29.10.2014 Views

Hydro-ecological relations in the Delta Waters

Hydro-ecological relations in the Delta Waters

Hydro-ecological relations in the Delta Waters

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Ne<strong>the</strong>rlands<br />

organkation fw<br />

applied scientik<br />

research<br />

TNO f2omdtee<br />

on Hydrdogical<br />

t?eseach<br />

8 hyara <strong>ecological</strong> <strong>relations</strong><br />

<strong>in</strong> <strong>the</strong> <strong>Delta</strong> <strong>Waters</strong> of <strong>the</strong><br />

South-West Ne<strong>the</strong>rlands


<strong>Hydro</strong>-<strong>ecological</strong> <strong>relations</strong><br />

<strong>in</strong> <strong>the</strong> <strong>Delta</strong> <strong>Waters</strong> of <strong>the</strong><br />

South-West Ne<strong>the</strong>rlands


TNO Commlitee<br />

on <strong>Hydro</strong>logical<br />

Research<br />

<strong>Hydro</strong>-<strong>ecological</strong> <strong>relations</strong><br />

<strong>in</strong> <strong>the</strong> <strong>Delta</strong> <strong>Waters</strong> of <strong>the</strong><br />

South-West Ne<strong>the</strong>rlands<br />

Proceed<strong>in</strong>gs and <strong>in</strong>formation No. 41<br />

Verslagen en Mededel<strong>in</strong>gen No. 41<br />

Editors<br />

J.C. Hooghart<br />

C.W.S. Posthumus<br />

Technical Meet<strong>in</strong>g 46<br />

Rotterdam, The Ne<strong>the</strong>rlands<br />

8 March 1989<br />

Publ~shed wlth support of<br />

Rijkswaterstaat, Directorate Zeeland<br />

The Hague 1989


COLOPHON<br />

Photographa<br />

- Rijkswaterstaat, DirectorateZeeland:<br />

- Rijkswaterstaat,Tidal <strong>Waters</strong> Division:<br />

reverseof<strong>the</strong>title<br />

page, l l b, 82b, 1 oOb,<br />

I 52a<br />

- R~jrtswaterstaat,lnstitutefor nlana<br />

Water Management and Waste WaterTreatment<br />

- K<strong>in</strong>g Air<br />

- BureauWaardenburg<br />

- W. Oorthuysen<br />

- P.L. Me<strong>in</strong><strong>in</strong>ger<br />

- E.Sterckel<br />

- L. Peperzak<br />

- M.Veldhuis<br />

- W. Riemens, National Forest<br />

Service<strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands<br />

Pr<strong>in</strong>ted by:<br />

DrukkeriJ/Uitgeverij Lakeweld B.V..The Hague<br />

CIP-DATA<br />

HydM-ecoiog~cal <strong>relations</strong> <strong>in</strong> <strong>the</strong> <strong>Delta</strong> <strong>Waters</strong> of <strong>the</strong><br />

South-West Ne<strong>the</strong>rlands: Technrcal Meet~ng 46, Rotterdam,<br />

The Ne<strong>the</strong>rlands, 8 March l989 1 eds. J.C. Hooghart,<br />

C.W.S. Posthumus.-The Haaue:TNO Committeeon Hvdrolog'cal<br />

Research. - Illustratio~s. - (Proceed'ngs and <strong>in</strong>rbrmaton<br />

ITN0 Committee on <strong>Hydro</strong>loaical Researcn: no 411<br />

With <strong>in</strong>dex. ref.<br />

ISBN 90-6743-160-5<br />

SiSO 573.3 UDC 574.5:627.51492.911<br />

Subject head<strong>in</strong>g: hydro-ecoldgy, delta<br />

COWRIGHT Q WTHE NETHERLANDS ORGANlZATlON FOR APPLIED<br />

SCIENTIFIC RESEARCH TNO, W89


2 RIVER WATER AM) THE QPALITH OF TBe DELTA WATERS<br />

L. Biflsnra md J.W.M. Kuipers<br />

Abstract<br />

1 <strong>in</strong>troduction<br />

2 Changes <strong>in</strong> <strong>the</strong> <strong>Delta</strong><br />

3 The quality of river sedimenta<br />

4 The quality of lake bed and river bed aediments <strong>in</strong><br />

<strong>the</strong> sedimentation areas<br />

5 EFfects on <strong>the</strong> environment<br />

6 Cmclusions and f<strong>in</strong>al renarks<br />

7 summary<br />

References<br />

3 EUTBOPHICATION 02 RIE RXESB WATER8 OF 7I-E DPl W<br />

J.E.W. de Roog md B.P.C. Steepkamp<br />

Abstract<br />

1 Introduction<br />

1 The &lLands DLep/aar<strong>in</strong>gvliet<br />

3 The Volkerak-Zoom Lake spstm<br />

4 Nanagrment nieeswres to prevent or lircit <strong>the</strong><br />

eutr~lphicatias of <strong>the</strong> Volkerak-Earn lake systm<br />

5 Gonelusions<br />

4 ~ P K I OF ~ ESTUARIES I ~ BND BRAGKISH LAGOONS IN<br />

m smn-WEST NETHEBtrnS<br />

P.H. Nieukuis<br />

Abstract<br />

1 Introduction<br />

2 Nutrienz cmcwtrations ad lpadws<br />

3 Effeets a£ eutrmphication<br />

References<br />

5 THE CMANGINO TIDAL LANDSCAPE IN TBE DELTA AXEA THE<br />

SODTH-WEST HETBOaI.p;NbE<br />

J.P.M. Mulder<br />

Abstract<br />

1 Utroduction<br />

E<br />

3<br />

Evolution of rhe tidal landscape durkng histosis time@<br />

Major chenges <strong>in</strong> <strong>the</strong> tidal landsaape pvef <strong>the</strong> last<br />

decades<br />

4 Eonslwa<strong>in</strong>g remark$<br />

Aoknowledgersents<br />

Bef erenoes


6 ECOLOGICAL DEVELOPMENT OF SALT MARSEES AND FOWR TRIAL<br />

FLATS IN THE SOUTH-WEST -S<br />

&.E.& van Baperen<br />

Ahstract<br />

I Introducttw<br />

2 Ecological dpamtcs <strong>in</strong> various waters<br />

3 Factors <strong>in</strong>fluenc<strong>in</strong>g ecwystem development<br />

4 Balsnoe of ecosysrem development up to now<br />

5 Future<br />

6 Spatial view<br />

7 Hanagwent<br />

Acknowledgemenrs<br />

RefelrenceS<br />

BY w m m s<br />

P.M. Meire, J. Seys, T. Ysebaert, P.L. Me<strong>in</strong><strong>in</strong>ger<br />

and H.3.M. Baptist<br />

Abstract<br />

1 Introduction<br />

2 Uescriptian of <strong>the</strong> area<br />

3 Occlrrrence of birds<br />

4 Distribption of waterbirds welr <strong>the</strong> different bas<strong>in</strong>s<br />

and telatims with <strong>the</strong> food supply<br />

5 Factors comglicatLng <strong>the</strong> releeion between distribution<br />

and favd supply<br />

4 Conclusion<br />

Aclmovledpements<br />

References<br />

Appendix<br />

8 HPDRO-ECOLOCtIW &EATIONS IN THE DELTA WATBRS OF<br />

THE SOUTH-WEST EEIETBERLANlXS<br />

C.W. Iedema<br />

Abstract<br />

1 Introduction<br />

2 Sedimentation and aCcumulation<br />

3 Downstream freshwater euerophicatipn<br />

4 Saltwater eutrophicati~n<br />

5 Horphological struare and dpaics<br />

6 Terrestrial nabre1 developments<br />

7 Food ecolog~ connections: bii-ds


B.J.M. Baptist BIJkswaterstaat. Tidal <strong>Waters</strong> Diviefon,<br />

Middelburg<br />

Wjkswaterstaat, Directorate Zeeland,<br />

Middelkg<br />

Bijkswaterstaat , Directorate Zeelsnd,<br />

Elideelburg<br />

A.M.M. van liaperen -$try of Agriculture and Bisheries.<br />

Beparhunt for nature Eonketvation.<br />

Environmental Pratection and Wildlife<br />

Baxlagement,<br />

6088<br />

J.E.W.<br />

C.W.<br />

J.W.M.<br />

P.L.<br />

?.M.<br />

J.P.B.<br />

P.H.<br />

de Eaog<br />

Iedema<br />

Kuipera<br />

Ee<strong>in</strong><strong>in</strong>gsr<br />

&ire<br />

Mulder<br />

Nienhuis<br />

Ftijkmaterstairr, Institute for LnLasd<br />

Water Management and Waste Water Treatment,<br />

Ma<strong>in</strong> Division Water Managwnr,<br />

Dor&reaht<br />

Rijkswaterstaat, Directotate &eland.<br />

Middeldurg<br />

Eijkwaterstaat, Directorate Zubd-Holldnd,<br />

Rotterdam<br />

Bijlcswaterstaat, Tidal Uatera Divisicmi<br />

Middelburg<br />

Dlliversity of Gent, tabosatorp of Animal Ecolo$y,<br />

Gent (Belgid<br />

Rifkswaterstaat . Tidal <strong>Waters</strong> Divisi en,<br />

Middelbur(:<br />

<strong>Delta</strong> Institute for <strong>Hydro</strong>biological Research,<br />

Yerseke<br />

J. Says<br />

University of Gent, Labor&ory of Animal Ecology,<br />

Gent IBelgim)<br />

B.P.C.<br />

Steenlcrrmp<br />

Ilijkswacerscaat, Inssitute for Inland Watex<br />

Management and Waare Water Treatment, Ma<strong>in</strong><br />

Division Wate~ Manegament, Dordrecht<br />

Vazivezaitp of Gent, Laboratory of Animal Ecology,<br />

Gent (B*iuuI)


Before human <strong>in</strong>terference <strong>in</strong> <strong>the</strong> <strong>Delta</strong> of <strong>the</strong> 1300th-West Ne<strong>the</strong>rlands.<br />

<strong>the</strong> hydro-ecal0gioal <strong>relations</strong> +n <strong>the</strong> watexs of this <strong>Delta</strong> were taken<br />

very much far granted. As a result rzf <strong>the</strong> man-made changes, thbe<br />

natural <strong>relations</strong> disappeared. The constmction df <strong>the</strong> <strong>Delta</strong> Works<br />

completely altered <strong>the</strong> face of <strong>the</strong> <strong>Delta</strong>. Thie was not <strong>the</strong> first<br />

occasion on which <strong>the</strong> <strong>relations</strong> between <strong>the</strong> waters of <strong>the</strong> <strong>Delta</strong> had<br />

been affected. Take for example <strong>the</strong> construction of <strong>the</strong> Sloe Dam and<br />

Kreekrak I)rug <strong>in</strong> <strong>the</strong> latter half of <strong>the</strong> 19th ceatury, which resulted <strong>in</strong><br />

<strong>the</strong> loss of <strong>the</strong> coneection between <strong>the</strong> Eastern aad Wsatern Scheldt.<br />

Never<strong>the</strong>less, <strong>the</strong> <strong>Delta</strong> ia its present fow ig largely <strong>the</strong> bra<strong>in</strong>child<br />

of hydraulic ag<strong>in</strong>eerr; of <strong>the</strong> lattez half of <strong>the</strong> present centuq.<br />

The origtnal <strong>Delta</strong> Project treated <strong>the</strong> <strong>Delta</strong> as a s<strong>in</strong>gle entity, but<br />

purely from <strong>the</strong> po<strong>in</strong>t of view of safety and water control. At that<br />

time <strong>the</strong> <strong>in</strong>tegral approach of eool6giaal Interests had yet to be<br />

developadd Although <strong>ecological</strong> considerations have ga<strong>in</strong>ed <strong>in</strong><br />

impoltanoe over <strong>the</strong> years, <strong>the</strong> present compameutalizatlon ef <strong>the</strong><br />

<strong>Delta</strong> is still to s great extent <strong>the</strong> product of <strong>the</strong> orig<strong>in</strong>al <strong>Delta</strong><br />

Project.<br />

The completion of <strong>the</strong> water management <strong>in</strong>frastmcrure of <strong>the</strong> <strong>Delta</strong><br />

marks, for <strong>the</strong> tfm be<strong>in</strong>g at least, <strong>the</strong> end of an ere of major<br />

hydradie projects <strong>in</strong> <strong>the</strong> <strong>Delta</strong>. But while <strong>the</strong>se works were be<strong>in</strong>g<br />

carried ant, a new era had already begun; one which centred on careful<br />

supervision apd ~esponsib-le managwent of <strong>the</strong> newly-created systems.


This approach will put to use what has been leaned about <strong>the</strong><br />

hbaviour of compartmentallzed systems. If we respand to changes by<br />

mak<strong>in</strong>g <strong>in</strong>formed use of <strong>the</strong> scope for control and regulation presented<br />

by <strong>the</strong> <strong>Delta</strong> Works, we can develop <strong>the</strong>se new systems to <strong>the</strong>ir full<br />

patential.


RrPER WATER<br />

TRE QUALITY OF TEE DELTA WATERS<br />

L. B i j h<br />

and J.W.M.<br />

KuipeIs<br />

Extmsive hydraulic eng<strong>in</strong>eer<strong>in</strong>g projects have beerr carried out Dver <strong>the</strong><br />

last 25 years <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area famd by <strong>the</strong> rivers Rh<strong>in</strong>e. Meuse arid<br />

Scheldt. This has resulted <strong>in</strong> parts of <strong>the</strong> <strong>Delta</strong> befng divided up<br />

(c~artmentalized) while oche parts have been closed oaf. The time P J ~<br />

which rnaap oi <strong>the</strong> operations <strong>in</strong>volved<br />

divid<strong>in</strong>g up <strong>the</strong>se areas were<br />

carried out co<strong>in</strong>cided wirh a period dur<strong>in</strong>g which <strong>the</strong> pollution <strong>in</strong> <strong>the</strong><br />

three rivers reached its lnaximum level (1970-1975).<br />

34icropollutants (heavy metals and organic compounds) became aztsched to<br />

<strong>the</strong> Elms <strong>in</strong> <strong>the</strong> sadiment carried by <strong>the</strong> rivers, md this led to <strong>the</strong><br />

<strong>Delta</strong> region also be<strong>in</strong>g affected by <strong>the</strong>ae contam<strong>in</strong>ents. However.<br />

because of compartmentalhation certa<strong>in</strong> areas, namely Lake Gtevel<strong>in</strong>geu<br />

and <strong>the</strong> tidal bas<strong>in</strong> of <strong>the</strong> Eastern Scheldt, escaped <strong>the</strong> wiwe of<br />

pollution. The quantities of micropollutants ia thwe areas are vow<br />

close to natural background levels. The explansion for this is that<br />

<strong>the</strong> compartmentalization af <strong>the</strong>se areas was completed before <strong>the</strong><br />

pollution <strong>in</strong> <strong>the</strong> Rh<strong>in</strong>e an2 Wse reached snrb high levels.<br />

In oontrast, <strong>the</strong> closure of <strong>the</strong> Earfngvlfet estuary led to <strong>the</strong><br />

fornation of new sedimentation areas just prior ta <strong>the</strong> time at which<br />

<strong>the</strong> pollwtlon <strong>in</strong> <strong>the</strong> Rh<strong>in</strong>e and Beuse reached a peak. Thus layers of<br />

conrant<strong>in</strong>ated material have settled <strong>in</strong> thase sedimentatim areas. Almost<br />

30% of <strong>the</strong> total amount of silt transported by <strong>the</strong> rivers Rhise and<br />

Meuse is deposited <strong>in</strong> <strong>the</strong>se areas.


Estuaries that have not been <strong>in</strong>fluenoed by closure operations can also<br />

un&ergo significant temporary seamentation effects. An example of this<br />

is <strong>the</strong> land of S~efe<strong>in</strong>ghd <strong>in</strong> <strong>the</strong> Western Scbeldt astuary. As a result<br />

of a rfse <strong>in</strong> <strong>the</strong> sea level and a deepen<strong>in</strong>g 0f <strong>the</strong> shipp<strong>in</strong>g ch-I, <strong>the</strong><br />

difference between law end hQher watex bter <strong>in</strong>rreased which. <strong>in</strong> C m ,<br />

has resulted <strong>in</strong> a significautly greater deposition of silt on <strong>the</strong><br />

mudflats and salt marshes. Almost 258 of <strong>the</strong> stlc transported by Eh@.<br />

rlrer Gcheldt settles <strong>in</strong> <strong>the</strong>se areas.<br />

Although relatively IfttLe is itqown abol~t <strong>the</strong> effects that contam<strong>in</strong>ated<br />

beds have W% <strong>the</strong> aquatic ecaapatem, <strong>the</strong>re are clear signs that<br />

ecolorsical camunities which are directly dependent OP <strong>the</strong> river bed<br />

environment can be disrupted. In additio& <strong>the</strong> amaunts of pollutants<br />

round <strong>in</strong> certa<strong>in</strong> oqanisms and plants now exceed <strong>the</strong> maximum acceptable<br />

level$ for human consumption. Fumre clean-up operations could be<br />

censidm'ed fer <strong>the</strong> contamfnated $edimentatiou areas when <strong>the</strong> level of<br />

pollution frorn discharges <strong>in</strong>to <strong>the</strong> river baeb has been suf£icientl~<br />

reduced. In view af <strong>the</strong> scale and extent oP <strong>the</strong> sedimentation layer<br />

concerned, no salutions have yet been fomd to thls problem.<br />

The <strong>Delta</strong> zegion of <strong>the</strong> South-West Ne<strong>the</strong>rlands<br />

hean <strong>the</strong> scene of<br />

many extensive hydrauliq eng<strong>in</strong>eer<strong>in</strong>g projects sver <strong>the</strong> last few decades<br />

(Fig, 1). These opexatians ware largely a reaorlon to <strong>the</strong> storm tide<br />

dtsascer a£ 1953, <strong>in</strong> which large areas of <strong>the</strong> <strong>Delta</strong> region were<br />

<strong>in</strong>undated. The pLam which were &!awn up after this catastrophe and<br />

which have do*1 beon implemented were primarily concerned with<br />

protect<strong>in</strong>g <strong>the</strong> region aga<strong>in</strong>sf Iloodi?~g. In addition. <strong>the</strong> plans also<br />

addreased dpecific vater management objectives, <strong>in</strong> particular <strong>the</strong> need<br />

to control tbe pblwp. of sal<strong>in</strong>ization. The basic approach was to<br />

dose off <strong>the</strong> tidal gullies <strong>in</strong> <strong>the</strong> <strong>Delta</strong> and to create a sertes OF<br />

freshwatet lakes beh<strong>in</strong>t3 <strong>the</strong> dame.


6 )(ollM.Yn DI.0<br />

I L.,. (il .l 1m.n<br />

.-I L&.=- F O,.l*.I.". **.c,sBD,<br />

'I L."* *'S",,,*. (i i..911.1- (8.01 1<br />

" z.-w*-d" .,"U,W,<br />

I htn.a.*,-nswr BTU*. IW~I<br />

Figure 1 The <strong>Delta</strong> Plan<br />

DvrI4g <strong>the</strong> ODilStruction phase it was realised that it would be<br />

exrremely undesirable to lose altoge<strong>the</strong>r <strong>the</strong> unFque saltwater tidal<br />

sysrcm that existed fn this region. Consequently, a decision was taken<br />

<strong>in</strong> <strong>the</strong> 1970's not to Close off <strong>the</strong> Eastern Seheldt tidal bas<strong>in</strong> as had<br />

ozigfnally been iataded, but to <strong>in</strong>stall a storm surge barrier <strong>in</strong>stead.<br />

This meant that <strong>the</strong> safety of <strong>the</strong> region could be @armteed while<br />

still present<strong>in</strong>g <strong>the</strong> essential character of a ealturater tidal system.<br />

While CDnsttuctiod work on <strong>the</strong> <strong>Delta</strong> Project was <strong>in</strong> progress, pollution<br />

from <strong>the</strong> major rivers <strong>in</strong> <strong>the</strong> region rose to maximm lavels. This<br />

created a fur<strong>the</strong>r problem. Closure of <strong>the</strong> estuaries has disturbed <strong>the</strong><br />

morphological balance ancl led to <strong>the</strong> forreation of new ffedimentatisn<br />

areas. The quality of <strong>the</strong> lake and river beds <strong>in</strong> <strong>the</strong> new sedimentation<br />

areas deteriorated rapidly as <strong>the</strong> suspended sediment carried by <strong>the</strong><br />

wster af <strong>the</strong> major rivers e~nta<strong>in</strong>ed micropollutants quch as heavp<br />

metals and organic wmpeunds.


2 CHIWGES XN TEE DELTA<br />

The <strong>Delta</strong> are was formed by <strong>the</strong> <strong>in</strong>teraction 05 <strong>the</strong> rivers &be. Meuse<br />

and Scheldt and <strong>the</strong> tidal movements of <strong>the</strong> Xorth Sea. Tlie average<br />

discharges from <strong>the</strong> Rh<strong>in</strong>e. Meuse and Scheldt are 2200 m3/sec.<br />

260 mg/sec and 100 m31sec respectively. The orig<strong>in</strong>al discharge<br />

distribunon over <strong>the</strong> tidal @lies, prior to tha<strong>Delta</strong> Project<br />

closures, is given <strong>in</strong> Figure 2. In <strong>the</strong> period befere 1965, <strong>the</strong><br />

<strong>in</strong>fluence of tbe Rh<strong>in</strong>e and Ueuse -tended ta <strong>the</strong> Eastern Scheldt<br />

estuary. At that time <strong>the</strong> <strong>Delta</strong> was Fn a state approach<strong>in</strong>g<br />

morphologioal equilibrium. Until 1970, <strong>the</strong> amount of sand and silt<br />

brought down by <strong>the</strong> rivers Rh<strong>in</strong>e and Meuse was ronghly equal to that<br />

Figure 2<br />

Dischatge distribution over <strong>the</strong> maior rivers 1965 (vduee<br />

<strong>in</strong> m8/sec)


discharged through <strong>the</strong> mouths of <strong>the</strong> estuaries to <strong>the</strong> North<br />

However, local variations were apparent, with fur<strong>the</strong>r erosion tak<strong>in</strong>g<br />

place <strong>in</strong> <strong>the</strong> deeper tidal gullies and correspond<strong>in</strong>g <strong>in</strong>creasas <strong>in</strong><br />

sedimentatton occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> shallows. Moreover, sea-borne sediment<br />

was deposited <strong>in</strong> <strong>the</strong> western part of <strong>the</strong> <strong>Delta</strong>. The f<strong>in</strong>er type of<br />

fluvial sediment was only deposited <strong>in</strong> more sheltered locations, with<br />

<strong>the</strong> majority of it flow<strong>in</strong>g tkouah to <strong>the</strong> RarM Sea. Under <strong>the</strong><br />

<strong>in</strong>fluence of <strong>the</strong> prevail*<br />

sediment was carried northwerds, where w e<br />

10%-shore current this f<strong>in</strong>e fluvial<br />

of it was deposited ia <strong>the</strong><br />

Wadden Sea, an extensive w e s l area ~ <strong>in</strong> <strong>the</strong> north of <strong>the</strong> Ne<strong>the</strong>rlands.<br />

Successive closures <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area produced chenges <strong>in</strong> <strong>the</strong> flaw<br />

distribution, while flow rates tended to decl<strong>in</strong>e as a result of <strong>the</strong><br />

complete or partial loss of tidal motion. =is Led to tde formation of<br />

new se-ntation<br />

areas wita<strong>in</strong> <strong>the</strong> <strong>Delta</strong> regfoil. By 1965 <strong>the</strong> central<br />

section of tXe <strong>Delta</strong> vaS no longer sublect fa <strong>the</strong> <strong>in</strong>fluence of <strong>the</strong><br />

Rh<strong>in</strong>e and Ruse. In 1965 and 1969 resptpectively <strong>the</strong> Grevel<strong>in</strong>gen and<br />

Eastern Scheldt estuaries were effectively &coupled from <strong>the</strong>se two<br />

rivers. The closure of <strong>the</strong> Har<strong>in</strong>mliet estuary <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn section<br />

of <strong>the</strong> <strong>Delta</strong> had <strong>the</strong> effect of reduc<strong>in</strong>g tidalmotion over <strong>the</strong> whale oi?<br />

this area. Xn <strong>the</strong> sautb, <strong>the</strong> Western Scheldt estuary rema<strong>in</strong>ed Largely<br />

unchanged, although <strong>the</strong> sand bars <strong>in</strong> <strong>the</strong> estuarp *ere dug out <strong>in</strong> <strong>the</strong><br />

1970's to improve <strong>the</strong> shipp<strong>in</strong>g route to Antwerp (Belgium). F<strong>in</strong>ally, <strong>in</strong><br />

1987, work <strong>in</strong> rhe eastern past of <strong>the</strong> <strong>Delta</strong> led to <strong>the</strong> fomation of a<br />

separate freshwater lake (Lake Zoom3 <strong>in</strong> <strong>the</strong> Eastern Scheldt, irith <strong>the</strong><br />

spe~ific aCm of imprw<strong>in</strong>g water supplies for agricultural purposes.<br />

Lake Zom is be<strong>in</strong>g flusked out with frwb water from <strong>the</strong> Eollarids Diep,<br />

The overall eff&t of all <strong>the</strong>se hydraulic eng<strong>in</strong>eer<strong>in</strong>g projects has been<br />

to change significantly <strong>the</strong> distribution of river water, which has had<br />

implications for <strong>the</strong> transport of fluvial sediment. Recent measurements<br />

of <strong>the</strong> transport of f<strong>in</strong>e fluvial aediments are shown <strong>in</strong> tern of tons<br />

per year <strong>in</strong> Figure 3. This fi~uze also gives <strong>the</strong> yearly irccumulation of<br />

river sediment at: particular locations. Region I represents <strong>the</strong><br />

sou<strong>the</strong>rn lower reaches of <strong>the</strong> Rh<strong>in</strong>e and <strong>the</strong> lover reaches of <strong>the</strong> Meuse.<br />

Follow<strong>in</strong>g <strong>the</strong> closure of <strong>the</strong> Har<strong>in</strong>gvliet estuary, flov rates <strong>in</strong> <strong>the</strong>


area decltned cnnside~ably, lead<strong>in</strong>s eo a~rensive sedimentation. This<br />

has cause3 an Inner delta to form at this location, which is gradnag<br />

plov<strong>in</strong>p <strong>in</strong> a westerly direction. In <strong>the</strong> case ef Regien 11, <strong>the</strong><br />

lIar<strong>in</strong>pliet, closure has led ko a th<strong>in</strong> layer of silt be<strong>in</strong>g deposited<br />

over this area.<br />

From 1987 onwards, a new sedimenracion area is develop<strong>in</strong>g <strong>in</strong> Lake Zo&<br />

(Region In). The sedimentarion <strong>in</strong> this region is essentially similar<br />

to that found <strong>in</strong> <strong>the</strong> Har<strong>in</strong>gqliet area and will ma<strong>in</strong>ly cunsist of silt.<br />

Pbally, comparisons can be made with <strong>the</strong> sedhentntion area <strong>in</strong> <strong>the</strong><br />

Western Scheldt (Region IVI. In this region most of <strong>the</strong> silt carried by<br />

I l<br />

t.l(.rnbsmlsl<br />

W.*l.m<br />

..I"""<br />

Sm.ldl<br />

I<br />

I'<br />

closure dam<br />

J [ waler me.naeernm1 sluice<br />

ir~dlmsnlatlon rsgl~n<br />

X: number ot lhe raglan<br />

200: sedlmenlallorn <strong>in</strong><br />

1000 tons I year<br />

Figure 3 Transport rates of f<strong>in</strong>e fluvial sediments 19.87 (values <strong>in</strong><br />

l000 tms p.a.)


<strong>the</strong> river Scheldt is deposited <strong>in</strong> <strong>the</strong> mudflats hwn as <strong>the</strong> l&<br />

Sadtfnghe.<br />

of<br />

The sedimentation areas +-bferted to above will Be discussed fuz<strong>the</strong>r <strong>in</strong><br />

<strong>the</strong> followdug sections.<br />

Prom <strong>the</strong> turn of <strong>the</strong> century onwards, pollution <strong>in</strong> <strong>the</strong> &ke, Meum aad<br />

Scheldt hssiaa <strong>in</strong>creased rapidly as a rwult of <strong>in</strong>dustrial expansion<br />

and fuz<strong>the</strong>r population ~rowth ~5altaoo=,<br />

1981). T'he mount OF pollutien<br />

<strong>in</strong> <strong>the</strong>se arras antimed to <strong>in</strong>crease until ourxfmute levele were reached<br />

dur<strong>in</strong>g <strong>the</strong> period 1978-1915. As a censeqmence Large amaunts of hemetals<br />

and ~rgaaic compamde have becnms attached ca tbe rrver<br />

sediment.<br />

Ja order to IRDnitw ttie sies&tron dxt@t <strong>the</strong> last Em beea~@s, t&<br />

aSssciated leveLs haha been meas.me8~ at <strong>the</strong> pdiWs *here t&<br />

t%i&<br />

rivers boss cfre befdees, A BrtaFtd di*%usBi6h of tbe distrfbugion<br />

and cbahpe.8 <strong>in</strong> We levels of ell rAe sutmtabces that ate etiiteifed is<br />

bey6nd <strong>the</strong> heepe of tbe :pt@sent papet. ft h- <strong>the</strong>refore been dec-d to<br />

caiaider <strong>the</strong> examp&e B£ <strong>the</strong> bedry eta1 cgdmium a mean of<br />

illurifzat<strong>in</strong>~ <strong>the</strong> subje&t. This moral be rqardeli asi a Lacer for<br />

o<strong>the</strong>s pollutrmts. 'Ehe ehq.gS <strong>in</strong> associated 'e~dmfm level^ measql.e$ In<br />

~nspended sediment is shmm as a Eu=Gion ef tim <strong>in</strong> Piwxe 4. 8y @aim<br />

data from wre swig takq fw older sedtwnix if h,e. bsen p m l e<br />

te rsganstruet <strong>the</strong> build-up of poll~tion <strong>the</strong> %be t<strong>the</strong> first part<br />

a£ $AA* centurp. Fellovfng tKe peak y.e%rrs ef <strong>the</strong> eaz.Llg IPtO's, clem-U$<br />

measweB <strong>in</strong> <strong>the</strong> $Wue basttl &YE<br />

led t~ B spectacuiaz sedwctioa <strong>in</strong> <strong>the</strong><br />

afnoudc of cadidurn pa.Uutioh. Coneentratimw &we 40.w he& recture-i te<br />

Skse of


Plan, <strong>the</strong>n it is apparent tbt <strong>the</strong> separatian of <strong>the</strong> Grwel<strong>in</strong>gen and<br />

Eastern Scheldt estuaries occurred prior to <strong>the</strong> peak polluttan years of<br />

<strong>the</strong> early seventies. The formation of sedimentation regians I and 11, a<br />

result of <strong>the</strong> closure of <strong>the</strong> Rarhgvliet, took place hediately before<br />

<strong>the</strong> major wave of pollution occurred, while sedimentation rsgion 111,<br />

wbich d l be created by <strong>the</strong> fluehiq operatians of Lake Zoom, will be<br />

affected now that contamLRatiDn levels have been greatly reduced.<br />

Figure 4<br />

Associated cadmium <strong>in</strong> suspended river sedimeots ar <strong>the</strong> po<strong>in</strong>ts<br />

where <strong>the</strong> rivers Rh<strong>in</strong>e, Meuse and Scheldt cross <strong>the</strong> border


it (Phalacrocorax carho), a fish eat<strong>in</strong>g hird<br />

Volkerak dam and locks


Tiddl flats df <strong>the</strong> Eastem Seheldt vith "galddiggers"<br />

Flounder (Platiahtkpg f leaus) with ebscessea


4 THE QURLITY OF LAKE BED Bhm BIVER BED SEDIXENTS IN TIE<br />

SEDU4ENTATION AREAS<br />

The series of events, described above, has produced diffesences <strong>in</strong> <strong>the</strong><br />

quality of lake beds and river beds <strong>in</strong> <strong>the</strong> sedimentation areas<br />

(Salomons, et al, 1981; Beeft*, et al, 1982). The situation regard<strong>in</strong>g<br />

cadmium levels is illustrated <strong>in</strong> Figure 5. A regression analysis has<br />

been used <strong>in</strong> order to compare <strong>the</strong> meamred c~ncentrations <strong>in</strong> <strong>the</strong><br />

varioue samples.<br />

Roft.rd.m<br />

"'.,.rr.,<br />

U L<br />

R",".<br />

a full rirclc represents<br />

CO m#/kg cadm~um.<br />

Figure 5 Cadmium ooncentrationa <strong>in</strong> river bed sediments converted KO<br />

an equivalent 50Z-16 v* top lager (1986 levels).<br />

A <strong>relations</strong>hip has been established between <strong>the</strong> measured concentration<br />

ad <strong>the</strong> propartioq of f<strong>in</strong>es less than 16 urn <strong>in</strong> <strong>the</strong> sediment. It was


tracefore possible to convert <strong>the</strong> absolute measlured concentrations to<br />

an equivalent concentration that would be expected <strong>in</strong> a standard river<br />

bed with 550 ~f <strong>the</strong> gra<strong>in</strong> fraction less than 16 um.<br />

The separation of <strong>the</strong> Eastmrn Scbeldt and Lake Erevel<strong>in</strong>gen from <strong>the</strong><br />

water flow<strong>in</strong>g <strong>in</strong> <strong>the</strong> rivers Rh<strong>in</strong>e ad Meuse has resulted <strong>in</strong> rema<strong>in</strong><strong>in</strong>g<br />

extremely low on cent rations <strong>in</strong> <strong>the</strong>se areas. The values found <strong>in</strong> <strong>the</strong><br />

Eastern ScheldC are thought to approximate to natural hackground<br />

levels. The concentration <strong>in</strong> Lake Orevel<strong>in</strong>gen is known ta be aamedhat<br />

higher. Unlike <strong>the</strong> Eastern Scheldt, this lake becm stagnant after its<br />

closnre. .As a consequence, <strong>the</strong>re is less <strong>in</strong>teraction between <strong>the</strong> water<br />

<strong>in</strong> <strong>the</strong> lake a d <strong>the</strong> bed deposits (resuspenaioe) <strong>in</strong> Lake CreveUngen<br />

than <strong>in</strong> <strong>the</strong> Eastern Scheldt. This expla<strong>in</strong>s why <strong>the</strong> concentration of<br />

contam<strong>in</strong>ants <strong>in</strong> this lake still approaches <strong>the</strong> pre-1965 values.<br />

The lake beds and river beds <strong>in</strong> <strong>the</strong> s,e4imentatlon areas <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn<br />

part of <strong>the</strong> <strong>Delta</strong> are hewily polluted. In <strong>the</strong> eastern part (Nieuwe<br />

MerwBde/&met) high contam<strong>in</strong>ation levels have been detected, affectiqg a<br />

layer at least 2 metres thick. Zhis material was deposited between 1970<br />

and 1975. As an equilibrium has now developed between <strong>the</strong> hydraulic and<br />

morphalugtcal precesses, it is unlikely tKat this la~rer will be coveted<br />

by new se&ments <strong>in</strong> <strong>the</strong> future.<br />

The central section of <strong>the</strong> <strong>Delta</strong> (Hollands Diep) hag a thick layer of<br />

less polluted river sediment that was deposited <strong>in</strong> <strong>the</strong> years aftek<br />

1975. However, more contam<strong>in</strong>ated material from <strong>the</strong> 1970-1975 period is<br />

contaised below this layer. Underneath <strong>the</strong>se layers can be fonnd<br />

estuar<strong>in</strong>e sediments from *he period before 1970. l'he different layers<br />

referred to above can be qlearly dlvt<strong>in</strong>g=ished fro= core samples taken<br />

from <strong>the</strong> area (Fig. 6). It is reesgnized that <strong>the</strong> quality of <strong>the</strong> tap<br />

layer of sediment will improve as <strong>the</strong> quality of <strong>the</strong> surface water<br />

iaproves.


Figure 6 Contw<strong>in</strong>ation <strong>in</strong> rhe Eollands Diep. The recently deposited<br />

contam<strong>in</strong>ated layer can be clearly dist<strong>in</strong>guished by <strong>the</strong> lead<br />

content.<br />

A relatively th<strong>in</strong> layer of polluted sed<strong>in</strong>ents (less than 0.1 m) is to<br />

be found <strong>in</strong> <strong>the</strong> western section of <strong>the</strong> <strong>Delta</strong> (Har<strong>in</strong>gvliet) above older,<br />

ma<strong>in</strong>ly mar<strong>in</strong>e sedate. As sedimentation <strong>in</strong> this region takes place<br />

extremely slowly, no significant changes are expected <strong>in</strong> <strong>the</strong> near<br />

future (Fig. 7), althmgh <strong>in</strong> <strong>the</strong> long term <strong>the</strong> quality of <strong>the</strong> top layer<br />

will improve as <strong>the</strong> ma<strong>in</strong> area of sedimentation shifts westward<br />

(Bijkswaterstaat, 1987).


Figsrlre 7<br />

Changes <strong>in</strong> <strong>the</strong> cadrnrum contenr 08 <strong>the</strong> Bb<strong>in</strong>e vater W) and fn<br />

river bed sed<strong>in</strong>eat from <strong>the</strong> Aari~wlieE (K) over <strong>the</strong> period<br />

1971-1W.9<br />

As flush<strong>in</strong>g +pexasrions ere vnly sebeduled hc cBmaenc@ Sn 1981, <strong>the</strong><br />

quuli@ oZ <strong>the</strong>! eediwn2 <strong>in</strong> take &m is *=ill <strong>the</strong> as that faund <strong>in</strong><br />

o~het part$ of <strong>the</strong> Eastern 5cheldt. %wener, <strong>the</strong>ue ia a small area<br />

Wtnd trhe Volketaklocke wMch has been afteored by <strong>the</strong> <strong>in</strong>flw Q£<br />

water From tke Hollaxrds Dig. For water management purposes it h@% been<br />

decl&d tu re~ttic<strong>the</strong> fld<strong>in</strong>p; qerationw <strong>in</strong> Lake Zom to a miaimum<br />

(<strong>the</strong> sal<strong>in</strong>ity level <strong>in</strong> eke lake *ill not eiceed 4170 &l),<br />

<strong>the</strong> iuput of ppollutants.<br />

to reduce


It is possihle that <strong>in</strong> <strong>the</strong> future a more liberal flush<strong>in</strong>g policy might<br />

be adopted $n connection with <strong>the</strong> improved water ~ualitg <strong>in</strong> <strong>the</strong> rivers<br />

Rh<strong>in</strong>e and Lleuse. Hawever, it should be borne <strong>in</strong> m<strong>in</strong>d that not all <strong>the</strong><br />

pollution parmeters have been reduced to <strong>the</strong> same ertent as cadmium.<br />

In <strong>the</strong> Western Scheldt <strong>the</strong> situation is different from that described<br />

abwe s<strong>in</strong>ce this rwion haa not been faflueneed by <strong>the</strong> closure<br />

operations. Boww@r, significant amaunts of sed-t have been<br />

deposited over <strong>the</strong> last deaades <strong>in</strong> <strong>the</strong> Land of Saeft<strong>in</strong>ghe area, Which<br />

conaists of extensive salt marshes and mudflats. This has been caused<br />

by <strong>the</strong> deepen<strong>in</strong>g of <strong>the</strong> bars <strong>in</strong> <strong>the</strong> eaetern part of <strong>the</strong> estuarp for<br />

shipp<strong>in</strong>g purposes, which have <strong>in</strong>creased <strong>the</strong> t%dal difference and also<br />

<strong>the</strong> turbidity. Conruequeutly. a layer between 0.2 and 0.4 m has recentbeen<br />

deposited <strong>in</strong> thLe area. Polluted silt from <strong>the</strong> river Scheldt is<br />

sect* here toge<strong>the</strong>r with uncontam<strong>in</strong>ated sea-bane sediment, <strong>in</strong> <strong>the</strong><br />

ratio 608 liver silt to 44% sea silt.<br />

& a result of <strong>the</strong> comfruction of <strong>the</strong> <strong>Delta</strong> Works, as described <strong>in</strong> <strong>the</strong><br />

previous chaptezs, <strong>the</strong> central seetiou of <strong>the</strong> <strong>Delta</strong> has been cut off<br />

froa tbe <strong>in</strong>gluence of <strong>the</strong> major rivers to some extant. Hewever, this<br />

does not necessarily guarantee <strong>the</strong> quality of <strong>the</strong> estllary and lake<br />

beds, which 3s affected bot& by past <strong>in</strong>fluences as by local 8ources of<br />

pollution. It is <strong>in</strong>purrant to take this <strong>in</strong>ea account view of <strong>the</strong><br />

radical changes which tbe hgdranlic and aiorphblogical confi@uraeian of<br />

<strong>the</strong> regLon had mdcrgone. For <strong>in</strong>stance, rhe cmpartentslization of <strong>the</strong><br />

takes Grevel<strong>in</strong>gen. Beere and Vblkerak-Zoom bad cbnsidetahly ibcrea-sed<br />

<strong>the</strong> residence tima of water. The construct'ion of <strong>the</strong> storm-surge<br />

barrier <strong>in</strong> <strong>the</strong> Eastern Soheldt haa also led to a oonsiderable reduction<br />

<strong>in</strong> <strong>the</strong> hoxizontal tide, as a result of which residence <strong>the</strong> had<br />

<strong>in</strong>eressed and <strong>the</strong> Eastern Sch%lde has becorn a pure sedimentation area.<br />

In shsrt, <strong>the</strong> centrl section of <strong>the</strong> <strong>Delta</strong> has becoma much more<br />

vulnerable to local pollution.<br />

Local pollution mafnly emmates from diffuae sources; <strong>the</strong> ma<strong>in</strong> ones are<br />

acrivrties <strong>in</strong> <strong>the</strong> smaU hsrbonfs <strong>in</strong> this region and <strong>the</strong> discharge of<br />

water frm <strong>the</strong> polders. It has been obsemred that <strong>the</strong> beds of all of<br />

<strong>the</strong>se harbours are moderately to aeverelp polluted. Clean-up and


prevention measures are desirable here to prevent <strong>the</strong> diffusion of<br />

pollution to adjacent waters.<br />

5 EFFECTS ON THE ENVIRONMENT<br />

Relatively little is knm about rhe impact polluted beds have on<br />

aquatic ecosystems, partly because <strong>the</strong>se areas are not directly<br />

obsesvable. Future research strateges will <strong>the</strong>refore be ma<strong>in</strong>ly<br />

concerned vith address<strong>in</strong>g <strong>the</strong>se shorreom<strong>in</strong>gs. There are, however,<br />

various <strong>in</strong>dications that pollution m y be a hazard to public health md<br />

may <strong>in</strong>fluence <strong>the</strong> function<strong>in</strong>g of aquatic ecosystems. The presence of<br />

heavy metals ad organic micropollutants <strong>in</strong> benthic organisms is<br />

clearlybigher <strong>in</strong> polluted areas rhan is less wntam<strong>in</strong>ated areas. This<br />

has been verified for various organisms such as Dreissena palymol-pha.<br />

Tubifex spec., miromid larvae and also zooplankton (Urk, 1987). There<br />

are, of course, specific differences between <strong>in</strong>dividual species with<br />

regard to <strong>the</strong> type and mwunt of heavy metals found. In molluscs, for<br />

example, contam<strong>in</strong>ation levels are Ngher <strong>in</strong> species that live ia <strong>the</strong><br />

top layer of sediment than surface dwellers.<br />

Kelatively low levels of p@llution are found <strong>in</strong> <strong>the</strong> eastern part of <strong>the</strong><br />

Xar<strong>in</strong>$vliet bas<strong>in</strong> (Hollands Diep), whereas higher levels can be<br />

detected <strong>in</strong> <strong>the</strong> western part of <strong>the</strong> Bar<strong>in</strong>gvliet. This is a coneequence<br />

of <strong>the</strong> sedimentation process, which has <strong>in</strong>fluenced <strong>the</strong> quality ef river<br />

sediments <strong>in</strong> <strong>the</strong> areas, as outl<strong>in</strong>ed <strong>in</strong> <strong>the</strong> previous section. These<br />

gradients are also reflected <strong>in</strong> <strong>the</strong> concentration of contam<strong>in</strong>ants found<br />

<strong>in</strong> specific organisms. Xigure 8 shows how <strong>the</strong> cadmium content 3s <strong>the</strong><br />

gills of Anadonta anat<strong>in</strong>a varies at different locations. The levels <strong>in</strong><br />

<strong>the</strong> western part of <strong>the</strong> bas<strong>in</strong> (Har<strong>in</strong>gvliet) are two to three t h e<br />

higher than those found <strong>in</strong> <strong>the</strong> eastern part (ILollands Diep) . Simular<br />

problems have been encountered with orgsnie micropollutante. For<br />

<strong>in</strong>stance, from 1977 to 1985, PCB levels <strong>in</strong> eels from <strong>the</strong> different<br />

surface waters <strong>in</strong> <strong>the</strong> We<strong>the</strong>rlands were monitored bg <strong>the</strong> State Institute<br />

for Fishery Research CRIVO). At <strong>the</strong> end of <strong>the</strong> seventies PCB levels <strong>in</strong><br />

eels from <strong>the</strong> Bar<strong>in</strong>gvlieL bas<strong>in</strong> were extremely bigh, prohahle as a<br />

result of local discharges, some of <strong>the</strong>m illegal. S<strong>in</strong>ce tbis time, <strong>the</strong>


Figure 8 Cadmium content <strong>in</strong> <strong>the</strong> gills of Anadonta anat<strong>in</strong>a found at<br />

several places <strong>in</strong> <strong>the</strong> Rar<strong>in</strong>gvliet (a) and <strong>the</strong> Rallands<br />

Diep (b)<br />

level had decreased to about <strong>the</strong> same value as that nomally found <strong>in</strong><br />

<strong>the</strong> upstream areas of <strong>the</strong> Rh<strong>in</strong>e. Never<strong>the</strong>less, <strong>the</strong> level <strong>in</strong> eels from<br />

<strong>the</strong> Har<strong>in</strong>gvliet bas<strong>in</strong> is still above <strong>the</strong> recommended Limit specified<br />

for human consumption. To give ano<strong>the</strong>r example, table 1 shaws BGB<br />

levels measured from <strong>the</strong> Har<strong>in</strong>gvliet bas<strong>in</strong> and some cZean referenee<br />

areas. The accumulation is clearly discernihle,<br />

The amount of contam<strong>in</strong>ants <strong>in</strong> plant and animal tissues does not throw<br />

very much light on <strong>the</strong> function<strong>in</strong>g of <strong>the</strong> ecosystem. Pollution map be<br />

regarded as a form of strees imposed upon <strong>the</strong> environment. Its effects<br />

vary from species to species and may manifest <strong>the</strong>mselves <strong>in</strong> stunted<br />

growth, a fall <strong>in</strong> <strong>the</strong> reproduction rate and an <strong>in</strong>creased morrality<br />

rate. Given tbat certa<strong>in</strong> animal species are more vulqerahle to<br />

pollution than o<strong>the</strong>rs, it may lead ro shifts <strong>in</strong> <strong>the</strong> competitive


elationships between different species. The more vulnerable species<br />

will decl<strong>in</strong>e and f<strong>in</strong>ally disappear, while <strong>the</strong> less vulnerable species<br />

will becm established or <strong>in</strong>crease <strong>in</strong> particular areas. In general,<br />

<strong>the</strong> total number of species wtll decl<strong>in</strong>e, thus impoverish<strong>in</strong>g <strong>the</strong><br />

ecosystem, poasihly to a severe degree.<br />

In <strong>the</strong> Ear<strong>in</strong>gvliet bas<strong>in</strong> <strong>the</strong> levels are so high that specific<br />

environmental effects are to be expected. Inventories carried out <strong>in</strong><br />

<strong>the</strong> area have sbwn that <strong>the</strong> ecosystem <strong>in</strong> <strong>the</strong> Eollands Diep is<br />

functiot&~g much better than that of <strong>the</strong> Ear<strong>in</strong>gvliet. For <strong>in</strong>stance, <strong>the</strong><br />

biomass of fauna found on <strong>the</strong> river bed has been shown 50 be higher <strong>in</strong><br />

<strong>the</strong> Hollands Diep. This also applies to <strong>the</strong> number of fish and to <strong>the</strong><br />

numher of birds that feed on fish and fauna, liv<strong>in</strong>g on <strong>the</strong> river bed,<br />

such as cormorants, grebes and tufted ducks (BoudetPijn, et .l, 1986).<br />

The differences observed between <strong>the</strong> Eollands Diep and <strong>the</strong> Ear<strong>in</strong>gvliet<br />

may be expla<strong>in</strong>ed partly <strong>in</strong> terms of <strong>the</strong> difference <strong>in</strong> quality of Ehe<br />

beds. But even, <strong>the</strong> ecosystem qf <strong>the</strong> Hollan& Diep is poorly developed<br />

by compaison with e<strong>the</strong>r large freshwater systems <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands.<br />

Ror exantple, large water plants are scarce <strong>in</strong> <strong>the</strong> whole area, even<br />

though slight <strong>in</strong>creases have been detected aver <strong>the</strong> last few years. As<br />

far as iudividual species are concerned, sme of <strong>the</strong> effects are<br />

probably connected with <strong>the</strong> contam<strong>in</strong>ation of <strong>the</strong> river bed. A liak has<br />

been est&lished between deviations <strong>in</strong> <strong>the</strong> chit<strong>in</strong> structure of <strong>the</strong> head<br />

of chironomid larvae and <strong>the</strong> degree of pollution found <strong>in</strong> <strong>the</strong> sediment.<br />

Lahoratory research hae <strong>in</strong>dicated that <strong>the</strong> reproduction rate of tufted<br />

ducks fed on freshwater mussels from <strong>the</strong> Har<strong>in</strong>gvliet is considerable<br />

lower than that of tufted ducks fed on mussels from less pollated areas<br />

(Marquenie, et al. 1987). Moreover, <strong>the</strong> eggs of tufted ducks and grehes<br />

from <strong>the</strong> Ear<strong>in</strong>gvliet area appear to have mueh higher levels of organia<br />

micropollutants than those of birds from less contam<strong>in</strong>ated reference<br />

areas (Table 1).


