28.10.2014 Views

Drug Dosing in Renal Insufficiency - Philippine College of Physicians

Drug Dosing in Renal Insufficiency - Philippine College of Physicians

Drug Dosing in Renal Insufficiency - Philippine College of Physicians

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Drug</strong> <strong>Dos<strong>in</strong>g</strong> <strong>in</strong><br />

<strong>Renal</strong> <strong>Insufficiency</strong><br />

Coralie Therese D. Dimacali, MD<br />

<strong>College</strong> <strong>of</strong> Medic<strong>in</strong>e<br />

University <strong>of</strong> the Philipp<strong>in</strong>es<br />

Manila


Declaration <strong>of</strong> Conflict <strong>of</strong> Interest<br />

•For today’s lecture on <strong>Drug</strong><br />

<strong>Dos<strong>in</strong>g</strong> <strong>in</strong> <strong>Renal</strong> <strong>Insufficiency</strong>, I<br />

declare that I have no potential<br />

conflict <strong>of</strong> <strong>in</strong>terest.


Objectives<br />

• Discuss the effects <strong>of</strong> impaired kidney<br />

function on drug pharmacok<strong>in</strong>etics<br />

• Describe the pr<strong>in</strong>ciples <strong>of</strong><br />

pharmacotherapy <strong>in</strong> patients with renal<br />

disease<br />

• Calculate drug dosages for patients with<br />

renal <strong>in</strong>sufficiency


Oral<br />

absorption<br />

Parenteral drug<br />

adm<strong>in</strong>istration<br />

Bioavailability<br />

Liver<br />

First-pass effect<br />

Systemic<br />

Circulation<br />

Prote<strong>in</strong>-bound<br />

Free<br />

Elim<strong>in</strong>ation<br />

Kidneys<br />

Parent drug<br />

Active / Inactive<br />

metabolites<br />

Tissue receptor<br />

action


<strong>Drug</strong> Pharmacok<strong>in</strong>etics<br />

• Bioavailability<br />

% <strong>of</strong> a drug dose that appears <strong>in</strong> the central<br />

circulation after oral adm<strong>in</strong>istration compared<br />

to the IV route<br />

• <strong>Drug</strong> distribution<br />

• <strong>Drug</strong> metabolism<br />

• <strong>Renal</strong> handl<strong>in</strong>g


Bioavailability <strong>in</strong> <strong>Renal</strong> <strong>Insufficiency</strong><br />

• Decreased drug absorption<br />

Nausea and vomit<strong>in</strong>g<br />

Alkal<strong>in</strong>iz<strong>in</strong>g effect <strong>of</strong> salivary urea<br />

Use <strong>of</strong> PPIs and H 2 -receptor blockers<br />

Use <strong>of</strong> phosphate b<strong>in</strong>ders<br />

Gut edema<br />

Bacterial colonization<br />

Altered <strong>in</strong>test<strong>in</strong>al motility<br />

• Altered hepatic first-pass metabolism


Bioavailability <strong>in</strong> CKD<br />

• <strong>Drug</strong> absorption<br />

Absolute bioavailability rarely altered<br />

There • Reduced: is no quantitative furosemide, p<strong>in</strong>dolol strategy to predict<br />

changes • Increased: for one Beta drug blockers, based dihydrocode<strong>in</strong>e, on data from<br />

dextropropoxyphene<br />

another <strong>in</strong> the same class<br />

Alterations <strong>in</strong> peak concentration (C max ) and<br />

time at which peak concentration is atta<strong>in</strong>ed<br />

(T max )


