <strong>the</strong><br />

fornation of new sedimentation areas just prior ta <strong>the</strong> time at which<br />

<strong>the</strong> pollwtlon <strong>in</strong> <strong>the</strong> Rh<strong>in</strong>e and Beuse reached a peak. Thus layers of<br />

conrant<strong>in</strong>ated material have settled <strong>in</strong> thase sedimentatim areas. Almost<br />

30% of <strong>the</strong> total amount of silt transported by <strong>the</strong> rivers Rhise and<br />

Meuse is deposited <strong>in</strong> <strong>the</strong>se areas.


Estuaries that have not been <strong>in</strong>fluenoed by closure operations can also<br />

un&ergo significant temporary seamentation effects. An example of this<br />

is <strong>the</strong> land of S~efe<strong>in</strong>ghd <strong>in</strong> <strong>the</strong> Western Scbeldt astuary. As a result<br />

of a rfse <strong>in</strong> <strong>the</strong> sea level and a deepen<strong>in</strong>g 0f <strong>the</strong> shipp<strong>in</strong>g ch-I, <strong>the</strong><br />

difference between law end hQher watex bter <strong>in</strong>rreased which. <strong>in</strong> C m ,<br />

has resulted <strong>in</strong> a significautly greater deposition of silt on <strong>the</strong><br />

mudflats and salt marshes. Almost 258 of <strong>the</strong> stlc transported by Eh@.<br />

rlrer Gcheldt settles <strong>in</strong> <strong>the</strong>se areas.<br />

Although relatively IfttLe is itqown abol~t <strong>the</strong> effects that contam<strong>in</strong>ated<br />

beds have W% <strong>the</strong> aquatic ecaapatem, <strong>the</strong>re are clear signs that<br />

ecolorsical camunities which are directly dependent OP <strong>the</strong> river bed<br />

environment can be disrupted. In additio& <strong>the</strong> amaunts of pollutants<br />

round <strong>in</strong> certa<strong>in</strong> oqanisms and plants now exceed <strong>the</strong> maximum acceptable<br />

level$ for human consumption. Fumre clean-up operations could be<br />

censidm'ed fer <strong>the</strong> contamfnated $edimentatiou areas when <strong>the</strong> level of<br />

pollution frorn discharges <strong>in</strong>to <strong>the</strong> river baeb has been suf£icientl~<br />

reduced. In view af <strong>the</strong> scale and extent oP <strong>the</strong> sedimentation layer<br />

concerned, no salutions have yet been fomd to thls problem.<br />

The <strong>Delta</strong> zegion of <strong>the</strong> South-West Ne<strong>the</strong>rlands<br />

hean <strong>the</strong> scene of<br />

many extensive hydrauliq eng<strong>in</strong>eer<strong>in</strong>g projects sver <strong>the</strong> last few decades<br />

(Fig, 1). These opexatians ware largely a reaorlon to <strong>the</strong> storm tide<br />

dtsascer a£ 1953, <strong>in</strong> which large areas of <strong>the</strong> <strong>Delta</strong> region were<br />

<strong>in</strong>undated. The pLam which were &!awn up after this catastrophe and<br />

which have do*1 beon implemented were primarily concerned with<br />

protect<strong>in</strong>g <strong>the</strong> region aga<strong>in</strong>sf Iloodi?~g. In addition. <strong>the</strong> plans also<br />

addreased dpecific vater management objectives, <strong>in</strong> particular <strong>the</strong> need<br />

to control tbe pblwp. of sal<strong>in</strong>ization. The basic approach was to<br />

dose off <strong>the</strong> tidal gullies <strong>in</strong> <strong>the</strong> <strong>Delta</strong> and to create a sertes OF<br />

freshwatet lakes beh<strong>in</strong>t3 <strong>the</strong> dame.


6 )(ollM.Yn DI.0<br />

I L.,. (il .l 1m.n<br />

.-I L&.=- F O,.l*.I.". **.c,sBD,<br />

'I L."* *'S",,,*. (i i..911.1- (8.01 1<br />

" z.-w*-d" .,"U,W,<br />

I htn.a.*,-nswr BTU*. IW~I<br />

Figure 1 The <strong>Delta</strong> Plan<br />

DvrI4g <strong>the</strong> ODilStruction phase it was realised that it would be<br />

exrremely undesirable to lose altoge<strong>the</strong>r <strong>the</strong> unFque saltwater tidal<br />

sysrcm that existed fn this region. Consequently, a decision was taken<br />

<strong>in</strong> <strong>the</strong> 1970's not to Close off <strong>the</strong> Eastern Seheldt tidal bas<strong>in</strong> as had<br />

ozigfnally been iataded, but to <strong>in</strong>stall a storm surge barrier <strong>in</strong>stead.<br />

This meant that <strong>the</strong> safety of <strong>the</strong> region could be @armteed while<br />

still present<strong>in</strong>g <strong>the</strong> essential character of a ealturater tidal system.<br />

While CDnsttuctiod work on <strong>the</strong> <strong>Delta</strong> Project was <strong>in</strong> progress, pollution<br />

from <strong>the</strong> major rivers <strong>in</strong> <strong>the</strong> region rose to maximm lavels. This<br />

created a fur<strong>the</strong>r problem. Closure of <strong>the</strong> estuaries has disturbed <strong>the</strong><br />

morphological balance ancl led to <strong>the</strong> forreation of new ffedimentatisn<br />

areas. The quality of <strong>the</strong> lake and river beds <strong>in</strong> <strong>the</strong> new sedimentation<br />

areas deteriorated rapidly as <strong>the</strong> suspended sediment carried by <strong>the</strong><br />

wster af <strong>the</strong> major rivers e~nta<strong>in</strong>ed micropollutants quch as heavp<br />

metals and organic wmpeunds.


2 CHIWGES XN TEE DELTA<br />

The <strong>Delta</strong> are was formed by <strong>the</strong> <strong>in</strong>teraction 05 <strong>the</strong> rivers &be. Meuse<br />

and Scheldt and <strong>the</strong> tidal movements of <strong>the</strong> Xorth Sea. Tlie average<br />

discharges from <strong>the</strong> Rh<strong>in</strong>e. Meuse and Scheldt are 2200 m3/sec.<br />

260 mg/sec and 100 m31sec respectively. The orig<strong>in</strong>al discharge<br />

distribunon over <strong>the</strong> tidal @lies, prior to tha<strong>Delta</strong> Project<br />

closures, is given <strong>in</strong> Figure 2. In <strong>the</strong> period befere 1965, <strong>the</strong><br />

<strong>in</strong>fluence of tbe Rh<strong>in</strong>e and Ueuse -tended ta <strong>the</strong> Eastern Scheldt<br />

estuary. At that time <strong>the</strong> <strong>Delta</strong> was Fn a state approach<strong>in</strong>g<br />

morphologioal equilibrium. Until 1970, <strong>the</strong> amount of sand and silt<br />

brought down by <strong>the</strong> rivers Rh<strong>in</strong>e and Meuse was ronghly equal to that<br />

Figure 2<br />

Dischatge distribution over <strong>the</strong> maior rivers 1965 (vduee<br />

<strong>in</strong> m8/sec)


discharged through <strong>the</strong> mouths of <strong>the</strong> estuaries to <strong>the</strong> North<br />

However, local variations were apparent, with fur<strong>the</strong>r erosion tak<strong>in</strong>g<br />

place <strong>in</strong> <strong>the</strong> deeper tidal gullies and correspond<strong>in</strong>g <strong>in</strong>creasas <strong>in</strong><br />

sedimentatton occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> shallows. Moreover, sea-borne sediment<br />

was deposited <strong>in</strong> <strong>the</strong> western part of <strong>the</strong> <strong>Delta</strong>. The f<strong>in</strong>er type of<br />

fluvial sediment was only deposited <strong>in</strong> more sheltered locations, with<br />

<strong>the</strong> majority of it flow<strong>in</strong>g tkouah to <strong>the</strong> RarM Sea. Under <strong>the</strong><br />

<strong>in</strong>fluence of <strong>the</strong> prevail*<br />

sediment was carried northwerds, where w e<br />

10%-shore current this f<strong>in</strong>e fluvial<br />

of it was deposited ia <strong>the</strong><br />

Wadden Sea, an extensive w e s l area ~ <strong>in</strong> <strong>the</strong> north of <strong>the</strong> Ne<strong>the</strong>rlands.<br />

Successive closures <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area produced chenges <strong>in</strong> <strong>the</strong> flaw<br />

distribution, while flow rates tended to decl<strong>in</strong>e as a result of <strong>the</strong><br />

complete or partial loss of tidal motion. =is Led to tde formation of<br />

new se-ntation<br />

areas wita<strong>in</strong> <strong>the</strong> <strong>Delta</strong> regfoil. By 1965 <strong>the</strong> central<br />

section of tXe <strong>Delta</strong> vaS no longer sublect fa <strong>the</strong> <strong>in</strong>fluence of <strong>the</strong><br />

Rh<strong>in</strong>e and Ruse. In 1965 and 1969 resptpectively <strong>the</strong> Grevel<strong>in</strong>gen and<br />

Eastern Scheldt estuaries were effectively &coupled from <strong>the</strong>se two<br />

rivers. The closure of <strong>the</strong> Har<strong>in</strong>mliet estuary <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn section<br />

of <strong>the</strong> <strong>Delta</strong> had <strong>the</strong> effect of reduc<strong>in</strong>g tidalmotion over <strong>the</strong> whale oi?<br />

this area. Xn <strong>the</strong> sautb, <strong>the</strong> Western Scheldt estuary rema<strong>in</strong>ed Largely<br />

unchanged, although <strong>the</strong> sand bars <strong>in</strong> <strong>the</strong> estuarp *ere dug out <strong>in</strong> <strong>the</strong><br />

1970's to improve <strong>the</strong> shipp<strong>in</strong>g route to Antwerp (Belgium). F<strong>in</strong>ally, <strong>in</strong><br />

1987, work <strong>in</strong> rhe eastern past of <strong>the</strong> <strong>Delta</strong> led to <strong>the</strong> fomation of a<br />

separate freshwater lake (Lake Zoom3 <strong>in</strong> <strong>the</strong> Eastern Scheldt, irith <strong>the</strong><br />

spe~ific aCm of imprw<strong>in</strong>g water supplies for agricultural purposes.<br />

Lake Zom is be<strong>in</strong>g flusked out with frwb water from <strong>the</strong> Eollarids Diep,<br />

The overall eff&t of all <strong>the</strong>se hydraulic eng<strong>in</strong>eer<strong>in</strong>g projects has been<br />

to change significantly <strong>the</strong> distribution of river water, which has had<br />

implications for <strong>the</strong> transport of fluvial sediment. Recent measurements<br />

of <strong>the</strong> transport of f<strong>in</strong>e fluvial aediments are shown <strong>in</strong> tern of tons<br />

per year <strong>in</strong> Figure 3. This fi~uze also gives <strong>the</strong> yearly irccumulation of<br />

river sediment at: particular locations. Region I represents <strong>the</strong><br />

sou<strong>the</strong>rn lower reaches of <strong>the</strong> Rh<strong>in</strong>e and <strong>the</strong> lover reaches of <strong>the</strong> Meuse.<br />

Follow<strong>in</strong>g <strong>the</strong> closure of <strong>the</strong> Har<strong>in</strong>gvliet estuary, flov rates <strong>in</strong> <strong>the</strong>


area decltned cnnside~ably, lead<strong>in</strong>s eo a~rensive sedimentation. This<br />

has cause3 an Inner delta to form at this location, which is gradnag<br />

plov<strong>in</strong>p <strong>in</strong> a westerly direction. In <strong>the</strong> case ef Regien 11, <strong>the</strong><br />

lIar<strong>in</strong>pliet, closure has led ko a th<strong>in</strong> layer of silt be<strong>in</strong>g deposited<br />

over this area.<br />

From 1987 onwards, a new sedimenracion area is develop<strong>in</strong>g <strong>in</strong> Lake Zo&<br />

(Region In). The sedimentarion <strong>in</strong> this region is essentially similar<br />

to that found <strong>in</strong> <strong>the</strong> Har<strong>in</strong>gqliet area and will ma<strong>in</strong>ly cunsist of silt.<br />

Pbally, comparisons can be made with <strong>the</strong> sedhentntion area <strong>in</strong> <strong>the</strong><br />

Western Scheldt (Region IVI. In this region most of <strong>the</strong> silt carried by<br />

I l<br />

t.l(.rnbsmlsl<br />

W.*l.m<br />

..I"""<br />

Sm.ldl<br />

I<br />

I'<br />

closure dam<br />

J [ waler me.naeernm1 sluice<br />

ir~dlmsnlatlon rsgl~n<br />

X: number ot lhe raglan<br />

200: sedlmenlallorn <strong>in</strong><br />

1000 tons I year<br />

Figure 3 Transport rates of f<strong>in</strong>e fluvial sediments 19.87 (values <strong>in</strong><br />

l000 tms p.a.)


<strong>the</strong> river Scheldt is deposited <strong>in</strong> <strong>the</strong> mudflats hwn as <strong>the</strong> l&<br />

Sadtfnghe.<br />

of<br />

The sedimentation areas +-bferted to above will Be discussed fuz<strong>the</strong>r <strong>in</strong><br />

<strong>the</strong> followdug sections.<br />

Prom <strong>the</strong> turn of <strong>the</strong> century onwards, pollution <strong>in</strong> <strong>the</strong> &ke, Meum aad<br />

Scheldt hssiaa <strong>in</strong>creased rapidly as a rwult of <strong>in</strong>dustrial expansion<br />

and fuz<strong>the</strong>r population ~rowth ~5altaoo=,<br />

1981). T'he mount OF pollutien<br />

<strong>in</strong> <strong>the</strong>se arras antimed to <strong>in</strong>crease until ourxfmute levele were reached<br />

dur<strong>in</strong>g <strong>the</strong> period 1978-1915. As a censeqmence Large amaunts of hemetals<br />

and ~rgaaic compamde have becnms attached ca tbe rrver<br />

sediment.<br />

Ja order to IRDnitw ttie sies&tron dxt@t <strong>the</strong> last Em beea~@s, t&<br />

aSssciated leveLs haha been meas.me8~ at <strong>the</strong> pdiWs *here t&<br />

t%i&<br />

rivers boss cfre befdees, A BrtaFtd di*%usBi6h of tbe distrfbugion<br />

and cbahpe.8 <strong>in</strong> We levels of ell rAe sutmtabces that ate etiiteifed is<br />

bey6nd <strong>the</strong> heepe of tbe :pt@sent papet. ft h- <strong>the</strong>refore been dec-d to<br />

caiaider <strong>the</strong> examp&e B£ <strong>the</strong> bedry eta1 cgdmium a mean of<br />

illurifzat<strong>in</strong>~ <strong>the</strong> subje&t. This moral be rqardeli asi a Lacer for<br />

o<strong>the</strong>s pollutrmts. 'Ehe ehq.gS <strong>in</strong> associated 'e~dmfm level^ measql.e$ In<br />

~nspended sediment is shmm as a Eu=Gion ef tim <strong>in</strong> Piwxe 4. 8y @aim<br />

data from wre swig takq fw older sedtwnix if h,e. bsen p m l e<br />

te rsganstruet <strong>the</strong> build-up of poll~tion <strong>the</strong> %be t<strong>the</strong> first part<br />

a£ $AA* centurp. Fellovfng tKe peak y.e%rrs ef <strong>the</strong> eaz.Llg IPtO's, clem-U$<br />

measweB <strong>in</strong> <strong>the</strong> $Wue basttl &YE<br />

led t~ B spectacuiaz sedwctioa <strong>in</strong> <strong>the</strong><br />

afnoudc of cadidurn pa.Uutioh. Coneentratimw &we 40.w he& recture-i te<br />

Skse of


Plan, <strong>the</strong>n it is apparent tbt <strong>the</strong> separatian of <strong>the</strong> Grwel<strong>in</strong>gen and<br />

Eastern Scheldt estuaries occurred prior to <strong>the</strong> peak polluttan years of<br />

<strong>the</strong> early seventies. The formation of sedimentation regians I and 11, a<br />

result of <strong>the</strong> closure of <strong>the</strong> Rarhgvliet, took place hediately before<br />

<strong>the</strong> major wave of pollution occurred, while sedimentation rsgion 111,<br />

wbich d l be created by <strong>the</strong> fluehiq operatians of Lake Zoom, will be<br />

affected now that contamLRatiDn levels have been greatly reduced.<br />

Figure 4<br />

Associated cadmium <strong>in</strong> suspended river sedimeots ar <strong>the</strong> po<strong>in</strong>ts<br />

where <strong>the</strong> rivers Rh<strong>in</strong>e, Meuse and Scheldt cross <strong>the</strong> border


it (Phalacrocorax carho), a fish eat<strong>in</strong>g hird<br />

Volkerak dam and locks


Tiddl flats df <strong>the</strong> Eastem Seheldt vith "galddiggers"<br />

Flounder (Platiahtkpg f leaus) with ebscessea


4 THE QURLITY OF LAKE BED Bhm BIVER BED SEDIXENTS IN TIE<br />

SEDU4ENTATION AREAS<br />

The series of events, described above, has produced diffesences <strong>in</strong> <strong>the</strong><br />

quality of lake beds and river beds <strong>in</strong> <strong>the</strong> sedimentation areas<br />

(Salomons, et al, 1981; Beeft*, et al, 1982). The situation regard<strong>in</strong>g<br />

cadmium levels is illustrated <strong>in</strong> Figure 5. A regression analysis has<br />

been used <strong>in</strong> order to compare <strong>the</strong> meamred c~ncentrations <strong>in</strong> <strong>the</strong><br />

varioue samples.<br />

Roft.rd.m<br />

"'.,.rr.,<br />

U L<br />

R",".<br />

a full rirclc represents<br />

CO m#/kg cadm~um.<br />

Figure 5 Cadmium ooncentrationa <strong>in</strong> river bed sediments converted KO<br />

an equivalent 50Z-16 v* top lager (1986 levels).<br />

A <strong>relations</strong>hip has been established between <strong>the</strong> measured concentration<br />

ad <strong>the</strong> propartioq of f<strong>in</strong>es less than 16 urn <strong>in</strong> <strong>the</strong> sediment. It was


tracefore possible to convert <strong>the</strong> absolute measlured concentrations to<br />

an equivalent concentration that would be expected <strong>in</strong> a standard river<br />

bed with 550 ~f <strong>the</strong> gra<strong>in</strong> fraction less than 16 um.<br />

The separation of <strong>the</strong> Eastmrn Scbeldt and Lake Erevel<strong>in</strong>gen from <strong>the</strong><br />

water flow<strong>in</strong>g <strong>in</strong> <strong>the</strong> rivers Rh<strong>in</strong>e ad Meuse has resulted <strong>in</strong> rema<strong>in</strong><strong>in</strong>g<br />

extremely low on cent rations <strong>in</strong> <strong>the</strong>se areas. The values found <strong>in</strong> <strong>the</strong><br />

Eastern ScheldC are thought to approximate to natural hackground<br />

levels. The concentration <strong>in</strong> Lake Orevel<strong>in</strong>gen is known ta be aamedhat<br />

higher. Unlike <strong>the</strong> Eastern Scheldt, this lake becm stagnant after its<br />

closnre. .As a consequence, <strong>the</strong>re is less <strong>in</strong>teraction between <strong>the</strong> water<br />

<strong>in</strong> <strong>the</strong> lake a d <strong>the</strong> bed deposits (resuspenaioe) <strong>in</strong> Lake CreveUngen<br />

than <strong>in</strong> <strong>the</strong> Eastern Scheldt. This expla<strong>in</strong>s why <strong>the</strong> concentration of<br />

contam<strong>in</strong>ants <strong>in</strong> this lake still approaches <strong>the</strong> pre-1965 values.<br />

The lake beds and river beds <strong>in</strong> <strong>the</strong> s,e4imentatlon areas <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn<br />

part of <strong>the</strong> <strong>Delta</strong> are hewily polluted. In <strong>the</strong> eastern part (Nieuwe<br />

MerwBde/&met) high contam<strong>in</strong>ation levels have been detected, affectiqg a<br />

layer at least 2 metres thick. Zhis material was deposited between 1970<br />

and 1975. As an equilibrium has now developed between <strong>the</strong> hydraulic and<br />

morphalugtcal precesses, it is unlikely tKat this la~rer will be coveted<br />

by new se&ments <strong>in</strong> <strong>the</strong> future.<br />

The central section of <strong>the</strong> <strong>Delta</strong> (Hollands Diep) hag a thick layer of<br />

less polluted river sediment that was deposited <strong>in</strong> <strong>the</strong> years aftek<br />

1975. However, more contam<strong>in</strong>ated material from <strong>the</strong> 1970-1975 period is<br />

contaised below this layer. Underneath <strong>the</strong>se layers can be fonnd<br />

estuar<strong>in</strong>e sediments from *he period before 1970. l'he different layers<br />

referred to above can be qlearly dlvt<strong>in</strong>g=ished fro= core samples taken<br />

from <strong>the</strong> area (Fig. 6). It is reesgnized that <strong>the</strong> quality of <strong>the</strong> tap<br />

layer of sediment will improve as <strong>the</strong> quality of <strong>the</strong> surface water<br />

iaproves.


Figure 6 Contw<strong>in</strong>ation <strong>in</strong> rhe Eollands Diep. The recently deposited<br />

contam<strong>in</strong>ated layer can be clearly dist<strong>in</strong>guished by <strong>the</strong> lead<br />

content.<br />

A relatively th<strong>in</strong> layer of polluted sed<strong>in</strong>ents (less than 0.1 m) is to<br />

be found <strong>in</strong> <strong>the</strong> western section of <strong>the</strong> <strong>Delta</strong> (Har<strong>in</strong>gvliet) above older,<br />

ma<strong>in</strong>ly mar<strong>in</strong>e sedate. As sedimentation <strong>in</strong> this region takes place<br />

extremely slowly, no significant changes are expected <strong>in</strong> <strong>the</strong> near<br />

future (Fig. 7), althmgh <strong>in</strong> <strong>the</strong> long term <strong>the</strong> quality of <strong>the</strong> top layer<br />

will improve as <strong>the</strong> ma<strong>in</strong> area of sedimentation shifts westward<br />

(Bijkswaterstaat, 1987).


Figsrlre 7<br />

Changes <strong>in</strong> <strong>the</strong> cadrnrum contenr 08 <strong>the</strong> Bb<strong>in</strong>e vater W) and fn<br />

river bed sed<strong>in</strong>eat from <strong>the</strong> Aari~wlieE (K) over <strong>the</strong> period<br />

1971-1W.9<br />

As flush<strong>in</strong>g +pexasrions ere vnly sebeduled hc cBmaenc@ Sn 1981, <strong>the</strong><br />

quuli@ oZ <strong>the</strong>! eediwn2 <strong>in</strong> take &m is *=ill <strong>the</strong> as that faund <strong>in</strong><br />

o~het part$ of <strong>the</strong> Eastern 5cheldt. %wener, <strong>the</strong>ue ia a small area<br />

Wtnd trhe Volketaklocke wMch has been afteored by <strong>the</strong> <strong>in</strong>flw Q£<br />

water From tke Hollaxrds Dig. For water management purposes it h@% been<br />

decl&d tu re~ttic<strong>the</strong> fld<strong>in</strong>p; qerationw <strong>in</strong> Lake Zom to a miaimum<br />

(<strong>the</strong> sal<strong>in</strong>ity level <strong>in</strong> eke lake *ill not eiceed 4170 &l),<br />

<strong>the</strong> iuput of ppollutants.<br />

to reduce


It is possihle that <strong>in</strong> <strong>the</strong> future a more liberal flush<strong>in</strong>g policy might<br />

be adopted $n connection with <strong>the</strong> improved water ~ualitg <strong>in</strong> <strong>the</strong> rivers<br />

Rh<strong>in</strong>e and Lleuse. Hawever, it should be borne <strong>in</strong> m<strong>in</strong>d that not all <strong>the</strong><br />

pollution parmeters have been reduced to <strong>the</strong> same ertent as cadmium.<br />

In <strong>the</strong> Western Scheldt <strong>the</strong> situation is different from that described<br />

abwe s<strong>in</strong>ce this rwion haa not been faflueneed by <strong>the</strong> closure<br />

operations. Boww@r, significant amaunts of sed-t have been<br />

deposited over <strong>the</strong> last deaades <strong>in</strong> <strong>the</strong> Land of Saeft<strong>in</strong>ghe area, Which<br />

conaists of extensive salt marshes and mudflats. This has been caused<br />

by <strong>the</strong> deepen<strong>in</strong>g of <strong>the</strong> bars <strong>in</strong> <strong>the</strong> eaetern part of <strong>the</strong> estuarp for<br />

shipp<strong>in</strong>g purposes, which have <strong>in</strong>creased <strong>the</strong> t%dal difference and also<br />

<strong>the</strong> turbidity. Conruequeutly. a layer between 0.2 and 0.4 m has recentbeen<br />

deposited <strong>in</strong> thLe area. Polluted silt from <strong>the</strong> river Scheldt is<br />

sect* here toge<strong>the</strong>r with uncontam<strong>in</strong>ated sea-bane sediment, <strong>in</strong> <strong>the</strong><br />

ratio 608 liver silt to 44% sea silt.<br />

& a result of <strong>the</strong> comfruction of <strong>the</strong> <strong>Delta</strong> Works, as described <strong>in</strong> <strong>the</strong><br />

previous chaptezs, <strong>the</strong> central seetiou of <strong>the</strong> <strong>Delta</strong> has been cut off<br />

froa tbe <strong>in</strong>gluence of <strong>the</strong> major rivers to some extant. Hewever, this<br />

does not necessarily guarantee <strong>the</strong> quality of <strong>the</strong> estllary and lake<br />

beds, which 3s affected bot& by past <strong>in</strong>fluences as by local 8ources of<br />

pollution. It is <strong>in</strong>purrant to take this <strong>in</strong>ea account view of <strong>the</strong><br />

radical changes which tbe hgdranlic and aiorphblogical confi@uraeian of<br />

<strong>the</strong> regLon had mdcrgone. For <strong>in</strong>stance, rhe cmpartentslization of <strong>the</strong><br />

takes Grevel<strong>in</strong>gen. Beere and Vblkerak-Zoom bad cbnsidetahly ibcrea-sed<br />

<strong>the</strong> residence tima of water. The construct'ion of <strong>the</strong> storm-surge<br />

barrier <strong>in</strong> <strong>the</strong> Eastern Soheldt haa also led to a oonsiderable reduction<br />

<strong>in</strong> <strong>the</strong> hoxizontal tide, as a result of which residence <strong>the</strong> had<br />

<strong>in</strong>eressed and <strong>the</strong> Eastern Sch%lde has becorn a pure sedimentation area.<br />

In shsrt, <strong>the</strong> centrl section of <strong>the</strong> <strong>Delta</strong> has becoma much more<br />

vulnerable to local pollution.<br />

Local pollution mafnly emmates from diffuae sources; <strong>the</strong> ma<strong>in</strong> ones are<br />

acrivrties <strong>in</strong> <strong>the</strong> smaU hsrbonfs <strong>in</strong> this region and <strong>the</strong> discharge of<br />

water frm <strong>the</strong> polders. It has been obsemred that <strong>the</strong> beds of all of<br />

<strong>the</strong>se harbours are moderately to aeverelp polluted. Clean-up and


prevention measures are desirable here to prevent <strong>the</strong> diffusion of<br />

pollution to adjacent waters.<br />

5 EFFECTS ON THE ENVIRONMENT<br />

Relatively little is knm about rhe impact polluted beds have on<br />

aquatic ecosystems, partly because <strong>the</strong>se areas are not directly<br />

obsesvable. Future research strateges will <strong>the</strong>refore be ma<strong>in</strong>ly<br />

concerned vith address<strong>in</strong>g <strong>the</strong>se shorreom<strong>in</strong>gs. There are, however,<br />

various <strong>in</strong>dications that pollution m y be a hazard to public health md<br />

may <strong>in</strong>fluence <strong>the</strong> function<strong>in</strong>g of aquatic ecosystems. The presence of<br />

heavy metals ad organic micropollutants <strong>in</strong> benthic organisms is<br />

clearlybigher <strong>in</strong> polluted areas rhan is less wntam<strong>in</strong>ated areas. This<br />

has been verified for various organisms such as Dreissena palymol-pha.<br />

Tubifex spec., miromid larvae and also zooplankton (Urk, 1987). There<br />

are, of course, specific differences between <strong>in</strong>dividual species with<br />

regard to <strong>the</strong> type and mwunt of heavy metals found. In molluscs, for<br />

example, contam<strong>in</strong>ation levels are Ngher <strong>in</strong> species that live ia <strong>the</strong><br />

top layer of sediment than surface dwellers.<br />

Kelatively low levels of p@llution are found <strong>in</strong> <strong>the</strong> eastern part of <strong>the</strong><br />

Xar<strong>in</strong>$vliet bas<strong>in</strong> (Hollands Diep), whereas higher levels can be<br />

detected <strong>in</strong> <strong>the</strong> western part of <strong>the</strong> Bar<strong>in</strong>gvliet. This is a coneequence<br />

of <strong>the</strong> sedimentation process, which has <strong>in</strong>fluenced <strong>the</strong> quality ef river<br />

sediments <strong>in</strong> <strong>the</strong> areas, as outl<strong>in</strong>ed <strong>in</strong> <strong>the</strong> previous section. These<br />

gradients are also reflected <strong>in</strong> <strong>the</strong> concentration of contam<strong>in</strong>ants found<br />

<strong>in</strong> specific organisms. Xigure 8 shows how <strong>the</strong> cadmium content 3s <strong>the</strong><br />

gills of Anadonta anat<strong>in</strong>a varies at different locations. The levels <strong>in</strong><br />

<strong>the</strong> western part of <strong>the</strong> bas<strong>in</strong> (Har<strong>in</strong>gvliet) are two to three t h e<br />

higher than those found <strong>in</strong> <strong>the</strong> eastern part (ILollands Diep) . Simular<br />

problems have been encountered with orgsnie micropollutante. For<br />

<strong>in</strong>stance, from 1977 to 1985, PCB levels <strong>in</strong> eels from <strong>the</strong> different<br />

surface waters <strong>in</strong> <strong>the</strong> We<strong>the</strong>rlands were monitored bg <strong>the</strong> State Institute<br />

for Fishery Research CRIVO). At <strong>the</strong> end of <strong>the</strong> seventies PCB levels <strong>in</strong><br />

eels from <strong>the</strong> Bar<strong>in</strong>gvlieL bas<strong>in</strong> were extremely bigh, prohahle as a<br />

result of local discharges, some of <strong>the</strong>m illegal. S<strong>in</strong>ce tbis time, <strong>the</strong>


Figure 8 Cadmium content <strong>in</strong> <strong>the</strong> gills of Anadonta anat<strong>in</strong>a found at<br />

several places <strong>in</strong> <strong>the</strong> Rar<strong>in</strong>gvliet (a) and <strong>the</strong> Rallands<br />

Diep (b)<br />

level had decreased to about <strong>the</strong> same value as that nomally found <strong>in</strong><br />

<strong>the</strong> upstream areas of <strong>the</strong> Rh<strong>in</strong>e. Never<strong>the</strong>less, <strong>the</strong> level <strong>in</strong> eels from<br />

<strong>the</strong> Har<strong>in</strong>gvliet bas<strong>in</strong> is still above <strong>the</strong> recommended Limit specified<br />

for human consumption. To give ano<strong>the</strong>r example, table 1 shaws BGB<br />

levels measured from <strong>the</strong> Har<strong>in</strong>gvliet bas<strong>in</strong> and some cZean referenee<br />

areas. The accumulation is clearly discernihle,<br />

The amount of contam<strong>in</strong>ants <strong>in</strong> plant and animal tissues does not throw<br />

very much light on <strong>the</strong> function<strong>in</strong>g of <strong>the</strong> ecosystem. Pollution map be<br />

regarded as a form of strees imposed upon <strong>the</strong> environment. Its effects<br />

vary from species to species and may manifest <strong>the</strong>mselves <strong>in</strong> stunted<br />

growth, a fall <strong>in</strong> <strong>the</strong> reproduction rate and an <strong>in</strong>creased morrality<br />

rate. Given tbat certa<strong>in</strong> animal species are more vulqerahle to<br />

pollution than o<strong>the</strong>rs, it may lead ro shifts <strong>in</strong> <strong>the</strong> competitive


elationships between different species. The more vulnerable species<br />

will decl<strong>in</strong>e and f<strong>in</strong>ally disappear, while <strong>the</strong> less vulnerable species<br />

will becm established or <strong>in</strong>crease <strong>in</strong> particular areas. In general,<br />

<strong>the</strong> total number of species wtll decl<strong>in</strong>e, thus impoverish<strong>in</strong>g <strong>the</strong><br />

ecosystem, poasihly to a severe degree.<br />

In <strong>the</strong> Ear<strong>in</strong>gvliet bas<strong>in</strong> <strong>the</strong> levels are so high that specific<br />

environmental effects are to be expected. Inventories carried out <strong>in</strong><br />

<strong>the</strong> area have sbwn that <strong>the</strong> ecosystem <strong>in</strong> <strong>the</strong> Eollands Diep is<br />

functiot&~g much better than that of <strong>the</strong> Ear<strong>in</strong>gvliet. For <strong>in</strong>stance, <strong>the</strong><br />

biomass of fauna found on <strong>the</strong> river bed has been shown 50 be higher <strong>in</strong><br />

<strong>the</strong> Hollands Diep. This also applies to <strong>the</strong> number of fish and to <strong>the</strong><br />

numher of birds that feed on fish and fauna, liv<strong>in</strong>g on <strong>the</strong> river bed,<br />

such as cormorants, grebes and tufted ducks (BoudetPijn, et .l, 1986).<br />

The differences observed between <strong>the</strong> Eollands Diep and <strong>the</strong> Ear<strong>in</strong>gvliet<br />

may be expla<strong>in</strong>ed partly <strong>in</strong> terms of <strong>the</strong> difference <strong>in</strong> quality of Ehe<br />

beds. But even, <strong>the</strong> ecosystem qf <strong>the</strong> Hollan& Diep is poorly developed<br />

by compaison with e<strong>the</strong>r large freshwater systems <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands.<br />

Ror exantple, large water plants are scarce <strong>in</strong> <strong>the</strong> whole area, even<br />

though slight <strong>in</strong>creases have been detected aver <strong>the</strong> last few years. As<br />

far as iudividual species are concerned, sme of <strong>the</strong> effects are<br />

probably connected with <strong>the</strong> contam<strong>in</strong>ation of <strong>the</strong> river bed. A liak has<br />

been est&lished between deviations <strong>in</strong> <strong>the</strong> chit<strong>in</strong> structure of <strong>the</strong> head<br />

of chironomid larvae and <strong>the</strong> degree of pollution found <strong>in</strong> <strong>the</strong> sediment.<br />

Lahoratory research hae <strong>in</strong>dicated that <strong>the</strong> reproduction rate of tufted<br />

ducks fed on freshwater mussels from <strong>the</strong> Har<strong>in</strong>gvliet is considerable<br />

lower than that of tufted ducks fed on mussels from less pollated areas<br />

(Marquenie, et al. 1987). Moreover, <strong>the</strong> eggs of tufted ducks and grehes<br />

from <strong>the</strong> Ear<strong>in</strong>gvliet area appear to have mueh higher levels of organia<br />

micropollutants than those of birds from less contam<strong>in</strong>ated reference<br />

areas (Table 1).


Table 1 PCB levels <strong>in</strong> ees of grebes from <strong>the</strong> Har<strong>in</strong>gvliet bas<strong>in</strong> and<br />

sore clean reference amas (values <strong>in</strong> ~g/kg)<br />

bas<strong>in</strong><br />

areas<br />

PCB 138 4 900 - 18 500 120 - 1 450<br />

PCB 153 9 MO - 16 500 205 - 2 $50<br />

PCB 186 1 850 - 3 450 10 - 195<br />

Recent research also show8 that cormrants, a fish-eat*g<br />

spaeies at<br />

<strong>the</strong> end of <strong>the</strong> fopd cha<strong>in</strong>, are reproduc<strong>in</strong>g far leas snecessfully iU <strong>the</strong><br />

nor<strong>the</strong>rn part of <strong>the</strong> <strong>Delta</strong> region (Biesbasch) than <strong>in</strong> o<strong>the</strong>r areas<br />

(Boudewijn, et al. 1989). In a number of colonies along <strong>the</strong> major<br />

rivers (IJssel. Rh<strong>in</strong>e and Waal) <strong>the</strong> reproduction rate is two to three<br />

rirpes higher than <strong>in</strong> <strong>the</strong> Biesbaach, and it is four t<strong>in</strong>es highex <strong>in</strong><br />

areas witb a relatively low level nf palltLTian. (See Table 2).<br />

Table 2 Number of puns leav<strong>in</strong>g <strong>the</strong> nes per clutch, <strong>in</strong> a d e r<br />

connorant colonties <strong>in</strong> 1988.<br />

of<br />

&ss with a MBj or river areas Biesbosch<br />

reiatfrely low<br />

level of gollrttion<br />

OV Oude Venen (Friesland)<br />

BW B~ede Water CVoorne)<br />

W Wijhe (Gelderse IJseel3<br />

0 OZst (Gelderso TJssel)<br />

P Pannerden (Upper Rh<strong>in</strong>e)<br />

W Baaften (Waal)<br />

bB Dordrse BSeabosch


Bio-essay Weriments with polluted sediment from Due of <strong>the</strong> smaller<br />

harbours <strong>in</strong> <strong>the</strong> <strong>Delta</strong> region (&resicens) revealed effects on oyster<br />

larvae (Crassostrea Awulatal and a ernstacean Lhthypreia).<br />

Even when B large proportion of Clew sediment was added to <strong>the</strong><br />

polluted harbour sludge, mortality rates were demonstrably affected by<br />

pollution (Hnrk, 19883.<br />

The effects of <strong>in</strong>creas<strong>in</strong>g pollution <strong>in</strong> water md riverbeds are al-so<br />

noticeable <strong>in</strong> <strong>the</strong> Western Srheldt estuary. The popuLation of hatbaur<br />

seals (Phoca vitul<strong>in</strong>a) has now disappeared. Food cha<strong>in</strong>s <strong>in</strong> rhe eastern<br />

part of <strong>the</strong> estuary have been dfs<strong>the</strong>d and <strong>the</strong> number of benthic<br />

organisms significaatly raduced. It is acknowledged that <strong>the</strong> amounts of<br />

cabmiwu now exceed acceptable leveLs for hum consumption.<br />

particularly <strong>in</strong> flounder (Platickthys flesus), <strong>in</strong> shellfish such as<br />

mussels (Mytilus edule) aad <strong>in</strong> sea plants such as Aster tripolium and<br />

Salicornfa spec., foutld <strong>in</strong> <strong>the</strong> Lad of Saeft<strong>in</strong>ghe area.<br />

6 CONCLXISIONS AI43 FINAL ReMaaKS<br />

Although water quality and <strong>the</strong> condition of <strong>the</strong> beds we*e not taken<br />

<strong>in</strong>tn consideration at <strong>the</strong> time of <strong>the</strong> origtnal decisions concern<strong>in</strong>g <strong>the</strong><br />

phas<strong>in</strong>g and implementation 05 <strong>the</strong> <strong>Delta</strong> Plan, it is now recognized that<br />

<strong>the</strong> separation of parts of <strong>the</strong> <strong>Delta</strong> from <strong>the</strong> waters of <strong>the</strong> Rh<strong>in</strong>e and<br />

Eeuse, as part of <strong>the</strong> compartmentalization programme for <strong>the</strong> regiwn,<br />

has played a significant role <strong>in</strong> wtnta<strong>in</strong>Ss& a satisfactory level of<br />

quality <strong>in</strong> <strong>the</strong> majority of <strong>the</strong> beds <strong>in</strong> <strong>the</strong> <strong>Delta</strong>. As a result, <strong>the</strong><br />

quality of <strong>the</strong> sediment <strong>in</strong> tlle central secrion of <strong>the</strong> estuary is clese<br />

to natural backgrrrwd levelS. However, <strong>the</strong> closure of an estuary such<br />

as <strong>the</strong> Rar<strong>in</strong>8vliet ean lead to large amounts of polluted river ~ilt<br />

settl<strong>in</strong>g <strong>in</strong> new sedimentation areas. An o<strong>the</strong>r ntethod af controll<strong>in</strong>g<br />

<strong>the</strong> distribution of contam<strong>in</strong>ated rmaterial is to limit <strong>the</strong> tkrou~hpm of<br />

water if sluices for water management are available <strong>in</strong> <strong>the</strong><br />

colnpartment~llzation-dams. This idea has, for <strong>in</strong>stance, been<br />

<strong>in</strong>corporated <strong>in</strong>to <strong>the</strong> plan for manag<strong>in</strong>g <strong>the</strong> quanrity of water of Lake<br />

Zao<strong>in</strong>.