Table 1 PCB levels <strong>in</strong> ees of grebes from <strong>the</strong> Har<strong>in</strong>gvliet bas<strong>in</strong> and<br />

sore clean reference amas (values <strong>in</strong> ~g/kg)<br />

bas<strong>in</strong><br />

areas<br />

PCB 138 4 900 - 18 500 120 - 1 450<br />

PCB 153 9 MO - 16 500 205 - 2 $50<br />

PCB 186 1 850 - 3 450 10 - 195<br />

Recent research also show8 that cormrants, a fish-eat*g<br />

spaeies at<br />

<strong>the</strong> end of <strong>the</strong> fopd cha<strong>in</strong>, are reproduc<strong>in</strong>g far leas snecessfully iU <strong>the</strong><br />

nor<strong>the</strong>rn part of <strong>the</strong> <strong>Delta</strong> region (Biesbasch) than <strong>in</strong> o<strong>the</strong>r areas<br />

(Boudewijn, et al. 1989). In a number of colonies along <strong>the</strong> major<br />

rivers (IJssel. Rh<strong>in</strong>e and Waal) <strong>the</strong> reproduction rate is two to three<br />

rirpes higher than <strong>in</strong> <strong>the</strong> Biesbaach, and it is four t<strong>in</strong>es highex <strong>in</strong><br />

areas witb a relatively low level nf palltLTian. (See Table 2).<br />

Table 2 Number of puns leav<strong>in</strong>g <strong>the</strong> nes per clutch, <strong>in</strong> a d e r<br />

connorant colonties <strong>in</strong> 1988.<br />

of<br />

&ss with a MBj or river areas Biesbosch<br />

reiatfrely low<br />

level of gollrttion<br />

OV Oude Venen (Friesland)<br />

BW B~ede Water CVoorne)<br />

W Wijhe (Gelderse IJseel3<br />

0 OZst (Gelderso TJssel)<br />

P Pannerden (Upper Rh<strong>in</strong>e)<br />

W Baaften (Waal)<br />

bB Dordrse BSeabosch


Bio-essay Weriments with polluted sediment from Due of <strong>the</strong> smaller<br />

harbours <strong>in</strong> <strong>the</strong> <strong>Delta</strong> region (&resicens) revealed effects on oyster<br />

larvae (Crassostrea Awulatal and a ernstacean Lhthypreia).<br />

Even when B large proportion of Clew sediment was added to <strong>the</strong><br />

polluted harbour sludge, mortality rates were demonstrably affected by<br />

pollution (Hnrk, 19883.<br />

The effects of <strong>in</strong>creas<strong>in</strong>g pollution <strong>in</strong> water md riverbeds are al-so<br />

noticeable <strong>in</strong> <strong>the</strong> Western Srheldt estuary. The popuLation of hatbaur<br />

seals (Phoca vitul<strong>in</strong>a) has now disappeared. Food cha<strong>in</strong>s <strong>in</strong> rhe eastern<br />

part of <strong>the</strong> estuary have been dfs<strong>the</strong>d and <strong>the</strong> number of benthic<br />

organisms significaatly raduced. It is acknowledged that <strong>the</strong> amounts of<br />

cabmiwu now exceed acceptable leveLs for hum consumption.<br />

particularly <strong>in</strong> flounder (Platickthys flesus), <strong>in</strong> shellfish such as<br />

mussels (Mytilus edule) aad <strong>in</strong> sea plants such as Aster tripolium and<br />

Salicornfa spec., foutld <strong>in</strong> <strong>the</strong> Lad of Saeft<strong>in</strong>ghe area.<br />

6 CONCLXISIONS AI43 FINAL ReMaaKS<br />

Although water quality and <strong>the</strong> condition of <strong>the</strong> beds we*e not taken<br />

<strong>in</strong>tn consideration at <strong>the</strong> time of <strong>the</strong> origtnal decisions concern<strong>in</strong>g <strong>the</strong><br />

phas<strong>in</strong>g and implementation 05 <strong>the</strong> <strong>Delta</strong> Plan, it is now recognized that<br />

<strong>the</strong> separation of parts of <strong>the</strong> <strong>Delta</strong> from <strong>the</strong> waters of <strong>the</strong> Rh<strong>in</strong>e and<br />

Eeuse, as part of <strong>the</strong> compartmentalization programme for <strong>the</strong> regiwn,<br />

has played a significant role <strong>in</strong> wtnta<strong>in</strong>Ss& a satisfactory level of<br />

quality <strong>in</strong> <strong>the</strong> majority of <strong>the</strong> beds <strong>in</strong> <strong>the</strong> <strong>Delta</strong>. As a result, <strong>the</strong><br />

quality of <strong>the</strong> sediment <strong>in</strong> tlle central secrion of <strong>the</strong> estuary is clese<br />

to natural backgrrrwd levelS. However, <strong>the</strong> closure of an estuary such<br />

as <strong>the</strong> Rar<strong>in</strong>8vliet ean lead to large amounts of polluted river ~ilt<br />

settl<strong>in</strong>g <strong>in</strong> new sedimentation areas. An o<strong>the</strong>r ntethod af controll<strong>in</strong>g<br />

<strong>the</strong> distribution of contam<strong>in</strong>ated rmaterial is to limit <strong>the</strong> tkrou~hpm of<br />

water if sluices for water management are available <strong>in</strong> <strong>the</strong><br />

colnpartment~llzation-dams. This idea has, for <strong>in</strong>stance, been<br />

<strong>in</strong>corporated <strong>in</strong>to <strong>the</strong> plan for manag<strong>in</strong>g <strong>the</strong> quanrity of water of Lake<br />

Zao<strong>in</strong>.


In <strong>the</strong> sedimentation areas, <strong>the</strong>re are clear signs that <strong>the</strong> <strong>ecological</strong><br />

commuaities that are directly dependent on <strong>the</strong> quality of <strong>the</strong> bed have<br />

been disrupted. The long-term pollcy aims of <strong>the</strong> We<strong>the</strong>rlands government<br />

are to improve <strong>the</strong> quality of riper beds and lake beds to such a degree<br />

that <strong>the</strong> aquatic ecosystems can fuaction satisfaccarily, quarantee<strong>in</strong>g<br />

optimum use of <strong>the</strong> water systems. Short-term policy objectives are to<br />

obta<strong>in</strong> fur<strong>the</strong>r <strong>in</strong>formation about <strong>the</strong> present quality of <strong>the</strong> river beds,<br />

<strong>the</strong> causes and effects of pollution and possible means of prevention.<br />

Fur<strong>the</strong>rmore, uniform standards for <strong>the</strong> aseessment of all types of soils<br />

and clean-up methods for <strong>the</strong> most polluted locations are be<strong>in</strong>g<br />

developed. In <strong>the</strong> last fifteen years almost 80 million m3 of pollnted<br />

river sediment have been deposited <strong>in</strong> <strong>the</strong> lower reaches of <strong>the</strong> Rh<strong>in</strong>e,<br />

&use and Saheldt. The south-western reglon of <strong>the</strong> Ne<strong>the</strong>rlands can<br />

<strong>the</strong>refore justly he referred to as <strong>the</strong> sedimentation pit of <strong>the</strong>se<br />

rivers. It is essential that clean-up operations <strong>in</strong> <strong>the</strong> river bas<strong>in</strong>s be<br />

iqlemented quickly. However. <strong>the</strong> elean<strong>in</strong>g-up af <strong>the</strong> river beds can<br />

on*<br />

really be considered when <strong>the</strong> contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong> three rivers<br />

has been reduced t~ an acceptable level. As a result of consultation at<br />

<strong>in</strong>ternational level, <strong>the</strong> Rh<strong>in</strong>e riparian states have agreed measures to<br />

halve <strong>the</strong> discharge of a number of major pollutants <strong>in</strong> <strong>the</strong> Rh<strong>in</strong>e bas<strong>in</strong><br />

between 1985 and 1495. If necessary, additional measures will be taken<br />

after 1995, <strong>in</strong> <strong>the</strong> event of failure to achieve <strong>the</strong> aims lald down <strong>in</strong><br />

<strong>the</strong> agreements (such as <strong>the</strong> el<strong>in</strong><strong>in</strong>acion of d~positions of pollutant5 <strong>in</strong><br />

sediment). The states border<strong>in</strong>g on <strong>the</strong> North Sea have arrived at<br />

similar agreements with respect to <strong>the</strong> t-ivers and <strong>the</strong>se will have most<br />

effect on <strong>the</strong> <strong>Delta</strong> Fn this regard. once <strong>the</strong> transport of polluted<br />

sediment has been halted, a decision may be takw on <strong>the</strong> clean<strong>in</strong>g up of<br />

<strong>the</strong> estuary and lake beds.<br />

Those areas. where <strong>the</strong> sediment is of an unacceptable quality <strong>in</strong> view<br />

of <strong>the</strong> uses te which <strong>the</strong> wafer is put, are first <strong>in</strong> l<strong>in</strong>e for a clean-up<br />

operation. O<strong>the</strong>r important criteria are whe<strong>the</strong>r or not: <strong>the</strong> polluted<br />

sediment is gradually he<strong>in</strong>g covered by cleaner sediment as a result of<br />

natural processes, <strong>the</strong> effect which <strong>the</strong> puSlufed area has upon <strong>the</strong><br />

surromd<strong>in</strong>g environment and <strong>the</strong> practicability of a clean-up operatioe<br />

from <strong>the</strong> technical and adm<strong>in</strong>istrative po<strong>in</strong>ts of view. As such<br />

operations are <strong>in</strong>variably costly, it will be necessary to give


considerable thought to draw<strong>in</strong>g up <strong>the</strong> list of priorities.<br />

Clean-up operatiens are probably uenecessary <strong>in</strong> areas where a cleaner<br />

top layer is be<strong>in</strong>g deposited as a result of cont<strong>in</strong>u<strong>in</strong>g sedimentation,<br />

as is happen<strong>in</strong>g <strong>in</strong> <strong>the</strong> Hollands Mep and <strong>the</strong> Land of Saeft<strong>in</strong>ghe.<br />

Hwever, <strong>in</strong> cases where pollutants rema<strong>in</strong> <strong>in</strong> <strong>the</strong> top layer and may be<br />

released and spread fur<strong>the</strong>r afield, such measures must be emsidered.<br />

The degree of priority to be accorded to clean<strong>in</strong>g up <strong>the</strong> area is<br />

deteaed by <strong>the</strong> gravity of <strong>the</strong> effect of tak<strong>in</strong>g no action and by<br />

whe<strong>the</strong>r <strong>the</strong> source of palLution has been removed or cont<strong>in</strong>ues te exist.<br />

The polluted harbours <strong>in</strong> <strong>the</strong> Eastern Scheldt region are to be cleaned<br />

up <strong>in</strong> <strong>the</strong> course of 1988. It is certa<strong>in</strong>ly worth consider<strong>in</strong>g cleas<strong>in</strong>g up<br />

<strong>the</strong> pul$uted sediment <strong>in</strong> <strong>the</strong> br, <strong>the</strong> Nieuwe Menfede and <strong>the</strong><br />

Biesbosch, as virtually no fur<strong>the</strong>r deposits of clemer sediment can be<br />

expected <strong>in</strong> <strong>the</strong>se aeeas <strong>in</strong> future. The need is all <strong>the</strong> more press<strong>in</strong>g<br />

because it has been prown thAt pollution seriously detracts from <strong>the</strong><br />

funetion of this azea as a Wure reserve.<br />

s<strong>in</strong>ce simiIar problems with polluted river sed*nts are Ekely to<br />

accompany <strong>the</strong> huildag of dams <strong>in</strong> o<strong>the</strong>r parts of <strong>the</strong> world with<br />

<strong>in</strong>dnstrialixed catchmene areas, <strong>the</strong> experience ga<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Dutch<br />

<strong>Delta</strong> Project should prove to be generally applicable.<br />

Zxtensive hydraulic eng<strong>in</strong>eer<strong>in</strong>g projects have been csrried out over <strong>the</strong><br />

last 25 years <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area formed by <strong>the</strong> rivers Rh<strong>in</strong>e, Meuse and<br />

Scheldt. This has resulted <strong>in</strong> parts of <strong>the</strong> <strong>Delta</strong> be<strong>in</strong>g divided up<br />

(compartmenta15zed) while o<strong>the</strong>r parts have been closed off. The time at<br />

which many of <strong>the</strong> opmations <strong>in</strong>volved <strong>in</strong> died<strong>in</strong>g up <strong>the</strong>se areas were<br />

carried out co<strong>in</strong>cided with a pezioa dur<strong>in</strong>g which <strong>the</strong> pollution <strong>in</strong> <strong>the</strong><br />

three rivers reached its maximm level (1970-1975).


Bicropollutants (heavy metals and mganic compounds) became attaohed to<br />

<strong>the</strong> f<strong>in</strong>es <strong>in</strong> <strong>the</strong> sediment carried by <strong>the</strong> rivers, and this lea to <strong>the</strong><br />

<strong>Delta</strong> region also be<strong>in</strong>g affected by <strong>the</strong>se contam<strong>in</strong>ants. Ifowever,<br />

because of compartmsntalization. eerta<strong>in</strong> areas, namely Lake Grevel<strong>in</strong>gen<br />

and <strong>the</strong> tidal bas<strong>in</strong> of <strong>the</strong> Eastern Scheldt, escaped <strong>the</strong> wave of<br />

pollution. The qnautities of micropallutants <strong>in</strong> <strong>the</strong>se areas are very<br />

€lose to natural backgmund levels. The explanatian for this is that<br />

<strong>the</strong> compartmentalization of <strong>the</strong>se areas waa cmpleted before <strong>the</strong><br />

pollucibn <strong>in</strong> <strong>the</strong> Rh<strong>in</strong>e and Meuse reached such high levels.<br />

m contrast, <strong>the</strong> closure of <strong>the</strong> Itar<strong>in</strong>gvliet esfuary led to <strong>the</strong><br />

formation of new sedimentation areas just prior to <strong>the</strong> time at which<br />

ehe pollution <strong>in</strong> <strong>the</strong> m<strong>in</strong>e and Wuee reached a peak. Thus layers of<br />

contam<strong>in</strong>ated material have settled <strong>in</strong> <strong>the</strong>se sedimentation ar-S.<br />

30% of <strong>the</strong> tutal am~unt of silt transported by <strong>the</strong> rivers Bh<strong>in</strong>e and<br />

Meuse is depasited <strong>in</strong> <strong>the</strong>se areas.<br />

Almost<br />

Estuaries that hare mt been <strong>in</strong>fluenced by closure operations can also<br />

undergo significant tempmrary sedimentation effeots. An uample of this<br />

is <strong>the</strong> Land of Saeft<strong>in</strong>ghe <strong>in</strong> <strong>the</strong> Western Scheldt estuary. h a result<br />

of a rise <strong>in</strong> <strong>the</strong> sea level and a deepehg of <strong>the</strong> shipp<strong>in</strong>g channel, <strong>the</strong><br />

difference between low and higher water hqs <strong>in</strong>creased which. <strong>in</strong> turn,<br />

had resulted <strong>in</strong> a sigaiftcz~tLy greater deposition of silt on <strong>the</strong><br />

mudflats and salt marches. Blmosr 254: of <strong>the</strong> silt crsnspdrted by <strong>the</strong><br />

river Sehaldt settles <strong>in</strong> <strong>the</strong>se areas. Although relatively little is<br />

born about <strong>the</strong> effects that conram<strong>in</strong>ated beds haae on <strong>the</strong> aquatic<br />

ecosystem, <strong>the</strong>re are clear signs that eecelogical contmu~iities whPch &re<br />

directly dependent on <strong>the</strong> river bed environment can be disrupted. In<br />

addition, <strong>the</strong> aouots of pollutants found <strong>in</strong> Certa<strong>in</strong> organisms and<br />

plants now exceed <strong>the</strong> maximum acoeptable levels for human cm%umption.<br />

Future clean-up operations could be considered £m tbe conram<strong>in</strong>ated<br />

sedimentation areas when <strong>the</strong> level of pollutian from discharges <strong>in</strong>to<br />

<strong>the</strong> river baeiw has been sufficiently reduced. In view of th8 scale<br />

and eeent of <strong>the</strong> sedimentatim layer concsrned, no solutions have yet<br />

been fuund to this pmhlm.


ShLOUONS, W. and BYSINK, W.D., 1981. Pathways of mud and particulate<br />

trace metds from rivers to <strong>the</strong> sou<strong>the</strong>rn Borth Sea. In: Nio SD,<br />

Schiittenhem RTE, Weer<strong>in</strong>g TCE of (eds) Holocene mar<strong>in</strong>e<br />

sedimentation 19 <strong>the</strong> florth Sea bas<strong>in</strong>. Spec. Publ. Intern Aesoc.<br />

Sedimental 5: 429-&50.<br />

BEEFTINK, W.G.. NI~UIZE, J., STOEPPLER. M. and WHL, C., 1982.<br />

Hewy metal accumulation <strong>in</strong> salt marshes from <strong>the</strong> Western and<br />

Eastern Scheldt. Science Total Environmental 25: 199-223.<br />

BOUDEWIJN, T.J. and MES. R.G., 1986. De ontwikkel<strong>in</strong>g van de vogelstand<br />

<strong>in</strong> het Bollands Diep/Bar<strong>in</strong>gvlietgebied <strong>in</strong> de periode 1972-1986 en<br />

de <strong>in</strong>vloed van het waterpeil op watervogels. Ecoland. Leewarden.<br />

RIJKSWATERSTBAT, directie Benedenrivieren 1987. De waterbodem van het<br />

noordelilk deltabekken. Dordrecht.<br />

BOODEWIJN, T.J., DIB$SEN. S.. MES, R.@. and SLBGW, L.K., 1989. ne<br />

aalscholver: <strong>in</strong>dicatiesoort voor de kwaliteit van de NederLandse<br />

wateren? (<strong>in</strong> prep.)<br />

M&RQUENIE, J.M.,, ROELE, P. and HOOWSHA, G., 1486. Onderzoek naar<br />

effecten van contanrimten op duikeenden. TWO-M!I Den Helder.<br />

Rapport nr. 861066.<br />

BURK VAN DEN, P., 1988. Voortgansrapportage <strong>in</strong>dicat-Biamon 2.


EUTROE%ICATION OF Tfts<br />

WATERS OF TEE DELTA<br />

J.E.W. de Hoog and B.P.C. Steenkatnp<br />

ABSTRACT<br />

A number of stagnant and serai-stagnant water systems came <strong>in</strong>to be<strong>in</strong>g a6<br />

a result of <strong>the</strong> recently completed hydraulic ehgiueeritlg works <strong>in</strong> <strong>the</strong><br />

<strong>Delta</strong> area of <strong>the</strong> Aerhe~litnds.<br />

Eutrophication can occur <strong>in</strong> <strong>the</strong>se waters as a result of <strong>the</strong> <strong>in</strong>put of<br />

nutrient-rich river water. l%ia paper describes <strong>the</strong> eutrophication<br />

situation of bwo water systems <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area2 <strong>the</strong> Hollands Diep/<br />

Her<strong>in</strong>gvliet and <strong>the</strong> Volkerak-Zoom lake system.<br />

In <strong>the</strong> E~llaods ~ie~iliar<strong>in</strong>gvliet <strong>the</strong> residence time of <strong>the</strong> water<br />

depends on <strong>the</strong> discharge of <strong>the</strong> sivex Rh<strong>in</strong>e. In years of low discharge<br />

<strong>the</strong> restdance time is relatively long and, especially <strong>in</strong> <strong>the</strong> western<br />

part of <strong>the</strong> Har<strong>in</strong>gvlier, a large biomass o$ algae can appear as a<br />

result of eutrophication. In pars of moderate OT higher discharpes sf<br />

<strong>the</strong> riv$r m<strong>in</strong>e this water system behave8 like a slowly flovlng river<br />

with relatively short residehce times ad a s41all hiamaes of algae,<br />

The Volkerak-Zoom l& system came <strong>in</strong>to be<strong>in</strong>g <strong>in</strong> 1981 and after a<br />

period of desal<strong>in</strong>ization changed from a sal<strong>in</strong>e tidal area <strong>in</strong>to a freshwater<br />

stagnant reservoir. The most important <strong>in</strong>put of rrater is from <strong>the</strong><br />

XolLands Diep and <strong>the</strong> river D<strong>in</strong>tel. Computer modell<strong>in</strong>g <strong>in</strong>dicates that<br />

<strong>the</strong> lake will develop <strong>in</strong>to an eutrophlc lake anleas adequate measures


are taken. The first year after <strong>the</strong> desal<strong>in</strong>ikation proved mmre<br />

favourable thm predicted (<strong>the</strong> himas8 of algae was relatively small<br />

and transparency was ghod), but <strong>the</strong> <strong>in</strong>put of nutrients meds to he<br />

limited still fur<strong>the</strong>r <strong>in</strong> order to arrive at an endur<strong>in</strong>g Iavouzable<br />

water quality, In addition, "active biological management" should be<br />

considered, i,e. <strong>the</strong> applicatimn of biological management raeasnres to<br />

obta<strong>in</strong> a healthy water system wfth clear water, an abundance of aquatic<br />

plant@ and a stock of predatory fishes that wrll keep <strong>the</strong> whitefish<br />

with<strong>in</strong> bounds and hence allow sufficiefit eooplankton to rema<strong>in</strong> to graze<br />

on <strong>the</strong> algae.<br />

Eutrophication is <strong>the</strong> enriehmerrc of a water system r*ith plant nutrients<br />

(also simply called nutrients), of which nitrogen and phosphate are <strong>the</strong><br />

mast important. Eutrophication is partly a natural pzoeass: erosiofi and<br />

leach<strong>in</strong>g wash nutrients <strong>in</strong>ta zivers, wkich transport <strong>the</strong>m to <strong>the</strong> lower<br />

reaches. Therefore, delta areas are natur.%lly wtrophic, and <strong>the</strong> Dutch<br />

<strong>Delta</strong> area is a good example.<br />

In <strong>the</strong> last 100 years humanity has greatly exacerbated <strong>the</strong> natural<br />

process of eutrophication. The <strong>in</strong>srallatien of dra<strong>in</strong>s ad sewers, <strong>the</strong><br />

use of detergents and fertilizers and <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>tensfficstion of<br />

livestock fann<strong>in</strong>g have led t0 <strong>the</strong> amounta of nutrients <strong>in</strong> <strong>the</strong> rivers<br />

be<strong>in</strong>g <strong>in</strong>creased many times over.<br />

Tn sttagnant water <strong>the</strong> enrichraent with planr nutrients can lead to m<br />

<strong>in</strong>crease <strong>in</strong> <strong>the</strong> growth of algae, which can reault <strong>in</strong> high 4ensities of<br />

algae. Large numbezs of algae 14 <strong>the</strong> water results <strong>in</strong> a lev<br />

transparency; when <strong>the</strong> algae dh aeaerobim can occur and thie In turn<br />

can lead to fish mortality and a bad emell. Fur<strong>the</strong>rmore, toxic species<br />

of algae can occur (blue-green algae). Some species £am float<strong>in</strong>g mts.<br />

Sa~tions 2 aad 9 of this paper describe <strong>the</strong> eutrophication situation of<br />

two Serni-stagriant water systems <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area: <strong>the</strong> nollands Dlepj<br />

Har<strong>in</strong>gvliet ad <strong>the</strong> Vohrak-Zwm lake system. The wtrophtcation state


of <strong>the</strong> latter is compared with that of Lake Brielle, which is<br />

comparable <strong>in</strong> terms of morphology and residence time. Figure l shows<br />

<strong>the</strong> location of <strong>the</strong>se water systems.<br />

Section 4 discusses <strong>the</strong> possible management measures with which <strong>the</strong><br />

eutrophicatian problem of <strong>the</strong> Volkerak-Zoom lake system can be<br />

prevented or limited.<br />

NOORDZEE<br />

Figure 1 Location of Hollands DieplHar<strong>in</strong>gvliet and Volkerak-Zoom lake<br />

system


The Hollands DiepJnar<strong>in</strong>gpllet is part of <strong>the</strong> nor<strong>the</strong>rn <strong>Delta</strong> bas<strong>in</strong>s,<br />

also called <strong>the</strong> lower area of <strong>the</strong> peat riiuers. This is <strong>the</strong> area where<br />

two large Western European rivers, <strong>the</strong> Eh<strong>in</strong>e and <strong>the</strong> Mewe, discharge<br />

<strong>in</strong>to <strong>the</strong> sea. The river vater enters <strong>the</strong> area from <strong>the</strong> east along thtee<br />

river channels and can. <strong>in</strong> pr<strong>in</strong>ciple, reach <strong>the</strong> sea via two routes.<br />

When <strong>the</strong> Rh<strong>in</strong>e discharge is less than 1700 m3/s<br />

tbe Har<strong>in</strong>gvliet sluices<br />

ip <strong>the</strong> west rermt<strong>in</strong> closed and all <strong>the</strong> river water enters <strong>the</strong> sea via <strong>the</strong><br />

New Waterway. At Rh<strong>in</strong>e discharges abwe 1700 ms/s <strong>the</strong> Haz<strong>in</strong>gvliet<br />

sluices are also used to discharge <strong>the</strong> riaer water. These sluices are,<br />

haqeaer, ~nly opened at low tide. This management of <strong>the</strong> hr<strong>in</strong>gvliet<br />

sluices obviously has repercussions on <strong>the</strong> water movement <strong>in</strong> <strong>the</strong><br />

Hollands DieplHar<strong>in</strong>gvliet and henee also on <strong>the</strong> eutrgphicatios<br />

sitnatLon.<br />

The eutrophlCation situation of <strong>the</strong> bas<strong>in</strong>s ~im he characterized as<br />

falLows. Large amounts df nitrogen and phosphate are brought <strong>in</strong> by <strong>the</strong><br />

rivers, thns <strong>the</strong> concentrations of nutrienks are high. Howevet, it is<br />

strik<strong>in</strong>g that <strong>in</strong> <strong>the</strong>se waters a low biamass of algae U usually formd.<br />

Rlsa. tlie bbmass of algae usually decreases fxom east torest; as a<br />

~le, <strong>the</strong> £eves* algae are found near <strong>the</strong> W<strong>in</strong>gvliet ailuices.<br />

Generally. fev blue-green algae oceur <strong>in</strong> <strong>the</strong>se waters and <strong>the</strong><br />

trausparency is reasonable on <strong>the</strong> whole; near <strong>the</strong> Karisgpliet sluices a<br />

twsperencg of 1 to 1.5 m is regularly found.<br />

The relatively low biarsasses of algae are often attributed to <strong>the</strong><br />

<strong>in</strong>fluence of toxic substances. It will be shown below that <strong>the</strong> watez<br />

movemat provides a plausible exalanation. Figure 2 shows <strong>the</strong> chasges<br />

<strong>in</strong> mean snmaer Level of chlorophyl along che traject from Lohith to<br />

<strong>the</strong> Ear<strong>in</strong>gttliet aluices for <strong>the</strong> pear 1982. Chloropbyl is an <strong>in</strong>dicator<br />

of <strong>the</strong> amaunt of algae <strong>in</strong> <strong>the</strong> water.<br />

From Figure 2 it can be seen that <strong>the</strong>re is a clear decrease <strong>in</strong> <strong>the</strong><br />

biomfass of algae along <strong>the</strong> traJect. However, <strong>the</strong> picture changes if we<br />

look at figures from o<strong>the</strong>r years. Figure 3 shows <strong>the</strong> mean smmer levels<br />

of chfwrdphyl between Lohith and ehe Ear<strong>in</strong>pliet slaices <strong>in</strong> 1976, L982<br />

and 1987.


1<br />

Loblth Vuran NMlS H7 H8 H9 H10 H12<br />

HOLL. DlEP<br />

HARINGVLET<br />

Figure 2 Mean s m r<br />

level of chlorophyl <strong>in</strong> 1982 along che Lohith-<br />

Bar<strong>in</strong>gvliet sluices craject<br />

HOLL. DlEP<br />

HARlNGVLlET<br />

Figure 3 &an smer chlarophyl levels <strong>in</strong> 1976, 1982 and 1987 along<br />

<strong>the</strong> Labith-Har<strong>in</strong>gvliet sluices trajeet


In 1976 <strong>the</strong> determ<strong>in</strong>ation of chlozopkyl levels was still <strong>in</strong> its<br />

<strong>in</strong>fancy, put <strong>the</strong> few daca available <strong>in</strong>dlcate that <strong>in</strong> that exceptionally<br />

dry year <strong>the</strong>re vas an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> biomass of algae towards <strong>the</strong><br />

Bar<strong>in</strong>gvliet slnices. The picture ww very diffezent <strong>in</strong> 1987: <strong>in</strong> that<br />

year <strong>the</strong> was very little dffference <strong>in</strong> <strong>the</strong> amounts of algae along <strong>the</strong><br />

weire trajert from Lobith to <strong>the</strong> Har<strong>in</strong>gvliet sluices.<br />

This disparity can be oXpla<strong>in</strong>ed by study<strong>in</strong>g tXe river discharges of <strong>the</strong><br />

various years,<br />

In L976 <strong>the</strong> mean smer Rhke disaharge was well below 1700 mars; <strong>in</strong><br />

that year <strong>the</strong> Har<strong>in</strong>gvliet sluices were slrarcely used <strong>the</strong> whole emer.<br />

In 198% <strong>the</strong> mean s u s Rh<strong>in</strong>e discharge was approximately 2200 m','$;<br />

<strong>the</strong>refete <strong>in</strong> that year <strong>the</strong> sluices were regularly <strong>in</strong> use. In <strong>the</strong> smer<br />

of 1987 <strong>the</strong> Eh<strong>in</strong>e discharge was well above <strong>the</strong> mean discharge. and<br />

<strong>the</strong>refore <strong>the</strong> sluices were used almost daily to discharge <strong>the</strong> E-l~er<br />

water <strong>in</strong>to <strong>the</strong> sea (Table 1).<br />

Table 1 Mean smer chlorophyl level and Rh<strong>in</strong>e discharpe <strong>in</strong> 1976,<br />

1989 wd 1987.<br />

chlorephpl<br />

(ms/m3)<br />

Eh<strong>in</strong>e discharge<br />

(g/.)<br />

Computer Sirmtl&EionE dbne at Delft Hydraulics have also shm that <strong>the</strong><br />

behaviour of algae <strong>in</strong> <strong>the</strong>se watetri greatly depends on <strong>the</strong> vater<br />

movement is this area. The eutrophicatian <strong>in</strong> 1976 and 1982 was<br />

sfolulated with <strong>the</strong> DBLWbQ-BLOUX model. &B <strong>in</strong>put <strong>the</strong> made1 requires data<br />

@n <strong>the</strong> water mowameat <strong>in</strong> Ehe Various river channels, <strong>the</strong> concentrations<br />

df uzttrients and algae <strong>in</strong> CIre <strong>in</strong>com<strong>in</strong>g river water, climatological<br />

factors rlna properties of algae. As output <strong>the</strong> model supplies <strong>the</strong> algkl<br />

hiomass far each location <strong>in</strong> <strong>the</strong> area am4 for each day of <strong>the</strong> year.


chlorophyl [u~/I) l 8.14- 8.12 IUU~U~ a.ffi- 8.83<br />

m 0.lZ 8.11 8.83 B.82<br />

DAY p 8.11 - 8.89 1 8.82 - 8.88<br />

IZ1<br />

8.U - 8.68<br />

%igure 4 Simnlation produced by DGLWAQ-BLOOM model for day 121, 1976.<br />

Figure 4 &wa <strong>the</strong> result produced by <strong>the</strong> model for day l21 (<strong>the</strong> end of<br />

April) <strong>in</strong> 1976. It <strong>in</strong>dicates tbat <strong>the</strong>re are appreciably fewer algae <strong>in</strong><br />

<strong>the</strong> EIollmds Diep at <strong>the</strong> Volkerak sluice6 than <strong>in</strong> <strong>the</strong> river channels<br />

upstream, and thac very high levels of chlorophyl wcur near che<br />

Ear<strong>in</strong>gvliet slgices .<br />

The picture is different: fer 1982 (see Fig. 5). In <strong>the</strong> Bollasds Rdep<br />

<strong>the</strong> chlotuphpl levels are lower than is <strong>the</strong> river ehwnela, but<br />

towards <strong>the</strong> Hafiupliet sluices <strong>the</strong>y decresse even furLher. mia is<br />

fully <strong>in</strong> agreement With <strong>the</strong> picture of measured chloropliyl levels <strong>in</strong><br />

that year.


, 0.66 m 0,s - 0.02<br />

1989<br />

I 0.86 - 0.85 @ 0.82 - 0.02<br />

chlorophyl (~g/l] m 0.85 - 8.6 11111111 0.82 - 0.01<br />

DAY U1<br />

88 s.es - a.ai I @,at - s,e~<br />

B3 0.04- 0.84 6.01- #.M<br />

Figure 5 $imlatlan produced by DELWAQ-BLWMmodel far daF 121. 1982<br />

Table 2 Summarized results @Of research on eutrophication <strong>in</strong> Eellands<br />

DioplHax<strong>in</strong>gvliet<br />

long short v. short<br />

residence time agpron. apprw.<br />

69 days 6 days l - 2 days<br />

system lake transition river<br />

lake-river<br />

behaviour of aka*<br />

Hollands Diep settl<strong>in</strong>g out settl<strong>in</strong>g out transperted<br />

Ear<strong>in</strong>gvliet grow<strong>in</strong>g settl<strong>in</strong>g out transported


Table 2 suonna*es <strong>the</strong> mast importmt results of <strong>the</strong> research on<br />

eufrophicath <strong>in</strong> <strong>the</strong> Hollanda DiepIIlar<strong>in</strong>gvliet. From thia table it can<br />

be seen that <strong>in</strong> 1976 rhe residence time <strong>in</strong> <strong>the</strong> Ballads Diep/<br />

Har<strong>in</strong>gvliet was Long; 60 days on average. The smtem behaved like a<br />

lake. The algae <strong>in</strong> <strong>the</strong> IEollands Diep settled out, but <strong>in</strong> <strong>the</strong><br />

Har<strong>in</strong>gvliet <strong>the</strong>y were able to grow well.<br />

The residence time was much shorter <strong>in</strong> 1982: apgroximately 6 days on<br />

average. The system behaved Like a transition between a river alld a<br />

lake system. Algae settled wt both fxi <strong>the</strong> HolLands Diep and <strong>in</strong> <strong>the</strong><br />

Ear<strong>in</strong>gxliet.<br />

In 1987 <strong>the</strong> residence dm. was vely sbrt; <strong>the</strong> system behaved like a<br />

slow-flow<strong>in</strong>g river. The algae transparted with <strong>the</strong> pates -re egrried<br />

along rwards <strong>the</strong> sea.<br />

l'he water movement thus offers a very acceptable explanation for <strong>the</strong><br />

behaviour of algae <strong>in</strong> this system. kence. o<strong>the</strong>r reasons, such as<br />

t~xological effects, seem less probable.<br />

The VoUcaak-Zoem lake system eame <strong>in</strong>ta be<strong>in</strong>g <strong>in</strong> April 1987 after <strong>the</strong><br />

closure of <strong>the</strong> Philips dam. Ptsm a saltwater tidal area this area has<br />

gradually chaaged, first <strong>in</strong>ts a bSacld8h lake. Dur<strong>in</strong>g 1987 fhe<br />

desal<strong>in</strong>ieation was acaelerated bg allow* an ex+ra <strong>in</strong>take of fresh<br />

watez via t&e Volkerak slaices. The D<strong>in</strong>td, a small river that dra<strong>in</strong>g<br />

much of Wear Brabant end z& smell part of Belgivm, is annthiir important<br />

smrce of frbsh water for this lake.<br />

Before <strong>the</strong> l&e was created predirtions were made about <strong>the</strong><br />

eutrophication that could be expected. Table 3 gives an impression of<br />

this and also shows <strong>the</strong> eutrophicatima observed <strong>in</strong> 1987 and 1988.


Table 3<br />

Eutrophication of <strong>the</strong> Volkerak-Zoom lake system and<br />

Lake Brielle<br />

Lake Brielle<br />

Volkerak-Zm lake system<br />

predicted 1987 L988<br />

total P<br />

(mgfl)<br />

transparencp approx. 1 approx. 1 1 2.2<br />

(m)<br />

!t%e general tendency of <strong>the</strong> forecasts was that <strong>the</strong> Volkerak-Zoom lake<br />

system, with 8 residence t<strong>in</strong>le of 2-3 months, would develop <strong>in</strong>to a<br />

eutrophic water hody with a chlorophyl level of 60-100 mg/ms, a total<br />

P-level of 0.20-0.35 mgll and a transparency not exceed<strong>in</strong>g l m. It is<br />

not possible to compare <strong>the</strong> actual situation <strong>in</strong> 1987 with <strong>the</strong><br />

predictions, because iri that year <strong>the</strong>re was a sharp fall <strong>in</strong> <strong>the</strong><br />

chloride level dur<strong>in</strong>g <strong>the</strong> growth season and hewe <strong>the</strong>re was no<br />

equilibrium situation. Rowever, <strong>the</strong> values measured <strong>in</strong> 1987 fall with<strong>in</strong><br />

<strong>the</strong> range of forecast values.<br />

The situation ia 1988 was clearly different. That was <strong>the</strong> first year <strong>in</strong><br />

whi& <strong>the</strong> lake was largely Eresh water: <strong>the</strong> measured values were far<br />

more fwontahle than predicted. The mean sunmeer chlorophyl level was<br />

approzimately 20 %/m3, tbe tQtal P-level was 0.17 mg/l and <strong>the</strong> mean<br />

transpan&ncy was 2.2 m.<br />

For cqarison, <strong>the</strong> values measured <strong>in</strong> Lake Brielle have been <strong>in</strong>cluded<br />

<strong>in</strong> Table 3. This lake is reasonably comparable with <strong>the</strong> Volkerak-Zoom<br />

l& system <strong>in</strong> terms of morphology and residence time. The meam<br />

chlorophyl Xevels <strong>in</strong> Lake Brielle are relatively low, but <strong>the</strong>


occwrence of float<strong>in</strong>g mats of blue-green algae often causes a nuisance<br />

<strong>in</strong> tMs lake. The mean transparency does not exceed 1 m.<br />

Figure 6 shows <strong>the</strong> changes <strong>in</strong> fhe chlorophyl level <strong>in</strong> bofh parts of<br />

<strong>the</strong> lgke system <strong>in</strong> 1988.<br />

' Laks<br />

VoLsrak<br />

---- Lake zom<br />

-<br />

0 6 TO 9 6 20 26 30 85<br />

week no.<br />

Figure 6 Chlorophyl level id take Volkerak and lake Zoom <strong>in</strong> 1988<br />

From this Figure it can be seen that peaks of up tn 100 mg/m9 o a r tn<br />

<strong>the</strong> s~r<strong>in</strong>g. There fs an abrupt downturn at Che end of &lax/he~<strong>in</strong>n<strong>in</strong>g of<br />

June, and fn <strong>the</strong> reat of <strong>the</strong> summer <strong>the</strong> chlorophyl levels rema<strong>in</strong> very<br />

low - especially <strong>in</strong> Lake Volkerak.<br />

The next two Sigures (Fig. 7 and 8) show <strong>the</strong> changes <strong>in</strong> <strong>the</strong> total<br />

P-level and <strong>the</strong> transparency.<br />

There was a clear decrease is <strong>the</strong> level of total pho~gharrrs <strong>in</strong> <strong>the</strong><br />

spr<strong>in</strong>g. In <strong>the</strong> perirvd of <strong>the</strong> sharp deeI<strong>in</strong>e <strong>in</strong> <strong>the</strong> ehlorophyl level<br />

towaras <strong>the</strong> end of May <strong>the</strong>re is a clear <strong>in</strong>crease <strong>in</strong> traneparency, first<br />

<strong>in</strong> Lake Polkerak and later Ln Me Zoom too. In hrvth lakes a<br />

transparency of alnurst 4 m was measured <strong>in</strong> August - a unique situation<br />

fos fresh water <strong>in</strong> <strong>the</strong> Netfierlds.


Laks<br />

Volkarek<br />

---- Lake Zoom<br />

0.40<br />

0 5 10 16 20 25 30 35<br />

week no.<br />

Figure 7 Total P-level <strong>in</strong> 1988<br />

Lake<br />

Volkerak<br />

---- Laka Zoom<br />

O L ~ " ' ~ ~ ' ~ ' ~ " ~ " " " ' " ~ " " ~ " ' ~ ~<br />

0 5 10 16 20 26 30 S6 40<br />

weak no.<br />

Figure 8 TrBmpareucy <strong>in</strong> 1988


Figure 5 show <strong>the</strong> numbess of Cladocera (an o~der of zooplankton which<br />

<strong>in</strong>cludes <strong>the</strong> water fleas) <strong>in</strong> Lake Volkerak and Lake Zoom <strong>in</strong> 1988.<br />

The unusual rransparency can be atfributed to <strong>the</strong> <strong>in</strong>tensive consumption<br />

of algae bp zooplankton.<br />

- Lake ---- Lake zoom<br />

Votkarak<br />

260<br />

zoo C<br />

1<br />

0 5 l0 16 PO 25 3 0 36<br />

week no.<br />

Figure 9 Numbers of Cladacera <strong>in</strong> Lake Volkerak ad Lake Zaom <strong>in</strong> 1988<br />

The fact that ths group of aooplanktm peaks <strong>in</strong> W/June <strong>in</strong>dicates<br />

that <strong>the</strong> clear deel%ne <strong>in</strong> <strong>the</strong> Biomass of algae may be caused by <strong>in</strong>tensim<br />

graz<strong>in</strong>g by <strong>the</strong> zooplankton. Although not sham <strong>in</strong> Biguxe 9, dur<strong>in</strong>g t b<br />

reat of *he stumer it was strik<strong>in</strong>g that e relative17 high n&r vf<br />

large water fleas were present. 3usr <strong>the</strong>se water fleas can create an<br />

effective graz<strong>in</strong>g pre$sure on algae.<br />

In turn. <strong>the</strong> large nuwbers of water fleas e m be expla<strong>in</strong>ed by <strong>the</strong> still<br />

limited numbem of plankton-eat<strong>in</strong>g fish.<br />

Float<strong>in</strong>g mats of blue-grem algae accured very locally L& Volkexak<br />

and Lake Zoem <strong>in</strong> autumn 1988.