<strong>Drug</strong> Pharmacok<strong>in</strong>etics<br />

• Bioavailability<br />

• <strong>Drug</strong> Distribution<br />

Volume <strong>of</strong> distribution (V d )<br />

• ratio <strong>of</strong> adm<strong>in</strong>istered dose to the result<strong>in</strong>g plasma<br />

concentration <strong>in</strong> equilibrium<br />

V d =<br />

Dose<br />

Blood concentration<br />

• Useful for predict<strong>in</strong>g load<strong>in</strong>g doses<br />

Plasma prote<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g


Volume <strong>of</strong> distribution (V d ) <strong>in</strong> CKD<br />

• Increased V d<br />

Edema and ascites<br />

Hypoalbum<strong>in</strong>emia<br />

Potentially decrease<br />

plasma drug levels <strong>of</strong><br />

water-soluble and<br />

prote<strong>in</strong>-bound drugs<br />

• Decreased V d<br />

Muscle wast<strong>in</strong>g<br />

Volume depletion<br />

Potentially <strong>in</strong>crease<br />

plasma drug levels <strong>of</strong><br />

water-soluble drugs


Plasma prote<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g <strong>in</strong> CKD<br />

• Acidic drugs have reduced plasma prote<strong>in</strong><br />

b<strong>in</strong>d<strong>in</strong>g due to decreased album<strong>in</strong><br />

concentration and album<strong>in</strong> aff<strong>in</strong>ity<br />

Unbound fractions may <strong>in</strong>crease<br />

• Increased drug toxicity<br />

• Increased drug metabolism<br />

Lower drug plasma concentrations<br />

• Altered prote<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g may decrease T 1/2


<strong>Drug</strong> Pharmacok<strong>in</strong>etics<br />

• Bioavailability<br />

• <strong>Drug</strong> distribution<br />

• <strong>Drug</strong> metabolism


<strong>Drug</strong> metabolism <strong>in</strong> CKD<br />

• Slow<strong>in</strong>g down <strong>of</strong> reduction and hydrolysis<br />

reactions<br />

• Normal rates <strong>of</strong> glucuronidation, sulfation,<br />

S<strong>in</strong>ce there is significant patient variation, no<br />

conjugation and microsomal oxidation reactions<br />

prior assumptions will substitute for careful<br />

• Consider adverse effects <strong>of</strong> pharmacologically<br />

cl<strong>in</strong>ical evaluation.<br />

active metabolites<br />

Seizures from meperid<strong>in</strong>e<br />

Peripheral neuropathy from nitr<strong>of</strong>uranto<strong>in</strong><br />

Respiratory depression from morph<strong>in</strong>e


<strong>Drug</strong> Pharmacok<strong>in</strong>etics<br />

• Bioavailability<br />

• <strong>Drug</strong> distribution<br />

• <strong>Drug</strong> metabolism<br />

• <strong>Renal</strong> handl<strong>in</strong>g <strong>of</strong> drugs


<strong>Renal</strong> handl<strong>in</strong>g <strong>of</strong> drugs<br />

• <strong>Renal</strong> excretion dependent on:<br />

Glomerular filtration rate (GFR)<br />

• Molecular size<br />

• Prote<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g<br />

Tubular secretion<br />

• May compensate for decreased prote<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g<br />

Tubular reabsoprtion<br />

• As rate <strong>of</strong> creat<strong>in</strong><strong>in</strong>e clearance (Cl Cr ) decreases, drugs<br />

dependent on tubular secretion are also excreted more<br />

slowly.<br />

• The Cl Cr is a reasonable estimate <strong>of</strong> GFR and the tubular<br />

capacity for drug excretion.


<strong>Renal</strong> handl<strong>in</strong>g <strong>of</strong> drugs <strong>in</strong> CKD<br />