In <strong>the</strong> sedimentation areas, <strong>the</strong>re are clear signs that <strong>the</strong> <strong>ecological</strong><br />

commuaities that are directly dependent on <strong>the</strong> quality of <strong>the</strong> bed have<br />

been disrupted. The long-term pollcy aims of <strong>the</strong> We<strong>the</strong>rlands government<br />

are to improve <strong>the</strong> quality of riper beds and lake beds to such a degree<br />

that <strong>the</strong> aquatic ecosystems can fuaction satisfaccarily, quarantee<strong>in</strong>g<br />

optimum use of <strong>the</strong> water systems. Short-term policy objectives are to<br />

obta<strong>in</strong> fur<strong>the</strong>r <strong>in</strong>formation about <strong>the</strong> present quality of <strong>the</strong> river beds,<br />

<strong>the</strong> causes and effects of pollution and possible means of prevention.<br />

Fur<strong>the</strong>rmore, uniform standards for <strong>the</strong> aseessment of all types of soils<br />

and clean-up methods for <strong>the</strong> most polluted locations are be<strong>in</strong>g<br />

developed. In <strong>the</strong> last fifteen years almost 80 million m3 of pollnted<br />

river sediment have been deposited <strong>in</strong> <strong>the</strong> lower reaches of <strong>the</strong> Rh<strong>in</strong>e,<br />

&use and Saheldt. The south-western reglon of <strong>the</strong> Ne<strong>the</strong>rlands can<br />

<strong>the</strong>refore justly he referred to as <strong>the</strong> sedimentation pit of <strong>the</strong>se<br />

rivers. It is essential that clean-up operations <strong>in</strong> <strong>the</strong> river bas<strong>in</strong>s be<br />

iqlemented quickly. However. <strong>the</strong> elean<strong>in</strong>g-up af <strong>the</strong> river beds can<br />

on*<br />

really be considered when <strong>the</strong> contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong> three rivers<br />

has been reduced t~ an acceptable level. As a result of consultation at<br />

<strong>in</strong>ternational level, <strong>the</strong> Rh<strong>in</strong>e riparian states have agreed measures to<br />

halve <strong>the</strong> discharge of a number of major pollutants <strong>in</strong> <strong>the</strong> Rh<strong>in</strong>e bas<strong>in</strong><br />

between 1985 and 1495. If necessary, additional measures will be taken<br />

after 1995, <strong>in</strong> <strong>the</strong> event of failure to achieve <strong>the</strong> aims lald down <strong>in</strong><br />

<strong>the</strong> agreements (such as <strong>the</strong> el<strong>in</strong><strong>in</strong>acion of d~positions of pollutant5 <strong>in</strong><br />

sediment). The states border<strong>in</strong>g on <strong>the</strong> North Sea have arrived at<br />

similar agreements with respect to <strong>the</strong> t-ivers and <strong>the</strong>se will have most<br />

effect on <strong>the</strong> <strong>Delta</strong> Fn this regard. once <strong>the</strong> transport of polluted<br />

sediment has been halted, a decision may be takw on <strong>the</strong> clean<strong>in</strong>g up of<br />

<strong>the</strong> estuary and lake beds.<br />

Those areas. where <strong>the</strong> sediment is of an unacceptable quality <strong>in</strong> view<br />

of <strong>the</strong> uses te which <strong>the</strong> wafer is put, are first <strong>in</strong> l<strong>in</strong>e for a clean-up<br />

operation. O<strong>the</strong>r important criteria are whe<strong>the</strong>r or not: <strong>the</strong> polluted<br />

sediment is gradually he<strong>in</strong>g covered by cleaner sediment as a result of<br />

natural processes, <strong>the</strong> effect which <strong>the</strong> puSlufed area has upon <strong>the</strong><br />

surromd<strong>in</strong>g environment and <strong>the</strong> practicability of a clean-up operatioe<br />

from <strong>the</strong> technical and adm<strong>in</strong>istrative po<strong>in</strong>ts of view. As such<br />

operations are <strong>in</strong>variably costly, it will be necessary to give


considerable thought to draw<strong>in</strong>g up <strong>the</strong> list of priorities.<br />

Clean-up operatiens are probably uenecessary <strong>in</strong> areas where a cleaner<br />

top layer is be<strong>in</strong>g deposited as a result of cont<strong>in</strong>u<strong>in</strong>g sedimentation,<br />

as is happen<strong>in</strong>g <strong>in</strong> <strong>the</strong> Hollands Mep and <strong>the</strong> Land of Saeft<strong>in</strong>ghe.<br />

Hwever, <strong>in</strong> cases where pollutants rema<strong>in</strong> <strong>in</strong> <strong>the</strong> top layer and may be<br />

released and spread fur<strong>the</strong>r afield, such measures must be emsidered.<br />

The degree of priority to be accorded to clean<strong>in</strong>g up <strong>the</strong> area is<br />

deteaed by <strong>the</strong> gravity of <strong>the</strong> effect of tak<strong>in</strong>g no action and by<br />

whe<strong>the</strong>r <strong>the</strong> source of palLution has been removed or cont<strong>in</strong>ues te exist.<br />

The polluted harbours <strong>in</strong> <strong>the</strong> Eastern Scheldt region are to be cleaned<br />

up <strong>in</strong> <strong>the</strong> course of 1988. It is certa<strong>in</strong>ly worth consider<strong>in</strong>g cleas<strong>in</strong>g up<br />

<strong>the</strong> pul$uted sediment <strong>in</strong> <strong>the</strong> br, <strong>the</strong> Nieuwe Menfede and <strong>the</strong><br />

Biesbosch, as virtually no fur<strong>the</strong>r deposits of clemer sediment can be<br />

expected <strong>in</strong> <strong>the</strong>se aeeas <strong>in</strong> future. The need is all <strong>the</strong> more press<strong>in</strong>g<br />

because it has been prown thAt pollution seriously detracts from <strong>the</strong><br />

funetion of this azea as a Wure reserve.<br />

s<strong>in</strong>ce simiIar problems with polluted river sed*nts are Ekely to<br />

accompany <strong>the</strong> huildag of dams <strong>in</strong> o<strong>the</strong>r parts of <strong>the</strong> world with<br />

<strong>in</strong>dnstrialixed catchmene areas, <strong>the</strong> experience ga<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Dutch<br />

<strong>Delta</strong> Project should prove to be generally applicable.<br />

Zxtensive hydraulic eng<strong>in</strong>eer<strong>in</strong>g projects have been csrried out over <strong>the</strong><br />

last 25 years <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area formed by <strong>the</strong> rivers Rh<strong>in</strong>e, Meuse and<br />

Scheldt. This has resulted <strong>in</strong> parts of <strong>the</strong> <strong>Delta</strong> be<strong>in</strong>g divided up<br />

(compartmenta15zed) while o<strong>the</strong>r parts have been closed off. The time at<br />

which many of <strong>the</strong> opmations <strong>in</strong>volved <strong>in</strong> died<strong>in</strong>g up <strong>the</strong>se areas were<br />

carried out co<strong>in</strong>cided with a pezioa dur<strong>in</strong>g which <strong>the</strong> pollution <strong>in</strong> <strong>the</strong><br />

three rivers reached its maximm level (1970-1975).


Bicropollutants (heavy metals and mganic compounds) became attaohed to<br />

<strong>the</strong> f<strong>in</strong>es <strong>in</strong> <strong>the</strong> sediment carried by <strong>the</strong> rivers, and this lea to <strong>the</strong><br />

<strong>Delta</strong> region also be<strong>in</strong>g affected by <strong>the</strong>se contam<strong>in</strong>ants. Ifowever,<br />

because of compartmsntalization. eerta<strong>in</strong> areas, namely Lake Grevel<strong>in</strong>gen<br />

and <strong>the</strong> tidal bas<strong>in</strong> of <strong>the</strong> Eastern Scheldt, escaped <strong>the</strong> wave of<br />

pollution. The qnautities of micropallutants <strong>in</strong> <strong>the</strong>se areas are very<br />

€lose to natural backgmund levels. The explanatian for this is that<br />

<strong>the</strong> compartmentalization of <strong>the</strong>se areas waa cmpleted before <strong>the</strong><br />

pollucibn <strong>in</strong> <strong>the</strong> Rh<strong>in</strong>e and Meuse reached such high levels.<br />

m contrast, <strong>the</strong> closure of <strong>the</strong> Itar<strong>in</strong>gvliet esfuary led to <strong>the</strong><br />

formation of new sedimentation areas just prior to <strong>the</strong> time at which<br />

ehe pollution <strong>in</strong> <strong>the</strong> m<strong>in</strong>e and Wuee reached a peak. Thus layers of<br />

contam<strong>in</strong>ated material have settled <strong>in</strong> <strong>the</strong>se sedimentation ar-S.<br />

30% of <strong>the</strong> tutal am~unt of silt transported by <strong>the</strong> rivers Bh<strong>in</strong>e and<br />

Meuse is depasited <strong>in</strong> <strong>the</strong>se areas.<br />

Almost<br />

Estuaries that hare mt been <strong>in</strong>fluenced by closure operations can also<br />

undergo significant tempmrary sedimentation effeots. An uample of this<br />

is <strong>the</strong> Land of Saeft<strong>in</strong>ghe <strong>in</strong> <strong>the</strong> Western Scheldt estuary. h a result<br />

of a rise <strong>in</strong> <strong>the</strong> sea level and a deepehg of <strong>the</strong> shipp<strong>in</strong>g channel, <strong>the</strong><br />

difference between low and higher water hqs <strong>in</strong>creased which. <strong>in</strong> turn,<br />

had resulted <strong>in</strong> a sigaiftcz~tLy greater deposition of silt on <strong>the</strong><br />

mudflats and salt marches. Blmosr 254: of <strong>the</strong> silt crsnspdrted by <strong>the</strong><br />

river Sehaldt settles <strong>in</strong> <strong>the</strong>se areas. Although relatively little is<br />

born about <strong>the</strong> effects that conram<strong>in</strong>ated beds haae on <strong>the</strong> aquatic<br />

ecosystem, <strong>the</strong>re are clear signs that eecelogical contmu~iities whPch &re<br />

directly dependent on <strong>the</strong> river bed environment can be disrupted. In<br />

addition, <strong>the</strong> aouots of pollutants found <strong>in</strong> Certa<strong>in</strong> organisms and<br />

plants now exceed <strong>the</strong> maximum acoeptable levels for human cm%umption.<br />

Future clean-up operations could be considered £m tbe conram<strong>in</strong>ated<br />

sedimentation areas when <strong>the</strong> level of pollutian from discharges <strong>in</strong>to<br />

<strong>the</strong> river baeiw has been sufficiently reduced. In view of th8 scale<br />

and eeent of <strong>the</strong> sedimentatim layer concsrned, no solutions have yet<br />

been fuund to this pmhlm.


ShLOUONS, W. and BYSINK, W.D., 1981. Pathways of mud and particulate<br />

trace metds from rivers to <strong>the</strong> sou<strong>the</strong>rn Borth Sea. In: Nio SD,<br />

Schiittenhem RTE, Weer<strong>in</strong>g TCE of (eds) Holocene mar<strong>in</strong>e<br />

sedimentation 19 <strong>the</strong> florth Sea bas<strong>in</strong>. Spec. Publ. Intern Aesoc.<br />

Sedimental 5: 429-&50.<br />

BEEFTINK, W.G.. NI~UIZE, J., STOEPPLER. M. and WHL, C., 1982.<br />

Hewy metal accumulation <strong>in</strong> salt marshes from <strong>the</strong> Western and<br />

Eastern Scheldt. Science Total Environmental 25: 199-223.<br />

BOUDEWIJN, T.J. and MES. R.G., 1986. De ontwikkel<strong>in</strong>g van de vogelstand<br />

<strong>in</strong> het Bollands Diep/Bar<strong>in</strong>gvlietgebied <strong>in</strong> de periode 1972-1986 en<br />

de <strong>in</strong>vloed van het waterpeil op watervogels. Ecoland. Leewarden.<br />

RIJKSWATERSTBAT, directie Benedenrivieren 1987. De waterbodem van het<br />

noordelilk deltabekken. Dordrecht.<br />

BOODEWIJN, T.J., DIB$SEN. S.. MES, R.@. and SLBGW, L.K., 1989. ne<br />

aalscholver: <strong>in</strong>dicatiesoort voor de kwaliteit van de NederLandse<br />

wateren? (<strong>in</strong> prep.)<br />

M&RQUENIE, J.M.,, ROELE, P. and HOOWSHA, G., 1486. Onderzoek naar<br />

effecten van contanrimten op duikeenden. TWO-M!I Den Helder.<br />

Rapport nr. 861066.<br />

BURK VAN DEN, P., 1988. Voortgansrapportage <strong>in</strong>dicat-Biamon 2.


EUTROE%ICATION OF Tfts<br />

WATERS OF TEE DELTA<br />

J.E.W. de Hoog and B.P.C. Steenkatnp<br />

ABSTRACT<br />

A number of stagnant and serai-stagnant water systems came <strong>in</strong>to be<strong>in</strong>g a6<br />

a result of <strong>the</strong> recently completed hydraulic ehgiueeritlg works <strong>in</strong> <strong>the</strong><br />

<strong>Delta</strong> area of <strong>the</strong> Aerhe~litnds.<br />

Eutrophication can occur <strong>in</strong> <strong>the</strong>se waters as a result of <strong>the</strong> <strong>in</strong>put of<br />

nutrient-rich river water. l%ia paper describes <strong>the</strong> eutrophication<br />

situation of bwo water systems <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area2 <strong>the</strong> Hollands Diep/<br />

Her<strong>in</strong>gvliet and <strong>the</strong> Volkerak-Zoom lake system.<br />

In <strong>the</strong> E~llaods ~ie~iliar<strong>in</strong>gvliet <strong>the</strong> residence time of <strong>the</strong> water<br />

depends on <strong>the</strong> discharge of <strong>the</strong> sivex Rh<strong>in</strong>e. In years of low discharge<br />

<strong>the</strong> restdance time is relatively long and, especially <strong>in</strong> <strong>the</strong> western<br />

part of <strong>the</strong> Har<strong>in</strong>gvlier, a large biomass o$ algae can appear as a<br />

result of eutrophication. In pars of moderate OT higher discharpes sf<br />

<strong>the</strong> riv$r m<strong>in</strong>e this water system behave8 like a slowly flovlng river<br />

with relatively short residehce times ad a s41all hiamaes of algae,<br />

The Volkerak-Zoom l& system came <strong>in</strong>to be<strong>in</strong>g <strong>in</strong> 1981 and after a<br />

period of desal<strong>in</strong>ization changed from a sal<strong>in</strong>e tidal area <strong>in</strong>to a freshwater<br />

stagnant reservoir. The most important <strong>in</strong>put of rrater is from <strong>the</strong><br />

XolLands Diep and <strong>the</strong> river D<strong>in</strong>tel. Computer modell<strong>in</strong>g <strong>in</strong>dicates that<br />

<strong>the</strong> lake will develop <strong>in</strong>to an eutrophlc lake anleas adequate measures


are taken. The first year after <strong>the</strong> desal<strong>in</strong>ikation proved mmre<br />

favourable thm predicted (<strong>the</strong> himas8 of algae was relatively small<br />

and transparency was ghod), but <strong>the</strong> <strong>in</strong>put of nutrients meds to he<br />

limited still fur<strong>the</strong>r <strong>in</strong> order to arrive at an endur<strong>in</strong>g Iavouzable<br />

water quality, In addition, "active biological management" should be<br />

considered, i,e. <strong>the</strong> applicatimn of biological management raeasnres to<br />

obta<strong>in</strong> a healthy water system wfth clear water, an abundance of aquatic<br />

plant@ and a stock of predatory fishes that wrll keep <strong>the</strong> whitefish<br />

with<strong>in</strong> bounds and hence allow sufficiefit eooplankton to rema<strong>in</strong> to graze<br />

on <strong>the</strong> algae.<br />

Eutrophication is <strong>the</strong> enriehmerrc of a water system r*ith plant nutrients<br />

(also simply called nutrients), of which nitrogen and phosphate are <strong>the</strong><br />

mast important. Eutrophication is partly a natural pzoeass: erosiofi and<br />

leach<strong>in</strong>g wash nutrients <strong>in</strong>ta zivers, wkich transport <strong>the</strong>m to <strong>the</strong> lower<br />

reaches. Therefore, delta areas are natur.%lly wtrophic, and <strong>the</strong> Dutch<br />

<strong>Delta</strong> area is a good example.<br />

In <strong>the</strong> last 100 years humanity has greatly exacerbated <strong>the</strong> natural<br />

process of eutrophication. The <strong>in</strong>srallatien of dra<strong>in</strong>s ad sewers, <strong>the</strong><br />

use of detergents and fertilizers and <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>tensfficstion of<br />

livestock fann<strong>in</strong>g have led t0 <strong>the</strong> amounta of nutrients <strong>in</strong> <strong>the</strong> rivers<br />

be<strong>in</strong>g <strong>in</strong>creased many times over.<br />

Tn sttagnant water <strong>the</strong> enrichraent with planr nutrients can lead to m<br />

<strong>in</strong>crease <strong>in</strong> <strong>the</strong> growth of algae, which can reault <strong>in</strong> high 4ensities of<br />

algae. Large numbezs of algae 14 <strong>the</strong> water results <strong>in</strong> a lev<br />

transparency; when <strong>the</strong> algae dh aeaerobim can occur and thie In turn<br />

can lead to fish mortality and a bad emell. Fur<strong>the</strong>rmore, toxic species<br />

of algae can occur (blue-green algae). Some species £am float<strong>in</strong>g mts.<br />

Sa~tions 2 aad 9 of this paper describe <strong>the</strong> eutrophication situation of<br />

two Serni-stagriant water systems <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area: <strong>the</strong> nollands Dlepj<br />

Har<strong>in</strong>gvliet ad <strong>the</strong> Vohrak-Zwm lake system. The wtrophtcation state


of <strong>the</strong> latter is compared with that of Lake Brielle, which is<br />

comparable <strong>in</strong> terms of morphology and residence time. Figure l shows<br />

<strong>the</strong> location of <strong>the</strong>se water systems.<br />

Section 4 discusses <strong>the</strong> possible management measures with which <strong>the</strong><br />

eutrophicatian problem of <strong>the</strong> Volkerak-Zoom lake system can be<br />

prevented or limited.<br />

NOORDZEE<br />

Figure 1 Location of Hollands DieplHar<strong>in</strong>gvliet and Volkerak-Zoom lake<br />

system


The Hollands DiepJnar<strong>in</strong>gpllet is part of <strong>the</strong> nor<strong>the</strong>rn <strong>Delta</strong> bas<strong>in</strong>s,<br />

also called <strong>the</strong> lower area of <strong>the</strong> peat riiuers. This is <strong>the</strong> area where<br />

two large Western European rivers, <strong>the</strong> Eh<strong>in</strong>e and <strong>the</strong> Mewe, discharge<br />

<strong>in</strong>to <strong>the</strong> sea. The river vater enters <strong>the</strong> area from <strong>the</strong> east along thtee<br />

river channels and can. <strong>in</strong> pr<strong>in</strong>ciple, reach <strong>the</strong> sea via two routes.<br />

When <strong>the</strong> Rh<strong>in</strong>e discharge is less than 1700 m3/s<br />

tbe Har<strong>in</strong>gvliet sluices<br />

ip <strong>the</strong> west rermt<strong>in</strong> closed and all <strong>the</strong> river water enters <strong>the</strong> sea via <strong>the</strong><br />

New Waterway. At Rh<strong>in</strong>e discharges abwe 1700 ms/s <strong>the</strong> Haz<strong>in</strong>gvliet<br />

sluices are also used to discharge <strong>the</strong> riaer water. These sluices are,<br />

haqeaer, ~nly opened at low tide. This management of <strong>the</strong> hr<strong>in</strong>gvliet<br />

sluices obviously has repercussions on <strong>the</strong> water movement <strong>in</strong> <strong>the</strong><br />

Hollands DieplHar<strong>in</strong>gvliet and henee also on <strong>the</strong> eutrgphicatios<br />

sitnatLon.<br />

The eutrophlCation situation of <strong>the</strong> bas<strong>in</strong>s ~im he characterized as<br />

falLows. Large amounts df nitrogen and phosphate are brought <strong>in</strong> by <strong>the</strong><br />

rivers, thns <strong>the</strong> concentrations of nutrienks are high. Howevet, it is<br />

strik<strong>in</strong>g that <strong>in</strong> <strong>the</strong>se waters a low biamass of algae U usually formd.<br />

Rlsa. tlie bbmass of algae usually decreases fxom east torest; as a<br />

~le, <strong>the</strong> £eves* algae are found near <strong>the</strong> W<strong>in</strong>gvliet ailuices.<br />

Generally. fev blue-green algae oceur <strong>in</strong> <strong>the</strong>se waters and <strong>the</strong><br />

trausparency is reasonable on <strong>the</strong> whole; near <strong>the</strong> Karisgpliet sluices a<br />

twsperencg of 1 to 1.5 m is regularly found.<br />

The relatively low biarsasses of algae are often attributed to <strong>the</strong><br />

<strong>in</strong>fluence of toxic substances. It will be shown below that <strong>the</strong> watez<br />

movemat provides a plausible exalanation. Figure 2 shows <strong>the</strong> chasges<br />

<strong>in</strong> mean snmaer Level of chlorophyl along che traject from Lohith to<br />

<strong>the</strong> Ear<strong>in</strong>gttliet aluices for <strong>the</strong> pear 1982. Chloropbyl is an <strong>in</strong>dicator<br />

of <strong>the</strong> amaunt of algae <strong>in</strong> <strong>the</strong> water.<br />

From Figure 2 it can be seen that <strong>the</strong>re is a clear decrease <strong>in</strong> <strong>the</strong><br />

biomfass of algae along <strong>the</strong> traJect. However, <strong>the</strong> picture changes if we<br />

look at figures from o<strong>the</strong>r years. Figure 3 shows <strong>the</strong> mean smmer levels<br />

of chfwrdphyl between Lohith and ehe Ear<strong>in</strong>pliet slaices <strong>in</strong> 1976, L982<br />

and 1987.


1<br />

Loblth Vuran NMlS H7 H8 H9 H10 H12<br />

HOLL. DlEP<br />

HARINGVLET<br />

Figure 2 Mean s m r<br />

level of chlorophyl <strong>in</strong> 1982 along che Lohith-<br />

Bar<strong>in</strong>gvliet sluices craject<br />

HOLL. DlEP<br />

HARlNGVLlET<br />

Figure 3 &an smer chlarophyl levels <strong>in</strong> 1976, 1982 and 1987 along<br />

<strong>the</strong> Labith-Har<strong>in</strong>gvliet sluices trajeet


In 1976 <strong>the</strong> determ<strong>in</strong>ation of chlozopkyl levels was still <strong>in</strong> its<br />

<strong>in</strong>fancy, put <strong>the</strong> few daca available <strong>in</strong>dlcate that <strong>in</strong> that exceptionally<br />

dry year <strong>the</strong>re vas an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> biomass of algae towards <strong>the</strong><br />

Bar<strong>in</strong>gvliet slnices. The picture ww very diffezent <strong>in</strong> 1987: <strong>in</strong> that<br />

year <strong>the</strong> was very little dffference <strong>in</strong> <strong>the</strong> amounts of algae along <strong>the</strong><br />

weire trajert from Lobith to <strong>the</strong> Har<strong>in</strong>gvliet sluices.<br />

This disparity can be oXpla<strong>in</strong>ed by study<strong>in</strong>g tXe river discharges of <strong>the</strong><br />

various years,<br />

In L976 <strong>the</strong> mean smer Rhke disaharge was well below 1700 mars; <strong>in</strong><br />

that year <strong>the</strong> Har<strong>in</strong>gvliet sluices were slrarcely used <strong>the</strong> whole emer.<br />

In 198% <strong>the</strong> mean s u s Rh<strong>in</strong>e discharge was approximately 2200 m','$;<br />

<strong>the</strong>refete <strong>in</strong> that year <strong>the</strong> sluices were regularly <strong>in</strong> use. In <strong>the</strong> smer<br />

of 1987 <strong>the</strong> Eh<strong>in</strong>e discharge was well above <strong>the</strong> mean discharge. and<br />

<strong>the</strong>refore <strong>the</strong> sluices were used almost daily to discharge <strong>the</strong> E-l~er<br />

water <strong>in</strong>to <strong>the</strong> sea (Table 1).<br />

Table 1 Mean smer chlorophyl level and Rh<strong>in</strong>e discharpe <strong>in</strong> 1976,<br />

1989 wd 1987.<br />

chlorephpl<br />

(ms/m3)<br />

Eh<strong>in</strong>e discharge<br />

(g/.)<br />

Computer Sirmtl&EionE dbne at Delft Hydraulics have also shm that <strong>the</strong><br />

behaviour of algae <strong>in</strong> <strong>the</strong>se watetri greatly depends on <strong>the</strong> vater<br />

movement is this area. The eutrophicatian <strong>in</strong> 1976 and 1982 was<br />

sfolulated with <strong>the</strong> DBLWbQ-BLOUX model. &B <strong>in</strong>put <strong>the</strong> made1 requires data<br />

@n <strong>the</strong> water mowameat <strong>in</strong> Ehe Various river channels, <strong>the</strong> concentrations<br />

df uzttrients and algae <strong>in</strong> CIre <strong>in</strong>com<strong>in</strong>g river water, climatological<br />

factors rlna properties of algae. As output <strong>the</strong> model supplies <strong>the</strong> algkl<br />

hiomass far each location <strong>in</strong> <strong>the</strong> area am4 for each day of <strong>the</strong> year.


chlorophyl [u~/I) l 8.14- 8.12 IUU~U~ a.ffi- 8.83<br />

m 0.lZ 8.11 8.83 B.82<br />

DAY p 8.11 - 8.89 1 8.82 - 8.88<br />

IZ1<br />

8.U - 8.68<br />

%igure 4 Simnlation produced by DGLWAQ-BLOOM model for day 121, 1976.<br />

Figure 4 &wa <strong>the</strong> result produced by <strong>the</strong> model for day l21 (<strong>the</strong> end of<br />

April) <strong>in</strong> 1976. It <strong>in</strong>dicates tbat <strong>the</strong>re are appreciably fewer algae <strong>in</strong><br />

<strong>the</strong> EIollmds Diep at <strong>the</strong> Volkerak sluice6 than <strong>in</strong> <strong>the</strong> river channels<br />

upstream, and thac very high levels of chlorophyl wcur near che<br />

Ear<strong>in</strong>gvliet slgices .<br />

The picture is different: fer 1982 (see Fig. 5). In <strong>the</strong> Bollasds Rdep<br />

<strong>the</strong> chlotuphpl levels are lower than is <strong>the</strong> river ehwnela, but<br />

towards <strong>the</strong> Hafiupliet sluices <strong>the</strong>y decresse even furLher. mia is<br />

fully <strong>in</strong> agreement With <strong>the</strong> picture of measured chloropliyl levels <strong>in</strong><br />

that year.


, 0.66 m 0,s - 0.02<br />

1989<br />

I 0.86 - 0.85 @ 0.82 - 0.02<br />

chlorophyl (~g/l] m 0.85 - 8.6 11111111 0.82 - 0.01<br />

DAY U1<br />

88 s.es - a.ai I @,at - s,e~<br />

B3 0.04- 0.84 6.01- #.M<br />

Figure 5 $imlatlan produced by DELWAQ-BLWMmodel far daF 121. 1982<br />

Table 2 Summarized results @Of research on eutrophication <strong>in</strong> Eellands<br />

DioplHax<strong>in</strong>gvliet<br />

long short v. short<br />

residence time agpron. apprw.<br />

69 days 6 days l - 2 days<br />

system lake transition river<br />

lake-river<br />

behaviour of aka*<br />

Hollands Diep settl<strong>in</strong>g out settl<strong>in</strong>g out transperted<br />

Ear<strong>in</strong>gvliet grow<strong>in</strong>g settl<strong>in</strong>g out transported


Table 2 suonna*es <strong>the</strong> mast importmt results of <strong>the</strong> research on<br />

eufrophicath <strong>in</strong> <strong>the</strong> Hollanda DiepIIlar<strong>in</strong>gvliet. From thia table it can<br />

be seen that <strong>in</strong> 1976 rhe residence time <strong>in</strong> <strong>the</strong> Ballads Diep/<br />

Har<strong>in</strong>gvliet was Long; 60 days on average. The smtem behaved like a<br />

lake. The algae <strong>in</strong> <strong>the</strong> IEollands Diep settled out, but <strong>in</strong> <strong>the</strong><br />

Har<strong>in</strong>gvliet <strong>the</strong>y were able to grow well.<br />

The residence time was much shorter <strong>in</strong> 1982: apgroximately 6 days on<br />

average. The system behaved Like a transition between a river alld a<br />

lake system. Algae settled wt both fxi <strong>the</strong> HolLands Diep and <strong>in</strong> <strong>the</strong><br />

Ear<strong>in</strong>gxliet.<br />

In 1987 <strong>the</strong> residence dm. was vely sbrt; <strong>the</strong> system behaved like a<br />

slow-flow<strong>in</strong>g river. The algae transparted with <strong>the</strong> pates -re egrried<br />

along rwards <strong>the</strong> sea.<br />

l'he water movement thus offers a very acceptable explanation for <strong>the</strong><br />

behaviour of algae <strong>in</strong> this system. kence. o<strong>the</strong>r reasons, such as<br />

t~xological effects, seem less probable.<br />

The VoUcaak-Zoem lake system eame <strong>in</strong>ta be<strong>in</strong>g <strong>in</strong> April 1987 after <strong>the</strong><br />

closure of <strong>the</strong> Philips dam. Ptsm a saltwater tidal area this area has<br />

gradually chaaged, first <strong>in</strong>ts a bSacld8h lake. Dur<strong>in</strong>g 1987 fhe<br />

desal<strong>in</strong>ieation was acaelerated bg allow* an ex+ra <strong>in</strong>take of fresh<br />

watez via t&e Volkerak slaices. The D<strong>in</strong>td, a small river that dra<strong>in</strong>g<br />

much of Wear Brabant end z& smell part of Belgivm, is annthiir important<br />

smrce of frbsh water for this lake.<br />

Before <strong>the</strong> l&e was created predirtions were made about <strong>the</strong><br />

eutrophication that could be expected. Table 3 gives an impression of<br />

this and also shows <strong>the</strong> eutrophicatima observed <strong>in</strong> 1987 and 1988.


Table 3<br />

Eutrophication of <strong>the</strong> Volkerak-Zoom lake system and<br />

Lake Brielle<br />

Lake Brielle<br />

Volkerak-Zm lake system<br />

predicted 1987 L988<br />

total P<br />

(mgfl)<br />

transparencp approx. 1 approx. 1 1 2.2<br />

(m)<br />

!t%e general tendency of <strong>the</strong> forecasts was that <strong>the</strong> Volkerak-Zoom lake<br />

system, with 8 residence t<strong>in</strong>le of 2-3 months, would develop <strong>in</strong>to a<br />

eutrophic water hody with a chlorophyl level of 60-100 mg/ms, a total<br />

P-level of 0.20-0.35 mgll and a transparency not exceed<strong>in</strong>g l m. It is<br />

not possible to compare <strong>the</strong> actual situation <strong>in</strong> 1987 with <strong>the</strong><br />

predictions, because iri that year <strong>the</strong>re was a sharp fall <strong>in</strong> <strong>the</strong><br />

chloride level dur<strong>in</strong>g <strong>the</strong> growth season and hewe <strong>the</strong>re was no<br />

equilibrium situation. Rowever, <strong>the</strong> values measured <strong>in</strong> 1987 fall with<strong>in</strong><br />

<strong>the</strong> range of forecast values.<br />

The situation ia 1988 was clearly different. That was <strong>the</strong> first year <strong>in</strong><br />

whi& <strong>the</strong> lake was largely Eresh water: <strong>the</strong> measured values were far<br />

more fwontahle than predicted. The mean sunmeer chlorophyl level was<br />

approzimately 20 %/m3, tbe tQtal P-level was 0.17 mg/l and <strong>the</strong> mean<br />

transpan&ncy was 2.2 m.<br />

For cqarison, <strong>the</strong> values measured <strong>in</strong> Lake Brielle have been <strong>in</strong>cluded<br />

<strong>in</strong> Table 3. This lake is reasonably comparable with <strong>the</strong> Volkerak-Zoom<br />

l& system <strong>in</strong> terms of morphology and residence time. The meam<br />

chlorophyl Xevels <strong>in</strong> Lake Brielle are relatively low, but <strong>the</strong>


occwrence of float<strong>in</strong>g mats of blue-green algae often causes a nuisance<br />

<strong>in</strong> tMs lake. The mean transparency does not exceed 1 m.<br />

Figure 6 shows <strong>the</strong> changes <strong>in</strong> fhe chlorophyl level <strong>in</strong> bofh parts of<br />

<strong>the</strong> lgke system <strong>in</strong> 1988.<br />

' Laks<br />

VoLsrak<br />

---- Lake zom<br />

-<br />

0 6 TO 9 6 20 26 30 85<br />

week no.<br />

Figure 6 Chlorophyl level id take Volkerak and lake Zoom <strong>in</strong> 1988<br />

From this Figure it can be seen that peaks of up tn 100 mg/m9 o a r tn<br />

<strong>the</strong> s~r<strong>in</strong>g. There fs an abrupt downturn at Che end of &lax/he~<strong>in</strong>n<strong>in</strong>g of<br />

June, and fn <strong>the</strong> reat of <strong>the</strong> summer <strong>the</strong> chlorophyl levels rema<strong>in</strong> very<br />

low - especially <strong>in</strong> Lake Volkerak.<br />

The next two Sigures (Fig. 7 and 8) show <strong>the</strong> changes <strong>in</strong> <strong>the</strong> total<br />

P-level and <strong>the</strong> transparency.<br />

There was a clear decrease is <strong>the</strong> level of total pho~gharrrs <strong>in</strong> <strong>the</strong><br />

spr<strong>in</strong>g. In <strong>the</strong> perirvd of <strong>the</strong> sharp deeI<strong>in</strong>e <strong>in</strong> <strong>the</strong> ehlorophyl level<br />

towaras <strong>the</strong> end of May <strong>the</strong>re is a clear <strong>in</strong>crease <strong>in</strong> traneparency, first<br />

<strong>in</strong> Lake Polkerak and later Ln Me Zoom too. In hrvth lakes a<br />

transparency of alnurst 4 m was measured <strong>in</strong> August - a unique situation<br />

fos fresh water <strong>in</strong> <strong>the</strong> Netfierlds.


Laks<br />

Volkarek<br />

---- Lake Zoom<br />

0.40<br />

0 5 10 16 20 25 30 35<br />

week no.<br />

Figure 7 Total P-level <strong>in</strong> 1988<br />

Lake<br />

Volkerak<br />

---- Laka Zoom<br />

O L ~ " ' ~ ~ ' ~ ' ~ " ~ " " " ' " ~ " " ~ " ' ~ ~<br />

0 5 10 16 20 26 30 S6 40<br />

weak no.<br />

Figure 8 TrBmpareucy <strong>in</strong> 1988


Figure 5 show <strong>the</strong> numbess of Cladocera (an o~der of zooplankton which<br />

<strong>in</strong>cludes <strong>the</strong> water fleas) <strong>in</strong> Lake Volkerak and Lake Zoom <strong>in</strong> 1988.<br />

The unusual rransparency can be atfributed to <strong>the</strong> <strong>in</strong>tensive consumption<br />

of algae bp zooplankton.<br />

- Lake ---- Lake zoom<br />

Votkarak<br />

260<br />

zoo C<br />

1<br />

0 5 l0 16 PO 25 3 0 36<br />

week no.<br />

Figure 9 Numbers of Cladacera <strong>in</strong> Lake Volkerak ad Lake Zaom <strong>in</strong> 1988<br />

The fact that ths group of aooplanktm peaks <strong>in</strong> W/June <strong>in</strong>dicates<br />

that <strong>the</strong> clear deel%ne <strong>in</strong> <strong>the</strong> Biomass of algae may be caused by <strong>in</strong>tensim<br />

graz<strong>in</strong>g by <strong>the</strong> zooplankton. Although not sham <strong>in</strong> Biguxe 9, dur<strong>in</strong>g t b<br />

reat of *he stumer it was strik<strong>in</strong>g that e relative17 high n&r vf<br />

large water fleas were present. 3usr <strong>the</strong>se water fleas can create an<br />

effective graz<strong>in</strong>g pre$sure on algae.<br />

In turn. <strong>the</strong> large nuwbers of water fleas e m be expla<strong>in</strong>ed by <strong>the</strong> still<br />

limited numbem of plankton-eat<strong>in</strong>g fish.<br />

Float<strong>in</strong>g mats of blue-grem algae accured very locally L& Volkexak<br />

and Lake Zoem <strong>in</strong> autumn 1988.


4 WAGBEET MEdSIIRaS TO PEEVBT OR LTXIT TAE EUTROPEICBTION OF THB<br />

VOLKERAK-ZDOM LAKE S%STEiT<br />

A large nurober of goals have been formulated Tor <strong>the</strong> management of <strong>the</strong><br />

Volkerak-Zoom lake system. They <strong>in</strong>clude <strong>the</strong> prevention or reduction of<br />

eutrophicatian. Two types of IMma@ement measures could be used to<br />

achieve this goal:<br />

- reduc<strong>in</strong>g <strong>the</strong> nutrient load;<br />

- acteve Biological management.<br />

It mnst he stressed Ulat <strong>the</strong>se are nat afternatlves. Active biological<br />

management eaanplemencs <strong>the</strong> reduction of nutrient load.<br />

4.1 Deal<strong>in</strong>g tdfh nutrients<br />

When reduc<strong>in</strong>s <strong>the</strong> nutrient load <strong>the</strong> accent will lia on phasphate.<br />

becatwe <strong>in</strong> <strong>the</strong> fresh waters <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands this Es <strong>the</strong> natural<br />

limitfug faetor to <strong>the</strong> grovth of awe. For lakes like Lake B~rieLle and<br />

<strong>the</strong> Volkeritk--Zoom lake system che pfissphate is only limir<strong>in</strong>g Bar algal<br />

growh if <strong>the</strong> phosphate load is below 2-4 $Em2 per year.<br />

Frm Table 4 it cen be seen fb% <strong>the</strong> phosphate load of Lake Bridle has<br />

been drasticallp reduced s<strong>in</strong>ce 1972. Uovever, chia has not yet led to a<br />

reductian of <strong>the</strong> eutrophieation preblem. The fact that <strong>the</strong> bed of this<br />

lake has meanwhile been accumulatFog phospliatea that, <strong>in</strong> pr<strong>in</strong>eigle,<br />

could aga<strong>in</strong> cause an iaterna-l lead, is ullquestionably impartat hers.<br />

Zn this lake, largo-seale occurrences of drift<strong>in</strong>g mats can be limited<br />

ts some extent by 5nterim eera flush<strong>in</strong>g <strong>in</strong> <strong>the</strong> sumer period.<br />

In <strong>the</strong> Volkerak-Zoom l&e system <strong>the</strong> phosphate load has turned out<br />

10- than <strong>the</strong> foreoast, but <strong>in</strong> l988 it was still far too high eto he<br />

limit<strong>in</strong>g £er <strong>the</strong> growth of algae. The option of extra flush<strong>in</strong>g to<br />

cwbat drift<strong>in</strong>g mats is not considered hero. because tt conflicts with<br />

anothar goal of water management, i.e. try<strong>in</strong>g to prevent <strong>the</strong> water<br />

systw~ from be<strong>in</strong>g loaded with toxic Substancee from <strong>the</strong> Rollands Diep.


Fur<strong>the</strong>rmore, it is questionable whe<strong>the</strong>r such flush<strong>in</strong>g would be<br />

effective, given <strong>the</strong> shape awd size of <strong>the</strong> lake system.<br />

Table 4 Phosphate load <strong>in</strong> Lake BrieUe and <strong>the</strong> Volkerak-low lake<br />

sye tem<br />

Lake Brielle<br />

1972-1976<br />

1980-1982<br />

1983<br />

1987-1988<br />

Volkerak-Zoom<br />

Lake system<br />

preaicted<br />

1987<br />

1988<br />

guide value<br />

P-l<strong>in</strong>itation<br />

Table 5<br />

Phosphate load <strong>in</strong> <strong>the</strong> Volkerak-Zoom lake system <strong>in</strong> 1987 and<br />

1988<br />

m3/s ton P ms/s ton P<br />

Volkerak sluices 28 250 16 140<br />

Brabant rivers 15 460 12 240<br />

O<strong>the</strong>r 5 60 5 60<br />

Total 48 770 33 440


Table 5 gives estimtes of <strong>the</strong> phosphate load orig<strong>in</strong>at<strong>in</strong>g from <strong>the</strong> most<br />

important sources <strong>in</strong> 1987 and 1988.<br />

The difference between <strong>the</strong> two years for <strong>the</strong> Volkerak sluices is caused<br />

by <strong>the</strong> extra amount of water needed to desalipFEe <strong>the</strong> lake <strong>in</strong> 1987.<br />

MW& less phosphate was brought <strong>in</strong> by <strong>the</strong> Brabat rivers <strong>in</strong> 1988 because<br />

<strong>in</strong> May 1988 <strong>the</strong> effluent from <strong>the</strong> sewage Ereatwent plant at Bred&<br />

Nieuweer, was diverted from <strong>the</strong> D<strong>in</strong>tel to <strong>the</strong> Holland6 Diep. When, <strong>in</strong><br />

<strong>the</strong> future, water is extracted from tbe lake for agriculture, <strong>the</strong><br />

phasphate load will be higher hficause more water viz1 have to be<br />

sdmirted via <strong>the</strong> Volkerak sluiees.<br />

The phosphate load <strong>in</strong> <strong>the</strong> Volkerak-Zoom lake system could be reduced<br />

by:<br />

- divert<strong>in</strong>g water from <strong>the</strong> Nieuwveer sewage treatment plant from <strong>the</strong><br />

D<strong>in</strong>tel to <strong>the</strong> nollands Diep (this wes done <strong>in</strong> Bay 1988);<br />

- <strong>the</strong> Rh<strong>in</strong>e Action Plan (RAP);<br />

- <strong>the</strong> North Sea Action Plan (NAP);<br />

- optioliz<strong>in</strong>g <strong>the</strong> <strong>in</strong>take from:<br />

t water losees from locks;<br />

* agriculture;<br />

- treat<strong>in</strong>g <strong>in</strong>take water;<br />

- rsduc<strong>in</strong>g agricultural emission*;<br />

- reach<strong>in</strong>g agreement with Belgium on <strong>the</strong> reduction of <strong>the</strong> load <strong>in</strong> <strong>the</strong><br />

Belgian part of <strong>the</strong> D<strong>in</strong>tel catchment;<br />

- drastic dephosphatiuation sewage treatment plants.<br />

It is expected that <strong>the</strong> implementation of <strong>the</strong> Rh<strong>in</strong>e Action Plan and <strong>the</strong><br />

North Sea Action Pla will result <strong>in</strong> a halv<strong>in</strong>g of <strong>the</strong> phosphate load <strong>in</strong><br />

<strong>the</strong> Volkerak-Zoom lake system too. However, this will nor happen before<br />

1993.<br />

If <strong>the</strong> almve-mentioned measures are implemented vigorously. it seems<br />

possible that phosphate limitation for algal growth could be achieved<br />

<strong>in</strong> <strong>the</strong> medium term; <strong>in</strong> <strong>the</strong> short term thb is not expected.


4.2 Active biological management<br />

If it is considered desirable to have clear water <strong>in</strong> <strong>the</strong> next ten years<br />

too. <strong>the</strong>n "active biological management" could be emplop3.<br />

Fur<strong>the</strong>rmore, experience elsewhere (e.g. <strong>in</strong> <strong>the</strong> Veluwe lakes) and<br />

computer modemg btdleate tbat Sr is difficult far a lake that is<br />

already <strong>in</strong> "turbid equilibrium" to be made clear aga<strong>in</strong>.<br />

/<br />

transparency<br />

algae<br />

+++i-t+++t+U<br />

/--L +++*M<br />

+<br />

asuatiq plants<br />

++-+tit+<br />

\/<br />

preatory fish<br />

+++CH*H+++++<br />

nUttianfs<br />

'2w00000~<br />

l *&a,<br />

wblteeirih<br />

-----<br />

MOOOWOO~O<br />

aemal state si Vol%asak-%oon lake aystem<br />

autrophic rster<br />

o m mixed agsten<br />

+++c healtay water syseem<br />

- path of <strong>in</strong>fluence er flaw of ma<strong>the</strong>r<br />

HignEe 10 Schematic representation of ecosystem relatianahips <strong>in</strong> a<br />

autrophic water body<br />

Bigure 10 shows <strong>the</strong> most important <strong>relations</strong>hips between <strong>the</strong> various<br />

components of a lake eeosysfem. Nutrients enhance <strong>the</strong> growth of algae;<br />

algae are eaten by zouplaakton; zooplankton are eatea. bp whitefish;<br />

+#kitefish are eaten by predatory fish; pre&cory flsh, particularly<br />

pike, requite aquatic plants fot shelter and for breed<strong>in</strong>g, atld <strong>the</strong><br />

occurrence of aqnatic plants depends on <strong>the</strong> transparencg of <strong>the</strong> water<br />

axid thus also an <strong>the</strong> absence of algae.


In pr<strong>in</strong>ciple, two states of equilibrium are possible <strong>in</strong> such a system.<br />

One is an eutrophic, relatively turbid system dom<strong>in</strong>ated by marry<br />

nutrients, many e a e and m y whitefish; this is <strong>in</strong>dicated by - <strong>in</strong><br />

Pisure 10. The o<strong>the</strong>r possibility is a healthy functton<strong>in</strong>g system with<br />

transparent water, many aquatic plants, a predatory fish populaticn<br />

that keeps <strong>the</strong> whitefish population <strong>in</strong> check, and sufficient<br />

aooplanktan to be able to grase <strong>the</strong> algae effectively. In Figure L0<br />

this is <strong>in</strong>dicated by +Wt.<br />

In 1988, contrary to all ptedietions, <strong>the</strong> Volkerak-Zmom laka system<br />

conta<strong>in</strong>ed elemnts from both passible equilibrium situatians - many<br />

nuttients, transparent water and m y zooplankton: this is <strong>in</strong>dicated by<br />

ooa0 <strong>in</strong> Figure 10.<br />

In 1988 aquatic plants started to develop, but not sufficiently ta<br />

offer shelter and a breed<strong>in</strong>g enviranmeot for predatory fish. The few<br />

data available on stocks of fish suggest that <strong>the</strong> bream, a whitefish<br />

that often causes problems <strong>in</strong> o<strong>the</strong>r eutxaphic waters, is not present<br />

here <strong>in</strong> large mumhers. Predatory fish, especklly pike-perch. are<br />

present <strong>in</strong> <strong>the</strong> system.<br />

The most obvitlus way of acaidy <strong>in</strong>terven<strong>in</strong>g <strong>in</strong> <strong>the</strong> biology 05 <strong>the</strong><br />

system is to stiPtulate <strong>the</strong> develspmnf of aquatic plants as much as<br />

possible. Few propagules of freshwater aquatic plants vtll be present<br />

<strong>in</strong> ttte system, and <strong>the</strong>refore it is advisable to <strong>in</strong>troduce material from<br />

<strong>the</strong> desired species <strong>in</strong>to <strong>the</strong> system on a large scale. It is also<br />

important to ensure <strong>the</strong> presence of sheltered shallows, because <strong>in</strong><br />

pr<strong>in</strong>cfple here it is that aquatic plants can develop <strong>the</strong> hest on q<br />

large seal&.<br />

Proper management of fish stooks requires agreement between <strong>the</strong> water<br />

authority and <strong>the</strong> persona with fish<strong>in</strong>g rights. Quantitative wnitori~g<br />

is necessary to be able to properly anticipate developments towards an<br />

excess of bream.


