28.10.2014 Views

Charm Production and F2cc Measurements in Deep ... - Zeus - Desy

Charm Production and F2cc Measurements in Deep ... - Zeus - Desy

Charm Production and F2cc Measurements in Deep ... - Zeus - Desy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHARM PRODUCTION AND F cc<br />

2 MEASUREMENTS<br />

IN DEEP INELASTIC SCATTERING AT HERA II<br />

Jerome I. Whyte<br />

A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE<br />

STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR<br />

THE DEGREE OF<br />

DOCTOR OF PHILOSOPHY<br />

GRADUATE PROGRAM IN PHYSICS AND ASTRONOMY<br />

YORK UNIVERSITY<br />

TORONTO, ONTARIO<br />

September, 2008


Abstract<br />

This thesis exam<strong>in</strong>es charm production <strong>in</strong> electron-proton <strong>Deep</strong> Inelastic Scatter<strong>in</strong>g<br />

at HERA II, measured with the ZEUS detector. HERA II collides protons <strong>and</strong><br />

electrons at a center-of-mass energy of √ s = 318 GeV. The ZEUS detector, which<br />

is nearly hermetic, is used to reconstruct the momenta <strong>and</strong> energies of the particles<br />

created <strong>in</strong> the electron-proton <strong>in</strong>teractions.<br />

The charm contribution F2 cc(x,Q2<br />

) to the proton structure function F 2 (x,Q 2 ) is extracted<br />

<strong>and</strong> compared to Next-To-Lead<strong>in</strong>g Order Quantum Chromodynamics predictions.<br />

This charm contribution to the proton structure is shown to be as high as<br />

30%.<br />

S<strong>in</strong>gle differential D ∗± cross sections for the k<strong>in</strong>ematic region of 5 < Q 2 < 1000<br />

GeV 2 , 0.02 < y < 0.7, <strong>and</strong> requir<strong>in</strong>g 1.5 < P T (D ∗± ) < 15.0 GeV <strong>and</strong> −1.5 <<br />

η(D ∗± ) < 1.8, are presented.<br />

The efficiencies for reconstruct<strong>in</strong>g the decay products of D ∗± mesons, s<strong>in</strong>ce the<br />

<strong>in</strong>troduction of the ZEUS micro vertex detector, are exam<strong>in</strong>ed.


Acknowledgments<br />

In the process of complet<strong>in</strong>g for my Ph.D I have had opportunities <strong>and</strong> experiences<br />

that have permanently <strong>in</strong>fluenced my life.<br />

I would like to first thank my supervisor Scott Menary for his guidance <strong>in</strong> the<br />

direction of my thesis. I would also like to thank Sampa Bhadra, Marlene Caplan,<br />

Wendy Taylor, <strong>and</strong> Vladka Soltesz, who have assisted me greatly.<br />

L. O’Brien, H. Freedhoff, J. Darewych, A. Palmer, <strong>and</strong> T. Yav<strong>in</strong>, are some people<br />

at York that I appreciate.<br />

I would like to thank the ZEUS Heavy Flavour group <strong>in</strong> particular; R. H. Wilton, J.<br />

Loizides, L. Gladil<strong>in</strong>, M. W<strong>in</strong>g, J. Ferr<strong>and</strong>o, A. Geiser, F. Karstens, <strong>and</strong> B. Dunne.<br />

The York University office: J. St<strong>and</strong>age, Y. Cui, <strong>and</strong> especially S. U. Noor.<br />

As time passed dur<strong>in</strong>g my time <strong>in</strong> Germany, my German associates eventually became<br />

my German friends <strong>and</strong> eventually just friends. These people at ZEUS <strong>and</strong><br />

DESY helped me adjust to a different way of life, <strong>and</strong> hopefully I <strong>in</strong>fluenced them: E.<br />

Ron, M. Soares, M. Jimenez, C. Uribe-Estrada, T. Koop, N. Coppola, S. Fourletov,<br />

H. Stadie, R. Walsh, R. Mankel, R. Hori, Y. Yamazaki, R. Yoshida, A. Pellegr<strong>in</strong>o,<br />

G. Grigorescu, M. B<strong>in</strong>di, J. Carter, S. Boogert, <strong>and</strong> E. Olabisi.<br />

I made some good friends <strong>in</strong> Germany who showed me around their city <strong>and</strong> country:<br />

The Ballers: K<strong>and</strong><strong>in</strong>dima Oyeleye, Dennis Babikir, Andy, Arne, Jeff, Eddy, <strong>and</strong><br />

El<strong>in</strong>or Merchant aka Fischers Parc ballers.<br />

I can never forget the ladies of Aurel <strong>and</strong> Reh Bar: Jan<strong>in</strong>e Buschmeyer, Kathar<strong>in</strong>a<br />

Marioth, <strong>and</strong> Su J<strong>in</strong> Lee. As well as Magnus <strong>and</strong> Carsten Darnedde.<br />

I’d like to mention a few other people; A. Montanari first time I saw you thought<br />

this was one serious guy, M. Wlasenko never will forget how you showed me around<br />

Amsterdam, Ramona Fikru-Johannes vroom vrooom! see you <strong>in</strong> NYC, T. Danielson<br />

a friend <strong>and</strong> SC addict, G. S. Gomes the sweetest heart I ever met, Avraam<br />

Keramidas can’t st<strong>and</strong> when you away or around, W. Dunne funniest guy I ever<br />

met <strong>and</strong> a good person, A. Yagues a true friend <strong>and</strong> a shoulder when I needed it,<br />

the Lawson Clan especially D-Bunz aka VodaFone aka TTB aka D. Lawson the<br />

world cup belonged to us girl, T. Namsoo aka The Nam<strong>in</strong>ator a.k.a. B double S E<br />

Y, J. Loizides aka Yohnny you helped more than I can count <strong>and</strong> are a friend for<br />

life!, aga<strong>in</strong> I have to mention U. Noor a great friend <strong>and</strong> at <strong>in</strong>door kick-soccer I am<br />

lead<strong>in</strong>g 1,000,000-1.<br />

While away I want to thank the friends that kept me up to date: T. Rakocevic, G.<br />

Kyei, P. Romeo, V. Murray, C. Patterson, V. Passels, Pastromi, I. K. Harnar<strong>in</strong>e, Dr.<br />

President, J. Taffe, W. Dwyer, D. Warner, N. Balaskas, J. Heliopolous, K. Barnes<br />

(<strong>and</strong> the rest of the Barnes’s), S. Watson, T. Henry, O. Barrett, N. Adjei <strong>and</strong> Jesse<br />

Barfield.<br />

My family: N. Nicholson (I love you so much!), W. Whyte (my best friend), N.<br />

Whyte (you my heart boy, st<strong>and</strong> on my shoulders <strong>and</strong> reach high), J. Whyte (Sr.),<br />

Gr<strong>and</strong>ma, Dimples, Semone Myrie, N. Ramage, Mr. O, V. McGregor, M. Campbell,<br />

v


C. Newton, L. Sutherl<strong>and</strong>, all my uncles <strong>and</strong> aunts <strong>and</strong> cous<strong>in</strong>s all over.<br />

vi


Contribution to the ZEUS Experiment<br />

As a member of the Canadian group at ZEUS I have had the opportunity to work<br />

at a collaboration with approximately 400 physicists <strong>in</strong> Hamburg, Germany. For<br />

almost three years I was based <strong>in</strong> Hamburg where I had a variety of duties related<br />

to the ZEUS experiment <strong>and</strong> to my analysis.<br />

For two years I was the ZEUS code manager responsible for ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the present<br />

software at ZEUS, <strong>and</strong> for aid<strong>in</strong>g <strong>in</strong> the implementation of new software packages.<br />

As code manager I wrote applications that simplified the job <strong>and</strong> set up webpages<br />

detail<strong>in</strong>g events.<br />

Dur<strong>in</strong>g the almost three years <strong>in</strong> Hamburg I took regular 8 shifts overlook<strong>in</strong>g the<br />

ZEUS detector.<br />

As a member of the Heavy Flavour group at ZEUS I made presentations regard<strong>in</strong>g my<br />

analyses, <strong>and</strong> collaboration presentations discuss<strong>in</strong>g the state of all group analyses.<br />

Dur<strong>in</strong>g my time at York I was the system adm<strong>in</strong>istrator responsible for updat<strong>in</strong>g<br />

<strong>and</strong> upgrad<strong>in</strong>g operat<strong>in</strong>g systems, add<strong>in</strong>g desired applications, <strong>and</strong> solv<strong>in</strong>g computer<br />

issues.<br />

I presented at the 42 nd Les Recontres de Physique de la Valle d’Aoste on behalf or<br />

ZEUS <strong>and</strong> the H1 collaborations. The topic of the presentation was heavy flavour<br />

production at HERA.<br />

vii


Contents<br />

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v<br />

Contribution to ZEUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii<br />

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii<br />

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii<br />

1 Introduction 1<br />

1.1 The St<strong>and</strong>ard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.2 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . . 5<br />

1.3 Perturbative Quantum Chromodynamics . . . . . . . . . . . . . . . . 8<br />

1.3.1 Runn<strong>in</strong>g Coupl<strong>in</strong>g Constant . . . . . . . . . . . . . . . . . . . 9<br />

2 <strong>Charm</strong> <strong>in</strong> the Proton 11<br />

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

2.2 <strong>Deep</strong> Inelastic Scatter<strong>in</strong>g K<strong>in</strong>ematics . . . . . . . . . . . . . . . . . . 12<br />

2.2.1 DIS Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

2.3 Quark Parton Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

2.3.1 QPM Structure Functions . . . . . . . . . . . . . . . . . . . . 15<br />

2.4 Improved Quark Parton Model . . . . . . . . . . . . . . . . . . . . . 19<br />

2.4.1 Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

2.4.2 DGLAP Evolution . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

2.4.3 Parton Density Function . . . . . . . . . . . . . . . . . . . . . 24<br />

2.5 <strong>Charm</strong> Contribution F2 cc to the Proton Structure Functions F 2 . . . 26<br />