• Decreased drug clearance<br />

• Prolonged plasma half-life <strong>of</strong> drugs<br />

• Accumulation <strong>of</strong> ‘active’ drug metabolites<br />

• Decreases <strong>in</strong> renal drug metabolism<br />

• Changes <strong>in</strong> drug distribution: prote<strong>in</strong><br />

b<strong>in</strong>d<strong>in</strong>g


<strong>Drug</strong> metabolism and drug<br />

handl<strong>in</strong>g <strong>in</strong> AKI<br />

• Changes <strong>in</strong> metabolism<br />

There are large gaps <strong>in</strong> knowledge <strong>of</strong><br />

Delayed drug metabolism<br />

drug Variable metabolism effect on hepatic and metabolic disposition activity <strong>in</strong><br />

patients with multiorgan dysfunction<br />

• Reduced drug clearance<br />

syndrome, multisystem organ failure<br />

Hypoxia<br />

and Decreased AKI; thus, prote<strong>in</strong> synthesis patients are at risk <strong>of</strong><br />

underdos<strong>in</strong>g and overdos<strong>in</strong>g.<br />

Competitive <strong>in</strong>hibition from medications<br />

Decreased hepatic perfusion


Mathematics <strong>of</strong> drug elim<strong>in</strong>ation<br />

• Total body drug clearance = <strong>Drug</strong> dose<br />

AUC<br />

• <strong>Renal</strong> clearance = Total amount <strong>of</strong> drug <strong>in</strong> ur<strong>in</strong>e<br />

Plasma drug concentration<br />

• <strong>Renal</strong> clearance rate =<br />

Clearance<br />

Sample collection time<br />

• T 1/2 = V d x 0.693<br />

<strong>Drug</strong> clearance


Application <strong>of</strong> Pharmacok<strong>in</strong>etic Parameters<br />

Parameter<br />

Bioavailability (F)<br />

Volume <strong>of</strong> distribution (V d )<br />

Clearance (C)<br />

Half-life (T 1/2 )<br />

Cl<strong>in</strong>ical Application<br />

Determ<strong>in</strong>es amount <strong>of</strong> drug<br />

reach<strong>in</strong>g systemic circulation and<br />

amount at site <strong>of</strong> action<br />

Determ<strong>in</strong>es size <strong>of</strong> a load<strong>in</strong>g dose<br />

Determ<strong>in</strong>es ma<strong>in</strong>tenance dose<br />

Determ<strong>in</strong>es amount <strong>of</strong> time<br />

needed to reach steady-state<br />

serum concentrations


Approach to adjust drug dosage<br />

1. Obta<strong>in</strong> history and relevant cl<strong>in</strong>ical<br />

<strong>in</strong>formation.<br />

2. Estimate GFR.<br />

3. Review current medications.<br />

4. Calculate <strong>in</strong>dividualized treatment<br />

regimen.<br />

5. Monitor.<br />

6. Revise regimen.<br />

KDIGO 2011


Assessment <strong>of</strong> kidney function<br />

• GFR should be standard measure to<br />

evaluate kidney function for drug dos<strong>in</strong>g<br />

purposes<br />

• Cl<strong>in</strong>icians should use the most accurate<br />

method/tool to assess kidney function<br />

for the <strong>in</strong>dividual patient<br />

KDIGO 2011


Estimation <strong>of</strong> GFR and Creat<strong>in</strong><strong>in</strong>e<br />

Clearance<br />

• Cockcr<strong>of</strong>t and Gault<br />

Cl Cr =<br />

(140 – age) x Wt (kg)<br />

S Cr (mg/dl) x 72<br />

x 0.85 (F)<br />

• MDRD Study Equation<br />

GFR = 175.6 x SCr -1.154 x Age -0.203 x 1.212<br />

[black] x 0.742 [female]


Estimation <strong>of</strong> GFR and Creat<strong>in</strong><strong>in</strong>e<br />

Clearance<br />

• CKD-EPI formula<br />

GFR = 141 x m<strong>in</strong>(SCr/κ,1) α x max(SCr/<br />

κ,1) -1.209 x 0.993 Age x 1.159<br />

[black] x 1.018 [female]<br />

κ = 0.7 [females], 0.9 [males]<br />

α = -0.329 [females], -0.411 [males]<br />

M<strong>in</strong> = m<strong>in</strong>imum <strong>of</strong> SCr/κ or 1<br />