Float<strong>in</strong>g mats of blue-green algae (Microcystis aerigunosa)<br />

Benedensas, before <strong>the</strong> enclosure of Lake Zoom


Zooplankton (Alma aff<strong>in</strong>is)<br />

Pike (Esox lucius) <strong>in</strong> i ts natural habitat


Breed<strong>in</strong>g areas for pike can be provided by <strong>the</strong> large-scale <strong>in</strong>stallation<br />

of defences <strong>in</strong> front of <strong>the</strong> banks and by -g<br />

areeh suitable.<br />

Xf d tor$ng shows that <strong>the</strong> numbers of bream threaten to become<br />

excessive, <strong>the</strong>n predatory fish could be <strong>in</strong>troduced, or whitefish could<br />

be qetted and removed.<br />

Stimulatiu~ <strong>the</strong> growth of freshwater mussels is a third type of measure<br />

appropriate to active biological management. These mussels are net<br />

shown ia Rigure 10, but <strong>the</strong>^ fulfil more or less <strong>the</strong> same role as <strong>the</strong><br />

zooplankton: <strong>the</strong>y fflEer suspended matter from <strong>the</strong> water and <strong>the</strong>reby<br />

also contribute to <strong>the</strong> graz<strong>in</strong>g pressure on <strong>the</strong> algae. Mussels require a<br />

hard substrafe. This could be provided by dump<strong>in</strong>g large amounts of<br />

shells <strong>in</strong> suitable plaoes.<br />

5 CONCLUSIONS<br />

In general, <strong>the</strong> dwm<strong>in</strong>g off and comparcmentalizatim of <strong>the</strong> <strong>Delta</strong><br />

wters leads to stagnant or semi-stagnant waters whose very location<br />

m&w <strong>the</strong>m ausceptihle to eutrophication prohlw.<br />

In she Bollwds Diep/Baz<strong>in</strong>gvliet eutrophic+tion problem can be kept<br />

with<strong>in</strong> limits by feeustug management on prevent<strong>in</strong>g long residence times<br />

fn <strong>the</strong> saer. The critical level seqms to be arousd three weeks.<br />

Ln tbe Volkerak-noom lgke system <strong>the</strong> startiag pobt is favourable: <strong>the</strong><br />

water is transparent. At present <strong>the</strong> phosphate level is too higb to<br />

lMt eutrophication, hut active biological magement offers good<br />

prospects for keep<strong>in</strong>g <strong>the</strong> water transparent. The phosphate load needs<br />

to be reduced fnr<strong>the</strong>r. It is likely that <strong>in</strong> <strong>the</strong> next few years bluegreen<br />

algae will occur regularly <strong>in</strong> <strong>the</strong> autumn. It will probably be<br />

possible to tackle <strong>the</strong> symptoms of thie <strong>in</strong> areas tlar suffer grerrtly<br />

from <strong>the</strong> problem.


EUTROPHICATION OF ESTUAAIES AND BRACKISH LAGOONS IN TW SOUTII-WEST<br />

NETHERLANBS<br />

P.R.<br />

Nienhuis<br />

Eutrophication of <strong>the</strong> sal<strong>in</strong>e waters <strong>in</strong> <strong>in</strong>he South-West Ne<strong>the</strong>rlmds is<br />

ma<strong>in</strong>ly nlrc caused by water from<strong>the</strong> rivers Rh<strong>in</strong>e and Meuse, contrary to<br />

<strong>the</strong> nutrient enrichment of freshwater bodies (Nfeuwe Waterweg, Hollands<br />

Diep. Aar<strong>in</strong>gvliet) and <strong>the</strong> western Wadden Sea. Eutrophieatim of <strong>the</strong><br />

Westerschelde, Oosterschelde, Grevel<strong>in</strong>genmeer Md Veerse Mar is<br />

connected to <strong>the</strong> specific hydrogra~hy and geomrphalo~ of <strong>the</strong>se<br />

isolated waters; eacept for <strong>the</strong> 'GteSterschelde, nutrient load<strong>in</strong>g ma<strong>in</strong>ly<br />

occurs thraugh agricultural run-off and dra<strong>in</strong>age channels. The<br />

lXesterschelde, a heavily euthrophicated estuary, he5 only an<br />

<strong>in</strong>sigz~ificant impact on Dutch coastal waters, ow<strong>in</strong>g to <strong>the</strong> very limited<br />

discharge (4X of W 4 discharge) and long residenae time of <strong>the</strong><br />

warensass. The resilience of sal<strong>in</strong>e waters £er eutxophication by<br />

nitrogen is presumably c~nuected to <strong>the</strong> psocess of denitrification.<br />

remov<strong>in</strong>g N to <strong>the</strong> atmosphere, and <strong>the</strong> filter fee&g<br />

actidcies of<br />

bivaLves, deposit<strong>in</strong>g N on <strong>the</strong> botm sedimpnt, and enhgne<strong>in</strong>g tke<br />

regeneration of nutrfents. Low N-load map be sompasated bp<br />

denitrification. We vulnerability of stapme, sal<strong>in</strong>e waters with a<br />

long residence time is expressed by <strong>the</strong> fact that a l~ad of<br />

approximately 10 g N m-$-'<br />

or more presumably exceeds <strong>the</strong> resilieace<br />

capacity of <strong>the</strong> ecosystem. The contrast between <strong>the</strong> ereveliagenmeer<br />

-2 -1 -2 -1<br />

(load 4 N m y ) and <strong>the</strong> Peerse Heer (load 34 g N m y f is<br />

significant; next to highly productive phytoplankton, macro-Algae play<br />

a dom<strong>in</strong>ant and unpredictable role <strong>in</strong> <strong>the</strong> carbon budget of <strong>the</strong> Veerse<br />

Meer lazeon.


Eutrophication of mar<strong>in</strong>e coastal waters and estuaries is <strong>in</strong>creas<strong>in</strong>gly<br />

regarded as a nuisance for <strong>the</strong> near future (Bosenberg, 1985).<br />

Eutrophication is def<strong>in</strong>ed here as <strong>the</strong> pzocess of <strong>in</strong>creas<strong>in</strong>g<br />

concentratian and load of <strong>in</strong>organic nutrients, <strong>in</strong>duc<strong>in</strong>g changes <strong>in</strong> <strong>the</strong><br />

aquatic communities. In general terms <strong>the</strong> large European rivers provide<br />

<strong>the</strong> ma<strong>in</strong> stLnuLus for nutrient enrichments <strong>in</strong> coastal waters. The ma<strong>in</strong><br />

rivers load<strong>in</strong>g <strong>the</strong> surface waters af <strong>the</strong> South-West Ne<strong>the</strong>rlands are<br />

Bhfne, Mense and Scheldt (Fig. l].<br />

Figure 1 The Sduth-West Ne<strong>the</strong>rlands with <strong>the</strong> estuaries Oosterschelde<br />

and Westerschelde and <strong>the</strong> brackish lagoons G~evel<strong>in</strong>genmeer<br />

and Veerse Meer. The Bieshesch. Eollands Diep, Kar<strong>in</strong>gvliet<br />

and Nieuwe Watemeg form <strong>the</strong> lower reaches of <strong>the</strong> Rh<strong>in</strong>e and<br />

M~use. The Westerschelde estuary is connected to <strong>the</strong> river<br />

Scheldt. The <strong>Delta</strong> Works started <strong>in</strong>1960 ancl were f<strong>in</strong>ished 19<br />

1987. The Volkerakdam was closed <strong>in</strong>1969 between Eollands<br />

Diep-Har<strong>in</strong>gvliet and Zoomeer. and blocked <strong>the</strong> ma<strong>in</strong> sou<strong>the</strong>rn<br />

exit of Rh<strong>in</strong>e water.


The average discharge of Xh<strong>in</strong>e and Xeuse toge<strong>the</strong>r is 2538 m3s-I<br />

Ruyter, et al. 1987) and <strong>the</strong> nitrogen (ammonium and nitrate) load of<br />

<strong>the</strong>se rivers has <strong>in</strong>creased over <strong>the</strong> peried 1950-1980 with a factor 2-4,<br />

whereas rtre phospkorus load has <strong>in</strong>creased with a factor 5-7 (Van der<br />

Veer, et al. 1988). Contrary tn <strong>the</strong> rtitrogen load, <strong>the</strong> phosphorus load<br />

decreased slowly after 1980. The concentrations of plant nutrients<br />

tncreased even nore markedly than <strong>the</strong> load: a fivefold fncrease for N<br />

and a tenfoLd 3icrease for P, with recently a slight decrease (Pig. 2).<br />

The <strong>in</strong>creased concentration6 of nutriant.8 <strong>in</strong> <strong>the</strong> Bh<strong>in</strong>e-Meuse resulted<br />

<strong>in</strong> a 3- to 5-foLd rafse of N-<br />

(De<br />

and P-concentrations <strong>in</strong> <strong>the</strong> Dutch coasta3<br />

waters. The <strong>in</strong>crease of nutrient concentrations an3 -loads <strong>in</strong> <strong>the</strong><br />

Wwterschelde ebtUary showed <strong>the</strong> same dramtic trend over <strong>the</strong> past 30<br />

to 40 Bears (Van Buuren. 1988).<br />

Figure 2 Nitrate- and orthopho9phate concsntrations of Eh<strong>in</strong>ewater<br />

near <strong>the</strong> Dutch-German border, dur<strong>in</strong>s <strong>the</strong> period 1966-1982<br />

(lUWA Bnnual Report 1982. <strong>in</strong> Slooff, 1983).<br />

Approxisrately 15% of <strong>the</strong> m<strong>in</strong>e run-off flows Suto nar<strong>the</strong>rly d<strong>in</strong>ecticns,<br />

aYa IJssel and 'IJsselmeea, ad fiir<strong>in</strong>lb enters <strong>the</strong> wwtern Wxdden Sea,<br />

causidg oonaiderable wthrophi~ation to chat estuar<strong>in</strong>e area (Van der<br />

Veer, et al, 1988). More than 50a of <strong>the</strong> EWnewarer mns via tbe Niewe<br />

Uatemeg (Fig. 1) direct13 <strong>in</strong>to €he North Sea. &bout 3QZ flows <strong>in</strong>to <strong>the</strong>


Bar<strong>in</strong>gvliet and f<strong>in</strong>ally also enters <strong>the</strong> North Sea, depend<strong>in</strong>g on <strong>the</strong><br />

management regime of <strong>the</strong> W<strong>in</strong>gvlietsluioes (Pi$. 1). Ow<strong>in</strong>g to <strong>the</strong><br />

residual currents alung <strong>the</strong> Dutch coast <strong>the</strong> Rhlne wafer is ma<strong>in</strong>ly<br />

Kra9spo~ted <strong>in</strong> a 51) to 70 kilonreters wide zone iiito mr<strong>the</strong>rly<br />

directions (Fig. 1). The imerage nutrient load<strong>in</strong>gs of <strong>the</strong> Dutch caastal<br />

Figure 3<br />

Flop of Rh<strong>in</strong>e-Meus* water along <strong>the</strong> coasts at <strong>the</strong><br />

Ne<strong>the</strong>slands. (iermaay awd Denmark; SW Mnd 4.5 m S-', aarer<br />

mass fractions <strong>in</strong> %, age distribution <strong>in</strong>dieared as solid<br />

l<strong>in</strong>es <strong>in</strong> dars (derived fzool De Ruyter, et al. 1987). At NW<br />

w<strong>in</strong>ds a maximum fractian B£ 10% of Rhtne-muse water eaters<br />

<strong>the</strong> Ossterschelde estuary.<br />

watera reflect <strong>the</strong> discharges of mar<strong>in</strong>e and river<strong>in</strong>e water: <strong>the</strong> Rh<strong>in</strong>e<br />

wd Meusa (<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> Noordaeekanaalf contribute raaghly &OX of <strong>the</strong><br />

total N- and P-load. <strong>the</strong> residual ctlrrent of Chann@l vacer adds 90Z


and only l-2% cows frm <strong>the</strong> aive Scheldt (Pig. 4). The Scheldt has an<br />

averege discharge of only 112 m's-' CVe Ruyter,, et al, 1987) which is<br />

only 4% of rho Rhiae-Meuse discharge.<br />

Total nitrogen<br />

Totai phosphorus<br />

ennel<br />

37 %<br />

Rh<strong>in</strong>e / Meme 57 % Rh<strong>in</strong>e Meuse 16 %<br />

Figure 4<br />

The ahares of Rh<strong>in</strong>e-Ueuse load, Chamel load aqd Scheldt load<br />

<strong>in</strong> <strong>the</strong> rota1 eanceqtratiop aP N and F Dutch cpastal waters<br />

(Van Buuren, 1988).<br />

Only a veky small pereentzse of <strong>the</strong> orig<strong>in</strong>al We-Mewe water reaches<br />

directly (or <strong>in</strong>directly via <strong>the</strong> North Sea) <strong>the</strong> estuariee and brackish<br />

Lagoons <strong>in</strong> <strong>the</strong> South-West Ne<strong>the</strong>rlands. Especially <strong>the</strong> construction of<br />

<strong>the</strong> Volkerekdam <strong>in</strong> 1969 (Fig. 1) deprived <strong>the</strong> sal<strong>in</strong>e waters of <strong>the</strong><br />

direct <strong>in</strong>flux af fresh river-w-ater. me Oosterse.helde, Grevtrl<strong>in</strong>genmeer<br />

and Veezse Meet are ma<strong>in</strong>ly loaded with nutrients from dSSfuse Bourees<br />

such W apicrienral run-off, treated vasce water and dra<strong>in</strong>we canals.<br />

The sal<strong>in</strong>e water bodks <strong>in</strong> <strong>the</strong> South-KeSt Ne<strong>the</strong>rlands have been<br />

separated spatiallq fcompartmentalization) ovlng to <strong>the</strong> <strong>Delta</strong> Works.<br />

Cmseguentlg each of <strong>the</strong>se waters has its oun eutrophicatim history<br />

and its orm sperffic ehareteristics, exclud<strong>in</strong>g, an <strong>in</strong>tegrated epproach<br />

to manage eh= nutrisnt 10.oad<strong>in</strong>g~ B$ <strong>the</strong>se syatema.<br />

Table 1 sumeariaes a hlmmer of ~paLem peameters. The residence t<strong>in</strong>es<br />

of <strong>the</strong> uater masses Zu tke stagnant, nen tidal OreVd<strong>in</strong>gewer and<br />

"ieerse Beer are long, cwmpared to ch8 saate cha+ac+etistic <strong>in</strong> <strong>the</strong> tihl


estuaries. The net freshwater load directly from <strong>the</strong> rivers Rh<strong>in</strong>e and<br />

Mwse is extremelp small (1% of <strong>the</strong> discharge). Tba Veerse Meer lagoon<br />

eaperiences almost permanent stratiEicaeion, whereas <strong>the</strong><br />

Oreveliugenmeer has only a few deep channels, stratified dur<strong>in</strong>g summer.<br />

The Westerschelde and Oostersehelde estuaries are completely &ed<br />

tidal systems.<br />

Table 1<br />

System parameters of <strong>the</strong> sal<strong>in</strong>e waters <strong>in</strong> <strong>the</strong> Swth-West<br />

Ne<strong>the</strong>rlands, derived from Wollast, 1988, and Bokhorst, 1988,<br />

for <strong>the</strong> Westerschelde; Projectgroep Balans, 191d8, and<br />

Wetsteyn and Peperzak, 1988, for <strong>the</strong> Oosferschelde; Nienhuis,<br />

1985, and De Vries, et al, 1988, for <strong>the</strong> Grevel<strong>in</strong>gen: Daemen,<br />

1985. and Stronkhorst. et al, 1985. for <strong>the</strong> Veerse Meer. Load<br />

= direet water load from Rh<strong>in</strong>e-Meuse.<br />

reddenGB time (4)<br />

bad h%-1,<br />

tides<br />

stFati£icatlan<br />

ext<strong>in</strong>ct-.<br />

(m-')<br />

The Westerschelde is extremely turbid (ext<strong>in</strong>ction coefficient 0.5-7)<br />

and <strong>the</strong> Grevelfngenmeor conta<strong>in</strong>s very clear water (ext<strong>in</strong>ction<br />

coefficient 0.2- 0.5). with <strong>the</strong> Oosterschelde and Veerse Meer <strong>in</strong><br />

between.<br />

The range <strong>in</strong> nutrient concentrations <strong>in</strong> <strong>the</strong> sal<strong>in</strong>e <strong>Delta</strong> waters differs<br />

greatly (lfig. 5). The Oostersehelde and Crevelfngen reach only seldom<br />

for N. P and Si; nutrient values frequently<br />

values above 1 mg I-'<br />

approach zero concantratione dur<strong>in</strong>g heavy blooms of phytoplankton.<br />

The Veersa Meet has higher maximum values for N and Si, but depletion<br />

occurs dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g season. The Westerschelde has far out <strong>the</strong>


highest trophic potential: nutrient concentration values never approach<br />

zero dur<strong>in</strong>g spr<strong>in</strong>g a~d sumer and reach hi&h levels Bur<strong>in</strong>g wtnter<br />

(8 mg 1-l N; 4 m$ l-l P and 9 nrg 1-l Si). Compmd t9 <strong>the</strong> nutrient<br />

coneentratious <strong>in</strong> <strong>the</strong> river Rb<strong>in</strong>e (Fig. 2). F-concentrations are wo<br />

tiares lover and N-emcenttations are ten times 1-<br />

water badies (Fig. 5).<br />

exeept far <strong>the</strong> Weaterschelde,<br />

id <strong>the</strong> sal<strong>in</strong>e<br />

Veerse Meer -N<br />

Figure 5<br />

Range <strong>in</strong> nutrient concentrations <strong>in</strong> esfuaries and brackish<br />

lagoons <strong>in</strong> <strong>the</strong> South-West Ne<strong>the</strong>rlands.<br />

See legend Table 1 for souzces.<br />

The question arises which factox acts as <strong>the</strong> limit<strong>in</strong>g constituent for<br />

<strong>the</strong> productivitr of algae <strong>in</strong> <strong>the</strong> sal<strong>in</strong>e <strong>Delta</strong> <strong>Waters</strong>. In <strong>the</strong> turbid<br />

Westerschelde it seems obvious that <strong>the</strong> availability of light is<br />

limit<strong>in</strong>g phytoplankton dynamics. In brackish coastal waters phospate<br />

may he a potentially limit<strong>in</strong>g factor (Veldhnis, 1987). It is generally<br />

assumed that nitrogen is <strong>the</strong> limit<strong>in</strong>g factor for phytoplankton<br />

development <strong>in</strong> <strong>the</strong> Oosterschelde and Grevel<strong>in</strong>gen and occasionally also<br />

<strong>in</strong> <strong>the</strong> Veerse Meer. Knowledge about phytaplankt~n and wcrophyte<br />

k<strong>in</strong>etics <strong>in</strong> <strong>the</strong> South-West Ne<strong>the</strong>rlands, however, is scanty. Especially<br />

<strong>in</strong> polluted estuariee like <strong>the</strong> Westerschelde o<strong>the</strong>r factors than<br />

nutrients and lighc availability may he responsible fox <strong>the</strong> limitation<br />

of algal photosyn<strong>the</strong>sis. It is now becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly obvious that<br />

antagonistic effects beween metals on phytoplankton exist, whereby an<br />

organism may tolerate high concentrations of a given metal <strong>in</strong> <strong>the</strong>


presence of sufficient quantities of ano<strong>the</strong>r meral hut not <strong>in</strong> <strong>the</strong><br />

absence or at low concentrations of <strong>the</strong> second metal iRaven and<br />

Richardson. 1986).<br />

Table 2<br />

Etitrogen and cholorcphyl <strong>in</strong> Dutch coastal waters, eetuies<br />

and bckieh lagoons (data deni~ed fremDe Vries et al, 1988.<br />

and Smoes - Dos+se?rschelde model cdculatloos; E. Schalrea,<br />

personal communication).<br />

load &eez cone. rhlorophyl cm@.<br />

Nor& Seb (coast.)<br />

Wadden Sea<br />

Westersrhelde<br />

0ostersche3.de<br />

Gravelbgenneer<br />

Veerse Seer<br />

Table 2 shovs a large variatiw <strong>in</strong> tohd nitwgen loads (4 - 235 g N<br />

-2 -1<br />

m y ) <strong>in</strong> Dutch coastd waters, estuaries ad brackish lagwns,<br />

whereas N-edncencratims only &a4 a rwe of 0.5-4.6<br />

Obtrioustg, a nitrogen load of 40-200 g N m-'T-'<br />

mg 1-l.<br />

does not giae rise to<br />

extremely high chlurophgl conkentrations dur<strong>in</strong>g summer, usifher <strong>in</strong><br />

North Sea coastal water, nor <strong>in</strong> <strong>the</strong> Wadden Sea and <strong>the</strong> WssCerscheLde<br />

e s t q . It is assumed that l&ght availability is <strong>the</strong> limit<strong>in</strong>g factor<br />

<strong>in</strong> <strong>the</strong>se turbid c-tax<br />

and estuar<strong>in</strong>e waters, end not nitrogen,<br />

expla<strong>in</strong><strong>in</strong>g <strong>the</strong> relatively low phptoplankton tchlarophyl) biomass <strong>in</strong><br />

smer. Contrary, <strong>in</strong> <strong>the</strong> clear water of <strong>the</strong> Veerae Weer lagoan a N-lead<br />

-2 -1<br />

of 34 g m p results <strong>in</strong> high ~hlorophyl concentrations (l00 mg CB1<br />

m-' or even higher; Table 2). This large productien of phytgplanktm<br />

bioaass ip <strong>the</strong> Veerse Meer lagoon, and soasequent de~sition of<br />

particulate or!&anic cnrbon on <strong>the</strong> bottom sedimenfs, resale& dur<strong>in</strong>g <strong>the</strong>


period 1980-19$3 <strong>in</strong> an <strong>in</strong>crease of <strong>the</strong> anaerobic sed-t suzface area<br />

of 4 ta 258 of she entire bottom awfkce (Stronlrhorst. et al. 1985).<br />

Qbvioualy, <strong>the</strong> Veerse Meer is vulnerable to eutreghicatian, ow<strong>in</strong>g to<br />

<strong>the</strong> long resid&&e <strong>the</strong> of water msses, <strong>the</strong> low ext<strong>in</strong>etian coefficient<br />

and <strong>the</strong> ;Umost permanent stratification.<br />

The Oastesschelde estuary has a very low N-lead re6nlt<strong>in</strong>g <strong>in</strong> low<br />

chlorophyl concentratisne (Table 2).<br />

W<strong>in</strong>g to <strong>the</strong> execwt<strong>in</strong>a af <strong>the</strong><br />

<strong>Delta</strong>plan (Pig. 1) <strong>the</strong> Oostarnehelde estuary has ma<strong>in</strong>ly been depriVed<br />

recently from its Bh<strong>in</strong>ewater load<strong>in</strong>g (Table 1). Model calculations<br />

revealed that a reduction of 50% of <strong>the</strong> nitrosen bed of <strong>the</strong> river<br />

W e<br />

would only lead to a rsduetian of less than 6% for nitrogen<br />

eoneentratlons <strong>in</strong> <strong>the</strong> 0oster.jkbelde estuary (Smobs-swdel; X. Scholten,<br />

peraerial co~u~ication). The Uoster~ohelde estuary is rna<strong>in</strong>ly ir;fluenced<br />

by tearhe foastalwffter, conta<strong>in</strong><strong>in</strong>g low conewtrations of total<br />

nrtrogen (less than 0.5 slg N 1-l; Srockolano, et al. 1988).<br />

Contkaq to <strong>the</strong> Veerse Meer lag~an. <strong>the</strong> Creveliagen lagoon has an<br />

-2 -1<br />

e%treaely Low N-load (4 g N m y ; Table 2). The CaeWA~mdel (De<br />

Vries, et al. 19BEI) revealed that Khe prodtlrcim of phytop.lanktan La<br />

<strong>the</strong> Gzevel<strong>in</strong>gen is liodted by nitrogerl availability and not by light<br />

availability. The hl<br />

: P ratio of tae dlsselved nufkiems <strong>in</strong> cke<br />

watercolm of <strong>the</strong> GrwsMngenmeer dur<strong>in</strong>s w<strong>in</strong>ter is 2-4,<br />

poirtc<strong>in</strong>g <strong>in</strong>to<br />

<strong>the</strong> direction of a large surplus af phosphate, notwithstand<strong>in</strong>g Che<br />

dom<strong>in</strong>ance of nitrogen <strong>in</strong> <strong>the</strong> discharge utatet, load<strong>in</strong>g <strong>the</strong> lagoon<br />

Eff : P = 22 : I f. Model calculations showed s Mgh tunrover of ni~rog.~u,<br />

<strong>in</strong> <strong>the</strong> watercolumn. The cha<strong>in</strong> of processes: nutrient uptake by<br />

phpoplanktaa - forslation d organic matter <strong>in</strong> algal cells -<br />

mherallzation of dead algae - regeneratbn of nutrients etc.. occurs 8<br />

tWs a year. &out<br />

90X of <strong>the</strong> anme1 prisary pr&uction of<br />

phytoplanktoa occurs on <strong>the</strong> baeis of resewrated nutrients, especialLy<br />

NB4 CDe Vtim, et al. lS88).


In <strong>the</strong> GZ3WQ-model ~alculatians CDe VrieB, et al, 19881 it is<br />

hypotkerriaed that <strong>in</strong> <strong>the</strong> Grevel<strong>in</strong>gen lagoon <strong>the</strong> process of<br />

eutra@ication<br />

is prevented by <strong>the</strong> rate of <strong>the</strong> denitiificatian process.<br />

Dnnit-rifioation is undoubtedly a significant process <strong>in</strong> mar<strong>in</strong>e and<br />

estuar<strong>in</strong>e ecaqstems. Rates of gaseous losses af nitr-en <strong>in</strong> <strong>the</strong> range<br />

-2 -1<br />

of 5-70 mg N m d were determ<strong>in</strong>ed <strong>in</strong> Bebgi-an, Dutch and Danish<br />

caastsl sedimnts, represent<strong>in</strong>g 8-23% of tha amount of nirrwen<br />

dnerdtliration <strong>in</strong> <strong>the</strong> benthic subayste<strong>in</strong> Caillen and Lancelot, 1987).<br />

Notwithstand<strong>in</strong>g <strong>the</strong> Eaet that no actual measurements exist on<br />

denirrification rates <strong>in</strong> <strong>the</strong> Grevel<strong>in</strong>gemeer, it is assumed <strong>in</strong> <strong>the</strong><br />

OReWQ-model that deeitrificatiw compensates <strong>the</strong> load of nitrogen,<br />

especially <strong>in</strong> <strong>the</strong> benthic bonndary layer <strong>in</strong> <strong>the</strong> sedismnr, where aerobic<br />

and anaerobic 'patches' o;f sediment jo<strong>in</strong> each o<strong>the</strong>r.<br />

In mahp sballw estuar<strong>in</strong>e waters <strong>the</strong> na<strong>in</strong> Foed cha<strong>in</strong> ia dpm<strong>in</strong>ated by<br />

phyto~laakron and bmthir Eilterf eeders (mussels. cockles) , Just as ie<br />

<strong>the</strong> case <strong>in</strong> <strong>the</strong> Greoel<strong>in</strong>genmeer, Oosterschalde and Wadden Sea. T3e<br />

rumover rate sf nutrients <strong>in</strong> <strong>the</strong>se ecosystems is deteraELned bp <strong>the</strong><br />

filter<strong>in</strong>g capacity of bsnthic filterfeeders. Theoretieally, every 5 to<br />

10 days <strong>the</strong> entire valme of water of <strong>the</strong> estuaries circulates through<br />

<strong>the</strong> filter<strong>in</strong>g apparatus of suspension feeders. Filterfeedem act as<br />

natuzal cantrollers of <strong>the</strong> eutrophicatian psocess (Office, et al.<br />

1982): <strong>the</strong>y deposit organic material from <strong>the</strong> watercolmn Dntn <strong>the</strong><br />

bottom mdiments. Mnreover, <strong>the</strong>y accelerate <strong>the</strong> regeneration of<br />

nutrients from <strong>the</strong> deposited perticulate o~anicarbon, <strong>the</strong>reby<br />

enhanc<strong>in</strong>g <strong>the</strong> primary produetion of pbytopLimktun, as was assuxned for<br />

<strong>the</strong> @xevali~enmeer (De Vries, et al. l$&%)<br />

'be cha<strong>in</strong> of pzoeesses - parcly measered. partly cheureticel - from<br />

biode~osition to reaenesation of nutrients and <strong>the</strong> coupl<strong>in</strong>g between<br />

nitrification and denicr%£icatie$n is limited by <strong>the</strong> load of szgani~<br />

nace~ial ro t&e<br />

sediment. men <strong>the</strong> <strong>in</strong>creae<strong>in</strong>g load of ozgulic material<br />

runs faster t4w Ehe grocess of heaerotrophic lotneralization. anaerobic<br />

cQndFeions wlll prevail <strong>in</strong> <strong>the</strong> sediment lead<strong>in</strong>g to death of bottom<br />

Fauna and a disconnection BE nitrification and dea5trification. GREWAQ-<br />

.


model calculations reveal that a nitrogen load<strong>in</strong>g of approbimately<br />

-2 -1<br />

10 g W m y or more unwuples <strong>the</strong> eutr@hiulti@n controll<strong>in</strong>g<br />

processes (Qe Vries, et al, 1988).<br />

-2 -1<br />

In <strong>the</strong> Veerse Meer lagoon, experienc<strong>in</strong>g a N-load of 34 g m y and<br />

haa<strong>in</strong>g a long residence time of <strong>the</strong> water, permanent stratifloation<br />

ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> eastern section and dear water dur<strong>in</strong>g considerable parts<br />

of <strong>the</strong> year, obvionsly, <strong>the</strong> chlorophyl concentration cmot be<br />

controlled by <strong>the</strong> bottom fauna, although a fluctuat<strong>in</strong>g but substantfal<br />

benthic biomass is available.<br />

In <strong>the</strong> recent literature (Benkema and Cadee, 1986; Cadee. 1956a. h;<br />

Cadea and Hegeman, 1966; Nelisseg and Steffels, 1988) a number of<br />

biologi~al effects of <strong>in</strong>creas<strong>in</strong>g eutrophioatbn have been mentioned for<br />

<strong>the</strong> Dutch ccoastal waters and <strong>the</strong> western Wadden Sea: (1) <strong>in</strong>creas<strong>in</strong>g<br />

primary prodwtivn; (2) dom<strong>in</strong>ance of flagellates cwer diaroms; (3)<br />

<strong>in</strong>crw<strong>in</strong>g biomass of benthic macro-fauna; (4) <strong>in</strong>creas<strong>in</strong>g catches<br />

tbimass 7) of demersal fish and shr-S. It ia beymd <strong>the</strong> diwcussibn<br />

of this paper whe<strong>the</strong>r or ~ o<strong>the</strong>se t effects of euthropicatlon are proven<br />

~ausnal facts or jusr assumed tendencies. The question arises whe<strong>the</strong>r<br />

<strong>the</strong> cor<strong>relations</strong> menrfoned for Dutch coaxtal waters can dso be<br />

revealed for <strong>the</strong> estnaries and lagoons <strong>in</strong> <strong>the</strong> Sauth-West Netharlaads.<br />

The answer is negative, for several reasons: (1) long terms series.<br />

6uch as published for <strong>the</strong> Wadden Sea by Beokema and Cadee. 1987, are<br />

not available for <strong>the</strong> Oosterscfielde and Weaterschelde esruarieti; (2)<br />

any possible trend <strong>in</strong> eutrophication of <strong>the</strong> <strong>Delta</strong> estuaries has been<br />

obscured (except for <strong>the</strong> Westerscbelde) by <strong>the</strong> ==cation of <strong>the</strong> <strong>Delta</strong><br />

Wsrks, changtng <strong>the</strong> hgdrography of <strong>the</strong> area drastically. The Veerse<br />

Neer and Grevel<strong>in</strong>gen have <strong>the</strong>ir om euthraphicatipn story, start<strong>in</strong>g<br />

respectively <strong>in</strong> 1961 and 1971 when <strong>the</strong> bas<strong>in</strong>s were cloeed off from, <strong>the</strong><br />

sea (cf. Pig. l).<br />

In Figure 6 a restricted dataset on <strong>the</strong> occurrence of <strong>the</strong> flagellate<br />

Phaeucgstls poucharii <strong>in</strong> <strong>the</strong> weecerh part of <strong>the</strong> Oasterschelde eahtary<br />

is compared with data fro= <strong>the</strong> western Wadden Sea. The Wadden Sea data<br />

reveal. a telacian between <strong>in</strong>creas<strong>in</strong>g eutropbicetion and <strong>in</strong>creas<strong>in</strong>g<br />

<strong>in</strong>cidence of Phaeocystis blooms. The Oosterscbelde data show a


Phaeocystis pouchetii<br />

WADDENZEE<br />

OOSTERSCHELDE<br />

Figure 6<br />

Duration of <strong>the</strong> spr<strong>in</strong>g$lonm of Phaeocystis pouchecii<br />

expressed a5 number of days wit3 cenc%ntratbns of cells<br />

above 1000 ml-l, and average concentration of cells,<br />

eqressed as nrpnbez of cells ml-l,<br />

for <strong>the</strong> western Waddenaee<br />

(tadee and Aegeman. 1986) and <strong>the</strong> western Oosterschelde (data<br />

rrom C. Bakker. DIHO). For <strong>the</strong> Oosterschelde: rider af deys:<br />

y = 819-9.178~~ = 0.94399, P < 0.01; cells ml-l : P > 0.05.<br />

significlmr decrease <strong>in</strong> <strong>the</strong> lengCh of <strong>the</strong> petied of <strong>the</strong> Phaetlcystis<br />

bloom, but aa <strong>in</strong>crease <strong>in</strong> bloom <strong>in</strong>tensity. Thase partly contzadictory<br />

results question <strong>the</strong> asition of Phaeoegatls pouchesli as an <strong>in</strong>dicator<br />

for <strong>in</strong>creas<strong>in</strong>g eutrophic*timn of Dutch coastal waters <strong>in</strong> general. Older<br />

records from before <strong>the</strong> second World War also reveal <strong>in</strong>cidental heavy<br />

Phseocysris blooms <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn North Sea (personal comnlcation<br />

S.H.R. hip) which make <strong>the</strong> position of <strong>the</strong> flagellate as an <strong>in</strong>dicator<br />

oven weaker.


Table 3 PreUmInary carbon budget of priwry producers <strong>in</strong> estuaries<br />

and brackish lagoons <strong>in</strong> <strong>the</strong> South-West Ne<strong>the</strong>rlands (expressed<br />

-2 -1<br />

ihgGm y ).<br />

Westerschelde: phtoplsnkton data detived from Billen, et al.<br />

1988, and Beip, 1988; microphytobenthos data rougbly, based<br />

on blows estimates, DGW, Middelburg; data on above-ground<br />

production of saltmarsh plants - both for <strong>the</strong> Westerschelde<br />

and Oosterschelde - derived from Gromendijk, 1SI86, an8<br />

Huiskes, 1988. Oosterschelde: phytoplanktan data based on<br />

Weteteyn and Peperzak, 1988, and Vegter and De Visscher,<br />

1987; microphytobenthos data from Nienhuis and Daamcn, 1985;<br />

data on seapassea and macro-algae on soft and hard<br />

substrates - bath for <strong>the</strong> Oosterschelde and Uesterschelde -<br />

derived frm Nienhuis, 1980, and Nienhuis and Daemen. 1985.<br />

Drevel<strong>in</strong>gen: data from Hiedluis, 1985, and De Vries, et al,<br />

1988. Peerse Meer: data £er phytoplankton Eram Daemen, I985<br />

and Stroxkho~st, ec al, 1985, fer ntlcrophytobenthw based on<br />

best professicnal judgement; daca on macrophpt~s of soft<br />

sukstrates derived fra Ha~ewijk, 1988, and Sybema, 1980,<br />

and mpublished DIE0 re%ords; data on seagrass production<br />

deriuad frem personal codmutication F. Vat, Lent, DIIIO.<br />

-tea babitat sgatw Wfszt sgsW habitat Sysren -C<br />

Total fa. 7.75 ea. Z&O ea. 320 ca. 450


In Tahle 3 a tentative carbon budget of <strong>the</strong> 4 sal<strong>in</strong>e <strong>Delta</strong> <strong>Waters</strong> Is<br />

given. as an expression of <strong>the</strong> transfotmation of <strong>in</strong>organk nutrients<br />

<strong>in</strong>to organic carbon of primary pxohcers. Table 3 does not girre<br />

<strong>in</strong>fetmatioa about <strong>the</strong> turnover of nutrients between <strong>the</strong> successive<br />

generations of plants. Notwithstazdlng <strong>the</strong> large dlfkrences <strong>in</strong><br />

nutrient loadjags of <strong>the</strong> separate waters, primasy production of<br />

phytoplankton only shows a difference of a factor 2 between <strong>the</strong> light<br />

-2 -1<br />

limited, tUrbid Westerschelde (l25 g C m y ) and <strong>the</strong> clear,<br />

-2 -1<br />

presumably not nutrient limited Veerse Meer (249 g C m y ). The<br />

Oosterseblde and Orevel<strong>in</strong>gemseer hold <strong>in</strong>t-diate positions.<br />

Production of microphytobent!hos (benthic diatoms, gzeen algae etc.) is<br />

roughly one third of <strong>the</strong> production of phytoplankton. In <strong>the</strong><br />

Westerschelde estuary, however, <strong>the</strong> relative skre of benthic<br />

microphytes is considerahLy higher, based on P/B ratio's derived from<br />

high biomass data, taken on <strong>in</strong>tertidal flats (personal eonrmnaicatFoa<br />

D.J.<br />

de Jong, DW).<br />

OwFng to <strong>the</strong> relatrvely large surface area of supratidal wetlands, <strong>the</strong><br />

contributivn of ahoae-ground peimarp production to <strong>the</strong> carbon budget <strong>in</strong><br />

-9 -1<br />

Westersehelde estusry (60 g C m y is about 20%. The larger part of<br />

<strong>the</strong> saltmarsh plants is produced <strong>in</strong> <strong>the</strong> eastern secrion of <strong>the</strong><br />

Westerschelde estuary (Verdrmken Land van Saeft<strong>in</strong>ghe) and is not<br />

transpwrted over <strong>the</strong> entire estuary, In contrast with <strong>the</strong><br />

Westerschelde, <strong>the</strong> Oosterachelde salt marshes pay only an <strong>in</strong>significant<br />

contrLhution (lees thau 5Z) to <strong>the</strong> system metabolism of <strong>the</strong> entire<br />

estuary.<br />

Maarophytes grow<strong>in</strong>g on bard substretes (i.e. seaweeds attached to<br />

sewalls and stone-clad dilres) have only a m<strong>in</strong>or contriburian to <strong>the</strong><br />

carbon budgets of <strong>the</strong> entire water hobtes, notwithstandiag <strong>the</strong>ir high<br />

production per square metre habitat.<br />

Eigh turbidity and exposure to waves and tides prevents <strong>the</strong> potential<br />

sediment habitats <strong>in</strong> tke Weatersehelde egtuary from be<strong>in</strong>g <strong>in</strong>vaded by<br />

macrephytes, The Oosterschelde estuary has only local growth of<br />

laactophytes an sediment substrams <strong>in</strong> sbeltered regions (Zandkteek,<br />

Ktabbenkreek, eastern part). In <strong>the</strong> sheltered, stagnant lagoons


Water life of Lake Grevel<strong>in</strong>gen


Foam of algae as a result of eutrophication<br />

Geld Ulats df <strong>the</strong> Bas+era BeheLdtl


macrophytes livkg on or root<strong>in</strong>g <strong>in</strong> sediment, respectively macro-algae<br />

(ma<strong>in</strong>ly green algae) and aeagrasaes, offer a significant share to <strong>the</strong><br />

carbon budget. In <strong>the</strong> Orwel<strong>in</strong>genmeer <strong>the</strong> seagrass Zostera mar<strong>in</strong>a<br />

dom<strong>in</strong>ates, coverkg 30% of <strong>the</strong> surface area of <strong>the</strong> lagacm, but<br />

contribut<strong>in</strong>g only 14% to <strong>the</strong> annual carbon bu&et, ow<strong>in</strong>g to <strong>the</strong> low P/B<br />

ratio of 3.<br />

Coverage 1%)<br />

80 GREVELINGEN<br />

seagrass<br />

Losfera mar<strong>in</strong>a<br />

GoveraQe 1% 1<br />

90- VEERSE MEER<br />

Sigure 7<br />

Percentage coverage <strong>in</strong> vertical projection on <strong>the</strong> sediment of<br />

Zostera mar<strong>in</strong>a and mcro-algae <strong>in</strong> permanent sample plocs <strong>in</strong><br />

<strong>the</strong> Grevel<strong>in</strong>gen and Veerse Meer. She of sample plot is 15 x<br />

15 ma, waterdepth 14 both localitaties is 1.25 m (data<br />

bsrrowed from F. Van Lent, DIEO).<br />

The Veerse Meer &Ears a &ifFerent picture. Seagrassee csver only 3% of<br />

<strong>the</strong> surface area of <strong>the</strong> lagoon (IhnewFjk, 1988) and have to compete<br />

with epp~rtunistic green algae (ma<strong>in</strong>lp E) for space and light. The<br />

lagoon is dom<strong>in</strong>ated by plva dur<strong>in</strong>g <strong>the</strong> smer season, showFng a roughly


estimated primary production of 500 g C mdZy-l <strong>in</strong> shallow are-. The<br />

contribution to <strong>the</strong> annual carbon budget of <strong>the</strong> Veerse Meer is roughly<br />

-E -1<br />

120 g C m y , which is 27X of <strong>the</strong> lagow' budget. The higb nitrogen<br />

load not only leads to a relatively high production of phytoplanktou,<br />

but also to <strong>in</strong>tensive and undesirable mass growth of =<strong>in</strong><br />

areas.<br />

shallow<br />

Figure 7 reveals <strong>the</strong> <strong>in</strong>areae and decrease <strong>in</strong> biomass, eapressed as<br />

perrentage wvezage, <strong>in</strong> a permaaent saaple plot In <strong>the</strong> Grevel<strong>in</strong>geu and<br />

<strong>in</strong> <strong>the</strong> Vwse Fleet!. In <strong>the</strong> Grevel<strong>in</strong>gemeer <strong>the</strong> annual cycle of cbaagerr<br />

<strong>in</strong> biomass of seagrass is not disturbed by macro-algae. which have only<br />

a low presence. In <strong>the</strong> Veezse Meer <strong>the</strong> seagraes plot becomes cmpletely<br />

dam<strong>in</strong>dted by quickly grow<strong>in</strong>g-, suppress<strong>in</strong>g <strong>the</strong> growth of zostera.<br />

Table 3 shows that <strong>the</strong> eutrophicated Veerse Meer has <strong>the</strong> highest tmtal<br />

-2 -1<br />

primary production (roughly 4-50 g C m y ) and that <strong>the</strong> nutrient<br />

limited Oosterschelde estuary has <strong>the</strong> lowest values (rdu@ly<br />

-P -1<br />

240gCrn y 1.<br />

For Ereshwater ecosystems a tentative model has beau developed,<br />

descrihlng <strong>the</strong> relation berween <strong>the</strong> relative domtuanca of primary<br />

producers wmected to <strong>the</strong> availability of nutrients. and <strong>the</strong><br />

successive phase$ <strong>in</strong> <strong>the</strong> process of %acreas<strong>in</strong>% eutrophicatton<br />

(Phillips. et al. 1978; Van Vierssen, et al. 1985; De Nfe. 1987: Fig.<br />

8, upper panel). The model for esruar<strong>in</strong>e and lagoonal situations Rig.<br />

8, loaez panel) is adapted, based on data from <strong>the</strong> Qrevel<strong>in</strong>pn and<br />

Veerse &er. The model is odly applicable to stagnant brackish lagoons<br />

and extremely sheltered parts of tidal estuaries. In "healthy" sal<strong>in</strong>e<br />

waters, waterplants - such as seagrasses - dom<strong>in</strong>ate. Nitrogen load and<br />

concentrations are lm and <strong>the</strong> relative importance of phytoplanktm <strong>in</strong><br />

<strong>the</strong> shallow seagrassbeds is iusigniEicant; <strong>the</strong> Grevelisgeumeer is an<br />

example of phase I. Zn brack3sh waters where eutropbiearim <strong>in</strong>creases,<br />

revealed by higher nitrogen loads and concentrations and lower,<br />

<strong>in</strong>stable sal<strong>in</strong>ities, waterpLants am outcompeted by macto-algae.<br />

Epiphyte gowth gn seagrass-<br />

<strong>in</strong>crea~es considerably toge<strong>the</strong>r with <strong>the</strong><br />

relative dsmtnanee of pbytoplankfou. The resilience of <strong>the</strong> aquatic<br />

cmumnitied decreases, which makes <strong>the</strong> system less constant <strong>in</strong> time end


less predictable for water managers; <strong>the</strong> Veerse Meex is an eraple of<br />

phase 11.<br />

Relative dorn<strong>in</strong>once<br />

l SALT WATER I /<br />

I<br />

n<br />

I II m<br />

EutPophlccltion phase<br />

Figure 8 Tentative model for <strong>the</strong> relation between primary producers<br />

and nutriats and <strong>the</strong> snccessive stages <strong>in</strong> <strong>the</strong> eutmphication<br />

proce6s. Explanation see text.<br />

In hypereutrophicated systems (phase 111) heavy uncontrolled<br />

phytoplilnkton blooms alternate with mass growth of macro-algae.<br />

Nutrient concentrations are cont<strong>in</strong>uously high. Root<strong>in</strong>g waterplants hwe<br />

completely disappeared. Bottom sediments suffer from permanent anoxia.<br />

The lagoon of Venice is an example of phase 111, where E bimass<br />

-2<br />

reaches values of 1.5 kg dry weight m (Sfriso, et al. 1987; Sfriso,<br />

et al. 1988) which is 6 times higher as <strong>in</strong> <strong>the</strong> Veerse Meer.