2.6 Fragmentation Functions . . . . . . . . . . . . . . . . . . . . . . . . . 28<br />

2.6.1 Lund Str<strong>in</strong>g Fragmentation . . . . . . . . . . . . . . . . . . . 28<br />

2.6.2 Peterson Fragmentation . . . . . . . . . . . . . . . . . . . . . 29<br />

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

3 Monte Carlo Simulation 31<br />

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

3.1.1 Parton Shower . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

3.2 Cross-Section Generators . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

3.2.1 RAPGAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

3.2.2 HERWIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

viii


3.3 Cross-Section Integrators . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

3.3.1 HVQDIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

3.4 Detector Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

4 HERA II <strong>and</strong> the ZEUS Detector 37<br />

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

4.2 HERA II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

4.2.1 HERA II Beam Parameters <strong>and</strong> Lum<strong>in</strong>osity . . . . . . . . . . 40<br />

4.3 The ZEUS Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

4.3.1 ZEUS Co-ord<strong>in</strong>ate System . . . . . . . . . . . . . . . . . . . . 42<br />

4.4 Calorimeter (CAL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

4.4.1 Calorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

4.4.2 CAL Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

4.4.3 CAL Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

4.4.4 CAL Towers . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br />

4.4.5 CAL Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

4.5 Small angle Rear Track<strong>in</strong>g Detector (SRTD) . . . . . . . . . . . . . . 51<br />

4.6 Central Track<strong>in</strong>g Detector (CTD) . . . . . . . . . . . . . . . . . . . . 52<br />

4.6.1 Drift Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br />

4.6.2 CTD Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br />

4.6.3 CTD Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54<br />

4.6.4 CTD Superlayer . . . . . . . . . . . . . . . . . . . . . . . . . 55<br />

4.7 Micro Vertex Detector (MVD) . . . . . . . . . . . . . . . . . . . . . 58<br />

4.7.1 Silicon Detectors . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />

4.7.2 MVD Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

4.8 Straw Tube Tracker (STT) . . . . . . . . . . . . . . . . . . . . . . . 64<br />

4.9 An Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66<br />

5 Charged Particle Track<strong>in</strong>g at ZEUS 68<br />

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68<br />

5.2 Track Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

5.2.1 Fit Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 71<br />

5.2.2 Pattern Recognition Fit . . . . . . . . . . . . . . . . . . . . . 72<br />

5.2.3 Trajectory Fit . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

5.3 Track<strong>in</strong>g Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

5.4 D ∗ Track<strong>in</strong>g <strong>and</strong> Resolutions . . . . . . . . . . . . . . . . . . . . . . 78<br />

5.4.1 Track<strong>in</strong>g Resolution Parameters . . . . . . . . . . . . . . . . 78<br />

5.4.2 Track<strong>in</strong>g Resolution Method . . . . . . . . . . . . . . . . . . 81<br />

5.4.3 Resolution Results . . . . . . . . . . . . . . . . . . . . . . . . 83<br />

5.4.4 Delv<strong>in</strong>g <strong>Deep</strong>er <strong>in</strong>to Resolutions . . . . . . . . . . . . . . . . 88<br />

5.5 D ∗ Track Loss Probability . . . . . . . . . . . . . . . . . . . . . . . . 92<br />

ix


6 Reconstruction of Event Variables 98<br />

6.1 Reconstructed Variables . . . . . . . . . . . . . . . . . . . . . . . . . 98<br />

6.2 CAL Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 98<br />

6.3 Electron F<strong>in</strong>ders <strong>and</strong> Reconstruction . . . . . . . . . . . . . . . . . . 99<br />

6.4 Hadronic Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100<br />

6.4.1 E − P z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100<br />

6.4.2 Hadronic Angle γ h . . . . . . . . . . . . . . . . . . . . . . . . 101<br />

6.5 Energy Flow Object (EFO) Reconstruction . . . . . . . . . . . . . . 102<br />

6.6 Event K<strong>in</strong>ematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104<br />

6.6.1 Electron Method . . . . . . . . . . . . . . . . . . . . . . . . . 104<br />

6.6.2 Jacquet-Blondel Method . . . . . . . . . . . . . . . . . . . . . 105<br />

6.6.3 Double Angle Method . . . . . . . . . . . . . . . . . . . . . . 105<br />

7 Event Selection <strong>and</strong> Trigger<strong>in</strong>g 107<br />

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107<br />

7.2 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107<br />

7.2.1 FLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110<br />

7.2.2 SLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110<br />

7.2.3 TLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111<br />

7.2.4 Global Track<strong>in</strong>g Trigger . . . . . . . . . . . . . . . . . . . . . 112<br />

7.2.5 DST bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112<br />

7.3 Trigger Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112<br />

7.3.1 FLT Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . 113<br />

7.3.2 TLT Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . 114<br />

7.3.3 DST Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 115<br />

7.4 Electron Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

7.5 Box Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

7.6 E − P z Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

7.7 Z Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

7.8 y Clean<strong>in</strong>g Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117<br />

8 D ∗ <strong>Production</strong> at HERA II 118<br />

8.1 D ∗ Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118<br />

8.1.1 ∆M Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 119<br />

8.1.2 Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 121<br />

8.1.3 Wrong Charge Subtraction Method . . . . . . . . . . . . . . . 122<br />

8.1.4 Fit Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124<br />

8.1.5 Number of D ∗ C<strong>and</strong>idates . . . . . . . . . . . . . . . . . . . . 126<br />

8.1.6 Number of D ∗ C<strong>and</strong>idates Us<strong>in</strong>g Fit . . . . . . . . . . . . . . 130<br />

8.2 Acceptances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131<br />

8.3 Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135<br />

8.3.1 Systematic Errors . . . . . . . . . . . . . . . . . . . . . . . . 135<br />

8.3.2 Differential Cross Sections . . . . . . . . . . . . . . . . . . . . 136<br />

x


8.4 Purities <strong>and</strong> Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . 137<br />

8.5 Control Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143<br />

8.6 Resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149<br />

8.7 Cross Section Results . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

8.7.1 Corrections to MC . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

8.7.2 Systematic Checks . . . . . . . . . . . . . . . . . . . . . . . . 157<br />

8.7.3 HVQDIS Prediction . . . . . . . . . . . . . . . . . . . . . . . 162<br />

8.8 D ∗ Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165<br />

8.9 Extend<strong>in</strong>g Forward <strong>in</strong> η . . . . . . . . . . . . . . . . . . . . . . . . . 168<br />

8.10 Numbers Dur<strong>in</strong>g 2006 <strong>and</strong> 2007 . . . . . . . . . . . . . . . . . . . . . 171<br />

8.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172<br />

9 F2 cc at HERA II 173<br />

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173<br />

9.1.1 y Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 175<br />

9.1.2 Acceptances, Purities, <strong>and</strong> Efficiencies . . . . . . . . . . . . . 177<br />

9.1.3 Number of D ∗ C<strong>and</strong>idates . . . . . . . . . . . . . . . . . . . . 181<br />

9.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182<br />

9.2.1 Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . 182<br />

9.3 F2 cc Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183<br />

9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187<br />

10 Conclusions 188<br />

A <strong>Charm</strong> Tagg<strong>in</strong>g via P 2,Rel<br />

T<br />

of Jets 190<br />

A.1 Jet Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192<br />

A.1.1 k T Cluster<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . 192<br />

A.2 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195<br />

A.3 P 2,Rel<br />

T<br />

Distribution <strong>in</strong> RAPGAP . . . . . . . . . . . . . . . . . . . . 195<br />

A.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200<br />

B D ∗+ <strong>and</strong> D ∗− <strong>Production</strong> Rates 202<br />

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202<br />

B.1.1 Wrong Charge Subtraction Revisited . . . . . . . . . . . . . . 202<br />

B.2 D ∗± Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203<br />

B.2.1 D ∗± Number Of C<strong>and</strong>idates . . . . . . . . . . . . . . . . . . . 203<br />

B.2.2 D ∗± Difference <strong>in</strong> D ∗+ - D ∗− . . . . . . . . . . . . . . . . . . 204<br />

B.2.3 D ∗± Acceptances . . . . . . . . . . . . . . . . . . . . . . . . . 205<br />

B.2.4 D ∗± Differential Cross Sections . . . . . . . . . . . . . . . . . 206<br />

B.2.5 D ∗+ to D ∗− Asymmetry . . . . . . . . . . . . . . . . . . . . . 207<br />

B.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208<br />

C Track<strong>in</strong>g Resolutions 209<br />

xi


D Supplementary D ∗ Plots 217<br />

D.1 S<strong>in</strong>gle Differential Related Plots . . . . . . . . . . . . . . . . . . . . . 217<br />

D.1.1 ∆M Distributions . . . . . . . . . . . . . . . . . . . . . . . . 218<br />

D.1.2 Systematic Uncerta<strong>in</strong>ties of Differential Cross Sections . . . . 221<br />

D.1.3 Consistency Check Differential Cross Sections . . . . . . . . . 231<br />

D.1.4 HVQDIS Theoretical Uncerta<strong>in</strong>ties . . . . . . . . . . . . . . . 233<br />

D.2 F2 cc Related Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236<br />

D.2.1 Q 2 − y ∆M Distributions . . . . . . . . . . . . . . . . . . . . 236<br />

D.2.2 F2 cc Systematics . . . . . . . . . . . . . . . . . . . . . . . . . . 237<br />

D.2.3 F2 cc Theoretical Systematics . . . . . . . . . . . . . . . . . . . 245<br />

Index 253<br />

Bibliography 259<br />

xii


List of Figures<br />

1.1 Particle <strong>and</strong> Gauge Boson . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

1.2 Coupl<strong>in</strong>g Constants <strong>in</strong> QED <strong>and</strong> QCD as a function of 1/Q 2 . . . . 7<br />