4 WAGBEET MEdSIIRaS TO PEEVBT OR LTXIT TAE EUTROPEICBTION OF THB<br />

VOLKERAK-ZDOM LAKE S%STEiT<br />

A large nurober of goals have been formulated Tor <strong>the</strong> management of <strong>the</strong><br />

Volkerak-Zoom lake system. They <strong>in</strong>clude <strong>the</strong> prevention or reduction of<br />

eutrophicatian. Two types of IMma@ement measures could be used to<br />

achieve this goal:<br />

- reduc<strong>in</strong>g <strong>the</strong> nutrient load;<br />

- acteve Biological management.<br />

It mnst he stressed Ulat <strong>the</strong>se are nat afternatlves. Active biological<br />

management eaanplemencs <strong>the</strong> reduction of nutrient load.<br />

4.1 Deal<strong>in</strong>g tdfh nutrients<br />

When reduc<strong>in</strong>s <strong>the</strong> nutrient load <strong>the</strong> accent will lia on phasphate.<br />

becatwe <strong>in</strong> <strong>the</strong> fresh waters <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands this Es <strong>the</strong> natural<br />

limitfug faetor to <strong>the</strong> grovth of awe. For lakes like Lake B~rieLle and<br />

<strong>the</strong> Volkeritk--Zoom lake system che pfissphate is only limir<strong>in</strong>g Bar algal<br />

growh if <strong>the</strong> phosphate load is below 2-4 $Em2 per year.<br />

Frm Table 4 it cen be seen fb% <strong>the</strong> phosphate load of Lake Bridle has<br />

been drasticallp reduced s<strong>in</strong>ce 1972. Uovever, chia has not yet led to a<br />

reductian of <strong>the</strong> eutrophieation preblem. The fact that <strong>the</strong> bed of this<br />

lake has meanwhile been accumulatFog phospliatea that, <strong>in</strong> pr<strong>in</strong>eigle,<br />

could aga<strong>in</strong> cause an iaterna-l lead, is ullquestionably impartat hers.<br />

Zn this lake, largo-seale occurrences of drift<strong>in</strong>g mats can be limited<br />

ts some extent by 5nterim eera flush<strong>in</strong>g <strong>in</strong> <strong>the</strong> sumer period.<br />

In <strong>the</strong> Volkerak-Zoom l&e system <strong>the</strong> phosphate load has turned out<br />

10- than <strong>the</strong> foreoast, but <strong>in</strong> l988 it was still far too high eto he<br />

limit<strong>in</strong>g £er <strong>the</strong> growth of algae. The option of extra flush<strong>in</strong>g to<br />

cwbat drift<strong>in</strong>g mats is not considered hero. because tt conflicts with<br />

anothar goal of water management, i.e. try<strong>in</strong>g to prevent <strong>the</strong> water<br />

systw~ from be<strong>in</strong>g loaded with toxic Substancee from <strong>the</strong> Rollands Diep.


Fur<strong>the</strong>rmore, it is questionable whe<strong>the</strong>r such flush<strong>in</strong>g would be<br />

effective, given <strong>the</strong> shape awd size of <strong>the</strong> lake system.<br />

Table 4 Phosphate load <strong>in</strong> Lake BrieUe and <strong>the</strong> Volkerak-low lake<br />

sye tem<br />

Lake Brielle<br />

1972-1976<br />

1980-1982<br />

1983<br />

1987-1988<br />

Volkerak-Zoom<br />

Lake system<br />

preaicted<br />

1987<br />

1988<br />

guide value<br />

P-l<strong>in</strong>itation<br />

Table 5<br />

Phosphate load <strong>in</strong> <strong>the</strong> Volkerak-Zoom lake system <strong>in</strong> 1987 and<br />

1988<br />

m3/s ton P ms/s ton P<br />

Volkerak sluices 28 250 16 140<br />

Brabant rivers 15 460 12 240<br />

O<strong>the</strong>r 5 60 5 60<br />

Total 48 770 33 440


Table 5 gives estimtes of <strong>the</strong> phosphate load orig<strong>in</strong>at<strong>in</strong>g from <strong>the</strong> most<br />

important sources <strong>in</strong> 1987 and 1988.<br />

The difference between <strong>the</strong> two years for <strong>the</strong> Volkerak sluices is caused<br />

by <strong>the</strong> extra amount of water needed to desalipFEe <strong>the</strong> lake <strong>in</strong> 1987.<br />

MW& less phosphate was brought <strong>in</strong> by <strong>the</strong> Brabat rivers <strong>in</strong> 1988 because<br />

<strong>in</strong> May 1988 <strong>the</strong> effluent from <strong>the</strong> sewage Ereatwent plant at Bred&<br />

Nieuweer, was diverted from <strong>the</strong> D<strong>in</strong>tel to <strong>the</strong> Holland6 Diep. When, <strong>in</strong><br />

<strong>the</strong> future, water is extracted from tbe lake for agriculture, <strong>the</strong><br />

phasphate load will be higher hficause more water viz1 have to be<br />

sdmirted via <strong>the</strong> Volkerak sluiees.<br />

The phosphate load <strong>in</strong> <strong>the</strong> Volkerak-Zoom lake system could be reduced<br />

by:<br />

- divert<strong>in</strong>g water from <strong>the</strong> Nieuwveer sewage treatment plant from <strong>the</strong><br />

D<strong>in</strong>tel to <strong>the</strong> nollands Diep (this wes done <strong>in</strong> Bay 1988);<br />

- <strong>the</strong> Rh<strong>in</strong>e Action Plan (RAP);<br />

- <strong>the</strong> North Sea Action Plan (NAP);<br />

- optioliz<strong>in</strong>g <strong>the</strong> <strong>in</strong>take from:<br />

t water losees from locks;<br />

* agriculture;<br />

- treat<strong>in</strong>g <strong>in</strong>take water;<br />

- rsduc<strong>in</strong>g agricultural emission*;<br />

- reach<strong>in</strong>g agreement with Belgium on <strong>the</strong> reduction of <strong>the</strong> load <strong>in</strong> <strong>the</strong><br />

Belgian part of <strong>the</strong> D<strong>in</strong>tel catchment;<br />

- drastic dephosphatiuation sewage treatment plants.<br />

It is expected that <strong>the</strong> implementation of <strong>the</strong> Rh<strong>in</strong>e Action Plan and <strong>the</strong><br />

North Sea Action Pla will result <strong>in</strong> a halv<strong>in</strong>g of <strong>the</strong> phosphate load <strong>in</strong><br />

<strong>the</strong> Volkerak-Zoom lake system too. However, this will nor happen before<br />

1993.<br />

If <strong>the</strong> almve-mentioned measures are implemented vigorously. it seems<br />

possible that phosphate limitation for algal growth could be achieved<br />

<strong>in</strong> <strong>the</strong> medium term; <strong>in</strong> <strong>the</strong> short term thb is not expected.


4.2 Active biological management<br />

If it is considered desirable to have clear water <strong>in</strong> <strong>the</strong> next ten years<br />

too. <strong>the</strong>n "active biological management" could be emplop3.<br />

Fur<strong>the</strong>rmore, experience elsewhere (e.g. <strong>in</strong> <strong>the</strong> Veluwe lakes) and<br />

computer modemg btdleate tbat Sr is difficult far a lake that is<br />

already <strong>in</strong> "turbid equilibrium" to be made clear aga<strong>in</strong>.<br />

/<br />

transparency<br />

algae<br />

+++i-t+++t+U<br />

/--L +++*M<br />

+<br />

asuatiq plants<br />

++-+tit+<br />

\/<br />

preatory fish<br />

+++CH*H+++++<br />

nUttianfs<br />

'2w00000~<br />

l *&a,<br />

wblteeirih<br />

-----<br />

MOOOWOO~O<br />

aemal state si Vol%asak-%oon lake aystem<br />

autrophic rster<br />

o m mixed agsten<br />

+++c healtay water syseem<br />

- path of <strong>in</strong>fluence er flaw of ma<strong>the</strong>r<br />

HignEe 10 Schematic representation of ecosystem relatianahips <strong>in</strong> a<br />

autrophic water body<br />

Bigure 10 shows <strong>the</strong> most important <strong>relations</strong>hips between <strong>the</strong> various<br />

components of a lake eeosysfem. Nutrients enhance <strong>the</strong> growth of algae;<br />

algae are eaten by zouplaakton; zooplankton are eatea. bp whitefish;<br />

+#kitefish are eaten by predatory fish; pre&cory flsh, particularly<br />

pike, requite aquatic plants fot shelter and for breed<strong>in</strong>g, atld <strong>the</strong><br />

occurrence of aqnatic plants depends on <strong>the</strong> transparencg of <strong>the</strong> water<br />

axid thus also an <strong>the</strong> absence of algae.


In pr<strong>in</strong>ciple, two states of equilibrium are possible <strong>in</strong> such a system.<br />

One is an eutrophic, relatively turbid system dom<strong>in</strong>ated by marry<br />

nutrients, many e a e and m y whitefish; this is <strong>in</strong>dicated by - <strong>in</strong><br />

Pisure 10. The o<strong>the</strong>r possibility is a healthy functton<strong>in</strong>g system with<br />

transparent water, many aquatic plants, a predatory fish populaticn<br />

that keeps <strong>the</strong> whitefish population <strong>in</strong> check, and sufficient<br />

aooplanktan to be able to grase <strong>the</strong> algae effectively. In Figure L0<br />

this is <strong>in</strong>dicated by +Wt.<br />

In 1988, contrary to all ptedietions, <strong>the</strong> Volkerak-Zmom laka system<br />

conta<strong>in</strong>ed elemnts from both passible equilibrium situatians - many<br />

nuttients, transparent water and m y zooplankton: this is <strong>in</strong>dicated by<br />

ooa0 <strong>in</strong> Figure 10.<br />

In 1988 aquatic plants started to develop, but not sufficiently ta<br />

offer shelter and a breed<strong>in</strong>g enviranmeot for predatory fish. The few<br />

data available on stocks of fish suggest that <strong>the</strong> bream, a whitefish<br />

that often causes problems <strong>in</strong> o<strong>the</strong>r eutxaphic waters, is not present<br />

here <strong>in</strong> large mumhers. Predatory fish, especklly pike-perch. are<br />

present <strong>in</strong> <strong>the</strong> system.<br />

The most obvitlus way of acaidy <strong>in</strong>terven<strong>in</strong>g <strong>in</strong> <strong>the</strong> biology 05 <strong>the</strong><br />

system is to stiPtulate <strong>the</strong> develspmnf of aquatic plants as much as<br />

possible. Few propagules of freshwater aquatic plants vtll be present<br />

<strong>in</strong> ttte system, and <strong>the</strong>refore it is advisable to <strong>in</strong>troduce material from<br />

<strong>the</strong> desired species <strong>in</strong>to <strong>the</strong> system on a large scale. It is also<br />

important to ensure <strong>the</strong> presence of sheltered shallows, because <strong>in</strong><br />

pr<strong>in</strong>cfple here it is that aquatic plants can develop <strong>the</strong> hest on q<br />

large seal&.<br />

Proper management of fish stooks requires agreement between <strong>the</strong> water<br />

authority and <strong>the</strong> persona with fish<strong>in</strong>g rights. Quantitative wnitori~g<br />

is necessary to be able to properly anticipate developments towards an<br />

excess of bream.


Float<strong>in</strong>g mats of blue-green algae (Microcystis aerigunosa)<br />

Benedensas, before <strong>the</strong> enclosure of Lake Zoom


Zooplankton (Alma aff<strong>in</strong>is)<br />

Pike (Esox lucius) <strong>in</strong> i ts natural habitat


Breed<strong>in</strong>g areas for pike can be provided by <strong>the</strong> large-scale <strong>in</strong>stallation<br />

of defences <strong>in</strong> front of <strong>the</strong> banks and by -g<br />

areeh suitable.<br />

Xf d tor$ng shows that <strong>the</strong> numbers of bream threaten to become<br />

excessive, <strong>the</strong>n predatory fish could be <strong>in</strong>troduced, or whitefish could<br />

be qetted and removed.<br />

Stimulatiu~ <strong>the</strong> growth of freshwater mussels is a third type of measure<br />

appropriate to active biological management. These mussels are net<br />

shown ia Rigure 10, but <strong>the</strong>^ fulfil more or less <strong>the</strong> same role as <strong>the</strong><br />

zooplankton: <strong>the</strong>y fflEer suspended matter from <strong>the</strong> water and <strong>the</strong>reby<br />

also contribute to <strong>the</strong> graz<strong>in</strong>g pressure on <strong>the</strong> algae. Mussels require a<br />

hard substrafe. This could be provided by dump<strong>in</strong>g large amounts of<br />

shells <strong>in</strong> suitable plaoes.<br />

5 CONCLUSIONS<br />

In general, <strong>the</strong> dwm<strong>in</strong>g off and comparcmentalizatim of <strong>the</strong> <strong>Delta</strong><br />

wters leads to stagnant or semi-stagnant waters whose very location<br />

m&w <strong>the</strong>m ausceptihle to eutrophication prohlw.<br />

In she Bollwds Diep/Baz<strong>in</strong>gvliet eutrophic+tion problem can be kept<br />

with<strong>in</strong> limits by feeustug management on prevent<strong>in</strong>g long residence times<br />

fn <strong>the</strong> saer. The critical level seqms to be arousd three weeks.<br />

Ln tbe Volkerak-noom lgke system <strong>the</strong> startiag pobt is favourable: <strong>the</strong><br />

water is transparent. At present <strong>the</strong> phosphate level is too higb to<br />

lMt eutrophication, hut active biological magement offers good<br />

prospects for keep<strong>in</strong>g <strong>the</strong> water transparent. The phosphate load needs<br />

to be reduced fnr<strong>the</strong>r. It is likely that <strong>in</strong> <strong>the</strong> next few years bluegreen<br />

algae will occur regularly <strong>in</strong> <strong>the</strong> autumn. It will probably be<br />

possible to tackle <strong>the</strong> symptoms of thie <strong>in</strong> areas tlar suffer grerrtly<br />

from <strong>the</strong> problem.


EUTROPHICATION OF ESTUAAIES AND BRACKISH LAGOONS IN TW SOUTII-WEST<br />

NETHERLANBS<br />

P.R.<br />

Nienhuis<br />

Eutrophication of <strong>the</strong> sal<strong>in</strong>e waters <strong>in</strong> <strong>in</strong>he South-West Ne<strong>the</strong>rlmds is<br />

ma<strong>in</strong>ly nlrc caused by water from<strong>the</strong> rivers Rh<strong>in</strong>e and Meuse, contrary to<br />

<strong>the</strong> nutrient enrichment of freshwater bodies (Nfeuwe Waterweg, Hollands<br />

Diep. Aar<strong>in</strong>gvliet) and <strong>the</strong> western Wadden Sea. Eutrophieatim of <strong>the</strong><br />

Westerschelde, Oosterschelde, Grevel<strong>in</strong>genmeer Md Veerse Mar is<br />

connected to <strong>the</strong> specific hydrogra~hy and geomrphalo~ of <strong>the</strong>se<br />

isolated waters; eacept for <strong>the</strong> 'GteSterschelde, nutrient load<strong>in</strong>g ma<strong>in</strong>ly<br />

occurs thraugh agricultural run-off and dra<strong>in</strong>age channels. The<br />

lXesterschelde, a heavily euthrophicated estuary, he5 only an<br />

<strong>in</strong>sigz~ificant impact on Dutch coastal waters, ow<strong>in</strong>g to <strong>the</strong> very limited<br />

discharge (4X of W 4 discharge) and long residenae time of <strong>the</strong><br />

warensass. The resilience of sal<strong>in</strong>e waters £er eutxophication by<br />

nitrogen is presumably c~nuected to <strong>the</strong> psocess of denitrification.<br />

remov<strong>in</strong>g N to <strong>the</strong> atmosphere, and <strong>the</strong> filter fee&g<br />

actidcies of<br />

bivaLves, deposit<strong>in</strong>g N on <strong>the</strong> botm sedimpnt, and enhgne<strong>in</strong>g tke<br />

regeneration of nutrfents. Low N-load map be sompasated bp<br />

denitrification. We vulnerability of stapme, sal<strong>in</strong>e waters with a<br />

long residence time is expressed by <strong>the</strong> fact that a l~ad of<br />

approximately 10 g N m-$-'<br />

or more presumably exceeds <strong>the</strong> resilieace<br />

capacity of <strong>the</strong> ecosystem. The contrast between <strong>the</strong> ereveliagenmeer<br />

-2 -1 -2 -1<br />

(load 4 N m y ) and <strong>the</strong> Peerse Heer (load 34 g N m y f is<br />

significant; next to highly productive phytoplankton, macro-Algae play<br />

a dom<strong>in</strong>ant and unpredictable role <strong>in</strong> <strong>the</strong> carbon budget of <strong>the</strong> Veerse<br />

Meer lazeon.


Eutrophication of mar<strong>in</strong>e coastal waters and estuaries is <strong>in</strong>creas<strong>in</strong>gly<br />

regarded as a nuisance for <strong>the</strong> near future (Bosenberg, 1985).<br />

Eutrophication is def<strong>in</strong>ed here as <strong>the</strong> pzocess of <strong>in</strong>creas<strong>in</strong>g<br />

concentratian and load of <strong>in</strong>organic nutrients, <strong>in</strong>duc<strong>in</strong>g changes <strong>in</strong> <strong>the</strong><br />

aquatic communities. In general terms <strong>the</strong> large European rivers provide<br />

<strong>the</strong> ma<strong>in</strong> stLnuLus for nutrient enrichments <strong>in</strong> coastal waters. The ma<strong>in</strong><br />

rivers load<strong>in</strong>g <strong>the</strong> surface waters af <strong>the</strong> South-West Ne<strong>the</strong>rlands are<br />

Bhfne, Mense and Scheldt (Fig. l].<br />

Figure 1 The Sduth-West Ne<strong>the</strong>rlands with <strong>the</strong> estuaries Oosterschelde<br />

and Westerschelde and <strong>the</strong> brackish lagoons G~evel<strong>in</strong>genmeer<br />

and Veerse Meer. The Bieshesch. Eollands Diep, Kar<strong>in</strong>gvliet<br />

and Nieuwe Watemeg form <strong>the</strong> lower reaches of <strong>the</strong> Rh<strong>in</strong>e and<br />

M~use. The Westerschelde estuary is connected to <strong>the</strong> river<br />

Scheldt. The <strong>Delta</strong> Works started <strong>in</strong>1960 ancl were f<strong>in</strong>ished 19<br />

1987. The Volkerakdam was closed <strong>in</strong>1969 between Eollands<br />

Diep-Har<strong>in</strong>gvliet and Zoomeer. and blocked <strong>the</strong> ma<strong>in</strong> sou<strong>the</strong>rn<br />

exit of Rh<strong>in</strong>e water.


The average discharge of Xh<strong>in</strong>e and Xeuse toge<strong>the</strong>r is 2538 m3s-I<br />

Ruyter, et al. 1987) and <strong>the</strong> nitrogen (ammonium and nitrate) load of<br />

<strong>the</strong>se rivers has <strong>in</strong>creased over <strong>the</strong> peried 1950-1980 with a factor 2-4,<br />

whereas rtre phospkorus load has <strong>in</strong>creased with a factor 5-7 (Van der<br />

Veer, et al. 1988). Contrary tn <strong>the</strong> rtitrogen load, <strong>the</strong> phosphorus load<br />

decreased slowly after 1980. The concentrations of plant nutrients<br />

tncreased even nore markedly than <strong>the</strong> load: a fivefold fncrease for N<br />

and a tenfoLd 3icrease for P, with recently a slight decrease (Pig. 2).<br />

The <strong>in</strong>creased concentration6 of nutriant.8 <strong>in</strong> <strong>the</strong> Bh<strong>in</strong>e-Meuse resulted<br />

<strong>in</strong> a 3- to 5-foLd rafse of N-<br />

(De<br />

and P-concentrations <strong>in</strong> <strong>the</strong> Dutch coasta3<br />

waters. The <strong>in</strong>crease of nutrient concentrations an3 -loads <strong>in</strong> <strong>the</strong><br />

Wwterschelde ebtUary showed <strong>the</strong> same dramtic trend over <strong>the</strong> past 30<br />

to 40 Bears (Van Buuren. 1988).<br />

Figure 2 Nitrate- and orthopho9phate concsntrations of Eh<strong>in</strong>ewater<br />

near <strong>the</strong> Dutch-German border, dur<strong>in</strong>s <strong>the</strong> period 1966-1982<br />

(lUWA Bnnual Report 1982. <strong>in</strong> Slooff, 1983).<br />

Approxisrately 15% of <strong>the</strong> m<strong>in</strong>e run-off flows Suto nar<strong>the</strong>rly d<strong>in</strong>ecticns,<br />

aYa IJssel and 'IJsselmeea, ad fiir<strong>in</strong>lb enters <strong>the</strong> wwtern Wxdden Sea,<br />

causidg oonaiderable wthrophi~ation to chat estuar<strong>in</strong>e area (Van der<br />

Veer, et al, 1988). More than 50a of <strong>the</strong> EWnewarer mns via tbe Niewe<br />

Uatemeg (Fig. 1) direct13 <strong>in</strong>to €he North Sea. &bout 3QZ flows <strong>in</strong>to <strong>the</strong>


Bar<strong>in</strong>gvliet and f<strong>in</strong>ally also enters <strong>the</strong> North Sea, depend<strong>in</strong>g on <strong>the</strong><br />

management regime of <strong>the</strong> W<strong>in</strong>gvlietsluioes (Pi$. 1). Ow<strong>in</strong>g to <strong>the</strong><br />

residual currents alung <strong>the</strong> Dutch coast <strong>the</strong> Rhlne wafer is ma<strong>in</strong>ly<br />

Kra9spo~ted <strong>in</strong> a 51) to 70 kilonreters wide zone iiito mr<strong>the</strong>rly<br />

directions (Fig. 1). The imerage nutrient load<strong>in</strong>gs of <strong>the</strong> Dutch caastal<br />

Figure 3<br />

Flop of Rh<strong>in</strong>e-Meus* water along <strong>the</strong> coasts at <strong>the</strong><br />

Ne<strong>the</strong>slands. (iermaay awd Denmark; SW Mnd 4.5 m S-', aarer<br />

mass fractions <strong>in</strong> %, age distribution <strong>in</strong>dieared as solid<br />

l<strong>in</strong>es <strong>in</strong> dars (derived fzool De Ruyter, et al. 1987). At NW<br />

w<strong>in</strong>ds a maximum fractian B£ 10% of Rhtne-muse water eaters<br />

<strong>the</strong> Ossterschelde estuary.<br />

watera reflect <strong>the</strong> discharges of mar<strong>in</strong>e and river<strong>in</strong>e water: <strong>the</strong> Rh<strong>in</strong>e<br />

wd Meusa (<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> Noordaeekanaalf contribute raaghly &OX of <strong>the</strong><br />

total N- and P-load. <strong>the</strong> residual ctlrrent of Chann@l vacer adds 90Z


and only l-2% cows frm <strong>the</strong> aive Scheldt (Pig. 4). The Scheldt has an<br />

averege discharge of only 112 m's-' CVe Ruyter,, et al, 1987) which is<br />

only 4% of rho Rhiae-Meuse discharge.<br />

Total nitrogen<br />

Totai phosphorus<br />

ennel<br />

37 %<br />

Rh<strong>in</strong>e / Meme 57 % Rh<strong>in</strong>e Meuse 16 %<br />

Figure 4<br />

The ahares of Rh<strong>in</strong>e-Ueuse load, Chamel load aqd Scheldt load<br />

<strong>in</strong> <strong>the</strong> rota1 eanceqtratiop aP N and F Dutch cpastal waters<br />

(Van Buuren, 1988).<br />

Only a veky small pereentzse of <strong>the</strong> orig<strong>in</strong>al We-Mewe water reaches<br />

directly (or <strong>in</strong>directly via <strong>the</strong> North Sea) <strong>the</strong> estuariee and brackish<br />

Lagoons <strong>in</strong> <strong>the</strong> South-West Ne<strong>the</strong>rlands. Especially <strong>the</strong> construction of<br />

<strong>the</strong> Volkerekdam <strong>in</strong> 1969 (Fig. 1) deprived <strong>the</strong> sal<strong>in</strong>e waters of <strong>the</strong><br />

direct <strong>in</strong>flux af fresh river-w-ater. me Oosterse.helde, Grevtrl<strong>in</strong>genmeer<br />

and Veezse Meet are ma<strong>in</strong>ly loaded with nutrients from dSSfuse Bourees<br />

such W apicrienral run-off, treated vasce water and dra<strong>in</strong>we canals.<br />

The sal<strong>in</strong>e water bodks <strong>in</strong> <strong>the</strong> South-KeSt Ne<strong>the</strong>rlands have been<br />

separated spatiallq fcompartmentalization) ovlng to <strong>the</strong> <strong>Delta</strong> Works.<br />

Cmseguentlg each of <strong>the</strong>se waters has its oun eutrophicatim history<br />

and its orm sperffic ehareteristics, exclud<strong>in</strong>g, an <strong>in</strong>tegrated epproach<br />

to manage eh= nutrisnt 10.oad<strong>in</strong>g~ B$ <strong>the</strong>se syatema.<br />

Table 1 sumeariaes a hlmmer of ~paLem peameters. The residence t<strong>in</strong>es<br />

of <strong>the</strong> uater masses Zu tke stagnant, nen tidal OreVd<strong>in</strong>gewer and<br />

"ieerse Beer are long, cwmpared to ch8 saate cha+ac+etistic <strong>in</strong> <strong>the</strong> tihl


estuaries. The net freshwater load directly from <strong>the</strong> rivers Rh<strong>in</strong>e and<br />

Mwse is extremelp small (1% of <strong>the</strong> discharge). Tba Veerse Meer lagoon<br />

eaperiences almost permanent stratiEicaeion, whereas <strong>the</strong><br />

Oreveliugenmeer has only a few deep channels, stratified dur<strong>in</strong>g summer.<br />

The Westerschelde and Oostersehelde estuaries are completely &ed<br />

tidal systems.<br />

Table 1<br />

System parameters of <strong>the</strong> sal<strong>in</strong>e waters <strong>in</strong> <strong>the</strong> Swth-West<br />

Ne<strong>the</strong>rlands, derived from Wollast, 1988, and Bokhorst, 1988,<br />

for <strong>the</strong> Westerschelde; Projectgroep Balans, 191d8, and<br />

Wetsteyn and Peperzak, 1988, for <strong>the</strong> Oosferschelde; Nienhuis,<br />

1985, and De Vries, et al, 1988, for <strong>the</strong> Grevel<strong>in</strong>gen: Daemen,<br />

1985. and Stronkhorst. et al, 1985. for <strong>the</strong> Veerse Meer. Load<br />

= direet water load from Rh<strong>in</strong>e-Meuse.<br />

reddenGB time (4)<br />

bad h%-1,<br />

tides<br />

stFati£icatlan<br />

ext<strong>in</strong>ct-.<br />

(m-')<br />

The Westerschelde is extremely turbid (ext<strong>in</strong>ction coefficient 0.5-7)<br />

and <strong>the</strong> Grevelfngenmeor conta<strong>in</strong>s very clear water (ext<strong>in</strong>ction<br />

coefficient 0.2- 0.5). with <strong>the</strong> Oosterschelde and Veerse Meer <strong>in</strong><br />

between.<br />

The range <strong>in</strong> nutrient concentrations <strong>in</strong> <strong>the</strong> sal<strong>in</strong>e <strong>Delta</strong> waters differs<br />

greatly (lfig. 5). The Oostersehelde and Crevelfngen reach only seldom<br />

for N. P and Si; nutrient values frequently<br />

values above 1 mg I-'<br />

approach zero concantratione dur<strong>in</strong>g heavy blooms of phytoplankton.<br />

The Veersa Meet has higher maximum values for N and Si, but depletion<br />

occurs dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g season. The Westerschelde has far out <strong>the</strong>


highest trophic potential: nutrient concentration values never approach<br />

zero dur<strong>in</strong>g spr<strong>in</strong>g a~d sumer and reach hi&h levels Bur<strong>in</strong>g wtnter<br />

(8 mg 1-l N; 4 m$ l-l P and 9 nrg 1-l Si). Compmd t9 <strong>the</strong> nutrient<br />

coneentratious <strong>in</strong> <strong>the</strong> river Rb<strong>in</strong>e (Fig. 2). F-concentrations are wo<br />

tiares lover and N-emcenttations are ten times 1-<br />

water badies (Fig. 5).<br />

exeept far <strong>the</strong> Weaterschelde,<br />

id <strong>the</strong> sal<strong>in</strong>e<br />

Veerse Meer -N<br />

Figure 5<br />

Range <strong>in</strong> nutrient concentrations <strong>in</strong> esfuaries and brackish<br />

lagoons <strong>in</strong> <strong>the</strong> South-West Ne<strong>the</strong>rlands.<br />

See legend Table 1 for souzces.<br />

The question arises which factox acts as <strong>the</strong> limit<strong>in</strong>g constituent for<br />

<strong>the</strong> productivitr of algae <strong>in</strong> <strong>the</strong> sal<strong>in</strong>e <strong>Delta</strong> <strong>Waters</strong>. In <strong>the</strong> turbid<br />

Westerschelde it seems obvious that <strong>the</strong> availability of light is<br />

limit<strong>in</strong>g phytoplankton dynamics. In brackish coastal waters phospate<br />

may he a potentially limit<strong>in</strong>g factor (Veldhnis, 1987). It is generally<br />

assumed that nitrogen is <strong>the</strong> limit<strong>in</strong>g factor for phytoplankton<br />

development <strong>in</strong> <strong>the</strong> Oosterschelde and Grevel<strong>in</strong>gen and occasionally also<br />

<strong>in</strong> <strong>the</strong> Veerse Meer. Knowledge about phytaplankt~n and wcrophyte<br />

k<strong>in</strong>etics <strong>in</strong> <strong>the</strong> South-West Ne<strong>the</strong>rlands, however, is scanty. Especially<br />

<strong>in</strong> polluted estuariee like <strong>the</strong> Westerschelde o<strong>the</strong>r factors than<br />

nutrients and lighc availability may he responsible fox <strong>the</strong> limitation<br />

of algal photosyn<strong>the</strong>sis. It is now becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly obvious that<br />

antagonistic effects beween metals on phytoplankton exist, whereby an<br />

organism may tolerate high concentrations of a given metal <strong>in</strong> <strong>the</strong>


presence of sufficient quantities of ano<strong>the</strong>r meral hut not <strong>in</strong> <strong>the</strong><br />

absence or at low concentrations of <strong>the</strong> second metal iRaven and<br />

Richardson. 1986).<br />

Table 2<br />

Etitrogen and cholorcphyl <strong>in</strong> Dutch coastal waters, eetuies<br />

and bckieh lagoons (data deni~ed fremDe Vries et al, 1988.<br />

and Smoes - Dos+se?rschelde model cdculatloos; E. Schalrea,<br />

personal communication).<br />

load &eez cone. rhlorophyl cm@.<br />

Nor& Seb (coast.)<br />

Wadden Sea<br />

Westersrhelde<br />

0ostersche3.de<br />

Gravelbgenneer<br />

Veerse Seer<br />

Table 2 shovs a large variatiw <strong>in</strong> tohd nitwgen loads (4 - 235 g N<br />

-2 -1<br />

m y ) <strong>in</strong> Dutch coastd waters, estuaries ad brackish lagwns,<br />

whereas N-edncencratims only &a4 a rwe of 0.5-4.6<br />

Obtrioustg, a nitrogen load of 40-200 g N m-'T-'<br />

mg 1-l.<br />

does not giae rise to<br />

extremely high chlurophgl conkentrations dur<strong>in</strong>g summer, usifher <strong>in</strong><br />

North Sea coastal water, nor <strong>in</strong> <strong>the</strong> Wadden Sea and <strong>the</strong> WssCerscheLde<br />

e s t q . It is assumed that l&ght availability is <strong>the</strong> limit<strong>in</strong>g factor<br />

<strong>in</strong> <strong>the</strong>se turbid c-tax<br />

and estuar<strong>in</strong>e waters, end not nitrogen,<br />

expla<strong>in</strong><strong>in</strong>g <strong>the</strong> relatively low phptoplankton tchlarophyl) biomass <strong>in</strong><br />

smer. Contrary, <strong>in</strong> <strong>the</strong> clear water of <strong>the</strong> Veerae Weer lagoan a N-lead<br />

-2 -1<br />

of 34 g m p results <strong>in</strong> high ~hlorophyl concentrations (l00 mg CB1<br />

m-' or even higher; Table 2). This large productien of phytgplanktm<br />

bioaass ip <strong>the</strong> Veerse Meer lagoon, and soasequent de~sition of<br />

particulate or!&anic cnrbon on <strong>the</strong> bottom sedimenfs, resale& dur<strong>in</strong>g <strong>the</strong>


period 1980-19$3 <strong>in</strong> an <strong>in</strong>crease of <strong>the</strong> anaerobic sed-t suzface area<br />

of 4 ta 258 of she entire bottom awfkce (Stronlrhorst. et al. 1985).<br />

Qbvioualy, <strong>the</strong> Veerse Meer is vulnerable to eutreghicatian, ow<strong>in</strong>g to<br />

<strong>the</strong> long resid&&e <strong>the</strong> of water msses, <strong>the</strong> low ext<strong>in</strong>etian coefficient<br />

and <strong>the</strong> ;Umost permanent stratification.<br />

The Oastesschelde estuary has a very low N-lead re6nlt<strong>in</strong>g <strong>in</strong> low<br />

chlorophyl concentratisne (Table 2).<br />

W<strong>in</strong>g to <strong>the</strong> execwt<strong>in</strong>a af <strong>the</strong><br />

<strong>Delta</strong>plan (Pig. 1) <strong>the</strong> Oostarnehelde estuary has ma<strong>in</strong>ly been depriVed<br />

recently from its Bh<strong>in</strong>ewater load<strong>in</strong>g (Table 1). Model calculations<br />

revealed that a reduction of 50% of <strong>the</strong> nitrosen bed of <strong>the</strong> river<br />

W e<br />

would only lead to a rsduetian of less than 6% for nitrogen<br />

eoneentratlons <strong>in</strong> <strong>the</strong> 0oster.jkbelde estuary (Smobs-swdel; X. Scholten,<br />

peraerial co~u~ication). The Uoster~ohelde estuary is rna<strong>in</strong>ly ir;fluenced<br />

by tearhe foastalwffter, conta<strong>in</strong><strong>in</strong>g low conewtrations of total<br />

nrtrogen (less than 0.5 slg N 1-l; Srockolano, et al. 1988).<br />

Contkaq to <strong>the</strong> Veerse Meer lag~an. <strong>the</strong> Creveliagen lagoon has an<br />

-2 -1<br />

e%treaely Low N-load (4 g N m y ; Table 2). The CaeWA~mdel (De<br />

Vries, et al. 19BEI) revealed that Khe prodtlrcim of phytop.lanktan La<br />

<strong>the</strong> Gzevel<strong>in</strong>gen is liodted by nitrogerl availability and not by light<br />

availability. The hl<br />

: P ratio of tae dlsselved nufkiems <strong>in</strong> cke<br />

watercolm of <strong>the</strong> GrwsMngenmeer dur<strong>in</strong>s w<strong>in</strong>ter is 2-4,<br />

poirtc<strong>in</strong>g <strong>in</strong>to<br />

<strong>the</strong> direction of a large surplus af phosphate, notwithstand<strong>in</strong>g Che<br />

dom<strong>in</strong>ance of nitrogen <strong>in</strong> <strong>the</strong> discharge utatet, load<strong>in</strong>g <strong>the</strong> lagoon<br />

Eff : P = 22 : I f. Model calculations showed s Mgh tunrover of ni~rog.~u,<br />

<strong>in</strong> <strong>the</strong> watercolumn. The cha<strong>in</strong> of processes: nutrient uptake by<br />

phpoplanktaa - forslation d organic matter <strong>in</strong> algal cells -<br />

mherallzation of dead algae - regeneratbn of nutrients etc.. occurs 8<br />

tWs a year. &out<br />

90X of <strong>the</strong> anme1 prisary pr&uction of<br />

phytoplanktoa occurs on <strong>the</strong> baeis of resewrated nutrients, especialLy<br />

NB4 CDe Vtim, et al. lS88).


In <strong>the</strong> GZ3WQ-model ~alculatians CDe VrieB, et al, 19881 it is<br />

hypotkerriaed that <strong>in</strong> <strong>the</strong> Grevel<strong>in</strong>gen lagoon <strong>the</strong> process of<br />

eutra@ication<br />

is prevented by <strong>the</strong> rate of <strong>the</strong> denitiificatian process.<br />

Dnnit-rifioation is undoubtedly a significant process <strong>in</strong> mar<strong>in</strong>e and<br />

estuar<strong>in</strong>e ecaqstems. Rates of gaseous losses af nitr-en <strong>in</strong> <strong>the</strong> range<br />

-2 -1<br />

of 5-70 mg N m d were determ<strong>in</strong>ed <strong>in</strong> Bebgi-an, Dutch and Danish<br />

caastsl sedimnts, represent<strong>in</strong>g 8-23% of tha amount of nirrwen<br />

dnerdtliration <strong>in</strong> <strong>the</strong> benthic subayste<strong>in</strong> Caillen and Lancelot, 1987).<br />

Notwithstand<strong>in</strong>g <strong>the</strong> Eaet that no actual measurements exist on<br />

denirrification rates <strong>in</strong> <strong>the</strong> Grevel<strong>in</strong>gemeer, it is assumed <strong>in</strong> <strong>the</strong><br />

OReWQ-model that deeitrificatiw compensates <strong>the</strong> load of nitrogen,<br />

especially <strong>in</strong> <strong>the</strong> benthic bonndary layer <strong>in</strong> <strong>the</strong> sedismnr, where aerobic<br />

and anaerobic 'patches' o;f sediment jo<strong>in</strong> each o<strong>the</strong>r.<br />

In mahp sballw estuar<strong>in</strong>e waters <strong>the</strong> na<strong>in</strong> Foed cha<strong>in</strong> ia dpm<strong>in</strong>ated by<br />

phyto~laakron and bmthir Eilterf eeders (mussels. cockles) , Just as ie<br />

<strong>the</strong> case <strong>in</strong> <strong>the</strong> Greoel<strong>in</strong>genmeer, Oosterschalde and Wadden Sea. T3e<br />

rumover rate sf nutrients <strong>in</strong> <strong>the</strong>se ecosystems is deteraELned bp <strong>the</strong><br />

filter<strong>in</strong>g capacity of bsnthic filterfeeders. Theoretieally, every 5 to<br />

10 days <strong>the</strong> entire valme of water of <strong>the</strong> estuaries circulates through<br />

<strong>the</strong> filter<strong>in</strong>g apparatus of suspension feeders. Filterfeedem act as<br />

natuzal cantrollers of <strong>the</strong> eutrophicatian psocess (Office, et al.<br />

1982): <strong>the</strong>y deposit organic material from <strong>the</strong> watercolmn Dntn <strong>the</strong><br />

bottom mdiments. Mnreover, <strong>the</strong>y accelerate <strong>the</strong> regeneration of<br />

nutrients from <strong>the</strong> deposited perticulate o~anicarbon, <strong>the</strong>reby<br />

enhanc<strong>in</strong>g <strong>the</strong> primary produetion of pbytopLimktun, as was assuxned for<br />

<strong>the</strong> @xevali~enmeer (De Vries, et al. l$&%)<br />

'be cha<strong>in</strong> of pzoeesses - parcly measered. partly cheureticel - from<br />

biode~osition to reaenesation of nutrients and <strong>the</strong> coupl<strong>in</strong>g between<br />

nitrification and denicr%£icatie$n is limited by <strong>the</strong> load of szgani~<br />

nace~ial ro t&e<br />

sediment. men <strong>the</strong> <strong>in</strong>creae<strong>in</strong>g load of ozgulic material<br />

runs faster t4w Ehe grocess of heaerotrophic lotneralization. anaerobic<br />

cQndFeions wlll prevail <strong>in</strong> <strong>the</strong> sediment lead<strong>in</strong>g to death of bottom<br />

Fauna and a disconnection BE nitrification and dea5trification. GREWAQ-<br />

.


model calculations reveal that a nitrogen load<strong>in</strong>g of approbimately<br />

-2 -1<br />

10 g W m y or more unwuples <strong>the</strong> eutr@hiulti@n controll<strong>in</strong>g<br />

processes (Qe Vries, et al, 1988).<br />

-2 -1<br />

In <strong>the</strong> Veerse Meer lagoon, experienc<strong>in</strong>g a N-load of 34 g m y and<br />

haa<strong>in</strong>g a long residence time of <strong>the</strong> water, permanent stratifloation<br />

ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> eastern section and dear water dur<strong>in</strong>g considerable parts<br />

of <strong>the</strong> year, obvionsly, <strong>the</strong> chlorophyl concentration cmot be<br />

controlled by <strong>the</strong> bottom fauna, although a fluctuat<strong>in</strong>g but substantfal<br />

benthic biomass is available.<br />

In <strong>the</strong> recent literature (Benkema and Cadee, 1986; Cadee. 1956a. h;<br />

Cadea and Hegeman, 1966; Nelisseg and Steffels, 1988) a number of<br />

biologi~al effects of <strong>in</strong>creas<strong>in</strong>g eutrophioatbn have been mentioned for<br />

<strong>the</strong> Dutch ccoastal waters and <strong>the</strong> western Wadden Sea: (1) <strong>in</strong>creas<strong>in</strong>g<br />

primary prodwtivn; (2) dom<strong>in</strong>ance of flagellates cwer diaroms; (3)<br />

<strong>in</strong>crw<strong>in</strong>g biomass of benthic macro-fauna; (4) <strong>in</strong>creas<strong>in</strong>g catches<br />

tbimass 7) of demersal fish and shr-S. It ia beymd <strong>the</strong> diwcussibn<br />

of this paper whe<strong>the</strong>r or ~ o<strong>the</strong>se t effects of euthropicatlon are proven<br />

~ausnal facts or jusr assumed tendencies. The question arises whe<strong>the</strong>r<br />

<strong>the</strong> cor<strong>relations</strong> menrfoned for Dutch coaxtal waters can dso be<br />

revealed for <strong>the</strong> estnaries and lagoons <strong>in</strong> <strong>the</strong> Sauth-West Netharlaads.<br />

The answer is negative, for several reasons: (1) long terms series.<br />

6uch as published for <strong>the</strong> Wadden Sea by Beokema and Cadee. 1987, are<br />

not available for <strong>the</strong> Oosterscfielde and Weaterschelde esruarieti; (2)<br />

any possible trend <strong>in</strong> eutrophication of <strong>the</strong> <strong>Delta</strong> estuaries has been<br />

obscured (except for <strong>the</strong> Westerscbelde) by <strong>the</strong> ==cation of <strong>the</strong> <strong>Delta</strong><br />

Wsrks, changtng <strong>the</strong> hgdrography of <strong>the</strong> area drastically. The Veerse<br />

Neer and Grevel<strong>in</strong>gen have <strong>the</strong>ir om euthraphicatipn story, start<strong>in</strong>g<br />

respectively <strong>in</strong> 1961 and 1971 when <strong>the</strong> bas<strong>in</strong>s were cloeed off from, <strong>the</strong><br />

sea (cf. Pig. l).<br />

In Figure 6 a restricted dataset on <strong>the</strong> occurrence of <strong>the</strong> flagellate<br />

Phaeucgstls poucharii <strong>in</strong> <strong>the</strong> weecerh part of <strong>the</strong> Oasterschelde eahtary<br />

is compared with data fro= <strong>the</strong> western Wadden Sea. The Wadden Sea data<br />

reveal. a telacian between <strong>in</strong>creas<strong>in</strong>g eutropbicetion and <strong>in</strong>creas<strong>in</strong>g<br />

<strong>in</strong>cidence of Phaeocystis blooms. The Oosterscbelde data show a


Phaeocystis pouchetii<br />

WADDENZEE<br />

OOSTERSCHELDE<br />

Figure 6<br />

Duration of <strong>the</strong> spr<strong>in</strong>g$lonm of Phaeocystis pouchecii<br />

expressed a5 number of days wit3 cenc%ntratbns of cells<br />

above 1000 ml-l, and average concentration of cells,<br />

eqressed as nrpnbez of cells ml-l,<br />

for <strong>the</strong> western Waddenaee<br />

(tadee and Aegeman. 1986) and <strong>the</strong> western Oosterschelde (data<br />

rrom C. Bakker. DIHO). For <strong>the</strong> Oosterschelde: rider af deys:<br />

y = 819-9.178~~ = 0.94399, P < 0.01; cells ml-l : P > 0.05.<br />

significlmr decrease <strong>in</strong> <strong>the</strong> lengCh of <strong>the</strong> petied of <strong>the</strong> Phaetlcystis<br />

bloom, but aa <strong>in</strong>crease <strong>in</strong> bloom <strong>in</strong>tensity. Thase partly contzadictory<br />

results question <strong>the</strong> asition of Phaeoegatls pouchesli as an <strong>in</strong>dicator<br />

for <strong>in</strong>creas<strong>in</strong>g eutrophic*timn of Dutch coastal waters <strong>in</strong> general. Older<br />

records from before <strong>the</strong> second World War also reveal <strong>in</strong>cidental heavy<br />

Phseocysris blooms <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn North Sea (personal comnlcation<br />

S.H.R. hip) which make <strong>the</strong> position of <strong>the</strong> flagellate as an <strong>in</strong>dicator<br />

oven weaker.