BEumMA. 3.3, aad CADEE, 0.6..<br />

1986. Zoobentboa respauses to<br />

eutrophication of <strong>the</strong> Dutch Waddea Sea. Ophelia, Z6: 5544.<br />

B-, 3.3. and GADEE, G.C., 1987. De eutrofi8rlng ven ons kwtwater:<br />

genoeg of a1 te -ell Vakbl. Biol.. 67 (9): 153-157.<br />

BILLEM, G. and LAhTOELOT, C., 1987. Modell<strong>in</strong>g bemhic microbial<br />

processes and rheir role <strong>in</strong> nitrogen cycl<strong>in</strong>g of taperate coastal<br />

ecosystems. In: E.T. Blackburn and 3. Sorensen (editors) -<br />

Nitrogen <strong>in</strong> coastal mar<strong>in</strong>e envirommnts. Scope Wiley, New York,<br />

pp. 341-378.<br />

EiILtEW, G.. Z~CELM C., SEGgER. E. DE and SWAIS, P.,<br />

1988. Modell<strong>in</strong>g<br />

microbial processes Lphyto- and baccerioplanktm) <strong>in</strong> rhe Sckldr<br />

estukty. Kydrobbol. BnIl.. 22 it): 43-55.<br />

BOWBsT, E.. 1988. Iavwtarisatie van een aantal ahiotisehe facforen<br />

<strong>in</strong> de Wosterschelde. DUlO Studentenverslag 06-1988: 1-22.<br />

BROCWANE. U., BIZLEN. G., md GIESKEEIS, W.W.C., 1988. In: W. Momns,<br />

S.L. Bayne, E.K. Wursma and W. FGrstner (ebicors) - Eollution of<br />

<strong>the</strong> North Sea - an asaesement. Spr<strong>in</strong>ser, Berl<strong>in</strong>, pp. 348-389.<br />

BUWEEN, J.T. VAN, 1988. De Noordzee en eutrafiiiriug. B 0. 21 (201 :<br />

9<br />

591-595.<br />

CbDFE, G.C..<br />

1986a. Increased phytoplmkton primary production <strong>in</strong> <strong>the</strong><br />

Maradi+p area (western Dutch Wden Sea). Neth. J. Sea Eos., 20:<br />

285-9961.<br />

CWDEE, @.G.,<br />

UUIEE, G.C..<br />

19a6b. Recurrent and chang<strong>in</strong>g seasonal patterm <strong>in</strong><br />

phytoplankton of <strong>the</strong> westemmost <strong>in</strong>let of <strong>the</strong> Dutch Wadden &a<br />

frw 1969 to 1985. %X. siol., 93: ~81-289.<br />

and IIEbEm4N. S.. 1986. Seirggnal and annual v-ariahi~n <strong>in</strong><br />

Phaeocystis pouehetii (Haptophyeoae) <strong>in</strong> tire westemmest <strong>in</strong>let of<br />

<strong>the</strong> Uadden Sea dur<strong>in</strong>g €he 1973 to 1985 pertod. Flech. 3. Sea W.,<br />

20: 29-36.<br />

RMNEN, E.A.M.J.,<br />

1985. Literatuurondarzoek met bet$ekk<strong>in</strong>g tot de<br />

oocologie van her Veerse Meer. B.V.<br />

1-116.<br />

G R O ~ I J K , A.M.,<br />

<strong>Delta</strong> COnsult, Kapele, pp.<br />

1984. Primary podnction of four dom<strong>in</strong>ant salt-.marsh<br />

augiespstraa <strong>in</strong> <strong>the</strong> South-West Ne<strong>the</strong>rlands, Ve~~tatie, 51:<br />

143-152.


ILWNEWIJK, A..<br />

KEIP, C.,<br />

1988. De verspreid<strong>in</strong>g ea bfomirssa van macrowen <strong>in</strong> het<br />

Veerse Meer, 1987. DfBO Rapporten en Verslagen 1988-2: 1-25.<br />

1988. Eiota and abiotic enalronmeut <strong>in</strong> <strong>the</strong> Westetscttelde<br />

estuary. Rydrobiol. Bun. Xf (l): 31-36.<br />

IIUISEES, A.E.L.,<br />

1988. l'be salt-marshes of <strong>the</strong> hsterschelde and <strong>the</strong>ir<br />

mle <strong>in</strong> <strong>the</strong> estuartne ecosystem. <strong>Hydro</strong>biol. Bull.. Z2 (l): 57-63.<br />

HQBBZ, H., MQERW, G. and B-, C., 1988. The concomitant<br />

existmce of a typical coaetaS and a datritus baeed food cha<strong>in</strong> <strong>in</strong><br />

<strong>the</strong> Westerachelde estuary. Bydrgbiol. Bull., 22 11): 35-41.<br />

NELISSEN. P.H.M. aml STEFELS, J., 1988. Eutrophlsation of <strong>the</strong> North<br />

Sea. NI(TZ-report 1988-4: 1-100.<br />

NIENHUIS, P.E.,<br />

1980. The epfiitkde algd VeBtcation of <strong>the</strong> South-West<br />

Ne<strong>the</strong>rlands. Nova Kedwigia, 33: 1-94.<br />

NIENHm.5, P.A.<br />

feditar). 1955. Het Grevel<strong>in</strong>gemeer - van esuiarium naar<br />

aoucwtermeer. Ratuur en Technlek, Maastricht pp. 1-177.<br />

NI%NKUIS, P.B. and DAEMEP, E.A.M.J., 1985. De biomasm en produktie van<br />

het fytobenthos. In: P.B.M. Startelder (d.)- De Lwlstofbalans<br />

<strong>in</strong> de Oasterschelde. RWS - <strong>Delta</strong>dienst, C(iddelBnrg, Den Hang;<br />

DIHO, Yerseka, Interimrapport Rota M S<br />

1985-11: 67-79.<br />

OFFICER, C.B.. SMYDA, T.J. and W N , R., 1982. Xenthic filterfeed<strong>in</strong>g:<br />

a natural eutr~phicatian control. Mar. Ecol. Prog. Ser., 9: 203-<br />

210.<br />

PBOJECT6RQEP BALMS, L988. Vuedsel <strong>in</strong> ds Dastersohelde. RiJksmtersteat<br />

DGW en UXHO Yerseke, pp. 1-53.<br />

RAVEN. J.A. and RI~HBWISON, K., 1986. Mar<strong>in</strong>e environments. In: N.R.<br />

Baker and S.P. Long (editofs) - Phyroayn<strong>the</strong>sis <strong>in</strong> conerast<strong>in</strong>g<br />

envirONnent6;. Else%ier, ~sterdm, pp. 357-392.<br />

RWENBERG. R..<br />

1985. Eutrophication. - tlte future mar<strong>in</strong>e eoekral<br />

nuisance? Mar. Pall. Bull., 16 (6): 2271231.<br />

RWTeR, W.P.M.<br />

SpazS0, A..<br />

IIE. POSW. L, and Km, J.S. DE, 1987. TraiIsQort Atlas<br />

of <strong>the</strong> Saa<strong>the</strong>rn North Sea. Rijksrraterstaat - Tidal <strong>Waters</strong><br />

Division - Qelft EydrauUcs, Den Haag, pp. 1-34.<br />

MARCOKDTI. A. apd PAW, B., 1997. Belationships btwesn<br />

mere-algal biomasa and nutrient concentrations <strong>in</strong> a hyperrrophie<br />

area of <strong>the</strong> Venice Lagoon. Mar. Environm. Res., 22: 297- 312.<br />

SPRISO, a.. FAVONI. B., WCOMTXI, A. and 0x10, A.A., 198%. annual<br />

variatio~s of nutrients <strong>in</strong> <strong>the</strong> lagoon of Venice. hr. Poll.<br />

Bull., 19 (2): 54-60.


SLOOFF. W., 1983. Rijn, Lek. W%l. IJssel en uitewaarden onder <strong>in</strong>vloed<br />

van <strong>in</strong>grepen ea verontre<strong>in</strong>ig<strong>in</strong>gen. In: G.P. Bekstra en W. Joenje<br />

(editors) : Rijnwater <strong>in</strong> Nederland. Oecologische Kr<strong>in</strong>g, Amhem.<br />

pp. 13-31.<br />

STREWTOEST. J., DUET, R.N.M.<br />

SPBESMA, J.,<br />

and HAAS, LA., 1985. Primaire produktie<br />

onderzoek <strong>in</strong> het Veerae Meer (1982-1983). Nota DDMI 85.10<br />

Middelburg pp. 1-52.<br />

1980. Produktiemet<strong>in</strong>@en aan macro-elgen <strong>in</strong> het<br />

Grevel<strong>in</strong>g-enmeer wet de 14 C-mhode.<br />

D7-1980: 1-53.<br />

DIE0 Studentenverslagen<br />

VEER, E.W. VAB DER. WHOBST. W. VAN and BEE&&, M.J.N.. 1988.<br />

Elitrophication Of <strong>the</strong> Dutch Wadden Sea - external nutrients<br />

load<strong>in</strong>g6 of <strong>the</strong> Marediep and Vliestroon bas<strong>in</strong>s. In: EON-<br />

projectgroup: The eoasystem of <strong>the</strong> Weetern Kadden Sea: fi@l&<br />

research and ma<strong>the</strong>matical medell<strong>in</strong>g. EMOWAD 11 - NIRZ report<br />

198&11: 113-122.<br />

VECTER, F. and VESSCHER, P.R.M.<br />

DE, 1987. Nutrients and phytoplankton<br />

primary production <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e tidal Oosterschelde estuary (The<br />

Ne<strong>the</strong>rlands). Bydrabiol. Bull., 21 (25 : 149-158.<br />

VELDWIS. M.J.W.,<br />

1987. The eco~bysiology of <strong>the</strong> colonial alga<br />

Phaeoaystis pouchetii. Ph. <strong>the</strong>sis Universtky Eras<strong>in</strong>gen. Van<br />

Dendsren Gran<strong>in</strong>gen. pp. 1-27.<br />

WLFS. I. DE, EOPSTAGW, F., GOOSSBS, H., VRIES. M. IIE, VEXES, 8. DE,<br />

and HF.RINGA, J.. B%. GBEWAQ: an <strong>ecological</strong> model for Lake<br />

Ore-rel<strong>in</strong>gen. Beport T-021543. Rijksvrarerstaat DQW, Delft<br />

Eydtaulics pp. 1-159 + pp. 1-83.<br />

VRIES, I. DE, R&MEORST, W. VAN and DANKaRS, N., 1988. Extra<br />

VoedSngnatoffen <strong>in</strong> see: Wolgen, voordelen, nadelen. Landsohap 5<br />

(4): 270-285.<br />

WETSTFYN. L.P.H.J. and PEPHRZAX. L.. 1988. Ahiotische variahelen,<br />

primaire produktfe w kwalitatieve fytoplenktonsamnstell<strong>in</strong>g en -<br />

suocessie <strong>in</strong> de Oosterschelde <strong>in</strong> 1987. Nota W-88.1009.<br />

Rijkswaterstaat DGW Middelhurg. pp. 1-59.<br />

WOLLAST, R. 1988. The Seheldt estuary. In: W. Salamws, B.L. Bap,<br />

E.K.<br />

Duursma en U. Fdrstqer (editors) - Pollution of tbe North<br />

Sea - an assessment. Spr<strong>in</strong>per, Berlb. pp. 183-193.


XBE CHANGING TmAL LAMXiCAPE I N TEE DELTA ARM OF THE SOUlX-W'ST<br />

N-DS<br />

J.P.M.<br />

Mulder<br />

Implementation of <strong>the</strong> <strong>Delta</strong> Prpject has <strong>in</strong>itiated a procesa of major<br />

changw <strong>in</strong> <strong>the</strong> tidal landscape of <strong>the</strong> South-West Ne<strong>the</strong>rlands.<br />

The w<strong>in</strong> geomorphological developments are described <strong>in</strong> comparison &h<br />

<strong>the</strong> historic evaluation of <strong>the</strong> <strong>Delta</strong> area and <strong>in</strong> eelation to changes of<br />

<strong>the</strong> mjm natural driv<strong>in</strong>g force*.<br />

Channels. sandy shoals, mudflats and salt marshe3 make Up <strong>the</strong><br />

characteristic elements of <strong>the</strong> landscape <strong>in</strong> ~e {formerly) tidal waters<br />

of tbe South-West Ne<strong>the</strong>rlands. Over <strong>the</strong> last decades thls lmddcape hhs<br />

became subject to dramatic chases. Ma<strong>in</strong> causes: implementation of <strong>the</strong><br />

<strong>Delta</strong> Project, aimed at secur<strong>in</strong>g <strong>the</strong> South-West Ne<strong>the</strong>rlan&s aga<strong>in</strong>st<br />

flood<strong>in</strong>g, and <strong>in</strong> <strong>the</strong> Westerschelde, large scale dredgfng for <strong>the</strong> sake<br />

of free shipp<strong>in</strong>g t9 <strong>the</strong> harbours of Bntwerp. Consequences: <strong>the</strong> coherent<br />

geomorph~logicnl system of ebb tidal deltas, tidal. <strong>in</strong>lets and<br />

estuaries, has beep divided <strong>in</strong>to several were or less hiependent<br />

subsystems. The tendencies towads a dywmic equilibrium between tbe<br />

tiW landscape aad natural driv<strong>in</strong>g forces - tides, waves and fluvial<br />

currents - have been dibtnKM.


In this paper (Section 2) first <strong>the</strong> historic evolution of <strong>the</strong> tidal<br />

landscape is analysed, resultbg <strong>in</strong> some 'hypo<strong>the</strong>ses' M general<br />

response mecbnism to chaqges <strong>in</strong> <strong>the</strong> natural driv<strong>in</strong>g forces. !hen<br />

(Section S) <strong>the</strong> major changes of <strong>the</strong> tidal landscape <strong>in</strong> <strong>the</strong> respective<br />

bas<strong>in</strong>s of <strong>the</strong> Dutch <strong>Delta</strong> area over <strong>the</strong> last decadee are broadly<br />

reviewed. The observed phenomena are confronted with <strong>the</strong> general<br />

'hypo<strong>the</strong>ses' of Section 2 and discussed <strong>in</strong> relation to <strong>the</strong> specific<br />

shift <strong>in</strong> natural driviog forces. Flnatly a short outlook on future<br />

developments is given.<br />

2 EVOLUTION OF THE TIDAL LANDSGAEE DURmG RISTORiC TINES<br />

2.1 Kel<strong>in</strong>ium and Oosterschalde<br />

Dur<strong>in</strong>g Roman times <strong>the</strong> coastl<strong>in</strong>e of <strong>the</strong> South-Vest Ne<strong>the</strong>rlands only<br />

showed two ma<strong>in</strong> tidal <strong>in</strong>lets (Fig. 1).<br />

At that time <strong>the</strong> nor<strong>the</strong>rnmost <strong>in</strong>let, known <strong>in</strong> Roman writ<strong>in</strong>gs as<br />

Ael<strong>in</strong>ium, was <strong>the</strong> ma<strong>in</strong> distributary of <strong>the</strong> rivers Rh<strong>in</strong>e and Ueuse, and<br />

partly of <strong>the</strong> river Scheldt (Zagwljn. 1987). Dur<strong>in</strong>g <strong>the</strong> next centuries<br />

<strong>the</strong> importance & this estuary cont<strong>in</strong>ually dim<strong>in</strong>ished, <strong>in</strong> favout of <strong>the</strong><br />

development cf <strong>the</strong> sarly Har<strong>in</strong>gvliet, GreveBgen and Onsterschelde<br />

estuaries.<br />

Figure 1 The South-West Ne<strong>the</strong>rlasds 2000 B.P.<br />

circa 1550<br />

(Zagwiju. 1987) and


The storm surke of L&Z1 A.D., knorm as St. ELisabeth's flood, had a<br />

big impact <strong>in</strong> this respect. It caused a drastic change <strong>in</strong> <strong>the</strong> courses<br />

of <strong>the</strong> =<strong>in</strong> rivers and conaiderable losses of laud (Rig. 1). Due to<br />

<strong>the</strong>se land losses - <strong>the</strong> extensive tidal marsh lands of <strong>the</strong> Biesllosch<br />

orig<strong>in</strong>ate from this flood - <strong>the</strong> tidal prisms of <strong>the</strong> early Har<strong>in</strong>gvliet.<br />

erevel<strong>in</strong>geu and Oosrerschelde <strong>in</strong>creased considerably, result<strong>in</strong>g <strong>in</strong> a<br />

fur<strong>the</strong>r deepeniag and widen<strong>in</strong>g of <strong>the</strong>se bas<strong>in</strong>s. The former Eel<strong>in</strong>iua on<br />

<strong>the</strong> contrary showed a decrease of tidal prism and as a result silted<br />

up. This pzocesa of siltation still was cont<strong>in</strong>u<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong> 19th<br />

century, lead* to <strong>the</strong> need of coustmct<strong>in</strong>g <strong>the</strong> Botterdam Waremay<br />

(1868) fm order to ensure aecess to <strong>the</strong> Botterdam harbours (Van den<br />

Berg. 1987).<br />

The Qosterschelde <strong>in</strong>Let hardly did not change position s<strong>in</strong>ce Roman<br />

times. Bowever, <strong>the</strong> shape oE tbe estuary ewers<strong>in</strong>ce has changed<br />

considPrably. Orig<strong>in</strong>ally <strong>the</strong> Oosterschelde was <strong>the</strong> ma<strong>in</strong> distributary of;<br />

<strong>the</strong> river Skheldt. From about 700 &.D. <strong>the</strong> mere sou<strong>the</strong>rly Westerschelde<br />

estuary developed from a small tidal <strong>in</strong>let, dur<strong>in</strong>g Rman times located<br />

approximately at <strong>the</strong> present Dutch-Belgian border (Rig. 1; benders.<br />

19861. The Westet~chelde gradually took over <strong>the</strong> discharge of <strong>the</strong> river<br />

Gcheldt. At <strong>the</strong> end of <strong>the</strong> 16th century <strong>the</strong> Oosterschelde practically<br />

had lost all importance as a distributary of Scheldt waters.<br />

Rever<strong>the</strong>less, <strong>in</strong> contrast to <strong>the</strong> silt<strong>in</strong>g up of <strong>the</strong> Hel<strong>in</strong>iua after<br />

diparsim of <strong>the</strong> mH<strong>in</strong> courses of <strong>the</strong> rivers Rh<strong>in</strong>e and Pleuse, <strong>the</strong><br />

Oostersmhelde showed <strong>in</strong>tensified erosion. An explanation for this<br />

renarkable different behaviour Q <strong>the</strong> dramatie <strong>in</strong>crease of <strong>the</strong><br />

Oostersehelde's tidal prism due to extensive lwd losses. Apart from<br />

<strong>the</strong> effeers of <strong>the</strong> earlier mentioned St. Wsabeth's flood. it 1s<br />

estimated that as a result of ano<strong>the</strong>r notorious storm surge<br />

(St. Pelix's flood of 1530). <strong>the</strong> Ooseerschelde bas<strong>in</strong> was enlarsd to<br />

such extend that it's tidal prism must have <strong>in</strong>creased by at least 50%<br />

(Van den Berg, 1986). The erosive respouse to this <strong>in</strong>czease of tidal<br />

prism still is visible dur<strong>in</strong>g <strong>the</strong> 19th century CFig. 2).


Figure B<br />

GnDSs :sectiun~2 df <strong>the</strong> '(108tersche1Be falet h <strong>in</strong>&erent<br />

p'er.Faak, i1l~afzat.i~ eh& &aep.egiq@ of &amrIs md ,expaneaon<br />

M<br />

shoals (.Van BeetpX, 1877; Bm., 19XI<br />

ltwex, tha ezqsboa preews,. dus4ng. cWs piad Camat he eqlaiaeB &S<br />

!a s& +W$?tion :CO tke meB*aL Saad Z@ssps. DwtW <strong>the</strong> lStIi aM Wi3i<br />

cwt- 6he tidal .prig@ of <strong>the</strong> .WterSchaLde Xilm-remed -Bet due td<br />

.a penias ,eiuil ,.cag.%wez&g &S. ewh fwti@iae a m1.e U&me<br />

pmpapaZb af tib CZs8le 1;. p9rs .den Ba*, 1987; ,%a Vq&cSel, 1977).<br />

Table 1<br />

Ciail eu@kaer<strong>in</strong>g marks fn <strong>the</strong> l.a&wexd pwfs vf <strong>the</strong><br />

@eseerach&Cie IW34370 M. 1978)<br />

1851-1885 construction of <strong>the</strong> Nieuwe Mewede<br />

1888-1907 construction of <strong>the</strong> Bergse Naas; normalisation of <strong>the</strong> Amer<br />

1931 construction of <strong>the</strong> Bellegatdam<br />

l965 construction of <strong>the</strong> Grwel<strong>in</strong>gen Dam<br />

1969 construction of <strong>the</strong> Volkerak Dapl<br />

1850- dreQ<strong>in</strong>g and saadnh<strong>in</strong>g


osi*<br />

rn@8IOIP<br />

m .SL<br />

4 Has<br />

F~~ULB 3 Dpp~sitie @~pee3s Xn Ooster~whelii& has%n m& etjb eim delta<br />

11;@?4-lbtS),, and xyt sadit+aqtat~&w wf gboals fmone betwem<br />

level MS& 4 mm ht&h vacer slack <strong>in</strong> an<br />

8werall cz&,&g B~s<strong>in</strong> Crib@, K?TS.j V.- Ocehgel, iSTT1<br />

2.E Eypo<strong>the</strong>$es and preliudnaq ConcIuaions<br />

Clraoges <strong>in</strong> tidal valume play a key roIe <strong>in</strong> <strong>the</strong> geamorphoLogica1 history<br />

of <strong>the</strong> South-West Ne<strong>the</strong>rlands. The well documented changes of <strong>the</strong><br />

Oosterschelde ovet <strong>the</strong> laet 100 reaxe cleaely illustrate <strong>the</strong> general<br />

r=ZSgOBSe of mdy estuaries to an <strong>in</strong>crease of tidal volume:<br />

- <strong>the</strong> bas<strong>in</strong> as a whole ahovs a tehdency of arcsion: at <strong>the</strong> s a time<br />

<strong>the</strong> connected ebb tide1 delta is grow<strong>in</strong>g (Fig. 3);<br />

- morphological differences with<strong>in</strong> <strong>the</strong> bas<strong>in</strong> are accentuated; channels<br />

deepen, sandy shoals expand (Fig. 2 and 3). In general this response<br />

might be visualized as given <strong>in</strong> Figure 48.<br />

The history of <strong>the</strong> Eel<strong>in</strong>ium shows <strong>the</strong> general response to an opposite<br />

trend <strong>in</strong> tidal volume: <strong>the</strong> bas<strong>in</strong> starts silt<strong>in</strong>g up. Unfortupately, <strong>in</strong><br />

contrast to <strong>the</strong> Oasterschelde, detailed <strong>in</strong>fomatlon 04 <strong>the</strong> historic<br />

development of iiel<strong>in</strong>iwn's ebb tidal delta or of s<strong>in</strong>gle channels and<br />

sandy shoals is lack<strong>in</strong>g. Never<strong>the</strong>less, <strong>in</strong> negative aualogg to <strong>the</strong><br />

Oosterschelde case, rhe effects of a dscreaae of tlldal wlww nilght be<br />

stated as:<br />

- <strong>the</strong> bas<strong>in</strong> as a whole shows s tendency of sedbentatia4; <strong>the</strong><br />

connmted ebb tidal delta is erodlllg;


- wrgbolegical differmes witit<strong>in</strong> tk has<strong>in</strong> axe smo<strong>the</strong>d; channels<br />

silt up. sandy shoals degrade (Fig. 4%).<br />

A.<br />

tidol volume INCREAf;E<br />

8<br />

tidol volume DEGREASE<br />

Figure P<br />

eeneral respame mechanisms of <strong>the</strong> tial landsrape <strong>in</strong> cmcel<br />

and estuar<strong>in</strong>e envirgnnenrs to chmsas Ln <strong>the</strong> tidal volnme<br />

l'hesn wtatemencs on general response oecbariisms pumide weful<br />

'llypoFpoMeses' eo be tested on observations 03 <strong>the</strong> major chaees fn <strong>the</strong><br />

rMaI landscape over tBe last 30 rears (Section 3).<br />

The respanae mechmism no change* of tide1 volume trends to create a<br />

new dgnsJaic equillbbl-ium hemeen tlie tidal volume end <strong>the</strong> shape and<br />

dimeasions of <strong>the</strong> tidal landscape. The comt<strong>in</strong>u<strong>in</strong>g sSltatiun of <strong>the</strong><br />

hLelL&tlht and erosion of <strong>the</strong> 0ostere;ehelde dur<strong>in</strong>g <strong>the</strong> 19th centruy, Cn<br />

respanse to dsastic charrges of <strong>the</strong>ir tidalvolme &r<strong>in</strong>g <strong>the</strong> 15th and<br />

16th ceutlvry (see seation 2.1). <strong>in</strong>dieaces abe time scale sf<br />

geomotphologfcal remetlens: a net? dwmic equilibrium takes centuries.<br />

The tnqract of hum iqterfm-e<br />

hecornea Fncueas<strong>in</strong>gly appirrent tiuough <strong>the</strong> ages.<br />

on deu@lop@ents of <strong>the</strong> tidal landscape<br />

Duriry: <strong>the</strong> Late Miadle Ages man was a mjor cause of <strong>the</strong> land losses<br />

alwg <strong>the</strong> Ealiaim and Oasternobelde es';narl.es.<br />

The constlvction of<br />

palGers (s<strong>in</strong>ee &ant lIOD RD.), <strong>the</strong> artificial Lmprovel~e~~t of dr&age<br />

and extensive salt sr<strong>in</strong><strong>in</strong>g <strong>in</strong>itwed large scale lower<strong>in</strong>rg of <strong>the</strong> limd<br />

level. Consequently <strong>the</strong> land beeam a more<br />

prey to storm ~uzges<br />

(Van den Bezg. 19863. Man <strong>in</strong>directly <strong>in</strong>itiated major changes <strong>in</strong> <strong>the</strong><br />

tLd& voluures P£ <strong>the</strong> estuaries.


Dur<strong>in</strong>g <strong>the</strong> 19th century man starts <strong>in</strong>terfer<strong>in</strong>g directly by eng<strong>in</strong>eertns<br />

works of ever <strong>in</strong>creaslag dimensions. me last decades are marked<br />

h W<br />

fnfluence of mprecedented scale and Fntensfty.<br />

a<br />

3 MAJOR CHANGES IS TEE TJDAL LANILSCAPE OVER WE LAST nEGaDES<br />

3.1 Different categories<br />

Pfter empletimn of <strong>the</strong> <strong>Delta</strong> Project <strong>in</strong> 1987, <strong>the</strong> waters of <strong>the</strong> South-<br />

West Ne<strong>the</strong>rlands may be divided <strong>in</strong>to faw categories (Pig. 5):<br />

I<br />

L<br />

1<br />

Figure S<br />

The South-Ueet %echerIands after cwple€ian e? <strong>the</strong> <strong>Delta</strong><br />

Prnject<br />

- category Bar<strong>in</strong>gvlTet: bas<strong>in</strong>s wit% wly a closure Bern at eke sward<br />

side, almDst totally discomscced frmn tidd iafheaces but nick a<br />

substanrial direct fluvial <strong>in</strong>flow (Earfngvliet - HolMsch Diep,<br />

Brlelse mer) :


- category Grevel<strong>in</strong>gen: bas<strong>in</strong>s with closure dams at hn, sides,<br />

disconnected from tidal <strong>in</strong>fluences and without any [Qrevel<strong>in</strong>genmeer.<br />

Veerse Meer) ar with very limited fluvial <strong>in</strong>fluences (Volkerak -<br />

Zoommeer) ;<br />

- Oostecschelde: a bas<strong>in</strong> with a half open dam at <strong>the</strong> seaward side and<br />

closure dams at <strong>the</strong> lahdward side, with reduced tide and<br />

disconnected from fluvial <strong>in</strong>flnences;<br />

- Westerschelde: an estuary 13 <strong>the</strong> true sense, with both tidal and<br />

fluvial imflueuces.<br />

Construction of rhe seaward closure dams has disrupted <strong>the</strong> former<br />

morphirlogical uncity of estuary and ebb tidal delta <strong>in</strong>to two dist<strong>in</strong>ct<br />

subsysrems: a bas<strong>in</strong> and a (relict) ebb tidal delta.<br />

In general, tidal currents and -ranges have been reduced and fluvial<br />

<strong>in</strong>fluencee limited, while wave impacts have rema<strong>in</strong>ed unchanged.<br />

3.2 Category Har<strong>in</strong>gvliet<br />

With<strong>in</strong> <strong>the</strong> Har<strong>in</strong>gvliet has<strong>in</strong> fluvial currents and waves are <strong>the</strong> only<br />

geomorphelogicalIy active forces left after fiiaishfng of <strong>the</strong><br />

Harfn~vliet nam <strong>in</strong> 1971. The tidal Emge has been dim<strong>in</strong>ished from ca.<br />

2 m to a negligible 0.2-0.35 m. The ahst total disconnection from<br />

tiaal <strong>in</strong>iluences has kmcked large scale sedimentation <strong>in</strong> tba channels<br />

(Pi&. 6) and erosion of shoals and mudflafs; <strong>the</strong> shorefaces of several<br />

Figure 6 Channel sedimentation <strong>in</strong> <strong>the</strong> Har<strong>in</strong>gvliet-Hollandsch Riep<br />

bas<strong>in</strong> over <strong>the</strong> period 1970-1983 (Van Otterloo, et ill. 1987)


mudflats have retreated some 100-200 m with<strong>in</strong> 10 yeare (Van Otterloo.<br />

et al. 1987). Cenerally <strong>the</strong>se developments agree with <strong>the</strong> hypo<strong>the</strong>sized<br />

changes accord<strong>in</strong>g to Figure $B.<br />

Sedimentation of tke channels aa<strong>in</strong>ly is due to sand and mud transported<br />

by <strong>the</strong> rivers. The change <strong>in</strong> chnnel depth (Fig. 6) <strong>in</strong>dicates that <strong>the</strong><br />

channels .successively silt up frbm East co West. The siltation process<br />

will contfnue until all over <strong>the</strong> bas<strong>in</strong> a new equilibrium has been<br />

estahlibhed between <strong>the</strong> discharge volume and cross seotional area of<br />

<strong>the</strong> thannels.<br />

Erosion of <strong>the</strong> mudflats is caused by waves. Now that tidal waterlevel<br />

variations M longer exist, we attacks are concentrated <strong>in</strong> a narrow<br />

zone; at <strong>the</strong> same time this erosion no longer is compensated by<br />

sediments deposited by tidal currents dur<strong>in</strong>g high tides. The result is<br />

an <strong>in</strong>creased net erosion. Dnril 1988 <strong>the</strong> shore* of two areas (Beniager-<br />

and Korendijksche Slikkep) effectively have been protected aga<strong>in</strong>st<br />

erosion (Van Otterloo, et al. 19871. A progaam has been def<strong>in</strong>ed to<br />

protect all rema<strong>in</strong><strong>in</strong>g dais and raudflats before <strong>the</strong> year 1994.<br />

S<strong>in</strong>ce 197L tidal currents on Bar<strong>in</strong>golfet's ebb tidal delta ma<strong>in</strong>ly are<br />

detefn<strong>in</strong>ed hy <strong>the</strong> North - South directed tidal wave on <strong>the</strong> Narth Sea.<br />

East - West direefed tidal currents, previcusly flow<strong>in</strong>g <strong>in</strong>to and out of<br />

<strong>the</strong> estuaq, haoe reduced dramatically. Bluvial currents nowadays are<br />

restricted to periods around low water slack, when excess meter from<br />

Meuse and m<strong>in</strong>e is be<strong>in</strong>g discharged through <strong>the</strong> Har<strong>in</strong>gvliet sluices.<br />

Wave activity has not changed significantly over <strong>the</strong> last period.<br />

Accord<strong>in</strong>g t~ <strong>the</strong> hypo<strong>the</strong>ses of Section 2.2. a reduction <strong>in</strong> tidal velume<br />

of rhe estuary generally will <strong>in</strong>duce emsion of <strong>the</strong> ebb tidal delta and<br />

sedfmentgtion of <strong>the</strong> tidal channels. Obeervationa of geomorphological<br />

developmenrs s<strong>in</strong>ce L971 (Fig. 7) generally confirm this picture.<br />

ErosiQn of <strong>the</strong> ebb tidal delta is nest obvious aloqg <strong>the</strong> deltafront<br />

aroudd <strong>the</strong> NA? -5 m depth contour (Fig. 7). Here <strong>the</strong> landward directed<br />

Vdve '<strong>in</strong>duced sand transport no longer is cmpensated by sand traneport<br />

<strong>in</strong> a seaward direction <strong>in</strong>duaed by ebb tidal currents: <strong>the</strong> result is a<br />

net erosien of <strong>the</strong> deltafront. The eroded sediments are deposited


partly <strong>in</strong> longshore sandbars at <strong>the</strong> edge of <strong>the</strong> ebb tidal delta, and<br />

partly <strong>in</strong> t?a? channels, especially where <strong>the</strong>se have lost <strong>the</strong>ir role as<br />

distributaries of ehh currents £ran <strong>the</strong> estuary.<br />

It is to be expected that <strong>the</strong>se processes will cont<strong>in</strong>ue <strong>in</strong> fhe future<br />

at a reduq rate, until a new equilibrium has been established. The<br />

longshore bare, stagnat<strong>in</strong>g at a height level of araund mean sea-lwel<br />

(NAP), will cont<strong>in</strong>ue to stretch <strong>in</strong> a direction parallel to <strong>the</strong> coast,<br />

at <strong>the</strong> same time mov<strong>in</strong>g fur<strong>the</strong>r landward (Kohsiek, et al. 1989).<br />

Figure 7<br />

Development of <strong>the</strong> Har<strong>in</strong>gvliet ebb tidal delta over <strong>the</strong><br />

period 1970-1980 (Van der Spek, 1987)<br />

3.3 Category Grevel<strong>in</strong>gen<br />

After constructian of <strong>the</strong> Grevel<strong>in</strong>getl Dam (1965) and <strong>the</strong> Brouwers Dam<br />

(1971). <strong>the</strong> G?3?Tellngen bas<strong>in</strong> mat be charracterized a a stagnaat<br />

saltwater bas<strong>in</strong>, without any tidal ot flwiel <strong>in</strong>fluence. Waves are <strong>the</strong><br />

only ge~morphologically active drfv<strong>in</strong>g force that has been left.<br />

Theoretically changes of such nature will <strong>in</strong>duce erosion of <strong>the</strong> sandy<br />

shoals and mudflats, and sedimntation of tbe ehannels (conform<br />

Fig. &B). DevelDpmOnts over <strong>the</strong> last 20 years broadly canfirm this.


aq811~33a.e~ pue 3pTatlJS uxaJsafi


Dry shoal with gully


Erosion by waves of sandy shoals (conform Section 3.2) was very oomon<br />

from 1971 onwards; shore faces retreated at a rate of maximum<br />

10 mlyear. After most of <strong>the</strong> shores successively have been protected<br />

aga<strong>in</strong>st sroeion, Che total loss of shoals and &fiats <strong>in</strong> L988 has been<br />

calculated as 54 ha or 6 percent of<br />

(Leeuweste<strong>in</strong> and Schoot. 1988; Fortu<strong>in</strong>. 1989).<br />

<strong>the</strong> orig<strong>in</strong>al total area<br />

Although <strong>the</strong> fomer tidal channels tend to silt up, hardly any<br />

sedimentation is observable s<strong>in</strong>ce <strong>the</strong> only soure of sediWut,<br />

represeated by <strong>the</strong> ssudy shoals and mudflats, laqely hae been<br />

protected aga<strong>in</strong>st erosion. Comeqnently future changes of <strong>the</strong> bas<strong>in</strong>'s<br />

tidal landscape vul be very limited.<br />

The sbift <strong>in</strong> driv<strong>in</strong>g force on GrsYel<strong>in</strong>gen'~ ebb tide1 delta s<strong>in</strong>ce 1971<br />

largely is comparable to that previously described at <strong>the</strong> Hat<strong>in</strong>gvliet<br />

(see Section 3.2). As to be espected a similar motphoLogica1<br />

development <strong>in</strong>itiated by similar mechanisms has been pbserved. Erosion<br />

of <strong>the</strong> deltafront related ts an expansion ~f sandy shoals and silt<strong>in</strong>g<br />

n~ Q£ foruer tidal channel ever <strong>the</strong> last 20 years clearly is<br />

fllustrated by Fiwes 8 and 9.<br />

The tendencies ~f future changes of <strong>the</strong> ebb eidal delta are comparable<br />

to <strong>the</strong> Barievliet case.<br />

Figure 8 Cross sections of <strong>the</strong> deltafront on <strong>the</strong> Grevel<strong>in</strong>gen ebb tidal<br />

delta (1960-1980), Uwstrat<strong>in</strong>g <strong>the</strong> impact of clos<strong>in</strong>g <strong>the</strong><br />

estuary <strong>in</strong> 197 1 (mhsiek and Mulder, 1989)


Figure 3 Developaent of lengshore bars and tidal channels on <strong>the</strong><br />

Grevel<strong>in</strong>gen ebb tidal delta 1970-1980 (Kohsiek and Mulder.<br />

1989)<br />

3.4 00s terscbelde<br />

The Oasterscbelde bas<strong>in</strong> was directly <strong>in</strong>fluenced by <strong>the</strong> construerion<br />

works <strong>in</strong> o<strong>the</strong>r estuaxies. Due to <strong>the</strong> b~ld<strong>in</strong>g of <strong>the</strong> Greuel<strong>in</strong>gen Dam<br />

(1965) and Volkerak Dam (1969), <strong>the</strong> tidal prism of <strong>the</strong> Oosterscbelde<br />

<strong>in</strong>creasad cirna 6 - 8% aver <strong>the</strong> period 19.60 - 1983 (Van den Berg,<br />

19861. A considerable erosion and widen<strong>in</strong>g of <strong>the</strong> channels has been<br />

observed over this period (Van den Berg, 19861, which is <strong>in</strong> accordance<br />

with <strong>the</strong> expected geomorphological reaction (conform Fig. 4A).<br />

Construction of <strong>the</strong> storm surge barrier (1986) and af <strong>the</strong> landward dams<br />

(Desterdam, 1986. and Philipsdam. 1987) has disiurbe* <strong>the</strong>se tendencies.<br />

S<strong>in</strong>ce 1986 <strong>the</strong> tidal volume of <strong>the</strong> Ooscerschelde has decreased by 302;<br />

tidal current velocities have dimiaished by a simLlkr percentage and<br />

<strong>the</strong> tidal range by some 1ZZ. This reduction <strong>in</strong> tidal <strong>in</strong>fluence, most<br />

probably bas <strong>in</strong>itiated a process of channel sedimentation and shoal<br />

erosion (conform Fig. 41)). However, no gevmcrpholdgical absematirms<br />

are available yet to confFnn this.