2.1 The Full D ∗ Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />

2.2 DIS K<strong>in</strong>ematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

2.3 F 2 Proton Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

2.4 Improved Resolution with Q 2 . . . . . . . . . . . . . . . . . . . . . . 20<br />

2.5 QPM <strong>and</strong> LO QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

2.6 Boson-Gluon Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

2.7 Proton Momentum <strong>in</strong> BGF . . . . . . . . . . . . . . . . . . . . . . . 23<br />

2.8 Altarelli-Parisi Splitt<strong>in</strong>g Functions . . . . . . . . . . . . . . . . . . . 24<br />

2.9 Higher Order Splitt<strong>in</strong>g Function . . . . . . . . . . . . . . . . . . . . 25<br />

2.10 Parton Distributions at Q 2 = 10 GeV 2 . . . . . . . . . . . . . . . . . 26<br />

2.11 Str<strong>in</strong>g Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

3.1 Shower<strong>in</strong>g <strong>and</strong> Hadronization . . . . . . . . . . . . . . . . . . . . . . 33<br />

4.1 Overview of the HERA Accelerator . . . . . . . . . . . . . . . . . . . 38<br />

4.2 HERA Accelerator Layout . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

4.3 Delivered <strong>and</strong> Gated Integrated Lum<strong>in</strong>osities . . . . . . . . . . . . . 41<br />

4.4 Schematic of the ZEUS Detector . . . . . . . . . . . . . . . . . . . . . 42<br />

4.5 ZEUS Co-ord<strong>in</strong>ates System . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

4.6 Shower Profiles for Different Particles . . . . . . . . . . . . . . . . . 45<br />

4.7 Schematics of a Tower . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

4.8 Schematics of an FCAL Module . . . . . . . . . . . . . . . . . . . . . 50<br />

4.9 Layout of the SRTD . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br />

4.10 X − Y Layout of CTD Cell . . . . . . . . . . . . . . . . . . . . . . . 54<br />

4.11 CTD Octant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br />

4.12 CTD Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />

4.13 Schematic View a of Silicon Strips Sensors . . . . . . . . . . . . . . . 59<br />

4.14 X − Y View of MVD . . . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

4.15 Side view of MVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br />

4.16 Barrel Module <strong>and</strong> Forward Sectors . . . . . . . . . . . . . . . . . . 63<br />

xiii


4.17 STT Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64<br />

4.18 STT Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65<br />

4.19 Event with ZEUS Detector . . . . . . . . . . . . . . . . . . . . . . . . 66<br />

5.1 Track Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70<br />

5.2 Plane X − Y Pattern Fit . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

5.3 Coulomb Multiple Scatter<strong>in</strong>g <strong>in</strong> Dead Material . . . . . . . . . . . . 80<br />

5.4 ∆P T Distributions <strong>in</strong> regions of P T for π with Gaussian Fit Superimposed<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83<br />

5.5 ∆P T Distributions <strong>in</strong> regions of P T for K with Gaussian Fit Superimposed<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84<br />

5.6 ∆P T Distributions <strong>in</strong> regions of P T for π s with Gaussian Fit Superimposed<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85<br />

5.7 D ∗ σ(P T ) Track<strong>in</strong>g Resolution as a function of P T with Fit Superimposed<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86<br />

5.8 D ∗ σ(|P|) Track<strong>in</strong>g Resolution as a function of |P| with Fit Superimposed<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87<br />

5.9 Primary Vertexed D ∗ . . . . . . . . . . . . . . . . . . . . . . . . . . 88<br />

5.10 σ(η) Track<strong>in</strong>g Resolution as a function of P T with Fit Superimposed 90<br />

5.11 σ(φ) Track<strong>in</strong>g Resolution as a function of P T with Fit Superimposed 90<br />

5.12 P T (π s ) Track<strong>in</strong>g Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 93<br />

5.13 η(π s ) Track<strong>in</strong>g Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 94<br />

5.14 P T (π) Track<strong>in</strong>g Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 94<br />

5.15 η(π) Track<strong>in</strong>g Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 95<br />

5.16 P T (K) Track<strong>in</strong>g Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 95<br />

5.17 η(K) Track<strong>in</strong>g Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 96<br />

6.1 Energy Flow Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 102<br />

6.2 NC DIS K<strong>in</strong>ematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 104<br />

7.1 Data flow through the ZEUS trigger . . . . . . . . . . . . . . . . . . . 109<br />

8.1 ∆M Signal at ZEUS . . . . . . . . . . . . . . . . . . . . . . . . . . . 121<br />

8.2 RC <strong>and</strong> WC Distributions . . . . . . . . . . . . . . . . . . . . . . . . 123<br />

8.3 ∆M Distributions for Q 2 . . . . . . . . . . . . . . . . . . . . . . . . 127<br />

8.4 Number of D ∗ C<strong>and</strong>idates with respect to P T (D ∗ ) . . . . . . . . . . 128<br />

8.5 Number of D ∗ C<strong>and</strong>idates with respect to η(D ∗ ) . . . . . . . . . . . 129<br />

8.6 Number of D ∗ C<strong>and</strong>idates with respect to Q 2 . . . . . . . . . . . . . 129<br />

8.7 Number of D ∗ C<strong>and</strong>idates with respect to x . . . . . . . . . . . . . . 130<br />

8.8 Number of D ∗ C<strong>and</strong>idates us<strong>in</strong>g Fit . . . . . . . . . . . . . . . . . . 131<br />

8.9 P T (D ∗ ) Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133<br />

8.10 η(D ∗ ) Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133<br />

8.11 Q 2 Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134<br />

xiv


8.12 x Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134<br />

8.13 P T (D ∗ ) Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138<br />

8.14 η(D ∗ ) Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139<br />

8.15 Q 2 Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139<br />

8.16 x Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />

8.17 P T (D ∗ ) Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141<br />

8.18 η(D ∗ ) Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141<br />

8.19 Q 2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142<br />

8.20 x Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142<br />

8.21 DIS Control Plots 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 144<br />

8.22 DIS Control Plots 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 145<br />

8.23 DIS Control Plots 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 146<br />

8.24 P T Control Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147<br />

8.25 η Control Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148<br />

8.26 φ Control Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149<br />

8.27 DIS Resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150<br />

8.28 P T of the D ∗ Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 151<br />

8.29 η of the D ∗ Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 151<br />

8.30 Q 2 DA<br />

Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152<br />

8.31 Q 2 e Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153<br />

8.32 Q 2 JB Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153<br />

8.33 X DA Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154<br />

8.34 P T (D ∗ ) Control Plot Before <strong>and</strong> After P T (π s ) Re-Weight<strong>in</strong>g . . . . . 156<br />

8.35 Systematic Check: No Electron Smear<strong>in</strong>g . . . . . . . . . . . . . . . 159<br />

8.36 Track Loss Probability Systematic Check . . . . . . . . . . . . . . . 160<br />

8.37 No P T Re-Weight Systematic Check . . . . . . . . . . . . . . . . . . 161<br />

8.38 P T (π s ) Cut Systematic Check . . . . . . . . . . . . . . . . . . . . . . 162<br />

8.39 P T (D ∗ ) Theoretical Uncerta<strong>in</strong>ties . . . . . . . . . . . . . . . . . . . . 164<br />

8.40 P T (D ∗ ) Differential Cross Section . . . . . . . . . . . . . . . . . . . . 165<br />

8.41 η(D ∗ ) Differential Cross Section . . . . . . . . . . . . . . . . . . . . . 166<br />

8.42 Q 2 Differential Differential Cross Section . . . . . . . . . . . . . . . . 167<br />

8.43 x Differential Cross Section . . . . . . . . . . . . . . . . . . . . . . . 168<br />

8.44 Extend<strong>in</strong>g η, Number of D ∗ C<strong>and</strong>idates . . . . . . . . . . . . . . . . 169<br />

8.45 Extend<strong>in</strong>g η, Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . 170<br />

8.46 Extend<strong>in</strong>g η, Differential Cross Section . . . . . . . . . . . . . . . . . 171<br />

9.1 Y DA Resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175<br />

9.2 Y e Resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176<br />

9.3 Y JB Resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176<br />

9.4 Y DA Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178<br />

9.5 Y DA Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179<br />

9.6 Y DA Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180<br />

xv


9.7 Number of D ∗ C<strong>and</strong>idates . . . . . . . . . . . . . . . . . . . . . . . . 181<br />

9.8 Y DA Cross Sections at values of Q 2 . . . . . . . . . . . . . . . . . . . 182<br />

9.9 F2 cc vs. x at Different Q 2 . . . . . . . . . . . . . . . . . . . . . . . . 184<br />

9.10 F2 cc vs. Q 2 at Different x . . . . . . . . . . . . . . . . . . . . . . . . 185<br />

9.11 The F2 cc to F 2 Ratio, for <strong>in</strong>creas<strong>in</strong>g Q 2 . . . . . . . . . . . . . . . . . 186<br />

A.1 Hadronization <strong>and</strong> Two Body Decay . . . . . . . . . . . . . . . . . . 190<br />

A.2 P 2,Rel<br />

T<br />

of π s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197<br />

A.3 Correlation P T of generated π s <strong>and</strong> D ∗ . . . . . . . . . . . . . . . . . 198<br />

A.4 Correlation P T , η <strong>and</strong> φ of the generated D ∗ <strong>and</strong> D ∗ Jet . . . . . . . 199<br />

A.5 Correlation P T of Reconstructed D ∗ Jet <strong>and</strong> Generated D ∗ Jet . . . 200<br />

B.1 Number of D ∗± C<strong>and</strong>idates . . . . . . . . . . . . . . . . . . . . . . . 203<br />

B.2 D ∗+ - D ∗− Difference . . . . . . . . . . . . . . . . . . . . . . . . . . 204<br />

B.3 Acceptances of D ∗± C<strong>and</strong>idates . . . . . . . . . . . . . . . . . . . . . 205<br />

B.4 D ∗+ Differential Cross Sections . . . . . . . . . . . . . . . . . . . . . 206<br />

B.5 D ∗− Differential Cross Sections . . . . . . . . . . . . . . . . . . . . . 207<br />