Table 3 PreUmInary carbon budget of priwry producers <strong>in</strong> estuaries<br />

and brackish lagoons <strong>in</strong> <strong>the</strong> South-West Ne<strong>the</strong>rlands (expressed<br />

-2 -1<br />

ihgGm y ).<br />

Westerschelde: phtoplsnkton data detived from Billen, et al.<br />

1988, and Beip, 1988; microphytobenthos data rougbly, based<br />

on blows estimates, DGW, Middelburg; data on above-ground<br />

production of saltmarsh plants - both for <strong>the</strong> Westerschelde<br />

and Oosterschelde - derived from Gromendijk, 1SI86, an8<br />

Huiskes, 1988. Oosterschelde: phytoplanktan data based on<br />

Weteteyn and Peperzak, 1988, and Vegter and De Visscher,<br />

1987; microphytobenthos data from Nienhuis and Daamcn, 1985;<br />

data on seapassea and macro-algae on soft and hard<br />

substrates - bath for <strong>the</strong> Oosterschelde and Uesterschelde -<br />

derived frm Nienhuis, 1980, and Nienhuis and Daemen. 1985.<br />

Drevel<strong>in</strong>gen: data from Hiedluis, 1985, and De Vries, et al,<br />

1988. Peerse Meer: data £er phytoplankton Eram Daemen, I985<br />

and Stroxkho~st, ec al, 1985, fer ntlcrophytobenthw based on<br />

best professicnal judgement; daca on macrophpt~s of soft<br />

sukstrates derived fra Ha~ewijk, 1988, and Sybema, 1980,<br />

and mpublished DIE0 re%ords; data on seagrass production<br />

deriuad frem personal codmutication F. Vat, Lent, DIIIO.<br />

-tea babitat sgatw Wfszt sgsW habitat Sysren -C<br />

Total fa. 7.75 ea. Z&O ea. 320 ca. 450


In Tahle 3 a tentative carbon budget of <strong>the</strong> 4 sal<strong>in</strong>e <strong>Delta</strong> <strong>Waters</strong> Is<br />

given. as an expression of <strong>the</strong> transfotmation of <strong>in</strong>organk nutrients<br />

<strong>in</strong>to organic carbon of primary pxohcers. Table 3 does not girre<br />

<strong>in</strong>fetmatioa about <strong>the</strong> turnover of nutrients between <strong>the</strong> successive<br />

generations of plants. Notwithstazdlng <strong>the</strong> large dlfkrences <strong>in</strong><br />

nutrient loadjags of <strong>the</strong> separate waters, primasy production of<br />

phytoplankton only shows a difference of a factor 2 between <strong>the</strong> light<br />

-2 -1<br />

limited, tUrbid Westerschelde (l25 g C m y ) and <strong>the</strong> clear,<br />

-2 -1<br />

presumably not nutrient limited Veerse Meer (249 g C m y ). The<br />

Oosterseblde and Orevel<strong>in</strong>gemseer hold <strong>in</strong>t-diate positions.<br />

Production of microphytobent!hos (benthic diatoms, gzeen algae etc.) is<br />

roughly one third of <strong>the</strong> production of phytoplankton. In <strong>the</strong><br />

Westerschelde estuary, however, <strong>the</strong> relative skre of benthic<br />

microphytes is considerahLy higher, based on P/B ratio's derived from<br />

high biomass data, taken on <strong>in</strong>tertidal flats (personal eonrmnaicatFoa<br />

D.J.<br />

de Jong, DW).<br />

OwFng to <strong>the</strong> relatrvely large surface area of supratidal wetlands, <strong>the</strong><br />

contributivn of ahoae-ground peimarp production to <strong>the</strong> carbon budget <strong>in</strong><br />

-9 -1<br />

Westersehelde estusry (60 g C m y is about 20%. The larger part of<br />

<strong>the</strong> saltmarsh plants is produced <strong>in</strong> <strong>the</strong> eastern secrion of <strong>the</strong><br />

Westerschelde estuary (Verdrmken Land van Saeft<strong>in</strong>ghe) and is not<br />

transpwrted over <strong>the</strong> entire estuary, In contrast with <strong>the</strong><br />

Westerschelde, <strong>the</strong> Oosterachelde salt marshes pay only an <strong>in</strong>significant<br />

contrLhution (lees thau 5Z) to <strong>the</strong> system metabolism of <strong>the</strong> entire<br />

estuary.<br />

Maarophytes grow<strong>in</strong>g on bard substretes (i.e. seaweeds attached to<br />

sewalls and stone-clad dilres) have only a m<strong>in</strong>or contriburian to <strong>the</strong><br />

carbon budgets of <strong>the</strong> entire water hobtes, notwithstandiag <strong>the</strong>ir high<br />

production per square metre habitat.<br />

Eigh turbidity and exposure to waves and tides prevents <strong>the</strong> potential<br />

sediment habitats <strong>in</strong> tke Weatersehelde egtuary from be<strong>in</strong>g <strong>in</strong>vaded by<br />

macrephytes, The Oosterschelde estuary has only local growth of<br />

laactophytes an sediment substrams <strong>in</strong> sbeltered regions (Zandkteek,<br />

Ktabbenkreek, eastern part). In <strong>the</strong> sheltered, stagnant lagoons


Water life of Lake Grevel<strong>in</strong>gen


Foam of algae as a result of eutrophication<br />

Geld Ulats df <strong>the</strong> Bas+era BeheLdtl


macrophytes livkg on or root<strong>in</strong>g <strong>in</strong> sediment, respectively macro-algae<br />

(ma<strong>in</strong>ly green algae) and aeagrasaes, offer a significant share to <strong>the</strong><br />

carbon budget. In <strong>the</strong> Orwel<strong>in</strong>genmeer <strong>the</strong> seagrass Zostera mar<strong>in</strong>a<br />

dom<strong>in</strong>ates, coverkg 30% of <strong>the</strong> surface area of <strong>the</strong> lagacm, but<br />

contribut<strong>in</strong>g only 14% to <strong>the</strong> annual carbon bu&et, ow<strong>in</strong>g to <strong>the</strong> low P/B<br />

ratio of 3.<br />

Coverage 1%)<br />

80 GREVELINGEN<br />

seagrass<br />

Losfera mar<strong>in</strong>a<br />

GoveraQe 1% 1<br />

90- VEERSE MEER<br />

Sigure 7<br />

Percentage coverage <strong>in</strong> vertical projection on <strong>the</strong> sediment of<br />

Zostera mar<strong>in</strong>a and mcro-algae <strong>in</strong> permanent sample plocs <strong>in</strong><br />

<strong>the</strong> Grevel<strong>in</strong>gen and Veerse Meer. She of sample plot is 15 x<br />

15 ma, waterdepth 14 both localitaties is 1.25 m (data<br />

bsrrowed from F. Van Lent, DIEO).<br />

The Veerse Meer &Ears a &ifFerent picture. Seagrassee csver only 3% of<br />

<strong>the</strong> surface area of <strong>the</strong> lagoon (IhnewFjk, 1988) and have to compete<br />

with epp~rtunistic green algae (ma<strong>in</strong>lp E) for space and light. The<br />

lagoon is dom<strong>in</strong>ated by plva dur<strong>in</strong>g <strong>the</strong> smer season, showFng a roughly


estimated primary production of 500 g C mdZy-l <strong>in</strong> shallow are-. The<br />

contribution to <strong>the</strong> annual carbon budget of <strong>the</strong> Veerse Meer is roughly<br />

-E -1<br />

120 g C m y , which is 27X of <strong>the</strong> lagow' budget. The higb nitrogen<br />

load not only leads to a relatively high production of phytoplanktou,<br />

but also to <strong>in</strong>tensive and undesirable mass growth of =<strong>in</strong><br />

areas.<br />

shallow<br />

Figure 7 reveals <strong>the</strong> <strong>in</strong>areae and decrease <strong>in</strong> biomass, eapressed as<br />

perrentage wvezage, <strong>in</strong> a permaaent saaple plot In <strong>the</strong> Grevel<strong>in</strong>geu and<br />

<strong>in</strong> <strong>the</strong> Vwse Fleet!. In <strong>the</strong> Grevel<strong>in</strong>gemeer <strong>the</strong> annual cycle of cbaagerr<br />

<strong>in</strong> biomass of seagrass is not disturbed by macro-algae. which have only<br />

a low presence. In <strong>the</strong> Veezse Meer <strong>the</strong> seagraes plot becomes cmpletely<br />

dam<strong>in</strong>dted by quickly grow<strong>in</strong>g-, suppress<strong>in</strong>g <strong>the</strong> growth of zostera.<br />

Table 3 shows that <strong>the</strong> eutrophicated Veerse Meer has <strong>the</strong> highest tmtal<br />

-2 -1<br />

primary production (roughly 4-50 g C m y ) and that <strong>the</strong> nutrient<br />

limited Oosterschelde estuary has <strong>the</strong> lowest values (rdu@ly<br />

-P -1<br />

240gCrn y 1.<br />

For Ereshwater ecosystems a tentative model has beau developed,<br />

descrihlng <strong>the</strong> relation berween <strong>the</strong> relative domtuanca of primary<br />

producers wmected to <strong>the</strong> availability of nutrients. and <strong>the</strong><br />

successive phase$ <strong>in</strong> <strong>the</strong> process of %acreas<strong>in</strong>% eutrophicatton<br />

(Phillips. et al. 1978; Van Vierssen, et al. 1985; De Nfe. 1987: Fig.<br />

8, upper panel). The model for esruar<strong>in</strong>e and lagoonal situations Rig.<br />

8, loaez panel) is adapted, based on data from <strong>the</strong> Qrevel<strong>in</strong>pn and<br />

Veerse &er. The model is odly applicable to stagnant brackish lagoons<br />

and extremely sheltered parts of tidal estuaries. In "healthy" sal<strong>in</strong>e<br />

waters, waterplants - such as seagrasses - dom<strong>in</strong>ate. Nitrogen load and<br />

concentrations are lm and <strong>the</strong> relative importance of phytoplanktm <strong>in</strong><br />

<strong>the</strong> shallow seagrassbeds is iusigniEicant; <strong>the</strong> Grevelisgeumeer is an<br />

example of phase I. Zn brack3sh waters where eutropbiearim <strong>in</strong>creases,<br />

revealed by higher nitrogen loads and concentrations and lower,<br />

<strong>in</strong>stable sal<strong>in</strong>ities, waterpLants am outcompeted by macto-algae.<br />

Epiphyte gowth gn seagrass-<br />

<strong>in</strong>crea~es considerably toge<strong>the</strong>r with <strong>the</strong><br />

relative dsmtnanee of pbytoplankfou. The resilience of <strong>the</strong> aquatic<br />

cmumnitied decreases, which makes <strong>the</strong> system less constant <strong>in</strong> time end


less predictable for water managers; <strong>the</strong> Veerse Meex is an eraple of<br />

phase 11.<br />

Relative dorn<strong>in</strong>once<br />

l SALT WATER I /<br />

I<br />

n<br />

I II m<br />

EutPophlccltion phase<br />

Figure 8 Tentative model for <strong>the</strong> relation between primary producers<br />

and nutriats and <strong>the</strong> snccessive stages <strong>in</strong> <strong>the</strong> eutmphication<br />

proce6s. Explanation see text.<br />

In hypereutrophicated systems (phase 111) heavy uncontrolled<br />

phytoplilnkton blooms alternate with mass growth of macro-algae.<br />

Nutrient concentrations are cont<strong>in</strong>uously high. Root<strong>in</strong>g waterplants hwe<br />

completely disappeared. Bottom sediments suffer from permanent anoxia.<br />

The lagoon of Venice is an example of phase 111, where E bimass<br />

-2<br />

reaches values of 1.5 kg dry weight m (Sfriso, et al. 1987; Sfriso,<br />

et al. 1988) which is 6 times higher as <strong>in</strong> <strong>the</strong> Veerse Meer.


BEumMA. 3.3, aad CADEE, 0.6..<br />

1986. Zoobentboa respauses to<br />

eutrophication of <strong>the</strong> Dutch Waddea Sea. Ophelia, Z6: 5544.<br />

B-, 3.3. and GADEE, G.C., 1987. De eutrofi8rlng ven ons kwtwater:<br />

genoeg of a1 te -ell Vakbl. Biol.. 67 (9): 153-157.<br />

BILLEM, G. and LAhTOELOT, C., 1987. Modell<strong>in</strong>g bemhic microbial<br />

processes and rheir role <strong>in</strong> nitrogen cycl<strong>in</strong>g of taperate coastal<br />

ecosystems. In: E.T. Blackburn and 3. Sorensen (editors) -<br />

Nitrogen <strong>in</strong> coastal mar<strong>in</strong>e envirommnts. Scope Wiley, New York,<br />

pp. 341-378.<br />

EiILtEW, G.. Z~CELM C., SEGgER. E. DE and SWAIS, P.,<br />

1988. Modell<strong>in</strong>g<br />

microbial processes Lphyto- and baccerioplanktm) <strong>in</strong> rhe Sckldr<br />

estukty. Kydrobbol. BnIl.. 22 it): 43-55.<br />

BOWBsT, E.. 1988. Iavwtarisatie van een aantal ahiotisehe facforen<br />

<strong>in</strong> de Wosterschelde. DUlO Studentenverslag 06-1988: 1-22.<br />

BROCWANE. U., BIZLEN. G., md GIESKEEIS, W.W.C., 1988. In: W. Momns,<br />

S.L. Bayne, E.K. Wursma and W. FGrstner (ebicors) - Eollution of<br />

<strong>the</strong> North Sea - an asaesement. Spr<strong>in</strong>ser, Berl<strong>in</strong>, pp. 348-389.<br />

BUWEEN, J.T. VAN, 1988. De Noordzee en eutrafiiiriug. B 0. 21 (201 :<br />

9<br />

591-595.<br />

CbDFE, G.C..<br />

1986a. Increased phytoplmkton primary production <strong>in</strong> <strong>the</strong><br />

Maradi+p area (western Dutch Wden Sea). Neth. J. Sea Eos., 20:<br />

285-9961.<br />

CWDEE, @.G.,<br />

UUIEE, G.C..<br />

19a6b. Recurrent and chang<strong>in</strong>g seasonal patterm <strong>in</strong><br />

phytoplankton of <strong>the</strong> westemmost <strong>in</strong>let of <strong>the</strong> Dutch Wadden &a<br />

frw 1969 to 1985. %X. siol., 93: ~81-289.<br />

and IIEbEm4N. S.. 1986. Seirggnal and annual v-ariahi~n <strong>in</strong><br />

Phaeocystis pouehetii (Haptophyeoae) <strong>in</strong> tire westemmest <strong>in</strong>let of<br />

<strong>the</strong> Uadden Sea dur<strong>in</strong>g €he 1973 to 1985 pertod. Flech. 3. Sea W.,<br />

20: 29-36.<br />

RMNEN, E.A.M.J.,<br />

1985. Literatuurondarzoek met bet$ekk<strong>in</strong>g tot de<br />

oocologie van her Veerse Meer. B.V.<br />

1-116.<br />

G R O ~ I J K , A.M.,<br />

<strong>Delta</strong> COnsult, Kapele, pp.<br />

1984. Primary podnction of four dom<strong>in</strong>ant salt-.marsh<br />

augiespstraa <strong>in</strong> <strong>the</strong> South-West Ne<strong>the</strong>rlands, Ve~~tatie, 51:<br />

143-152.


ILWNEWIJK, A..<br />

KEIP, C.,<br />

1988. De verspreid<strong>in</strong>g ea bfomirssa van macrowen <strong>in</strong> het<br />

Veerse Meer, 1987. DfBO Rapporten en Verslagen 1988-2: 1-25.<br />

1988. Eiota and abiotic enalronmeut <strong>in</strong> <strong>the</strong> Westetscttelde<br />

estuary. Rydrobiol. Bun. Xf (l): 31-36.<br />

IIUISEES, A.E.L.,<br />

1988. l'be salt-marshes of <strong>the</strong> hsterschelde and <strong>the</strong>ir<br />

mle <strong>in</strong> <strong>the</strong> estuartne ecosystem. <strong>Hydro</strong>biol. Bull.. Z2 (l): 57-63.<br />

HQBBZ, H., MQERW, G. and B-, C., 1988. The concomitant<br />

existmce of a typical coaetaS and a datritus baeed food cha<strong>in</strong> <strong>in</strong><br />

<strong>the</strong> Westerachelde estuary. Bydrgbiol. Bull., 22 11): 35-41.<br />

NELISSEN. P.H.M. aml STEFELS, J., 1988. Eutrophlsation of <strong>the</strong> North<br />

Sea. NI(TZ-report 1988-4: 1-100.<br />

NIENHUIS, P.E.,<br />

1980. The epfiitkde algd VeBtcation of <strong>the</strong> South-West<br />

Ne<strong>the</strong>rlands. Nova Kedwigia, 33: 1-94.<br />

NIENHm.5, P.A.<br />

feditar). 1955. Het Grevel<strong>in</strong>gemeer - van esuiarium naar<br />

aoucwtermeer. Ratuur en Technlek, Maastricht pp. 1-177.<br />

NI%NKUIS, P.B. and DAEMEP, E.A.M.J., 1985. De biomasm en produktie van<br />

het fytobenthos. In: P.B.M. Startelder (d.)- De Lwlstofbalans<br />

<strong>in</strong> de Oasterschelde. RWS - <strong>Delta</strong>dienst, C(iddelBnrg, Den Hang;<br />

DIHO, Yerseka, Interimrapport Rota M S<br />

1985-11: 67-79.<br />

OFFICER, C.B.. SMYDA, T.J. and W N , R., 1982. Xenthic filterfeed<strong>in</strong>g:<br />

a natural eutr~phicatian control. Mar. Ecol. Prog. Ser., 9: 203-<br />

210.<br />

PBOJECT6RQEP BALMS, L988. Vuedsel <strong>in</strong> ds Dastersohelde. RiJksmtersteat<br />

DGW en UXHO Yerseke, pp. 1-53.<br />

RAVEN. J.A. and RI~HBWISON, K., 1986. Mar<strong>in</strong>e environments. In: N.R.<br />

Baker and S.P. Long (editofs) - Phyroayn<strong>the</strong>sis <strong>in</strong> conerast<strong>in</strong>g<br />

envirONnent6;. Else%ier, ~sterdm, pp. 357-392.<br />

RWENBERG. R..<br />

1985. Eutrophication. - tlte future mar<strong>in</strong>e eoekral<br />

nuisance? Mar. Pall. Bull., 16 (6): 2271231.<br />

RWTeR, W.P.M.<br />

SpazS0, A..<br />

IIE. POSW. L, and Km, J.S. DE, 1987. TraiIsQort Atlas<br />

of <strong>the</strong> Saa<strong>the</strong>rn North Sea. Rijksrraterstaat - Tidal <strong>Waters</strong><br />

Division - Qelft EydrauUcs, Den Haag, pp. 1-34.<br />

MARCOKDTI. A. apd PAW, B., 1997. Belationships btwesn<br />

mere-algal biomasa and nutrient concentrations <strong>in</strong> a hyperrrophie<br />

area of <strong>the</strong> Venice Lagoon. Mar. Environm. Res., 22: 297- 312.<br />

SPRISO, a.. FAVONI. B., WCOMTXI, A. and 0x10, A.A., 198%. annual<br />

variatio~s of nutrients <strong>in</strong> <strong>the</strong> lagoon of Venice. hr. Poll.<br />

Bull., 19 (2): 54-60.


SLOOFF. W., 1983. Rijn, Lek. W%l. IJssel en uitewaarden onder <strong>in</strong>vloed<br />

van <strong>in</strong>grepen ea verontre<strong>in</strong>ig<strong>in</strong>gen. In: G.P. Bekstra en W. Joenje<br />

(editors) : Rijnwater <strong>in</strong> Nederland. Oecologische Kr<strong>in</strong>g, Amhem.<br />

pp. 13-31.<br />

STREWTOEST. J., DUET, R.N.M.<br />

SPBESMA, J.,<br />

and HAAS, LA., 1985. Primaire produktie<br />

onderzoek <strong>in</strong> het Veerae Meer (1982-1983). Nota DDMI 85.10<br />

Middelburg pp. 1-52.<br />

1980. Produktiemet<strong>in</strong>@en aan macro-elgen <strong>in</strong> het<br />

Grevel<strong>in</strong>g-enmeer wet de 14 C-mhode.<br />

D7-1980: 1-53.<br />

DIE0 Studentenverslagen<br />

VEER, E.W. VAB DER. WHOBST. W. VAN and BEE&&, M.J.N.. 1988.<br />

Elitrophication Of <strong>the</strong> Dutch Wadden Sea - external nutrients<br />

load<strong>in</strong>g6 of <strong>the</strong> Marediep and Vliestroon bas<strong>in</strong>s. In: EON-<br />

projectgroup: The eoasystem of <strong>the</strong> Weetern Kadden Sea: fi@l&<br />

research and ma<strong>the</strong>matical medell<strong>in</strong>g. EMOWAD 11 - NIRZ report<br />

198&11: 113-122.<br />

VECTER, F. and VESSCHER, P.R.M.<br />

DE, 1987. Nutrients and phytoplankton<br />

primary production <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e tidal Oosterschelde estuary (The<br />

Ne<strong>the</strong>rlands). Bydrabiol. Bull., 21 (25 : 149-158.<br />

VELDWIS. M.J.W.,<br />

1987. The eco~bysiology of <strong>the</strong> colonial alga<br />

Phaeoaystis pouchetii. Ph. <strong>the</strong>sis Universtky Eras<strong>in</strong>gen. Van<br />

Dendsren Gran<strong>in</strong>gen. pp. 1-27.<br />

WLFS. I. DE, EOPSTAGW, F., GOOSSBS, H., VRIES. M. IIE, VEXES, 8. DE,<br />

and HF.RINGA, J.. B%. GBEWAQ: an <strong>ecological</strong> model for Lake<br />

Ore-rel<strong>in</strong>gen. Beport T-021543. Rijksvrarerstaat DQW, Delft<br />

Eydtaulics pp. 1-159 + pp. 1-83.<br />

VRIES, I. DE, R&MEORST, W. VAN and DANKaRS, N., 1988. Extra<br />

VoedSngnatoffen <strong>in</strong> see: Wolgen, voordelen, nadelen. Landsohap 5<br />

(4): 270-285.<br />

WETSTFYN. L.P.H.J. and PEPHRZAX. L.. 1988. Ahiotische variahelen,<br />

primaire produktfe w kwalitatieve fytoplenktonsamnstell<strong>in</strong>g en -<br />

suocessie <strong>in</strong> de Oosterschelde <strong>in</strong> 1987. Nota W-88.1009.<br />

Rijkswaterstaat DGW Middelhurg. pp. 1-59.<br />

WOLLAST, R. 1988. The Seheldt estuary. In: W. Salamws, B.L. Bap,<br />

E.K.<br />

Duursma en U. Fdrstqer (editors) - Pollution of tbe North<br />

Sea - an assessment. Spr<strong>in</strong>per, Berlb. pp. 183-193.


XBE CHANGING TmAL LAMXiCAPE I N TEE DELTA ARM OF THE SOUlX-W'ST<br />

N-DS<br />

J.P.M.<br />

Mulder<br />

Implementation of <strong>the</strong> <strong>Delta</strong> Prpject has <strong>in</strong>itiated a procesa of major<br />

changw <strong>in</strong> <strong>the</strong> tidal landscape of <strong>the</strong> South-West Ne<strong>the</strong>rlands.<br />

The w<strong>in</strong> geomorphological developments are described <strong>in</strong> comparison &h<br />

<strong>the</strong> historic evaluation of <strong>the</strong> <strong>Delta</strong> area and <strong>in</strong> eelation to changes of<br />

<strong>the</strong> mjm natural driv<strong>in</strong>g force*.<br />

Channels. sandy shoals, mudflats and salt marshe3 make Up <strong>the</strong><br />

characteristic elements of <strong>the</strong> landscape <strong>in</strong> ~e {formerly) tidal waters<br />

of tbe South-West Ne<strong>the</strong>rlands. Over <strong>the</strong> last decades thls lmddcape hhs<br />

became subject to dramatic chases. Ma<strong>in</strong> causes: implementation of <strong>the</strong><br />

<strong>Delta</strong> Project, aimed at secur<strong>in</strong>g <strong>the</strong> South-West Ne<strong>the</strong>rlan&s aga<strong>in</strong>st<br />

flood<strong>in</strong>g, and <strong>in</strong> <strong>the</strong> Westerschelde, large scale dredgfng for <strong>the</strong> sake<br />

of free shipp<strong>in</strong>g t9 <strong>the</strong> harbours of Bntwerp. Consequences: <strong>the</strong> coherent<br />

geomorph~logicnl system of ebb tidal deltas, tidal. <strong>in</strong>lets and<br />

estuaries, has beep divided <strong>in</strong>to several were or less hiependent<br />

subsystems. The tendencies towads a dywmic equilibrium between tbe<br />

tiW landscape aad natural driv<strong>in</strong>g forces - tides, waves and fluvial<br />

currents - have been dibtnKM.


In this paper (Section 2) first <strong>the</strong> historic evolution of <strong>the</strong> tidal<br />

landscape is analysed, resultbg <strong>in</strong> some 'hypo<strong>the</strong>ses' M general<br />

response mecbnism to chaqges <strong>in</strong> <strong>the</strong> natural driv<strong>in</strong>g forces. !hen<br />

(Section S) <strong>the</strong> major changes of <strong>the</strong> tidal landscape <strong>in</strong> <strong>the</strong> respective<br />

bas<strong>in</strong>s of <strong>the</strong> Dutch <strong>Delta</strong> area over <strong>the</strong> last decadee are broadly<br />

reviewed. The observed phenomena are confronted with <strong>the</strong> general<br />

'hypo<strong>the</strong>ses' of Section 2 and discussed <strong>in</strong> relation to <strong>the</strong> specific<br />

shift <strong>in</strong> natural driviog forces. Flnatly a short outlook on future<br />

developments is given.<br />

2 EVOLUTION OF THE TIDAL LANDSGAEE DURmG RISTORiC TINES<br />

2.1 Kel<strong>in</strong>ium and Oosterschalde<br />

Dur<strong>in</strong>g Roman times <strong>the</strong> coastl<strong>in</strong>e of <strong>the</strong> South-Vest Ne<strong>the</strong>rlands only<br />

showed two ma<strong>in</strong> tidal <strong>in</strong>lets (Fig. 1).<br />

At that time <strong>the</strong> nor<strong>the</strong>rnmost <strong>in</strong>let, known <strong>in</strong> Roman writ<strong>in</strong>gs as<br />

Ael<strong>in</strong>ium, was <strong>the</strong> ma<strong>in</strong> distributary of <strong>the</strong> rivers Rh<strong>in</strong>e and Ueuse, and<br />

partly of <strong>the</strong> river Scheldt (Zagwljn. 1987). Dur<strong>in</strong>g <strong>the</strong> next centuries<br />

<strong>the</strong> importance & this estuary cont<strong>in</strong>ually dim<strong>in</strong>ished, <strong>in</strong> favout of <strong>the</strong><br />

development cf <strong>the</strong> sarly Har<strong>in</strong>gvliet, GreveBgen and Onsterschelde<br />

estuaries.<br />

Figure 1 The South-West Ne<strong>the</strong>rlasds 2000 B.P.<br />

circa 1550<br />

(Zagwiju. 1987) and


The storm surke of L&Z1 A.D., knorm as St. ELisabeth's flood, had a<br />

big impact <strong>in</strong> this respect. It caused a drastic change <strong>in</strong> <strong>the</strong> courses<br />

of <strong>the</strong> =<strong>in</strong> rivers and conaiderable losses of laud (Rig. 1). Due to<br />

<strong>the</strong>se land losses - <strong>the</strong> extensive tidal marsh lands of <strong>the</strong> Biesllosch<br />

orig<strong>in</strong>ate from this flood - <strong>the</strong> tidal prisms of <strong>the</strong> early Har<strong>in</strong>gvliet.<br />

erevel<strong>in</strong>geu and Oosrerschelde <strong>in</strong>creased considerably, result<strong>in</strong>g <strong>in</strong> a<br />

fur<strong>the</strong>r deepeniag and widen<strong>in</strong>g of <strong>the</strong>se bas<strong>in</strong>s. The former Eel<strong>in</strong>iua on<br />

<strong>the</strong> contrary showed a decrease of tidal prism and as a result silted<br />

up. This pzocesa of siltation still was cont<strong>in</strong>u<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong> 19th<br />

century, lead* to <strong>the</strong> need of coustmct<strong>in</strong>g <strong>the</strong> Botterdam Waremay<br />

(1868) fm order to ensure aecess to <strong>the</strong> Botterdam harbours (Van den<br />

Berg. 1987).<br />

The Qosterschelde <strong>in</strong>Let hardly did not change position s<strong>in</strong>ce Roman<br />

times. Bowever, <strong>the</strong> shape oE tbe estuary ewers<strong>in</strong>ce has changed<br />

considPrably. Orig<strong>in</strong>ally <strong>the</strong> Oosterschelde was <strong>the</strong> ma<strong>in</strong> distributary of;<br />

<strong>the</strong> river Skheldt. From about 700 &.D. <strong>the</strong> mere sou<strong>the</strong>rly Westerschelde<br />

estuary developed from a small tidal <strong>in</strong>let, dur<strong>in</strong>g Rman times located<br />

approximately at <strong>the</strong> present Dutch-Belgian border (Rig. 1; benders.<br />

19861. The Westet~chelde gradually took over <strong>the</strong> discharge of <strong>the</strong> river<br />

Gcheldt. At <strong>the</strong> end of <strong>the</strong> 16th century <strong>the</strong> Oosterschelde practically<br />

had lost all importance as a distributary of Scheldt waters.<br />

Rever<strong>the</strong>less, <strong>in</strong> contrast to <strong>the</strong> silt<strong>in</strong>g up of <strong>the</strong> Hel<strong>in</strong>iua after<br />

diparsim of <strong>the</strong> mH<strong>in</strong> courses of <strong>the</strong> rivers Rh<strong>in</strong>e and Pleuse, <strong>the</strong><br />

Oostersmhelde showed <strong>in</strong>tensified erosion. An explanation for this<br />

renarkable different behaviour Q <strong>the</strong> dramatie <strong>in</strong>crease of <strong>the</strong><br />

Oostersehelde's tidal prism due to extensive lwd losses. Apart from<br />

<strong>the</strong> effeers of <strong>the</strong> earlier mentioned St. Wsabeth's flood. it 1s<br />

estimated that as a result of ano<strong>the</strong>r notorious storm surge<br />

(St. Pelix's flood of 1530). <strong>the</strong> Ooseerschelde bas<strong>in</strong> was enlarsd to<br />

such extend that it's tidal prism must have <strong>in</strong>creased by at least 50%<br />

(Van den Berg, 1986). The erosive respouse to this <strong>in</strong>czease of tidal<br />

prism still is visible dur<strong>in</strong>g <strong>the</strong> 19th century CFig. 2).


Figure B<br />

GnDSs :sectiun~2 df <strong>the</strong> '(108tersche1Be falet h <strong>in</strong>&erent<br />

p'er.Faak, i1l~afzat.i~ eh& &aep.egiq@ of &amrIs md ,expaneaon<br />

M<br />

shoals (.Van BeetpX, 1877; Bm., 19XI<br />

ltwex, tha ezqsboa preews,. dus4ng. cWs piad Camat he eqlaiaeB &S<br />

!a s& +W$?tion :CO tke meB*aL Saad Z@ssps. DwtW <strong>the</strong> lStIi aM Wi3i<br />

cwt- 6he tidal .prig@ of <strong>the</strong> .WterSchaLde Xilm-remed -Bet due td<br />

.a penias ,eiuil ,.cag.%wez&g &S. ewh fwti@iae a m1.e U&me<br />

pmpapaZb af tib CZs8le 1;. p9rs .den Ba*, 1987; ,%a Vq&cSel, 1977).<br />

Table 1<br />

Ciail eu@kaer<strong>in</strong>g marks fn <strong>the</strong> l.a&wexd pwfs vf <strong>the</strong><br />

@eseerach&Cie IW34370 M. 1978)<br />

1851-1885 construction of <strong>the</strong> Nieuwe Mewede<br />

1888-1907 construction of <strong>the</strong> Bergse Naas; normalisation of <strong>the</strong> Amer<br />

1931 construction of <strong>the</strong> Bellegatdam<br />

l965 construction of <strong>the</strong> Grwel<strong>in</strong>gen Dam<br />

1969 construction of <strong>the</strong> Volkerak Dapl<br />

1850- dreQ<strong>in</strong>g and saadnh<strong>in</strong>g


osi*<br />

rn@8IOIP<br />

m .SL<br />

4 Has<br />

F~~ULB 3 Dpp~sitie @~pee3s Xn Ooster~whelii& has%n m& etjb eim delta<br />

11;@?4-lbtS),, and xyt sadit+aqtat~&w wf gboals fmone betwem<br />

level MS& 4 mm ht&h vacer slack <strong>in</strong> an<br />

8werall cz&,&g B~s<strong>in</strong> Crib@, K?TS.j V.- Ocehgel, iSTT1<br />

2.E Eypo<strong>the</strong>$es and preliudnaq ConcIuaions<br />

Clraoges <strong>in</strong> tidal valume play a key roIe <strong>in</strong> <strong>the</strong> geamorphoLogica1 history<br />

of <strong>the</strong> South-West Ne<strong>the</strong>rlands. The well documented changes of <strong>the</strong><br />

Oosterschelde ovet <strong>the</strong> laet 100 reaxe cleaely illustrate <strong>the</strong> general<br />

r=ZSgOBSe of mdy estuaries to an <strong>in</strong>crease of tidal volume:<br />

- <strong>the</strong> bas<strong>in</strong> as a whole ahovs a tehdency of arcsion: at <strong>the</strong> s a time<br />

<strong>the</strong> connected ebb tide1 delta is grow<strong>in</strong>g (Fig. 3);<br />

- morphological differences with<strong>in</strong> <strong>the</strong> bas<strong>in</strong> are accentuated; channels<br />

deepen, sandy shoals expand (Fig. 2 and 3). In general this response<br />

might be visualized as given <strong>in</strong> Figure 48.<br />

The history of <strong>the</strong> Eel<strong>in</strong>ium shows <strong>the</strong> general response to an opposite<br />

trend <strong>in</strong> tidal volume: <strong>the</strong> bas<strong>in</strong> starts silt<strong>in</strong>g up. Unfortupately, <strong>in</strong><br />

contrast to <strong>the</strong> Oasterschelde, detailed <strong>in</strong>fomatlon 04 <strong>the</strong> historic<br />

development of iiel<strong>in</strong>iwn's ebb tidal delta or of s<strong>in</strong>gle channels and<br />

sandy shoals is lack<strong>in</strong>g. Never<strong>the</strong>less, <strong>in</strong> negative aualogg to <strong>the</strong><br />

Oosterschelde case, rhe effects of a dscreaae of tlldal wlww nilght be<br />

stated as:<br />

- <strong>the</strong> bas<strong>in</strong> as a whole shows s tendency of sedbentatia4; <strong>the</strong><br />

connmted ebb tidal delta is erodlllg;


- wrgbolegical differmes witit<strong>in</strong> tk has<strong>in</strong> axe smo<strong>the</strong>d; channels<br />

silt up. sandy shoals degrade (Fig. 4%).<br />

A.<br />

tidol volume INCREAf;E<br />

8<br />

tidol volume DEGREASE<br />

Figure P<br />

eeneral respame mechanisms of <strong>the</strong> tial landsrape <strong>in</strong> cmcel<br />

and estuar<strong>in</strong>e envirgnnenrs to chmsas Ln <strong>the</strong> tidal volnme<br />

l'hesn wtatemencs on general response oecbariisms pumide weful<br />

'llypoFpoMeses' eo be tested on observations 03 <strong>the</strong> major chaees fn <strong>the</strong><br />

rMaI landscape over tBe last 30 rears (Section 3).<br />

The respanae mechmism no change* of tide1 volume trends to create a<br />

new dgnsJaic equillbbl-ium hemeen tlie tidal volume end <strong>the</strong> shape and<br />

dimeasions of <strong>the</strong> tidal landscape. The comt<strong>in</strong>u<strong>in</strong>g sSltatiun of <strong>the</strong><br />

hLelL&tlht and erosion of <strong>the</strong> 0ostere;ehelde dur<strong>in</strong>g <strong>the</strong> 19th centruy, Cn<br />

respanse to dsastic charrges of <strong>the</strong>ir tidalvolme &r<strong>in</strong>g <strong>the</strong> 15th and<br />

16th ceutlvry (see seation 2.1). <strong>in</strong>dieaces abe time scale sf<br />

geomotphologfcal remetlens: a net? dwmic equilibrium takes centuries.<br />

The tnqract of hum iqterfm-e<br />

hecornea Fncueas<strong>in</strong>gly appirrent tiuough <strong>the</strong> ages.<br />

on deu@lop@ents of <strong>the</strong> tidal landscape<br />

Duriry: <strong>the</strong> Late Miadle Ages man was a mjor cause of <strong>the</strong> land losses<br />

alwg <strong>the</strong> Ealiaim and Oasternobelde es';narl.es.<br />

The constlvction of<br />

palGers (s<strong>in</strong>ee &ant lIOD RD.), <strong>the</strong> artificial Lmprovel~e~~t of dr&age<br />

and extensive salt sr<strong>in</strong><strong>in</strong>g <strong>in</strong>itwed large scale lower<strong>in</strong>rg of <strong>the</strong> limd<br />

level. Consequently <strong>the</strong> land beeam a more<br />

prey to storm ~uzges<br />

(Van den Bezg. 19863. Man <strong>in</strong>directly <strong>in</strong>itiated major changes <strong>in</strong> <strong>the</strong><br />

tLd& voluures P£ <strong>the</strong> estuaries.


Dur<strong>in</strong>g <strong>the</strong> 19th century man starts <strong>in</strong>terfer<strong>in</strong>g directly by eng<strong>in</strong>eertns<br />

works of ever <strong>in</strong>creaslag dimensions. me last decades are marked<br />

h W<br />

fnfluence of mprecedented scale and Fntensfty.<br />

a<br />

3 MAJOR CHANGES IS TEE TJDAL LANILSCAPE OVER WE LAST nEGaDES<br />

3.1 Different categories<br />

Pfter empletimn of <strong>the</strong> <strong>Delta</strong> Project <strong>in</strong> 1987, <strong>the</strong> waters of <strong>the</strong> South-<br />

West Ne<strong>the</strong>rlands may be divided <strong>in</strong>to faw categories (Pig. 5):<br />

I<br />

L<br />

1<br />

Figure S<br />

The South-Ueet %echerIands after cwple€ian e? <strong>the</strong> <strong>Delta</strong><br />

Prnject<br />

- category Bar<strong>in</strong>gvlTet: bas<strong>in</strong>s wit% wly a closure Bern at eke sward<br />

side, almDst totally discomscced frmn tidd iafheaces but nick a<br />

substanrial direct fluvial <strong>in</strong>flow (Earfngvliet - HolMsch Diep,<br />

Brlelse mer) :


- category Grevel<strong>in</strong>gen: bas<strong>in</strong>s with closure dams at hn, sides,<br />

disconnected from tidal <strong>in</strong>fluences and without any [Qrevel<strong>in</strong>genmeer.<br />

Veerse Meer) ar with very limited fluvial <strong>in</strong>fluences (Volkerak -<br />

Zoommeer) ;<br />

- Oostecschelde: a bas<strong>in</strong> with a half open dam at <strong>the</strong> seaward side and<br />

closure dams at <strong>the</strong> lahdward side, with reduced tide and<br />

disconnected from fluvial <strong>in</strong>flnences;<br />

- Westerschelde: an estuary 13 <strong>the</strong> true sense, with both tidal and<br />

fluvial imflueuces.<br />

Construction of rhe seaward closure dams has disrupted <strong>the</strong> former<br />

morphirlogical uncity of estuary and ebb tidal delta <strong>in</strong>to two dist<strong>in</strong>ct<br />

subsysrems: a bas<strong>in</strong> and a (relict) ebb tidal delta.<br />

In general, tidal currents and -ranges have been reduced and fluvial<br />

<strong>in</strong>fluencee limited, while wave impacts have rema<strong>in</strong>ed unchanged.<br />

3.2 Category Har<strong>in</strong>gvliet<br />

With<strong>in</strong> <strong>the</strong> Har<strong>in</strong>gvliet has<strong>in</strong> fluvial currents and waves are <strong>the</strong> only<br />

geomorphelogicalIy active forces left after fiiaishfng of <strong>the</strong><br />

Harfn~vliet nam <strong>in</strong> 1971. The tidal Emge has been dim<strong>in</strong>ished from ca.<br />

2 m to a negligible 0.2-0.35 m. The ahst total disconnection from<br />

tiaal <strong>in</strong>iluences has kmcked large scale sedimentation <strong>in</strong> tba channels<br />

(Pi&. 6) and erosion of shoals and mudflafs; <strong>the</strong> shorefaces of several<br />

Figure 6 Channel sedimentation <strong>in</strong> <strong>the</strong> Har<strong>in</strong>gvliet-Hollandsch Riep<br />

bas<strong>in</strong> over <strong>the</strong> period 1970-1983 (Van Otterloo, et ill. 1987)


mudflats have retreated some 100-200 m with<strong>in</strong> 10 yeare (Van Otterloo.<br />

et al. 1987). Cenerally <strong>the</strong>se developments agree with <strong>the</strong> hypo<strong>the</strong>sized<br />

changes accord<strong>in</strong>g to Figure $B.<br />

Sedimentation of tke channels aa<strong>in</strong>ly is due to sand and mud transported<br />

by <strong>the</strong> rivers. The change <strong>in</strong> chnnel depth (Fig. 6) <strong>in</strong>dicates that <strong>the</strong><br />

channels .successively silt up frbm East co West. The siltation process<br />

will contfnue until all over <strong>the</strong> bas<strong>in</strong> a new equilibrium has been<br />

estahlibhed between <strong>the</strong> discharge volume and cross seotional area of<br />

<strong>the</strong> thannels.<br />

Erosion of <strong>the</strong> mudflats is caused by waves. Now that tidal waterlevel<br />

variations M longer exist, we attacks are concentrated <strong>in</strong> a narrow<br />

zone; at <strong>the</strong> same time this erosion no longer is compensated by<br />

sediments deposited by tidal currents dur<strong>in</strong>g high tides. The result is<br />

an <strong>in</strong>creased net erosion. Dnril 1988 <strong>the</strong> shore* of two areas (Beniager-<br />

and Korendijksche Slikkep) effectively have been protected aga<strong>in</strong>st<br />

erosion (Van Otterloo, et al. 19871. A progaam has been def<strong>in</strong>ed to<br />

protect all rema<strong>in</strong><strong>in</strong>g dais and raudflats before <strong>the</strong> year 1994.<br />

S<strong>in</strong>ce 197L tidal currents on Bar<strong>in</strong>golfet's ebb tidal delta ma<strong>in</strong>ly are<br />

detefn<strong>in</strong>ed hy <strong>the</strong> North - South directed tidal wave on <strong>the</strong> Narth Sea.<br />

East - West direefed tidal currents, previcusly flow<strong>in</strong>g <strong>in</strong>to and out of<br />

<strong>the</strong> estuaq, haoe reduced dramatically. Bluvial currents nowadays are<br />

restricted to periods around low water slack, when excess meter from<br />

Meuse and m<strong>in</strong>e is be<strong>in</strong>g discharged through <strong>the</strong> Har<strong>in</strong>gvliet sluices.<br />

Wave activity has not changed significantly over <strong>the</strong> last period.<br />

Accord<strong>in</strong>g t~ <strong>the</strong> hypo<strong>the</strong>ses of Section 2.2. a reduction <strong>in</strong> tidal velume<br />

of rhe estuary generally will <strong>in</strong>duce emsion of <strong>the</strong> ebb tidal delta and<br />

sedfmentgtion of <strong>the</strong> tidal channels. Obeervationa of geomorphological<br />

developmenrs s<strong>in</strong>ce L971 (Fig. 7) generally confirm this picture.<br />

ErosiQn of <strong>the</strong> ebb tidal delta is nest obvious aloqg <strong>the</strong> deltafront<br />

aroudd <strong>the</strong> NA? -5 m depth contour (Fig. 7). Here <strong>the</strong> landward directed<br />

Vdve '<strong>in</strong>duced sand transport no longer is cmpensated by sand traneport<br />

<strong>in</strong> a seaward direction <strong>in</strong>duaed by ebb tidal currents: <strong>the</strong> result is a<br />

net erosien of <strong>the</strong> deltafront. The eroded sediments are deposited


partly <strong>in</strong> longshore sandbars at <strong>the</strong> edge of <strong>the</strong> ebb tidal delta, and<br />

partly <strong>in</strong> t?a? channels, especially where <strong>the</strong>se have lost <strong>the</strong>ir role as<br />

distributaries of ehh currents £ran <strong>the</strong> estuary.<br />

It is to be expected that <strong>the</strong>se processes will cont<strong>in</strong>ue <strong>in</strong> fhe future<br />

at a reduq rate, until a new equilibrium has been established. The<br />

longshore bare, stagnat<strong>in</strong>g at a height level of araund mean sea-lwel<br />

(NAP), will cont<strong>in</strong>ue to stretch <strong>in</strong> a direction parallel to <strong>the</strong> coast,<br />

at <strong>the</strong> same time mov<strong>in</strong>g fur<strong>the</strong>r landward (Kohsiek, et al. 1989).<br />

Figure 7<br />

Development of <strong>the</strong> Har<strong>in</strong>gvliet ebb tidal delta over <strong>the</strong><br />

period 1970-1980 (Van der Spek, 1987)<br />

3.3 Category Grevel<strong>in</strong>gen<br />

After constructian of <strong>the</strong> Grevel<strong>in</strong>getl Dam (1965) and <strong>the</strong> Brouwers Dam<br />

(1971). <strong>the</strong> G?3?Tellngen bas<strong>in</strong> mat be charracterized a a stagnaat<br />

saltwater bas<strong>in</strong>, without any tidal ot flwiel <strong>in</strong>fluence. Waves are <strong>the</strong><br />

only ge~morphologically active drfv<strong>in</strong>g force that has been left.<br />

Theoretically changes of such nature will <strong>in</strong>duce erosion of <strong>the</strong> sandy<br />

shoals and mudflats, and sedimntation of tbe ehannels (conform<br />

Fig. &B). DevelDpmOnts over <strong>the</strong> last 20 years broadly canfirm this.


aq811~33a.e~ pue 3pTatlJS uxaJsafi


Dry shoal with gully


Erosion by waves of sandy shoals (conform Section 3.2) was very oomon<br />

from 1971 onwards; shore faces retreated at a rate of maximum<br />

10 mlyear. After most of <strong>the</strong> shores successively have been protected<br />

aga<strong>in</strong>st sroeion, Che total loss of shoals and &fiats <strong>in</strong> L988 has been<br />

calculated as 54 ha or 6 percent of<br />

(Leeuweste<strong>in</strong> and Schoot. 1988; Fortu<strong>in</strong>. 1989).<br />

<strong>the</strong> orig<strong>in</strong>al total area<br />

Although <strong>the</strong> fomer tidal channels tend to silt up, hardly any<br />

sedimentation is observable s<strong>in</strong>ce <strong>the</strong> only soure of sediWut,<br />

represeated by <strong>the</strong> ssudy shoals and mudflats, laqely hae been<br />

protected aga<strong>in</strong>st erosion. Comeqnently future changes of <strong>the</strong> bas<strong>in</strong>'s<br />

tidal landscape vul be very limited.<br />

The sbift <strong>in</strong> driv<strong>in</strong>g force on GrsYel<strong>in</strong>gen'~ ebb tide1 delta s<strong>in</strong>ce 1971<br />

largely is comparable to that previously described at <strong>the</strong> Hat<strong>in</strong>gvliet<br />

(see Section 3.2). As to be espected a similar motphoLogica1<br />

development <strong>in</strong>itiated by similar mechanisms has been pbserved. Erosion<br />

of <strong>the</strong> deltafront related ts an expansion ~f sandy shoals and silt<strong>in</strong>g<br />

n~ Q£ foruer tidal channel ever <strong>the</strong> last 20 years clearly is<br />

fllustrated by Fiwes 8 and 9.<br />

The tendencies ~f future changes of <strong>the</strong> ebb eidal delta are comparable<br />

to <strong>the</strong> Barievliet case.<br />

Figure 8 Cross sections of <strong>the</strong> deltafront on <strong>the</strong> Grevel<strong>in</strong>gen ebb tidal<br />

delta (1960-1980), Uwstrat<strong>in</strong>g <strong>the</strong> impact of clos<strong>in</strong>g <strong>the</strong><br />

estuary <strong>in</strong> 197 1 (mhsiek and Mulder, 1989)


Figure 3 Developaent of lengshore bars and tidal channels on <strong>the</strong><br />

Grevel<strong>in</strong>gen ebb tidal delta 1970-1980 (Kohsiek and Mulder.<br />

1989)<br />

3.4 00s terscbelde<br />

The Oasterscbelde bas<strong>in</strong> was directly <strong>in</strong>fluenced by <strong>the</strong> construerion<br />

works <strong>in</strong> o<strong>the</strong>r estuaxies. Due to <strong>the</strong> b~ld<strong>in</strong>g of <strong>the</strong> Greuel<strong>in</strong>gen Dam<br />

(1965) and Volkerak Dam (1969), <strong>the</strong> tidal prism of <strong>the</strong> Oosterscbelde<br />

<strong>in</strong>creasad cirna 6 - 8% aver <strong>the</strong> period 19.60 - 1983 (Van den Berg,<br />

19861. A considerable erosion and widen<strong>in</strong>g of <strong>the</strong> channels has been<br />

observed over this period (Van den Berg, 19861, which is <strong>in</strong> accordance<br />

with <strong>the</strong> expected geomorphological reaction (conform Fig. 4A).<br />

Construction of <strong>the</strong> storm surge barrier (1986) and af <strong>the</strong> landward dams<br />

(Desterdam, 1986. and Philipsdam. 1987) has disiurbe* <strong>the</strong>se tendencies.<br />

S<strong>in</strong>ce 1986 <strong>the</strong> tidal volume of <strong>the</strong> Ooscerschelde has decreased by 302;<br />

tidal current velocities have dimiaished by a simLlkr percentage and<br />

<strong>the</strong> tidal range by some 1ZZ. This reduction <strong>in</strong> tidal <strong>in</strong>fluence, most<br />

probably bas <strong>in</strong>itiated a process of channel sedimentation and shoal<br />

erosion (conform Fig. 41)). However, no gevmcrpholdgical absematirms<br />

are available yet to confFnn this.