Max = maximum <strong>of</strong> SCr/ κ or 1<br />

Age = measured <strong>in</strong> years


Estimation <strong>of</strong> GFR <strong>in</strong> AKI<br />

• No estimat<strong>in</strong>g equations can provide an<br />

accurate estimate <strong>of</strong> GFR <strong>in</strong> AKI<br />

• Timed clearances <strong>of</strong> creat<strong>in</strong><strong>in</strong>e and urea<br />

may be particularly <strong>of</strong> value for AKI<br />

• Measure creat<strong>in</strong><strong>in</strong>e clearance with<br />

<strong>in</strong>corporation <strong>of</strong> mean <strong>of</strong> the beg<strong>in</strong>n<strong>in</strong>g<br />

and end<strong>in</strong>g serum creat<strong>in</strong><strong>in</strong>e value as an<br />

estimate <strong>of</strong> GFR<br />

KDIGO 2011


Goals <strong>of</strong> therapy<br />

• Ma<strong>in</strong>ta<strong>in</strong> efficacy while avoid<strong>in</strong>g drug<br />

accumulation and associated adverse<br />

reactions.<br />

Ma<strong>in</strong>ta<strong>in</strong> peak, trough or average<br />

steady-state drug concentration<br />

Optimize time above the MIC or ratio <strong>of</strong><br />

AUC to MIC


Prescrib<strong>in</strong>g for a patient with renal dysfunction<br />

Ascerta<strong>in</strong> level <strong>of</strong> renal function (% normal Cl Cr )<br />

Establish <strong>in</strong>tegrity <strong>of</strong> liver metabolism<br />

Establish load<strong>in</strong>g dose<br />

Ma<strong>in</strong>tenance dose: dose reduction vs <strong>in</strong>terval extension<br />

Check for drug <strong>in</strong>teractions<br />

Decide on blood level monitor<strong>in</strong>g


Calculat<strong>in</strong>g <strong>in</strong>dividualized regimen<br />

• Load<strong>in</strong>g dose (LD) required if:<br />

drug has a long half-life<br />

there is need to rapidly achieve desired<br />

steady-state concentration<br />

volume <strong>of</strong> distribution (VD) is significantly<br />

<strong>in</strong>creased<br />

LD P t = Usual LD x<br />

Vd Pt<br />

Normal Vd


Calculat<strong>in</strong>g <strong>in</strong>dividualized regimen<br />

• Generally no change <strong>in</strong> LD EXCEPT for digox<strong>in</strong><br />

(50-75% <strong>of</strong> usual LD due to reduced Vd <strong>in</strong> renal<br />

failure)<br />

• With volume contraction, lower standard LD <strong>of</strong><br />

am<strong>in</strong>oglycosides by 20-25% to avoid toxicity<br />

• In AKI, <strong>in</strong>creased Vd <strong>of</strong> many drugs, especially<br />

hydrophilic antibiotics (Beta lactams,<br />

cephalospor<strong>in</strong>s, penems) necessitates<br />

adm<strong>in</strong>istration <strong>of</strong> aggressive load<strong>in</strong>g doses (25-<br />

50% greater)


Calculat<strong>in</strong>g <strong>in</strong>dividualized regimen<br />

• Ma<strong>in</strong>tenance dose<br />

Prolong<strong>in</strong>g dose <strong>in</strong>terval and ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

same dose results <strong>in</strong> achievement <strong>of</strong> similar<br />

peak and trough concentrations and AUC<br />

Adjust to patient’s renal function, as reflected<br />

by the drug’s T 1/2<br />

Initiate at normal or near-normal dosage<br />

regiments consider<strong>in</strong>g the positive fluid<br />

balance <strong>in</strong> early AKI


Calculat<strong>in</strong>g <strong>in</strong>dividualized regimen<br />

• Ma<strong>in</strong>tenance dose<br />

Chang<strong>in</strong>g dos<strong>in</strong>g <strong>in</strong>terval<br />