Lt has been estimated that <strong>the</strong> sedimentation process Of <strong>the</strong> channels <strong>in</strong><br />

order to establish a new equilibrium will <strong>in</strong>volve some 500 millions lU3<br />

of sediment over <strong>the</strong> next cedtnries. The total erosive effect over <strong>the</strong><br />

next 30 years h& been elculated as a lass of shoal- and mu-t area<br />

amount<strong>in</strong>g to circa l500 hectares i.e. 10 - 15% of <strong>the</strong> present total<br />

area (Rohsiek, et al. 1987).<br />

The total area of salt marshes very drastically has been reduced after<br />

caepletion of <strong>the</strong> <strong>Delta</strong> Project. S<strong>in</strong>ce 1987 only 24% of <strong>the</strong> orig<strong>in</strong>ally<br />

total area of salt marshes <strong>in</strong> <strong>the</strong> k<strong>in</strong>gvliet, Grevel<strong>in</strong>gen. Volkerak<br />

and Oaaterschelfle is rew<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> Oosterschdde. It ia estimated<br />

that <strong>the</strong>se saltslarshes are subject to sn <strong>in</strong>creased rate of erosion.<br />

VegetatioO mid erosion resistance most probably have been weakened<br />

considerably as a result of a proloagued period of extrae tidal<br />

reductiod duritrg, <strong>the</strong> f<strong>in</strong>al constmctiDn phase of <strong>the</strong> Oostersahelde<br />

works.<br />

The Oosterechalde's ebb tidal delta has shown a cont<strong>in</strong>u<strong>in</strong>g exw<strong>in</strong>sion<br />

over <strong>the</strong> period 1960 - 1983 as a result of <strong>the</strong> tikl voluae <strong>in</strong>erease<br />

and result<strong>in</strong>g bas<strong>in</strong> erosion over this period. Van den Berg (1986) has<br />

ralculated a net sedimentation over <strong>the</strong>se years of ca. 38 millions m'.<br />

This is i n aceordance with <strong>the</strong> expeered trend as stated <strong>in</strong> Section 2.2.<br />

The decrease of tidal volume after 1987 <strong>in</strong>dicates an opposite<br />

gesmorphrtls~ical trend for <strong>the</strong> future. It is expacted that <strong>the</strong><br />

deltafront will erode. <strong>the</strong> tidal channels will silt up and longshore<br />

sandbars will develop a< <strong>the</strong> edges hheiek end Nulder, 1989). No<br />

geoolorphological data are available yet to confirm this.<br />

Tidal end gwmorphological changes af <strong>the</strong> Wastersehelde bas<strong>in</strong> ove-r <strong>the</strong><br />

last 30 years are ma<strong>in</strong>ly due to large $tale dredg<strong>in</strong>g. Because of it's<br />

importance for shippfng traffic to <strong>the</strong> harbours of Antwerp, no closure<br />

daar has been def<strong>in</strong>ed for <strong>the</strong> Westewchelde. Wifh<strong>in</strong> <strong>the</strong> fra81evork of <strong>the</strong><br />

<strong>Delta</strong> Projeet security aga<strong>in</strong>st flood<strong>in</strong>g around this estuary h- been<br />

odta<strong>in</strong>ed by streng<strong>the</strong>n<strong>in</strong>g of <strong>the</strong> dykes. The <strong>in</strong>tensified shipp<strong>in</strong>g


~raffic, however, has irldueed a rfiat<strong>in</strong>er <strong>in</strong>crease of large sale<br />

dredg<strong>in</strong>g activitias fnm about 1970 (Pig. 10).<br />

Figure 10 Impact of dredg<strong>in</strong>g and dump<strong>in</strong>g <strong>in</strong> <strong>the</strong> WeBtefsGhelde 0% <strong>the</strong><br />

development e-f sam&<br />

shod8 {Ww. 198'3)<br />

The drtifieiar deepen<strong>in</strong>g of <strong>the</strong> chhmels hy dredg<strong>in</strong>g llae oontributall ta<br />

an -larrmse of tidal frolume <strong>in</strong> rhe bas<strong>in</strong> of 3 - 73 over <strong>the</strong> period 1970<br />

- 1985 (Van den Be~g. 19871. %keoreticdly (Eis. 4A) <strong>the</strong>se hydraulic<br />

and gwmcrpholo@cal chaqes should <strong>in</strong>voke an ecqanaion of <strong>the</strong> sandy<br />

shoals, Ohserufftkms over <strong>the</strong> period 1955 - 1987 largely coDfim this<br />

(Pia. 187. Future developnte of <strong>the</strong> tide1 landscape will d+psnd<br />

ma<strong>in</strong>ly on <strong>the</strong> actual policy Bf dredg<strong>in</strong>g and dwfs&.<br />

Westee&elde4s<br />

ebb ti4a1 delta skeuld haye shown aa expand<strong>in</strong>g cen&er,cy<br />

over <strong>the</strong> pert98 I970 - 1917 <strong>in</strong> reapwse ts an <strong>in</strong>e.reashg ci.dal valume<br />

km&??a 3eietio-a 2.2). A moz~hoiwgt~al dweveSopuient <strong>in</strong> this sense.<br />

bowever, has bees trmd co &seme over ~h*. past yeam. tidal<br />

laadseirpe eeema W have been aetemhed to if greets* -&end by dredg<strong>in</strong>g. .<br />

sad bovipUg aartiv&ties 6n titre eb21 tidal delta ir~lf. Deepeatris 6f<br />

shfpp&q C&nnB&e and expaturion of Ze@br.aggc ~. harbour roffiated <strong>the</strong><br />

&zedg<strong>in</strong>$ md dwzng &f sbae 4a0. 0;l1IImi mj sededbent otr <strong>the</strong><br />

WasZeec&elae ebb tidal de&a between 197B arrd 1984 [Van den Ems,<br />

1987.). mhss ettriicieal pi~l<br />

.26-bntf1~* to dhtarafnO futuik a&ve1iip*es.


Implementafion of <strong>the</strong> <strong>Delta</strong> Project has <strong>in</strong>Ltiated a process of large<br />

scale changes <strong>in</strong> <strong>the</strong> tidal landscape. Generally <strong>the</strong>se changos may be<br />

described <strong>in</strong> relation to <strong>the</strong> specific changes <strong>in</strong> tidal valme of <strong>the</strong><br />

bas<strong>in</strong>s. The dimensions and rate of th. changes only partly have been<br />

foreseen <strong>the</strong> outset qf <strong>the</strong> Project. DetaiIed process studies over<br />

<strong>the</strong> last years have p~wvided =ore <strong>in</strong>sight. &B a result of <strong>the</strong>se studies<br />

adequate mam~ewatt wssures have been def<strong>in</strong>ed to stop erosion gf<br />

shoals and mudflats <strong>in</strong> <strong>the</strong> tideless bae<strong>in</strong>s. A po1l.o~ plan <strong>in</strong>cwrporat<strong>in</strong>g<br />

<strong>the</strong> developarents of tk ebb tldd deltas - <strong>the</strong> Voordelta - is fa<br />

preparation, The def<strong>in</strong>itfon 0f adequate measuremeats to mwge<br />

developments of <strong>the</strong> tidal landscape fa <strong>the</strong> 0ooster- and Westers&d.de ie<br />

subject of study.<br />

L am grateful ta L.R.M. Kohsiek Por his nseful advise <strong>in</strong> prepar<strong>in</strong>g thls<br />

paper, to J.W.M. Kuijpers (Rilfkswaterataat, Directorate Euid-Holland)<br />

and D. wan Malde~em for pravidimg data, and to J. Polderman and 3. van<br />

den Broeke for sonstructian of <strong>the</strong> figures.<br />

REFERENCES<br />

BBRG, J.R. VAN DEN.<br />

BEW, J.R.<br />

1986. Aspects of sedi6Pent- and lnorphodynamics of<br />

subtidal deposits of <strong>the</strong> Ooatezsehelde (<strong>the</strong> Ele<strong>the</strong>rlds). &VS<br />

Co~ca~iolll m 43, Den Has.<br />

VAB1 BEE. 1987. &@anation of <strong>the</strong> isallobaths map of <strong>the</strong><br />

Voordelta L975 - 1980 (<strong>in</strong> Dutch). Rota ZL 87.0020, EM Dir. Eld,<br />

49 p.<br />

DMS, 1930. Prelude (<strong>in</strong> Dutch). Drie Hnd. Ber. Deltmr., 54: 17'2 - 177.<br />

DMB,<br />

1975. <strong>Hydro</strong>graphical research <strong>in</strong>to <strong>the</strong> impact of <strong>the</strong> storm surge<br />

barrier on environmant (<strong>in</strong> Dutch). Drie Mnd. Bet. <strong>Delta</strong>w.. 72:<br />

@4 - 92.


DMB. 1976. Hydraulic arui hydrog~aphical alpact on <strong>the</strong> Oosterschelde<br />

bas<strong>in</strong> (<strong>in</strong> Dutch). DrieMnd. Ber. <strong>Delta</strong>w., 763 312 - 324.<br />

PORTUIN. A. d . 1989. The development and protection of shores <strong>in</strong><br />

former tidal has<strong>in</strong>s (<strong>in</strong> Dutch). Nota RWS Dienst Getijdewateren.<br />

KOBSIEK, L.B.M.. PIDLDER. J.P.M., LOUTERS, T. and BERBEN, F., 1987. The<br />

Ooeterschelde; twrds a new tidal landscape (<strong>in</strong> Dutch). Nota<br />

WgO 87.029. RW8 Dienst Ggtijdewateren, 48 p.<br />

KOItSIEI(, L.H.M. and MULDER, J.P.M. (ed5. ), L989. me VoVaoelelta, a<br />

water system is chang<strong>in</strong>g (<strong>in</strong> Dutch). Nota m Dienst<br />

Gecijdewareren. 24 p.<br />

LEE-, K.A.H.W.. 1986. 2000 years of coastal development from Cap<br />

Cris Re2 to Book of Holland (<strong>in</strong> Dutch). Nota NZ-N-88.19 BUS Dir.<br />

Noardzee. 4S p.<br />

LEEUWESTEIN, W. and P. ECBOOT, 1988. hraluation shores; report m <strong>the</strong><br />

project Shore erosion (<strong>in</strong> Durck). Rep. 73 Delft, Vakgr. Wtkk,.<br />

90 p.<br />

OTTEBLOO, R.B. VAN, BEEGAEM, J.W. VAN, KlJIJPER3, J.W.M., BROMUIZEN.<br />

A., DREUMEL, B.F. VAN and MOL, J.W., 1987. The water soil of <strong>the</strong><br />

Nortkm Dalelta Bas<strong>in</strong> (<strong>in</strong> Dutch). Nuta RWS Dir. bendenriv., 29 p.<br />

Spa, A.J.F. VAN DER. 1987. Deectiption of <strong>the</strong> development of <strong>the</strong> ebb<br />

tidal deltas of <strong>the</strong> Xar<strong>in</strong>gvliet and Crevel<strong>in</strong>gen (<strong>in</strong> Dutch). Nota<br />

GWAO 87.105 RWS Dienst Getijdewateren, 77 p.<br />

VECBOEL, R.H.W. VAN, 1977. ffirphalagical development <strong>in</strong> <strong>the</strong><br />

Oosterschelde (<strong>in</strong> Dutch). Nota W-77.009 RWS <strong>Delta</strong>dienst, 12 p.<br />

W, 1989. Policy plan Wasterschelde (<strong>in</strong> Dutch). Werkgr. Waterbeh.<br />

W.Sch=l$e, RWS Dienst OetiJdewaterenIDir. Zeelanri, 4 reports.<br />

2 , W . . 1997. Geolmgy of <strong>the</strong> Ne<strong>the</strong>rlands I : The Ne<strong>the</strong>rlands<br />

dur<strong>in</strong>g <strong>the</strong> Halocene (<strong>in</strong> Dutch). Staatsuit$everij Oen Raag.


ECOLOGICAL DEVELOWdENT OF SALT MAKSHES PrND SO-<br />

SOUTB-WEST NETBBUANDS<br />

TIDa PLUS IN TBE<br />

A.M.M.<br />

van Eaperen<br />

Both <strong>in</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g and <strong>in</strong> <strong>the</strong> embanked estudries of tfie South-West<br />

Ne<strong>the</strong>rlands <strong>the</strong>re are good possibilities for conservation and<br />

development of (semi-)terrestrial ecosystems. In <strong>the</strong> Oosterschelde and<br />

she Westerschelde canservation of <strong>the</strong> estuar<strong>in</strong>e salt marshes has<br />

highmc priority. They are characterized by cyclic dynamic processes<br />

that largely depend on <strong>the</strong> tidalwater system.<br />

On fewer cldal flats and salt marshes that are no loager <strong>in</strong>uadated<br />

em$zitasis Lies on <strong>the</strong> developmeat of new ecasyeteas. Already <strong>in</strong> <strong>the</strong><br />

first years after ernbhnt rare and threatened bird and plant species<br />

colonized <strong>the</strong> new habitats. Environment was, hopever, dom<strong>in</strong>ated by<br />

nan-cyclic adapcative processes (e.g. desalihation, pkiysical and<br />

chemical ripen<strong>in</strong>g af <strong>the</strong> soil, etc.) causFng a xag14 change of flora<br />

and fauna. Probably it will take mare than a Hmdred years before <strong>the</strong><br />

new ecosystems will be stabilized.<br />

kkmgemcnt of water and land is of great importance for <strong>the</strong> type of<br />

nature tbat will result ultimately. When mak<strong>in</strong>g a olanagemant plan it is<br />

important to get a go~d idea of <strong>the</strong> abiotic potentialities of <strong>the</strong><br />

diftexent habitats. Tage<strong>the</strong>r with <strong>the</strong> valae of <strong>the</strong> diffexent types of<br />

nature for namre conservation, it is <strong>the</strong> ma<strong>in</strong> eriterion to come to <strong>the</strong><br />

defisian what type of nature should be developed on <strong>the</strong> new land.


TIDAL FLAT<br />

....<br />

M HW<br />

MLW<br />

LOW SALT MARSH .......................... .:.:,.<br />

........................<br />

h:'.' .... .,>.. :<br />

......<br />

M HW<br />

MLW<br />

v<br />

........I....<br />

......... ......<br />

..:<br />

HIGH SALT MARSH A :::::U:::;.:<br />

......... :.:;.: ,":.:.:. MHW<br />

........ ..... .;:. ...... ....<br />

:.... .:,.:' '<br />

..: .: .: :"::' .,.v<br />

Figure 1<br />

Geomorphologifal differentiation of tidal flats and salt<br />

marshes <strong>in</strong> <strong>the</strong> estuaries of <strong>the</strong> South-West Ne<strong>the</strong>rlands.<br />

MW: Mean Righ Water, KLW: Mean Low Water<br />

Climate<br />


fn tidal water systems sedimentation and erosian of sediment cont<strong>in</strong>ue<br />

above mean low waterlevel (KLW) and even mean high waterlevel (HXW).<br />

The lowest parts of <strong>the</strong> tidal zone have no vegetation except algae and<br />

some water plants (Zostera spec.). These tidal flats are m important<br />

feed<strong>in</strong>g habitat for birds (Meire, et al. 1989). Some decimetres below<br />

MEW <strong>the</strong> ffrst smi-terrestrial vegetation starts to grow (Salicornia<br />

spec., Spart<strong>in</strong>a spec.). This vegetation is usually <strong>in</strong>undated Cwice k<br />

day. %?hen accretion cont<strong>in</strong>tles to above MEW, vegetation develops to a<br />

variecy of plant communities. Geomarphology and vegeration of <strong>the</strong>se<br />

higher salt marshes are much more difgerentiated than on <strong>the</strong> mud flats<br />

and <strong>the</strong> lower salt marshes.<br />

The above-mentioned pattern of succession (see also Fig. 1) represents<br />

<strong>the</strong> situation it! <strong>the</strong> sd<strong>in</strong>e tidal are= of <strong>the</strong> South-West Ne<strong>the</strong>rlands.<br />

In <strong>the</strong> fresh and brackish tidal water systems this pattern is not<br />

essentially different, but <strong>the</strong>re is a difference <strong>in</strong> vegetation types of<br />

<strong>the</strong> marshes (reed, rushes and willars).<br />

The constru~tian of <strong>the</strong> <strong>Delta</strong> Works reaulted ia an ewrmous chanse of<br />

<strong>the</strong> estnariae environment. In most areas a more or less fixed<br />

wacerlevel w s realized somewhat aound NAP (butcb Ordnanoe Level). The<br />

consequence was that <strong>the</strong> lmr parts of <strong>the</strong> tidal land were pennwently<br />

<strong>in</strong>undated, while <strong>the</strong> higher parts were hardly iufluenced by <strong>the</strong><br />

flood<strong>in</strong>g water. Large parts of <strong>the</strong> latter could develop as (semi-)<br />

natural ecosystms. Thfs development and ite future perspectives for<br />

nature conservatLon are <strong>the</strong> subjects of this paper.<br />

2 ECOLllGICBI. DYNdMtCS I N VARIOUS WATERS<br />

The processes <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> development of animal and plant<br />

communities cm be ordered <strong>in</strong> an hierarchical model (Fig. 2, derived<br />

from Bakker, et al. 1981). In this model <strong>the</strong> outer compartments<br />

dom<strong>in</strong>ate <strong>the</strong> <strong>in</strong>ner ones. Though <strong>the</strong>re is some <strong>in</strong>fluence <strong>in</strong> <strong>the</strong> opposite<br />

direction, this is of m<strong>in</strong>or importance becsuse of its lower


Figure 3 Distribution of some estuar<strong>in</strong>e marshland types <strong>in</strong> relation to<br />

0<br />

average chlor<strong>in</strong>ity ( 100 CL-) . Open circles: salt marshes;<br />

black circles: brackish marshes with reed and rushes; hatched<br />

circles: fresh marshes with reed, rushes and willow coppices.<br />

This figure gives <strong>the</strong> situation before <strong>the</strong> construction of <strong>the</strong><br />

<strong>Delta</strong> Works<br />

1962 SWEOA MARITIMA<br />

Figure 4<br />

Cyclic vegetation dynamics <strong>in</strong> a salt marsh after severe<br />

waterlogged conditions (after Beeft<strong>in</strong>k. 1979)


hierarchical position. Tn <strong>the</strong> egtuar<strong>in</strong>e situation <strong>the</strong> water regime is<br />

one of <strong>the</strong> met essential factors detemis<strong>in</strong>g processes <strong>in</strong> soil.<br />

gegstation and fa-. The relation between <strong>the</strong> average salt<br />

concentation and <strong>the</strong> distrlbotion of some vegetation types is a sood<br />

example wf this dom<strong>in</strong>ance (Big. 3).<br />

Ae saon ae great changes occur <strong>in</strong> <strong>the</strong> outer cmpartntents of <strong>the</strong> made1<br />

/by human <strong>in</strong>terference of o<strong>the</strong>r), this has impertaut consequences for<br />

<strong>the</strong> hierarchically lowar parts. Cholllges <strong>in</strong> <strong>the</strong> lower camgartments have<br />

Lesa cons+quenees on <strong>the</strong> system a5 a whule. Figure 4 (derived from<br />

Reftlnk, 1979) gzves a good exwle nf such a situation. In <strong>the</strong> wet<br />

autnmn of 1961 severe waterlogged conditions occurred on a higher salt<br />

marsh <strong>in</strong> <strong>the</strong> Grevd<strong>in</strong>gen estaary. This was <strong>the</strong> primclry cau6e for a<br />

die-bmk of <strong>the</strong> vevetation of Halimione pnztulacoides on that WSh. In<br />

<strong>the</strong> long run <strong>the</strong>re was, however, no chenge of <strong>the</strong> saltmarsh ecssyatem<br />

as a whole and after sonre years <strong>the</strong> orfgmal vegetation could recover.<br />

The erosion of a tidal flat or a salt marsh and <strong>the</strong> developmt of new<br />

onea elsewhere <strong>in</strong> <strong>the</strong> same tidal system are an exmple of <strong>the</strong> same<br />

e).clic dynaunica on a larger scale of space and tb.<br />

The con$truction af <strong>the</strong> DelCa Works resulted <strong>in</strong> quite different types<br />

of <strong>ecological</strong> dynamics. The water syetm a5 a whole changed t~tally and<br />

resulted <strong>in</strong> a cmplere new and irrevexsihle development of water and<br />

lad (Beeft<strong>in</strong>k. 1987). After <strong>the</strong> fidehtx~g of rhe dmh many of <strong>the</strong><br />

estuafkre plants and animals died and nerv species had to celonize <strong>the</strong><br />

disturbed ecobystems. Id Che beg<strong>in</strong>n<strong>in</strong>g <strong>the</strong> dam<strong>in</strong>ar<strong>in</strong>g species <strong>in</strong> <strong>the</strong><br />

vegetation changed from year tcr pear. Later on changes took place much<br />

more gradually. There were also marked differexices between habitats.<br />

The vegetation of <strong>the</strong> lowar salt mrshes died totally sith<strong>in</strong> two or<br />

three years. The higher salt marshes were well adapted 60 less frequent<br />

<strong>in</strong>undations and vegetation changed gradually after <strong>the</strong> disappearance of<br />

<strong>the</strong> tides. In tha reed marshes and willow woedlands of <strong>the</strong> brackish and<br />

fresh estuaries <strong>the</strong> same pattern occurred. Theae vegetattons actually<br />

did not die, btrt durtng some S to l@ years after damm<strong>in</strong>g <strong>the</strong>ir species<br />

composition and structure changed very mufh.


NUWBER OF BREEDING PAIRS<br />

70<br />

Fieure 5 Development of three breed<strong>in</strong>g bird populations on <strong>the</strong><br />

Hompelvoet, a newly created island <strong>in</strong> Lake Oreuel<strong>in</strong>gen.<br />

Crosses: Kentish Plover (Charadrius alexandr<strong>in</strong>us); triangles:<br />

Redsbank (Tr<strong>in</strong>ga totanus); circles: Willow Warbler (Phylloscopus<br />

trocNus). Data k<strong>in</strong>dly submitted hy 6.J. Slab,<br />

National FQrest Service <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands, Goes.<br />

HEAN SEA LEVR<br />

FRESH BRACKISH SALT<br />

Figure 6 Distribution of some vegetation types <strong>in</strong> relation to height and<br />

tidal flood<strong>in</strong>g before <strong>the</strong> construction of <strong>the</strong> <strong>Delta</strong> Works. The<br />

follow<strong>in</strong>g vegetation types are <strong>in</strong>dicated (Westhoff and Den Held,<br />

1969) :<br />

Fresh: a. Scirpus, b. Phragmites, c. Salicion alhae;<br />

Brackish: a. Scirpus. b. Phragmitas, c. grassland (Lolio-<br />

PotentFUIon):<br />

Sdt: a. Salicarnion, b. Spart<strong>in</strong>ion, c. Pucc<strong>in</strong>ellion,<br />

d. Armerion


Of course. tke environmental changes have not only <strong>in</strong>fluenced <strong>the</strong><br />

vegetatian but also <strong>the</strong> fauna. Figure 5 gives an idea of <strong>the</strong> dynamics<br />

of <strong>the</strong> breed<strong>in</strong>g bird populations on pne of <strong>the</strong> newly emergod islands <strong>in</strong><br />

Lake Grevel<strong>in</strong>gen. &er <strong>the</strong> constmction of <strong>the</strong> dam <strong>in</strong> <strong>the</strong><br />

Broursershaveuse Gat some 400 hectares of tidal flats and a wll salt<br />

marsh were exposed to <strong>the</strong> air and w<strong>in</strong>d. &specially <strong>the</strong> species of sandy<br />

beaches and pebble coasts (We <strong>the</strong> Kentish Plover) began to breed on<br />

<strong>the</strong> new land. The population of Bedshank, also a coastal bird, did not<br />

<strong>in</strong>crease before some vegetation was exist<strong>in</strong>g. airily because <strong>the</strong> h-<br />

needed this vegetation to hide <strong>the</strong>ir nests. At that time <strong>the</strong> species of<br />

bare beaches were alrea* deel<strong>in</strong>hlg. The fimt breed<strong>in</strong>g birds of shrlibs<br />

have colonized <strong>the</strong> island only recently and a common species like <strong>the</strong><br />

Villow Warbler is still <strong>in</strong>creas<strong>in</strong>g. Woodland species do not breed on<br />

<strong>the</strong> island, because vegetation structure has not yet been<br />

dfiferentiated enough and <strong>the</strong>re are no nestiag sites for <strong>the</strong>se birds.<br />

It will take at least some 50-1Wl years before <strong>the</strong> bird communities<br />

beg<strong>in</strong> to stabilfae.<br />

G-rally<br />

speak<strong>in</strong>g <strong>the</strong> foll4ng factors <strong>in</strong>fluence <strong>the</strong> developnent of<br />

vegetation and animal wildlLfe an <strong>the</strong> former dt marshes and tidal<br />

f late :<br />

* <strong>the</strong> <strong>in</strong>itial ecosystem present at <strong>the</strong> moment of dw constrnctiod;<br />

* processes of adaption ta <strong>the</strong> newly created situation;<br />

* mahagement of water and Land by m=.<br />

3.1 Initial ecosystems<br />

The newly developed ecosystems have <strong>the</strong>ir start<strong>in</strong>g po<strong>in</strong>t <strong>in</strong> <strong>the</strong> old<br />

estuadne waters. These Mtial ecosystems are strongly <strong>in</strong>flucn-d by<br />

<strong>the</strong> orig<strong>in</strong>s1 waterrepime. This Fs illustrated by <strong>the</strong> distribution of<br />

<strong>the</strong> vegetation series qf Figure l <strong>in</strong> relation to height and tidal<br />

floo6<strong>in</strong>g (see Fig. 6). p e vegetation types <strong>in</strong>asated hy an open<br />

rectangle died with<strong>in</strong> rwo or three years &ter embanlaaent was f<strong>in</strong>ished


and this resulted <strong>in</strong> an almost complete ba~e soil. The hatched<br />

vegetation types changed much more gradually, without dy<strong>in</strong>g off<br />

totally. After <strong>the</strong> enclesure <strong>in</strong> most areas %he water was pemnently<br />

fixed more or lee$ at mean sea-level (%L).<br />

The follow<strong>in</strong>g aifferences<br />

occuted. In <strong>the</strong> fresh and brackish tidal areas <strong>the</strong> oris<strong>in</strong>al marsh<br />

vegetation c m at a mu&<br />

MLW)<br />

lower level (on certa<strong>in</strong> places even below<br />

than <strong>in</strong> <strong>the</strong> sal<strong>in</strong>e systems. Coneequently a larger area of here<br />

soils eraerged after <strong>the</strong> completion af <strong>the</strong> dams <strong>in</strong> <strong>the</strong> ffaltwater systems<br />

<strong>in</strong> comparison to <strong>the</strong> upstream tidalwaters. This difference is enlarged<br />

bp <strong>the</strong> dy<strong>in</strong>g off 09 <strong>the</strong> lower saltmarsh species <strong>in</strong> <strong>the</strong> first years<br />

after <strong>the</strong> enclosure. Vegetation development on <strong>the</strong> former salt marshes<br />

and tide1 flats uas dom<strong>in</strong>ated by colonisation of <strong>the</strong> new habitets by<br />

mnual pionier species. On <strong>the</strong> contrary, <strong>in</strong> <strong>the</strong> fresh and brackish<br />

areas <strong>the</strong> new species (that had to <strong>in</strong>vade exist<strong>in</strong>g vegetatians) were<br />

m&dy tall peremial herbs and grasses, shrubs and trees.<br />

3.2 Processes abimie eavironntent<br />

After <strong>the</strong> welesure ~.f an estsarg a nlrmber of precesnes started<br />

thang<strong>in</strong>g ahiotic environment of <strong>the</strong> new tcrrestr-ial environments (e..g.<br />

A<br />

PERtOUTINB SOIL<br />

--<br />

B YllL WITH IMRRWE8BLE M W<br />

Figure 7<br />

Twa ma<strong>in</strong> groundwater regimes on <strong>the</strong> newly emerged land <strong>in</strong> <strong>the</strong><br />

former estnaries (after Drost and Visser, 1981)


w<strong>in</strong>d erasson, desaliuation, aeration, physical and chemical ripen<strong>in</strong>g<br />

and decalcification). The time scale of <strong>the</strong>se processed differs from<br />

some manths or years lw<strong>in</strong>d erosion) to tens or hundreds of years<br />

(decalcificetion). In <strong>the</strong> beg-<strong>in</strong>g t?e effects of <strong>the</strong>ae <strong>in</strong>dividual<br />

processes are quite clear. Wen <strong>the</strong> new ecosystems grow older it is<br />

gett<strong>in</strong>g more and mors difficult to separate <strong>the</strong>m from each o<strong>the</strong>r and<br />

from <strong>the</strong> <strong>in</strong>ternal aynamics of <strong>the</strong> develop<strong>in</strong>& ecosystems <strong>the</strong>irselves.<br />

Figure 7 (acbord<strong>in</strong>g to Drost and Visser. 19111) gives a pod fdea how<br />

<strong>the</strong> abiotic envixo~meut of different soil types behaves <strong>in</strong> relation €0<br />

desaUnation. On well percolat<strong>in</strong>g soils desal<strong>in</strong>ation goes vezy fa&.<br />

Mter some years <strong>the</strong>re is already a ra<strong>the</strong>z large freshwater body <strong>in</strong> <strong>the</strong><br />

soil. Glycophyloue hmbs and grasses can soon caloniee <strong>the</strong> bare sou<br />

and mrwal shrub and <strong>the</strong>n woodlmd deve,loplaent follows. CLay Layers <strong>in</strong><br />

<strong>the</strong> wail profile stagnate desal<strong>in</strong>ation and <strong>the</strong>n this process can take<br />

tens of years. In autumn and W<strong>in</strong>ter <strong>the</strong> sail is satiuaced fast and most<br />

of ttle ra<strong>in</strong> water will stagmac@ and ran off supetficially. Aere only<br />

<strong>the</strong> upper soil layers will have E freshwater body and this will<br />

evaporate cempletely <strong>in</strong> stmmer. In tthis type of habitat halophylous<br />

plant species dom<strong>in</strong>ate <strong>in</strong> <strong>the</strong> primary vegetation development. !Frees and<br />

shrubs can hardly colonize <strong>the</strong> vegetation giv<strong>in</strong>g it tbe character of<br />

open grassland for a long time.<br />

3.3 Management of water and land<br />

Uatex manasement is especially important on flat shores, where emaller<br />

or larger areas can be <strong>in</strong>mdated dur<strong>in</strong>g some time. This is of great<br />

importance for €he suraival and germ<strong>in</strong>ation oppnrtunitiea 4f certa<strong>in</strong><br />

plant species. A good exanple how this can <strong>in</strong>fluence <strong>the</strong> fauna is fouad<br />

n Lake Creuelmen. Aere <strong>the</strong> bird species of scarcely vegetated shell<br />

shores and beaches axe decl<strong>in</strong><strong>in</strong>g (e.g. Kentish Plover, see Fig. 5).<br />

bcaose ef cont<strong>in</strong>u<strong>in</strong>g vegetation development. Ffaybe <strong>the</strong>re is a possi-<br />

bility to ma<strong>in</strong>ta<strong>in</strong> a larger area of this type of breed<strong>in</strong>g habit& by<br />

rais<strong>in</strong>g <strong>the</strong> waterlevel OS <strong>the</strong> lake <strong>in</strong> autumn or w<strong>in</strong>ter time dur<strong>in</strong>g<br />

several weeks. Then a lareer part of <strong>the</strong> shore is <strong>in</strong>undated by sal<strong>in</strong>e<br />

water, slow<strong>in</strong>g down fur<strong>the</strong>r vegetation development.


In <strong>the</strong> terrestrial habitats it is of weat impartance how <strong>the</strong> nutrient<br />

cycles of <strong>the</strong> ecosystem and <strong>the</strong> structure of <strong>the</strong> vegetativn are<br />

<strong>in</strong>fluawed. The nutrient cycles detenatee grow<strong>in</strong>g and feed<strong>in</strong>g<br />

conditions for plant and animal species, whLle vegetation structure is<br />

of great iaqrortance for <strong>the</strong>ir survival. Rmtghly speak<strong>in</strong>g we can<br />

dist<strong>in</strong>guish three ways af nature managemeqt: spontaneous developdent.<br />

rcew<strong>in</strong>g and graz<strong>in</strong>g. Each of <strong>the</strong>se managerneat types has its om results<br />

and (f<strong>in</strong>ancial) costs. Sponfaneous development will lead to woodland<br />

ult<strong>in</strong>atelp, a l e mow<strong>in</strong>g keeps areas open and rich <strong>in</strong> herbs. Oraz<strong>in</strong>g is<br />

<strong>in</strong> between <strong>the</strong>se two types and <strong>the</strong> rcanlt depends on gra~<strong>in</strong>g <strong>in</strong>tensity.<br />

It is an attractive type of management to create a habitat with a<br />

~aried structure of grassland and shrubs <strong>in</strong> a semi-natural way. Graz<strong>in</strong>g<br />

anlmaLs l~ndigenrms herbivorous herds as well as domestic cattle) we<br />

large areas <strong>in</strong> traditihsl patterus. Some parts of <strong>the</strong> area are (year<br />

after year) more <strong>in</strong>tensively grazed than o<strong>the</strong>rs. In this way Faz<strong>in</strong>g<br />

can enlarge <strong>the</strong> differentiaties of <strong>the</strong> abiotic envirpmenc creat<strong>in</strong>g<br />

additional stimuli for mre diversity <strong>in</strong> develop<strong>in</strong>g ecosystems. In <strong>the</strong><br />

lens run it will not only result <strong>in</strong> grassland. Even for natural<br />

woodkd development grs<strong>in</strong>g (of course <strong>in</strong> very low densities) can be a<br />

good cyse of management.<br />

4 BALBNCE OF ECOSYSTEM DETFELBFXE4T UP TO BOW<br />

The fitst embankment of a large estuary <strong>in</strong> <strong>the</strong> South-West Ne<strong>the</strong>rlands<br />

tbok place some 30 years ago (Lake Veere, 1961). S<strong>in</strong>ce that time<br />

several othsr areas folloved. with difTerent abiotic enviroweuts and<br />

different types of water systeqts. As <strong>in</strong>dicated above ecosyste& i3evrlop-<br />

ment is still go<strong>in</strong>g on and eves <strong>in</strong> <strong>the</strong> oldeat aress it will take tens<br />

or even hunrtreda of years before <strong>the</strong> new t~rresrriai habitats will be<br />

stabilized. Notwithstand<strong>in</strong>g <strong>the</strong>se facts we ri1.l try to make up some<br />

balance fxom a p<strong>in</strong>e of view of nature conservativn and manaseoee.<br />

Firstly we wst natice that chere is a great loss of valuable (semi-)<br />

terresrrial habitats <strong>in</strong> <strong>the</strong> esttmfes of <strong>the</strong> South-West We<strong>the</strong>rlands as<br />

a consequaRce of <strong>the</strong> <strong>Delta</strong> Work$. (The lv,ags of aquatic ecosystems and<br />

tidsl flat6 is leet out of oonsideration.) After <strong>the</strong> enclosniuze of <strong>the</strong>


Fonner tirtal flats with saltmarsh vegetation<br />

Grazed £amer tidal flat Vith dense g~assland vegetation and small<br />

*uba


Former tidal flats with chang<strong>in</strong>g vegetation<br />

Craz<strong>in</strong>g as a tool for vegetation management


Grevel<strong>in</strong>gen. Lake Veere and Krammer-Volkerak, <strong>the</strong> area of salt marshes<br />

Fn <strong>the</strong> South-West Ne<strong>the</strong>rlands has been dwished and is at <strong>the</strong> moment<br />

no more than ca. 30% of that <strong>in</strong> 1990. If we Look at <strong>the</strong> area of higher<br />

salt marshes thi. decl<strong>in</strong>e is even more dramstical. Especially <strong>the</strong>se<br />

higher salt marshes are a valuable and rare type 05 ecosystem, with d<br />

number of endangered animal and plant species. For this reason kigh<br />

priority must be given to conserve <strong>the</strong> rema<strong>in</strong><strong>in</strong>g 5aSt marshes <strong>in</strong> <strong>the</strong><br />

Oosterschelde and Westerschelde. In <strong>the</strong> Oosterschelde <strong>the</strong> sediment<br />

balance <strong>in</strong>dicates that <strong>the</strong>re are hardly any perspecti~es for <strong>the</strong><br />

development of large new salt marshes. On <strong>the</strong> o<strong>the</strong>r hand <strong>the</strong> largest<br />

part of <strong>the</strong> rema<strong>in</strong><strong>in</strong>g saltmarsh area is formd <strong>in</strong> <strong>the</strong> eaptern part of<br />

<strong>the</strong> Westersdtelde (ca. 80%). Enviromnent is under great pressure here<br />

hecause of chemical pollutiw of water and soil (Bijlsma and Kuipers.<br />

1989) and <strong>the</strong> predicted eroaion as a consequence of <strong>the</strong> proposed<br />

enlargwnt of <strong>the</strong> shipway to Antwerp.<br />

However, <strong>the</strong>re are also a lot Of positive effects as a consequence of<br />

<strong>the</strong> works. In <strong>the</strong> first years after <strong>the</strong> r~mplation of <strong>the</strong> dams, <strong>in</strong> <strong>the</strong><br />

new habitats impostant populations of breed<strong>in</strong>g birds have been<br />

established, <strong>in</strong>clud<strong>in</strong>g several rare species. Many of <strong>the</strong>se were<br />

formerly quite connnoo, <strong>in</strong> our country on shores, <strong>in</strong> marshes or<br />

extensively used agricultural Land. They have decl<strong>in</strong>ed iII recent years<br />

because of drabage or more <strong>in</strong>teneive hu)aan use of <strong>the</strong>ir orig<strong>in</strong>al<br />

habitats. For. some species of terns and waders (e.g. Sandwich Tern.<br />

Little fern, Kentish Plover, Avo~et) <strong>the</strong> <strong>Delta</strong> area is now one of <strong>the</strong><br />

wst important breed<strong>in</strong>g grou&<br />

Eurape.<br />

<strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands or even <strong>in</strong> Western<br />

For w<strong>in</strong>ter<strong>in</strong>g buds <strong>the</strong> situation is quite swlar. Large numbers of<br />

herbivorous waterfowl like geese and ducks forage now on <strong>the</strong> grassland<br />

of <strong>the</strong> former tidl flats and salt mrshcs. The West-European<br />

population of <strong>the</strong> Barnacle Goose w<strong>in</strong>ters almost completely <strong>in</strong> <strong>the</strong><br />

Kefherlands and this species visits <strong>the</strong> grasslands along <strong>the</strong><br />

Har<strong>in</strong>gvliet s<strong>in</strong>ce long. However, its orig<strong>in</strong>al habitats strongly<br />

dim<strong>in</strong>ished here because of <strong>the</strong> public water works and <strong>the</strong> change of<br />

agricultural grassland <strong>in</strong> arable fields. Thanks to a nature management.


that chwged farnor reed mrshes and tidal flats fnto wet grasslands,<br />

<strong>the</strong> numbers of <strong>the</strong>se w<strong>in</strong>ter<strong>in</strong>g geese conld stabilize and even rise.<br />

In <strong>the</strong> new areas also important botanical values arid. The most<br />

strik<strong>in</strong>g example Is <strong>the</strong> developcent of: a wet dune-slack vegetation with<br />

rEre species like Parnassia pa<strong>in</strong>stris, Blackstonia gerfoliata and<br />

several species of orchids. This type of habitaf orig<strong>in</strong>ally occurred <strong>in</strong><br />

<strong>the</strong> lower parts of <strong>the</strong> coastal aunes. There it dieap~eated, however,<br />

almost totally because of <strong>the</strong> lower<strong>in</strong>g of <strong>the</strong> greundwator level.<br />

Especially on sandy soils with a stehle groundwater regime <strong>in</strong> <strong>the</strong> Lakes<br />

Be- and Grevel<strong>in</strong>gen hundreds of hectares of this particular<br />

vegetatipn type could develop and <strong>in</strong> <strong>the</strong> future probably also <strong>in</strong> <strong>the</strong><br />

Krammer-VolLerak.<br />

However, <strong>the</strong> new ereas are still <strong>in</strong> a dmamic state and <strong>the</strong> above-<br />

mestioned values mag be temposaq. The decllne of shote birds <strong>in</strong> <strong>the</strong><br />

Grevel<strong>in</strong>gen (Fig. 5) is a good exgmple M thSs. We also see that shrubs<br />

and trees beg<strong>in</strong> to caJoniee <strong>the</strong> dune-slack habitats and displace <strong>the</strong><br />

characteristic herbs. In a late* phase parts of <strong>the</strong> actual duna-slack<br />

enviro~nt will probably change because of decalcif4catiofi. In certa<strong>in</strong><br />

cases it is possible to stop or slow down natural succession by grazfng<br />

or mow<strong>in</strong>g, thua conserv<strong>in</strong>g certa<strong>in</strong> development stages by appropriate<br />

management methadv. However, we hme to realize that it ia not possible<br />

to keep <strong>the</strong> former estuar<strong>in</strong>e landscape <strong>in</strong> a young stage, because <strong>the</strong>re<br />

are ne cyclic dynamic processes to renew abiotic envimnment. In <strong>the</strong><br />

long run <strong>the</strong> ecosystems will grow to a more mature stage and this will<br />

<strong>in</strong>evitably lead to a decl<strong>in</strong>e of certa<strong>in</strong> species and <strong>the</strong> appearawe of<br />

o<strong>the</strong>rs, AL <strong>the</strong> moment it will be possible to keep certa<strong>in</strong> species by<br />

graz<strong>in</strong>g or mow<strong>in</strong>g Eor a certa<strong>in</strong> <strong>the</strong>. However, <strong>in</strong> <strong>the</strong> longer run <strong>the</strong>g<br />

will bisappeaz.<br />

Anyhow. it is qnite eLear that a graz<strong>in</strong>g management will lead te<br />

ecasystems totally different from those of spontaneous development or a<br />

w<strong>in</strong>g regime. And from that po<strong>in</strong>t of view <strong>the</strong> decision lies with <strong>the</strong><br />

etologists and <strong>the</strong> nature management: what type of nature do we wane on<br />

<strong>the</strong> new emerged land?


As mentioned above aa important question is wh~type of nature w want<br />

to &evelop. Do we wwt open easy grassy areas where geese can forage<br />

and waders can breed, or vast m?.rshy woods with breed<strong>in</strong>g colonies of<br />

rare and threatened birds like <strong>the</strong> Swonbill Bnd <strong>the</strong> Bigh<strong>the</strong>ron? D?<br />

maybe we prelex a mare patchy landscape with grassland vegetation<br />

alternat<strong>in</strong>g with Shrubs and aoadlmds, <strong>in</strong>habitated by threat&&<br />

<strong>in</strong>vertebrates, amphihia and reptiles. All <strong>the</strong>se types are possible <strong>in</strong><br />

large parts of <strong>the</strong> nw land. %at will be realized depends on t?ie<br />

choice how to manage nature. To make such choices <strong>the</strong> follow<strong>in</strong>g<br />

criteria can be used.<br />

Firstly <strong>the</strong>re are <strong>the</strong> potentialities of <strong>the</strong> area that may determ<strong>in</strong>e <strong>the</strong><br />

choke. It is good to poiat out several elements of this criterion,<br />

like:<br />

* The abiotic enviromental onditions, that may differ from place to<br />

place. On a salty soil, for <strong>in</strong>stance, it is ra<strong>the</strong>r easy to develop<br />

a grassland vegetation, but a woodland will nor grow <strong>the</strong>re hefare<br />

<strong>the</strong> soil is desal<strong>in</strong>ated to a depth of several metres.<br />

* New plant and animal species will have to ~oloaize <strong>the</strong> new ateas.<br />

?herefore <strong>the</strong> proportion of <strong>the</strong> area, its position to <strong>the</strong> acraal<br />

distribution of <strong>the</strong> species ~imed at and <strong>the</strong> presence of suitable<br />

migrat<strong>in</strong>g zones are very Impe~tant.<br />

* Ecosystem& must not only be realisable. They must also be<br />

ma<strong>in</strong>ta<strong>in</strong>able, especially on <strong>the</strong> long m.<br />

Ano<strong>the</strong>r important criterion to formulate <strong>the</strong> goal for ecosystem<br />

development is <strong>the</strong> significence of <strong>the</strong> nev type of nature for nature<br />

conservation. It wfll be clear that <strong>the</strong> highest priority must be given<br />

to species and commities that are threatened on an <strong>in</strong>ternatbnal<br />

scs%e.<br />

A f<strong>in</strong>e1 criterion ia <strong>the</strong> technical and f<strong>in</strong>ancial ability to realize <strong>the</strong><br />

management that is required.