Lt has been estimated that <strong>the</strong> sedimentation process Of <strong>the</strong> channels <strong>in</strong><br />

order to establish a new equilibrium will <strong>in</strong>volve some 500 millions lU3<br />

of sediment over <strong>the</strong> next cedtnries. The total erosive effect over <strong>the</strong><br />

next 30 years h& been elculated as a lass of shoal- and mu-t area<br />

amount<strong>in</strong>g to circa l500 hectares i.e. 10 - 15% of <strong>the</strong> present total<br />

area (Rohsiek, et al. 1987).<br />

The total area of salt marshes very drastically has been reduced after<br />

caepletion of <strong>the</strong> <strong>Delta</strong> Project. S<strong>in</strong>ce 1987 only 24% of <strong>the</strong> orig<strong>in</strong>ally<br />

total area of salt marshes <strong>in</strong> <strong>the</strong> k<strong>in</strong>gvliet, Grevel<strong>in</strong>gen. Volkerak<br />

and Oaaterschelfle is rew<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> Oosterschdde. It ia estimated<br />

that <strong>the</strong>se saltslarshes are subject to sn <strong>in</strong>creased rate of erosion.<br />

VegetatioO mid erosion resistance most probably have been weakened<br />

considerably as a result of a proloagued period of extrae tidal<br />

reductiod duritrg, <strong>the</strong> f<strong>in</strong>al constmctiDn phase of <strong>the</strong> Oostersahelde<br />

works.<br />

The Oosterechalde's ebb tidal delta has shown a cont<strong>in</strong>u<strong>in</strong>g exw<strong>in</strong>sion<br />

over <strong>the</strong> period 1960 - 1983 as a result of <strong>the</strong> tikl voluae <strong>in</strong>erease<br />

and result<strong>in</strong>g bas<strong>in</strong> erosion over this period. Van den Berg (1986) has<br />

ralculated a net sedimentation over <strong>the</strong>se years of ca. 38 millions m'.<br />

This is i n aceordance with <strong>the</strong> expeered trend as stated <strong>in</strong> Section 2.2.<br />

The decrease of tidal volume after 1987 <strong>in</strong>dicates an opposite<br />

gesmorphrtls~ical trend for <strong>the</strong> future. It is expacted that <strong>the</strong><br />

deltafront will erode. <strong>the</strong> tidal channels will silt up and longshore<br />

sandbars will develop a< <strong>the</strong> edges hheiek end Nulder, 1989). No<br />

geoolorphological data are available yet to confirm this.<br />

Tidal end gwmorphological changes af <strong>the</strong> Wastersehelde bas<strong>in</strong> ove-r <strong>the</strong><br />

last 30 years are ma<strong>in</strong>ly due to large $tale dredg<strong>in</strong>g. Because of it's<br />

importance for shippfng traffic to <strong>the</strong> harbours of Antwerp, no closure<br />

daar has been def<strong>in</strong>ed for <strong>the</strong> Westewchelde. Wifh<strong>in</strong> <strong>the</strong> fra81evork of <strong>the</strong><br />

<strong>Delta</strong> Projeet security aga<strong>in</strong>st flood<strong>in</strong>g around this estuary h- been<br />

odta<strong>in</strong>ed by streng<strong>the</strong>n<strong>in</strong>g of <strong>the</strong> dykes. The <strong>in</strong>tensified shipp<strong>in</strong>g


~raffic, however, has irldueed a rfiat<strong>in</strong>er <strong>in</strong>crease of large sale<br />

dredg<strong>in</strong>g activitias fnm about 1970 (Pig. 10).<br />

Figure 10 Impact of dredg<strong>in</strong>g and dump<strong>in</strong>g <strong>in</strong> <strong>the</strong> WeBtefsGhelde 0% <strong>the</strong><br />

development e-f sam&<br />

shod8 {Ww. 198'3)<br />

The drtifieiar deepen<strong>in</strong>g of <strong>the</strong> chhmels hy dredg<strong>in</strong>g llae oontributall ta<br />

an -larrmse of tidal frolume <strong>in</strong> rhe bas<strong>in</strong> of 3 - 73 over <strong>the</strong> period 1970<br />

- 1985 (Van den Be~g. 19871. %keoreticdly (Eis. 4A) <strong>the</strong>se hydraulic<br />

and gwmcrpholo@cal chaqes should <strong>in</strong>voke an ecqanaion of <strong>the</strong> sandy<br />

shoals, Ohserufftkms over <strong>the</strong> period 1955 - 1987 largely coDfim this<br />

(Pia. 187. Future developnte of <strong>the</strong> tide1 landscape will d+psnd<br />

ma<strong>in</strong>ly on <strong>the</strong> actual policy Bf dredg<strong>in</strong>g and dwfs&.<br />

Westee&elde4s<br />

ebb ti4a1 delta skeuld haye shown aa expand<strong>in</strong>g cen&er,cy<br />

over <strong>the</strong> pert98 I970 - 1917 <strong>in</strong> reapwse ts an <strong>in</strong>e.reashg ci.dal valume<br />

km&??a 3eietio-a 2.2). A moz~hoiwgt~al dweveSopuient <strong>in</strong> this sense.<br />

bowever, has bees trmd co &seme over ~h*. past yeam. tidal<br />

laadseirpe eeema W have been aetemhed to if greets* -&end by dredg<strong>in</strong>g. .<br />

sad bovipUg aartiv&ties 6n titre eb21 tidal delta ir~lf. Deepeatris 6f<br />

shfpp&q C&nnB&e and expaturion of Ze@br.aggc ~. harbour roffiated <strong>the</strong><br />

&zedg<strong>in</strong>$ md dwzng &f sbae 4a0. 0;l1IImi mj sededbent otr <strong>the</strong><br />

WasZeec&elae ebb tidal de&a between 197B arrd 1984 [Van den Ems,<br />

1987.). mhss ettriicieal pi~l<br />

.26-bntf1~* to dhtarafnO futuik a&ve1iip*es.


Implementafion of <strong>the</strong> <strong>Delta</strong> Project has <strong>in</strong>Ltiated a process of large<br />

scale changes <strong>in</strong> <strong>the</strong> tidal landscape. Generally <strong>the</strong>se changos may be<br />

described <strong>in</strong> relation to <strong>the</strong> specific changes <strong>in</strong> tidal valme of <strong>the</strong><br />

bas<strong>in</strong>s. The dimensions and rate of th. changes only partly have been<br />

foreseen <strong>the</strong> outset qf <strong>the</strong> Project. DetaiIed process studies over<br />

<strong>the</strong> last years have p~wvided =ore <strong>in</strong>sight. &B a result of <strong>the</strong>se studies<br />

adequate mam~ewatt wssures have been def<strong>in</strong>ed to stop erosion gf<br />

shoals and mudflats <strong>in</strong> <strong>the</strong> tideless bae<strong>in</strong>s. A po1l.o~ plan <strong>in</strong>cwrporat<strong>in</strong>g<br />

<strong>the</strong> developarents of tk ebb tldd deltas - <strong>the</strong> Voordelta - is fa<br />

preparation, The def<strong>in</strong>itfon 0f adequate measuremeats to mwge<br />

developments of <strong>the</strong> tidal landscape fa <strong>the</strong> 0ooster- and Westers&d.de ie<br />

subject of study.<br />

L am grateful ta L.R.M. Kohsiek Por his nseful advise <strong>in</strong> prepar<strong>in</strong>g thls<br />

paper, to J.W.M. Kuijpers (Rilfkswaterataat, Directorate Euid-Holland)<br />

and D. wan Malde~em for pravidimg data, and to J. Polderman and 3. van<br />

den Broeke for sonstructian of <strong>the</strong> figures.<br />

REFERENCES<br />

BBRG, J.R. VAN DEN.<br />

BEW, J.R.<br />

1986. Aspects of sedi6Pent- and lnorphodynamics of<br />

subtidal deposits of <strong>the</strong> Ooatezsehelde (<strong>the</strong> Ele<strong>the</strong>rlds). &VS<br />

Co~ca~iolll m 43, Den Has.<br />

VAB1 BEE. 1987. &@anation of <strong>the</strong> isallobaths map of <strong>the</strong><br />

Voordelta L975 - 1980 (<strong>in</strong> Dutch). Rota ZL 87.0020, EM Dir. Eld,<br />

49 p.<br />

DMS, 1930. Prelude (<strong>in</strong> Dutch). Drie Hnd. Ber. Deltmr., 54: 17'2 - 177.<br />

DMB,<br />

1975. <strong>Hydro</strong>graphical research <strong>in</strong>to <strong>the</strong> impact of <strong>the</strong> storm surge<br />

barrier on environmant (<strong>in</strong> Dutch). Drie Mnd. Bet. <strong>Delta</strong>w.. 72:<br />

@4 - 92.


DMB. 1976. Hydraulic arui hydrog~aphical alpact on <strong>the</strong> Oosterschelde<br />

bas<strong>in</strong> (<strong>in</strong> Dutch). DrieMnd. Ber. <strong>Delta</strong>w., 763 312 - 324.<br />

PORTUIN. A. d . 1989. The development and protection of shores <strong>in</strong><br />

former tidal has<strong>in</strong>s (<strong>in</strong> Dutch). Nota RWS Dienst Getijdewateren.<br />

KOBSIEK, L.B.M.. PIDLDER. J.P.M., LOUTERS, T. and BERBEN, F., 1987. The<br />

Ooeterschelde; twrds a new tidal landscape (<strong>in</strong> Dutch). Nota<br />

WgO 87.029. RW8 Dienst Ggtijdewateren, 48 p.<br />

KOItSIEI(, L.H.M. and MULDER, J.P.M. (ed5. ), L989. me VoVaoelelta, a<br />

water system is chang<strong>in</strong>g (<strong>in</strong> Dutch). Nota m Dienst<br />

Gecijdewareren. 24 p.<br />

LEE-, K.A.H.W.. 1986. 2000 years of coastal development from Cap<br />

Cris Re2 to Book of Holland (<strong>in</strong> Dutch). Nota NZ-N-88.19 BUS Dir.<br />

Noardzee. 4S p.<br />

LEEUWESTEIN, W. and P. ECBOOT, 1988. hraluation shores; report m <strong>the</strong><br />

project Shore erosion (<strong>in</strong> Durck). Rep. 73 Delft, Vakgr. Wtkk,.<br />

90 p.<br />

OTTEBLOO, R.B. VAN, BEEGAEM, J.W. VAN, KlJIJPER3, J.W.M., BROMUIZEN.<br />

A., DREUMEL, B.F. VAN and MOL, J.W., 1987. The water soil of <strong>the</strong><br />

Nortkm Dalelta Bas<strong>in</strong> (<strong>in</strong> Dutch). Nuta RWS Dir. bendenriv., 29 p.<br />

Spa, A.J.F. VAN DER. 1987. Deectiption of <strong>the</strong> development of <strong>the</strong> ebb<br />

tidal deltas of <strong>the</strong> Xar<strong>in</strong>gvliet and Crevel<strong>in</strong>gen (<strong>in</strong> Dutch). Nota<br />

GWAO 87.105 RWS Dienst Getijdewateren, 77 p.<br />

VECBOEL, R.H.W. VAN, 1977. ffirphalagical development <strong>in</strong> <strong>the</strong><br />

Oosterschelde (<strong>in</strong> Dutch). Nota W-77.009 RWS <strong>Delta</strong>dienst, 12 p.<br />

W, 1989. Policy plan Wasterschelde (<strong>in</strong> Dutch). Werkgr. Waterbeh.<br />

W.Sch=l$e, RWS Dienst OetiJdewaterenIDir. Zeelanri, 4 reports.<br />

2 , W . . 1997. Geolmgy of <strong>the</strong> Ne<strong>the</strong>rlands I : The Ne<strong>the</strong>rlands<br />

dur<strong>in</strong>g <strong>the</strong> Halocene (<strong>in</strong> Dutch). Staatsuit$everij Oen Raag.


ECOLOGICAL DEVELOWdENT OF SALT MAKSHES PrND SO-<br />

SOUTB-WEST NETBBUANDS<br />

TIDa PLUS IN TBE<br />

A.M.M.<br />

van Eaperen<br />

Both <strong>in</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g and <strong>in</strong> <strong>the</strong> embanked estudries of tfie South-West<br />

Ne<strong>the</strong>rlands <strong>the</strong>re are good possibilities for conservation and<br />

development of (semi-)terrestrial ecosystems. In <strong>the</strong> Oosterschelde and<br />

she Westerschelde canservation of <strong>the</strong> estuar<strong>in</strong>e salt marshes has<br />

highmc priority. They are characterized by cyclic dynamic processes<br />

that largely depend on <strong>the</strong> tidalwater system.<br />

On fewer cldal flats and salt marshes that are no loager <strong>in</strong>uadated<br />

em$zitasis Lies on <strong>the</strong> developmeat of new ecasyeteas. Already <strong>in</strong> <strong>the</strong><br />

first years after ernbhnt rare and threatened bird and plant species<br />

colonized <strong>the</strong> new habitats. Environment was, hopever, dom<strong>in</strong>ated by<br />

nan-cyclic adapcative processes (e.g. desalihation, pkiysical and<br />

chemical ripen<strong>in</strong>g af <strong>the</strong> soil, etc.) causFng a xag14 change of flora<br />

and fauna. Probably it will take mare than a Hmdred years before <strong>the</strong><br />

new ecosystems will be stabilized.<br />

kkmgemcnt of water and land is of great importance for <strong>the</strong> type of<br />

nature tbat will result ultimately. When mak<strong>in</strong>g a olanagemant plan it is<br />

important to get a go~d idea of <strong>the</strong> abiotic potentialities of <strong>the</strong><br />

diftexent habitats. Tage<strong>the</strong>r with <strong>the</strong> valae of <strong>the</strong> diffexent types of<br />

nature for namre conservation, it is <strong>the</strong> ma<strong>in</strong> eriterion to come to <strong>the</strong><br />

defisian what type of nature should be developed on <strong>the</strong> new land.


TIDAL FLAT<br />

....<br />

M HW<br />

MLW<br />

LOW SALT MARSH .......................... .:.:,.<br />

........................<br />

h:'.' .... .,>.. :<br />

......<br />

M HW<br />

MLW<br />

v<br />

........I....<br />

......... ......<br />

..:<br />

HIGH SALT MARSH A :::::U:::;.:<br />

......... :.:;.: ,":.:.:. MHW<br />

........ ..... .;:. ...... ....<br />

:.... .:,.:' '<br />

..: .: .: :"::' .,.v<br />

Figure 1<br />

Geomorphologifal differentiation of tidal flats and salt<br />

marshes <strong>in</strong> <strong>the</strong> estuaries of <strong>the</strong> South-West Ne<strong>the</strong>rlands.<br />

MW: Mean Righ Water, KLW: Mean Low Water<br />

Climate<br />


fn tidal water systems sedimentation and erosian of sediment cont<strong>in</strong>ue<br />

above mean low waterlevel (KLW) and even mean high waterlevel (HXW).<br />

The lowest parts of <strong>the</strong> tidal zone have no vegetation except algae and<br />

some water plants (Zostera spec.). These tidal flats are m important<br />

feed<strong>in</strong>g habitat for birds (Meire, et al. 1989). Some decimetres below<br />

MEW <strong>the</strong> ffrst smi-terrestrial vegetation starts to grow (Salicornia<br />

spec., Spart<strong>in</strong>a spec.). This vegetation is usually <strong>in</strong>undated Cwice k<br />

day. %?hen accretion cont<strong>in</strong>tles to above MEW, vegetation develops to a<br />

variecy of plant communities. Geomarphology and vegeration of <strong>the</strong>se<br />

higher salt marshes are much more difgerentiated than on <strong>the</strong> mud flats<br />

and <strong>the</strong> lower salt marshes.<br />

The above-mentioned pattern of succession (see also Fig. 1) represents<br />

<strong>the</strong> situation it! <strong>the</strong> sd<strong>in</strong>e tidal are= of <strong>the</strong> South-West Ne<strong>the</strong>rlands.<br />

In <strong>the</strong> fresh and brackish tidal water systems this pattern is not<br />

essentially different, but <strong>the</strong>re is a difference <strong>in</strong> vegetation types of<br />

<strong>the</strong> marshes (reed, rushes and willars).<br />

The constru~tian of <strong>the</strong> <strong>Delta</strong> Works reaulted ia an ewrmous chanse of<br />

<strong>the</strong> estnariae environment. In most areas a more or less fixed<br />

wacerlevel w s realized somewhat aound NAP (butcb Ordnanoe Level). The<br />

consequence was that <strong>the</strong> lmr parts of <strong>the</strong> tidal land were pennwently<br />

<strong>in</strong>undated, while <strong>the</strong> higher parts were hardly iufluenced by <strong>the</strong><br />

flood<strong>in</strong>g water. Large parts of <strong>the</strong> latter could develop as (semi-)<br />

natural ecosystms. Thfs development and ite future perspectives for<br />

nature conservatLon are <strong>the</strong> subjects of this paper.<br />

2 ECOLllGICBI. DYNdMtCS I N VARIOUS WATERS<br />

The processes <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> development of animal and plant<br />

communities cm be ordered <strong>in</strong> an hierarchical model (Fig. 2, derived<br />

from Bakker, et al. 1981). In this model <strong>the</strong> outer compartments<br />

dom<strong>in</strong>ate <strong>the</strong> <strong>in</strong>ner ones. Though <strong>the</strong>re is some <strong>in</strong>fluence <strong>in</strong> <strong>the</strong> opposite<br />

direction, this is of m<strong>in</strong>or importance becsuse of its lower


Figure 3 Distribution of some estuar<strong>in</strong>e marshland types <strong>in</strong> relation to<br />

0<br />

average chlor<strong>in</strong>ity ( 100 CL-) . Open circles: salt marshes;<br />

black circles: brackish marshes with reed and rushes; hatched<br />

circles: fresh marshes with reed, rushes and willow coppices.<br />

This figure gives <strong>the</strong> situation before <strong>the</strong> construction of <strong>the</strong><br />

<strong>Delta</strong> Works<br />

1962 SWEOA MARITIMA<br />

Figure 4<br />

Cyclic vegetation dynamics <strong>in</strong> a salt marsh after severe<br />

waterlogged conditions (after Beeft<strong>in</strong>k. 1979)


hierarchical position. Tn <strong>the</strong> egtuar<strong>in</strong>e situation <strong>the</strong> water regime is<br />

one of <strong>the</strong> met essential factors detemis<strong>in</strong>g processes <strong>in</strong> soil.<br />

gegstation and fa-. The relation between <strong>the</strong> average salt<br />

concentation and <strong>the</strong> distrlbotion of some vegetation types is a sood<br />

example wf this dom<strong>in</strong>ance (Big. 3).<br />

Ae saon ae great changes occur <strong>in</strong> <strong>the</strong> outer cmpartntents of <strong>the</strong> made1<br />

/by human <strong>in</strong>terference of o<strong>the</strong>r), this has impertaut consequences for<br />

<strong>the</strong> hierarchically lowar parts. Cholllges <strong>in</strong> <strong>the</strong> lower camgartments have<br />

Lesa cons+quenees on <strong>the</strong> system a5 a whule. Figure 4 (derived from<br />

Reftlnk, 1979) gzves a good exwle nf such a situation. In <strong>the</strong> wet<br />

autnmn of 1961 severe waterlogged conditions occurred on a higher salt<br />

marsh <strong>in</strong> <strong>the</strong> Grevd<strong>in</strong>gen estaary. This was <strong>the</strong> primclry cau6e for a<br />

die-bmk of <strong>the</strong> vevetation of Halimione pnztulacoides on that WSh. In<br />

<strong>the</strong> long run <strong>the</strong>re was, however, no chenge of <strong>the</strong> saltmarsh ecssyatem<br />

as a whole and after sonre years <strong>the</strong> orfgmal vegetation could recover.<br />

The erosion of a tidal flat or a salt marsh and <strong>the</strong> developmt of new<br />

onea elsewhere <strong>in</strong> <strong>the</strong> same tidal system are an exmple of <strong>the</strong> same<br />

e).clic dynaunica on a larger scale of space and tb.<br />

The con$truction af <strong>the</strong> DelCa Works resulted <strong>in</strong> quite different types<br />

of <strong>ecological</strong> dynamics. The water syetm a5 a whole changed t~tally and<br />

resulted <strong>in</strong> a cmplere new and irrevexsihle development of water and<br />

lad (Beeft<strong>in</strong>k. 1987). After <strong>the</strong> fidehtx~g of rhe dmh many of <strong>the</strong><br />

estuafkre plants and animals died and nerv species had to celonize <strong>the</strong><br />

disturbed ecobystems. Id Che beg<strong>in</strong>n<strong>in</strong>g <strong>the</strong> dam<strong>in</strong>ar<strong>in</strong>g species <strong>in</strong> <strong>the</strong><br />

vegetation changed from year tcr pear. Later on changes took place much<br />

more gradually. There were also marked differexices between habitats.<br />

The vegetation of <strong>the</strong> lowar salt mrshes died totally sith<strong>in</strong> two or<br />

three years. The higher salt marshes were well adapted 60 less frequent<br />

<strong>in</strong>undations and vegetation changed gradually after <strong>the</strong> disappearance of<br />

<strong>the</strong> tides. In tha reed marshes and willow woedlands of <strong>the</strong> brackish and<br />

fresh estuaries <strong>the</strong> same pattern occurred. Theae vegetattons actually<br />

did not die, btrt durtng some S to l@ years after damm<strong>in</strong>g <strong>the</strong>ir species<br />

composition and structure changed very mufh.


NUWBER OF BREEDING PAIRS<br />

70<br />

Fieure 5 Development of three breed<strong>in</strong>g bird populations on <strong>the</strong><br />

Hompelvoet, a newly created island <strong>in</strong> Lake Oreuel<strong>in</strong>gen.<br />

Crosses: Kentish Plover (Charadrius alexandr<strong>in</strong>us); triangles:<br />

Redsbank (Tr<strong>in</strong>ga totanus); circles: Willow Warbler (Phylloscopus<br />

trocNus). Data k<strong>in</strong>dly submitted hy 6.J. Slab,<br />

National FQrest Service <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands, Goes.<br />

HEAN SEA LEVR<br />

FRESH BRACKISH SALT<br />

Figure 6 Distribution of some vegetation types <strong>in</strong> relation to height and<br />

tidal flood<strong>in</strong>g before <strong>the</strong> construction of <strong>the</strong> <strong>Delta</strong> Works. The<br />

follow<strong>in</strong>g vegetation types are <strong>in</strong>dicated (Westhoff and Den Held,<br />

1969) :<br />

Fresh: a. Scirpus, b. Phragmites, c. Salicion alhae;<br />

Brackish: a. Scirpus. b. Phragmitas, c. grassland (Lolio-<br />

PotentFUIon):<br />

Sdt: a. Salicarnion, b. Spart<strong>in</strong>ion, c. Pucc<strong>in</strong>ellion,<br />

d. Armerion


Of course. tke environmental changes have not only <strong>in</strong>fluenced <strong>the</strong><br />

vegetatian but also <strong>the</strong> fauna. Figure 5 gives an idea of <strong>the</strong> dynamics<br />

of <strong>the</strong> breed<strong>in</strong>g bird populations on pne of <strong>the</strong> newly emergod islands <strong>in</strong><br />

Lake Grevel<strong>in</strong>gen. &er <strong>the</strong> constmction of <strong>the</strong> dam <strong>in</strong> <strong>the</strong><br />

Broursershaveuse Gat some 400 hectares of tidal flats and a wll salt<br />

marsh were exposed to <strong>the</strong> air and w<strong>in</strong>d. &specially <strong>the</strong> species of sandy<br />

beaches and pebble coasts (We <strong>the</strong> Kentish Plover) began to breed on<br />

<strong>the</strong> new land. The population of Bedshank, also a coastal bird, did not<br />

<strong>in</strong>crease before some vegetation was exist<strong>in</strong>g. airily because <strong>the</strong> h-<br />

needed this vegetation to hide <strong>the</strong>ir nests. At that time <strong>the</strong> species of<br />

bare beaches were alrea* deel<strong>in</strong>hlg. The fimt breed<strong>in</strong>g birds of shrlibs<br />

have colonized <strong>the</strong> island only recently and a common species like <strong>the</strong><br />

Villow Warbler is still <strong>in</strong>creas<strong>in</strong>g. Woodland species do not breed on<br />

<strong>the</strong> island, because vegetation structure has not yet been<br />

dfiferentiated enough and <strong>the</strong>re are no nestiag sites for <strong>the</strong>se birds.<br />

It will take at least some 50-1Wl years before <strong>the</strong> bird communities<br />

beg<strong>in</strong> to stabilfae.<br />

G-rally<br />

speak<strong>in</strong>g <strong>the</strong> foll4ng factors <strong>in</strong>fluence <strong>the</strong> developnent of<br />

vegetation and animal wildlLfe an <strong>the</strong> former dt marshes and tidal<br />

f late :<br />

* <strong>the</strong> <strong>in</strong>itial ecosystem present at <strong>the</strong> moment of dw constrnctiod;<br />

* processes of adaption ta <strong>the</strong> newly created situation;<br />

* mahagement of water and Land by m=.<br />

3.1 Initial ecosystems<br />

The newly developed ecosystems have <strong>the</strong>ir start<strong>in</strong>g po<strong>in</strong>t <strong>in</strong> <strong>the</strong> old<br />

estuadne waters. These Mtial ecosystems are strongly <strong>in</strong>flucn-d by<br />

<strong>the</strong> orig<strong>in</strong>s1 waterrepime. This Fs illustrated by <strong>the</strong> distribution of<br />

<strong>the</strong> vegetation series qf Figure l <strong>in</strong> relation to height and tidal<br />

floo6<strong>in</strong>g (see Fig. 6). p e vegetation types <strong>in</strong>asated hy an open<br />

rectangle died with<strong>in</strong> rwo or three years &ter embanlaaent was f<strong>in</strong>ished


and this resulted <strong>in</strong> an almost complete ba~e soil. The hatched<br />

vegetation types changed much more gradually, without dy<strong>in</strong>g off<br />

totally. After <strong>the</strong> enclesure <strong>in</strong> most areas %he water was pemnently<br />

fixed more or lee$ at mean sea-level (%L).<br />

The follow<strong>in</strong>g aifferences<br />

occuted. In <strong>the</strong> fresh and brackish tidal areas <strong>the</strong> oris<strong>in</strong>al marsh<br />

vegetation c m at a mu&<br />

MLW)<br />

lower level (on certa<strong>in</strong> places even below<br />

than <strong>in</strong> <strong>the</strong> sal<strong>in</strong>e systems. Coneequently a larger area of here<br />

soils eraerged after <strong>the</strong> completion af <strong>the</strong> dams <strong>in</strong> <strong>the</strong> ffaltwater systems<br />

<strong>in</strong> comparison to <strong>the</strong> upstream tidalwaters. This difference is enlarged<br />

bp <strong>the</strong> dy<strong>in</strong>g off 09 <strong>the</strong> lower saltmarsh species <strong>in</strong> <strong>the</strong> first years<br />

after <strong>the</strong> enclosure. Vegetation development on <strong>the</strong> former salt marshes<br />

and tide1 flats uas dom<strong>in</strong>ated by colonisation of <strong>the</strong> new habitets by<br />

mnual pionier species. On <strong>the</strong> contrary, <strong>in</strong> <strong>the</strong> fresh and brackish<br />

areas <strong>the</strong> new species (that had to <strong>in</strong>vade exist<strong>in</strong>g vegetatians) were<br />

m&dy tall peremial herbs and grasses, shrubs and trees.<br />

3.2 Processes abimie eavironntent<br />

After <strong>the</strong> welesure ~.f an estsarg a nlrmber of precesnes started<br />

thang<strong>in</strong>g ahiotic environment of <strong>the</strong> new tcrrestr-ial environments (e..g.<br />

A<br />

PERtOUTINB SOIL<br />

--<br />

B YllL WITH IMRRWE8BLE M W<br />

Figure 7<br />

Twa ma<strong>in</strong> groundwater regimes on <strong>the</strong> newly emerged land <strong>in</strong> <strong>the</strong><br />

former estnaries (after Drost and Visser, 1981)


w<strong>in</strong>d erasson, desaliuation, aeration, physical and chemical ripen<strong>in</strong>g<br />

and decalcification). The time scale of <strong>the</strong>se processed differs from<br />

some manths or years lw<strong>in</strong>d erosion) to tens or hundreds of years<br />

(decalcificetion). In <strong>the</strong> beg-<strong>in</strong>g t?e effects of <strong>the</strong>ae <strong>in</strong>dividual<br />

processes are quite clear. Wen <strong>the</strong> new ecosystems grow older it is<br />

gett<strong>in</strong>g more and mors difficult to separate <strong>the</strong>m from each o<strong>the</strong>r and<br />

from <strong>the</strong> <strong>in</strong>ternal aynamics of <strong>the</strong> develop<strong>in</strong>& ecosystems <strong>the</strong>irselves.<br />

Figure 7 (acbord<strong>in</strong>g to Drost and Visser. 19111) gives a pod fdea how<br />

<strong>the</strong> abiotic envixo~meut of different soil types behaves <strong>in</strong> relation €0<br />

desaUnation. On well percolat<strong>in</strong>g soils desal<strong>in</strong>ation goes vezy fa&.<br />

Mter some years <strong>the</strong>re is already a ra<strong>the</strong>z large freshwater body <strong>in</strong> <strong>the</strong><br />

soil. Glycophyloue hmbs and grasses can soon caloniee <strong>the</strong> bare sou<br />

and mrwal shrub and <strong>the</strong>n woodlmd deve,loplaent follows. CLay Layers <strong>in</strong><br />

<strong>the</strong> wail profile stagnate desal<strong>in</strong>ation and <strong>the</strong>n this process can take<br />

tens of years. In autumn and W<strong>in</strong>ter <strong>the</strong> sail is satiuaced fast and most<br />

of ttle ra<strong>in</strong> water will stagmac@ and ran off supetficially. Aere only<br />

<strong>the</strong> upper soil layers will have E freshwater body and this will<br />

evaporate cempletely <strong>in</strong> stmmer. In tthis type of habitat halophylous<br />

plant species dom<strong>in</strong>ate <strong>in</strong> <strong>the</strong> primary vegetation development. !Frees and<br />

shrubs can hardly colonize <strong>the</strong> vegetation giv<strong>in</strong>g it tbe character of<br />

open grassland for a long time.<br />

3.3 Management of water and land<br />

Uatex manasement is especially important on flat shores, where emaller<br />

or larger areas can be <strong>in</strong>mdated dur<strong>in</strong>g some time. This is of great<br />

importance for €he suraival and germ<strong>in</strong>ation oppnrtunitiea 4f certa<strong>in</strong><br />

plant species. A good exanple how this can <strong>in</strong>fluence <strong>the</strong> fauna is fouad<br />

n Lake Creuelmen. Aere <strong>the</strong> bird species of scarcely vegetated shell<br />

shores and beaches axe decl<strong>in</strong><strong>in</strong>g (e.g. Kentish Plover, see Fig. 5).<br />

bcaose ef cont<strong>in</strong>u<strong>in</strong>g vegetation development. Ffaybe <strong>the</strong>re is a possi-<br />

bility to ma<strong>in</strong>ta<strong>in</strong> a larger area of this type of breed<strong>in</strong>g habit& by<br />

rais<strong>in</strong>g <strong>the</strong> waterlevel OS <strong>the</strong> lake <strong>in</strong> autumn or w<strong>in</strong>ter time dur<strong>in</strong>g<br />

several weeks. Then a lareer part of <strong>the</strong> shore is <strong>in</strong>undated by sal<strong>in</strong>e<br />

water, slow<strong>in</strong>g down fur<strong>the</strong>r vegetation development.


In <strong>the</strong> terrestrial habitats it is of weat impartance how <strong>the</strong> nutrient<br />

cycles of <strong>the</strong> ecosystem and <strong>the</strong> structure of <strong>the</strong> vegetativn are<br />

<strong>in</strong>fluawed. The nutrient cycles detenatee grow<strong>in</strong>g and feed<strong>in</strong>g<br />

conditions for plant and animal species, whLle vegetation structure is<br />

of great iaqrortance for <strong>the</strong>ir survival. Rmtghly speak<strong>in</strong>g we can<br />

dist<strong>in</strong>guish three ways af nature managemeqt: spontaneous developdent.<br />

rcew<strong>in</strong>g and graz<strong>in</strong>g. Each of <strong>the</strong>se managerneat types has its om results<br />

and (f<strong>in</strong>ancial) costs. Sponfaneous development will lead to woodland<br />

ult<strong>in</strong>atelp, a l e mow<strong>in</strong>g keeps areas open and rich <strong>in</strong> herbs. Oraz<strong>in</strong>g is<br />

<strong>in</strong> between <strong>the</strong>se two types and <strong>the</strong> rcanlt depends on gra~<strong>in</strong>g <strong>in</strong>tensity.<br />

It is an attractive type of management to create a habitat with a<br />

~aried structure of grassland and shrubs <strong>in</strong> a semi-natural way. Graz<strong>in</strong>g<br />

anlmaLs l~ndigenrms herbivorous herds as well as domestic cattle) we<br />

large areas <strong>in</strong> traditihsl patterus. Some parts of <strong>the</strong> area are (year<br />

after year) more <strong>in</strong>tensively grazed than o<strong>the</strong>rs. In this way Faz<strong>in</strong>g<br />

can enlarge <strong>the</strong> differentiaties of <strong>the</strong> abiotic envirpmenc creat<strong>in</strong>g<br />

additional stimuli for mre diversity <strong>in</strong> develop<strong>in</strong>g ecosystems. In <strong>the</strong><br />

lens run it will not only result <strong>in</strong> grassland. Even for natural<br />

woodkd development grs<strong>in</strong>g (of course <strong>in</strong> very low densities) can be a<br />

good cyse of management.<br />

4 BALBNCE OF ECOSYSTEM DETFELBFXE4T UP TO BOW<br />

The fitst embankment of a large estuary <strong>in</strong> <strong>the</strong> South-West Ne<strong>the</strong>rlands<br />

tbok place some 30 years ago (Lake Veere, 1961). S<strong>in</strong>ce that time<br />

several othsr areas folloved. with difTerent abiotic enviroweuts and<br />

different types of water systeqts. As <strong>in</strong>dicated above ecosyste& i3evrlop-<br />

ment is still go<strong>in</strong>g on and eves <strong>in</strong> <strong>the</strong> oldeat aress it will take tens<br />

or even hunrtreda of years before <strong>the</strong> new t~rresrriai habitats will be<br />

stabilized. Notwithstand<strong>in</strong>g <strong>the</strong>se facts we ri1.l try to make up some<br />

balance fxom a p<strong>in</strong>e of view of nature conservativn and manaseoee.<br />

Firstly we wst natice that chere is a great loss of valuable (semi-)<br />

terresrrial habitats <strong>in</strong> <strong>the</strong> esttmfes of <strong>the</strong> South-West We<strong>the</strong>rlands as<br />

a consequaRce of <strong>the</strong> <strong>Delta</strong> Work$. (The lv,ags of aquatic ecosystems and<br />

tidsl flat6 is leet out of oonsideration.) After <strong>the</strong> enclosniuze of <strong>the</strong>


Fonner tirtal flats with saltmarsh vegetation<br />

Grazed £amer tidal flat Vith dense g~assland vegetation and small<br />

*uba


Former tidal flats with chang<strong>in</strong>g vegetation<br />

Craz<strong>in</strong>g as a tool for vegetation management


Grevel<strong>in</strong>gen. Lake Veere and Krammer-Volkerak, <strong>the</strong> area of salt marshes<br />

Fn <strong>the</strong> South-West Ne<strong>the</strong>rlands has been dwished and is at <strong>the</strong> moment<br />

no more than ca. 30% of that <strong>in</strong> 1990. If we Look at <strong>the</strong> area of higher<br />

salt marshes thi. decl<strong>in</strong>e is even more dramstical. Especially <strong>the</strong>se<br />

higher salt marshes are a valuable and rare type 05 ecosystem, with d<br />

number of endangered animal and plant species. For this reason kigh<br />

priority must be given to conserve <strong>the</strong> rema<strong>in</strong><strong>in</strong>g 5aSt marshes <strong>in</strong> <strong>the</strong><br />

Oosterschelde and Westerschelde. In <strong>the</strong> Oosterschelde <strong>the</strong> sediment<br />

balance <strong>in</strong>dicates that <strong>the</strong>re are hardly any perspecti~es for <strong>the</strong><br />

development of large new salt marshes. On <strong>the</strong> o<strong>the</strong>r hand <strong>the</strong> largest<br />

part of <strong>the</strong> rema<strong>in</strong><strong>in</strong>g saltmarsh area is formd <strong>in</strong> <strong>the</strong> eaptern part of<br />

<strong>the</strong> Westersdtelde (ca. 80%). Enviromnent is under great pressure here<br />

hecause of chemical pollutiw of water and soil (Bijlsma and Kuipers.<br />

1989) and <strong>the</strong> predicted eroaion as a consequence of <strong>the</strong> proposed<br />

enlargwnt of <strong>the</strong> shipway to Antwerp.<br />

However, <strong>the</strong>re are also a lot Of positive effects as a consequence of<br />

<strong>the</strong> works. In <strong>the</strong> first years after <strong>the</strong> r~mplation of <strong>the</strong> dams, <strong>in</strong> <strong>the</strong><br />

new habitats impostant populations of breed<strong>in</strong>g birds have been<br />

established, <strong>in</strong>clud<strong>in</strong>g several rare species. Many of <strong>the</strong>se were<br />

formerly quite connnoo, <strong>in</strong> our country on shores, <strong>in</strong> marshes or<br />

extensively used agricultural Land. They have decl<strong>in</strong>ed iII recent years<br />

because of drabage or more <strong>in</strong>teneive hu)aan use of <strong>the</strong>ir orig<strong>in</strong>al<br />

habitats. For. some species of terns and waders (e.g. Sandwich Tern.<br />

Little fern, Kentish Plover, Avo~et) <strong>the</strong> <strong>Delta</strong> area is now one of <strong>the</strong><br />

wst important breed<strong>in</strong>g grou&<br />

Eurape.<br />

<strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands or even <strong>in</strong> Western<br />

For w<strong>in</strong>ter<strong>in</strong>g buds <strong>the</strong> situation is quite swlar. Large numbers of<br />

herbivorous waterfowl like geese and ducks forage now on <strong>the</strong> grassland<br />

of <strong>the</strong> former tidl flats and salt mrshcs. The West-European<br />

population of <strong>the</strong> Barnacle Goose w<strong>in</strong>ters almost completely <strong>in</strong> <strong>the</strong><br />

Kefherlands and this species visits <strong>the</strong> grasslands along <strong>the</strong><br />

Har<strong>in</strong>gvliet s<strong>in</strong>ce long. However, its orig<strong>in</strong>al habitats strongly<br />

dim<strong>in</strong>ished here because of <strong>the</strong> public water works and <strong>the</strong> change of<br />

agricultural grassland <strong>in</strong> arable fields. Thanks to a nature management.


that chwged farnor reed mrshes and tidal flats fnto wet grasslands,<br />

<strong>the</strong> numbers of <strong>the</strong>se w<strong>in</strong>ter<strong>in</strong>g geese conld stabilize and even rise.<br />

In <strong>the</strong> new areas also important botanical values arid. The most<br />

strik<strong>in</strong>g example Is <strong>the</strong> developcent of: a wet dune-slack vegetation with<br />

rEre species like Parnassia pa<strong>in</strong>stris, Blackstonia gerfoliata and<br />

several species of orchids. This type of habitaf orig<strong>in</strong>ally occurred <strong>in</strong><br />

<strong>the</strong> lower parts of <strong>the</strong> coastal aunes. There it dieap~eated, however,<br />

almost totally because of <strong>the</strong> lower<strong>in</strong>g of <strong>the</strong> greundwator level.<br />

Especially on sandy soils with a stehle groundwater regime <strong>in</strong> <strong>the</strong> Lakes<br />

Be- and Grevel<strong>in</strong>gen hundreds of hectares of this particular<br />

vegetatipn type could develop and <strong>in</strong> <strong>the</strong> future probably also <strong>in</strong> <strong>the</strong><br />

Krammer-VolLerak.<br />

However, <strong>the</strong> new ereas are still <strong>in</strong> a dmamic state and <strong>the</strong> above-<br />

mestioned values mag be temposaq. The decllne of shote birds <strong>in</strong> <strong>the</strong><br />

Grevel<strong>in</strong>gen (Fig. 5) is a good exgmple M thSs. We also see that shrubs<br />

and trees beg<strong>in</strong> to caJoniee <strong>the</strong> dune-slack habitats and displace <strong>the</strong><br />

characteristic herbs. In a late* phase parts of <strong>the</strong> actual duna-slack<br />

enviro~nt will probably change because of decalcif4catiofi. In certa<strong>in</strong><br />

cases it is possible to stop or slow down natural succession by grazfng<br />

or mow<strong>in</strong>g, thua conserv<strong>in</strong>g certa<strong>in</strong> development stages by appropriate<br />

management methadv. However, we hme to realize that it ia not possible<br />

to keep <strong>the</strong> former estuar<strong>in</strong>e landscape <strong>in</strong> a young stage, because <strong>the</strong>re<br />

are ne cyclic dynamic processes to renew abiotic envimnment. In <strong>the</strong><br />

long run <strong>the</strong> ecosystems will grow to a more mature stage and this will<br />

<strong>in</strong>evitably lead to a decl<strong>in</strong>e of certa<strong>in</strong> species and <strong>the</strong> appearawe of<br />

o<strong>the</strong>rs, AL <strong>the</strong> moment it will be possible to keep certa<strong>in</strong> species by<br />

graz<strong>in</strong>g or mow<strong>in</strong>g Eor a certa<strong>in</strong> <strong>the</strong>. However, <strong>in</strong> <strong>the</strong> longer run <strong>the</strong>g<br />

will bisappeaz.<br />

Anyhow. it is qnite eLear that a graz<strong>in</strong>g management will lead te<br />

ecasystems totally different from those of spontaneous development or a<br />

w<strong>in</strong>g regime. And from that po<strong>in</strong>t of view <strong>the</strong> decision lies with <strong>the</strong><br />

etologists and <strong>the</strong> nature management: what type of nature do we wane on<br />

<strong>the</strong> new emerged land?