Normal Cl Cr<br />

<strong>Dos<strong>in</strong>g</strong> <strong>in</strong>terval =<br />

x Normal <strong>in</strong>terval<br />

Patient’s Cl Cr<br />

Reduc<strong>in</strong>g dose given at standard <strong>in</strong>tervals<br />

Dose =<br />

Patient’s Cl Cr<br />

Normal Cl Cr<br />

x Normal dose


Calculat<strong>in</strong>g <strong>in</strong>dividualized regimen<br />

• Ma<strong>in</strong>tenance dose<br />

Chang<strong>in</strong>g dos<strong>in</strong>g <strong>in</strong>terval<br />

100<br />

<strong>Dos<strong>in</strong>g</strong> <strong>in</strong>terval =<br />

x 8 hours = 40 hrs.<br />

20<br />

Reduc<strong>in</strong>g dose given at standard <strong>in</strong>tervals<br />

20<br />

Dose =<br />

x 1000 mg = 200 mg<br />

100


ke = 0.693 / T 1/2<br />

Dtsch Arztebl Int 2010; 107(37): 647–56


Calculat<strong>in</strong>g <strong>in</strong>dividualized regimen<br />

• Dettli’s proportionality rules:<br />

Rule 1: Dose <strong>of</strong> a drug must be reduced <strong>in</strong><br />

<strong>in</strong>verse proportion to the T1/2<br />

Rule 2: The <strong>in</strong>terval (Tau) between doses<br />

must be prolonged proportionally to the T1/2<br />

D D norm<br />

.<br />

T1/2 norm<br />

=<br />

Tau Tau norm T1/2


Calculat<strong>in</strong>g <strong>in</strong>dividualized regimen<br />

• Dettli’s proportionality rules:<br />

If dos<strong>in</strong>g <strong>in</strong>terval unchanged, AUC same but<br />

with higher trough values—may prompt<br />

physician to wrongly lower the dose<br />

Implies absurdly low doses or wide <strong>in</strong>tervals<br />

between doses


Calculat<strong>in</strong>g <strong>in</strong>dividualized regimen<br />

• Halv<strong>in</strong>g rule <strong>of</strong> Kun<strong>in</strong>:<br />

Start<strong>in</strong>g dose should be the same as the<br />

normal dose, and thereafter half the start<strong>in</strong>g<br />

dose should be given at <strong>in</strong>tervals equal to one<br />

half-life.<br />

If the half-life is shorter than the dos<strong>in</strong>g<br />

<strong>in</strong>terval, dose adjustment is usually<br />

unnecessary.<br />

Achieves effective peak levels but markedly<br />

higher trough levels more adverse effects.


Dtsch Arztebl Int 2010; 107(37): 647–56


Calculat<strong>in</strong>g <strong>in</strong>dividualized regimen<br />

“Start low, go slow”<br />

vs.<br />

“Go fast, start high”


<strong>Drug</strong> dos<strong>in</strong>g considerations for CKD<br />

• <strong>Drug</strong> dos<strong>in</strong>g recommendations may be different<br />

from orig<strong>in</strong>al pharmacok<strong>in</strong>etic study due to<br />

variability <strong>in</strong> serum creat<strong>in</strong><strong>in</strong>e determ<strong>in</strong>ations<br />

• Use the most appropriate tool to assess kidney<br />

function<br />

• <strong>Drug</strong> dosages should be adjusted accord<strong>in</strong>g to<br />

FDA or EMA approved product label<strong>in</strong>g<br />

KDIGO 2011


<strong>Drug</strong> dos<strong>in</strong>g considerations for CKD<br />

• Peer-reviewed literature recommendations<br />

should be used to guide drug-dosage<br />

adjustments<br />

• Obese CKD patients with large variations<br />

<strong>in</strong> prote<strong>in</strong> levels should have drug dosage<br />