6 SPATIAL VXW<br />

If we tmslate <strong>the</strong> th<strong>in</strong>gs rienti~ned ab~ve spatially <strong>the</strong> Eollowfng<br />

pattern reeult-s (Fig. 8) .<br />

Figure 8 Priorities for futural ecosystem development <strong>in</strong> <strong>the</strong> (former)<br />

estuaries of <strong>the</strong> South-West Ne<strong>the</strong>rlands. Open circles: salt<br />

marshes; hatched circles: former lnarshes and tidal flats to<br />

develop as open landscapes; black circles: <strong>the</strong> same, but to<br />

develop as woody landscapes; crosses: agricultural areas that<br />

can he set aside for ecosystem development<br />

Firstly <strong>the</strong>re is a strong reduction of <strong>the</strong> salmarsh area. On <strong>the</strong> one<br />

hand <strong>the</strong> greater part of <strong>the</strong> rema<strong>in</strong><strong>in</strong>g salt marshes <strong>in</strong> <strong>the</strong><br />

Westerschelde are under great mvironmental pressure and on <strong>the</strong> o<strong>the</strong>r<br />

<strong>the</strong>re are hardly any perspectives to develop new marshes <strong>in</strong> <strong>the</strong><br />

relatively clean Oosterschelde. This loss can partially he<br />

counterbalanced by sett<strong>in</strong>g aside parts of some wet agriculture areas <strong>in</strong><br />

<strong>the</strong> polders along <strong>the</strong> Oosterschelde. In those areas, with a lot of<br />

saltwater seepage, <strong>the</strong>re are very good conditions to create <strong>in</strong>land salt<br />

marshes and brackish grasslands or even to abandon polderland to tidal<br />

<strong>in</strong>fluence. Especially <strong>the</strong> plants and animals of <strong>the</strong> higher salt marshes<br />

can f<strong>in</strong>d a habitat here.


A seaond important perspective for ~cosystr?m development is lg<strong>in</strong>g<br />

outside Che new dams .tn <strong>the</strong> North Sea, <strong>the</strong> so &led<br />

"Vwrdelta". Eere<br />

are on several places good possibUities to aevelop dvne aateas with<br />

gradients of fresh dme slacks to salt marshes and breed<strong>in</strong>g place6 fox<br />

shore birds.<br />

Mnally <strong>the</strong>re are <strong>the</strong> new terrestrial habitats on <strong>the</strong> Parmer tidal<br />

flats and salt marshes <strong>in</strong> <strong>the</strong> closed estuaries. In <strong>the</strong> estuaries closed<br />

first, like Lake Veere, Lake Grevell%en and liar<strong>in</strong>gvliet, large<br />

grasslands ate <strong>the</strong> dom<strong>in</strong>at<strong>in</strong>g type of ecosystem. Prm an <strong>in</strong>ternational<br />

poLat of view spontaneous woodlands and patchy environnents with shrubs<br />

can also contribute very much to <strong>the</strong> conservation of endwered species<br />

and cmunities. For this reams it is necessary to rnake room for shrub<br />

and woodland develepmnt %a <strong>the</strong> wre ~ecently closed estuaries like <strong>the</strong><br />

WrIcieearstsftieer aad <strong>the</strong> Krmer-Volkerak.<br />

~n conclnsion I wonld lika to stress <strong>the</strong> differences between ttie<br />

develsp<strong>in</strong>g ecosptems of <strong>the</strong> famr sslt marhhes and tidal Eliits and<br />

<strong>the</strong> nature reserves on <strong>the</strong> "old land".<br />

Firstly <strong>the</strong>re is a gmat df3ference <strong>in</strong> size, Mast nature reserves of<br />

<strong>the</strong> pld land ar*, <strong>in</strong> general, muoh smaller than <strong>the</strong> Gees <strong>in</strong> <strong>the</strong> former<br />

eswanies. In <strong>the</strong> Nte<strong>the</strong>rlanas <strong>the</strong>re are very Fw nature reserves with a<br />

size ef 500 to L50D hectares with undl.stwM sradients <strong>in</strong> height ad a<br />

eatural groundwater regime. This gfm special perspectives <strong>in</strong> <strong>the</strong><br />

former wstuaries for those epecies and ecosystems wbzrh depend m<br />

large-sale prsc6eses and lwk of disturhitnee. P%$ LbZs readqn<br />

splitt<strong>in</strong>g up ~f B@ new areas mst be prevented and nature ~wia~w~ent<br />

must rrg to cmso~idaze <strong>the</strong>ir large-scale character.<br />

s.eehdljr we muse mylise that m <strong>the</strong> ffimr estuatiee W* um deaelop5ng<br />

axlsritirig snes.<br />

new -sal&, dhila on. <strong>the</strong> $&d we &re W~\rfn.$<br />

Ilecauw of <strong>the</strong> non-cymc dynamri&s ern <strong>the</strong> ecosystem* dn tbe famsr<br />

tiaal flaTs and salt m;prslies., eoMervation 62 rhe aettial flora Bnd


favna often is <strong>the</strong> wrrmg policy, whatever rare <strong>the</strong> species may be.<br />

It is more important to get a good idea af <strong>the</strong> (abiotic) processes <strong>in</strong><br />

aad <strong>the</strong> ecologioal potenzidries of <strong>the</strong> atea. 0x1 <strong>the</strong> basLs of this<br />

knowledge we must formulate a management plan with a goal for ecosystem<br />

development a~ <strong>the</strong> long run. The long-term goal must be used to<br />

evaluate what short-term measurements can be taken. For <strong>in</strong>stmce, with<br />

<strong>the</strong> Long-term goal to st5uslate woodland and shrub develbpment it will<br />

be difficult to accept short-term mowiq to canserve breed<strong>in</strong>g habitats<br />

for rare shore birds. Mren <strong>the</strong> lerrg-term goal is <strong>the</strong> development of<br />

grassland ewsysfems a mow<strong>in</strong>g regime dur<strong>in</strong>g some gears may be quite<br />

acceptable, particularly when endangered species are <strong>in</strong>volved. Even <strong>in</strong><br />

rhe last case, however, it is possible that <strong>the</strong> breed<strong>in</strong>g habitat gets<br />

more and more unattractive.<br />

The author is ~uch <strong>in</strong>debted to J, van Baalen, C.<br />

Bissel<strong>in</strong>g,<br />

A.R.L. Huiskes, D.J. de JMg and espeeiallx W.@. Beeft<strong>in</strong>k for valuable<br />

tornenta on earlier dr&ts of <strong>the</strong> manuscript.<br />

J. Visser (Bi>kewaterstaat, Directorate Flevoland) and G.J. Slab<br />

fk'atiofuil<br />

Forest Service <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands) k<strong>in</strong>dly provided some data.<br />

BEFERENCES<br />

BAKKFIR, T.W.M., RLIJN. J.A. and ZAUELHUFB. F. J. VAN, 1981. Blederlandse<br />

kustdu<strong>in</strong>en; landschapsecologie. Pudoc. Wagen<strong>in</strong>gcn. 144 p.<br />

BEEPTLNK, W.G., 1979. The structure of aalt snarsh cornunitlee <strong>in</strong><br />

relation to environmental disturbances. Tn: R.L. Jefferies and<br />

A.J. bavy (ed.). Ecologisal prowasses <strong>in</strong> coasCal eavirenmeats,<br />

p. 77-93. Blackwell Scientific Publications. O~ford.<br />

BEEFTIEIR. W.@. 1987. Vegetation responses to changes 19 tidal <strong>in</strong>undation<br />

of salc marshas. In: 3. van Andel et al. (eds.), Disturbance <strong>in</strong><br />

gr@Salan&, p, 37-11?. Dr W. Juolt Fublishers, Dordrecht.


BEEEXNX, W.D.<br />

and 80ZBf&. J. L9M. The nature and funceion<strong>in</strong>g of salt<br />

marshes. In: W. Salomaes. B.L. Bayne, E.K. Dun~sma and U. Btirstner<br />

(&S.). Pollution of <strong>the</strong> North Sea, p. 59-87.<br />

BerliTniNev York.<br />

BIJLSPIb. L. and EVIPW. J.W.M.,<br />

<strong>the</strong> Delca <strong>Waters</strong>. This volume.<br />

Spz<strong>in</strong>ger Vedag,<br />

1989. River weter and <strong>the</strong> quality of<br />

DBQST. A.3. aad VLSSEK, J.. 1981. Bet' grandwaterregime als<br />

structererende factor voor de begroei<strong>in</strong>g <strong>in</strong> afgealoten egtuaria<br />

het een toepa~s<strong>in</strong>g <strong>in</strong> het GreveL<strong>in</strong>$eh%&km. In: M<strong>in</strong>isterie van<br />

WrkeeE eh <strong>Waters</strong>caat, Vijftig faar andsraeek, p. 201-216.<br />

Lelystad.<br />

MEIRE, P.M. SFYS. J., YSEBAERT, T., BEEiICElh, P.L. &ld BAPTIST, B.J.N.,<br />

1989. A Bhang<strong>in</strong>g <strong>Delta</strong>: effects of large eoagtal eq<strong>in</strong>eer<strong>in</strong>g<br />

works an feed<strong>in</strong>g eaclogical <strong>relations</strong>hips as illuatra%ed bp<br />

waterbirds. This volume.<br />

WZSTftO@, V. and RELD, A.J. DEX, 1969. Plantengemeenschappcn<br />

,<strong>in</strong> Nedeslwd. Thieme, hrtphen, 314 p.


A CMANGING DEtTdl; EFFECTS OF L&E<br />

COASTAL ENGINF5RING WOW ON FEEDB'G<br />

ECOLOGICAL RELATIONSKIPS A5 ILLUSTRATED BY WAlXlWIBDS<br />

P.M.<br />

Meire, 3. Seys. T. YsebaerC. P.L. Mek<strong>in</strong>ger and H,~.hl. Baptist<br />

In <strong>the</strong> <strong>Delta</strong> area of <strong>the</strong> South-Wwt Ne<strong>the</strong>rlands <strong>the</strong> majrrrity of estuar<strong>in</strong>e<br />

eaoagstems has disappeared due to large coastal engiaeeriag works,<br />

creat<strong>in</strong>g new artificial sal<strong>in</strong>e Emd Freshwater lakes. Thege<br />

hydrodynamical changes had enormous consequences for plants and<br />

animals. In this paper <strong>the</strong> changes <strong>in</strong> <strong>the</strong> avifauita are desccikd.<br />

The Poordelta is charrtcterized by a La~ge number of div<strong>in</strong>g ducks and<br />

gulls. In comparison with <strong>the</strong> tidal bas<strong>in</strong>s, where <strong>the</strong> benthivormus<br />

species (ma<strong>in</strong>ly waders) dom<strong>in</strong>ate, numbers of h~rbiubres and piscivoTes<br />

<strong>in</strong>creased snbstantially <strong>in</strong> <strong>the</strong> new lakes, while waders near17<br />

dtaappeared. Herbivores dom<strong>in</strong>ate <strong>the</strong> avLfaona of <strong>the</strong> lakea. This<br />

differentiation is even more obvious <strong>in</strong> <strong>the</strong> distribution of <strong>in</strong>dividual<br />

species, s<strong>in</strong>ce same species prefer fresh over sal<strong>in</strong>e conditions and<br />

vice versa, In order to understand <strong>the</strong> observed distribution patterns,<br />

<strong>the</strong> densities of different bird grows were compared with estimates of<br />

<strong>the</strong> available food. In <strong>the</strong> tidal azeas and <strong>the</strong> sal<strong>in</strong>e lakes a clear<br />

relation beween piscivore bird density and D~biid density (<strong>the</strong>ir ma<strong>in</strong><br />

grey species) was cbserved. BLeo wader densities <strong>in</strong> <strong>the</strong> Cidal bas<strong>in</strong>s<br />

*ere clearly related to <strong>the</strong>ir food supply. Densities of herbivores are<br />

comparable between various basies. Thetr food saurce is very variable<br />

and hence impossible to estimate. The distribution a£ div*g<br />

ducks.<br />

feed<strong>in</strong>g a$Iy on macrobenthos. is vety puzzl<strong>in</strong>g and .seems not at all<br />

related to food supply. This <strong>in</strong>dicates factcrs o<strong>the</strong>r thaa food supply


are determ<strong>in</strong><strong>in</strong>g <strong>the</strong> dfstrlbution af birds <strong>in</strong> che <strong>Delta</strong> r2s well. NeM to<br />

ecolo@cal factors mch es ppulatiob. size, arlgracian partem and diet<br />

selecriob. human arrivities affect bir&i, often negatimely, <strong>in</strong> a<br />

varietg of nays. Disttubailce, poLlution artd habitat loss are Lnnoediate<br />

threats. Several tomagament options are available and discussed <strong>in</strong><br />

Drder Ca <strong>in</strong>pmve <strong>the</strong> acologlcal cwditions.<br />

Gver Ehe l46t tws deeaaes <strong>the</strong> wealled <strong>Delta</strong> ,a-<br />

?n fhe asu~hwsrern<br />

part of <strong>the</strong> Ne<strong>the</strong>rlands has changed profgunLUy. 14 this area $he rivers<br />

~Wn. W and Sehdde £lea <strong>in</strong>eo B& sea thrangh e cosplelt s.p%em of<br />

estuaries.. Is respanwe to <strong>the</strong> disastms etcrro £l@od of 1953, <strong>in</strong> whim<br />

.aaSut l:&O.O people were killed, as BBlbfti~als plan @>E aalm@<br />

up all ~ht<br />

me e$tcr&i~e$ was deedoped. In 1-967 <strong>the</strong> &.xec&ion of this plan,<br />

&Ithod& @rptte8 id <strong>the</strong> b&Se<br />

Df tHe yeais, s s mleted. ThLs<br />

~ ~ u h tn e d ~profalrnd chaages kn thil eelbgieal relatims, as lilrge<br />

't:idal .&reds di&p$ear@d and ~ e habitatir, w such as stagnant sal<strong>in</strong>e wd<br />

bi&.kish lekes, were cr-ed.<br />

5ie.c~ d$.scxibieg all <strong>the</strong>se eeolsggtcal<br />

chrtng*~ is fmpossible. In $his paper W@ shall reetrict eu~selves to<br />

descLlibe tibw tha oeeu.s.r?nce and d~i.@%ribation o* birds wer zhe<br />

aiffereat bas<strong>in</strong>9 Changed and xe isdieate reia%imxv with food suppigi and<br />

otber faceors.. W.@@, <strong>the</strong> area is? very imparranr for btsds apt is^,<br />

et al, 198&; Saeijs a~d Baptigt, 1~91771 d., as <strong>the</strong> gentgal pwblle is<br />

sepsAtive tg birds, <strong>the</strong>7 haye p.byzld a relatfvely ~ortanc role <strong>in</strong><br />

deci.s:i@ndiug (ens. <strong>in</strong> eke disewasian sht at spen or closed<br />

b,mte~sBhel@e: d~riqg <strong>the</strong> Uo6sre-s #f <strong>the</strong> Philips- and OeatettBni; <strong>in</strong><br />

tbe eurrent dbcusriori abwt rhe &its to be @et or reeteatilbn <strong>in</strong><br />

Oasfemchelde erc.l.<br />

Xn <strong>the</strong> fiei.wt part of thfs papixr ttie Wbitati <strong>in</strong> <strong>the</strong> De'lyta area<br />

and <strong>the</strong> ohsewed chaQgesia tht?. occnrt-ence ef waferbird% are descritred.<br />

In <strong>the</strong>: saEBnil p&<br />

some fwtoes <strong>in</strong>flmenc<strong>in</strong>g tiiis obse.md distTibutan.<br />

be<strong>in</strong>$ Toad BUatLability and ~nat?Xp btber fac&ors as migration pattwns.<br />

pdpwlatton bize and thlaran fiite&ereuce are Wyxed.


The preseat knarledge of birds <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area and <strong>the</strong> data presented<br />

<strong>in</strong> this paper result from <strong>the</strong> wtrrk of many people. Eluch is due to<br />

Rijkswaterstaat, Tidal <strong>Waters</strong> Division (<strong>the</strong> f~mer <strong>Delta</strong> Department)<br />

which sponsored a project <strong>in</strong> which Riikswaterataat (Hen!+<br />

Baptist,<br />

Eris Narceijn and Peter Xe<strong>in</strong>iager) carried out <strong>the</strong> monthly counts and<br />

breeang bird surveys, <strong>the</strong> <strong>Delta</strong> Institute for Eydrobiplogical<br />

Research. Yerseke (Xob Lambeck and eolleagnea) which started a r<strong>in</strong>g<strong>in</strong>g<br />

pragramme 19 co-operation With Eijkswaterstaae, end <strong>the</strong> Uaiversicg of<br />

Gent which stuared same aspects of <strong>the</strong> feed<strong>in</strong>g ecohgy of waders<br />

(Patzick mire, Jan Seys, Johan Stuair. Fred Tesk and Tom Ysebaert).<br />

2 DEGCRDTION OX THE AREA<br />

As <strong>the</strong> <strong>ecological</strong> conditions are so different between <strong>the</strong> basizis and<br />

because <strong>the</strong>y have changed oonsiderably, a brief description of <strong>the</strong><br />

<strong>Delta</strong> area (Rig. 1) is even. More details can be found elsedere <strong>in</strong><br />

NETHERLANDS<br />

Pigure 1 !4ap lapof<br />

has<strong>in</strong>s<br />

<strong>the</strong> <strong>Delta</strong> area with <strong>the</strong> location of <strong>the</strong> different


this volume or <strong>in</strong> Duutsaa, et aL, 1982. The situation is descriBed up<br />

to 1984 s<strong>in</strong>ce <strong>the</strong> data on birds presented <strong>in</strong> thia paper are restricted<br />

to <strong>the</strong> period 1976-1984.<br />

The major physical and chemical characteristics of <strong>the</strong> afferent bas<strong>in</strong>s<br />

are given <strong>in</strong> Table 1. For each OS <strong>the</strong> tidal areas, <strong>the</strong> surface of<br />

salt marshes, tidal flats, tidal waters (<strong>the</strong> area permanently covered<br />

by water) and adjacent wetlands (creeks, "<strong>in</strong>lagen" and grasslands which<br />

are used by birds ei<strong>the</strong>r as rest<strong>in</strong>g or as additivnal feediqg sites) is<br />

given. For tbe lakes <strong>the</strong> surface of deep water ( > 1.5 m), @hallow<br />

wager ( 1.5 m) and sbwes is given. Shores are <strong>the</strong> very shallow areas<br />

( F 0.2 m) of <strong>the</strong> lake of <strong>the</strong> majority of <strong>the</strong> areas perraanently exp~sed<br />

after <strong>the</strong> fomatlon of <strong>the</strong> lake and now used by weterbirds<br />

Kagrieultural land, nature reserve etc.) as well as <strong>the</strong> adjacent<br />

wetlands.<br />

The Voordelta is that part of <strong>the</strong> North Sea just off <strong>the</strong> <strong>Delta</strong> area. It<br />

consists bf a system of chwnels and shallow areas. Sal<strong>in</strong>try atrd<br />

turbidity are high. The sandy beaches are subject to hem wave action<br />

and su£fer from a very high ~ecreation pressure. More details of thia<br />

area and <strong>the</strong> changes occurr<strong>in</strong>g here ate described by Mulder, 1989. The<br />

Westerschelde is <strong>the</strong> only rema*n<strong>in</strong>g true estuary <strong>in</strong> <strong>the</strong> <strong>Delta</strong>. The<br />

freshwater <strong>in</strong>put frqm <strong>the</strong> river Schelde is small (on average 100<br />

m3/sec), hence <strong>the</strong> braokish part is limited to <strong>the</strong> area beMwn<br />

Ancwerpen and Hansweert. From <strong>the</strong> mouth tmards Antwerpen a gradient of<br />

decreas<strong>in</strong>g sal<strong>in</strong>ity, oxygen and transparency. and of <strong>in</strong>ereas<strong>in</strong>g<br />

suspended meter and nutrients is found (Humel, et al, 19881. Large<br />

mid- and sandflats occur all over <strong>the</strong> eatuary. "Bet Verdronken Land van<br />

Saeft<strong>in</strong>ghe". <strong>in</strong> <strong>the</strong> brackish part BE <strong>the</strong> estuary, i5 <strong>the</strong> largest salt<br />

marsh (8250 ha) of <strong>the</strong> whole <strong>Delta</strong> area. The esnurry is characterized<br />

by a large anthropogenic stress due to discharges of <strong>in</strong>organic and<br />

organic eontamfnants, mfnly by <strong>the</strong> river Sahel.de, but alsa from othar<br />

effluenrs slew <strong>the</strong> Westerschelde itself, and due to <strong>in</strong>tensive dredg<strong>in</strong>g<br />

activities for shipp<strong>in</strong>g. In <strong>the</strong> Oesrerschelde rhe <strong>in</strong>put Q£ fresh water<br />

is so small, that <strong>the</strong> area is better characterized as a sea arm than as<br />

an estuary. Sal<strong>in</strong>ity is high and constant; turbidity, concearrations of<br />

nutrieets and pollutants are low. Before <strong>the</strong> constructioo of <strong>the</strong>


Table 1 Some important physical and chemical characteristics of <strong>the</strong><br />

different be<strong>in</strong>s <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area. Voordelta (W). Mammer-<br />

Volkerak (m). Oosterschelde (OS), Westerschelde (WS),<br />

Orevel<strong>in</strong>gen (W), Veerse Meer (W). Har<strong>in</strong>gvliet (W).<br />

Eollands Diep (W). Bieshosch (BB). (' VM tidal range is<br />

difference between w<strong>in</strong>ter and summer level.)<br />

VaLkerak sluices, <strong>the</strong> Oosterschelde had a much more estuar<strong>in</strong>e<br />

character. TBe relatively Eew and small d t 81a+ahe8 are restricted to<br />

<strong>the</strong> eaatern part, whereas extensive tidal flats occur all aver <strong>the</strong><br />

estoav. Tbs nornleastern branch of <strong>the</strong> estualy (Keeten, Mastgat,<br />

Zijpe) cont<strong>in</strong>ues as <strong>the</strong> Hrrrrmmer-Wolkerak. The freshwater <strong>in</strong>put here was<br />

regulated by <strong>the</strong> Volkerak sluices at about 50 m9/s. In both<br />

Oosterschelde and Krammer-Volkerak <strong>the</strong>re is d very <strong>in</strong>tense mussel<br />

culture. Although most of <strong>the</strong> musselbeds occur snhlitoral, <strong>the</strong><br />

<strong>in</strong>tertidal ones are extremely important for hirde. The Greval<strong>in</strong>gen Weer<br />

was created <strong>in</strong> 1971 after <strong>the</strong> closure of <strong>the</strong> Brouwersdam and is a<br />

sal<strong>in</strong>e lake. Water ephange with <strong>the</strong> North Sea was re-established <strong>in</strong><br />

1978 when a sluice <strong>in</strong> <strong>the</strong> Brouwersdam becae operational and an


artificial waterflow was created after <strong>the</strong> eonstruction of a sluice itl<br />

<strong>the</strong> GreveUagendaw <strong>in</strong> 1985. This had profound ei5ecee on wa.arerqsalitp<br />

(Bann<strong>in</strong>k, et al. 1986). Large musselbeds and extensive fields of<br />

Eelgrass (Zostera marb) occvr <strong>in</strong> €he Lake. The Veerse Meer was<br />

created <strong>in</strong> 1961 after <strong>the</strong> closure of <strong>the</strong> Veerse Gat Dam and <strong>the</strong><br />

Zandkreelrdam. To imptooe trater dra<strong>in</strong>age frnm <strong>the</strong> surround<strong>in</strong>g poldezs<br />

<strong>the</strong> warerlevel is lowered about 70 cm Yn w<strong>in</strong>ter and raised aga<strong>in</strong> <strong>in</strong><br />

spr<strong>in</strong>s with water frbm tbe OosterseheLde. This managemt reaulted <strong>in</strong> a<br />

bnackish, wy errtf~phic lake- As a consequence searreeds. especially<br />

UWa sp., are very common and <strong>in</strong> <strong>the</strong> deeper parts of <strong>the</strong> lake qnoxic<br />

eonaitims prevail dur<strong>in</strong>g most of <strong>the</strong> year (due to stratifieation). Be<br />

Ear<strong>in</strong>gvliet, formerly a typical estuar<strong>in</strong>e area, and <strong>the</strong> Bollands D+ep<br />

and Biesbosch, formerlg freshwater tidal areas, became freshwater lakes<br />

rsith every small tidal <strong>in</strong>fluence (abmut 20 cm) after <strong>the</strong> cpprrtructiou<br />

of <strong>the</strong> Valkerakdm <strong>in</strong> 1970 and <strong>the</strong> Bar<strong>in</strong>gvUetdam fn 1971. These basttls<br />

are important for <strong>the</strong> diseharge of <strong>the</strong> rivers Rijn and Maas.<br />

Fluctuations of <strong>the</strong> WrtterleveL are accord<strong>in</strong>&ly related to <strong>the</strong> river<br />

discharge. The reduction of current velocities after <strong>the</strong> closure<br />

resadred <strong>in</strong> a very high sedWn


The monthly bird-counts <strong>in</strong> <strong>the</strong> whole <strong>Delta</strong> area between 1976 and 1986<br />

have been summarized <strong>in</strong> PleLn<strong>in</strong>ger, et al, 1984. 1985; Me<strong>in</strong><strong>in</strong>ger asd Van<br />

Haperen, 1988, and Baptist and ~ ~ g e1989. r , The average number per<br />

species per month pez bas<strong>in</strong> was calculated asd used <strong>in</strong> fur<strong>the</strong>r<br />

wal~sis. The total number is <strong>the</strong> sum of <strong>the</strong>se average rnofitbly cows<br />

of each spedes <strong>in</strong> <strong>the</strong> period 1976-1984. It is <strong>the</strong> best measure of bird<br />

use of w area siace it ie not biased by seasonal patterns.<br />

In rrlnter up to 700 000 waterbirde cm be present <strong>in</strong> <strong>the</strong> Belta area.<br />

Much maller numbers Cccur <strong>in</strong> summet @ig. 2). Approaimately 80 species<br />

MONTH<br />

Figure 2 Pattern ~f occurrence of waterbirde <strong>in</strong> Khe <strong>Delta</strong> area. The<br />

average monthly totals of <strong>the</strong> period 1976-1984 are given.<br />

(Black, waders; hatched, ducks; wbtte, e<strong>the</strong>r wacerbirda)


of waterbirds occur regulsrly. The wst important groups are ducks,<br />

waders, geese, gulls and tern; less abundant are grebes, cormorants<br />

etc. For all <strong>the</strong>se bim3 species, occurr<strong>in</strong>g regdarly, <strong>the</strong> <strong>Delta</strong> area<br />

has a very important funetion <strong>in</strong> several stages of <strong>the</strong>ir life cycles.<br />

Figure 3 Map W£<br />

<strong>the</strong> World, show<strong>in</strong>g <strong>the</strong> major migration routes of birds<br />

occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area. (Horizontal hatch<strong>in</strong>g: major<br />

fptertidal areas; vertical hatch<strong>in</strong>s: breed<strong>in</strong>g a d w<strong>in</strong>ter<strong>in</strong>g<br />

range qf birds us<strong>in</strong>g <strong>the</strong> <strong>Delta</strong> area)<br />

Figure 3 suomlari~qs Chs mig<strong>in</strong>s and dest<strong>in</strong>ations of birds occurrim <strong>in</strong><br />

<strong>the</strong> <strong>Delta</strong>. In summer important numbers of breed<strong>in</strong>g bads a£ several<br />

speeies are present (Me<strong>in</strong>iqger, 1986). After <strong>the</strong> breed<strong>in</strong>g season most<br />

of <strong>the</strong>se birds migrAte south, some to tPle we6.t coasts of Afrioa, lJfrile<br />

o<strong>the</strong>r speties are more or less resident. Birds breed<strong>in</strong>g <strong>in</strong> <strong>the</strong> .boreal.<br />

Subatetic and arctic zone of Europe, Asia. Greenland and North America<br />

use <strong>the</strong> <strong>Delta</strong> ei<strong>the</strong>r as B refuell<strong>in</strong>g site on migration between <strong>the</strong><br />

breed<strong>in</strong>g areas and <strong>the</strong> w<strong>in</strong>ter<strong>in</strong>g grounds [<strong>in</strong> spr<strong>in</strong>g and autumn), or as<br />

a w<strong>in</strong>ter<strong>in</strong>g site. Many species also moult <strong>in</strong> che heea. All bhese<br />

species have <strong>in</strong> common a large energy denand a d are hence dependent on<br />

an abundant food supply md low levels of disturbance. Their wcurrence<br />

show that <strong>the</strong> <strong>Delta</strong> area acts as a turntable <strong>in</strong> large scale movements


of birds and this: immediately stresses <strong>the</strong> <strong>in</strong>ternatianal importance M<br />

<strong>the</strong> <strong>Delta</strong>. Criteria have been agreed upon <strong>in</strong>tsrnatiooally to &press<br />

<strong>the</strong> importance of a wetland area CSzijj, 1972): if more than 1% of a<br />

population (ei<strong>the</strong>r 20 000 waders or 10 000 ducks) r-ularly occurs, <strong>the</strong><br />

area is considered to be of <strong>in</strong>ternational importance. In <strong>the</strong> <strong>Delta</strong> area<br />

<strong>the</strong> numbers of /+l species exceed <strong>the</strong>se criteria.<br />

Figure 4 Proportion of <strong>the</strong> tetal number of waterbirda <strong>in</strong> <strong>the</strong> <strong>Delta</strong><br />

occurr<strong>in</strong>g <strong>in</strong> each of <strong>the</strong> bas<strong>in</strong>s. (Vmordelta (M);<br />

Westerschelde (WS); Oasterschelde (OS) ; Krammer-Volkerak (KV) ;<br />

Grevel<strong>in</strong>gen Meer (GM) ; Veerse Meer (W); Har<strong>in</strong>gvliet (HV);<br />

Bollands Diep (BD) ; Biesboseh (BB))<br />

The bir& are not evenly spread over <strong>the</strong> whole <strong>Delta</strong> area. In Figure 4<br />

<strong>the</strong> relative importance of each bas<strong>in</strong> is given (expressed ss <strong>the</strong><br />

percentage <strong>the</strong> total number of birds <strong>in</strong> each bas<strong>in</strong> represent$ of <strong>the</strong><br />

ove~all total number <strong>in</strong> <strong>the</strong> <strong>Delta</strong>). The oatstand<strong>in</strong>g importance of <strong>the</strong><br />

Ooster- and Westerschelde is very clear. With less than 50% af <strong>the</strong><br />

total vetland area <strong>the</strong>y accmmodate 67% ef <strong>the</strong> birds of Khe whole <strong>Delta</strong><br />

area. KQV this distribution is related to rood supply will be analyzed<br />

<strong>in</strong> <strong>the</strong> fallow<strong>in</strong>g bections.


. DISTRIBUXIOBI OF WATEJBIRoS OVER TEE DIFFEREMT BASINS<br />

RELATIOIIS WITK THE FQOD SUEPLY<br />

Before relat<strong>in</strong>g <strong>the</strong> occurrence of birds to <strong>the</strong> distribution of <strong>the</strong>ir<br />

food it is necessalry to describe <strong>the</strong> position of <strong>the</strong> birds <strong>in</strong> <strong>the</strong><br />

estuar<strong>in</strong>e or lake ecosystems. Weretore a simplified model of <strong>the</strong><br />

energy fXmes <strong>in</strong> <strong>the</strong> different bas<strong>in</strong>s is giuen <strong>in</strong> Figure 5.<br />

Figure 5<br />

Schwatic represeatation of <strong>the</strong> majar l<strong>in</strong>ks <strong>in</strong> <strong>the</strong> foed veh<br />

<strong>in</strong> <strong>the</strong> bas<strong>in</strong>s of tke <strong>Delta</strong> area<br />

flurrients are used by phytoplankton, mi~rophytobenthos and macrwalgae.<br />

The latwr, toge<strong>the</strong>r with saltmash plants, <strong>the</strong>ir seeds or <strong>the</strong><br />

ve&etarion along <strong>the</strong> banks a d adjacent agricultural areas are <strong>the</strong> ma<strong>in</strong><br />

food source for herbivores, be<strong>in</strong>g geese and most specles of dabhlwg<br />

ducks. Plicropbytohenthos can be usecl as a food source by a faw birds,<br />

especially Sbelducks. The mrozoohenthos, large sized I . I mm)<br />

<strong>in</strong>aertekates liv<strong>in</strong>g <strong>in</strong> <strong>the</strong> sediment, can be divided <strong>in</strong>to filterfeeders,<br />

depositfeeders, scavensers and predators. Filherfaeders.<br />

ma<strong>in</strong>ly molluscs such as Cockles (Ceraetoderna edule) an& Wssel.


(M~tilus edulis) <strong>in</strong> salt water, Cerastoderma glaacum and Mya arenaria<br />

<strong>in</strong> brackish water and <strong>the</strong> Zebra Mussel (Dreissena polymorpha).<br />

Pisidiidae and Anodontidae <strong>in</strong> fresh water, feed ma<strong>in</strong>ly on<br />

phytoplankton. Under normal oonditiona filterfeeders dom<strong>in</strong>ate <strong>the</strong><br />

hiomass. Uoarever, <strong>the</strong>y are often <strong>the</strong> first species to decl<strong>in</strong>e or<br />

disappear under poilution stress. In salt and bracWsh water several<br />

polychaetes (e.g.<br />

<strong>the</strong> Lugworm Arenicola mariua) , molluscs (e.g.<br />

balthica) and crustaceans feed on detritus, o<strong>the</strong>rs are scavengers or<br />

predators (e.g. <strong>the</strong> Shorecrab C a r d s maenasS. Especially <strong>in</strong> <strong>the</strong><br />

sal<strong>in</strong>e lakes <strong>the</strong> epibenthos must be very i!qpartant although available<br />

data are scarce. It consists of shrimps (Grangon sp. and Mysidaceae)<br />

and nany o<strong>the</strong>r species of Crustacea (Isopoda and Amphipoda) . In fresh<br />

water Polychaeta are replaced by Oligochaeta and Chirononddae.<br />

All <strong>the</strong>se organisms form <strong>the</strong> prey of <strong>the</strong> different species Of<br />

bentbivores such ss waders and d%v<strong>in</strong>g ducks. Shrimps and mysids are<br />

also important pzey for gulls (e.g. Black-beaded Gull) and terns dnr<strong>in</strong>g<br />

<strong>the</strong> breed<strong>in</strong>g season and for some species of grebes <strong>in</strong> w<strong>in</strong>ter. The diet<br />

of <strong>the</strong> Pochard, a div<strong>in</strong>g duck, consists <strong>in</strong> <strong>the</strong> <strong>Delta</strong> ma<strong>in</strong>ly of <strong>the</strong><br />

seeds of Eelgrass (Boudewijn and Mes,<br />

1986) and this species is<br />

consequently <strong>in</strong>cluded with <strong>the</strong> herbivores <strong>in</strong> our fux<strong>the</strong>r calculations.<br />

Benrhas and zooplankton also form <strong>the</strong> food source for many fish<br />

species, which <strong>in</strong> turn are eaten by <strong>the</strong> piscivores as Cornsrant,<br />

mergansers and grebes. This basic food web is quite smlar for <strong>the</strong><br />

different haslns, although - ma<strong>in</strong>ly depend<strong>in</strong>g on <strong>the</strong> sal<strong>in</strong>ity -<br />

different species are fouad and depend<strong>in</strong>g on <strong>the</strong> hydrodynamical<br />

conditions different l<strong>in</strong>ks of this food web are more imporrant.<br />

The various functional groups of birds described abuve (benthivores,<br />

piscivores, herbivores) are used <strong>in</strong> fur<strong>the</strong>r analysis and called bird<br />

groups. Benthivores were divided <strong>in</strong>to waders and div<strong>in</strong>g dncks as <strong>the</strong>se<br />

groups differ so markedly <strong>in</strong> <strong>the</strong> habitat <strong>the</strong>y use (tidal flats versurr<br />

open water). Gulls are ma<strong>in</strong>ly omnivores and are also treated<br />

separately. Terns, typically piscivorous birds, are nor <strong>in</strong>cluded <strong>in</strong> <strong>the</strong><br />

analysis, as this species is not very well covered <strong>in</strong> <strong>the</strong> counts. In<br />

addition <strong>the</strong>ir feed<strong>in</strong>g areas are not well knovn. S<strong>in</strong>ce <strong>the</strong>y are ra<strong>the</strong>r


small bird$ extludiag <strong>the</strong>m vill net si~cantly change <strong>the</strong><br />

co~clusions.<br />

DISTRIBUTION OF DIFFERENT BIRD GROUPS<br />

based on numbers<br />

IN THE DELTA<br />

Figure 6<br />

Oecurrewe of different bird groups <strong>in</strong> <strong>the</strong> different bas<strong>in</strong>s.<br />

7er each group <strong>the</strong> percentage tm <strong>the</strong> total number of birds is<br />

given. (For abbreviations see FLgwre I; <strong>the</strong> bird grbups are<br />

def<strong>in</strong>ed h <strong>the</strong> text: and <strong>in</strong> <strong>the</strong> Appendix)<br />

To gaia <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> distribution of waterbirds over <strong>the</strong> different<br />

bas<strong>in</strong>s <strong>the</strong> proportim of each bird group on <strong>the</strong> total number per bas<strong>in</strong><br />

is given <strong>in</strong> Flpre 6. The Voordelta is clearly different from <strong>the</strong> o<strong>the</strong>r<br />

sites with a very high proportion of gulls, few waders and quite many<br />

div<strong>in</strong>g ducks. The three estuaries, Krammer-Volkerak, Dosterschelde and<br />

Westerschelde, are very similar <strong>in</strong> hav<strong>in</strong>g a very high proportion of<br />

waders and - to a lesser extent - herbivores and gulls. The relatim<br />

importance of <strong>the</strong> different bird groups <strong>in</strong> <strong>the</strong> Lakes is quite similar<br />

aod characterized by a dom<strong>in</strong>ance of herbivores. Corepared to <strong>the</strong><br />

estuar<strong>in</strong>e situation <strong>the</strong> importance of waders <strong>in</strong> <strong>the</strong> lakes decreased


subitanteally and thac 6f piseimres and divhg ducks <strong>in</strong>ereased. The<br />

distribution of <strong>in</strong>dividual species omer <strong>the</strong> beb<strong>in</strong>s is even mare<br />

pronounced than that vf <strong>the</strong> bhlrd groops. In Figure ?, as an example,<br />

<strong>the</strong> proportion of <strong>the</strong> total number <strong>in</strong> <strong>the</strong> Voordelta, tbe tidal areas<br />

(Krammer-Volkerak. Oosterschelde, liesterschalde), <strong>the</strong> sal<strong>in</strong>e<br />

(Grevel<strong>in</strong>~en. Veetse Meex) and freshwater lakes tltar<strong>in</strong>gvlier.. Hollands<br />

Mep, Biesbasoh) for aome important auct species is given, Common<br />

Scoters are found almost exclwively <strong>in</strong> <strong>the</strong> Qoerdelta. OBldeneyes <strong>in</strong><br />

<strong>the</strong> salhe lakes and Tufted Ducks and Piachards <strong>in</strong> freshwater lakes.<br />

Digeonrc d P<strong>in</strong>tail$ occur whly 14 <strong>the</strong> tidsl azebs, Mal,larb are<br />

coxmen everywhere with <strong>the</strong> exception of <strong>the</strong> Voordelta and Csots elearly<br />

prefeh sal<strong>in</strong>e lakes. eimilar preferewes e-xists ia <strong>the</strong> ctbr species.<br />

B~wewfa<br />

Wiidal areas<br />

=$al<strong>in</strong>e<br />

lakes<br />

@~reshw&er lams<br />

a~oredelta<br />

HT~U~I area<br />

S5allne lakgs<br />

B~Ms~~w&~@P<br />

lakes<br />

Figure 7 DiGtrfbiltt6~l 6f msie @re& dyer <strong>the</strong> bas<strong>in</strong>s Cl[ecup& <strong>in</strong> tEe<br />

Vwordelta, ttie estuaries Per tidal araa's CW.steFs~chelde.<br />

Oastersobelde. 'ranmiecVoUter&>, s;ll<strong>in</strong>e lakes (Bees8 Weri<br />

Gre-<strong>in</strong>@% Heer] and f re~hwater Lake5 (Ilar<strong>in</strong>mlLet, Roll&<br />

Diep, BLeebasch).<br />

The percatwe of bhe tstal sumber <strong>in</strong> each tatesprzy is<br />

p,Lotted.