As mentioned above aa important question is wh~type of nature w want<br />

to &evelop. Do we wwt open easy grassy areas where geese can forage<br />

and waders can breed, or vast m?.rshy woods with breed<strong>in</strong>g colonies of<br />

rare and threatened birds like <strong>the</strong> Swonbill Bnd <strong>the</strong> Bigh<strong>the</strong>ron? D?<br />

maybe we prelex a mare patchy landscape with grassland vegetation<br />

alternat<strong>in</strong>g with Shrubs and aoadlmds, <strong>in</strong>habitated by threat&&<br />

<strong>in</strong>vertebrates, amphihia and reptiles. All <strong>the</strong>se types are possible <strong>in</strong><br />

large parts of <strong>the</strong> nw land. %at will be realized depends on t?ie<br />

choice how to manage nature. To make such choices <strong>the</strong> follow<strong>in</strong>g<br />

criteria can be used.<br />

Firstly <strong>the</strong>re are <strong>the</strong> potentialities of <strong>the</strong> area that may determ<strong>in</strong>e <strong>the</strong><br />

choke. It is good to poiat out several elements of this criterion,<br />

like:<br />

* The abiotic enviromental onditions, that may differ from place to<br />

place. On a salty soil, for <strong>in</strong>stance, it is ra<strong>the</strong>r easy to develop<br />

a grassland vegetation, but a woodland will nor grow <strong>the</strong>re hefare<br />

<strong>the</strong> soil is desal<strong>in</strong>ated to a depth of several metres.<br />

* New plant and animal species will have to ~oloaize <strong>the</strong> new ateas.<br />

?herefore <strong>the</strong> proportion of <strong>the</strong> area, its position to <strong>the</strong> acraal<br />

distribution of <strong>the</strong> species ~imed at and <strong>the</strong> presence of suitable<br />

migrat<strong>in</strong>g zones are very Impe~tant.<br />

* Ecosystem& must not only be realisable. They must also be<br />

ma<strong>in</strong>ta<strong>in</strong>able, especially on <strong>the</strong> long m.<br />

Ano<strong>the</strong>r important criterion to formulate <strong>the</strong> goal for ecosystem<br />

development is <strong>the</strong> significence of <strong>the</strong> nev type of nature for nature<br />

conservation. It wfll be clear that <strong>the</strong> highest priority must be given<br />

to species and commities that are threatened on an <strong>in</strong>ternatbnal<br />

scs%e.<br />

A f<strong>in</strong>e1 criterion ia <strong>the</strong> technical and f<strong>in</strong>ancial ability to realize <strong>the</strong><br />

management that is required.


6 SPATIAL VXW<br />

If we tmslate <strong>the</strong> th<strong>in</strong>gs rienti~ned ab~ve spatially <strong>the</strong> Eollowfng<br />

pattern reeult-s (Fig. 8) .<br />

Figure 8 Priorities for futural ecosystem development <strong>in</strong> <strong>the</strong> (former)<br />

estuaries of <strong>the</strong> South-West Ne<strong>the</strong>rlands. Open circles: salt<br />

marshes; hatched circles: former lnarshes and tidal flats to<br />

develop as open landscapes; black circles: <strong>the</strong> same, but to<br />

develop as woody landscapes; crosses: agricultural areas that<br />

can he set aside for ecosystem development<br />

Firstly <strong>the</strong>re is a strong reduction of <strong>the</strong> salmarsh area. On <strong>the</strong> one<br />

hand <strong>the</strong> greater part of <strong>the</strong> rema<strong>in</strong><strong>in</strong>g salt marshes <strong>in</strong> <strong>the</strong><br />

Westerschelde are under great mvironmental pressure and on <strong>the</strong> o<strong>the</strong>r<br />

<strong>the</strong>re are hardly any perspectives to develop new marshes <strong>in</strong> <strong>the</strong><br />

relatively clean Oosterschelde. This loss can partially he<br />

counterbalanced by sett<strong>in</strong>g aside parts of some wet agriculture areas <strong>in</strong><br />

<strong>the</strong> polders along <strong>the</strong> Oosterschelde. In those areas, with a lot of<br />

saltwater seepage, <strong>the</strong>re are very good conditions to create <strong>in</strong>land salt<br />

marshes and brackish grasslands or even to abandon polderland to tidal<br />

<strong>in</strong>fluence. Especially <strong>the</strong> plants and animals of <strong>the</strong> higher salt marshes<br />

can f<strong>in</strong>d a habitat here.


A seaond important perspective for ~cosystr?m development is lg<strong>in</strong>g<br />

outside Che new dams .tn <strong>the</strong> North Sea, <strong>the</strong> so &led<br />

"Vwrdelta". Eere<br />

are on several places good possibUities to aevelop dvne aateas with<br />

gradients of fresh dme slacks to salt marshes and breed<strong>in</strong>g place6 fox<br />

shore birds.<br />

Mnally <strong>the</strong>re are <strong>the</strong> new terrestrial habitats on <strong>the</strong> Parmer tidal<br />

flats and salt marshes <strong>in</strong> <strong>the</strong> closed estuaries. In <strong>the</strong> estuaries closed<br />

first, like Lake Veere, Lake Grevell%en and liar<strong>in</strong>gvliet, large<br />

grasslands ate <strong>the</strong> dom<strong>in</strong>at<strong>in</strong>g type of ecosystem. Prm an <strong>in</strong>ternational<br />

poLat of view spontaneous woodlands and patchy environnents with shrubs<br />

can also contribute very much to <strong>the</strong> conservation of endwered species<br />

and cmunities. For this reams it is necessary to rnake room for shrub<br />

and woodland develepmnt %a <strong>the</strong> wre ~ecently closed estuaries like <strong>the</strong><br />

WrIcieearstsftieer aad <strong>the</strong> Krmer-Volkerak.<br />

~n conclnsion I wonld lika to stress <strong>the</strong> differences between ttie<br />

develsp<strong>in</strong>g ecosptems of <strong>the</strong> famr sslt marhhes and tidal Eliits and<br />

<strong>the</strong> nature reserves on <strong>the</strong> "old land".<br />

Firstly <strong>the</strong>re is a gmat df3ference <strong>in</strong> size, Mast nature reserves of<br />

<strong>the</strong> pld land ar*, <strong>in</strong> general, muoh smaller than <strong>the</strong> Gees <strong>in</strong> <strong>the</strong> former<br />

eswanies. In <strong>the</strong> Nte<strong>the</strong>rlanas <strong>the</strong>re are very Fw nature reserves with a<br />

size ef 500 to L50D hectares with undl.stwM sradients <strong>in</strong> height ad a<br />

eatural groundwater regime. This gfm special perspectives <strong>in</strong> <strong>the</strong><br />

former wstuaries for those epecies and ecosystems wbzrh depend m<br />

large-sale prsc6eses and lwk of disturhitnee. P%$ LbZs readqn<br />

splitt<strong>in</strong>g up ~f B@ new areas mst be prevented and nature ~wia~w~ent<br />

must rrg to cmso~idaze <strong>the</strong>ir large-scale character.<br />

s.eehdljr we muse mylise that m <strong>the</strong> ffimr estuatiee W* um deaelop5ng<br />

axlsritirig snes.<br />

new -sal&, dhila on. <strong>the</strong> $&d we &re W~\rfn.$<br />

Ilecauw of <strong>the</strong> non-cymc dynamri&s ern <strong>the</strong> ecosystem* dn tbe famsr<br />

tiaal flaTs and salt m;prslies., eoMervation 62 rhe aettial flora Bnd


favna often is <strong>the</strong> wrrmg policy, whatever rare <strong>the</strong> species may be.<br />

It is more important to get a good idea af <strong>the</strong> (abiotic) processes <strong>in</strong><br />

aad <strong>the</strong> ecologioal potenzidries of <strong>the</strong> atea. 0x1 <strong>the</strong> basLs of this<br />

knowledge we must formulate a management plan with a goal for ecosystem<br />

development a~ <strong>the</strong> long run. The long-term goal must be used to<br />

evaluate what short-term measurements can be taken. For <strong>in</strong>stmce, with<br />

<strong>the</strong> Long-term goal to st5uslate woodland and shrub develbpment it will<br />

be difficult to accept short-term mowiq to canserve breed<strong>in</strong>g habitats<br />

for rare shore birds. Mren <strong>the</strong> lerrg-term goal is <strong>the</strong> development of<br />

grassland ewsysfems a mow<strong>in</strong>g regime dur<strong>in</strong>g some gears may be quite<br />

acceptable, particularly when endangered species are <strong>in</strong>volved. Even <strong>in</strong><br />

rhe last case, however, it is possible that <strong>the</strong> breed<strong>in</strong>g habitat gets<br />

more and more unattractive.<br />

The author is ~uch <strong>in</strong>debted to J, van Baalen, C.<br />

Bissel<strong>in</strong>g,<br />

A.R.L. Huiskes, D.J. de JMg and espeeiallx W.@. Beeft<strong>in</strong>k for valuable<br />

tornenta on earlier dr&ts of <strong>the</strong> manuscript.<br />

J. Visser (Bi>kewaterstaat, Directorate Flevoland) and G.J. Slab<br />

fk'atiofuil<br />

Forest Service <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands) k<strong>in</strong>dly provided some data.<br />

BEFERENCES<br />

BAKKFIR, T.W.M., RLIJN. J.A. and ZAUELHUFB. F. J. VAN, 1981. Blederlandse<br />

kustdu<strong>in</strong>en; landschapsecologie. Pudoc. Wagen<strong>in</strong>gcn. 144 p.<br />

BEEPTLNK, W.G., 1979. The structure of aalt snarsh cornunitlee <strong>in</strong><br />

relation to environmental disturbances. Tn: R.L. Jefferies and<br />

A.J. bavy (ed.). Ecologisal prowasses <strong>in</strong> coasCal eavirenmeats,<br />

p. 77-93. Blackwell Scientific Publications. O~ford.<br />

BEEFTIEIR. W.@. 1987. Vegetation responses to changes 19 tidal <strong>in</strong>undation<br />

of salc marshas. In: 3. van Andel et al. (eds.), Disturbance <strong>in</strong><br />

gr@Salan&, p, 37-11?. Dr W. Juolt Fublishers, Dordrecht.


BEEEXNX, W.D.<br />

and 80ZBf&. J. L9M. The nature and funceion<strong>in</strong>g of salt<br />

marshes. In: W. Salomaes. B.L. Bayne, E.K. Dun~sma and U. Btirstner<br />

(&S.). Pollution of <strong>the</strong> North Sea, p. 59-87.<br />

BerliTniNev York.<br />

BIJLSPIb. L. and EVIPW. J.W.M.,<br />

<strong>the</strong> Delca <strong>Waters</strong>. This volume.<br />

Spz<strong>in</strong>ger Vedag,<br />

1989. River weter and <strong>the</strong> quality of<br />

DBQST. A.3. aad VLSSEK, J.. 1981. Bet' grandwaterregime als<br />

structererende factor voor de begroei<strong>in</strong>g <strong>in</strong> afgealoten egtuaria<br />

het een toepa~s<strong>in</strong>g <strong>in</strong> het GreveL<strong>in</strong>$eh%&km. In: M<strong>in</strong>isterie van<br />

WrkeeE eh <strong>Waters</strong>caat, Vijftig faar andsraeek, p. 201-216.<br />

Lelystad.<br />

MEIRE, P.M. SFYS. J., YSEBAERT, T., BEEiICElh, P.L. &ld BAPTIST, B.J.N.,<br />

1989. A Bhang<strong>in</strong>g <strong>Delta</strong>: effects of large eoagtal eq<strong>in</strong>eer<strong>in</strong>g<br />

works an feed<strong>in</strong>g eaclogical <strong>relations</strong>hips as illuatra%ed bp<br />

waterbirds. This volume.<br />

WZSTftO@, V. and RELD, A.J. DEX, 1969. Plantengemeenschappcn<br />

,<strong>in</strong> Nedeslwd. Thieme, hrtphen, 314 p.


A CMANGING DEtTdl; EFFECTS OF L&E<br />

COASTAL ENGINF5RING WOW ON FEEDB'G<br />

ECOLOGICAL RELATIONSKIPS A5 ILLUSTRATED BY WAlXlWIBDS<br />

P.M.<br />

Meire, 3. Seys. T. YsebaerC. P.L. Mek<strong>in</strong>ger and H,~.hl. Baptist<br />

In <strong>the</strong> <strong>Delta</strong> area of <strong>the</strong> South-Wwt Ne<strong>the</strong>rlands <strong>the</strong> majrrrity of estuar<strong>in</strong>e<br />

eaoagstems has disappeared due to large coastal engiaeeriag works,<br />

creat<strong>in</strong>g new artificial sal<strong>in</strong>e Emd Freshwater lakes. Thege<br />

hydrodynamical changes had enormous consequences for plants and<br />

animals. In this paper <strong>the</strong> changes <strong>in</strong> <strong>the</strong> avifauita are desccikd.<br />

The Poordelta is charrtcterized by a La~ge number of div<strong>in</strong>g ducks and<br />

gulls. In comparison with <strong>the</strong> tidal bas<strong>in</strong>s, where <strong>the</strong> benthivormus<br />

species (ma<strong>in</strong>ly waders) dom<strong>in</strong>ate, numbers of h~rbiubres and piscivoTes<br />

<strong>in</strong>creased snbstantially <strong>in</strong> <strong>the</strong> new lakes, while waders near17<br />

dtaappeared. Herbivores dom<strong>in</strong>ate <strong>the</strong> avLfaona of <strong>the</strong> lakea. This<br />

differentiation is even more obvious <strong>in</strong> <strong>the</strong> distribution of <strong>in</strong>dividual<br />

species, s<strong>in</strong>ce same species prefer fresh over sal<strong>in</strong>e conditions and<br />

vice versa, In order to understand <strong>the</strong> observed distribution patterns,<br />

<strong>the</strong> densities of different bird grows were compared with estimates of<br />

<strong>the</strong> available food. In <strong>the</strong> tidal azeas and <strong>the</strong> sal<strong>in</strong>e lakes a clear<br />

relation beween piscivore bird density and D~biid density (<strong>the</strong>ir ma<strong>in</strong><br />

grey species) was cbserved. BLeo wader densities <strong>in</strong> <strong>the</strong> Cidal bas<strong>in</strong>s<br />

*ere clearly related to <strong>the</strong>ir food supply. Densities of herbivores are<br />

comparable between various basies. Thetr food saurce is very variable<br />

and hence impossible to estimate. The distribution a£ div*g<br />

ducks.<br />

feed<strong>in</strong>g a$Iy on macrobenthos. is vety puzzl<strong>in</strong>g and .seems not at all<br />

related to food supply. This <strong>in</strong>dicates factcrs o<strong>the</strong>r thaa food supply


are determ<strong>in</strong><strong>in</strong>g <strong>the</strong> dfstrlbution af birds <strong>in</strong> che <strong>Delta</strong> r2s well. NeM to<br />

ecolo@cal factors mch es ppulatiob. size, arlgracian partem and diet<br />

selecriob. human arrivities affect bir&i, often negatimely, <strong>in</strong> a<br />

varietg of nays. Disttubailce, poLlution artd habitat loss are Lnnoediate<br />

threats. Several tomagament options are available and discussed <strong>in</strong><br />

Drder Ca <strong>in</strong>pmve <strong>the</strong> acologlcal cwditions.<br />

Gver Ehe l46t tws deeaaes <strong>the</strong> wealled <strong>Delta</strong> ,a-<br />

?n fhe asu~hwsrern<br />

part of <strong>the</strong> Ne<strong>the</strong>rlands has changed profgunLUy. 14 this area $he rivers<br />

~Wn. W and Sehdde £lea <strong>in</strong>eo B& sea thrangh e cosplelt s.p%em of<br />

estuaries.. Is respanwe to <strong>the</strong> disastms etcrro £l@od of 1953, <strong>in</strong> whim<br />

.aaSut l:&O.O people were killed, as BBlbfti~als plan @>E aalm@<br />

up all ~ht<br />

me e$tcr&i~e$ was deedoped. In 1-967 <strong>the</strong> &.xec&ion of this plan,<br />

&Ithod& @rptte8 id <strong>the</strong> b&Se<br />

Df tHe yeais, s s mleted. ThLs<br />

~ ~ u h tn e d ~profalrnd chaages kn thil eelbgieal relatims, as lilrge<br />

't:idal .&reds di&p$ear@d and ~ e habitatir, w such as stagnant sal<strong>in</strong>e wd<br />

bi&.kish lekes, were cr-ed.<br />

5ie.c~ d$.scxibieg all <strong>the</strong>se eeolsggtcal<br />

chrtng*~ is fmpossible. In $his paper W@ shall reetrict eu~selves to<br />

descLlibe tibw tha oeeu.s.r?nce and d~i.@%ribation o* birds wer zhe<br />

aiffereat bas<strong>in</strong>9 Changed and xe isdieate reia%imxv with food suppigi and<br />

otber faceors.. W.@@, <strong>the</strong> area is? very imparranr for btsds apt is^,<br />

et al, 198&; Saeijs a~d Baptigt, 1~91771 d., as <strong>the</strong> gentgal pwblle is<br />

sepsAtive tg birds, <strong>the</strong>7 haye p.byzld a relatfvely ~ortanc role <strong>in</strong><br />

deci.s:i@ndiug (ens. <strong>in</strong> eke disewasian sht at spen or closed<br />

b,mte~sBhel@e: d~riqg <strong>the</strong> Uo6sre-s #f <strong>the</strong> Philips- and OeatettBni; <strong>in</strong><br />

tbe eurrent dbcusriori abwt rhe &its to be @et or reeteatilbn <strong>in</strong><br />

Oasfemchelde erc.l.<br />

Xn <strong>the</strong> fiei.wt part of thfs papixr ttie Wbitati <strong>in</strong> <strong>the</strong> De'lyta area<br />

and <strong>the</strong> ohsewed chaQgesia tht?. occnrt-ence ef waferbird% are descritred.<br />

In <strong>the</strong>: saEBnil p&<br />

some fwtoes <strong>in</strong>flmenc<strong>in</strong>g tiiis obse.md distTibutan.<br />

be<strong>in</strong>$ Toad BUatLability and ~nat?Xp btber fac&ors as migration pattwns.<br />

pdpwlatton bize and thlaran fiite&ereuce are Wyxed.


The preseat knarledge of birds <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area and <strong>the</strong> data presented<br />

<strong>in</strong> this paper result from <strong>the</strong> wtrrk of many people. Eluch is due to<br />

Rijkswaterstaat, Tidal <strong>Waters</strong> Division (<strong>the</strong> f~mer <strong>Delta</strong> Department)<br />

which sponsored a project <strong>in</strong> which Riikswaterataat (Hen!+<br />

Baptist,<br />

Eris Narceijn and Peter Xe<strong>in</strong>iager) carried out <strong>the</strong> monthly counts and<br />

breeang bird surveys, <strong>the</strong> <strong>Delta</strong> Institute for Eydrobiplogical<br />

Research. Yerseke (Xob Lambeck and eolleagnea) which started a r<strong>in</strong>g<strong>in</strong>g<br />

pragramme 19 co-operation With Eijkswaterstaae, end <strong>the</strong> Uaiversicg of<br />

Gent which stuared same aspects of <strong>the</strong> feed<strong>in</strong>g ecohgy of waders<br />

(Patzick mire, Jan Seys, Johan Stuair. Fred Tesk and Tom Ysebaert).<br />

2 DEGCRDTION OX THE AREA<br />

As <strong>the</strong> <strong>ecological</strong> conditions are so different between <strong>the</strong> basizis and<br />

because <strong>the</strong>y have changed oonsiderably, a brief description of <strong>the</strong><br />

<strong>Delta</strong> area (Rig. 1) is even. More details can be found elsedere <strong>in</strong><br />

NETHERLANDS<br />

Pigure 1 !4ap lapof<br />

has<strong>in</strong>s<br />

<strong>the</strong> <strong>Delta</strong> area with <strong>the</strong> location of <strong>the</strong> different


this volume or <strong>in</strong> Duutsaa, et aL, 1982. The situation is descriBed up<br />

to 1984 s<strong>in</strong>ce <strong>the</strong> data on birds presented <strong>in</strong> thia paper are restricted<br />

to <strong>the</strong> period 1976-1984.<br />

The major physical and chemical characteristics of <strong>the</strong> afferent bas<strong>in</strong>s<br />

are given <strong>in</strong> Table 1. For each OS <strong>the</strong> tidal areas, <strong>the</strong> surface of<br />

salt marshes, tidal flats, tidal waters (<strong>the</strong> area permanently covered<br />

by water) and adjacent wetlands (creeks, "<strong>in</strong>lagen" and grasslands which<br />

are used by birds ei<strong>the</strong>r as rest<strong>in</strong>g or as additivnal feediqg sites) is<br />

given. For tbe lakes <strong>the</strong> surface of deep water ( > 1.5 m), @hallow<br />

wager ( 1.5 m) and sbwes is given. Shores are <strong>the</strong> very shallow areas<br />

( F 0.2 m) of <strong>the</strong> lake of <strong>the</strong> majority of <strong>the</strong> areas perraanently exp~sed<br />

after <strong>the</strong> fomatlon of <strong>the</strong> lake and now used by weterbirds<br />

Kagrieultural land, nature reserve etc.) as well as <strong>the</strong> adjacent<br />

wetlands.<br />

The Voordelta is that part of <strong>the</strong> North Sea just off <strong>the</strong> <strong>Delta</strong> area. It<br />

consists bf a system of chwnels and shallow areas. Sal<strong>in</strong>try atrd<br />

turbidity are high. The sandy beaches are subject to hem wave action<br />

and su£fer from a very high ~ecreation pressure. More details of thia<br />

area and <strong>the</strong> changes occurr<strong>in</strong>g here ate described by Mulder, 1989. The<br />

Westerschelde is <strong>the</strong> only rema*n<strong>in</strong>g true estuary <strong>in</strong> <strong>the</strong> <strong>Delta</strong>. The<br />

freshwater <strong>in</strong>put frqm <strong>the</strong> river Schelde is small (on average 100<br />

m3/sec), hence <strong>the</strong> braokish part is limited to <strong>the</strong> area beMwn<br />

Ancwerpen and Hansweert. From <strong>the</strong> mouth tmards Antwerpen a gradient of<br />

decreas<strong>in</strong>g sal<strong>in</strong>ity, oxygen and transparency. and of <strong>in</strong>ereas<strong>in</strong>g<br />

suspended meter and nutrients is found (Humel, et al, 19881. Large<br />

mid- and sandflats occur all over <strong>the</strong> eatuary. "Bet Verdronken Land van<br />

Saeft<strong>in</strong>ghe". <strong>in</strong> <strong>the</strong> brackish part BE <strong>the</strong> estuary, i5 <strong>the</strong> largest salt<br />

marsh (8250 ha) of <strong>the</strong> whole <strong>Delta</strong> area. The esnurry is characterized<br />

by a large anthropogenic stress due to discharges of <strong>in</strong>organic and<br />

organic eontamfnants, mfnly by <strong>the</strong> river Sahel.de, but alsa from othar<br />

effluenrs slew <strong>the</strong> Westerschelde itself, and due to <strong>in</strong>tensive dredg<strong>in</strong>g<br />

activities for shipp<strong>in</strong>g. In <strong>the</strong> Oesrerschelde rhe <strong>in</strong>put Q£ fresh water<br />

is so small, that <strong>the</strong> area is better characterized as a sea arm than as<br />

an estuary. Sal<strong>in</strong>ity is high and constant; turbidity, concearrations of<br />

nutrieets and pollutants are low. Before <strong>the</strong> constructioo of <strong>the</strong>


Table 1 Some important physical and chemical characteristics of <strong>the</strong><br />

different be<strong>in</strong>s <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area. Voordelta (W). Mammer-<br />

Volkerak (m). Oosterschelde (OS), Westerschelde (WS),<br />

Orevel<strong>in</strong>gen (W), Veerse Meer (W). Har<strong>in</strong>gvliet (W).<br />

Eollands Diep (W). Bieshosch (BB). (' VM tidal range is<br />

difference between w<strong>in</strong>ter and summer level.)<br />

VaLkerak sluices, <strong>the</strong> Oosterschelde had a much more estuar<strong>in</strong>e<br />

character. TBe relatively Eew and small d t 81a+ahe8 are restricted to<br />

<strong>the</strong> eaatern part, whereas extensive tidal flats occur all aver <strong>the</strong><br />

estoav. Tbs nornleastern branch of <strong>the</strong> estualy (Keeten, Mastgat,<br />

Zijpe) cont<strong>in</strong>ues as <strong>the</strong> Hrrrrmmer-Wolkerak. The freshwater <strong>in</strong>put here was<br />

regulated by <strong>the</strong> Volkerak sluices at about 50 m9/s. In both<br />

Oosterschelde and Krammer-Volkerak <strong>the</strong>re is d very <strong>in</strong>tense mussel<br />

culture. Although most of <strong>the</strong> musselbeds occur snhlitoral, <strong>the</strong><br />

<strong>in</strong>tertidal ones are extremely important for hirde. The Greval<strong>in</strong>gen Weer<br />

was created <strong>in</strong> 1971 after <strong>the</strong> closure of <strong>the</strong> Brouwersdam and is a<br />

sal<strong>in</strong>e lake. Water ephange with <strong>the</strong> North Sea was re-established <strong>in</strong><br />

1978 when a sluice <strong>in</strong> <strong>the</strong> Brouwersdam becae operational and an


artificial waterflow was created after <strong>the</strong> eonstruction of a sluice itl<br />

<strong>the</strong> GreveUagendaw <strong>in</strong> 1985. This had profound ei5ecee on wa.arerqsalitp<br />

(Bann<strong>in</strong>k, et al. 1986). Large musselbeds and extensive fields of<br />

Eelgrass (Zostera marb) occvr <strong>in</strong> €he Lake. The Veerse Meer was<br />

created <strong>in</strong> 1961 after <strong>the</strong> closure of <strong>the</strong> Veerse Gat Dam and <strong>the</strong><br />

Zandkreelrdam. To imptooe trater dra<strong>in</strong>age frnm <strong>the</strong> surround<strong>in</strong>g poldezs<br />

<strong>the</strong> warerlevel is lowered about 70 cm Yn w<strong>in</strong>ter and raised aga<strong>in</strong> <strong>in</strong><br />

spr<strong>in</strong>s with water frbm tbe OosterseheLde. This managemt reaulted <strong>in</strong> a<br />

bnackish, wy errtf~phic lake- As a consequence searreeds. especially<br />

UWa sp., are very common and <strong>in</strong> <strong>the</strong> deeper parts of <strong>the</strong> lake qnoxic<br />

eonaitims prevail dur<strong>in</strong>g most of <strong>the</strong> year (due to stratifieation). Be<br />

Ear<strong>in</strong>gvliet, formerly a typical estuar<strong>in</strong>e area, and <strong>the</strong> Bollands D+ep<br />

and Biesbosch, formerlg freshwater tidal areas, became freshwater lakes<br />

rsith every small tidal <strong>in</strong>fluence (abmut 20 cm) after <strong>the</strong> cpprrtructiou<br />

of <strong>the</strong> Valkerakdm <strong>in</strong> 1970 and <strong>the</strong> Bar<strong>in</strong>gvUetdam fn 1971. These basttls<br />

are important for <strong>the</strong> diseharge of <strong>the</strong> rivers Rijn and Maas.<br />

Fluctuations of <strong>the</strong> WrtterleveL are accord<strong>in</strong>&ly related to <strong>the</strong> river<br />

discharge. The reduction of current velocities after <strong>the</strong> closure<br />

resadred <strong>in</strong> a very high sedWn


The monthly bird-counts <strong>in</strong> <strong>the</strong> whole <strong>Delta</strong> area between 1976 and 1986<br />

have been summarized <strong>in</strong> PleLn<strong>in</strong>ger, et al, 1984. 1985; Me<strong>in</strong><strong>in</strong>ger asd Van<br />

Haperen, 1988, and Baptist and ~ ~ g e1989. r , The average number per<br />

species per month pez bas<strong>in</strong> was calculated asd used <strong>in</strong> fur<strong>the</strong>r<br />

wal~sis. The total number is <strong>the</strong> sum of <strong>the</strong>se average rnofitbly cows<br />

of each spedes <strong>in</strong> <strong>the</strong> period 1976-1984. It is <strong>the</strong> best measure of bird<br />

use of w area siace it ie not biased by seasonal patterns.<br />

In rrlnter up to 700 000 waterbirde cm be present <strong>in</strong> <strong>the</strong> Belta area.<br />

Much maller numbers Cccur <strong>in</strong> summet @ig. 2). Approaimately 80 species<br />

MONTH<br />

Figure 2 Pattern ~f occurrence of waterbirde <strong>in</strong> Khe <strong>Delta</strong> area. The<br />

average monthly totals of <strong>the</strong> period 1976-1984 are given.<br />

(Black, waders; hatched, ducks; wbtte, e<strong>the</strong>r wacerbirda)


of waterbirds occur regulsrly. The wst important groups are ducks,<br />

waders, geese, gulls and tern; less abundant are grebes, cormorants<br />

etc. For all <strong>the</strong>se bim3 species, occurr<strong>in</strong>g regdarly, <strong>the</strong> <strong>Delta</strong> area<br />

has a very important funetion <strong>in</strong> several stages of <strong>the</strong>ir life cycles.<br />

Figure 3 Map W£<br />

<strong>the</strong> World, show<strong>in</strong>g <strong>the</strong> major migration routes of birds<br />

occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area. (Horizontal hatch<strong>in</strong>g: major<br />

fptertidal areas; vertical hatch<strong>in</strong>s: breed<strong>in</strong>g a d w<strong>in</strong>ter<strong>in</strong>g<br />

range qf birds us<strong>in</strong>g <strong>the</strong> <strong>Delta</strong> area)<br />

Figure 3 suomlari~qs Chs mig<strong>in</strong>s and dest<strong>in</strong>ations of birds occurrim <strong>in</strong><br />

<strong>the</strong> <strong>Delta</strong>. In summer important numbers of breed<strong>in</strong>g bads a£ several<br />

speeies are present (Me<strong>in</strong>iqger, 1986). After <strong>the</strong> breed<strong>in</strong>g season most<br />

of <strong>the</strong>se birds migrAte south, some to tPle we6.t coasts of Afrioa, lJfrile<br />

o<strong>the</strong>r speties are more or less resident. Birds breed<strong>in</strong>g <strong>in</strong> <strong>the</strong> .boreal.<br />

Subatetic and arctic zone of Europe, Asia. Greenland and North America<br />

use <strong>the</strong> <strong>Delta</strong> ei<strong>the</strong>r as B refuell<strong>in</strong>g site on migration between <strong>the</strong><br />

breed<strong>in</strong>g areas and <strong>the</strong> w<strong>in</strong>ter<strong>in</strong>g grounds [<strong>in</strong> spr<strong>in</strong>g and autumn), or as<br />

a w<strong>in</strong>ter<strong>in</strong>g site. Many species also moult <strong>in</strong> che heea. All bhese<br />

species have <strong>in</strong> common a large energy denand a d are hence dependent on<br />

an abundant food supply md low levels of disturbance. Their wcurrence<br />

show that <strong>the</strong> <strong>Delta</strong> area acts as a turntable <strong>in</strong> large scale movements


of birds and this: immediately stresses <strong>the</strong> <strong>in</strong>ternatianal importance M<br />

<strong>the</strong> <strong>Delta</strong>. Criteria have been agreed upon <strong>in</strong>tsrnatiooally to &press<br />

<strong>the</strong> importance of a wetland area CSzijj, 1972): if more than 1% of a<br />

population (ei<strong>the</strong>r 20 000 waders or 10 000 ducks) r-ularly occurs, <strong>the</strong><br />

area is considered to be of <strong>in</strong>ternational importance. In <strong>the</strong> <strong>Delta</strong> area<br />

<strong>the</strong> numbers of /+l species exceed <strong>the</strong>se criteria.<br />

Figure 4 Proportion of <strong>the</strong> tetal number of waterbirda <strong>in</strong> <strong>the</strong> <strong>Delta</strong><br />

occurr<strong>in</strong>g <strong>in</strong> each of <strong>the</strong> bas<strong>in</strong>s. (Vmordelta (M);<br />

Westerschelde (WS); Oasterschelde (OS) ; Krammer-Volkerak (KV) ;<br />

Grevel<strong>in</strong>gen Meer (GM) ; Veerse Meer (W); Har<strong>in</strong>gvliet (HV);<br />

Bollands Diep (BD) ; Biesboseh (BB))<br />

The bir& are not evenly spread over <strong>the</strong> whole <strong>Delta</strong> area. In Figure 4<br />

<strong>the</strong> relative importance of each bas<strong>in</strong> is given (expressed ss <strong>the</strong><br />

percentage <strong>the</strong> total number of birds <strong>in</strong> each bas<strong>in</strong> represent$ of <strong>the</strong><br />

ove~all total number <strong>in</strong> <strong>the</strong> <strong>Delta</strong>). The oatstand<strong>in</strong>g importance of <strong>the</strong><br />

Ooster- and Westerschelde is very clear. With less than 50% af <strong>the</strong><br />

total vetland area <strong>the</strong>y accmmodate 67% ef <strong>the</strong> birds of Khe whole <strong>Delta</strong><br />

area. KQV this distribution is related to rood supply will be analyzed<br />

<strong>in</strong> <strong>the</strong> fallow<strong>in</strong>g bections.


. DISTRIBUXIOBI OF WATEJBIRoS OVER TEE DIFFEREMT BASINS<br />

RELATIOIIS WITK THE FQOD SUEPLY<br />

Before relat<strong>in</strong>g <strong>the</strong> occurrence of birds to <strong>the</strong> distribution of <strong>the</strong>ir<br />

food it is necessalry to describe <strong>the</strong> position of <strong>the</strong> birds <strong>in</strong> <strong>the</strong><br />

estuar<strong>in</strong>e or lake ecosystems. Weretore a simplified model of <strong>the</strong><br />

energy fXmes <strong>in</strong> <strong>the</strong> different bas<strong>in</strong>s is giuen <strong>in</strong> Figure 5.<br />

Figure 5<br />

Schwatic represeatation of <strong>the</strong> majar l<strong>in</strong>ks <strong>in</strong> <strong>the</strong> foed veh<br />

<strong>in</strong> <strong>the</strong> bas<strong>in</strong>s of tke <strong>Delta</strong> area<br />

flurrients are used by phytoplankton, mi~rophytobenthos and macrwalgae.<br />

The latwr, toge<strong>the</strong>r with saltmash plants, <strong>the</strong>ir seeds or <strong>the</strong><br />

ve&etarion along <strong>the</strong> banks a d adjacent agricultural areas are <strong>the</strong> ma<strong>in</strong><br />

food source for herbivores, be<strong>in</strong>g geese and most specles of dabhlwg<br />

ducks. Plicropbytohenthos can be usecl as a food source by a faw birds,<br />

especially Sbelducks. The mrozoohenthos, large sized I . I mm)<br />

<strong>in</strong>aertekates liv<strong>in</strong>g <strong>in</strong> <strong>the</strong> sediment, can be divided <strong>in</strong>to filterfeeders,<br />

depositfeeders, scavensers and predators. Filherfaeders.<br />

ma<strong>in</strong>ly molluscs such as Cockles (Ceraetoderna edule) an& Wssel.


(M~tilus edulis) <strong>in</strong> salt water, Cerastoderma glaacum and Mya arenaria<br />

<strong>in</strong> brackish water and <strong>the</strong> Zebra Mussel (Dreissena polymorpha).<br />

Pisidiidae and Anodontidae <strong>in</strong> fresh water, feed ma<strong>in</strong>ly on<br />

phytoplankton. Under normal oonditiona filterfeeders dom<strong>in</strong>ate <strong>the</strong><br />

hiomass. Uoarever, <strong>the</strong>y are often <strong>the</strong> first species to decl<strong>in</strong>e or<br />

disappear under poilution stress. In salt and bracWsh water several<br />

polychaetes (e.g.<br />

<strong>the</strong> Lugworm Arenicola mariua) , molluscs (e.g.<br />

balthica) and crustaceans feed on detritus, o<strong>the</strong>rs are scavengers or<br />

predators (e.g. <strong>the</strong> Shorecrab C a r d s maenasS. Especially <strong>in</strong> <strong>the</strong><br />

sal<strong>in</strong>e lakes <strong>the</strong> epibenthos must be very i!qpartant although available<br />

data are scarce. It consists of shrimps (Grangon sp. and Mysidaceae)<br />

and nany o<strong>the</strong>r species of Crustacea (Isopoda and Amphipoda) . In fresh<br />

water Polychaeta are replaced by Oligochaeta and Chirononddae.<br />

All <strong>the</strong>se organisms form <strong>the</strong> prey of <strong>the</strong> different species Of<br />

bentbivores such ss waders and d%v<strong>in</strong>g ducks. Shrimps and mysids are<br />

also important pzey for gulls (e.g. Black-beaded Gull) and terns dnr<strong>in</strong>g<br />

<strong>the</strong> breed<strong>in</strong>g season and for some species of grebes <strong>in</strong> w<strong>in</strong>ter. The diet<br />

of <strong>the</strong> Pochard, a div<strong>in</strong>g duck, consists <strong>in</strong> <strong>the</strong> <strong>Delta</strong> ma<strong>in</strong>ly of <strong>the</strong><br />

seeds of Eelgrass (Boudewijn and Mes,<br />

1986) and this species is<br />

consequently <strong>in</strong>cluded with <strong>the</strong> herbivores <strong>in</strong> our fux<strong>the</strong>r calculations.<br />

Benrhas and zooplankton also form <strong>the</strong> food source for many fish<br />

species, which <strong>in</strong> turn are eaten by <strong>the</strong> piscivores as Cornsrant,<br />

mergansers and grebes. This basic food web is quite smlar for <strong>the</strong><br />

different haslns, although - ma<strong>in</strong>ly depend<strong>in</strong>g on <strong>the</strong> sal<strong>in</strong>ity -<br />

different species are fouad and depend<strong>in</strong>g on <strong>the</strong> hydrodynamical<br />

conditions different l<strong>in</strong>ks of this food web are more imporrant.<br />

The various functional groups of birds described abuve (benthivores,<br />

piscivores, herbivores) are used <strong>in</strong> fur<strong>the</strong>r analysis and called bird<br />

groups. Benthivores were divided <strong>in</strong>to waders and div<strong>in</strong>g dncks as <strong>the</strong>se<br />

groups differ so markedly <strong>in</strong> <strong>the</strong> habitat <strong>the</strong>y use (tidal flats versurr<br />

open water). Gulls are ma<strong>in</strong>ly omnivores and are also treated<br />

separately. Terns, typically piscivorous birds, are nor <strong>in</strong>cluded <strong>in</strong> <strong>the</strong><br />

analysis, as this species is not very well covered <strong>in</strong> <strong>the</strong> counts. In<br />

addition <strong>the</strong>ir feed<strong>in</strong>g areas are not well knovn. S<strong>in</strong>ce <strong>the</strong>y are ra<strong>the</strong>r


small bird$ extludiag <strong>the</strong>m vill net si~cantly change <strong>the</strong><br />

co~clusions.<br />

DISTRIBUTION OF DIFFERENT BIRD GROUPS<br />

based on numbers<br />

IN THE DELTA<br />

Figure 6<br />

Oecurrewe of different bird groups <strong>in</strong> <strong>the</strong> different bas<strong>in</strong>s.<br />

7er each group <strong>the</strong> percentage tm <strong>the</strong> total number of birds is<br />

given. (For abbreviations see FLgwre I; <strong>the</strong> bird grbups are<br />

def<strong>in</strong>ed h <strong>the</strong> text: and <strong>in</strong> <strong>the</strong> Appendix)<br />

To gaia <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> distribution of waterbirds over <strong>the</strong> different<br />

bas<strong>in</strong>s <strong>the</strong> proportim of each bird group on <strong>the</strong> total number per bas<strong>in</strong><br />

is given <strong>in</strong> Flpre 6. The Voordelta is clearly different from <strong>the</strong> o<strong>the</strong>r<br />

sites with a very high proportion of gulls, few waders and quite many<br />

div<strong>in</strong>g ducks. The three estuaries, Krammer-Volkerak, Dosterschelde and<br />

Westerschelde, are very similar <strong>in</strong> hav<strong>in</strong>g a very high proportion of<br />

waders and - to a lesser extent - herbivores and gulls. The relatim<br />

importance of <strong>the</strong> different bird groups <strong>in</strong> <strong>the</strong> Lakes is quite similar<br />

aod characterized by a dom<strong>in</strong>ance of herbivores. Corepared to <strong>the</strong><br />

estuar<strong>in</strong>e situation <strong>the</strong> importance of waders <strong>in</strong> <strong>the</strong> lakes decreased


subitanteally and thac 6f piseimres and divhg ducks <strong>in</strong>ereased. The<br />

distribution of <strong>in</strong>dividual species omer <strong>the</strong> beb<strong>in</strong>s is even mare<br />

pronounced than that vf <strong>the</strong> bhlrd groops. In Figure ?, as an example,<br />

<strong>the</strong> proportion of <strong>the</strong> total number <strong>in</strong> <strong>the</strong> Voordelta, tbe tidal areas<br />

(Krammer-Volkerak. Oosterschelde, liesterschalde), <strong>the</strong> sal<strong>in</strong>e<br />

(Grevel<strong>in</strong>~en. Veetse Meex) and freshwater lakes tltar<strong>in</strong>gvlier.. Hollands<br />

Mep, Biesbasoh) for aome important auct species is given, Common<br />

Scoters are found almost exclwively <strong>in</strong> <strong>the</strong> Qoerdelta. OBldeneyes <strong>in</strong><br />

<strong>the</strong> salhe lakes and Tufted Ducks and Piachards <strong>in</strong> freshwater lakes.<br />

Digeonrc d P<strong>in</strong>tail$ occur whly 14 <strong>the</strong> tidsl azebs, Mal,larb are<br />

coxmen everywhere with <strong>the</strong> exception of <strong>the</strong> Voordelta and Csots elearly<br />

prefeh sal<strong>in</strong>e lakes. eimilar preferewes e-xists ia <strong>the</strong> ctbr species.<br />

B~wewfa<br />

Wiidal areas<br />

=$al<strong>in</strong>e<br />

lakes<br />

@~reshw&er lams<br />

a~oredelta<br />

HT~U~I area<br />

S5allne lakgs<br />

B~Ms~~w&~@P<br />

lakes<br />

Figure 7 DiGtrfbiltt6~l 6f msie @re& dyer <strong>the</strong> bas<strong>in</strong>s Cl[ecup& <strong>in</strong> tEe<br />

Vwordelta, ttie estuaries Per tidal araa's CW.steFs~chelde.<br />

Oastersobelde. 'ranmiecVoUter&>, s;ll<strong>in</strong>e lakes (Bees8 Weri<br />

Gre-<strong>in</strong>@% Heer] and f re~hwater Lake5 (Ilar<strong>in</strong>mlLet, Roll&<br />

Diep, BLeebasch).<br />

The percatwe of bhe tstal sumber <strong>in</strong> each tatesprzy is<br />

p,Lotted.