<strong>in</strong>dividualized based on best available<br />

evidence.<br />

KDIGO 2011


<strong>Drug</strong> level monitor<strong>in</strong>g<br />

• Ensures therapeutic levels while avoid<strong>in</strong>g toxicity<br />

• Measurement <strong>of</strong> serum drug concentrations<br />

should be done especially for drugs with a<br />

narrow therapeutic range<br />

• <strong>Drug</strong> assays only measure total blood<br />

concentrations and may underestimate plasma<br />

levels or the active or free form <strong>of</strong> the drug<br />

• If not possible, dosage adjustments should be<br />

done <strong>in</strong> the presence <strong>of</strong> excessive<br />

pharmacologic effects or toxicity


<strong>Drug</strong> dos<strong>in</strong>g considerations for HD<br />

• Dose should be given post-HD. Consider<br />

supplementary dose <strong>in</strong> addition to the dose<br />

adjusted to kidney failure after HD.<br />

• Supplementary dose derived from studies <strong>of</strong><br />

low-flux membranes should be empirically<br />

<strong>in</strong>creased by 50% when us<strong>in</strong>g hi-flux dialyzers.<br />

• Extended dialysis regimens with high diffusive<br />

membranes <strong>in</strong>crease drug clearance and<br />

supplementary dose may need to be <strong>in</strong>creased.<br />

KDIGO 2011


<strong>Drug</strong> dos<strong>in</strong>g considerations for PD<br />

• Perform antibiotic load<strong>in</strong>g by an extended cycle<br />

<strong>in</strong> CAPD and APD<br />

• Transperitoneal<br />

For most drugs<br />

drug<br />

<strong>in</strong> cl<strong>in</strong>ical<br />

movement<br />

use,<br />

may<br />

there<br />

be<br />

is<br />

less<br />

little<br />

effective <strong>in</strong> the acute phase <strong>of</strong> peritoneal<br />

evidence <strong>in</strong>fection when <strong>of</strong> significant <strong>in</strong>flammation-related drug removal capillary dur<strong>in</strong>g<br />

hyperperfusion subsides chronic PD.<br />

• Short dwell times <strong>in</strong> APD may prevent<br />

accumulation <strong>of</strong> antibiotic <strong>in</strong> the peritoneal<br />

cavity.<br />

• Monitor<strong>in</strong>g <strong>of</strong> drug blood levels is advocated.<br />

KDIGO 2011


Key po<strong>in</strong>ts<br />

• <strong>Renal</strong> dysfunction may result <strong>in</strong> altered<br />

pharmacok<strong>in</strong>etics and pharmacodynamics <strong>of</strong><br />

<strong>in</strong>dividual drugs.<br />

• The goal <strong>of</strong> therapy is to ma<strong>in</strong>ta<strong>in</strong> efficacy while<br />

avoid<strong>in</strong>g drug accumulation and associated<br />

adverse effects.<br />

• An <strong>in</strong>dividualized approach is recommended,<br />

tak<strong>in</strong>g <strong>in</strong>to consideration the <strong>in</strong>tegrity <strong>of</strong> other<br />

organ systems and potential drug <strong>in</strong>teractions.


Key po<strong>in</strong>ts<br />

• Monitor<strong>in</strong>g drug levels may be necessary<br />

to ensure therapeutic levels while avoid<strong>in</strong>g<br />

toxicity.<br />

• <strong>Physicians</strong> should be vigilant <strong>in</strong><br />

recogniz<strong>in</strong>g adverse events.<br />

• In the <strong>in</strong>tensive care unit, a “Go fast, start<br />

high” policy avoids subtherapeutic blood<br />

levels.


Key po<strong>in</strong>ts<br />

• Consider giv<strong>in</strong>g scheduled doses after HD<br />

sessions OR give supplemental doses<br />

immediately post HD<br />

• For most drugs <strong>in</strong> cl<strong>in</strong>ical use, there is little<br />

evidence <strong>of</strong> significant drug removal<br />

dur<strong>in</strong>g chronic PD.


References<br />

Am Fam Physician 2007; 75:1487-96

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!