B.6 D ∗± Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208<br />

C.1 σ(η) with respect to P T Track<strong>in</strong>g Resolution . . . . . . . . . . . . . . 209<br />

C.2 σ(φ) with respect to P T Track<strong>in</strong>g Resolution . . . . . . . . . . . . . 210<br />

C.3 σ(|P|) with respect to P T Track<strong>in</strong>g Resolution . . . . . . . . . . . . 210<br />

C.4 σ(P T ) with respect to η Track<strong>in</strong>g Resolution . . . . . . . . . . . . . . 211<br />

C.5 σ(η) with respect to η Track<strong>in</strong>g Resolution . . . . . . . . . . . . . . 211<br />

C.6 σ(φ) with respect to η Track<strong>in</strong>g Resolution . . . . . . . . . . . . . . 212<br />

C.7 σ(|P|) with respect to η Track<strong>in</strong>g Resolution . . . . . . . . . . . . . 212<br />

C.8 σ(P T ) with respect to φ Track<strong>in</strong>g Resolution . . . . . . . . . . . . . 213<br />

C.9 σ(η) with respect to φ Track<strong>in</strong>g Resolution . . . . . . . . . . . . . . 213<br />

C.10 σ(φ) with respect to φ Track<strong>in</strong>g Resolution . . . . . . . . . . . . . . 214<br />

C.11 σ(|P|) with respect to φ Track<strong>in</strong>g Resolution . . . . . . . . . . . . . 214<br />

C.12 σ(P T ) with respect to |P| Track<strong>in</strong>g Resolution . . . . . . . . . . . . 215<br />

C.13 σ(η) with respect to |P| Track<strong>in</strong>g Resolution . . . . . . . . . . . . . 215<br />

C.14 σ(φ) with respect to |P| Track<strong>in</strong>g Resolution . . . . . . . . . . . . . 216<br />

C.15 σ(|P|) with respect to |P| Track<strong>in</strong>g Resolution . . . . . . . . . . . . 216<br />

D.1 ∆M Distributions for P T . . . . . . . . . . . . . . . . . . . . . . . . 218<br />

D.2 ∆M Distributions for η . . . . . . . . . . . . . . . . . . . . . . . . . 219<br />

D.3 P T ∆M Distributions for x . . . . . . . . . . . . . . . . . . . . . . . 220<br />

D.4 Systematic Check 1: No Electron Smear<strong>in</strong>g . . . . . . . . . . . . . . 221<br />

D.5 Systematic Check 2: E e Scaled ±1% <strong>in</strong> MC . . . . . . . . . . . . . . 222<br />

D.6 Systematic Check 3: E HAD Scaled ±3% <strong>in</strong> MC . . . . . . . . . . . . 222<br />

D.7 Systematic Check 4: E e Cut Increased to 11 GeV <strong>in</strong> MC . . . . . . . 223<br />

D.8 Systematic Check 5: Box Cut <strong>in</strong>creased by 1 cm . . . . . . . . . . . 223<br />

xvi


D.9 Systematic Check 6: Z vtx Decreased by 3 cm . . . . . . . . . . . . . 224<br />

D.10 Systematic Check 7: Y e Clean<strong>in</strong>g Cut . . . . . . . . . . . . . . . . . 224<br />

D.11 Systematic Check 8: Y JB Clean<strong>in</strong>g Cut . . . . . . . . . . . . . . . . 225<br />

D.12 Systematic Check 9: δ h W<strong>in</strong>dow Widened . . . . . . . . . . . . . . . 225<br />

D.13 Systematic Check 10: M(D 0 ) W<strong>in</strong>dow Widened <strong>and</strong> Narrowed . . . 226<br />

D.14 Systematic Check 11: ∆M W<strong>in</strong>dow Widened <strong>and</strong> Narrowed . . . . . 226<br />

D.15 Systematic Check 12: No P T (π s ) Re-weight<strong>in</strong>g . . . . . . . . . . . . 227<br />

D.16 Systematic Check 13: Track Loss Probability ±20% . . . . . . . . . 227<br />

D.17 Systematic Check 14a: P T (K,π) Cut changed ±0.02 GeV . . . . . . 228<br />

D.18 Systematic Check 14b: P T (π s ) Cut changed ±0.02 GeV . . . . . . . 228<br />

D.19 Systematic Check 15: Doubled Beauty . . . . . . . . . . . . . . . . . 229<br />

D.20 Consistency Check 16: Fit . . . . . . . . . . . . . . . . . . . . . . . . 229<br />

D.21 Consistency Check 17: HERWIG . . . . . . . . . . . . . . . . . . . . 230<br />

D.22 Consistency Check Us<strong>in</strong>g a Fit for Number of D ∗ C<strong>and</strong>idates . . . . 231<br />

D.23 Consistency Check Us<strong>in</strong>g HERWIG <strong>in</strong>stead of RAPGAP . . . . . . . 232<br />

D.24 η(D ∗ ) Theoretical Uncerta<strong>in</strong>ties . . . . . . . . . . . . . . . . . . . . . 233<br />

D.25 Q 2 Theoretical Uncerta<strong>in</strong>ties . . . . . . . . . . . . . . . . . . . . . . 234<br />

D.26 X Theoretical Uncerta<strong>in</strong>ties . . . . . . . . . . . . . . . . . . . . . . . 235<br />

D.27 ∆M Distributions used for F2 cc . . . . . . . . . . . . . . . . . . . . . 236<br />

D.28 Q 2 = 5.5 GeV 2 Systematics . . . . . . . . . . . . . . . . . . . . . . . 237<br />

D.29 Q 2 = 6.8 GeV 2 Systematics . . . . . . . . . . . . . . . . . . . . . . . 238<br />

D.30 Q 2 = 11 GeV 2 Systematics . . . . . . . . . . . . . . . . . . . . . . . 239<br />

D.31 Q 2 = 18 GeV 2 Systematics . . . . . . . . . . . . . . . . . . . . . . . 240<br />

D.32 Q 2 = 31 GeV 2 Systematics . . . . . . . . . . . . . . . . . . . . . . . 241<br />

D.33 Q 2 = 61 GeV 2 Systematics . . . . . . . . . . . . . . . . . . . . . . . 242<br />

D.34 Q 2 = 131 GeV 2 Systematics . . . . . . . . . . . . . . . . . . . . . . . 243<br />

D.35 Q 2 = 510 GeV 2 Systematics . . . . . . . . . . . . . . . . . . . . . . . 244<br />

D.36 F2 cc Theoretical Uncerta<strong>in</strong>ties Q 2 = 5.5 GeV 2 . . . . . . . . . . . . . 245<br />

D.37 F2 cc Theoretical Uncerta<strong>in</strong>ties Q 2 = 6.8 GeV 2 . . . . . . . . . . . . . 246<br />

D.38 F2 cc Theoretical Uncerta<strong>in</strong>ties Q 2 = 11 GeV 2 . . . . . . . . . . . . . 247<br />

D.39 F2 cc Theoretical Uncerta<strong>in</strong>ties Q 2 = 19 GeV 2 . . . . . . . . . . . . . 248<br />

D.40 F2 cc Theoretical Uncerta<strong>in</strong>ties Q 2 = 31 GeV 2 . . . . . . . . . . . . . 249<br />

D.41 F2 cc Theoretical Uncerta<strong>in</strong>ties Q 2 = 61 GeV 2 . . . . . . . . . . . . . 250<br />

D.42 F2 cc Theoretical Uncerta<strong>in</strong>ties Q 2 = 133 GeV 2 . . . . . . . . . . . . . 251<br />

D.43 F2 cc Theoretical Uncerta<strong>in</strong>ties Q 2 = 510 GeV 2 . . . . . . . . . . . . . 252<br />

xvii


List of Tables<br />

1.1 Quark <strong>and</strong> Lepton Properties . . . . . . . . . . . . . . . . . . . . . . 4<br />

1.2 The Gauge Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

3.1 Decay Modes Populated <strong>in</strong> MC . . . . . . . . . . . . . . . . . . . . . 34<br />

4.1 HERA II Beam Information . . . . . . . . . . . . . . . . . . . . . . . 40<br />

4.2 CAL Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br />

4.3 CTD Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />

4.4 MVD Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63<br />

4.5 STT Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66<br />

5.1 REG vs ZTT track<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . 77<br />

5.2 Efficiency Reconstruction Statistics . . . . . . . . . . . . . . . . . . . 97<br />

8.1 Systematic Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158<br />

9.1 Q 2 − y Regions for F cc<br />

2 <strong>Measurements</strong> . . . . . . . . . . . . . . . . . 174<br />

xviii


Chapter 1<br />

Introduction<br />

A desire to underst<strong>and</strong> the elementary particles mak<strong>in</strong>g up our universe has been<br />

around for quite some time. In the 6 th century BC Greek philosophers such as<br />

Leucippus <strong>and</strong> Democritus proposed that matter was made up of smaller elementary<br />

units. In the 19 th century, the English chemist John Dalton believed that each<br />

element was composed of <strong>in</strong>dividual units which he called atoms after the Greek<br />

word atomos, mean<strong>in</strong>g <strong>in</strong>divisible.<br />

British physicist Joseph John Thomson made the discovery that the electron is<br />

a part of the atom. Later <strong>in</strong> the early 20 th century, he proposed that the atom<br />

was someth<strong>in</strong>g like plum pudd<strong>in</strong>g. The atom had electrons suspended <strong>in</strong> a soup of<br />

positive charge equal to <strong>and</strong> balanc<strong>in</strong>g the negative charge of the electrons.<br />

Soon after New Zeal<strong>and</strong> born physicist Ernest Rutherford disproved the plum pudd<strong>in</strong>g<br />

model us<strong>in</strong>g the famous Gold Foil Experiment. From the experiment Rutherford<br />

concluded that the atom was composed mostly of empty space. The atom has a<br />

massive positively charged center, called the nucleus, <strong>and</strong> orbit<strong>in</strong>g electrons, similar<br />

to how planets orbit the sun. Later he proposed that the nucleus was made up of<br />

both positive <strong>and</strong> neutral particles called protons <strong>and</strong> neutrons, respectively.<br />