In order to lsok for relatiouehips between prey and bird abundance and<br />

to cry to understand <strong>the</strong> distribution described abmve, <strong>the</strong> density of<br />

each bird group was calculated (<strong>the</strong> wan of <strong>the</strong> 12 average monthly<br />

c m s of <strong>the</strong> period 1975/76 - 1983184 was used). For each group <strong>the</strong><br />

surfaces of t4e follw<strong>in</strong>g habitats (for <strong>the</strong> tidal and stagnant basfns<br />

respeetlvely) were u ~ s t calculate o <strong>the</strong> density: pi8civores: tidal<br />

water and tidal areas er deep and &allow warer; waders: tidal flats or<br />

shores; 6iV<strong>in</strong>g ducks: tidal wata and tidal ateas or deep a4ld shallow<br />

water; herbivores: sale marshes and adjacent wetlands ar $here6 aad<br />

shallow water. Of course this is a very crude approximation hut for<br />

such a large scale comparison no greater detidl can he used.<br />

Table 2 W<strong>in</strong>ter density (N/1000 me) of Gobiid fish and densities of<br />

Piseivores (h11100 ha) <strong>in</strong> <strong>the</strong> different aquatic s$stems of <strong>the</strong><br />

<strong>Delta</strong> arm. (Source of fish data: Cl) Ewrlynck (pen. mm.)<br />

(2) Bamerlynck, et al. (<strong>in</strong> press) (3) Dopmhos and Tviek.<br />

L987 (4) Waacdenburg and Meyer, 1988) (Voordelta (W);<br />

Westerscbelde (TB); Oosterschelde (05); rame er-Volkerak<br />

(KV); kevel<strong>in</strong>aen Meer (CH); Veerse Mser (W); Bar<strong>in</strong>gvliet<br />

(W); Bollaads Ddep (!.DJ; Biesbosch (BB)]<br />

Fish<br />

Bird<br />

Bas<strong>in</strong> Density Seurce Density<br />

(~11000 m*)<br />

(e/ioo ha)


The me<strong>in</strong> diet of piscivores <strong>in</strong> <strong>the</strong> salbe waters consists of Cobiid<br />

fish (Pomatosehistus microps, P. m<strong>in</strong>utums, P. loaanei). In <strong>the</strong><br />

Grevel<strong>in</strong>gen Meer <strong>the</strong> diet of Great Crested Grebe consisted for more<br />

<strong>the</strong>n 60%: (by weight) of Gobiidae (Domrnbos, 19$4). O<strong>the</strong>r important<br />

species were Herr<strong>in</strong>g (C1,u~eq harengus) and Shrimps (Grangmn crangon) .<br />

The Three-sp<strong>in</strong>od Stifkleback (6asterosteus aculeatus) is very abundant<br />

<strong>in</strong> <strong>the</strong> Veerse Meer (Waardenburg and Meiler, 19881, but it is not known<br />

ta &€it esent <strong>the</strong>y $re eaten by birds. As GmbFid fish fenus <strong>the</strong><br />

majority of <strong>the</strong> diet and more PT less comparable data are available,<br />

<strong>the</strong> average w<strong>in</strong>ter density is even h Table 2 toge<strong>the</strong>r with tha<br />

densities of pibcivofes. Clearly <strong>the</strong> highest densitieg of bath fish sad<br />

birds are found ib <strong>the</strong> Veerse Meer. In <strong>the</strong> Voordelta <strong>the</strong> nobiid<br />

densities ate varg varia%lo and prehably transparency. wMth is very<br />

low, end wave action prevent Birds from feed<strong>in</strong>g here. In <strong>the</strong> tidal<br />

areas and <strong>the</strong> sal<strong>in</strong>e lakes a clear relation bstwesn ptscivore densities<br />

and Gobffd densities is found. In <strong>the</strong> froshwatar lake6 ratber high<br />

densities of piscivores are found. Perch (Perca fluviatilis), Boaeh<br />

(Rutilus ~tilus) and o<strong>the</strong>r Cypr<strong>in</strong>idae as well as Gasterosteidae ere<br />

<strong>in</strong>portant prey species <strong>in</strong> <strong>the</strong>se lakes. Howevr;~, no density eqtimations<br />

are available.<br />

The bibmass of macrozoobenthos end <strong>the</strong> dessities of waders and div<strong>in</strong>g<br />

ducks ere given <strong>in</strong> Table 3. Waders occur -My on <strong>in</strong>tertidal areas<br />

here <strong>the</strong>y feed on *any dzffetent species @f izverteh~afes. Same waders<br />

are very speciUred, for <strong>in</strong>stance Cystercatchers which feed mditrly 6zl<br />

Mussels and Cackles; o<strong>the</strong>rs suCh as Dunl<strong>in</strong> feed on a verierp of<br />

polychaete worms (Rerefs sp.; Scoloplos armfger =Cc.) and small<br />

crustaceans (e.g. Corophiua sp.) whereas Bar-tailed Godwits feed on<br />

both worms, crustaceans and molluscs. Sometimes <strong>the</strong> diet ohansea with<br />

<strong>the</strong> seasons. In autumn <strong>the</strong> diet of Curlew oonaists ma<strong>in</strong>ly of <strong>the</strong><br />

Sharecrab wbereas <strong>in</strong> w<strong>in</strong>ter, when <strong>the</strong> crabs move to deeper water,<br />

Curlews feed l~ii<strong>in</strong>ly on large worms (Lugwonus and Nereis sp.). In <strong>the</strong><br />

tidal bas<strong>in</strong>s an obvious relation between <strong>the</strong> densities of waders and<br />

<strong>the</strong> available biomass extsts. A very high bkmass and density is fomd<br />

fn <strong>the</strong> Ooeteyschelde, much lower valnes <strong>in</strong> <strong>the</strong> Westerschelde and<br />

Kramer-Volkerak. The densities of waders <strong>in</strong> <strong>the</strong> o<strong>the</strong>r bas<strong>in</strong>s are much<br />

lmer and as <strong>the</strong>y arzt i?ee-g <strong>the</strong>se <strong>in</strong> a veriety of habitats, <strong>the</strong> diet


Table 3<br />

Biomass of macroroobenthos and densities of waders and div<strong>in</strong>g<br />

ducks <strong>in</strong> <strong>the</strong> different has<strong>in</strong>s af <strong>the</strong> <strong>Delta</strong> =ea. The average<br />

autumn biomass (g ash free dry weight/m2) of <strong>the</strong> whole bas<strong>in</strong><br />

and of <strong>the</strong> <strong>in</strong>tertidal area and <strong>the</strong> density Q£ waders and<br />

duoks (birds1100 ha) are given. (Source of macrozoobenthos<br />

data: (1) Craeymeersch (pers. cam.) (2) Coosen and Van den<br />

Dool, 1983 (3) Coosen and Smaal, 1985 (41 Meire and Develter,<br />

1988 (5) Lamheck, et al, 1985, 1986, 1987. (6) Seys and<br />

Meire, 1988 (7) Fortu<strong>in</strong>. 1985.) For abbreviations see<br />

Table 2.<br />

Bas<strong>in</strong> biomass hiamass source waders div<strong>in</strong>g<br />

overall <strong>in</strong>tertidal ducks<br />

is not lmam and hence it is not possible to calculate <strong>the</strong> available<br />

food supply. Div<strong>in</strong>g ducks like Goldeneyes and Tufted Ducks feed ma<strong>in</strong>ly<br />

on molluscs (Zebra Mussels, Mussels, Cockles etc.) as well as on<br />

different species of wow and crustaceans. A relation between<br />

macrobenthic biomass and <strong>the</strong> density of div<strong>in</strong>g ducks is not clear at<br />

all. The highest densities of div<strong>in</strong>g ducks are found <strong>in</strong> <strong>the</strong> Veerse<br />

Meet, although <strong>the</strong> biomaes is lower than <strong>in</strong> o<strong>the</strong>r areas. Additionally<br />

<strong>in</strong> <strong>the</strong> freshwater lakes high densities of div<strong>in</strong>g ducks are found<br />

although <strong>the</strong> benthos biamass is very Low. On <strong>the</strong> o<strong>the</strong>r hand <strong>in</strong> both <strong>the</strong><br />

Qosterschelde and <strong>the</strong> Krammer-Volkerak a larpe benthos biomaas is<br />

present but remsrkably low densities of div<strong>in</strong>g ducks are found. Clearly<br />

o<strong>the</strong>r factors must <strong>in</strong>fluence <strong>the</strong> distrihutfon of <strong>the</strong>se birds. This will<br />

be discussed later.


The herbivores form a ra<strong>the</strong>r beterogenous group of swans, geese apd<br />

ducks. Some species like <strong>the</strong> Brent Geese feed nra<strong>in</strong>ly on Eelgrass and<br />

salt marshes, although <strong>in</strong> <strong>in</strong>o<strong>in</strong>rer semizkatural grasslands and cereal<br />

crops form an important part of phe diet (Ebb<strong>in</strong>ge, er 81, 1987). Mute<br />

Bwens are strongly attached to water for feed<strong>in</strong>g, whereas o<strong>the</strong>r species<br />

like <strong>the</strong> Mallard feed ma<strong>in</strong>ly on adjacent wetlands and agricultural land<br />

and use <strong>the</strong> bas<strong>in</strong>s ma<strong>in</strong>ly for rest<strong>in</strong>g, d~<strong>in</strong>k<strong>in</strong>g and preen<strong>in</strong>s. Ad <strong>the</strong><br />

food source used by <strong>the</strong>se birds is so variable (@.g. agrimitural<br />

wastes and crops) it is impossible to estimate <strong>the</strong> wailable food<br />

supply. Therefore <strong>in</strong> Table 4 only <strong>the</strong> biomass of macroalgae (ma<strong>in</strong>ly<br />

Ulva sp. and Zosrera 8p.)<br />

and <strong>the</strong> denaity of herbivores are given. With<br />

<strong>the</strong> exception of <strong>the</strong> Voordelta <strong>the</strong> average density of herbivoree is<br />

quite similar <strong>in</strong> <strong>the</strong> different has<strong>in</strong>s, although somewhat hisher <strong>in</strong> <strong>the</strong><br />

Tahle 4<br />

Occurrence of macrqphyta (tong ash free dry weight at martmum<br />

stwd<strong>in</strong>g stock) and herbivores CbirdsIlOO ha) <strong>in</strong> <strong>the</strong> different<br />

aquatic system of <strong>the</strong> <strong>Delta</strong> atea. (Souree of macrophyta<br />

datat (1) Craeymeersch (pers. cm.) L2) De Jong (pers.<br />

corn.) (3) Nienhnis (pers. corm.) (L) Hannewijk, 1B88.) For<br />

abbreviations see Tahle 3.<br />

System 'Lotal Gran algae Source Density of<br />

biomass<br />

macrohyta<br />

herbivores<br />

W smell 0 mall 1 87<br />

KV 360 80 280 2 199<br />

OS 1833 S67 1457 3 334<br />

ws smdl 0 sncg21 2 399<br />

QV ? 1110-3300 ? 3 302<br />

W 630 9.6 680 4 562<br />

W small 0 0 415<br />

BD small 0 0 418<br />

BB<br />

small


freshwater bas<strong>in</strong>s. Clearly <strong>the</strong> presenoe of <strong>the</strong>se macrophyta haw no<br />

<strong>in</strong>fluence on <strong>the</strong> density af all herbivores as <strong>the</strong>y form only a 4 1<br />

part of <strong>the</strong> diet pf only some species. Notwithstand<strong>in</strong>g <strong>the</strong> huge<br />

differences <strong>in</strong> food supply it is rewkable no larger diffexenees <strong>in</strong><br />

densities exist.<br />

Table 5<br />

Comparison between <strong>the</strong> consumption (C) (kg ash free dry<br />

weight/lQO ha3 and deqsity CD3 (birds/lQD ha) of different<br />

bird groups <strong>in</strong> <strong>the</strong> tidal areas, <strong>the</strong> sal<strong>in</strong>e and t&e freshwater<br />

l&s (far fur<strong>the</strong>r explanation see tm).<br />

TIDAL WINE FKESH<br />

Herbivores<br />

C<br />

D<br />

Div<strong>in</strong>g ducks<br />

C<br />

D<br />

Waders<br />

In Table 5 <strong>the</strong> dara on densities are summarized toge<strong>the</strong>r with estimates<br />

of <strong>the</strong> food emsumption a£ <strong>the</strong> different bird gzoups. This was obta<strong>in</strong>ed<br />

by standard methods (see e.g. Nienhuis and Groenendijk, 1986). It i8<br />

obvious that <strong>the</strong> densities of herbivores are high <strong>in</strong> cwtpsrisun with<br />

those of o<strong>the</strong>r groups, <strong>the</strong>ir consumption even mueh higher. This is what<br />

we expect from primary consumers. Waders and div<strong>in</strong>g ducks are secondary<br />

omsumess and <strong>the</strong>ir densities as well as <strong>the</strong>ir oonsmptian are much<br />

lewer. The on17 exception are waders <strong>in</strong> <strong>the</strong> tidal areas. It is obvious


that <strong>the</strong> predation pressure here is very high. This is also conf<strong>in</strong>md<br />

by <strong>the</strong> review paper of Baird, et al, 1988, and <strong>the</strong> tidal flats form a<br />

v- dist<strong>in</strong>ct ecosystem. Densities and comumptions of piscivores<br />

(tertiary consumers) are on average lower. Eemarkable is <strong>the</strong> high<br />

density and consumption <strong>in</strong> <strong>the</strong> sal<strong>in</strong>e lakes. These results fit more or<br />

lees <strong>in</strong> <strong>the</strong> concepts of <strong>ecological</strong> pyramids (Odm, 1872). From Bigure<br />

5, however, we see that a food web is a better description of <strong>the</strong><br />

reality, hence expla<strong>in</strong><strong>in</strong>g some deviations from <strong>the</strong> expected pyramid<br />

structure.<br />

5 PAIXOBS COMPWWING TAE RELUTON BETREEN DlSTRIBUTIDN AND FOOD<br />

SUPPLY<br />

From <strong>the</strong> previoudi section it is obvious that relatiens hetween bird<br />

density and food supply are hot always obvious. First of all <strong>the</strong> data<br />

of many spedes have been analysed rogecher. If wader densiries ii~<br />

gener&l are related to grey densities, it ia very likely that this<br />

holds also far most of <strong>the</strong> abundant species. However, if no rerrelatian<br />

is found for all birds of a hitd group, this does not me= that <strong>the</strong><br />

densities of iddividuaL species ma), not be closely l<strong>in</strong>k& ta <strong>the</strong>ir food<br />

supply. It is clear, however, that mt only food supply hut m), o<strong>the</strong>r<br />

variables may <strong>in</strong>fluence <strong>the</strong> distribution and density of birds. These<br />

factors may be purely <strong>ecological</strong> or result<strong>in</strong>g £ram human activities. We<br />

will try to briefly describe somg of <strong>the</strong>m <strong>in</strong> order to show <strong>the</strong><br />

qomplexity of <strong>the</strong> whole system and <strong>the</strong> difficulties one encounters <strong>in</strong><br />

prediet<strong>in</strong>g effects of impacts oq <strong>the</strong> ecosystem. We hope this will make<br />

clear that <strong>in</strong> plann<strong>in</strong>g we shvuld he very conservative and use very<br />

large marg<strong>in</strong>s concern<strong>in</strong>g enviromntal marters.<br />

5.1 Ecologital factors<br />

Migratien, large-scale distribntion patterns of a species and climatic<br />

oonditions are very important <strong>in</strong> determ<strong>in</strong><strong>in</strong>g bird numbers. Indeed for<br />

several species <strong>the</strong> <strong>Delta</strong> area forms ei<strong>the</strong>r che nor<strong>the</strong>rn or <strong>the</strong>


scm<strong>the</strong>m bottueary o-f <strong>the</strong> w<strong>in</strong>ter distribncion (e.g. Lapw<strong>in</strong>g, Avocet,<br />

Blaek-tailed Godwit and Barnacle Gomse, Bewick's Swan respeewvely). In<br />

cheee cases <strong>the</strong> severiq of <strong>the</strong> w<strong>in</strong>ter may strongly <strong>in</strong>fluence bird<br />

occurrence. In mild w<strong>in</strong>ters much larger numbers of some species,<br />

sensitive to frost, may be present; <strong>in</strong> severe w<strong>in</strong>ters large numbers of<br />

Birds, norntally w<strong>in</strong>terfrrg.more to <strong>the</strong> north, are forced to &rate<br />

fur<strong>the</strong>r southwards and peak numbers of wme species can be counted.<br />

Duriqg a cold spell <strong>the</strong> presence of open weter is extremly important<br />

and may attract birds from <strong>the</strong> large eurfound<strong>in</strong>@.<br />

Pnr<strong>the</strong>rmore bird riders <strong>in</strong> .n area are not ohly depertdent on <strong>the</strong> food<br />

supnly but also &ad on <strong>the</strong> qnality of o<strong>the</strong>r areas. Indeed if, for<br />

whatever resaon, <strong>the</strong> food supply at <strong>the</strong> begirm<strong>in</strong>g a£ <strong>the</strong> w<strong>in</strong>ter <strong>in</strong> an<br />

asea is eXUegK1y high or low, many mtroe or less birds may stay <strong>the</strong>re,<br />

<strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> numbees <strong>in</strong> O<strong>the</strong>r basu, where neth<strong>in</strong>$ <strong>in</strong> <strong>the</strong> fmed<br />

supply niisbt have changed.<br />

MIDWINTER NUMBERS OF GRNLAG GOOSE IN THE WESTERN SCHEUIT<br />

1976-1 987<br />

year<br />

Pigore 8 Evolution of <strong>the</strong> number of Oreylag Geee <strong>in</strong> tke Wesrersohelde


Overall population size Fs very irpporCane as well. Indeed <strong>in</strong> <strong>the</strong> last<br />

decades a few species, lac <strong>the</strong> Greylag Gowe (Pig. 8) and <strong>the</strong><br />

Coxmurant, Wreased <strong>in</strong> numbers <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area. phis is not due fa<br />

any ehanges <strong>in</strong> <strong>the</strong> fbbd suepl~ hut to an overall <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

population. In Europe <strong>the</strong> Greylag population ha* <strong>in</strong>creased from 30 DUO<br />

to 1%<br />

000 bemen 1974 and 1984 (Madaen, 1987). The total population<br />

size of arctic breed<strong>in</strong>g wecies eau vary substantially between years<br />

due to <strong>the</strong> vary<strong>in</strong>g breed<strong>in</strong>g success. Of<br />

e<strong>the</strong>r spactes (e.g. DuW)<br />

pspulatiwn siae decreased dwriqg <strong>the</strong> last years, a declfae which is<br />

obvious <strong>in</strong> <strong>the</strong> couunte from <strong>the</strong> Delca area.<br />

Tlvese were all Eacrors ac~tiqg on a lazge sea&. M <strong>the</strong> DeLlt area<br />

itself, several z~pccts rYf prey reLettfon may fafluence <strong>the</strong><br />

diatribwtion af a species. In she asalf,t~s prasent-a ad1 prey 8pedea<br />

were lrrmped ed4?aca large categeiesi Same species are, hCmemr, uee<br />

specXaLiz&. IeeakrD, vh@reas O<strong>the</strong>rs feed a* a large vazlaty of p?*<br />

species. Tlris may affect <strong>the</strong> occurreace ti£<br />

birds qutte subgtantliaf.ly.<br />

In <strong>the</strong> Veerse Neex Dlva sp. fo- a v.&y important prep item far<br />

hehivor~e Such ns eonss aud Br*nt Geese.. nse to predarlqu and *be<br />

natural mortality of <strong>the</strong> plant* <strong>the</strong> aviril&le amount ,of Qlve q.<br />

decl<strong>in</strong>es rapidly *u.tumn vwdnter. bnr<strong>in</strong>g that <strong>the</strong> BanL Geese<br />

switch eo *Chef pray available <strong>in</strong> ehe area. d d y pastures .W$ asaMe<br />

land, a& <strong>the</strong>ir nmbers repla<strong>in</strong> stable wnrii April-Hay (Fig. 91. Owte,<br />

kqwevez, do net change diet and amhers start te decl<strong>in</strong>e aireaey <strong>in</strong><br />

Jmwarp, mch earlier tkaa <strong>in</strong> o<strong>the</strong>r part6 of <strong>the</strong> De~lta.<br />

Even for birtl4 Se4ddfs$ aa me prey fssp.eei&s, t&ce mi@t be facmts<br />

compli~wz<strong>in</strong>g <strong>the</strong> relative prey abondande m hird dasiff. The<br />

i2ystet"aatehn is <strong>the</strong> most nwraus %del ,gp.eel&s <strong>in</strong> €he Wd*refm&el~&<br />

and ie a.lmst edcrusivelg faeds m 'Cockle* and Mussels,, %irB back<br />

Inbtvlda2 c<strong>in</strong>ly feecz<strong>in</strong>g on One of tW&L? %~&Les. %-he selertiw of<br />

mnssels ha8 W& s~turliQd <strong>in</strong> detail lHerr& w d ErySnck. 1986.3 Mere,<br />

1B871 sad it is ~mtnd thde <strong>the</strong>re is n6t mily selectiim foi laper<br />

miwels but even Eo? <strong>the</strong> ch<strong>in</strong>%er-shelled i@ivfd+ls wish<strong>in</strong> a lengch<br />

cLies,. It has h~en shoran that <strong>the</strong>se selection patterns are etuced by<br />

energeti'f constra<strong>in</strong>ts. Wile <strong>the</strong> pp6t .~pen<strong>in</strong>g-.&l<br />

eureseL6 %a wt<br />

rewartB.ng due to very -U ylela of fl,osh, tha thick sirelied mussele


OCLURRENCE AND DIET QF B ~T<br />

.tUQ<br />

80 -<br />

a<br />

2 40'-<br />

U<br />

(D<br />

8<br />

-20<br />

SBP w'r N~SY 6x0 J& F.XS APE ,,g.<br />

I,.<br />

1<br />

m<br />

0<br />

066URANCti AND LEET DF IFT<br />

108. -- - l00<br />

W<br />

U<br />

L<br />

W<br />

- 60<br />

G,<br />

9,<br />

DI<br />

2<br />

D<br />

2QL<br />

0 b Q<br />

SBP QdT NOW S2SW JW FFsB AQE<br />

>,<br />

-ZQ @<br />

are too hard to open. Tbis selection pattern implies that only a part<br />

of <strong>the</strong> prey population is really available to <strong>the</strong> birds, caused by <strong>the</strong><br />

selectit<strong>in</strong>-behaviour of <strong>the</strong> birds <strong>the</strong>mselves. Eowever, prey availabilicg<br />

is often <strong>in</strong>fluenced by <strong>the</strong> prey itself. In <strong>in</strong>tertidal areas many<br />

maerobenthic spec%es may be buried deep <strong>in</strong> <strong>the</strong> substrate, well beyond


each of <strong>the</strong> birds' bill. Different age classes of bury<strong>in</strong>g bivalves.<br />

such ae! Scrobiacularia plmb andMacma balthica. can be successively<br />

eaten by different- species of waders depend<strong>in</strong>g on <strong>the</strong>ir bill ldngtb as<br />

<strong>the</strong> older <strong>in</strong>dividuals lie deeper <strong>in</strong> <strong>the</strong> substrate (Zmuts and wdnk.<br />

1984). Similarly dabbl<strong>in</strong>g ducks can reach aquatic plants only whit<strong>in</strong> a<br />

small depth range. Mute Waas can reach down to 1.5 meter, Cwts oaly<br />

to 0.5 meter. Bentbic feed<strong>in</strong>s ducks are also limited by <strong>the</strong> water depth<br />

as <strong>the</strong>y can stay rmdet- water only for a certa<strong>in</strong> time.<br />

However, <strong>the</strong> availability of <strong>the</strong> prey population can also he dependent<br />

on its own activity. Corophium volutator, a small crustacean Liv<strong>in</strong>g <strong>in</strong><br />

If-shaped burrows, is detected by its predators, e.g. Redshanks. when it<br />

is feed<strong>in</strong>g on <strong>the</strong> mudsurface by quickly mov<strong>in</strong>g <strong>the</strong> antennae. After a<br />

Bedshank passed, all C. volutator retreat <strong>in</strong> <strong>the</strong>ir burrow, due to <strong>the</strong><br />

vibrations <strong>in</strong> <strong>the</strong> sediment caused by tbe walk<strong>in</strong>g bird, aad become<br />

unavailable to <strong>the</strong> predators for nearly a quarter of an hour (Gsss-<br />

Custard, 1970).<br />

gno<strong>the</strong>r very important factor iufluenc<strong>in</strong>g bird distribution is<br />

sal<strong>in</strong>ity, not only by its effects un <strong>the</strong> prey populations, but by its<br />

<strong>in</strong>fluence on <strong>the</strong> osmoregulat1an of <strong>the</strong> predator. B i r h feeang on<br />

mar<strong>in</strong>e prey organisms have to excrete <strong>the</strong> excess amount of salt <strong>in</strong>take,<br />

while feed<strong>in</strong>g, throngh <strong>the</strong> dasal glands. If <strong>the</strong> sal<strong>in</strong>ity of <strong>the</strong> water<br />

where <strong>the</strong>p are feed<strong>in</strong>g is too hlgh, <strong>the</strong>y need to dr<strong>in</strong>k fresh mater <strong>in</strong><br />

order not to dehydrate (Nysrrtim and Pehrsson, 1988). It is very well<br />

documented that <strong>the</strong> Pochard, which feeds on Eelgrass (Zostera mar<strong>in</strong>a)<br />

<strong>in</strong> <strong>the</strong> sal<strong>in</strong>e Grevel<strong>in</strong>genmeer, rest on <strong>the</strong> fresh Har<strong>in</strong>guliet (Boudewijn<br />

and Mes, 1986). Nystriim and Pehrsson. 1988, l<strong>in</strong>ked both distribution<br />

and diet of swsrel coastal waterfowl species to <strong>the</strong>ir uptake and<br />

ability to excrete salt. It is most probably that <strong>the</strong> very high<br />

densities, especially of div<strong>in</strong>g ducks, <strong>in</strong> <strong>the</strong> Veerse Meer, <strong>in</strong><br />

oompirrison to <strong>the</strong> Grevel<strong>in</strong>gen Meer where <strong>the</strong> food supply i~ much<br />

higher, might be due to <strong>the</strong> much lower sal<strong>in</strong>ity <strong>in</strong> <strong>the</strong> Veerse Meer.


5.2 H- factors<br />

Next to all fartors <strong>in</strong>tr<strong>in</strong>sic to animals and ecosystem.? <strong>the</strong> occurrence<br />

of htrds is also strongly <strong>in</strong>fluenced by man <strong>in</strong> a great variety of ways.<br />

Disturbance, pellution and habitat loss are <strong>the</strong> major factors.<br />

Disturbance by airplanea. beats, walk<strong>in</strong>g people, bait-diggiw. etc.<br />

causes bitds to leave <strong>the</strong> feed<strong>in</strong>g ar rerrf<strong>in</strong>g areas fot some time, For<br />

waders, disturbance distances have been measured. They differ greatly<br />

between species. Curlews are most sensitive and fly away at leaat 250 m<br />

from someone walk<strong>in</strong>g, Turnstones can be approacbad up to 1130 meter (Van<br />

der &er. 1985). Disturbance causes a reduction <strong>in</strong> feed<strong>in</strong>g time and<br />

extra energy losses due to fly<strong>in</strong>g. This can cause <strong>the</strong> birds to leave<br />

suitable feed<strong>in</strong>g sites. Not only disturbance at feed<strong>in</strong>g sides but <strong>the</strong><br />

availability of suitable rest sites can alss determ<strong>in</strong>e <strong>the</strong> occurrence<br />

of some bird species. Thia certa<strong>in</strong>ly holds for breed<strong>in</strong>g sites.<br />

Pollution cab affect birds <strong>in</strong> tws dist<strong>in</strong>ct ways: rbrougb a<br />

deteriozation of <strong>the</strong> food supply or through impairment of <strong>the</strong><br />

physiological processes <strong>in</strong> <strong>the</strong> animal itself. possibly lead<strong>in</strong>g CO<br />

death. It is known that pollution sees chaagea <strong>the</strong> structure of<br />

benthic populations a& cmmamities become dam<strong>in</strong>ated by a few small<br />

sized $peCies (Oxay, 1982). Although <strong>the</strong>ir densities can be very high.<br />

<strong>the</strong> biomss is on average quite low. Bur<strong>the</strong>rmore, few birds are able to<br />

exploit efficient13 thme very small prey items. When <strong>the</strong> pollutfon<br />

load <strong>in</strong>creases and anoxic conditions oceur, <strong>the</strong> macrobenthic faona may<br />

nearly completely dieappear, as is found <strong>in</strong> <strong>the</strong> eastern patt of <strong>the</strong><br />

Westerschelde CDevelter, et al. 1988; Meire and Kuyken, 1988).<br />

Obviously birds will disappear here as well. It has been &own that<br />

eutmphtcetion can improve benthic productivity (Bewkema and Cadee,<br />

1986, 1987) and Van Impe (1985) associated <strong>the</strong> <strong>in</strong>crease <strong>in</strong> bird numbets<br />

In <strong>the</strong> eastern part of <strong>the</strong> Westersehelde between <strong>the</strong> fifeies and <strong>the</strong><br />

seventies to <strong>the</strong> improved ferag<strong>in</strong>g couditiells for <strong>the</strong>-e birds as a<br />

eonsequenee of hlgher preductivity due to eutropwcation. As <strong>the</strong><br />

benthix fauna has collapsed <strong>in</strong> this areas by now <strong>the</strong> posititre effects<br />

of <strong>the</strong> wtrophication were only very shartlived (Develter, et al. 1988;<br />

Meire and Kuyhn, 1988).


LLttle Tern (Stezna albifrons), characteristic atrd threatened bird of<br />

<strong>the</strong> <strong>Delta</strong> area<br />

Young Little Tern (Sterna alhifrons)


Bewick's Swans (Cygnus columbariusl<br />

The <strong>Delta</strong> area is one of <strong>the</strong> most important w<strong>in</strong>ter<strong>in</strong>g areas of <strong>the</strong><br />

specie*


As birds are ma<strong>in</strong>ly top predators, <strong>the</strong>y accumulate quite a lot of toxic<br />

substances. The dramatic effects of chlor<strong>in</strong>ated hydrocarbons,<br />

<strong>in</strong>secticides and chlor<strong>in</strong>ated biphenyls on many piscivores <strong>in</strong> general<br />

and especially on <strong>the</strong> Sandwich Terns <strong>in</strong> <strong>the</strong> sixties, decimat<strong>in</strong>g <strong>the</strong>ir<br />

pop~lations are well known (Koeman and Van Eenderen, 19721. The effects<br />

of accwwlation of pollutants ere, hmever, not always so obvious,<br />

never<strong>the</strong>lens <strong>the</strong>y wy severely affect populations. Pew data on<br />

conoentrations of pollutanrs <strong>in</strong> birds <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area are avaFLahlc.<br />

However, experiments with Tufted Ducks clearly deman$trafed that when<br />

fed With Zebra Mussels from <strong>the</strong> Rar<strong>in</strong>gvliet <strong>the</strong>ir reproductive oatput<br />

was v eq much depressed IMarquenie, et al. 1986; Seholten and Poekema,<br />

1988). Clearly pollution is a major factor affect<strong>in</strong>g birds <strong>in</strong> <strong>the</strong> <strong>Delta</strong><br />

area and, as its effects are vey diverse and by now not very well<br />

onderstood, much mere attention should he paid to this problem <strong>in</strong> <strong>the</strong><br />

Eutnre.<br />

Babitat loss is ~f course a very impartant factor <strong>in</strong>fluenc<strong>in</strong>g birds.<br />

The effects are obvious. In <strong>the</strong> rema<strong>in</strong><strong>in</strong>g areas bird densities<br />

<strong>in</strong>crease, caus<strong>in</strong>g a higher predation pressure and hence a smaller food<br />

supply. This tpge<strong>the</strong>r with an <strong>in</strong>ereased level of social iateractions<br />

between <strong>in</strong>dividuals can reduce quite aubsfantiallp <strong>the</strong> food <strong>in</strong>take<br />

lead* td death. detailed revietv af <strong>the</strong> effecrs of habitat loss bn<br />

wader populatione is given by Goss-Custacd, 1985. It shauld be nated<br />

that hahicat lams is not only cased by physical removal of an anea but<br />

also by deterioration of <strong>the</strong> food supplp e.g. due to chang<strong>in</strong>g<br />

environmental condition#. In <strong>the</strong> Westerschelde <strong>the</strong> <strong>in</strong>creased dredg<strong>in</strong>g<br />

activities cause <strong>the</strong> <strong>in</strong>tertidal flats to become more sandy shee <strong>in</strong> <strong>the</strong><br />

larger channels higher current speeds occor, <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong><br />

sedimentation patterns. The benthic fauna and <strong>the</strong> numbers of waders are<br />

much smaller on send- than on mudflats. This is especially <strong>in</strong> <strong>the</strong><br />

Wesrerschelde a severe threat.


m's activiries do not always have to affect ecoaystw <strong>in</strong> general or<br />

bir& <strong>in</strong> particulex <strong>in</strong> a negative way. Indeed m y management measure4<br />

ean be taken to improve <strong>the</strong> arituation, measures which often are ra<strong>the</strong>r<br />

cheap but very effective. Oe <strong>the</strong> Hooge Platen, a large <strong>in</strong>tertidal flat<br />

<strong>in</strong> <strong>the</strong> Westerschelde, a small part 19 flooded wly at extreme bigb<br />

tides. The constructidn of a small dike hy meane of sadbags made <strong>the</strong><br />

site very attractfoe for Little Terns. The population <strong>in</strong>creased from 60<br />

<strong>in</strong> 1979 to 170 <strong>in</strong> 1985 (Pig. 10). a threefeld <strong>in</strong>crease. compared rrlth a<br />

NUMBERS OF BREEDING PAIRS OF LITTLE TERN ON THE HOOGE PLATEN<br />

1979-19BB<br />

Figare 10 Eyelutian of tbe number of breed<strong>in</strong>g Little Terns w <strong>the</strong><br />

"Woge Plaacen" i~ <strong>the</strong> Wesrerschelde (data RQQ<br />

R. Beijersbergen, peasonal eonrmunication~<br />

1.3-fold <strong>in</strong>crease <strong>in</strong> <strong>the</strong> whale <strong>Delta</strong> dur<strong>in</strong>g <strong>the</strong> same time (Me<strong>in</strong>&ger,<br />

1966). On many of <strong>the</strong> artifiaial islands <strong>in</strong> <strong>the</strong> Oostersdlelde, f~rmerly<br />

used dur<strong>in</strong>g <strong>the</strong> construction of dams, sluices etc., <strong>the</strong>re are


$oseibilities to create ptentially vaiuable breed<strong>in</strong>g sites for<br />

characteristic coastal breed<strong>in</strong>g birds. By meem of chang<strong>in</strong>g <strong>the</strong><br />

hydralogy, e.g. by (partially) <strong>in</strong>umlat<strong>in</strong>g 8maU polders adjacent to <strong>the</strong><br />

OostersmheLde ancl <strong>the</strong> Westerschelde, <strong>the</strong> importance far birds can be<br />

improved. In most places <strong>the</strong> ever <strong>in</strong>creas<strong>in</strong>g pressure bp recreational<br />

activities (boat<strong>in</strong>g, w<strong>in</strong>d-surfers, walk<strong>in</strong>g, bait-digg<strong>in</strong>g, fish<strong>in</strong>g etc.)<br />

is a serious threat to <strong>the</strong> various functions for birds. In particular<br />

<strong>the</strong> <strong>in</strong>tertidal areas are highly vulnerable to disturbance, and measures<br />

to reduca this disturbance are required. The same applies to some of<br />

<strong>the</strong> shallow parts of <strong>the</strong> Veerse Meer and Grevel<strong>in</strong>gen Meer, which are<br />

<strong>in</strong>creas<strong>in</strong>gly visited by w<strong>in</strong>d-surfers, not only <strong>in</strong> snmmer but also <strong>in</strong><br />

w<strong>in</strong>ter! Simple measures (snch as float* cablw) can be takeu to make<br />

at least dtome of <strong>the</strong>se areas <strong>in</strong>aceessibSe.<br />

6 CONCLUSION<br />

The Creation of new habitats by damn<strong>in</strong>g up eetuaries has, beyond doubt,<br />

<strong>in</strong>creased <strong>the</strong> diversity of bird life <strong>in</strong> <strong>the</strong> <strong>Delta</strong>. QT both breed<strong>in</strong>g and<br />

non-breed<strong>in</strong>g birds several species <strong>in</strong>creased <strong>in</strong> riders, Lass is known.<br />

havexer, on <strong>the</strong> changes <strong>in</strong> population size of <strong>the</strong> species Orig<strong>in</strong>aIly<br />

present, although <strong>the</strong>re are <strong>in</strong>dications <strong>the</strong>ir populations did not<br />

deurease markedly until 1984. Birds quiekly reacted to <strong>the</strong> MW<br />

habitats<br />

created, and <strong>the</strong> Voordelta, <strong>the</strong> estuaries, <strong>the</strong> al<strong>in</strong>e and <strong>the</strong> fresh<br />

lakes each have now <strong>the</strong>ir more or less tyaical avifauna. The gradient<br />

<strong>in</strong> abiotio and biotic ~onditions is very well lreflerted by <strong>the</strong><br />

distribution of <strong>the</strong> different bird groups a+ well as by <strong>the</strong> <strong>in</strong>dividual<br />

species, liowever, notwithscand<strong>in</strong>g <strong>the</strong> attention paid to nature<br />

consemation <strong>in</strong> <strong>the</strong> e l y czeared habitats. <strong>the</strong> estvarise areas still<br />

accomdate <strong>the</strong> largest numbers af birds. It ehould also be stressed<br />

that all estuar<strong>in</strong>e ec@wetems, and especially brackish and freshwarer<br />

tidal habitats are on a global scale very rare habitats, *hi& should<br />

MW be completely protected. Thelr loss can not be compensated bp <strong>the</strong><br />

creation of new habitats.<br />

For several bird species or groups it is s hm that <strong>the</strong>ir distribution<br />

and abundance is closely l<strong>in</strong>ked to that Oe <strong>the</strong>ir food sapply. An,y


measure affect<strong>in</strong>g food supply or available feed<strong>in</strong>g area will reduce <strong>the</strong><br />

population of tkse species (e.g. waders <strong>in</strong> <strong>the</strong> Oosterschelde). Far<br />

o<strong>the</strong>r species <strong>the</strong> relircion between density and food supply is lese<br />

oboioys and o<strong>the</strong>r variables confeud<strong>in</strong>g this relation are discussed.<br />

The <strong>in</strong>fluence of reduced food supply or available habitat m <strong>the</strong>se<br />

species is less easy to pre&tct, although <strong>the</strong> birds will certa<strong>in</strong>ly not<br />

benefit from <strong>the</strong>se. Beyond doubt, disturbance has a negative effect<br />

on all species. I£ <strong>the</strong> <strong>in</strong>ternational importance of <strong>the</strong> <strong>Delta</strong> area for<br />

waterbirds is to be preseraed, this aspect should receive much<br />

attention from <strong>the</strong> manager. It is very important! to <strong>in</strong>form <strong>the</strong> public<br />

about <strong>the</strong> imeortance of <strong>the</strong> area fOr birds and <strong>the</strong>ir need for rest.<br />

Canaliz<strong>in</strong>g people by means of hides or observation places might be one<br />

part of <strong>the</strong> salntion. It reduces disturbance and <strong>the</strong> good observation<br />

possibilities may enhance a positive attitude towards <strong>the</strong> habitat and<br />

its <strong>in</strong>habitants. Additionally <strong>the</strong> accessibility of certa<strong>in</strong> sites should<br />

be sestricted. Man's impact on <strong>the</strong> habitat, hg means of dredg<strong>in</strong>g.<br />

pollution, etc., should be m<strong>in</strong>imized so that naturally function<strong>in</strong>g<br />

ecesrystem might be' created or preserved.<br />

These few examples imply that management of <strong>the</strong> <strong>Delta</strong> area should he<br />

based on a sound <strong>ecological</strong> knowledge, but <strong>in</strong> order to understand <strong>the</strong><br />

ecology Of a species much detailed research bas to be done and a<br />

general pattmn, as presented <strong>in</strong> tbls paper, is amly a first step.<br />

The data presented <strong>in</strong> this paper have been collected by a large umber<br />

of people. Their help was <strong>in</strong>valuable. E. Wijken and S. BublE provided<br />

a stimulat<strong>in</strong>g enviromeat <strong>in</strong> Gent, and Rijkswaterstaat. Tidal <strong>Waters</strong><br />

Division and Directorate Zeeland not only provided <strong>the</strong> funds necessary<br />

for <strong>the</strong> research, but were also very <strong>in</strong>terested fm <strong>the</strong> results and<br />

wed to use chem <strong>in</strong> <strong>the</strong> management of wetlands.


B=, B.A.. MEXZES, J.H.M. VAH DEB and NIEMFUIS, P.X., 1984.<br />

Lake kevel<strong>in</strong>gen: from an estuasy to a sal<strong>in</strong>e lake. An<br />

<strong>in</strong>troduction. Ne~h. J. Sea Res. 18: 179-180.<br />

WTIST, H.J.M., (IOLIJN, F., IWLTBIJN, E.C.L., mlNdkR, P.L., MEIRE,<br />

F.M. and 'LW=, F., 1988. Gevleugeld Onderaoek: watewogels <strong>in</strong><br />

verandereode patersystemen. Bijkswaterstaat. Widdelburg. 24 p.<br />

BBP2IST. B.J.M. and MEWE- P.L.. 1989. Watervogels <strong>in</strong> het <strong>Delta</strong>gebiod<br />

1975176-1983/84: Een wabatie. Rijkwateretaat. Middelburg.<br />

B!ZWEl&. J.J, and CADEIE. CC., 1986. Zo~benthas recponses to<br />

eutrophicsttsa of <strong>the</strong> Dutch Waddea Sea. Ophelia 26: 55-64.<br />

BEWWA. J.J. and CADEE, G.C..<br />

genoeg of teveel? Vakhl. B%ol. 67: 143-107.<br />

1937. De eutrsfigriag van on6 lcufitwater:<br />

BOUDEWIJN. 2. J. and MES, E.G., 1986. Ue Tafeleenden <strong>in</strong> het noordeuk<br />

deel van het Dsltehekken. Ecsland-rapport 86-2,<br />

BIJLSMB, L. and KEIPERS, J.W.M..<br />

<strong>the</strong> <strong>Delta</strong> <strong>Waters</strong>. Tbie volama.<br />

Utrecht.<br />

1989. Riwer pater and <strong>the</strong> qelity of<br />

BAIRD. D., ETAME, ?.R.. MILNE, R. and PTTCXKOWSKI. M.W., IB88.<br />

Utilization by shorebirda of benthie <strong>in</strong>vertebrate prnducfion <strong>in</strong><br />

<strong>in</strong>tertidalareae. Ocean. and Mar. Biol. b Bev. 23: 33-59?.<br />

COOSEN. 3. aad DOdL A. VAN D%% , 1959. Macraaoobenthgs van het Erarmer-<br />

Keetw-Balker& egtuarium: verspreid<strong>in</strong>g &er sowrcen, asntalleq ep<br />

b%oma86a <strong>in</strong> relatie mez het eoutgehalte.<br />

Vetalivgen ea Bappotten, DXHO, Yereeke, 131 p.<br />

COSSEX, J. and $B&, &C..<br />

1983. Jaargemiddelde bimaasa en actiTiteir<br />

van de dom<strong>in</strong>ant& bodemdieren <strong>in</strong> de Owters&elde.<br />

BalanB-rapport 1985-12, DIEQ, Yerseke, 82 p.<br />

DEVELTEB, D., KUIJREX. E. and blELRE. B., 1988. De <strong>in</strong>plant<strong>in</strong>g vm eeu<br />

cmta<strong>in</strong>erkaai tn het natuuigehPeti 'Galgensehom' te zaavlret-<br />

Lillo: ecologischa &specten en mvolgen voar het natuurbehond.<br />

Water 39: 50-53.<br />

DOOBhIBOS. C.,<br />

1984. Pisc%mrous birds on <strong>the</strong> sal<strong>in</strong>e Lake Grevei<strong>in</strong>gen,<br />

<strong>the</strong> Na<strong>the</strong>rlasda; abundance, prey selection and aonual fmd<br />

mnsumption. Neth. J. of Sea Res. 18: 457-479.