In order to lsok for relatiouehips between prey and bird abundance and<br />

to cry to understand <strong>the</strong> distribution described abmve, <strong>the</strong> density of<br />

each bird group was calculated (<strong>the</strong> wan of <strong>the</strong> 12 average monthly<br />

c m s of <strong>the</strong> period 1975/76 - 1983184 was used). For each group <strong>the</strong><br />

surfaces of t4e follw<strong>in</strong>g habitats (for <strong>the</strong> tidal and stagnant basfns<br />

respeetlvely) were u ~ s t calculate o <strong>the</strong> density: pi8civores: tidal<br />

water and tidal areas er deep and &allow warer; waders: tidal flats or<br />

shores; 6iV<strong>in</strong>g ducks: tidal wata and tidal ateas or deep a4ld shallow<br />

water; herbivores: sale marshes and adjacent wetlands ar $here6 aad<br />

shallow water. Of course this is a very crude approximation hut for<br />

such a large scale comparison no greater detidl can he used.<br />

Table 2 W<strong>in</strong>ter density (N/1000 me) of Gobiid fish and densities of<br />

Piseivores (h11100 ha) <strong>in</strong> <strong>the</strong> different aquatic s$stems of <strong>the</strong><br />

<strong>Delta</strong> arm. (Source of fish data: Cl) Ewrlynck (pen. mm.)<br />

(2) Bamerlynck, et al. (<strong>in</strong> press) (3) Dopmhos and Tviek.<br />

L987 (4) Waacdenburg and Meyer, 1988) (Voordelta (W);<br />

Westerscbelde (TB); Oosterschelde (05); rame er-Volkerak<br />

(KV); kevel<strong>in</strong>aen Meer (CH); Veerse Mser (W); Bar<strong>in</strong>gvliet<br />

(W); Bollaads Ddep (!.DJ; Biesbosch (BB)]<br />

Fish<br />

Bird<br />

Bas<strong>in</strong> Density Seurce Density<br />

(~11000 m*)<br />

(e/ioo ha)


The me<strong>in</strong> diet of piscivores <strong>in</strong> <strong>the</strong> salbe waters consists of Cobiid<br />

fish (Pomatosehistus microps, P. m<strong>in</strong>utums, P. loaanei). In <strong>the</strong><br />

Grevel<strong>in</strong>gen Meer <strong>the</strong> diet of Great Crested Grebe consisted for more<br />

<strong>the</strong>n 60%: (by weight) of Gobiidae (Domrnbos, 19$4). O<strong>the</strong>r important<br />

species were Herr<strong>in</strong>g (C1,u~eq harengus) and Shrimps (Grangmn crangon) .<br />

The Three-sp<strong>in</strong>od Stifkleback (6asterosteus aculeatus) is very abundant<br />

<strong>in</strong> <strong>the</strong> Veerse Meer (Waardenburg and Meiler, 19881, but it is not known<br />

ta &€it esent <strong>the</strong>y $re eaten by birds. As GmbFid fish fenus <strong>the</strong><br />

majority of <strong>the</strong> diet and more PT less comparable data are available,<br />

<strong>the</strong> average w<strong>in</strong>ter density is even h Table 2 toge<strong>the</strong>r with tha<br />

densities of pibcivofes. Clearly <strong>the</strong> highest densitieg of bath fish sad<br />

birds are found ib <strong>the</strong> Veerse Meer. In <strong>the</strong> Voordelta <strong>the</strong> nobiid<br />

densities ate varg varia%lo and prehably transparency. wMth is very<br />

low, end wave action prevent Birds from feed<strong>in</strong>g here. In <strong>the</strong> tidal<br />

areas and <strong>the</strong> sal<strong>in</strong>e lakes a clear relation bstwesn ptscivore densities<br />

and Gobffd densities is found. In <strong>the</strong> froshwatar lake6 ratber high<br />

densities of piscivores are found. Perch (Perca fluviatilis), Boaeh<br />

(Rutilus ~tilus) and o<strong>the</strong>r Cypr<strong>in</strong>idae as well as Gasterosteidae ere<br />

<strong>in</strong>portant prey species <strong>in</strong> <strong>the</strong>se lakes. Howevr;~, no density eqtimations<br />

are available.<br />

The bibmass of macrozoobenthos end <strong>the</strong> dessities of waders and div<strong>in</strong>g<br />

ducks ere given <strong>in</strong> Table 3. Waders occur -My on <strong>in</strong>tertidal areas<br />

here <strong>the</strong>y feed on *any dzffetent species @f izverteh~afes. Same waders<br />

are very speciUred, for <strong>in</strong>stance Cystercatchers which feed mditrly 6zl<br />

Mussels and Cackles; o<strong>the</strong>rs suCh as Dunl<strong>in</strong> feed on a verierp of<br />

polychaete worms (Rerefs sp.; Scoloplos armfger =Cc.) and small<br />

crustaceans (e.g. Corophiua sp.) whereas Bar-tailed Godwits feed on<br />

both worms, crustaceans and molluscs. Sometimes <strong>the</strong> diet ohansea with<br />

<strong>the</strong> seasons. In autumn <strong>the</strong> diet of Curlew oonaists ma<strong>in</strong>ly of <strong>the</strong><br />

Sharecrab wbereas <strong>in</strong> w<strong>in</strong>ter, when <strong>the</strong> crabs move to deeper water,<br />

Curlews feed l~ii<strong>in</strong>ly on large worms (Lugwonus and Nereis sp.). In <strong>the</strong><br />

tidal bas<strong>in</strong>s an obvious relation between <strong>the</strong> densities of waders and<br />

<strong>the</strong> available biomass extsts. A very high bkmass and density is fomd<br />

fn <strong>the</strong> Ooeteyschelde, much lower valnes <strong>in</strong> <strong>the</strong> Westerschelde and<br />

Kramer-Volkerak. The densities of waders <strong>in</strong> <strong>the</strong> o<strong>the</strong>r bas<strong>in</strong>s are much<br />

lmer and as <strong>the</strong>y arzt i?ee-g <strong>the</strong>se <strong>in</strong> a veriety of habitats, <strong>the</strong> diet


Table 3<br />

Biomass of macroroobenthos and densities of waders and div<strong>in</strong>g<br />

ducks <strong>in</strong> <strong>the</strong> different has<strong>in</strong>s af <strong>the</strong> <strong>Delta</strong> =ea. The average<br />

autumn biomass (g ash free dry weight/m2) of <strong>the</strong> whole bas<strong>in</strong><br />

and of <strong>the</strong> <strong>in</strong>tertidal area and <strong>the</strong> density Q£ waders and<br />

duoks (birds1100 ha) are given. (Source of macrozoobenthos<br />

data: (1) Craeymeersch (pers. cam.) (2) Coosen and Van den<br />

Dool, 1983 (3) Coosen and Smaal, 1985 (41 Meire and Develter,<br />

1988 (5) Lamheck, et al, 1985, 1986, 1987. (6) Seys and<br />

Meire, 1988 (7) Fortu<strong>in</strong>. 1985.) For abbreviations see<br />

Table 2.<br />

Bas<strong>in</strong> biomass hiamass source waders div<strong>in</strong>g<br />

overall <strong>in</strong>tertidal ducks<br />

is not lmam and hence it is not possible to calculate <strong>the</strong> available<br />

food supply. Div<strong>in</strong>g ducks like Goldeneyes and Tufted Ducks feed ma<strong>in</strong>ly<br />

on molluscs (Zebra Mussels, Mussels, Cockles etc.) as well as on<br />

different species of wow and crustaceans. A relation between<br />

macrobenthic biomass and <strong>the</strong> density of div<strong>in</strong>g ducks is not clear at<br />

all. The highest densities of div<strong>in</strong>g ducks are found <strong>in</strong> <strong>the</strong> Veerse<br />

Meet, although <strong>the</strong> biomaes is lower than <strong>in</strong> o<strong>the</strong>r areas. Additionally<br />

<strong>in</strong> <strong>the</strong> freshwater lakes high densities of div<strong>in</strong>g ducks are found<br />

although <strong>the</strong> benthos biamass is very Low. On <strong>the</strong> o<strong>the</strong>r hand <strong>in</strong> both <strong>the</strong><br />

Qosterschelde and <strong>the</strong> Krammer-Volkerak a larpe benthos biomaas is<br />

present but remsrkably low densities of div<strong>in</strong>g ducks are found. Clearly<br />

o<strong>the</strong>r factors must <strong>in</strong>fluence <strong>the</strong> distrihutfon of <strong>the</strong>se birds. This will<br />

be discussed later.


The herbivores form a ra<strong>the</strong>r beterogenous group of swans, geese apd<br />

ducks. Some species like <strong>the</strong> Brent Geese feed nra<strong>in</strong>ly on Eelgrass and<br />

salt marshes, although <strong>in</strong> <strong>in</strong>o<strong>in</strong>rer semizkatural grasslands and cereal<br />

crops form an important part of phe diet (Ebb<strong>in</strong>ge, er 81, 1987). Mute<br />

Bwens are strongly attached to water for feed<strong>in</strong>g, whereas o<strong>the</strong>r species<br />

like <strong>the</strong> Mallard feed ma<strong>in</strong>ly on adjacent wetlands and agricultural land<br />

and use <strong>the</strong> bas<strong>in</strong>s ma<strong>in</strong>ly for rest<strong>in</strong>g, d~<strong>in</strong>k<strong>in</strong>g and preen<strong>in</strong>s. Ad <strong>the</strong><br />

food source used by <strong>the</strong>se birds is so variable (@.g. agrimitural<br />

wastes and crops) it is impossible to estimate <strong>the</strong> wailable food<br />

supply. Therefore <strong>in</strong> Table 4 only <strong>the</strong> biomass of macroalgae (ma<strong>in</strong>ly<br />

Ulva sp. and Zosrera 8p.)<br />

and <strong>the</strong> denaity of herbivores are given. With<br />

<strong>the</strong> exception of <strong>the</strong> Voordelta <strong>the</strong> average density of herbivoree is<br />

quite similar <strong>in</strong> <strong>the</strong> different has<strong>in</strong>s, although somewhat hisher <strong>in</strong> <strong>the</strong><br />

Tahle 4<br />

Occurrence of macrqphyta (tong ash free dry weight at martmum<br />

stwd<strong>in</strong>g stock) and herbivores CbirdsIlOO ha) <strong>in</strong> <strong>the</strong> different<br />

aquatic system of <strong>the</strong> <strong>Delta</strong> atea. (Souree of macrophyta<br />

datat (1) Craeymeersch (pers. cm.) L2) De Jong (pers.<br />

corn.) (3) Nienhnis (pers. corm.) (L) Hannewijk, 1B88.) For<br />

abbreviations see Tahle 3.<br />

System 'Lotal Gran algae Source Density of<br />

biomass<br />

macrohyta<br />

herbivores<br />

W smell 0 mall 1 87<br />

KV 360 80 280 2 199<br />

OS 1833 S67 1457 3 334<br />

ws smdl 0 sncg21 2 399<br />

QV ? 1110-3300 ? 3 302<br />

W 630 9.6 680 4 562<br />

W small 0 0 415<br />

BD small 0 0 418<br />

BB<br />

small


freshwater bas<strong>in</strong>s. Clearly <strong>the</strong> presenoe of <strong>the</strong>se macrophyta haw no<br />

<strong>in</strong>fluence on <strong>the</strong> density af all herbivores as <strong>the</strong>y form only a 4 1<br />

part of <strong>the</strong> diet pf only some species. Notwithstand<strong>in</strong>g <strong>the</strong> huge<br />

differences <strong>in</strong> food supply it is rewkable no larger diffexenees <strong>in</strong><br />

densities exist.<br />

Table 5<br />

Comparison between <strong>the</strong> consumption (C) (kg ash free dry<br />

weight/lQO ha3 and deqsity CD3 (birds/lQD ha) of different<br />

bird groups <strong>in</strong> <strong>the</strong> tidal areas, <strong>the</strong> sal<strong>in</strong>e and t&e freshwater<br />

l&s (far fur<strong>the</strong>r explanation see tm).<br />

TIDAL WINE FKESH<br />

Herbivores<br />

C<br />

D<br />

Div<strong>in</strong>g ducks<br />

C<br />

D<br />

Waders<br />

In Table 5 <strong>the</strong> dara on densities are summarized toge<strong>the</strong>r with estimates<br />

of <strong>the</strong> food emsumption a£ <strong>the</strong> different bird gzoups. This was obta<strong>in</strong>ed<br />

by standard methods (see e.g. Nienhuis and Groenendijk, 1986). It i8<br />

obvious that <strong>the</strong> densities of herbivores are high <strong>in</strong> cwtpsrisun with<br />

those of o<strong>the</strong>r groups, <strong>the</strong>ir consumption even mueh higher. This is what<br />

we expect from primary consumers. Waders and div<strong>in</strong>g ducks are secondary<br />

omsumess and <strong>the</strong>ir densities as well as <strong>the</strong>ir oonsmptian are much<br />

lewer. The on17 exception are waders <strong>in</strong> <strong>the</strong> tidal areas. It is obvious


that <strong>the</strong> predation pressure here is very high. This is also conf<strong>in</strong>md<br />

by <strong>the</strong> review paper of Baird, et al, 1988, and <strong>the</strong> tidal flats form a<br />

v- dist<strong>in</strong>ct ecosystem. Densities and comumptions of piscivores<br />

(tertiary consumers) are on average lower. Eemarkable is <strong>the</strong> high<br />

density and consumption <strong>in</strong> <strong>the</strong> sal<strong>in</strong>e lakes. These results fit more or<br />

lees <strong>in</strong> <strong>the</strong> concepts of <strong>ecological</strong> pyramids (Odm, 1872). From Bigure<br />

5, however, we see that a food web is a better description of <strong>the</strong><br />

reality, hence expla<strong>in</strong><strong>in</strong>g some deviations from <strong>the</strong> expected pyramid<br />

structure.<br />

5 PAIXOBS COMPWWING TAE RELUTON BETREEN DlSTRIBUTIDN AND FOOD<br />

SUPPLY<br />

From <strong>the</strong> previoudi section it is obvious that relatiens hetween bird<br />

density and food supply are hot always obvious. First of all <strong>the</strong> data<br />

of many spedes have been analysed rogecher. If wader densiries ii~<br />

gener&l are related to grey densities, it ia very likely that this<br />

holds also far most of <strong>the</strong> abundant species. However, if no rerrelatian<br />

is found for all birds of a hitd group, this does not me= that <strong>the</strong><br />

densities of iddividuaL species ma), not be closely l<strong>in</strong>k& ta <strong>the</strong>ir food<br />

supply. It is clear, however, that mt only food supply hut m), o<strong>the</strong>r<br />

variables may <strong>in</strong>fluence <strong>the</strong> distribution and density of birds. These<br />

factors may be purely <strong>ecological</strong> or result<strong>in</strong>g £ram human activities. We<br />

will try to briefly describe somg of <strong>the</strong>m <strong>in</strong> order to show <strong>the</strong><br />

qomplexity of <strong>the</strong> whole system and <strong>the</strong> difficulties one encounters <strong>in</strong><br />

prediet<strong>in</strong>g effects of impacts oq <strong>the</strong> ecosystem. We hope this will make<br />

clear that <strong>in</strong> plann<strong>in</strong>g we shvuld he very conservative and use very<br />

large marg<strong>in</strong>s concern<strong>in</strong>g enviromntal marters.<br />

5.1 Ecologital factors<br />

Migratien, large-scale distribntion patterns of a species and climatic<br />

oonditions are very important <strong>in</strong> determ<strong>in</strong><strong>in</strong>g bird numbers. Indeed for<br />

several species <strong>the</strong> <strong>Delta</strong> area forms ei<strong>the</strong>r che nor<strong>the</strong>rn or <strong>the</strong>


scm<strong>the</strong>m bottueary o-f <strong>the</strong> w<strong>in</strong>ter distribncion (e.g. Lapw<strong>in</strong>g, Avocet,<br />

Blaek-tailed Godwit and Barnacle Gomse, Bewick's Swan respeewvely). In<br />

cheee cases <strong>the</strong> severiq of <strong>the</strong> w<strong>in</strong>ter may strongly <strong>in</strong>fluence bird<br />

occurrence. In mild w<strong>in</strong>ters much larger numbers of some species,<br />

sensitive to frost, may be present; <strong>in</strong> severe w<strong>in</strong>ters large numbers of<br />

Birds, norntally w<strong>in</strong>terfrrg.more to <strong>the</strong> north, are forced to &rate<br />

fur<strong>the</strong>r southwards and peak numbers of wme species can be counted.<br />

Duriqg a cold spell <strong>the</strong> presence of open weter is extremly important<br />

and may attract birds from <strong>the</strong> large eurfound<strong>in</strong>@.<br />

Pnr<strong>the</strong>rmore bird riders <strong>in</strong> .n area are not ohly depertdent on <strong>the</strong> food<br />

supnly but also &ad on <strong>the</strong> qnality of o<strong>the</strong>r areas. Indeed if, for<br />

whatever resaon, <strong>the</strong> food supply at <strong>the</strong> begirm<strong>in</strong>g a£ <strong>the</strong> w<strong>in</strong>ter <strong>in</strong> an<br />

asea is eXUegK1y high or low, many mtroe or less birds may stay <strong>the</strong>re,<br />

<strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> numbees <strong>in</strong> O<strong>the</strong>r basu, where neth<strong>in</strong>$ <strong>in</strong> <strong>the</strong> fmed<br />

supply niisbt have changed.<br />

MIDWINTER NUMBERS OF GRNLAG GOOSE IN THE WESTERN SCHEUIT<br />

1976-1 987<br />

year<br />

Pigore 8 Evolution of <strong>the</strong> number of Oreylag Geee <strong>in</strong> tke Wesrersohelde


Overall population size Fs very irpporCane as well. Indeed <strong>in</strong> <strong>the</strong> last<br />

decades a few species, lac <strong>the</strong> Greylag Gowe (Pig. 8) and <strong>the</strong><br />

Coxmurant, Wreased <strong>in</strong> numbers <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area. phis is not due fa<br />

any ehanges <strong>in</strong> <strong>the</strong> fbbd suepl~ hut to an overall <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

population. In Europe <strong>the</strong> Greylag population ha* <strong>in</strong>creased from 30 DUO<br />

to 1%<br />

000 bemen 1974 and 1984 (Madaen, 1987). The total population<br />

size of arctic breed<strong>in</strong>g wecies eau vary substantially between years<br />

due to <strong>the</strong> vary<strong>in</strong>g breed<strong>in</strong>g success. Of<br />

e<strong>the</strong>r spactes (e.g. DuW)<br />

pspulatiwn siae decreased dwriqg <strong>the</strong> last years, a declfae which is<br />

obvious <strong>in</strong> <strong>the</strong> couunte from <strong>the</strong> Delca area.<br />

Tlvese were all Eacrors ac~tiqg on a lazge sea&. M <strong>the</strong> DeLlt area<br />

itself, several z~pccts rYf prey reLettfon may fafluence <strong>the</strong><br />

diatribwtion af a species. In she asalf,t~s prasent-a ad1 prey 8pedea<br />

were lrrmped ed4?aca large categeiesi Same species are, hCmemr, uee<br />

specXaLiz&. IeeakrD, vh@reas O<strong>the</strong>rs feed a* a large vazlaty of p?*<br />

species. Tlris may affect <strong>the</strong> occurreace ti£<br />

birds qutte subgtantliaf.ly.<br />

In <strong>the</strong> Veerse Neex Dlva sp. fo- a v.&y important prep item far<br />

hehivor~e Such ns eonss aud Br*nt Geese.. nse to predarlqu and *be<br />

natural mortality of <strong>the</strong> plant* <strong>the</strong> aviril&le amount ,of Qlve q.<br />

decl<strong>in</strong>es rapidly *u.tumn vwdnter. bnr<strong>in</strong>g that <strong>the</strong> BanL Geese<br />

switch eo *Chef pray available <strong>in</strong> ehe area. d d y pastures .W$ asaMe<br />

land, a& <strong>the</strong>ir nmbers repla<strong>in</strong> stable wnrii April-Hay (Fig. 91. Owte,<br />

kqwevez, do net change diet and amhers start te decl<strong>in</strong>e aireaey <strong>in</strong><br />

Jmwarp, mch earlier tkaa <strong>in</strong> o<strong>the</strong>r part6 of <strong>the</strong> De~lta.<br />

Even for birtl4 Se4ddfs$ aa me prey fssp.eei&s, t&ce mi@t be facmts<br />

compli~wz<strong>in</strong>g <strong>the</strong> relative prey abondande m hird dasiff. The<br />

i2ystet"aatehn is <strong>the</strong> most nwraus %del ,gp.eel&s <strong>in</strong> €he Wd*refm&el~&<br />

and ie a.lmst edcrusivelg faeds m 'Cockle* and Mussels,, %irB back<br />

Inbtvlda2 c<strong>in</strong>ly feecz<strong>in</strong>g on One of tW&L? %~&Les. %-he selertiw of<br />

mnssels ha8 W& s~turliQd <strong>in</strong> detail lHerr& w d ErySnck. 1986.3 Mere,<br />

1B871 sad it is ~mtnd thde <strong>the</strong>re is n6t mily selectiim foi laper<br />

miwels but even Eo? <strong>the</strong> ch<strong>in</strong>%er-shelled i@ivfd+ls wish<strong>in</strong> a lengch<br />

cLies,. It has h~en shoran that <strong>the</strong>se selection patterns are etuced by<br />

energeti'f constra<strong>in</strong>ts. Wile <strong>the</strong> pp6t .~pen<strong>in</strong>g-.&l<br />

eureseL6 %a wt<br />

rewartB.ng due to very -U ylela of fl,osh, tha thick sirelied mussele


OCLURRENCE AND DIET QF B ~T<br />

.tUQ<br />

80 -<br />

a<br />

2 40'-<br />

U<br />

(D<br />

8<br />

-20<br />

SBP w'r N~SY 6x0 J& F.XS APE ,,g.<br />

I,.<br />

1<br />

m<br />

0<br />

066URANCti AND LEET DF IFT<br />

108. -- - l00<br />

W<br />

U<br />

L<br />

W<br />

- 60<br />

G,<br />

9,<br />

DI<br />

2<br />

D<br />

2QL<br />

0 b Q<br />

SBP QdT NOW S2SW JW FFsB AQE<br />

>,<br />

-ZQ @<br />

are too hard to open. Tbis selection pattern implies that only a part<br />

of <strong>the</strong> prey population is really available to <strong>the</strong> birds, caused by <strong>the</strong><br />

selectit<strong>in</strong>-behaviour of <strong>the</strong> birds <strong>the</strong>mselves. Eowever, prey availabilicg<br />

is often <strong>in</strong>fluenced by <strong>the</strong> prey itself. In <strong>in</strong>tertidal areas many<br />

maerobenthic spec%es may be buried deep <strong>in</strong> <strong>the</strong> substrate, well beyond


each of <strong>the</strong> birds' bill. Different age classes of bury<strong>in</strong>g bivalves.<br />

such ae! Scrobiacularia plmb andMacma balthica. can be successively<br />

eaten by different- species of waders depend<strong>in</strong>g on <strong>the</strong>ir bill ldngtb as<br />

<strong>the</strong> older <strong>in</strong>dividuals lie deeper <strong>in</strong> <strong>the</strong> substrate (Zmuts and wdnk.<br />

1984). Similarly dabbl<strong>in</strong>g ducks can reach aquatic plants only whit<strong>in</strong> a<br />

small depth range. Mute Waas can reach down to 1.5 meter, Cwts oaly<br />

to 0.5 meter. Bentbic feed<strong>in</strong>s ducks are also limited by <strong>the</strong> water depth<br />

as <strong>the</strong>y can stay rmdet- water only for a certa<strong>in</strong> time.<br />

However, <strong>the</strong> availability of <strong>the</strong> prey population can also he dependent<br />

on its own activity. Corophium volutator, a small crustacean Liv<strong>in</strong>g <strong>in</strong><br />

If-shaped burrows, is detected by its predators, e.g. Redshanks. when it<br />

is feed<strong>in</strong>g on <strong>the</strong> mudsurface by quickly mov<strong>in</strong>g <strong>the</strong> antennae. After a<br />

Bedshank passed, all C. volutator retreat <strong>in</strong> <strong>the</strong>ir burrow, due to <strong>the</strong><br />

vibrations <strong>in</strong> <strong>the</strong> sediment caused by tbe walk<strong>in</strong>g bird, aad become<br />

unavailable to <strong>the</strong> predators for nearly a quarter of an hour (Gsss-<br />

Custard, 1970).<br />

gno<strong>the</strong>r very important factor iufluenc<strong>in</strong>g bird distribution is<br />

sal<strong>in</strong>ity, not only by its effects un <strong>the</strong> prey populations, but by its<br />

<strong>in</strong>fluence on <strong>the</strong> osmoregulat1an of <strong>the</strong> predator. B i r h feeang on<br />

mar<strong>in</strong>e prey organisms have to excrete <strong>the</strong> excess amount of salt <strong>in</strong>take,<br />

while feed<strong>in</strong>g, throngh <strong>the</strong> dasal glands. If <strong>the</strong> sal<strong>in</strong>ity of <strong>the</strong> water<br />

where <strong>the</strong>p are feed<strong>in</strong>g is too hlgh, <strong>the</strong>y need to dr<strong>in</strong>k fresh mater <strong>in</strong><br />

order not to dehydrate (Nysrrtim and Pehrsson, 1988). It is very well<br />

documented that <strong>the</strong> Pochard, which feeds on Eelgrass (Zostera mar<strong>in</strong>a)<br />

<strong>in</strong> <strong>the</strong> sal<strong>in</strong>e Grevel<strong>in</strong>genmeer, rest on <strong>the</strong> fresh Har<strong>in</strong>guliet (Boudewijn<br />

and Mes, 1986). Nystriim and Pehrsson. 1988, l<strong>in</strong>ked both distribution<br />

and diet of swsrel coastal waterfowl species to <strong>the</strong>ir uptake and<br />

ability to excrete salt. It is most probably that <strong>the</strong> very high<br />

densities, especially of div<strong>in</strong>g ducks, <strong>in</strong> <strong>the</strong> Veerse Meer, <strong>in</strong><br />

oompirrison to <strong>the</strong> Grevel<strong>in</strong>gen Meer where <strong>the</strong> food supply i~ much<br />

higher, might be due to <strong>the</strong> much lower sal<strong>in</strong>ity <strong>in</strong> <strong>the</strong> Veerse Meer.


5.2 H- factors<br />

Next to all fartors <strong>in</strong>tr<strong>in</strong>sic to animals and ecosystem.? <strong>the</strong> occurrence<br />

of htrds is also strongly <strong>in</strong>fluenced by man <strong>in</strong> a great variety of ways.<br />

Disturbance, pellution and habitat loss are <strong>the</strong> major factors.<br />

Disturbance by airplanea. beats, walk<strong>in</strong>g people, bait-diggiw. etc.<br />

causes bitds to leave <strong>the</strong> feed<strong>in</strong>g ar rerrf<strong>in</strong>g areas fot some time, For<br />

waders, disturbance distances have been measured. They differ greatly<br />

between species. Curlews are most sensitive and fly away at leaat 250 m<br />

from someone walk<strong>in</strong>g, Turnstones can be approacbad up to 1130 meter (Van<br />

der &er. 1985). Disturbance causes a reduction <strong>in</strong> feed<strong>in</strong>g time and<br />

extra energy losses due to fly<strong>in</strong>g. This can cause <strong>the</strong> birds to leave<br />

suitable feed<strong>in</strong>g sites. Not only disturbance at feed<strong>in</strong>g sides but <strong>the</strong><br />

availability of suitable rest sites can alss determ<strong>in</strong>e <strong>the</strong> occurrence<br />

of some bird species. Thia certa<strong>in</strong>ly holds for breed<strong>in</strong>g sites.<br />

Pollution cab affect birds <strong>in</strong> tws dist<strong>in</strong>ct ways: rbrougb a<br />

deteriozation of <strong>the</strong> food supply or through impairment of <strong>the</strong><br />

physiological processes <strong>in</strong> <strong>the</strong> animal itself. possibly lead<strong>in</strong>g CO<br />

death. It is known that pollution sees chaagea <strong>the</strong> structure of<br />

benthic populations a& cmmamities become dam<strong>in</strong>ated by a few small<br />

sized $peCies (Oxay, 1982). Although <strong>the</strong>ir densities can be very high.<br />

<strong>the</strong> biomss is on average quite low. Bur<strong>the</strong>rmore, few birds are able to<br />

exploit efficient13 thme very small prey items. When <strong>the</strong> pollutfon<br />

load <strong>in</strong>creases and anoxic conditions oceur, <strong>the</strong> macrobenthic faona may<br />

nearly completely dieappear, as is found <strong>in</strong> <strong>the</strong> eastern patt of <strong>the</strong><br />

Westerschelde CDevelter, et al. 1988; Meire and Kuyken, 1988).<br />

Obviously birds will disappear here as well. It has been &own that<br />

eutmphtcetion can improve benthic productivity (Bewkema and Cadee,<br />

1986, 1987) and Van Impe (1985) associated <strong>the</strong> <strong>in</strong>crease <strong>in</strong> bird numbets<br />

In <strong>the</strong> eastern part of <strong>the</strong> Westersehelde between <strong>the</strong> fifeies and <strong>the</strong><br />

seventies to <strong>the</strong> improved ferag<strong>in</strong>g couditiells for <strong>the</strong>-e birds as a<br />

eonsequenee of hlgher preductivity due to eutropwcation. As <strong>the</strong><br />

benthix fauna has collapsed <strong>in</strong> this areas by now <strong>the</strong> posititre effects<br />

of <strong>the</strong> wtrophication were only very shartlived (Develter, et al. 1988;<br />

Meire and Kuyhn, 1988).


LLttle Tern (Stezna albifrons), characteristic atrd threatened bird of<br />

<strong>the</strong> <strong>Delta</strong> area<br />

Young Little Tern (Sterna alhifrons)


Bewick's Swans (Cygnus columbariusl<br />

The <strong>Delta</strong> area is one of <strong>the</strong> most important w<strong>in</strong>ter<strong>in</strong>g areas of <strong>the</strong><br />

specie*


As birds are ma<strong>in</strong>ly top predators, <strong>the</strong>y accumulate quite a lot of toxic<br />

substances. The dramatic effects of chlor<strong>in</strong>ated hydrocarbons,<br />

<strong>in</strong>secticides and chlor<strong>in</strong>ated biphenyls on many piscivores <strong>in</strong> general<br />

and especially on <strong>the</strong> Sandwich Terns <strong>in</strong> <strong>the</strong> sixties, decimat<strong>in</strong>g <strong>the</strong>ir<br />

pop~lations are well known (Koeman and Van Eenderen, 19721. The effects<br />

of accwwlation of pollutants ere, hmever, not always so obvious,<br />

never<strong>the</strong>lens <strong>the</strong>y wy severely affect populations. Pew data on<br />

conoentrations of pollutanrs <strong>in</strong> birds <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area are avaFLahlc.<br />

However, experiments with Tufted Ducks clearly deman$trafed that when<br />

fed With Zebra Mussels from <strong>the</strong> Rar<strong>in</strong>gvliet <strong>the</strong>ir reproductive oatput<br />

was v eq much depressed IMarquenie, et al. 1986; Seholten and Poekema,<br />

1988). Clearly pollution is a major factor affect<strong>in</strong>g birds <strong>in</strong> <strong>the</strong> <strong>Delta</strong><br />

area and, as its effects are vey diverse and by now not very well<br />

onderstood, much mere attention should he paid to this problem <strong>in</strong> <strong>the</strong><br />

Eutnre.<br />

Babitat loss is ~f course a very impartant factor <strong>in</strong>fluenc<strong>in</strong>g birds.<br />

The effects are obvious. In <strong>the</strong> rema<strong>in</strong><strong>in</strong>g areas bird densities<br />

<strong>in</strong>crease, caus<strong>in</strong>g a higher predation pressure and hence a smaller food<br />

supply. This tpge<strong>the</strong>r with an <strong>in</strong>ereased level of social iateractions<br />

between <strong>in</strong>dividuals can reduce quite aubsfantiallp <strong>the</strong> food <strong>in</strong>take<br />

lead* td death. detailed revietv af <strong>the</strong> effecrs of habitat loss bn<br />

wader populatione is given by Goss-Custacd, 1985. It shauld be nated<br />

that hahicat lams is not only cased by physical removal of an anea but<br />

also by deterioration of <strong>the</strong> food supplp e.g. due to chang<strong>in</strong>g<br />

environmental condition#. In <strong>the</strong> Westerschelde <strong>the</strong> <strong>in</strong>creased dredg<strong>in</strong>g<br />

activities cause <strong>the</strong> <strong>in</strong>tertidal flats to become more sandy shee <strong>in</strong> <strong>the</strong><br />

larger channels higher current speeds occor, <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong><br />

sedimentation patterns. The benthic fauna and <strong>the</strong> numbers of waders are<br />

much smaller on send- than on mudflats. This is especially <strong>in</strong> <strong>the</strong><br />

Wesrerschelde a severe threat.


m's activiries do not always have to affect ecoaystw <strong>in</strong> general or<br />

bir& <strong>in</strong> particulex <strong>in</strong> a negative way. Indeed m y management measure4<br />

ean be taken to improve <strong>the</strong> arituation, measures which often are ra<strong>the</strong>r<br />

cheap but very effective. Oe <strong>the</strong> Hooge Platen, a large <strong>in</strong>tertidal flat<br />

<strong>in</strong> <strong>the</strong> Westerschelde, a small part 19 flooded wly at extreme bigb<br />

tides. The constructidn of a small dike hy meane of sadbags made <strong>the</strong><br />

site very attractfoe for Little Terns. The population <strong>in</strong>creased from 60<br />

<strong>in</strong> 1979 to 170 <strong>in</strong> 1985 (Pig. 10). a threefeld <strong>in</strong>crease. compared rrlth a<br />

NUMBERS OF BREEDING PAIRS OF LITTLE TERN ON THE HOOGE PLATEN<br />

1979-19BB<br />

Figare 10 Eyelutian of tbe number of breed<strong>in</strong>g Little Terns w <strong>the</strong><br />

"Woge Plaacen" i~ <strong>the</strong> Wesrerschelde (data RQQ<br />

R. Beijersbergen, peasonal eonrmunication~<br />

1.3-fold <strong>in</strong>crease <strong>in</strong> <strong>the</strong> whale <strong>Delta</strong> dur<strong>in</strong>g <strong>the</strong> same time (Me<strong>in</strong>&ger,<br />

1966). On many of <strong>the</strong> artifiaial islands <strong>in</strong> <strong>the</strong> Oostersdlelde, f~rmerly<br />

used dur<strong>in</strong>g <strong>the</strong> construction of dams, sluices etc., <strong>the</strong>re are


$oseibilities to create ptentially vaiuable breed<strong>in</strong>g sites for<br />

characteristic coastal breed<strong>in</strong>g birds. By meem of chang<strong>in</strong>g <strong>the</strong><br />

hydralogy, e.g. by (partially) <strong>in</strong>umlat<strong>in</strong>g 8maU polders adjacent to <strong>the</strong><br />

OostersmheLde ancl <strong>the</strong> Westerschelde, <strong>the</strong> importance far birds can be<br />

improved. In most places <strong>the</strong> ever <strong>in</strong>creas<strong>in</strong>g pressure bp recreational<br />

activities (boat<strong>in</strong>g, w<strong>in</strong>d-surfers, walk<strong>in</strong>g, bait-digg<strong>in</strong>g, fish<strong>in</strong>g etc.)<br />

is a serious threat to <strong>the</strong> various functions for birds. In particular<br />

<strong>the</strong> <strong>in</strong>tertidal areas are highly vulnerable to disturbance, and measures<br />

to reduca this disturbance are required. The same applies to some of<br />

<strong>the</strong> shallow parts of <strong>the</strong> Veerse Meer and Grevel<strong>in</strong>gen Meer, which are<br />

<strong>in</strong>creas<strong>in</strong>gly visited by w<strong>in</strong>d-surfers, not only <strong>in</strong> snmmer but also <strong>in</strong><br />

w<strong>in</strong>ter! Simple measures (snch as float* cablw) can be takeu to make<br />

at least dtome of <strong>the</strong>se areas <strong>in</strong>aceessibSe.<br />

6 CONCLUSION<br />

The Creation of new habitats by damn<strong>in</strong>g up eetuaries has, beyond doubt,<br />

<strong>in</strong>creased <strong>the</strong> diversity of bird life <strong>in</strong> <strong>the</strong> <strong>Delta</strong>. QT both breed<strong>in</strong>g and<br />

non-breed<strong>in</strong>g birds several species <strong>in</strong>creased <strong>in</strong> riders, Lass is known.<br />

havexer, on <strong>the</strong> changes <strong>in</strong> population size of <strong>the</strong> species Orig<strong>in</strong>aIly<br />

present, although <strong>the</strong>re are <strong>in</strong>dications <strong>the</strong>ir populations did not<br />

deurease markedly until 1984. Birds quiekly reacted to <strong>the</strong> MW<br />

habitats<br />

created, and <strong>the</strong> Voordelta, <strong>the</strong> estuaries, <strong>the</strong> al<strong>in</strong>e and <strong>the</strong> fresh<br />

lakes each have now <strong>the</strong>ir more or less tyaical avifauna. The gradient<br />

<strong>in</strong> abiotio and biotic ~onditions is very well lreflerted by <strong>the</strong><br />

distribution of <strong>the</strong> different bird groups a+ well as by <strong>the</strong> <strong>in</strong>dividual<br />

species, liowever, notwithscand<strong>in</strong>g <strong>the</strong> attention paid to nature<br />

consemation <strong>in</strong> <strong>the</strong> e l y czeared habitats. <strong>the</strong> estvarise areas still<br />

accomdate <strong>the</strong> largest numbers af birds. It ehould also be stressed<br />

that all estuar<strong>in</strong>e ec@wetems, and especially brackish and freshwarer<br />

tidal habitats are on a global scale very rare habitats, *hi& should<br />

MW be completely protected. Thelr loss can not be compensated bp <strong>the</strong><br />

creation of new habitats.<br />

For several bird species or groups it is s hm that <strong>the</strong>ir distribution<br />

and abundance is closely l<strong>in</strong>ked to that Oe <strong>the</strong>ir food sapply. An,y


measure affect<strong>in</strong>g food supply or available feed<strong>in</strong>g area will reduce <strong>the</strong><br />

population of tkse species (e.g. waders <strong>in</strong> <strong>the</strong> Oosterschelde). Far<br />

o<strong>the</strong>r species <strong>the</strong> relircion between density and food supply is lese<br />

oboioys and o<strong>the</strong>r variables confeud<strong>in</strong>g this relation are discussed.<br />

The <strong>in</strong>fluence of reduced food supply or available habitat m <strong>the</strong>se<br />

species is less easy to pre&tct, although <strong>the</strong> birds will certa<strong>in</strong>ly not<br />

benefit from <strong>the</strong>se. Beyond doubt, disturbance has a negative effect<br />

on all species. I£ <strong>the</strong> <strong>in</strong>ternational importance of <strong>the</strong> <strong>Delta</strong> area for<br />

waterbirds is to be preseraed, this aspect should receive much<br />

attention from <strong>the</strong> manager. It is very important! to <strong>in</strong>form <strong>the</strong> public<br />

about <strong>the</strong> imeortance of <strong>the</strong> area fOr birds and <strong>the</strong>ir need for rest.<br />

Canaliz<strong>in</strong>g people by means of hides or observation places might be one<br />

part of <strong>the</strong> salntion. It reduces disturbance and <strong>the</strong> good observation<br />

possibilities may enhance a positive attitude towards <strong>the</strong> habitat and<br />

its <strong>in</strong>habitants. Additionally <strong>the</strong> accessibility of certa<strong>in</strong> sites should<br />

be sestricted. Man's impact on <strong>the</strong> habitat, hg means of dredg<strong>in</strong>g.<br />

pollution, etc., should be m<strong>in</strong>imized so that naturally function<strong>in</strong>g<br />

ecesrystem might be' created or preserved.<br />

These few examples imply that management of <strong>the</strong> <strong>Delta</strong> area should he<br />

based on a sound <strong>ecological</strong> knowledge, but <strong>in</strong> order to understand <strong>the</strong><br />

ecology Of a species much detailed research bas to be done and a<br />

general pattmn, as presented <strong>in</strong> tbls paper, is amly a first step.<br />

The data presented <strong>in</strong> this paper have been collected by a large umber<br />

of people. Their help was <strong>in</strong>valuable. E. Wijken and S. BublE provided<br />

a stimulat<strong>in</strong>g enviromeat <strong>in</strong> Gent, and Rijkswaterstaat. Tidal <strong>Waters</strong><br />

Division and Directorate Zeeland not only provided <strong>the</strong> funds necessary<br />

for <strong>the</strong> research, but were also very <strong>in</strong>terested fm <strong>the</strong> results and<br />

wed to use chem <strong>in</strong> <strong>the</strong> management of wetlands.


B=, B.A.. MEXZES, J.H.M. VAH DEB and NIEMFUIS, P.X., 1984.<br />

Lake kevel<strong>in</strong>gen: from an estuasy to a sal<strong>in</strong>e lake. An<br />

<strong>in</strong>troduction. Ne~h. J. Sea Res. 18: 179-180.<br />

WTIST, H.J.M., (IOLIJN, F., IWLTBIJN, E.C.L., mlNdkR, P.L., MEIRE,<br />

F.M. and 'LW=, F., 1988. Gevleugeld Onderaoek: watewogels <strong>in</strong><br />

verandereode patersystemen. Bijkswaterstaat. Widdelburg. 24 p.<br />

BBP2IST. B.J.M. and MEWE- P.L.. 1989. Watervogels <strong>in</strong> het <strong>Delta</strong>gebiod<br />

1975176-1983/84: Een wabatie. Rijkwateretaat. Middelburg.<br />

B!ZWEl&. J.J, and CADEIE. CC., 1986. Zo~benthas recponses to<br />

eutrophicsttsa of <strong>the</strong> Dutch Waddea Sea. Ophelia 26: 55-64.<br />

BEWWA. J.J. and CADEE, G.C..<br />

genoeg of teveel? Vakhl. B%ol. 67: 143-107.<br />

1937. De eutrsfigriag van on6 lcufitwater:<br />

BOUDEWIJN. 2. J. and MES, E.G., 1986. Ue Tafeleenden <strong>in</strong> het noordeuk<br />

deel van het Dsltehekken. Ecsland-rapport 86-2,<br />

BIJLSMB, L. and KEIPERS, J.W.M..<br />

<strong>the</strong> <strong>Delta</strong> <strong>Waters</strong>. Tbie volama.<br />

Utrecht.<br />

1989. Riwer pater and <strong>the</strong> qelity of<br />

BAIRD. D., ETAME, ?.R.. MILNE, R. and PTTCXKOWSKI. M.W., IB88.<br />

Utilization by shorebirda of benthie <strong>in</strong>vertebrate prnducfion <strong>in</strong><br />

<strong>in</strong>tertidalareae. Ocean. and Mar. Biol. b Bev. 23: 33-59?.<br />

COOSEN. 3. aad DOdL A. VAN D%% , 1959. Macraaoobenthgs van het Erarmer-<br />

Keetw-Balker& egtuarium: verspreid<strong>in</strong>g &er sowrcen, asntalleq ep<br />

b%oma86a <strong>in</strong> relatie mez het eoutgehalte.<br />

Vetalivgen ea Bappotten, DXHO, Yereeke, 131 p.<br />

COSSEX, J. and $B&, &C..<br />

1983. Jaargemiddelde bimaasa en actiTiteir<br />

van de dom<strong>in</strong>ant& bodemdieren <strong>in</strong> de Owters&elde.<br />

BalanB-rapport 1985-12, DIEQ, Yerseke, 82 p.<br />

DEVELTEB, D., KUIJREX. E. and blELRE. B., 1988. De <strong>in</strong>plant<strong>in</strong>g vm eeu<br />

cmta<strong>in</strong>erkaai tn het natuuigehPeti 'Galgensehom' te zaavlret-<br />

Lillo: ecologischa &specten en mvolgen voar het natuurbehond.<br />

Water 39: 50-53.<br />

DOOBhIBOS. C.,<br />

1984. Pisc%mrous birds on <strong>the</strong> sal<strong>in</strong>e Lake Grevei<strong>in</strong>gen,<br />

<strong>the</strong> Na<strong>the</strong>rlasda; abundance, prey selection and aonual fmd<br />

mnsumption. Neth. J. of Sea Res. 18: 457-479.


DOQiWT$QS, G.<br />

4 TWISK, F., 1987. Density, growth and aunual food<br />

consunfirion of Gobiid fish <strong>in</strong> <strong>the</strong> sal<strong>in</strong>e Lake Grevel<strong>in</strong>gen, <strong>the</strong><br />

Ne<strong>the</strong>rlands. Neth. J. of Sea Bes. 21: 45-74. .<br />

DWRSU. E.K., ENGEL, H. and KPRTE4S. Th.J. M.. 1982. De Nederlandae<br />

<strong>Delta</strong>. Een cmprmds tussen milieu en tayMek <strong>in</strong> do strijd tegw<br />

het water. Natuur en Tecimiek, Maastdc%t, 511 p.<br />

EBBINCE, B.S., BERN, L.M.J. VAN DEN. EAPEREN, R.M.M. VAN, IOg, C,M..<br />

PHILIPONA, J., BOOTH, J. and TIEWIERMAN, A., 1387. Verapreid<strong>in</strong>g en<br />

aantalsonnuikkel<strong>in</strong>g van <strong>in</strong> Nederland pleisterwde gazm. De LW.<br />

Bat. 88: 162-178.<br />

FORTmN, A.W..<br />

1985. Dich<strong>the</strong>den en biomassa's vait de belangrijbte<br />

bodemdieren van het Bollands Diep en Har<strong>in</strong>gvliet <strong>in</strong> 1983.<br />

Aapp~rten an Verslageu 1985-2, DIM, Yerseke, 63 p.<br />

ORAY, J.S.. 1982. Effects pf pollutftnts on mar<strong>in</strong>e ecosystems.<br />

Neth. J. of Sea ties. 16: 424-443.<br />

GOSS-CU6TAP.D. J.D..<br />

1970. Dispersriou i n some ovenr<strong>in</strong>ter<strong>in</strong>g wad<strong>in</strong>g<br />

birds. In CkOOK, J.8. (Ed.) Sacial behaviour <strong>in</strong> Birds and<br />

Mamals. p. 3-35. Aradeaic Pres8,toodon.<br />

GBQSS-CUSTARD, J.D.,<br />

1985. Rorag<strong>in</strong>g behaviour of wad<strong>in</strong>g birds and <strong>the</strong><br />

carry<strong>in</strong>g capacity of estuaries. In Sihly, R.M.<br />

and SXIhl, B.H.<br />

(Eds.) Behavioural Ecology. Ecological conseqlletrces of adaptive<br />

behnvimr. p. 169-187. Bla&$ll Sei~tiflc phllshers, Oxford.<br />

HMERLYNGR, a., VIJVEB, P. VAN DE and FRANCKE, J.W.. <strong>in</strong> press. Sand<br />

Gobies <strong>in</strong> Eastern and Wesrern Scheldt. DBiO Progr. Rep. 1988.<br />

IlANNEWlJK, A,.<br />

1988. De verspreidfng en biomassa van macrofyten <strong>in</strong> het<br />

Veerse Meer, 1987. Rapporten en Verslagen 1988-f,DIRO,<br />

25 p.<br />

Yerseke,<br />

WEREW, A.M.M. VAN, 1989. Erologieal developlgent of ~ lmarshes t and<br />

former tidal flats <strong>in</strong> <strong>the</strong> $outh-Weat Ne<strong>the</strong>rlands, This Voluae.<br />

BFRMELINK, P.P.J. and MES. R.G.. 1987. De vegetatie van buitendijkse<br />

geb&eden van het Sar<strong>in</strong>gVliet m nollands Diep. E~olanp-rappart<br />

nr 87-3, Bureau Ecoland. Utreeht, 143 p.<br />

HUNMEL, E., MBERLBND, G. and BAKKER, C., 1988. The conMlmitaot<br />

existence of it typical eoastal and a detritus faad ehab <strong>in</strong> rhe<br />

Westerschelde estnaq. Eydrobibl. Bul. 22: 35-41.