1


In the early 20 th century, it was believed that electrons, protons, <strong>and</strong> neutrons<br />

were the fundamental particles <strong>in</strong> the universe. Presently it is known that at least<br />

the proton <strong>and</strong> neutron are not fundamental particles, but have structure <strong>and</strong> are<br />

composed of partons, later to be identified as quarks.<br />

To better underst<strong>and</strong> the structure of matter, particle accelerators are constructed.<br />

These accelerators either collide a beam onto a fixed target, or collide two beams.<br />

The underly<strong>in</strong>g pr<strong>in</strong>ciple beh<strong>in</strong>d us<strong>in</strong>g particle accelerators to probe the structure<br />

of matter is based on the de Broglie relation. This states that as the momentum (p)<br />

of a particle <strong>in</strong>creases, the wavelength (λ) at which it resolves structure decreases:<br />

λ = h/p, (1.1)<br />

where h is Plank’s constant 1 . This means that higher momentum particles are able<br />

to probe shorter distances.<br />

The results presented <strong>in</strong> this thesis are obta<strong>in</strong>ed by the ZEUS collaboration at the<br />

HERA mach<strong>in</strong>e located at the DESY laboratory <strong>in</strong> Hamburg Germany. DESY, the<br />

Deutsches Elektronen-Synchrotron, is a research laboratory founded <strong>in</strong> 1959 <strong>and</strong><br />

(primarily) located <strong>in</strong> Hamburg, Germany, <strong>and</strong> is the home to many accelerators<br />

<strong>and</strong> experiments <strong>in</strong>clud<strong>in</strong>g HERA, <strong>and</strong> ZEUS. HERA, the Hadron Elektron R<strong>in</strong>g<br />

Anlage, is an electron-proton 2 (ep) collid<strong>in</strong>g-beam r<strong>in</strong>g accelerator. There are four<br />

experiments located on the HERA r<strong>in</strong>g, two of which are at ep <strong>in</strong>teraction po<strong>in</strong>ts.<br />

Each beam cross<strong>in</strong>g at an <strong>in</strong>teraction po<strong>in</strong>t is called an event. The term event is more<br />

generally used for a beam cross<strong>in</strong>g with one or more <strong>in</strong>teractions of <strong>in</strong>terest. ZEUS<br />

is an <strong>in</strong>ternational collaboration with a detector located at one of the ep <strong>in</strong>teraction<br />

1 Throughout this thesis natural units are used. Natural units are when = c = 1, thus the<br />

units of mass <strong>and</strong> momentum [GeV/c 2 ] <strong>and</strong> [GeV/c] respectively now have units of energy [GeV].<br />

2 Unless otherwise specified the word electron will refer to both electrons <strong>and</strong> positrons.<br />

2


sites. H1 is another collaboration with a detector centered at the other ep site.<br />

1.1 The St<strong>and</strong>ard Model<br />

The St<strong>and</strong>ard Model is a theory that attempts to describe matter <strong>and</strong> how it <strong>in</strong>teracts.<br />

Three of the four known <strong>in</strong>teractions are <strong>in</strong>cluded <strong>in</strong> this model: the electromagnetic,<br />

weak, <strong>and</strong> strong <strong>in</strong>teractions, the gravitational <strong>in</strong>teraction is not <strong>in</strong>cluded.<br />

The gravitational <strong>in</strong>teraction is much weaker than the other three <strong>in</strong>teractions<br />

at the masses concerned, thus can be safely ignored. In the St<strong>and</strong>ard Model<br />

the fundamental particles mak<strong>in</strong>g up matter are sp<strong>in</strong> 1/2 particles, called fermions.<br />

These are organized <strong>in</strong>to three generations of quarks <strong>and</strong> leptons, where both quarks<br />

<strong>and</strong> leptons have six different flavours. Tab. 1.1 shows the electric charges <strong>in</strong> units of<br />

the electron charge e, <strong>and</strong> masses of the fundamental particles. Quarks <strong>and</strong> leptons<br />

are considered po<strong>in</strong>t-like (i.e., have no sub-structure). Each elementary particle has<br />

a correspond<strong>in</strong>g antiparticle that is identical <strong>in</strong> all <strong>in</strong>tr<strong>in</strong>sic properties except for<br />

charge, magnetic moment, lepton or baryon number.<br />

3


Charge [e] Generation I Generation II Generation III<br />

+2/3 up (u) charm (c) top (t)<br />

1 → 3 MeV 1.25 ± 0.09 GeV 174.2 ± 3.3 GeV<br />

-1/3 down (d) strange (s) bottom (b)<br />

3 → 7 MeV 95 ± 25 MeV 4.20 ± 0.07 GeV<br />

-1 electron (e) muon (µ) tau (τ)<br />

510.99892 ± 4 × 10 −4 eV 105.658369 ± 9 × 10 −6 MeV 1776.99 +0.29<br />

−0.26 MeV<br />

0 electron neutr<strong>in</strong>o (ν e) muon neutr<strong>in</strong>o (ν µ) tau neutr<strong>in</strong>o (ν τ)<br />

< 2 eV < 0.19 MeV < 18.2 MeV<br />

Table 1.1: Quark <strong>and</strong> lepton charges, masses, for the different generations. (The first two<br />

rows refer to quarks, <strong>and</strong> the last two refer to leptons.) The masses shown <strong>in</strong><br />

Tab. 1.1 <strong>and</strong> 1.2 are obta<strong>in</strong>ed from [1].<br />

Interaction Boson Charge [e] Mass [GeV]<br />

electromagnetic photon (γ) 0 0<br />

strong gluon (g) 0 0<br />

weak W ± ±1 80.403 ± 0.029<br />

weak Z 0 0 91.1876 ± 0.0021<br />

Table 1.2: The gauge bosons, the <strong>in</strong>teraction they mediate, <strong>and</strong> their masses are <strong>in</strong>dicated.<br />

Note that although the gluon has no electromagnetic charge, each gluon carries<br />

a colour <strong>and</strong> anti-colour charge. The colour charge comes <strong>in</strong> three states red,<br />

green, blue, <strong>and</strong> opposites anti-red, anti-green, anti-blue.<br />

In the St<strong>and</strong>ard Model each force has a correspond<strong>in</strong>g gauge boson, which acts as the<br />

mediator for the force between particles. Information about the <strong>in</strong>teraction <strong>and</strong> the<br />

mediat<strong>in</strong>g gauge boson is seen <strong>in</strong> Tab. 1.2. These gauge bosons are either emitted<br />

or absorbed by <strong>in</strong>teract<strong>in</strong>g particles. The emission (or, equivalently, absorption) of a<br />

gauge boson is seen <strong>in</strong> Fig. 1.1. The strength of a general <strong>in</strong>teraction, which we call<br />

B, can be understood as how strongly the mediat<strong>in</strong>g gauge boson Ω couples to the<br />

<strong>in</strong>teract<strong>in</strong>g particle. This is given as the coupl<strong>in</strong>g constant, α B , of the <strong>in</strong>teraction.<br />

The mediat<strong>in</strong>g boson has 4-momentum q = k − k ′ <strong>and</strong> can be used to probe the<br />

structure of matter. The distance that can be resolved decreases as the momentum<br />

4


k<br />

√ αB<br />

k ′<br />

Ω<br />

Figure 1.1: The coupl<strong>in</strong>g of a gauge boson (Ω), mediat<strong>in</strong>g an <strong>in</strong>teraction (B), to a particle<br />

with <strong>in</strong>itial <strong>and</strong> f<strong>in</strong>al 4-momentum k <strong>and</strong> k ′ , respectively. The strength of the<br />

<strong>in</strong>teraction is given by the coupl<strong>in</strong>g constant, α B .<br />

transfer squared, Q 2 = −q 2 = −(k − k ′ ) 2 , <strong>in</strong>creases, i.e., λ ∼ √ 1 .<br />

Q 2<br />

Particles made up of quarks are called hadrons <strong>and</strong> are found <strong>in</strong> two groups: baryons<br />

<strong>and</strong> mesons. The baryon is a bound state with three quarks (the anti-baryon has<br />

three anti-quarks). The meson is a bound state made up of a quark <strong>and</strong> anti-quark.<br />

The quark constituents of hadrons as described are the valence quarks <strong>and</strong> will be<br />

discussed <strong>in</strong> the follow<strong>in</strong>g chapter.<br />

The St<strong>and</strong>ard Model is built up from two theories: the electroweak theory that<br />

comb<strong>in</strong>es the electromagnetic <strong>and</strong> the weak <strong>in</strong>teractions, <strong>and</strong> Quantum Chromodynamics<br />

(QCD) encompass<strong>in</strong>g the strong <strong>in</strong>teraction. Some aspects of QCD are<br />

discussed <strong>in</strong> the follow<strong>in</strong>g section.<br />

1.2 Quantum Chromodynamics<br />

Quantum Chromodynamics is a SU(3) symmetry field theory used to describe the<br />

strong <strong>in</strong>teraction. Before the development of QCD, baryons <strong>in</strong>troduced a paradox<br />

<strong>in</strong>to quantum theory because three quarks of the same flavour form a particle <strong>and</strong> yet<br />

all appear to have the same quantum numbers. This violates the Pauli Exclusion<br />

Pr<strong>in</strong>ciple. The pr<strong>in</strong>ciple states that no two fermions <strong>in</strong> a bound state can have<br />

identical quantum numbers. The solution was to <strong>in</strong>troduce a new quantum number<br />

carried by the quarks, given the name colour. Now the three quarks of the baryon<br />

5


have different quantum colours <strong>and</strong> no longer violate the Pauli exclusion pr<strong>in</strong>ciple.<br />

The colour charge <strong>in</strong> QCD is analogous to the electric charge <strong>in</strong> Quantum Electrodynamics<br />