DOQiWT$QS, G.<br />

4 TWISK, F., 1987. Density, growth and aunual food<br />

consunfirion of Gobiid fish <strong>in</strong> <strong>the</strong> sal<strong>in</strong>e Lake Grevel<strong>in</strong>gen, <strong>the</strong><br />

Ne<strong>the</strong>rlands. Neth. J. of Sea Bes. 21: 45-74. .<br />

DWRSU. E.K., ENGEL, H. and KPRTE4S. Th.J. M.. 1982. De Nederlandae<br />

<strong>Delta</strong>. Een cmprmds tussen milieu en tayMek <strong>in</strong> do strijd tegw<br />

het water. Natuur en Tecimiek, Maastdc%t, 511 p.<br />

EBBINCE, B.S., BERN, L.M.J. VAN DEN. EAPEREN, R.M.M. VAN, IOg, C,M..<br />

PHILIPONA, J., BOOTH, J. and TIEWIERMAN, A., 1387. Verapreid<strong>in</strong>g en<br />

aantalsonnuikkel<strong>in</strong>g van <strong>in</strong> Nederland pleisterwde gazm. De LW.<br />

Bat. 88: 162-178.<br />

FORTmN, A.W..<br />

1985. Dich<strong>the</strong>den en biomassa's vait de belangrijbte<br />

bodemdieren van het Bollands Diep en Har<strong>in</strong>gvliet <strong>in</strong> 1983.<br />

Aapp~rten an Verslageu 1985-2, DIM, Yerseke, 63 p.<br />

ORAY, J.S.. 1982. Effects pf pollutftnts on mar<strong>in</strong>e ecosystems.<br />

Neth. J. of Sea ties. 16: 424-443.<br />

GOSS-CU6TAP.D. J.D..<br />

1970. Dispersriou i n some ovenr<strong>in</strong>ter<strong>in</strong>g wad<strong>in</strong>g<br />

birds. In CkOOK, J.8. (Ed.) Sacial behaviour <strong>in</strong> Birds and<br />

Mamals. p. 3-35. Aradeaic Pres8,toodon.<br />

GBQSS-CUSTARD, J.D.,<br />

1985. Rorag<strong>in</strong>g behaviour of wad<strong>in</strong>g birds and <strong>the</strong><br />

carry<strong>in</strong>g capacity of estuaries. In Sihly, R.M.<br />

and SXIhl, B.H.<br />

(Eds.) Behavioural Ecology. Ecological conseqlletrces of adaptive<br />

behnvimr. p. 169-187. Bla&$ll Sei~tiflc phllshers, Oxford.<br />

HMERLYNGR, a., VIJVEB, P. VAN DE and FRANCKE, J.W.. <strong>in</strong> press. Sand<br />

Gobies <strong>in</strong> Eastern and Wesrern Scheldt. DBiO Progr. Rep. 1988.<br />

IlANNEWlJK, A,.<br />

1988. De verspreidfng en biomassa van macrofyten <strong>in</strong> het<br />

Veerse Meer, 1987. Rapporten en Verslagen 1988-f,DIRO,<br />

25 p.<br />

Yerseke,<br />

WEREW, A.M.M. VAN, 1989. Erologieal developlgent of ~ lmarshes t and<br />

former tidal flats <strong>in</strong> <strong>the</strong> $outh-Weat Ne<strong>the</strong>rlands, This Voluae.<br />

BFRMELINK, P.P.J. and MES. R.G.. 1987. De vegetatie van buitendijkse<br />

geb&eden van het Sar<strong>in</strong>gVliet m nollands Diep. E~olanp-rappart<br />

nr 87-3, Bureau Ecoland. Utreeht, 143 p.<br />

HUNMEL, E., MBERLBND, G. and BAKKER, C., 1988. The conMlmitaot<br />

existence of it typical eoastal and a detritus faad ehab <strong>in</strong> rhe<br />

Westerschelde estnaq. Eydrobibl. Bul. 22: 35-41.


W, J. VAN, 1985. Estuat<strong>in</strong>e pollnrion as a probable eanse of <strong>in</strong>crease<br />

05 estuar<strong>in</strong>e birds. kr. Poll. Bul. 16: 271-2'16.<br />

ROEMAN, J.E. and GENDEREN, R. VBN, 1872. Tissue levels <strong>in</strong> animals and<br />

effects caused by chlor<strong>in</strong>ated hydrocarbon <strong>in</strong>secticides,<br />

chlor<strong>in</strong>ated biphenyls and mercury io <strong>the</strong> mar<strong>in</strong>e anvironment along<br />

<strong>the</strong> Netberlds coast. Ln Mar*le Pollution and sea life, p. 1-8.<br />

The Rhitefriars Press, Ltd., London.<br />

W E C K , B. H.D. and BWMMELWIS. E. B .M. , 1985. Een bestandsopnarne <strong>in</strong><br />

vosrjaar 1984 van het macrozoobenthos <strong>in</strong> het Grevellngenmeer.<br />

Rappvrten en trersl~sen 1985-4, DIHO, Yetseke, 28 p.<br />

LAMBECK, R.H.D. and POUWEB. R., 1986. Eea bestandsoptumte <strong>in</strong> het<br />

voorjaar 1985 wan het macrozoobeuthos <strong>in</strong> het Grevelirkgemeer, en<br />

enige notities ova lanse-tewijnontwikkel*gen.<br />

Verslagen 1986-5, DI110, Yersske, 110 p.<br />

IPapporten en<br />

LAXBECK. R.B.D. and SMET, G. DF. 1987. Een bestandsopname <strong>in</strong> voorjaar<br />

1986 van het macrovoobenthos <strong>in</strong> het Grevel<strong>in</strong>gemeer.<br />

Rapporten en Verslagen 1987-4, DIHO. 'Lerseke, 38 p.<br />

WQUEIYIE, J.N., ROELE. F. and HOOWI(NSMAi3, G.. 1986. Onderzoek mar de<br />

effecten van cuatamiwanten op duihenden. MT-TNO<br />

86f066, 35 p.<br />

rapport nr<br />

NADSEN, J., 1987. Statue and management of goose populatioas <strong>in</strong> Europe,<br />

WEER,<br />

ntch special reference to populat-ions test<strong>in</strong>g and breed<strong>in</strong>g <strong>in</strong><br />

Dpmnerk. Danish Review of Gane Biology 11 (4):<br />

1-7t3.<br />

J. VAN DER, 1985. De verstorUg v& Vqgels op de slrlcken vaa de<br />

Oosterschelde, Rijkswaterstaat, naea DBMI nr 35.09, Middelburg,<br />

31 p.<br />

MEININGER, P.L.,<br />

Charadrius en sterns<br />

1986. Uuut Recurvirostra auocetta, pleuiezen<br />

1979-1985. limosa 59: 1-14.<br />

als broedvogels <strong>in</strong> het <strong>Delta</strong>gebied <strong>in</strong><br />

NIEINIUGER. P.L., BAPTIST. Q.J.M. end SLOB, G.J., 1984.<br />

Vogeltell<strong>in</strong>gen <strong>in</strong> het Zuidelijk Daltagebied <strong>in</strong> 1975/76-1979180.<br />

Nota DDMI-84.23. Rijbwaterstaat. Middelburg. 390 p.<br />

M E I ~ G ~ P.L., , BPsrm, n. J.M. and SLOB, G.J.,<br />

19~~s.<br />

Vo&alrell<strong>in</strong>gen ia het Zuidelijk <strong>Delta</strong>gebied 198OfPll-1983184. Hota<br />

DCWM-85.001, Bijksaraterstaat. Middelburg, 159 p.


MEININGEB, P.L. and HAPEREX, A.M.M. VAN. 1988. Vogeltell<strong>in</strong>gen <strong>in</strong> het<br />

MEIRE, P.M.<br />

Zuidelijk Beltagebied <strong>in</strong> 1384/&5-1986/87. Nota GWAO-88.1018,<br />

Rijkswaterstaat, Middelburg, 134 p.<br />

Forag<strong>in</strong>g behaviour of some w<strong>in</strong>ter<strong>in</strong>g waders: Prey-selection<br />

and habitat distributton. In Kamil, A.G.,<br />

Krebs, J.R. isnd<br />

Pulliam, B. R. (Eds. ) Forag<strong>in</strong>g Behaviour. p. 215-238.<br />

Plenum Press, New Xork.<br />

MEBE, P.M. and ERVYNM, A., 1986. Are Oystercatchers (Haamatopus<br />

hIEIRE. P.M,<br />

ostralegus) select<strong>in</strong>g <strong>the</strong> most opt-<br />

dnimal Behaviou~ 34: 1427-1435.<br />

mussoLs (Mytilus ednlisj?<br />

8nd KUlJKBi, E., 1988. Hec land van Saefeff<strong>in</strong>ge, schorren en<br />

slikken: ecoLogische betOkenis van getijdegehxeden langs de<br />

Schelde. Water 43: 214-222.<br />

MULDER, J.P.M.,<br />

1989. The cAang<strong>in</strong>g tidal lsndscrrpe <strong>in</strong> <strong>the</strong> <strong>Delta</strong> area at<br />

<strong>the</strong> South-West We<strong>the</strong>rlands. This Volume.<br />

NIENHUIS. P.H. anand GRDENENDIJK, A.M., 1986. Consumption of eelgrass<br />

[Zoatera mar<strong>in</strong>a) by birds and imertebrates: an annual budget.<br />

Mar. Ecol. Progr. Ser. Vol. 29: 29-35.<br />

Wsra(lM, $.C. and PZHRSON, O., 1988. Sal<strong>in</strong>ity as a constra<strong>in</strong>t affect<strong>in</strong>g<br />

food and habitat choice cf mussel-feed<strong>in</strong>g div<strong>in</strong>g ducks. Ibis 130:<br />

94-110.<br />

ODUM. E.P., 1972. Fundauentals of Ecology, $auDders College Publish<strong>in</strong>g.<br />

Philadelpbia, 574 p.<br />

SaEIJB. H.L.B. and BAPTIST, H.J.X., 1977. Wetland criteria and birds<br />

<strong>in</strong> a chang<strong>in</strong>g <strong>Delta</strong>. Bid. Consem. 11: 251-266.<br />

SCllOLTEW, B.C.T. and FOEKEMA, E.M., 1988. Onderzoek mar do effect@=<br />

van een verhobgd gehalte aan microverontre?nig<strong>in</strong>gen <strong>in</strong> bet<br />

voedsel, op de conditie sn voortplantfng van watemogels. MT-TNO<br />

rapptt, nr 288/1&5, 34 p.<br />

SEYS. J. and MEIRE, P.M.,<br />

1988. Microzoobenthos van het Veerse Meer.<br />

Rijksuniversiteit, Gent, Rapport WE nr 4. 61 p.<br />

STUART, 3. 1989. Bet voorkome~ en voedsel van vogels <strong>in</strong> het Veerse<br />

Meer. Rijksuniversiteit Gent. Rapport WWE nr 5. 198 p.


SZIJJ, J., 1972. Some Suggested Friteria for determ<strong>in</strong><strong>in</strong>g <strong>the</strong> <strong>in</strong>teational<br />

importance of Wetlands <strong>in</strong> <strong>the</strong> Western palearctic. In Proe.<br />

at. C&. Consem. Werlands and Waterfowl. Ramsar, Iran, 1971:<br />

101-119.<br />

WdABaENEUILCti. W.W. and EIBIJER, A.J.M.. 1988. Qnderzoek mar pressotasie<br />

van kle<strong>in</strong>e vissoorten <strong>in</strong> het Veerse Meer. Bureau Waardenbursh,<br />

Concept-rappott; 17 p.<br />

,%WART$, L. and WMINK, J.. 1984. Bow oystercatcher and Curlews<br />

successively deplete clams. In Evans. P.R., Coss-Custard, J.D.<br />

and Hale, W.G. (Eds.) Coastal waders and Wildfowl <strong>in</strong> w<strong>in</strong>ter.<br />

Cambridge University Press, Cambridge, p. 69-83.


PISCIVORES<br />

Litfle Grebe<br />

Great Crested Grebe<br />

Black-necked Grebe<br />

cormorant<br />

Grey Berm<br />

sew<br />

Red-breasted Merganser<br />

Gooijande r<br />

(Tachybaptus ruficallis)<br />

(Podiceps cristatus)<br />

(Podiceps ni~ricollis)<br />

(Phalaerocorar carbo)<br />

(drdea c<strong>in</strong>erea)<br />

Wrgug albellus)<br />

(Menergus serrator)<br />

(Mersus merganser)<br />

Mute Swan<br />

Bewick's Swan<br />

Bean Goose<br />

Whire-fronced Wose<br />

Greylag Goose<br />

mrnaele Goose<br />

Brent Gouse<br />

Wigeon<br />

Teal<br />

Mallard<br />

P<strong>in</strong>tail<br />

shoveler<br />

Gudwall<br />

coor<br />

Pschard<br />

(cygnus olor)<br />

(Cygnus colw6arius)<br />

(heer fabalis)<br />

(Anaer albifrons)<br />

(Anser anser)<br />

(Branta leucopsis)<br />

(Branta berniclal<br />

(Anas penelope)<br />

(AnaB crecra)<br />

(Anas platyrhynchos)<br />

(Anas acuta)<br />

(Anas clypeata)<br />

(Anas strepera)<br />

(Fulica afra)<br />

(Aythya fer<strong>in</strong>a)


(WADERS AND SHELDUCK)<br />

Sheldock<br />

Oystercatcher<br />

dvocet<br />

R<strong>in</strong>ged Plover<br />

Kentish Plover<br />

Oolden Plover<br />

Grey Plover<br />

Lapw<strong>in</strong>g<br />

K,l@ t<br />

Sanderl<strong>in</strong>g<br />

D u n U<br />

Xuf f<br />

Bar-tailed Godwit<br />

Curlew<br />

Spotted Redshank<br />

Redshank<br />

Greenshank<br />

Twtone<br />

(Tadorna tadorna)<br />

(Haematopus ostralegus)<br />

(Recnrvirostra avosettaf<br />

(Charadrius hiaticula)<br />

(Charadrius alexandrlnus)<br />

(Plwialfs apricaria)<br />

(Plwialis squataroia)<br />

(Vanellus vanellus)<br />

(Calidris canutus)<br />

(Calidris a16a)<br />

(Calidris alp<strong>in</strong>a)<br />

(Philomehus pugnax)<br />

(Limosa lapponica)<br />

(Nmenius arquata)<br />

(Tr<strong>in</strong>ga erythropus)<br />

(Tr<strong>in</strong>ga totanus)<br />

(Tr<strong>in</strong>ga nebularia)<br />

(Arerraria <strong>in</strong>terpres)<br />

(DTVIIiG DlJClls)<br />

Tufted Duck<br />

Cornman Scoter<br />

Goldeneye<br />

(Aythya fuligula)<br />

(Melnitta nigra)<br />

{Bucepbala clangula)<br />

OMNIVORES (GLJLLS)<br />

Black-headed Gull<br />

Comn Gull<br />

Herr<strong>in</strong>g Gull<br />

Great Black-backed Gull<br />

(Larus ridibundus)<br />

(Larus canus)<br />

(Larus argentatus)<br />

(Larus mar<strong>in</strong>us)


IPYBRO-EGOLOOIOAL BELATIONB ZN THE DELTA WATERS 08 TKE SOUTH-WEST<br />

NFm-s<br />

C.W.<br />

Iedema<br />

The Deltii Pruject ha* taught us a great deal abont <strong>the</strong> ecologied<br />

<strong>relations</strong> between <strong>the</strong> <strong>in</strong>dividual waters af <strong>the</strong> <strong>Delta</strong> and bemen <strong>the</strong><br />

waters bf <strong>the</strong> <strong>Delta</strong> wd <strong>the</strong> Earth Sea md <strong>the</strong> major risers. In a<br />

number of <strong>in</strong>stances <strong>the</strong> knowledge ga<strong>in</strong>ed could directly be translated<br />

<strong>in</strong>to terme of allscation and management measurdtr. In o<strong>the</strong>r easa<br />

valuable lessaw were learned for preeent ar future -gemant. In dl<br />

cases it became clear that ie <strong>the</strong> context of compartqentalization,<br />

allocation plm aud management should pr*mily be gewed to<br />

supervis<strong>in</strong>g <strong>the</strong> reaulc<strong>in</strong>g processes of chqe. The object is to make<br />

optislaL use of <strong>the</strong> porential of <strong>the</strong> <strong>in</strong>diskdual systems as chey relate<br />

to one ano<strong>the</strong>r. This paper pzwidea a brief suldmary of <strong>the</strong> lessons to<br />

be learned £rose prwious studies.<br />

One of <strong>the</strong> most important lessons learned from <strong>the</strong> Belta Project, and<br />

one which has been learned elsewhere too, is that it is fatal to<br />

attempt to fight nature. Victories often turn out to he Pyrrhic. The<br />

battle sga<strong>in</strong>at <strong>the</strong> vaters must he waged. but <strong>in</strong> =&=h a way tbat osture<br />

is on man's aide. b e should learn from nature, ra<strong>the</strong>r than try to<br />

teach nature a lesson. Exsmples can he found <strong>in</strong> <strong>the</strong> <strong>Delta</strong> region of<br />

how, <strong>in</strong> this way, an Sncrease <strong>in</strong> ssfety can be ~~mh<strong>in</strong>ed with <strong>the</strong>


develwpment of last<strong>in</strong>g and valuable systemnr. This should wt be<br />

<strong>in</strong>terpreted as a licence to compartmentalize estuaries and to create<br />

polders <strong>in</strong> coastal areas. V we have learned one th<strong>in</strong>g, it is that<br />

estuar<strong>in</strong>e systems are precious and irreplaceable, both <strong>in</strong> ad<br />

<strong>ecological</strong> and aa ecoMmic sense. Estuaries are by nature highly<br />

productive and dyllamlr systems. Adequate protection of <strong>the</strong>se area*<br />

aga<strong>in</strong>st pollution, over-exploitation and o<strong>the</strong>r detrimental<br />

<strong>in</strong>flames can provide a last<strong>in</strong>g guarantee for such assets.<br />

The c~npartmenralization of <strong>the</strong> <strong>Delta</strong> had taught us that this is no<br />

matter of course <strong>in</strong> <strong>the</strong> case of <strong>the</strong> thus created waters. The<br />

developments, which this process triggered off, require close<br />

supervision if <strong>the</strong>se newly-formed waters are to achieve <strong>the</strong>ir full<br />

potential, and <strong>the</strong>se new <strong>Delta</strong> waters do <strong>in</strong>deea have <strong>the</strong> potential to<br />

develop <strong>in</strong>to valuable systems.<br />

The nacural relacions <strong>in</strong> che <strong>Delta</strong> have been upset. However, it has<br />

been replaced by new <strong>relations</strong>. In some cases this has happned on a<br />

fairly lbited scale, whereas <strong>in</strong> o<strong>the</strong>rs an entirely new natural basis<br />

has been created. Natural relsti~ns are no lwger taken for granted.<br />

Instead it must be taken for granted that an attempt will he made<br />

wherever possible to manage <strong>the</strong> <strong>Delta</strong> <strong>in</strong> its present form as a s<strong>in</strong>gle<br />

coherent whole. The lessons which have been learned up tb now. and<br />

which have been dealt with extensively <strong>in</strong> previous chapters, can help<br />

ta guide this process.<br />

The build-up of silt and pollutants are processes with which <strong>the</strong><br />

Ne<strong>the</strong>rlands, as a delta-country, is em<strong>in</strong>ently familiar. This problem<br />

has also affeceed <strong>the</strong> <strong>Delta</strong> of <strong>the</strong> South-West Nerherlands, and <strong>the</strong><br />

follow<strong>in</strong>g lessons have been learned:<br />

- Upstream pollution results <strong>in</strong> <strong>the</strong> build-up of pollueants <strong>in</strong><br />

d6wnstrsam sedimentatibn areas with serious detrimental effeets cm<br />

<strong>ecological</strong> development and economic potential (e.g. pollution of<br />

eels). This process is be<strong>in</strong>g re<strong>in</strong>forced by dsuun<strong>in</strong>g up <strong>the</strong><br />

downstream areas at one side. Therefore dadng up cannot be seen


apart from upstream purification;<br />

- h natural estuaries, azeas of sedimentation - lnud flats and salt<br />

marshes - are usually <strong>the</strong> most valuable areea. Theg aw accard<strong>in</strong>gly<br />

exceptionally susceptible to pollution, as <strong>in</strong> <strong>the</strong> case of 'Het Land<br />

van Saeft<strong>in</strong>ghe'. Attempts to clean upstream should <strong>the</strong>rdore at <strong>the</strong><br />

very leasr be directed at safegwd<strong>in</strong>g <strong>the</strong> natursl richer; of <strong>the</strong>se<br />

sedimntatlon areas;<br />

- Compartmentalizatiun eau be used to conf<strong>in</strong>e accumulation of<br />

pollutants to a rescricted, manageable area. This protects o<strong>the</strong>~<br />

areas from pollution &nd accompany<strong>in</strong>g problems. Wiahent<br />

compartmentalization a camiderable parr of <strong>the</strong> severely<br />

coutam<strong>in</strong>a0ed silt, n w present as sedimentation <strong>in</strong> <strong>the</strong> Hollands<br />

Diep and Har<strong>in</strong>grrliet, would have entered <strong>the</strong> coastal waters and <strong>the</strong><br />

Wadden 6ea. So compartmentaliration could also be applied<br />

especially for this purpose, harever, as an <strong>in</strong>terim measure <strong>in</strong><br />

comb<strong>in</strong>ation with efforts to clean up pollution.<br />

3 DOWNS'J!XUM FRESH WATER EUTROPRZCATION<br />

Besides be<strong>in</strong>g ezceptianally vulnerable EO pollution, <strong>the</strong> semi-stagnant<br />

freshwater bas<strong>in</strong>s sltnated do*astream are also <strong>in</strong>creas<strong>in</strong>gly<br />

susceptible ta eutrophication. iieretw, upstream purification is<br />

necessaxy for responsible compartmentalizatian. At <strong>the</strong> same time,<br />

however, <strong>the</strong> scope for management <strong>in</strong>creases:<br />

- A major factor affect<strong>in</strong>g heightened snsceptibility to<br />

eutrophication is <strong>the</strong> <strong>in</strong>crease <strong>in</strong> <strong>the</strong> residence time oi water. The<br />

organization of <strong>the</strong> watemnanagement <strong>in</strong>frastructure, <strong>in</strong> such a way<br />

that <strong>the</strong> residence times can be reduced to a euffioient degree, is<br />

an important management aid;<br />

- Eutrophication priaariLy resnlts from an excess aE nutrients. One<br />

of <strong>the</strong> facters affect<strong>in</strong>g <strong>the</strong> way <strong>in</strong> which nutrients paas thtcueh an<br />

aquatic ecosystem is <strong>the</strong> latter's structure, and this creates scope<br />

for esntroll<strong>in</strong>g such systems, partioulazly <strong>in</strong> <strong>the</strong> early stages of<br />

development, as <strong>in</strong> <strong>the</strong> case of <strong>the</strong> Zomeer, Ecological parasleters<br />

must be set fsr <strong>the</strong> establishment and develop~nent of rich, divers<br />

biocoenoses eharacteriscics of clear water rich <strong>in</strong> nutrients.


Crucial here is <strong>the</strong> presence of extensive, protected shallows.<br />

Manageability of fish stocka should be lrentral to policy. Simply<br />

grant<strong>in</strong>g fish<strong>in</strong>g rights to anglers and fishermen, frustrate<br />

atzeqts to combat eutropkieation directly by means of active<br />

biological oiutagEment. Suceess is conditional on <strong>the</strong> management of<br />

fish stocks be<strong>in</strong>g <strong>in</strong>cgrporated <strong>in</strong>to water quality management.<br />

Salwte* entraphication <strong>in</strong> different frotn freshwater wtrophication,<br />

althongk closed, stagnant salt waters also have a greater<br />

susceptibility to eutrophication. One of <strong>the</strong> ma<strong>in</strong> differences is that<br />

<strong>in</strong> <strong>the</strong> case of salt water often nitrogen is <strong>the</strong> limit<strong>in</strong>g factor and<br />

nitrification is <strong>the</strong> key process. In response to this <strong>the</strong> Eollow<strong>in</strong>g<br />

managewant measures can be taken:<br />

- Excessive levels of nutrients <strong>in</strong> stagnant, sal<strong>in</strong>e systems are<br />

chiefly regional <strong>in</strong> orig<strong>in</strong>. In p~<strong>in</strong>eiple this provides scppe f ~ r<br />

gear<strong>in</strong>g nlltrient levels to <strong>the</strong> <strong>in</strong>dividual eapacity of a system. At<br />

its present level, <strong>the</strong> channell<strong>in</strong>g of nutrient-rich polder water<br />

<strong>in</strong>to <strong>the</strong> tidal systems does not lead to undesirable affects<br />

associated with wtmphicat-lon. The channell<strong>in</strong>g to ttre Ea6tern<br />

Scheldt of <strong>the</strong> polder water currently teleased <strong>in</strong>to <strong>the</strong> Veerse<br />

Wer, for example, i4 even expected to hr<strong>in</strong>g about a slighr rise <strong>in</strong><br />

productivity. The ma<strong>in</strong> objective, <strong>in</strong>cidentaliy, cont<strong>in</strong>ues to be <strong>the</strong><br />

improvement af polder water quality, not <strong>in</strong> <strong>the</strong> Least because of<br />

present pollution levels;<br />

- Besides adaptirrg nutrient levels to <strong>the</strong> system, it is necessary to<br />

create sufficient scope for <strong>in</strong>term<strong>in</strong>gl<strong>in</strong>g with salt tidal waters if<br />

stagnant, sal<strong>in</strong>e systems are to develop. Besides <strong>the</strong> significance<br />

of sal<strong>in</strong>ity as euch aa m <strong>ecological</strong> determ<strong>in</strong>ant, this approach<br />

permits regulation of <strong>the</strong> nutrient balance. Surplus nutrients and<br />

organic matter ean be &ra<strong>in</strong>ed<br />

off and <strong>the</strong> likelihood of<br />

stratification can be reduced. That this latter phenomenon is<br />

rmportant is illustrated by <strong>the</strong> Veerse Meer. where srratitiaatien<br />

has been Eamd to exacerbate <strong>the</strong> current prablenns of<br />

eutropllication;


Storm surge barrier Eastern Scheldt


Recreation on Lake Vee~e<br />

e<br />

Shore protection Har<strong>in</strong>gvliet


- In addition to exist<strong>in</strong>g management measures, <strong>the</strong>re may well be<br />

future scope for a creative nespome to <strong>the</strong> ways <strong>in</strong> wbicb salt,<br />

stagnant lakes function. Such steps might <strong>in</strong>clude <strong>in</strong>creas<strong>in</strong>g<br />

denitrification <strong>in</strong> erde~ to remom nitrogen from <strong>the</strong> system. Thi8<br />

might be achieved by <strong>in</strong>flueno<strong>in</strong>g nirrifieation and denitrification<br />

processes <strong>in</strong> <strong>the</strong> bed by meam of stratification. Ano<strong>the</strong>r<br />

possibility Would 6e to make use sf <strong>the</strong> natural process, whereby<br />

organisms which <strong>in</strong>habit <strong>the</strong> salt lake bed act as an essential<br />

fater <strong>in</strong> <strong>the</strong> regulation of nutrients. The passibilit~ pf us<strong>in</strong>g<br />

sui3 organisms as an active policy irtstrument could be<br />

<strong>in</strong>vestigated.<br />

The water <strong>in</strong> <strong>the</strong> <strong>Delta</strong> sues its major significance to <strong>the</strong> marpholegy<br />

of <strong>the</strong> bas<strong>in</strong>s. The hydraulia conditions of <strong>the</strong> tidal waters have given<br />

rise to a m~rphological structure and dynamics, which contribute to<br />

<strong>the</strong> probuctlvify iard diversity of <strong>the</strong>se regions. Gomparmentalization<br />

hs9 sparked af* a process of ~lorphol~&iical change, which will lead to<br />

mme UdEaoourable donditions <strong>in</strong> <strong>the</strong> clesed compartme?ats. On <strong>the</strong> othsz<br />

hma, <strong>the</strong> morpholog%eal changes along <strong>the</strong> coast - <strong>the</strong> creation of <strong>the</strong><br />

Voordella - shwld he regarded <strong>in</strong> a favortlable light, because:<br />

- The morphhetry Of estaaries provideo an ideal start<strong>in</strong>g po<strong>in</strong>t fa:<br />

mmimiir<strong>in</strong>g <strong>the</strong> developent potential of campartmentalized syst-ems.<br />

This applies paftlcnlarly to tbt peesenee of lac:@ areas of<br />

shallows and <strong>the</strong>ir gradual transition to t b hanks. It is essential<br />

to preselnre <strong>the</strong> morphwetry of such areas as much as posp~ihle if<br />

<strong>the</strong>ir potential is to be exploited. Considetable experience has<br />

been amassed <strong>in</strong> <strong>the</strong> <strong>Delta</strong> <strong>in</strong> <strong>the</strong> constructian of out@? hank<br />

defences;<br />

- It is possible to create new and valuable areas through <strong>in</strong>fluenc<strong>in</strong>g<br />

processis of seclireantation and erosion. Tha Voordelta is a good.<br />

albeit un<strong>in</strong>tentional, example of this. Sowever, it shoatd be<br />

poaslble, given present know-har and experience, consciously to<br />

create snch as by work<strong>in</strong>g <strong>in</strong> harmwny with nat.ural processes and<br />

eseahIishFng <strong>the</strong> right parsmeters. In lipe with this approach, ways<br />

are cuzrently be+<br />

<strong>in</strong>vestigated of <strong>in</strong>fluensisg mud flat and salt


marsh development <strong>in</strong> <strong>the</strong> east of <strong>the</strong> Western Scheldt.<br />

Just as <strong>in</strong> <strong>the</strong> case of morphologi~al developments, natural<br />

developxcents often take place on a time scale which far exceeds ehe<br />

term of <strong>the</strong> average government. This is particularly important <strong>in</strong> <strong>the</strong><br />

case of natural developments, because O~WOIIS of <strong>the</strong> desired course<br />

of such developments are subject to change. Bowever, this concerns not<br />

sa ioch <strong>the</strong> ecelogical conditions, which have been dealt with earlier,<br />

hnt ware <strong>the</strong> management and policy choices which affeet natural<br />

developaent. This applies particularly to former <strong>in</strong>tertidal areas.<br />

To date natural devel6pmenta <strong>in</strong> rhe <strong>Delta</strong> have sometimes faced us with<br />

unexpected situations. Although naru mre is knm of <strong>the</strong> directions <strong>in</strong><br />

which nacure can develop, it is important to be aware that <strong>the</strong> future<br />

may still hold surprises <strong>in</strong> this respect. S<strong>in</strong>ce hug-term developments<br />

are <strong>in</strong>volved, it is important to guard aga<strong>in</strong>st phas<strong>in</strong>g <strong>the</strong> successive<br />

stages too rigidly and aga<strong>in</strong>st try<strong>in</strong>g to steer <strong>the</strong>m too qnicklr <strong>in</strong> a<br />

certa<strong>in</strong> direction.<br />

Water meaagemeqt rewbs a key confro1 element iu natural development,<br />

especially tn areas along <strong>the</strong> banks. It is clveial to ma<strong>in</strong>ta<strong>in</strong> not<br />

only <strong>the</strong> quihity, but particularly <strong>the</strong> level of <strong>the</strong> vatar. nspits<br />

this fact, <strong>in</strong> almost no <strong>Delta</strong> area wat~rlavelmanageaeut is geared to<br />

natural development. This is due KO orher secid <strong>in</strong>terests hav<strong>in</strong>g been<br />

taken WO considmation. In <strong>the</strong> damstream freshwater areas of <strong>the</strong><br />

<strong>Delta</strong>, <strong>the</strong> potential for natural develapment would be optimally<br />

fur<strong>the</strong>red by waterlevel mmagement, which reflected <strong>the</strong> nacural rise<br />

and fall of waterlevels <strong>in</strong> downstream areas. In <strong>the</strong> case of <strong>the</strong> salt<br />

lakes of <strong>the</strong> Dslta this is leas clear-out. The best approach is<br />

probably to ma<strong>in</strong>ta<strong>in</strong> a standard level, with brief periods of flood<strong>in</strong>g<br />

<strong>in</strong> w<strong>in</strong>ter. Howeven, <strong>in</strong> <strong>the</strong> event of a review of or change <strong>in</strong><br />

waterlevel-ent great weight shanld 4e attached so <strong>the</strong> qatural<br />

development factor.


Nature is pliable. Belattvely young and dyndc areas offer particuiar<br />

scope for pasifive <strong>in</strong>fluence of natural. development. Such possibilities<br />

must. however, be recognized. Reference was m&de earlier to <strong>the</strong><br />

creation 02 md flats and salt marshes through tbe control of<br />

processes of sed3mentatiorn and erosion. An6<strong>the</strong>r poasibilitg might ile<br />

<strong>in</strong> <strong>the</strong> hydrology of <strong>the</strong> areas with<strong>in</strong> <strong>the</strong> dykes. The dyk<strong>in</strong>g <strong>in</strong> OX xh~d<br />

flats and salt marshes 6as resulted <strong>in</strong> <strong>the</strong> loss of many sal<strong>in</strong>e areas.<br />

At <strong>the</strong> same rime <strong>the</strong> consttuction of dykes strongly reduced <strong>the</strong><br />

potential for <strong>the</strong> ra-rgence of new sal<strong>in</strong>e aims. Uithont wishiw to<br />

add new land to <strong>the</strong> list of "Eet Verdronken Land van ........." *l,<br />

use could be made of <strong>the</strong> scmpe for prowt<strong>in</strong>g <strong>the</strong> estzblishnrent of new<br />

sal<strong>in</strong>e areas with<strong>in</strong> <strong>the</strong> &ykess, for example <strong>in</strong> poldera which are now<br />

alraady margM for agriculture.<br />

7 FODD ECOLOGY CONNECTIONS: BIDS<br />

The <strong>Delta</strong> is an important "Fill<strong>in</strong>g statlon" for birds, and must reraa<strong>in</strong><br />

so. In <strong>the</strong> context of nature coneervation and <strong>the</strong> wxse use of<br />

wetlands, this is one of our mst important <strong>in</strong>ternational<br />

responsibilities hexe <strong>in</strong> <strong>the</strong> <strong>Delta</strong>.<br />

Besides supervis<strong>in</strong>g khe changisg <strong>ecological</strong> parrnters, dealt with<br />

atenaively earlier, mttnagement and policy should be geared to<br />

regulate <strong>the</strong> chang<strong>in</strong>g use of such areas bg <strong>the</strong> general public as a<br />

result of greater a~ce~sibility. Particular atteatien will have to be<br />

gioen to resfric'tisg <strong>the</strong> disrurbanee caused by recreatirmal<br />

actiulties. O<strong>the</strong>r, relaced po<strong>in</strong>ts will however eIso require conside-<br />

raeiaq, such as llntit<strong>in</strong>g food competition result<strong>in</strong>g from fia<strong>in</strong>g.<br />

On <strong>the</strong> o<strong>the</strong>r haus, public support fm certa<strong>in</strong> rwirsures will <strong>in</strong>creiwe<br />

if people can see for th-ekes haw valuable such areas are.<br />

*) "tbe drowned Land of . . . . . . . . . . ."


The best approach would sew to be to provide restricted but ta~geted<br />

admission, for example by build<strong>in</strong>g hides and provid<strong>in</strong>g effecrfve<br />

public <strong>in</strong>fornation.<br />

Compartmentaliaation has sharply <strong>in</strong>creased <strong>the</strong> diversity of habitars.<br />

As a result, <strong>the</strong> <strong>in</strong>dividual system$ are characterised by deferent<br />

bird populatiow. 5-<br />

syeteae are 6tiI1 <strong>in</strong> a state of transition.<br />

Sandvich terns, fmr example. still breed <strong>in</strong> €he Greuel<strong>in</strong>gemeer area,<br />

whereas <strong>the</strong> type of bare ground required by <strong>the</strong>se birds for nest<strong>in</strong>g<br />

purposes is <strong>in</strong>creas<strong>in</strong>gly disappear<strong>in</strong>g from<strong>the</strong> region through natural<br />

causes. Although <strong>the</strong> presence ol this specias ma7 be extremely important<br />

to local nature conservationists, one mwst try and avoid mak<strong>in</strong>g<br />

desperate ef3orts tQ fry to keep certa<strong>in</strong> species <strong>in</strong> areas which are<br />

actually no longer suited to <strong>the</strong>m. A more sens%ble approach would be<br />

to try t6 re<strong>in</strong>force <strong>the</strong> characteristics peculiar to each <strong>in</strong>dividual<br />

system.


Ro. 1.<br />

No. 2.<br />

SQ. 3.<br />

Investigations <strong>in</strong>to <strong>the</strong> water balance of <strong>the</strong> Rottegatspolder.<br />

The water supply for craps I.<br />

Obsemvations of groundwater levels.<br />

Investigations by $ra<strong>in</strong> gauges <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands.<br />

me water supply for crops 11.<br />

The problem of <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g sal<strong>in</strong>ity of ground and SutfaCe<br />

vat& <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands.<br />

Proceed<strong>in</strong>gs of Tecbuieal Meet<strong>in</strong>gs 1-6 (with s~lthlties <strong>in</strong><br />

English), 1952.<br />

The study of precipitation data.<br />

Model reeearch on groundwater flows.<br />

Measurements and improvement works <strong>in</strong> bas<strong>in</strong> of brooks.<br />

Oeo-electrical research.<br />

Proceedtn@ of Technical Meet<strong>in</strong>gs 7-10, and<br />

Report on <strong>the</strong> evaporatian research <strong>in</strong> <strong>the</strong> Rottegatsaolber<br />

1947-1952 (with solmsaries <strong>in</strong> English), 1955.<br />

The water supply of sandy soils.<br />

pualisy requirements far surface waters.<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>gs 11-12 (with aumoqaxies <strong>in</strong><br />

English), and<br />

Reprt on <strong>the</strong> Lysimeters <strong>in</strong> t&e Ne<strong>the</strong>rlands I (<strong>in</strong> %&ish),<br />

1958.<br />

No. 4. *) Evaporation Symposim and<br />

Report on <strong>the</strong> tysimeters <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rland5 IL (with eaies<br />

<strong>in</strong> English). 1959.<br />

*) Gut of pr<strong>in</strong>t.<br />

No. 5.<br />

No. 6.<br />

Groundwater levels and grsundwater wement <strong>in</strong> <strong>the</strong> sandy<br />

areas of <strong>the</strong> Wethmlwds.<br />

Water <strong>in</strong> uwaturate4 soil.<br />

Procacd<strong>in</strong>gs of Tedmical Meet<strong>in</strong>gs 13-1b (with SMsnaries <strong>in</strong><br />

English), 1960.<br />

The regime of <strong>the</strong> Uh<strong>in</strong>e, eh& Psselmeer and Zeelasd Lake.<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 15 (with summaries <strong>in</strong> EnglisR<br />

and French), 1961.<br />

NO. 7. Tbe dry year 1959.<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 16 (with smtmaties <strong>in</strong><br />

English). 1962.<br />

No. 8.<br />

The laws of groundwater Slow and <strong>the</strong>ir application <strong>in</strong> practice,<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 17 (with smmnaries <strong>in</strong><br />

English). 1963.


No. 9.<br />

Water nuisanc*.<br />

Proceed%ngs of Technical Meet<strong>in</strong>g 18 (with smries <strong>in</strong><br />

English). 1963.<br />

No. 10. Steady flow of groundwater twa~de wells.<br />

Compiled by <strong>the</strong> ltgdrologisch Colloguilmr (<strong>in</strong> English), 1961r.<br />

No. 11.<br />

No. 12.<br />

No. 13.<br />

Geobpdrological cartography.<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 19 (with summaries fii French<br />

and Geman), 1964.<br />

Water balance studies.<br />

Prqceed<strong>in</strong>gs 05 Technical &eet<strong>in</strong>g 20 (<strong>in</strong> English), 1966.<br />

Recent trends <strong>in</strong> hydrograph syn<strong>the</strong>sis.<br />

Proaeed<strong>in</strong>gs of Technicsrl Meeag 21 (<strong>in</strong> English). 1966.<br />

go. 14.<br />

No. 15.<br />

Precipitation data (11) and<br />

Report on <strong>the</strong> Lysimerers <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands (111)<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 22, Cvlth suromaSe6 <strong>in</strong><br />

English) 1968.<br />

Soil - water - plant.<br />

(h Znglish) , 1969.<br />

#Q. 16. Bpdrological <strong>in</strong>vestigations .for masterplan for <strong>the</strong> future<br />

watersupply <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands.<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 29 (with sumaries <strong>in</strong><br />

English). 1975.<br />

No. 17. Auromatfc process<strong>in</strong>g of h~drological data.<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 25 (<strong>in</strong> Emlish), 1973.<br />

Ns. 18. Eydraulic research for uatar laanagement.<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 26 (<strong>in</strong> English), 1974.<br />

WO. 19. The hydrological <strong>in</strong>vestigation programme <strong>in</strong> Salland<br />

(The Ne<strong>the</strong>rlands).<br />

Procaed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 27 (<strong>in</strong> English). 1974.<br />

Na. 20.<br />

MO. 21.<br />

Salt dietributian <strong>in</strong> estuaries.<br />

Proceediags ef Technical Meet<strong>in</strong>g 30 (<strong>in</strong> English, 1976.<br />

Groundwater pollution,<br />

Proceed<strong>in</strong>g% of Technical Meet<strong>in</strong>g 31 (<strong>in</strong> English), 1976.<br />

N0. 22. Systems agproach to <strong>the</strong> managemant of water resources.<br />

Eioceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 32 (vlth suromaries <strong>in</strong><br />

English). 1976.<br />

No. 23.<br />

No. 24.<br />

Precipitation and measurements of precipitation.<br />

Procead<strong>in</strong>gs of Tecturical Meet<strong>in</strong>g 33 (<strong>in</strong> English), 1977.<br />

Urbanization and water management.<br />

Proceed<strong>in</strong>g@ of Technical Meetfng 34 (<strong>in</strong> English). 1978.


25. The relation between water quantity and water quality <strong>in</strong><br />

studies of surface waters.<br />

P~oceed<strong>in</strong>gs of Technical PLeet<strong>in</strong>g 35 (<strong>in</strong> English), 1979.<br />

26. Eeaearcb an possible change* <strong>in</strong> <strong>the</strong> discrLhuriou of =l<strong>in</strong>e<br />

seepage <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands.<br />

Prnceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 36 (<strong>in</strong> English]. 1980.<br />

No.<br />

No.<br />

NO.<br />

27. Water resources menagament on a regional scale.<br />

Prsceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 37 (<strong>in</strong> Fagfish), 1981.<br />

28. Evaporation <strong>in</strong> relation to hy4mlogy.<br />

ProceedZngs of Technical Meet<strong>in</strong>g 38 (<strong>in</strong> English). 1981.<br />

29a. Pality analysis for &e national water mnagement of<br />

<strong>the</strong> Ne<strong>the</strong>rlands.<br />

Background papers for Technical Meet<strong>in</strong>g 39 (<strong>in</strong> Engliah), 1982.<br />

(Ne<strong>the</strong>rhds! contributiorw, related to <strong>the</strong> PAW-Mudy, for <strong>the</strong><br />

ECE-sem<strong>in</strong>ar-1980.)<br />

2%. Economic Ustruments for rafiohll utilization of water<br />

resources.<br />

Ne<strong>the</strong>rlaads contributions, nm related to <strong>the</strong> PAW-study, Tor<br />

<strong>the</strong> ECE-sam<strong>in</strong>ar-1982 (<strong>in</strong> English), 1B2.<br />

No.<br />

No.<br />

30. The role of hydrology <strong>in</strong> <strong>the</strong> United Natims Water Decade.<br />

Proaeed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 40 (<strong>in</strong> English), 19S3.<br />

31. Methods and <strong>in</strong>strumentation for <strong>the</strong> <strong>in</strong>vestigation of groundwater<br />

systems.<br />

Prooeed<strong>in</strong>gs of isternatienal ~osiran, Noordwig kerhout .<br />

The Ne<strong>the</strong>rlands (<strong>in</strong> En&lisb, vfrh summaries <strong>in</strong> Brench). 1983.<br />

32.*) Flam<strong>in</strong>g of Water Resources Management on a Regtonal Seale.<br />

Proceed<strong>in</strong>gs of Technical Meet<strong>in</strong>g 41 (with Prefaae <strong>in</strong> English),<br />

1985.<br />

*) Qut of pr<strong>in</strong>t.<br />

NO.<br />

Ns.<br />

33. Wacar <strong>in</strong> Urban uleas.<br />

Proceed<strong>in</strong>gs of Technical Met<strong>in</strong>g 42 (<strong>in</strong> English). 1985.<br />

34. Water management <strong>in</strong> relation to Nature, Forestry and Landsciyle<br />

knagement.<br />

Proceed<strong>in</strong>gs of Teehnlel Beet<strong>in</strong>g 43 CSn English). 1986.<br />

35. Design aspects of Bydrological Networks.<br />

Published with support of <strong>the</strong> World Meteatological Organiaation<br />

(<strong>in</strong> Engliah), 1986.<br />

36. Urban storm water quality and effects upon receiv<strong>in</strong>g waters.<br />

Proceed<strong>in</strong>gs of International tonference. Wagen<strong>in</strong>gen,<br />

The Ne<strong>the</strong>rlanas (14 English), 1986.


No. 37.<br />

No. 38.<br />

No. 39.<br />

No. 40.<br />

No. 41<br />

Water <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlaods.<br />

Repx<strong>in</strong>t of special issue CHO-TNO 194&I486 with dnnex SeIection<br />

of current topics, (<strong>in</strong> Engliahl. 198'9.<br />

Vulnerability of soil and groundwater to p0llntants.<br />

Proceed<strong>in</strong>gs of <strong>the</strong> International Conference, Noardvijkerh~ut,<br />

<strong>the</strong> Ne<strong>the</strong>rlands, organi~ed by <strong>the</strong> National EttstlNte of Public<br />

Health and Envirosmental Rygiene (<strong>in</strong> Esgltsh) , 1987.<br />

Evaporation and wea<strong>the</strong>r.<br />

Proceed<strong>in</strong>gs of TecMcai PIeet<strong>in</strong>g 44 t<strong>in</strong> E%Lish), 1987.<br />

Georhewal emgy and heat storsge <strong>in</strong> aquifers.<br />

Proceed<strong>in</strong>gs o& Tecbical -t<strong>in</strong>& 45 (Tcl Emish), 1988.<br />

Ilpdro-ecolpgiCg1 <strong>relations</strong> <strong>in</strong> <strong>the</strong> Delea TSaters of th~ South-West<br />

Ne<strong>the</strong>rlands.<br />

Proceed<strong>in</strong>gs of Techniaal Meet<strong>in</strong>g 46 (<strong>in</strong> English), 1489.<br />

All repart* are written <strong>in</strong> Enelish except reports nos.:<br />

l, 8 9 l 4 16, 22, 32.<br />

For order and price <strong>in</strong>formation:<br />

mo-TNO<br />

P.O. &ox ees<br />

2501 Bp TH& lL4CVE<br />

Tfie Ne<strong>the</strong>rlands

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!