W, J. VAN, 1985. Estuat<strong>in</strong>e pollnrion as a probable eanse of <strong>in</strong>crease<br />

05 estuar<strong>in</strong>e birds. kr. Poll. Bul. 16: 271-2'16.<br />

ROEMAN, J.E. and GENDEREN, R. VBN, 1872. Tissue levels <strong>in</strong> animals and<br />

effects caused by chlor<strong>in</strong>ated hydrocarbon <strong>in</strong>secticides,<br />

chlor<strong>in</strong>ated biphenyls and mercury io <strong>the</strong> mar<strong>in</strong>e anvironment along<br />

<strong>the</strong> Netberlds coast. Ln Mar*le Pollution and sea life, p. 1-8.<br />

The Rhitefriars Press, Ltd., London.<br />

W E C K , B. H.D. and BWMMELWIS. E. B .M. , 1985. Een bestandsopnarne <strong>in</strong><br />

vosrjaar 1984 van het macrozoobenthos <strong>in</strong> het Grevellngenmeer.<br />

Rappvrten en trersl~sen 1985-4, DIHO, Yetseke, 28 p.<br />

LAMBECK, R.H.D. and POUWEB. R., 1986. Eea bestandsoptumte <strong>in</strong> het<br />

voorjaar 1985 wan het macrozoobeuthos <strong>in</strong> het Grevelirkgemeer, en<br />

enige notities ova lanse-tewijnontwikkel*gen.<br />

Verslagen 1986-5, DI110, Yersske, 110 p.<br />

IPapporten en<br />

LAXBECK. R.B.D. and SMET, G. DF. 1987. Een bestandsopname <strong>in</strong> voorjaar<br />

1986 van het macrovoobenthos <strong>in</strong> het Grevel<strong>in</strong>gemeer.<br />

Rapporten en Verslagen 1987-4, DIHO. 'Lerseke, 38 p.<br />

WQUEIYIE, J.N., ROELE. F. and HOOWI(NSMAi3, G.. 1986. Onderzoek mar de<br />

effecten van cuatamiwanten op duihenden. MT-TNO<br />

86f066, 35 p.<br />

rapport nr<br />

NADSEN, J., 1987. Statue and management of goose populatioas <strong>in</strong> Europe,<br />

WEER,<br />

ntch special reference to populat-ions test<strong>in</strong>g and breed<strong>in</strong>g <strong>in</strong><br />

Dpmnerk. Danish Review of Gane Biology 11 (4):<br />

1-7t3.<br />

J. VAN DER, 1985. De verstorUg v& Vqgels op de slrlcken vaa de<br />

Oosterschelde, Rijkswaterstaat, naea DBMI nr 35.09, Middelburg,<br />

31 p.<br />

MEININGER, P.L.,<br />

Charadrius en sterns<br />

1986. Uuut Recurvirostra auocetta, pleuiezen<br />

1979-1985. limosa 59: 1-14.<br />

als broedvogels <strong>in</strong> het <strong>Delta</strong>gebied <strong>in</strong><br />

NIEINIUGER. P.L., BAPTIST. Q.J.M. end SLOB, G.J., 1984.<br />

Vogeltell<strong>in</strong>gen <strong>in</strong> het Zuidelijk Daltagebied <strong>in</strong> 1975/76-1979180.<br />

Nota DDMI-84.23. Rijbwaterstaat. Middelburg. 390 p.<br />

M E I ~ G ~ P.L., , BPsrm, n. J.M. and SLOB, G.J.,<br />

19~~s.<br />

Vo&alrell<strong>in</strong>gen ia het Zuidelijk <strong>Delta</strong>gebied 198OfPll-1983184. Hota<br />

DCWM-85.001, Bijksaraterstaat. Middelburg, 159 p.


MEININGEB, P.L. and HAPEREX, A.M.M. VAN. 1988. Vogeltell<strong>in</strong>gen <strong>in</strong> het<br />

MEIRE, P.M.<br />

Zuidelijk Beltagebied <strong>in</strong> 1384/&5-1986/87. Nota GWAO-88.1018,<br />

Rijkswaterstaat, Middelburg, 134 p.<br />

Forag<strong>in</strong>g behaviour of some w<strong>in</strong>ter<strong>in</strong>g waders: Prey-selection<br />

and habitat distributton. In Kamil, A.G.,<br />

Krebs, J.R. isnd<br />

Pulliam, B. R. (Eds. ) Forag<strong>in</strong>g Behaviour. p. 215-238.<br />

Plenum Press, New Xork.<br />

MEBE, P.M. and ERVYNM, A., 1986. Are Oystercatchers (Haamatopus<br />

hIEIRE. P.M,<br />

ostralegus) select<strong>in</strong>g <strong>the</strong> most opt-<br />

dnimal Behaviou~ 34: 1427-1435.<br />

mussoLs (Mytilus ednlisj?<br />

8nd KUlJKBi, E., 1988. Hec land van Saefeff<strong>in</strong>ge, schorren en<br />

slikken: ecoLogische betOkenis van getijdegehxeden langs de<br />

Schelde. Water 43: 214-222.<br />

MULDER, J.P.M.,<br />

1989. The cAang<strong>in</strong>g tidal lsndscrrpe <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area at<br />

<strong>the</strong> South-West We<strong>the</strong>rlands. This Volume.<br />

NIENHUIS. P.H. anand GRDENENDIJK, A.M., 1986. Consumption of eelgrass<br />

[Zoatera mar<strong>in</strong>a) by birds and imertebrates: an annual budget.<br />

Mar. Ecol. Progr. Ser. Vol. 29: 29-35.<br />

Wsra(lM, $.C. and PZHRSON, O., 1988. Sal<strong>in</strong>ity as a constra<strong>in</strong>t affect<strong>in</strong>g<br />

food and habitat choice cf mussel-feed<strong>in</strong>g div<strong>in</strong>g ducks. Ibis 130:<br />

94-110.<br />

ODUM. E.P., 1972. Fundauentals of Ecology, $auDders College Publish<strong>in</strong>g.<br />

Philadelpbia, 574 p.<br />

SaEIJB. H.L.B. and BAPTIST, H.J.X., 1977. Wetland criteria and birds<br />

<strong>in</strong> a chang<strong>in</strong>g <strong>Delta</strong>. Bid. Consem. 11: 251-266.<br />

SCllOLTEW, B.C.T. and FOEKEMA, E.M., 1988. Onderzoek mar do effect@=<br />

van een verhobgd gehalte aan microverontre?nig<strong>in</strong>gen <strong>in</strong> bet<br />

voedsel, op de conditie sn voortplantfng van watemogels. MT-TNO<br />

rapptt, nr 288/1&5, 34 p.<br />

SEYS. J. and MEIRE, P.M.,<br />

1988. Microzoobenthos van het Veerse Meer.<br />

Rijksuniversiteit, Gent, Rapport WE nr 4. 61 p.<br />

STUART, 3. 1989. Bet voorkome~ en voedsel van vogels <strong>in</strong> het Veerse<br />

Meer. Rijksuniversiteit Gent. Rapport WWE nr 5. 198 p.


SZIJJ, J., 1972. Some Suggested Friteria for determ<strong>in</strong><strong>in</strong>g <strong>the</strong> <strong>in</strong>teational<br />

importance of Wetlands <strong>in</strong> <strong>the</strong> Western palearctic. In Proe.<br />

at. C&. Consem. Werlands and Waterfowl. Ramsar, Iran, 1971:<br />

101-119.<br />

WdABaENEUILCti. W.W. and EIBIJER, A.J.M.. 1988. Qnderzoek mar pressotasie<br />

van kle<strong>in</strong>e vissoorten <strong>in</strong> het Veerse Meer. Bureau Waardenbursh,<br />

Concept-rappott; 17 p.<br />

,%WART$, L. and WMINK, J.. 1984. Bow oystercatcher and Curlews<br />

successively deplete clams. In Evans. P.R., Coss-Custard, J.D.<br />

and Hale, W.G. (Eds.) Coastal waders and Wildfowl <strong>in</strong> w<strong>in</strong>ter.<br />

Cambridge University Press, Cambridge, p. 69-83.


PISCIVORES<br />

Litfle Grebe<br />

Great Crested Grebe<br />

Black-necked Grebe<br />

cormorant<br />

Grey Berm<br />

sew<br />

Red-breasted Merganser<br />

Gooijande r<br />

(Tachybaptus ruficallis)<br />

(Podiceps cristatus)<br />

(Podiceps ni~ricollis)<br />

(Phalaerocorar carbo)<br />

(drdea c<strong>in</strong>erea)<br />

Wrgug albellus)<br />

(Menergus serrator)<br />

(Mersus merganser)<br />

Mute Swan<br />

Bewick's Swan<br />

Bean Goose<br />

Whire-fronced Wose<br />

Greylag Goose<br />

mrnaele Goose<br />

Brent Gouse<br />

Wigeon<br />

Teal<br />

Mallard<br />

P<strong>in</strong>tail<br />

shoveler<br />

Gudwall<br />

coor<br />

Pschard<br />

(cygnus olor)<br />

(Cygnus colw6arius)<br />

(heer fabalis)<br />

(Anaer albifrons)<br />

(Anser anser)<br />

(Branta leucopsis)<br />

(Branta berniclal<br />

(Anas penelope)<br />

(AnaB crecra)<br />

(Anas platyrhynchos)<br />

(Anas acuta)<br />

(Anas clypeata)<br />

(Anas strepera)<br />

(Fulica afra)<br />

(Aythya fer<strong>in</strong>a)


(WADERS AND SHELDUCK)<br />

Sheldock<br />

Oystercatcher<br />

dvocet<br />

R<strong>in</strong>ged Plover<br />

Kentish Plover<br />

Oolden Plover<br />

Grey Plover<br />

Lapw<strong>in</strong>g<br />

K,l@ t<br />

Sanderl<strong>in</strong>g<br />

D u n U<br />

Xuf f<br />

Bar-tailed Godwit<br />

Curlew<br />

Spotted Redshank<br />

Redshank<br />

Greenshank<br />

Twtone<br />

(Tadorna tadorna)<br />

(Haematopus ostralegus)<br />

(Recnrvirostra avosettaf<br />

(Charadrius hiaticula)<br />

(Charadrius alexandrlnus)<br />

(Plwialfs apricaria)<br />

(Plwialis squataroia)<br />

(Vanellus vanellus)<br />

(Calidris canutus)<br />

(Calidris a16a)<br />

(Calidris alp<strong>in</strong>a)<br />

(Philomehus pugnax)<br />

(Limosa lapponica)<br />

(Nmenius arquata)<br />

(Tr<strong>in</strong>ga erythropus)<br />

(Tr<strong>in</strong>ga totanus)<br />

(Tr<strong>in</strong>ga nebularia)<br />

(Arerraria <strong>in</strong>terpres)<br />

(DTVIIiG DlJClls)<br />

Tufted Duck<br />

Cornman Scoter<br />

Goldeneye<br />

(Aythya fuligula)<br />

(Melnitta nigra)<br />

{Bucepbala clangula)<br />

OMNIVORES (GLJLLS)<br />

Black-headed Gull<br />

Comn Gull<br />

Herr<strong>in</strong>g Gull<br />

Great Black-backed Gull<br />

(Larus ridibundus)<br />

(Larus canus)<br />

(Larus argentatus)<br />

(Larus mar<strong>in</strong>us)


IPYBRO-EGOLOOIOAL BELATIONB ZN THE DELTA WATERS 08 TKE SOUTH-WEST<br />

NFm-s<br />

C.W.<br />

Iedema<br />

The Deltii Pruject ha* taught us a great deal abont <strong>the</strong> ecologied<br />

<strong>relations</strong> between <strong>the</strong> <strong>in</strong>dividual waters af <strong>the</strong> <strong>Delta</strong> and bemen <strong>the</strong><br />

waters bf <strong>the</strong> <strong>Delta</strong> wd <strong>the</strong> Earth Sea md <strong>the</strong> major risers. In a<br />

number of <strong>in</strong>stances <strong>the</strong> knowledge ga<strong>in</strong>ed could directly be translated<br />

<strong>in</strong>to terme of allscation and management measurdtr. In o<strong>the</strong>r easa<br />

valuable lessaw were learned for preeent ar future -gemant. In dl<br />

cases it became clear that ie <strong>the</strong> context of compartqentalization,<br />

allocation plm aud management should pr*mily be gewed to<br />

supervis<strong>in</strong>g <strong>the</strong> reaulc<strong>in</strong>g processes of chqe. The object is to make<br />

optislaL use of <strong>the</strong> porential of <strong>the</strong> <strong>in</strong>diskdual systems as chey relate<br />

to one ano<strong>the</strong>r. This paper pzwidea a brief suldmary of <strong>the</strong> lessons to<br />

be learned £rose prwious studies.<br />

One of <strong>the</strong> most important lessons learned from <strong>the</strong> Belta Project, and<br />

one which has been learned elsewhere too, is that it is fatal to<br />

attempt to fight nature. Victories often turn out to he Pyrrhic. The<br />

battle sga<strong>in</strong>at <strong>the</strong> vaters must he waged. but <strong>in</strong> =&=h a way tbat osture<br />

is on man's aide. b e should learn from nature, ra<strong>the</strong>r than try to<br />

teach nature a lesson. Exsmples can he found <strong>in</strong> <strong>the</strong> <strong>Delta</strong> region of<br />

how, <strong>in</strong> this way, an Sncrease <strong>in</strong> ssfety can be ~~mh<strong>in</strong>ed with <strong>the</strong>


develwpment of last<strong>in</strong>g and valuable systemnr. This should wt be<br />

<strong>in</strong>terpreted as a licence to compartmentalize estuaries and to create<br />

polders <strong>in</strong> coastal areas. V we have learned one th<strong>in</strong>g, it is that<br />

estuar<strong>in</strong>e systems are precious and irreplaceable, both <strong>in</strong> ad<br />

<strong>ecological</strong> and aa ecoMmic sense. Estuaries are by nature highly<br />

productive and dyllamlr systems. Adequate protection of <strong>the</strong>se area*<br />

aga<strong>in</strong>st pollution, over-exploitation and o<strong>the</strong>r detrimental<br />

<strong>in</strong>flames can provide a last<strong>in</strong>g guarantee for such assets.<br />

The c~npartmenralization of <strong>the</strong> <strong>Delta</strong> had taught us that this is no<br />

matter of course <strong>in</strong> <strong>the</strong> case of <strong>the</strong> thus created waters. The<br />

developments, which this process triggered off, require close<br />

supervision if <strong>the</strong>se newly-formed waters are to achieve <strong>the</strong>ir full<br />

potential, and <strong>the</strong>se new <strong>Delta</strong> waters do <strong>in</strong>deea have <strong>the</strong> potential to<br />

develop <strong>in</strong>to valuable systems.<br />

The nacural relacions <strong>in</strong> che <strong>Delta</strong> have been upset. However, it has<br />

been replaced by new <strong>relations</strong>. In some cases this has happned on a<br />

fairly lbited scale, whereas <strong>in</strong> o<strong>the</strong>rs an entirely new natural basis<br />

has been created. Natural relsti~ns are no lwger taken for granted.<br />

Instead it must be taken for granted that an attempt will he made<br />

wherever possible to manage <strong>the</strong> <strong>Delta</strong> <strong>in</strong> its present form as a s<strong>in</strong>gle<br />

coherent whole. The lessons which have been learned up tb now. and<br />

which have been dealt with extensively <strong>in</strong> previous chapters, can help<br />

ta guide this process.<br />

The build-up of silt and pollutants are processes with which <strong>the</strong><br />

Ne<strong>the</strong>rlands, as a delta-country, is em<strong>in</strong>ently familiar. This problem<br />

has also affeceed <strong>the</strong> <strong>Delta</strong> of <strong>the</strong> South-West Nerherlands, and <strong>the</strong><br />

follow<strong>in</strong>g lessons have been learned:<br />

- Upstream pollution results <strong>in</strong> <strong>the</strong> build-up of pollueants <strong>in</strong><br />

d6wnstrsam sedimentatibn areas with serious detrimental effeets cm<br />

<strong>ecological</strong> development and economic potential (e.g. pollution of<br />

eels). This process is be<strong>in</strong>g re<strong>in</strong>forced by dsuun<strong>in</strong>g up <strong>the</strong><br />

downstream areas at one side. Therefore dadng up cannot be seen


apart from upstream purification;<br />

- h natural estuaries, azeas of sedimentation - lnud flats and salt<br />

marshes - are usually <strong>the</strong> most valuable areea. Theg aw accard<strong>in</strong>gly<br />

exceptionally susceptible to pollution, as <strong>in</strong> <strong>the</strong> case of 'Het Land<br />

van Saeft<strong>in</strong>ghe'. Attempts to clean upstream should <strong>the</strong>rdore at <strong>the</strong><br />

very leasr be directed at safegwd<strong>in</strong>g <strong>the</strong> natursl richer; of <strong>the</strong>se<br />

sedimntatlon areas;<br />

- Compartmentalizatiun eau be used to conf<strong>in</strong>e accumulation of<br />

pollutants to a rescricted, manageable area. This protects o<strong>the</strong>~<br />

areas from pollution &nd accompany<strong>in</strong>g problems. Wiahent<br />

compartmentalization a camiderable parr of <strong>the</strong> severely<br />

coutam<strong>in</strong>a0ed silt, n w present as sedimentation <strong>in</strong> <strong>the</strong> Hollands<br />

Diep and Har<strong>in</strong>grrliet, would have entered <strong>the</strong> coastal waters and <strong>the</strong><br />

Wadden 6ea. So compartmentaliration could also be applied<br />

especially for this purpose, harever, as an <strong>in</strong>terim measure <strong>in</strong><br />

comb<strong>in</strong>ation with efforts to clean up pollution.<br />

3 DOWNS'J!XUM FRESH WATER EUTROPRZCATION<br />

Besides be<strong>in</strong>g ezceptianally vulnerable EO pollution, <strong>the</strong> semi-stagnant<br />

freshwater bas<strong>in</strong>s sltnated do*astream are also <strong>in</strong>creas<strong>in</strong>gly<br />

susceptible ta eutrophication. iieretw, upstream purification is<br />

necessaxy for responsible compartmentalizatian. At <strong>the</strong> same time,<br />

however, <strong>the</strong> scope for management <strong>in</strong>creases:<br />

- A major factor affect<strong>in</strong>g heightened snsceptibility to<br />

eutrophication is <strong>the</strong> <strong>in</strong>crease <strong>in</strong> <strong>the</strong> residence time oi water. The<br />

organization of <strong>the</strong> watemnanagement <strong>in</strong>frastructure, <strong>in</strong> such a way<br />

that <strong>the</strong> residence times can be reduced to a euffioient degree, is<br />

an important management aid;<br />

- Eutrophication priaariLy resnlts from an excess aE nutrients. One<br />

of <strong>the</strong> facters affect<strong>in</strong>g <strong>the</strong> way <strong>in</strong> which nutrients paas thtcueh an<br />

aquatic ecosystem is <strong>the</strong> latter's structure, and this creates scope<br />

for esntroll<strong>in</strong>g such systems, partioulazly <strong>in</strong> <strong>the</strong> early stages of<br />

development, as <strong>in</strong> <strong>the</strong> case of <strong>the</strong> Zomeer, Ecological parasleters<br />

must be set fsr <strong>the</strong> establishment and develop~nent of rich, divers<br />

biocoenoses eharacteriscics of clear water rich <strong>in</strong> nutrients.


Crucial here is <strong>the</strong> presence of extensive, protected shallows.<br />

Manageability of fish stocka should be lrentral to policy. Simply<br />

grant<strong>in</strong>g fish<strong>in</strong>g rights to anglers and fishermen, frustrate<br />

atzeqts to combat eutropkieation directly by means of active<br />

biological oiutagEment. Suceess is conditional on <strong>the</strong> management of<br />

fish stocks be<strong>in</strong>g <strong>in</strong>cgrporated <strong>in</strong>to water quality management.<br />

Salwte* entraphication <strong>in</strong> different frotn freshwater wtrophication,<br />

althongk closed, stagnant salt waters also have a greater<br />

susceptibility to eutrophication. One of <strong>the</strong> ma<strong>in</strong> differences is that<br />

<strong>in</strong> <strong>the</strong> case of salt water often nitrogen is <strong>the</strong> limit<strong>in</strong>g factor and<br />

nitrification is <strong>the</strong> key process. In response to this <strong>the</strong> Eollow<strong>in</strong>g<br />

managewant measures can be taken:<br />

- Excessive levels of nutrients <strong>in</strong> stagnant, sal<strong>in</strong>e systems are<br />

chiefly regional <strong>in</strong> orig<strong>in</strong>. In p~<strong>in</strong>eiple this provides scppe f ~ r<br />

gear<strong>in</strong>g nlltrient levels to <strong>the</strong> <strong>in</strong>dividual eapacity of a system. At<br />

its present level, <strong>the</strong> channell<strong>in</strong>g of nutrient-rich polder water<br />

<strong>in</strong>to <strong>the</strong> tidal systems does not lead to undesirable affects<br />

associated with wtmphicat-lon. The channell<strong>in</strong>g to ttre Ea6tern<br />

Scheldt of <strong>the</strong> polder water currently teleased <strong>in</strong>to <strong>the</strong> Veerse<br />

Wer, for example, i4 even expected to hr<strong>in</strong>g about a slighr rise <strong>in</strong><br />

productivity. The ma<strong>in</strong> objective, <strong>in</strong>cidentaliy, cont<strong>in</strong>ues to be <strong>the</strong><br />

improvement af polder water quality, not <strong>in</strong> <strong>the</strong> Least because of<br />

present pollution levels;<br />

- Besides adaptirrg nutrient levels to <strong>the</strong> system, it is necessary to<br />

create sufficient scope for <strong>in</strong>term<strong>in</strong>gl<strong>in</strong>g with salt tidal waters if<br />

stagnant, sal<strong>in</strong>e systems are to develop. Besides <strong>the</strong> significance<br />

of sal<strong>in</strong>ity as euch aa m <strong>ecological</strong> determ<strong>in</strong>ant, this approach<br />

permits regulation of <strong>the</strong> nutrient balance. Surplus nutrients and<br />

organic matter ean be &ra<strong>in</strong>ed<br />

off and <strong>the</strong> likelihood of<br />

stratification can be reduced. That this latter phenomenon is<br />

rmportant is illustrated by <strong>the</strong> Veerse Meer. where srratitiaatien<br />

has been Eamd to exacerbate <strong>the</strong> current prablenns of<br />

eutropllication;


Storm surge barrier Eastern Scheldt


Recreation on Lake Vee~e<br />

e<br />

Shore protection Har<strong>in</strong>gvliet


- In addition to exist<strong>in</strong>g management measures, <strong>the</strong>re may well be<br />

future scope for a creative nespome to <strong>the</strong> ways <strong>in</strong> wbicb salt,<br />

stagnant lakes function. Such steps might <strong>in</strong>clude <strong>in</strong>creas<strong>in</strong>g<br />

denitrification <strong>in</strong> erde~ to remom nitrogen from <strong>the</strong> system. Thi8<br />

might be achieved by <strong>in</strong>flueno<strong>in</strong>g nirrifieation and denitrification<br />

processes <strong>in</strong> <strong>the</strong> bed by meam of stratification. Ano<strong>the</strong>r<br />

possibility Would 6e to make use sf <strong>the</strong> natural process, whereby<br />

organisms which <strong>in</strong>habit <strong>the</strong> salt lake bed act as an essential<br />

fater <strong>in</strong> <strong>the</strong> regulation of nutrients. The passibilit~ pf us<strong>in</strong>g<br />

sui3 organisms as an active policy irtstrument could be<br />

<strong>in</strong>vestigated.<br />

The water <strong>in</strong> <strong>the</strong> <strong>Delta</strong> sues its major significance to <strong>the</strong> marpholegy<br />

of <strong>the</strong> bas<strong>in</strong>s. The hydraulia conditions of <strong>the</strong> tidal waters have given<br />

rise to a m~rphological structure and dynamics, which contribute to<br />

<strong>the</strong> probuctlvify iard diversity of <strong>the</strong>se regions. Gomparmentalization<br />

hs9 sparked af* a process of ~lorphol~&iical change, which will lead to<br />

mme UdEaoourable donditions <strong>in</strong> <strong>the</strong> clesed compartme?ats. On <strong>the</strong> othsz<br />

hma, <strong>the</strong> morpholog%eal changes along <strong>the</strong> coast - <strong>the</strong> creation of <strong>the</strong><br />

Voordella - shwld he regarded <strong>in</strong> a favortlable light, because:<br />

- The morphhetry Of estaaries provideo an ideal start<strong>in</strong>g po<strong>in</strong>t fa:<br />

mmimiir<strong>in</strong>g <strong>the</strong> developent potential of campartmentalized syst-ems.<br />

This applies paftlcnlarly to tbt peesenee of lac:@ areas of<br />

shallows and <strong>the</strong>ir gradual transition to t b hanks. It is essential<br />

to preselnre <strong>the</strong> morphwetry of such areas as much as posp~ihle if<br />

<strong>the</strong>ir potential is to be exploited. Considetable experience has<br />

been amassed <strong>in</strong> <strong>the</strong> <strong>Delta</strong> <strong>in</strong> <strong>the</strong> constructian of out@? hank<br />

defences;<br />

- It is possible to create new and valuable areas through <strong>in</strong>fluenc<strong>in</strong>g<br />

processis of seclireantation and erosion. Tha Voordelta is a good.<br />

albeit un<strong>in</strong>tentional, example of this. Sowever, it shoatd be<br />

poaslble, given present know-har and experience, consciously to<br />

create snch as by work<strong>in</strong>g <strong>in</strong> harmwny with nat.ural processes and<br />

eseahIishFng <strong>the</strong> right parsmeters. In lipe with this approach, ways<br />

are cuzrently be+<br />

<strong>in</strong>vestigated of <strong>in</strong>fluensisg mud flat and salt


marsh development <strong>in</strong> <strong>the</strong> east of <strong>the</strong> Western Scheldt.<br />

Just as <strong>in</strong> <strong>the</strong> case of morphologi~al developments, natural<br />

developxcents often take place on a time scale which far exceeds ehe<br />

term of <strong>the</strong> average government. This is particularly important <strong>in</strong> <strong>the</strong><br />

case of natural developments, because O~WOIIS of <strong>the</strong> desired course<br />

of such developments are subject to change. Bowever, this concerns not<br />

sa ioch <strong>the</strong> ecelogical conditions, which have been dealt with earlier,<br />

hnt ware <strong>the</strong> management and policy choices which affeet natural<br />

developaent. This applies particularly to former <strong>in</strong>tertidal areas.<br />

To date natural devel6pmenta <strong>in</strong> rhe <strong>Delta</strong> have sometimes faced us with<br />

unexpected situations. Although naru mre is knm of <strong>the</strong> directions <strong>in</strong><br />

which nacure can develop, it is important to be aware that <strong>the</strong> future<br />

may still hold surprises <strong>in</strong> this respect. S<strong>in</strong>ce hug-term developments<br />

are <strong>in</strong>volved, it is important to guard aga<strong>in</strong>st phas<strong>in</strong>g <strong>the</strong> successive<br />

stages too rigidly and aga<strong>in</strong>st try<strong>in</strong>g to steer <strong>the</strong>m too qnicklr <strong>in</strong> a<br />

certa<strong>in</strong> direction.<br />

Water meaagemeqt rewbs a key confro1 element iu natural development,<br />

especially tn areas along <strong>the</strong> banks. It is clveial to ma<strong>in</strong>ta<strong>in</strong> not<br />

only <strong>the</strong> quihity, but particularly <strong>the</strong> level of <strong>the</strong> vatar. nspits<br />

this fact, <strong>in</strong> almost no <strong>Delta</strong> area wat~rlavelmanageaeut is geared to<br />

natural development. This is due KO orher secid <strong>in</strong>terests hav<strong>in</strong>g been<br />

taken WO considmation. In <strong>the</strong> damstream freshwater areas of <strong>the</strong><br />

<strong>Delta</strong>, <strong>the</strong> potential for natural develapment would be optimally<br />

fur<strong>the</strong>red by waterlevel mmagement, which reflected <strong>the</strong> nacural rise<br />

and fall of waterlevels <strong>in</strong> downstream areas. In <strong>the</strong> case of <strong>the</strong> salt<br />

lakes of <strong>the</strong> Dslta this is leas clear-out. The best approach is<br />

probably to ma<strong>in</strong>ta<strong>in</strong> a standard level, with brief periods of flood<strong>in</strong>g<br />

<strong>in</strong> w<strong>in</strong>ter. Howeven, <strong>in</strong> <strong>the</strong> event of a review of or change <strong>in</strong><br />

waterlevel-ent great weight shanld 4e attached so <strong>the</strong> qatural<br />

development factor.


Nature is pliable. Belattvely young and dyndc areas offer particuiar<br />

scope for pasifive <strong>in</strong>fluence of natural. development. Such possibilities<br />

must. however, be recognized. Reference was m&de earlier to <strong>the</strong><br />

creation 02 md flats and salt marshes through tbe control of<br />

processes of sed3mentatiorn and erosion. An6<strong>the</strong>r poasibilitg might ile<br />

<strong>in</strong> <strong>the</strong> hydrology of <strong>the</strong> areas with<strong>in</strong> <strong>the</strong> dykes. The dyk<strong>in</strong>g <strong>in</strong> OX xh~d<br />

flats and salt marshes 6as resulted <strong>in</strong> <strong>the</strong> loss of many sal<strong>in</strong>e areas.<br />

At <strong>the</strong> same rime <strong>the</strong> consttuction of dykes strongly reduced <strong>the</strong><br />

potential for <strong>the</strong> ra-rgence of new sal<strong>in</strong>e aims. Uithont wishiw to<br />

add new land to <strong>the</strong> list of "Eet Verdronken Land van ........." *l,<br />

use could be made of <strong>the</strong> scmpe for prowt<strong>in</strong>g <strong>the</strong> estzblishnrent of new<br />

sal<strong>in</strong>e areas with<strong>in</strong> <strong>the</strong> &ykess, for example <strong>in</strong> poldera which are now<br />

alraady margM for agriculture.<br />

7 FODD ECOLOGY CONNECTIONS: BIDS<br />

The <strong>Delta</strong> is an important "Fill<strong>in</strong>g statlon" for birds, and must reraa<strong>in</strong><br />

so. In <strong>the</strong> context of nature coneervation and <strong>the</strong> wxse use of<br />

wetlands, this is one of our mst important <strong>in</strong>ternational<br />

responsibilities hexe <strong>in</strong> <strong>the</strong> <strong>Delta</strong>.<br />

Besides supervis<strong>in</strong>g khe changisg <strong>ecological</strong> parrnters, dealt with<br />

atenaively earlier, mttnagement and policy should be geared to<br />

regulate <strong>the</strong> chang<strong>in</strong>g use of such areas bg <strong>the</strong> general public as a<br />

result of greater a~ce~sibility. Particular atteatien will have to be<br />

gioen to resfric'tisg <strong>the</strong> disrurbanee caused by recreatirmal<br />

actiulties. O<strong>the</strong>r, relaced po<strong>in</strong>ts will however eIso require conside-<br />

raeiaq, such as llntit<strong>in</strong>g food competition result<strong>in</strong>g from fia<strong>in</strong>g.<br />

On <strong>the</strong> o<strong>the</strong>r haus, public support fm certa<strong>in</strong> rwirsures will <strong>in</strong>creiwe<br />

if people can see for th-ekes haw valuable such areas are.<br />

*) "tbe drowned Land of . . . . . . . . . . ."


The best approach would sew to be to provide restricted but ta~geted<br />

admission, for example by build<strong>in</strong>g hides and provid<strong>in</strong>g effecrfve<br />

public <strong>in</strong>fornation.<br />

Compartmentaliaation has sharply <strong>in</strong>creased <strong>the</strong> diversity of habitars.<br />

As a result, <strong>the</strong> <strong>in</strong>dividual system$ are characterised by deferent<br />

bird populatiow. 5-<br />

syeteae are 6tiI1 <strong>in</strong> a state of transition.<br />

Sandvich terns, fmr example. still breed <strong>in</strong> €he Greuel<strong>in</strong>gemeer area,<br />

whereas <strong>the</strong> type of bare ground required by <strong>the</strong>se birds for nest<strong>in</strong>g<br />

purposes is <strong>in</strong>creas<strong>in</strong>gly disappear<strong>in</strong>g from<strong>the</strong> region through natural<br />

causes. Although <strong>the</strong> presence ol this specias ma7 be extremely important<br />

to local nature conservationists, one mwst try and avoid mak<strong>in</strong>g<br />

desperate ef3orts tQ fry to keep certa<strong>in</strong> species <strong>in</strong> areas which are<br />

actually no longer suited to <strong>the</strong>m. A more sens%ble approach would be<br />

to try t6 re<strong>in</strong>force <strong>the</strong> characteristics peculiar to each <strong>in</strong>dividual<br />

system.


Ro. 1.<br />

No. 2.<br />

SQ. 3.<br />

Investigations <strong>in</strong>to <strong>the</strong> water balance of <strong>the</strong> Rottegatspolder.<br />

The water supply for craps I.<br />

Obsemvations of groundwater levels.<br />

Investigations by $ra<strong>in</strong> gauges <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands.<br />

me water supply for crops 11.<br />

The problem of <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g sal<strong>in</strong>ity of ground and SutfaCe<br />

vat& <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands.<br />

Proceed<strong>in</strong>gs of Tecbuieal Meet<strong>in</strong>gs 1-6 (with s~lthlties <strong>in</strong><br />

English), 1952.<br />

The study of precipitation data.<br />

Model reeearch on groundwater flows.<br />

Measurements and improvement works <strong>in</strong> bas<strong>in</strong> of brooks.<br />

Oeo-electrical research.<br />

Proceedtn@ of Technical Meet<strong>in</strong>gs 7-10, and<br />

Report on <strong>the</strong> evaporatian research <strong>in</strong> <strong>the</strong> Rottegatsaolber<br />

1947-1952 (with solmsaries <strong>in</strong> English), 1955.<br />

The water supply of sandy soils.<br />

pualisy requirements far surface waters.<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>gs 11-12 (with aumoqaxies <strong>in</strong><br />

English), and<br />

Reprt on <strong>the</strong> Lysimeters <strong>in</strong> t&e Ne<strong>the</strong>rlands I (<strong>in</strong> %&ish),<br />

1958.<br />

No. 4. *) Evaporation Symposim and<br />

Report on <strong>the</strong> tysimeters <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rland5 IL (with eaies<br />

<strong>in</strong> English). 1959.<br />

*) Gut of pr<strong>in</strong>t.<br />

No. 5.<br />

No. 6.<br />

Groundwater levels and grsundwater wement <strong>in</strong> <strong>the</strong> sandy<br />

areas of <strong>the</strong> Wethmlwds.<br />

Water <strong>in</strong> uwaturate4 soil.<br />

Procacd<strong>in</strong>gs of Tedmical Meet<strong>in</strong>gs 13-1b (with SMsnaries <strong>in</strong><br />

English), 1960.<br />

The regime of <strong>the</strong> Uh<strong>in</strong>e, eh& Psselmeer and Zeelasd Lake.<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 15 (with summaries <strong>in</strong> EnglisR<br />

and French), 1961.<br />

NO. 7. Tbe dry year 1959.<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 16 (with smtmaties <strong>in</strong><br />

English). 1962.<br />

No. 8.<br />

The laws of groundwater Slow and <strong>the</strong>ir application <strong>in</strong> practice,<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 17 (with smmnaries <strong>in</strong><br />

English). 1963.


No. 9.<br />

Water nuisanc*.<br />

Proceed%ngs of Technical Meet<strong>in</strong>g 18 (with smries <strong>in</strong><br />

English). 1963.<br />

No. 10. Steady flow of groundwater twa~de wells.<br />

Compiled by <strong>the</strong> ltgdrologisch Colloguilmr (<strong>in</strong> English), 1961r.<br />

No. 11.<br />

No. 12.<br />

No. 13.<br />

Geobpdrological cartography.<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 19 (with summaries fii French<br />

and Geman), 1964.<br />

Water balance studies.<br />

Prqceed<strong>in</strong>gs 05 Technical &eet<strong>in</strong>g 20 (<strong>in</strong> English), 1966.<br />

Recent trends <strong>in</strong> hydrograph syn<strong>the</strong>sis.<br />

Proaeed<strong>in</strong>gs of Technicsrl Meeag 21 (<strong>in</strong> English). 1966.<br />

go. 14.<br />

No. 15.<br />

Precipitation data (11) and<br />

Report on <strong>the</strong> Lysimerers <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands (111)<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 22, Cvlth suromaSe6 <strong>in</strong><br />

English) 1968.<br />

Soil - water - plant.<br />

(h Znglish) , 1969.<br />

#Q. 16. Bpdrological <strong>in</strong>vestigations .for masterplan for <strong>the</strong> future<br />

watersupply <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands.<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 29 (with sumaries <strong>in</strong><br />

English). 1975.<br />

No. 17. Auromatfc process<strong>in</strong>g of h~drological data.<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 25 (<strong>in</strong> Emlish), 1973.<br />

Ns. 18. Eydraulic research for uatar laanagement.<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 26 (<strong>in</strong> English), 1974.<br />

WO. 19. The hydrological <strong>in</strong>vestigation programme <strong>in</strong> Salland<br />

(The Ne<strong>the</strong>rlands).<br />

Procaed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 27 (<strong>in</strong> English). 1974.<br />

Na. 20.<br />

MO. 21.<br />

Salt dietributian <strong>in</strong> estuaries.<br />

Proceediags ef Technical Meet<strong>in</strong>g 30 (<strong>in</strong> English, 1976.<br />

Groundwater pollution,<br />

Proceed<strong>in</strong>g% of Technical Meet<strong>in</strong>g 31 (<strong>in</strong> English), 1976.<br />

N0. 22. Systems agproach to <strong>the</strong> managemant of water resources.<br />

Eioceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 32 (vlth suromaries <strong>in</strong><br />

English). 1976.<br />

No. 23.<br />

No. 24.<br />

Precipitation and measurements of precipitation.<br />

Procead<strong>in</strong>gs of Tecturical Meet<strong>in</strong>g 33 (<strong>in</strong> English), 1977.<br />

Urbanization and water management.<br />

Proceed<strong>in</strong>g@ of Technical Meetfng 34 (<strong>in</strong> English). 1978.


25. The relation between water quantity and water quality <strong>in</strong><br />

studies of surface waters.<br />

P~oceed<strong>in</strong>gs of Technical PLeet<strong>in</strong>g 35 (<strong>in</strong> English), 1979.<br />

26. Eeaearcb an possible change* <strong>in</strong> <strong>the</strong> discrLhuriou of =l<strong>in</strong>e<br />

seepage <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands.<br />

Prnceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 36 (<strong>in</strong> English]. 1980.<br />

No.<br />

No.<br />

NO.<br />

27. Water resources menagament on a regional scale.<br />

Prsceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 37 (<strong>in</strong> Fagfish), 1981.<br />

28. Evaporation <strong>in</strong> relation to hy4mlogy.<br />

ProceedZngs of Technical Meet<strong>in</strong>g 38 (<strong>in</strong> English). 1981.<br />

29a. Pality analysis for &e national water mnagement of<br />

<strong>the</strong> Ne<strong>the</strong>rlands.<br />

Background papers for Technical Meet<strong>in</strong>g 39 (<strong>in</strong> Engliah), 1982.<br />

(Ne<strong>the</strong>rhds! contributiorw, related to <strong>the</strong> PAW-Mudy, for <strong>the</strong><br />

ECE-sem<strong>in</strong>ar-1980.)<br />

2%. Economic Ustruments for rafiohll utilization of water<br />

resources.<br />

Ne<strong>the</strong>rlaads contributions, nm related to <strong>the</strong> PAW-study, Tor<br />

<strong>the</strong> ECE-sam<strong>in</strong>ar-1982 (<strong>in</strong> English), 1B2.<br />

No.<br />

No.<br />

30. The role of hydrology <strong>in</strong> <strong>the</strong> United Natims Water Decade.<br />

Proaeed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 40 (<strong>in</strong> English), 19S3.<br />

31. Methods and <strong>in</strong>strumentation for <strong>the</strong> <strong>in</strong>vestigation of groundwater<br />

systems.<br />

Prooeed<strong>in</strong>gs of isternatienal ~osiran, Noordwig kerhout .<br />

The Ne<strong>the</strong>rlands (<strong>in</strong> En&lisb, vfrh summaries <strong>in</strong> Brench). 1983.<br />

32.*) Flam<strong>in</strong>g of Water Resources Management on a Regtonal Seale.<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 41 (with Prefaae <strong>in</strong> English),<br />

1985.<br />

*) Qut of pr<strong>in</strong>t.<br />

NO.<br />

Ns.<br />

33. Wacar <strong>in</strong> Urban uleas.<br />

Proceed<strong>in</strong>gs of Technical Met<strong>in</strong>g 42 (<strong>in</strong> English). 1985.<br />

34. Water management <strong>in</strong> relation to Nature, Forestry and Landsciyle<br />

knagement.<br />

Proceed<strong>in</strong>gs of Teehnlel Beet<strong>in</strong>g 43 CSn English). 1986.<br />

35. Design aspects of Bydrological Networks.<br />

Published with support of <strong>the</strong> World Meteatological Organiaation<br />

(<strong>in</strong> Engliah), 1986.<br />

36. Urban storm water quality and effects upon receiv<strong>in</strong>g waters.<br />

Proceed<strong>in</strong>gs of International tonference. Wagen<strong>in</strong>gen,<br />

The Ne<strong>the</strong>rlanas (14 English), 1986.


No. 37.<br />

No. 38.<br />

No. 39.<br />

No. 40.<br />

No. 41<br />

Water <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlaods.<br />

Repx<strong>in</strong>t of special issue CHO-TNO 194&I486 with dnnex SeIection<br />

of current topics, (<strong>in</strong> Engliahl. 198'9.<br />

Vulnerability of soil and groundwater to p0llntants.<br />

Proceed<strong>in</strong>gs of <strong>the</strong> International Conference, Noardvijkerh~ut,<br />

<strong>the</strong> Ne<strong>the</strong>rlands, organi~ed by <strong>the</strong> National EttstlNte of Public<br />

Health and Envirosmental Rygiene (<strong>in</strong> Esgltsh) , 1987.<br />

Evaporation and wea<strong>the</strong>r.<br />

Proceed<strong>in</strong>gs of TecMcai PIeet<strong>in</strong>g 44 t<strong>in</strong> E%Lish), 1987.<br />

Georhewal emgy and heat storsge <strong>in</strong> aquifers.<br />

Proceed<strong>in</strong>gs o& Tecbical -t<strong>in</strong>& 45 (Tcl Emish), 1988.<br />

Ilpdro-ecolpgiCg1 <strong>relations</strong> <strong>in</strong> <strong>the</strong> Delea TSaters of th~ South-West<br />

Ne<strong>the</strong>rlands.<br />

Proceed<strong>in</strong>gs of Techniaal Meet<strong>in</strong>g 46 (<strong>in</strong> English), 1489.<br />

All repart* are written <strong>in</strong> Enelish except reports nos.:<br />

l, 8 9 l 4 16, 22, 32.<br />

For order and price <strong>in</strong>formation:<br />

mo-TNO<br />

P.O. &ox ees<br />

2501 Bp TH& lL4CVE<br />

Tfie Ne<strong>the</strong>rlands

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!