(QED) but the former has three states compared to the latter’s one.<br />

These states are given the name red, green, <strong>and</strong> blue, <strong>and</strong> have opposites, anti-red,<br />

anti-green, <strong>and</strong> anti-blue, similar to the positive <strong>and</strong> negative nature of the electric<br />

charge. An aspect of the QCD field theory not shared by QED is that the gauge boson<br />

mediat<strong>in</strong>g the QCD strong <strong>in</strong>teraction, the gluon, is itself colour-charged, unlike<br />

the photon <strong>in</strong> QED, which is electrically neutral. The gluon is <strong>in</strong> fact bi-coloured,<br />

carry<strong>in</strong>g both a colour <strong>and</strong> an anti-colour charge.<br />

Two important features aris<strong>in</strong>g from QCD theory are conf<strong>in</strong>ement <strong>and</strong> asymptotic<br />

freedom. Conf<strong>in</strong>ement is the reason that isolated quarks have never been observed.<br />

The strength of the strong force between quarks <strong>in</strong>creases with their separation, so<br />

any attempt to isolate a s<strong>in</strong>gle quark snaps quark <strong>and</strong> anti-quark pairs (qq) out of<br />

the vacuum, lead<strong>in</strong>g to the creation of hadrons <strong>in</strong> colourless states. The word colour<br />

used to describe the new charge was chosen because <strong>in</strong> nature when red, green,<br />

<strong>and</strong> blue light overlap, the result is white light, which is colourless. Extend<strong>in</strong>g the<br />

analogy to quarks, bound three quark states will have one quark of each colour<br />

to rema<strong>in</strong> colourless (three anti-quarks will have have an anti-quark of each anticolour).<br />

The mesons rema<strong>in</strong> colourless because the quark <strong>and</strong> anti-quark are of<br />

the same colour <strong>and</strong> anti-colour, for example, red <strong>and</strong> anti-red. The colour <strong>and</strong><br />

anti-colour cancel, leav<strong>in</strong>g the meson colour neutral, i.e., white.<br />

Asymptotic freedom refers to the phenomenon that at close distances (or equivalently,<br />

at high momentum transfers, Q 2 ) the strength of the force between quarks is<br />

very weak, allow<strong>in</strong>g them to be considered non-<strong>in</strong>teract<strong>in</strong>g or free. This is very useful<br />

6


ecause it allows perturbative techniques to be used to underst<strong>and</strong> the <strong>in</strong>teraction<br />

between quarks at small distances.<br />

Underst<strong>and</strong><strong>in</strong>g the QCD coupl<strong>in</strong>g constant, α s , sheds light onto conf<strong>in</strong>ement <strong>and</strong><br />

asymptotic freedom. Consider two scenarios <strong>in</strong> which a high-momentum particle<br />

probes a target: an EM charged target <strong>in</strong> one case, <strong>and</strong> a colour charged target <strong>in</strong><br />

the other.<br />

Proton radius ≈ 1 fm<br />

α<br />

αs<br />

Conf<strong>in</strong>ement barrier<br />

α = 1<br />

137<br />

Distance from EM Charge Distance from Colour Charge<br />

or 1/Q 2 or 1/Q 2<br />

Figure 1.2: The QED <strong>and</strong> QCD coupl<strong>in</strong>g constants as a function of 1/Q 2 .<br />

In QED, a charged target can emit a photon that is reabsorbed or that splits <strong>in</strong>to<br />

electron-positron pairs. The electron, migrates towards the positively charged QED<br />

particle <strong>and</strong> the positron migrates away from it (the pair migrate <strong>in</strong> opposite directions<br />

if the target is negatively charged). The photon emission leads to the creation<br />

of a surround<strong>in</strong>g cloud of virtual particles. This cloud screens the true charge of<br />

the target such that the probe at large distances observes an effective charge less<br />

than the target’s actual charge. At shorter distances with<strong>in</strong> this cloud, the probe<br />

observes a charge that asymptotically <strong>in</strong>creases.<br />

Analogous to the QED case, colour-charged targets <strong>in</strong> QCD emit gluons, which are<br />

reabsorbed or split <strong>in</strong>to a quark anti-quark pair that screens the target’s true colour<br />

7


charge. However, unlike QED, the emitted gluon can also split to a gluon-gluon<br />

pair! Gluons carry twice the colour charge of quarks or, more accurately, carry<br />

both a colour charge <strong>and</strong> an anti-colour charge. Gluon-gluon effects from the cloud<br />

dom<strong>in</strong>ate <strong>and</strong> spread out the effective colour charge of the QCD target. A probe<br />

at long distances (small momentum transfers) observes a large colour charge from<br />

the QCD target, while at short distances (large momentum transfers), it observes<br />

a vanish<strong>in</strong>g colour charge. This observation is know as anti-screen<strong>in</strong>g. Fig. 1.2<br />

illustrates how the QED <strong>and</strong> QCD coupl<strong>in</strong>g constants change with distance. The<br />

QED coupl<strong>in</strong>g constant is named the f<strong>in</strong>e structure constant <strong>and</strong> asymptotically<br />

approaches α QED = e 2 /4π ≈ 1/137, where e is the electron charge. The QCD<br />

coupl<strong>in</strong>g constant is analogously def<strong>in</strong>ed as α s = g 2 /4π, where g is the colour charge<br />

of the quarks <strong>and</strong> gluons. As the distance <strong>in</strong>creases, α s asymptotically rises. A<br />

cut-off occurs at approximately 1 fm, which is the radius of the proton.<br />

1.3 Perturbative Quantum Chromodynamics<br />

Perturbative techniques are used <strong>in</strong> field theories to f<strong>in</strong>d approximate solutions to<br />

problems. Typically, similar problems with known solutions are modified by a small<br />

perturb<strong>in</strong>g <strong>in</strong>fluence to approximate the desired problem. The solution to the perturbed<br />

problem is not exact <strong>and</strong> is expressed <strong>in</strong> terms of a power series exp<strong>and</strong>ed<br />

about a small parameter. The desired level of accuracy of the solution is determ<strong>in</strong>ed<br />

by the number of terms evaluated <strong>in</strong> the series. In perturbative Quantum<br />

Chromodynamics (pQCD), cross sections <strong>in</strong>volv<strong>in</strong>g particles of 4-momenta (p) at<br />

momentum transfer (Q 2 ) can be expressed as an expansion about a parameter, g<br />

∞∑<br />

σ(p,Q 2 ) = A n (p,Q 2 )g 2n = A 0 (p,Q 2 ) + A 1 (p,Q 2 )g 2 + A 2 (p,Q 2 )g 4 + · · · . (1.2)<br />

n=0<br />

8


The coefficients, A n , are calculated from Feynman diagrams, each successive term<br />

represent<strong>in</strong>g a higher order process. The parameter g is the previously mentioned<br />

colour charge <strong>and</strong> at short distances is small, allow<strong>in</strong>g the expansion to converge<br />

(see Fig. 1.2) provided that the coefficients A n also rema<strong>in</strong> “small”. Although not<br />

explicitly <strong>in</strong>dicated, g is a function of Q 2 , thus g = g(Q 2 ).<br />

Renormalization Scheme<br />

The purpose of a renormalization scheme <strong>in</strong> field theory is to systematically replace<br />

divergent <strong>in</strong>tegrals appear<strong>in</strong>g <strong>in</strong> Feynman calculations by f<strong>in</strong>ite expressions. The<br />

renormalization process <strong>in</strong>troduces a parameter called the renormalization scale, µ,<br />

<strong>in</strong>to the calculation, where the value of µ depends on the scheme used. The renormalization<br />

scale is chosen such that divergent <strong>in</strong>tegrals vanish. Two approaches, the<br />

momentum subtraction <strong>and</strong> the m<strong>in</strong>imal subtraction schemes, are commonly used<br />

<strong>and</strong> expla<strong>in</strong>ed <strong>in</strong> [2].<br />

1.3.1 Runn<strong>in</strong>g Coupl<strong>in</strong>g Constant<br />

The value of α s is not constant but rather a function of Q 2 , <strong>and</strong> for this reason α s is<br />

referred to as the runn<strong>in</strong>g coupl<strong>in</strong>g constant. The <strong>in</strong>troduction of a renormalization<br />

scale <strong>in</strong>to the theory should not alter any physical observable. This pr<strong>in</strong>ciple leads<br />

to the differential form of the QCD colour charge g [2]:<br />

Q 2dg(Q2 )<br />

dQ 2 = β(g(Q 2 )) (1.3)<br />

(recall g(Q 2 ) = √ 4πα s (Q 2 )). The beta function, β, is a series exp<strong>and</strong>ed about α s<br />

with coefficients β i , where i = 1,2, · · ·:<br />

(<br />

αs<br />

β(g) = −g<br />

4π β 1 +<br />

9<br />

( αs<br />

) 2<br />

β2 + · · ·)<br />

. (1.4)<br />


To first order the beta function is calculated to have the value [2]:<br />

β 1 = 11 − 2n f /3 = (11N c − 2n f )/3, (1.5)<br />

where n f is the number of active quark flavours <strong>and</strong> N c is the number of colour<br />

charges <strong>in</strong> the theory (<strong>in</strong> this case three). Active quark flavours refers to the different<br />

quark flavours visible <strong>in</strong> the proton at a particular value of Q 2 (this is expla<strong>in</strong>ed <strong>in</strong><br />

greater detail <strong>in</strong> the follow<strong>in</strong>g chapter). Us<strong>in</strong>g equations 1.3, 1.4, <strong>and</strong> 1.5, the strong<br />

coupl<strong>in</strong>g constant to first order is<br />

α s (Q 2 ) =<br />

4π<br />

β 1 ln(Q 2 /Λ 2 ) . (1.6)<br />

The energy scale at which α s becomes <strong>in</strong>f<strong>in</strong>ite is given the symbol Λ QCD :<br />

( ) −2π<br />

Λ QCD = µ exp<br />

β 1 α s (µ 2 , (1.7)<br />

)<br />

where µ is the renormalization scale result<strong>in</strong>g from the renormalization scheme.<br />

Typically, Λ QCD has a value <strong>in</strong> the range of 100 → 500 MeV. For values of Q 2<br />

much greater than Λ 2 QCD , the coupl<strong>in</strong>g constant α s is small such that perturbative<br />

QCD calculations are valid. When Q 2 is of the order Λ 2 QCD<br />

then pQCD can no<br />

longer be used. Thus, Λ QCD sets a scale at which quarks <strong>and</strong> gluons can be treated<br />

as <strong>in</strong>teract<strong>in</strong>g very weakly or when they arrange themselves <strong>in</strong> hadrons prevent<strong>in</strong>g<br />

pQCD from be<strong>in</strong>g used.<br />

10


Chapter 2<br />

<strong>Charm</strong> <strong>in</strong> the Proton<br />

2.1 Introduction<br />

The focus of the analyses presented <strong>in</strong> this thesis is the charm content <strong>in</strong> the proton.<br />

This is <strong>in</strong>terest<strong>in</strong>g consider<strong>in</strong>g that the charm quark mass, m c ≈ 1.5 GeV, is greater<br />

than the mass of the proton, m p ≈ 1 GeV. This means one of the constituents of<br />

the proton is more massive than the proton itself!<br />

Up until now the quark content of the proton was described as three quarks, which is<br />

true but not the entire picture. In addition to these three quarks, called the valence<br />

quarks, there are virtual qq pairs <strong>and</strong> gluons mak<strong>in</strong>g up what is called the sea of the<br />

proton. (Valence quarks <strong>and</strong> the proton sea are discussed <strong>in</strong> §2.3.) So the charm<br />

content <strong>in</strong> the proton is actually the charm content of the proton sea. To “see”<br />

the charm <strong>in</strong> the proton an electron probe is used to “knock” a charm quark out<br />

of the proton, creat<strong>in</strong>g a charmed hadron. <strong>Charm</strong> measurements are made <strong>in</strong> this<br />

thesis by reconstruct<strong>in</strong>g the charmed meson state, D ∗± , which has a quark content<br />

cd (cd). At ZEUS, the D ∗± meson is reconstructed by look<strong>in</strong>g for three tracks that<br />

are the potential daughters of the D ∗± decay via D ∗+ → (D 0 )π + → (K − π + )π + (or<br />

11


charge conjugate 1 ) (see Fig. 2.1).<br />

This chapter outl<strong>in</strong>es some of the theoretical framework used <strong>in</strong> this thesis, along<br />

with some useful Lorentz-<strong>in</strong>variant variables used to describe the <strong>in</strong>teraction between<br />

protons <strong>and</strong> electrons, with a discussion of the concept of charm <strong>in</strong> the proton.<br />

e −<br />

γ<br />

c<br />

c<br />

d<br />

d<br />

d<br />

π + s<br />

p +<br />

d<br />

u<br />

u<br />

g<br />

c<br />

u<br />

D 0<br />

u<br />

D ∗+ K −<br />

π +<br />

c<br />

W +<br />

s<br />

u<br />

u<br />

d<br />

Figure 2.1: An ep <strong>in</strong>teraction creat<strong>in</strong>g a D ∗+ meson. The D ∗+ strongly decays to a D 0 <strong>and</strong><br />

π + s , the D0 weakly decays to a K − <strong>and</strong> π + .<br />

2.2 <strong>Deep</strong> Inelastic Scatter<strong>in</strong>g K<strong>in</strong>ematics<br />

Neutral Current <strong>Deep</strong> Inelastic Scatter<strong>in</strong>g, NCDIS, is the process describ<strong>in</strong>g the<br />

scatter<strong>in</strong>g of a lepton off a hadron that is mediated by the exchange of a neutral<br />

virtual boson. At HERA this process is the scatter<strong>in</strong>g of an electron, with <strong>in</strong>itial<br />

<strong>and</strong> f<strong>in</strong>al 4-momenta k <strong>and</strong> k ′ , respectively, off of a proton with <strong>in</strong>itial 4-momentum<br />

1 In future unless otherwise specified D ∗ represents both the D ∗+ <strong>and</strong> D ∗− mesons.<br />

12


P. The <strong>in</strong>teraction has the form<br />

e(k) + p(P) → e(k ′ ) + X, (2.1)<br />

where X refers to all f<strong>in</strong>al state particles created <strong>in</strong> the <strong>in</strong>teraction, exclud<strong>in</strong>g the<br />

scattered electron. The term neutral current <strong>in</strong>dicates that the mediat<strong>in</strong>g gauge<br />

boson emitted by the electron is electrically neutral. This boson can either be a<br />

photon (γ) or Z 0 boson. In the Q 2 region used <strong>in</strong> this thesis, the exchange of<br />

a Z 0 boson can be safely ignored because the large mass of the Z 0 suppresses its<br />

production at low momentum transfers. A similar <strong>in</strong>teraction <strong>in</strong>volv<strong>in</strong>g the exchange<br />

of a charged virtual boson, the W + or the W − , is called Charged Current DIS <strong>and</strong><br />

<strong>in</strong> this exchange the charged electron becomes a neutral neutr<strong>in</strong>o. Unless otherwise<br />

specified, DIS will refer specifically to the neutral current case, s<strong>in</strong>ce charged current<br />

DIS results are outside the scope of this thesis.<br />

In the acronym DIS, deep refers to the prob<strong>in</strong>g power of the boson. The greater the<br />

momentum transfer, the f<strong>in</strong>er the distances that can be resolved or the “deeper”<br />

the proton is probed. Inelastic scatter<strong>in</strong>g refers to the quark be<strong>in</strong>g “knocked” out<br />

of the proton <strong>and</strong> as a result the proton is broken up. Fig. 2.2 illustrates a DIS<br />

process where key variables used <strong>in</strong> describ<strong>in</strong>g the <strong>in</strong>teraction are <strong>in</strong>dicated.<br />

13


e(k)<br />

p(P)<br />

x · P<br />

y e(k ′ )<br />

γ/Z 0 (q 2 )<br />

x = −q2 , x ∈ [0,1] (2.3)<br />

2P · q<br />

Q 2 y = P · q , y ∈ [0,1] (2.4)<br />

P · k<br />

Q 2 = −q 2 = −(k − k ′ ) 2 , Q 2 ∈ [0,s] (2.2)<br />

s = (k + P) 2 ≈ 4E p · E e (2.5)<br />

W<br />

W 2 = (P + q) 2 , W ∈ [m 2 p,s] (2.6)<br />

Figure 2.2: Neutral current deep <strong>in</strong>elastic scatter<strong>in</strong>g k<strong>in</strong>ematics.<br />

The virtuality, Q 2 , is the 4-momentum transfer squared of the exchanged photon.<br />

The scatter<strong>in</strong>g of a virtual photon <strong>and</strong> a quark <strong>in</strong> DIS is called the hard scatter<strong>in</strong>g<br />

process. The terms hard <strong>and</strong> soft have the follow<strong>in</strong>g mean<strong>in</strong>g: regions of large<br />

momentum transfers allow<strong>in</strong>g processes to be treated perturbatively is called hard,<br />

<strong>and</strong> small momentum transfers where pQCD is not valid is called soft.<br />

The Bjorken scal<strong>in</strong>g variable, x, can be <strong>in</strong>terpreted as the fraction of the proton’s<br />

<strong>in</strong>com<strong>in</strong>g 4-momentum carried by the struck parton. The <strong>in</strong>elasticity, y, <strong>in</strong> the<br />

proton’s rest frame, is a measure of the amount of energy transferred between the<br />

electron <strong>and</strong> the proton. The center-of-mass energy squared of the <strong>in</strong>itial electronproton<br />

system is s. At HERA II the beam energies yield √ s = 318 GeV. The<br />

center-of-mass energy squared of the f<strong>in</strong>al hadronic system is W 2 . The Lorentz<strong>in</strong>variant<br />

variables Q 2 , x, <strong>and</strong> y are not completely <strong>in</strong>dependent: they are related<br />

by<br />

Q 2 = sxy, (2.7)<br />

<strong>and</strong> because s is fixed, only two of the three variables are <strong>in</strong>dependent.<br />

14


2.2.1 DIS Cross Sections<br />

The electron-proton <strong>in</strong>clusive cross section, σ, has components aris<strong>in</strong>g from the<br />

k<strong>in</strong>ematics of the hard scatter, ̂σ i , <strong>and</strong> from the structure of the proton, q i :<br />

σ(P,Q 2 ) ∝ ∑ i<br />

∫ 1<br />

0<br />

dx · ̂σ i (xP,Q 2 ) ⊗ q i (x). (2.8)<br />

The partonic cross section, ̂σ i , accounts for the hard scatter of the virtual photon<br />

(sometimes <strong>in</strong>dicated by γ ∗ ), of virtuality Q 2 , with parton i, carry<strong>in</strong>g a fraction x<br />

of the proton’s momentum, P. Feynman diagrams determ<strong>in</strong>e ̂σ i . The probability<br />

density of f<strong>in</strong>d<strong>in</strong>g parton i <strong>in</strong> the proton with momentum xP is q i (x). q i (x) is called<br />

the parton density function, PDF. Ultimately, the PDF describes the structure of<br />

the proton at a specific Q 2 .<br />

2.3 Quark Parton Model<br />

The Quark Parton Model, QPM, was developed by Feynman <strong>and</strong> Bjorken (see [3]<br />

<strong>and</strong> [4]) to expla<strong>in</strong> a feature, observed <strong>in</strong> SLAC’s DIS data, named scal<strong>in</strong>g (see<br />

below). In this model the partons are the po<strong>in</strong>t-like particles mak<strong>in</strong>g up the proton.<br />

2.3.1 QPM Structure Functions<br />

The neutral current DIS double differential cross section can be expressed <strong>in</strong> terms<br />

of structure functions:<br />

d 2 σ ep<br />

dxdQ 2 = 2πα2<br />

xQ 4 (<br />

2xy 2 F 1 (x) + 2(1 − y)F 2 (x) − (2y − y 2 )xF 3 (x) ) . (2.9)<br />

The three structure functions F 1 , F 2 , <strong>and</strong> xF 3 are not explicitly calculated but must<br />

be determ<strong>in</strong>ed by experiment <strong>and</strong> are described shortly. (There exist alternate but<br />

equivalent parametrizations of the double differential cross sections us<strong>in</strong>g different<br />

15


structure functions.) The term scal<strong>in</strong>g is used to describe the feature that <strong>in</strong> the<br />

quark parton model the structure functions at high Q 2 are no longer dependent on<br />

Q 2 , but only on the Bjorken scal<strong>in</strong>g variable x. Prob<strong>in</strong>g deeper <strong>in</strong>to the proton<br />

shows no additional structure therefore, the structure functions rema<strong>in</strong> constant:<br />

F a (x,Q 2 ) → F a (x) when Q 2 → ∞ for a = 1,2,3. Thus, scal<strong>in</strong>g is a consequence<br />

of the partons be<strong>in</strong>g the only po<strong>in</strong>t-like constituents <strong>in</strong> the proton. The F 1 <strong>and</strong> F 2<br />

structure functions are not <strong>in</strong>dependent. The Callan-Gross relation [5] is<br />

2xF 1 (x) = F 2 (x), (2.10)<br />

<strong>and</strong> arises from partons be<strong>in</strong>g sp<strong>in</strong> 1 2<br />

particles. The cross section can now be simplified<br />

to<br />

d 2 σ ep<br />

dxdQ 2 = 2πα2<br />

xQ 4 [(1 + (1 − y)2 )F 2 (x) − (2y + y 2 )xF 3 (x)]. (2.11)<br />

In the QPM the F 1 <strong>and</strong> F 2 structure functions can be <strong>in</strong>terpreted as the sum of the<br />

quark density <strong>in</strong> the proton:<br />

2xF 1 (x) = F 2 (x) = ∑ i<br />

F i 2(x) = x ∑ i<br />

e 2 i q i (x), (2.12)<br />

where e i is the electric charge of quark i. The structure function xF 3 describes<br />

the parity violat<strong>in</strong>g contribution to the double differential cross section. The parity<br />

violation <strong>in</strong> NCDIS does not occur through the exchange of a photon but through<br />

the exchange of a Z 0 boson. In the k<strong>in</strong>ematic region of <strong>in</strong>terest for this thesis,<br />

5 < Q 2 < 1000 GeV 2 , the xF 3 structure function can be ignored because the mass<br />

of the Z 0 boson, m 2 Z<br />

≈ 8300 GeV 2 , is greater than the Q 2 limit of this thesis.<br />

0<br />

(A negligible xF 3 contribution occurs from the exchange of the γ − Z 0 <strong>in</strong>terference<br />

boson at the higher Q 2 values of this thesis). Neglect<strong>in</strong>g xF 3 allows the double<br />

16


differential cross section to further simplify:<br />

d 2 σ ep<br />

dxdQ 2 = 2πα2<br />

xQ 4 (1 + (1 − y)2 )F 2 (x). (2.13)<br />

If the partons mak<strong>in</strong>g up the proton are only three quarks then summ<strong>in</strong>g the fractional<br />

momenta x of the three quarks should yield:<br />

∑<br />

∫ 1<br />

i 0<br />

dx · x · q i (x) = ∑ i<br />

∫ 1<br />

0<br />

F i 2 (x)<br />

e 2 i<br />

≡ 1. (2.14)<br />

However, results show that the quarks carry closer to 50% of the proton’s momentum<br />

[6]. As it turns out, the quarks carry fractions u = 0.36 <strong>and</strong> d = 0.18 of the proton’s<br />

momentum, where u(x) is the probability density of f<strong>in</strong>d<strong>in</strong>g the u quark carry<strong>in</strong>g<br />

fraction x of the proton’s momentum (u(x) = q i (x) where i = u). A similar def<strong>in</strong>ition<br />

holds for the other quark flavours. The miss<strong>in</strong>g fractional momentum not carried by<br />

the three quarks means that there exists neutral constituents to the proton carry<strong>in</strong>g<br />

the rema<strong>in</strong><strong>in</strong>g half of its momentum. The follow<strong>in</strong>g Fig. 2.3 shows the expected<br />

proton structure F 2 for different proton models.<br />

17


The Proton Structure:<br />

F 2 (x)<br />

a) 3 non-<strong>in</strong>teact<strong>in</strong>g<br />

valence quarks<br />

1/3<br />

x<br />

b) 3 bound valence<br />

quarks<br />

1/3 x<br />

Sea<br />

Valence<br />

c) 3 bound<br />

valence<br />

quarks plus<br />

sea quarks<br />

1/3 x<br />

Figure 2.3: The F 2 structure function vs. x if the proton is:<br />

a) three non <strong>in</strong>teract<strong>in</strong>g valence quarks, then a s<strong>in</strong>gle peak at x = 1/3 with each<br />

quark carry<strong>in</strong>g 1/3 of the protons momentum is observed.<br />

b) three <strong>in</strong>teract<strong>in</strong>g valence quarks, then the peak at x = 1/3 is smeared because<br />

quarks redistribute their momentum amongst themselves.<br />

c) three <strong>in</strong>teract<strong>in</strong>g valence quarks with gluons <strong>and</strong> gluons splitt<strong>in</strong>g to qq pairs,<br />

the distribution no longer falls off at low x, sea quarks carry a significant fraction<br />

of protons momentum.<br />

The word valence, where only an atoms outer shell electrons are discussed <strong>in</strong>stead of<br />

all its electrons, is borrowed from atomic theory to describe the constituent quarks<br />

of a hadron. The constituent quarks of a hadron are <strong>in</strong> a state of constant emission<br />

<strong>and</strong> absorption of gluons, <strong>and</strong> these gluons <strong>in</strong> turn can split to virtual qq pairs or<br />

<strong>in</strong>to gluon pairs. These virtual quark <strong>and</strong> gluon pairs are referred to as the proton<br />

18


sea <strong>and</strong> carry a large fraction of the proton’s momentum. The F 2 data supports the<br />

description of the proton as a collection of valence quarks, gluons, <strong>and</strong> sea quarks,<br />

as seen <strong>in</strong> Fig 2.3c).<br />

2.4 Improved Quark Parton Model<br />

In the improved quark parton model, the proton is no longer a static system of three<br />

quarks but a dynamic system made up of quarks <strong>and</strong> gluons. The F 2 structure<br />

function is no longer only dependent on x at high Q 2 but dependent on Q 2 as<br />

well! Scal<strong>in</strong>g violations occur <strong>in</strong> the improved QPM because at higher Q 2 ’s the F 2<br />

structure function is sensitive to the gluons. F 2 is now a function of the quark <strong>and</strong><br />

anti-quark densities <strong>in</strong> the proton:<br />

F 2 (x,Q 2 ) = x ∑ i<br />

e 2 i<br />

(<br />

qi (x,Q 2 ) + q i (x,Q 2 ) ) , (2.15)<br />

where q i is the probability density of f<strong>in</strong>d<strong>in</strong>g anti-quark i at fractional momentum x<br />

<strong>and</strong> momentum transfer Q 2 . The structure of the proton becomes more complicated<br />

with <strong>in</strong>creas<strong>in</strong>g Q 2 because the f<strong>in</strong>er resolution allows for softer qq pairs with smaller<br />

values of x to be observed; this is depicted <strong>in</strong> Fig. 2.4. The DIS cross section <strong>in</strong><br />

the QPM is purely QED <strong>in</strong> nature <strong>and</strong> does not <strong>in</strong>volve QCD. DIS <strong>in</strong> the QPM<br />

<strong>in</strong>volves the scatter<strong>in</strong>g of a virtual photon <strong>and</strong> a valence quarks of the proton <strong>in</strong><br />

the hard process; this is seen <strong>in</strong> Fig. 2.5a). The improved QPM allows for hard<br />

scatter<strong>in</strong>g processes <strong>in</strong>volv<strong>in</strong>g the sea quarks of the proton. Boson-gluon fusion <strong>and</strong><br />

QCD Compton Scatter<strong>in</strong>g now contribute to the DIS cross section <strong>in</strong> the improved<br />

QPM; see Fig. 2.5b) <strong>and</strong> c).<br />

19


γ<br />

γ<br />

Q 2 0<br />

Q 2 ≫ Q 2 0<br />

Improved<br />

Resolution<br />

p<br />

x<br />

Resolution p<br />

a) b)<br />

x<br />

Figure 2.4: The virtual photon prob<strong>in</strong>g the proton “sees” a different quark distribution as<br />

Q 2 <strong>in</strong>creases. At higher values of Q 2 softer quarks are resolvable.<br />

e ′ e ′ e ′<br />

e<br />

e<br />

e<br />

√ α<br />

√ αs<br />

√ αs<br />

√ α<br />

√ α<br />

p p p<br />

a) QPM b) LO QCD BGF<br />

c) LO QCD Compton Scatter<strong>in</strong>g<br />

Figure 2.5: a) Quark parton model flavour excitation, scatter<strong>in</strong>g off valence quark, no QCD<br />

<strong>in</strong>volved b) LO QCD, boson-gluon fusion scatter<strong>in</strong>g off sea quark c) LO QCD<br />

Compton Scatter<strong>in</strong>g along with BGF, is the lowest order charm production<br />

mechanism at HERA.<br />

2.4.1 Factorization<br />

Factorization separates the short distance from the long distance contributions to the<br />

DIS cross section. A new energy scale called the factorization scale, µ f , is <strong>in</strong>troduced<br />

to set the po<strong>in</strong>t of separation of the two effects. An assumption is made that the<br />

short distance <strong>and</strong> long distance contributions are <strong>in</strong>dependent of one another. The<br />

proton’s F 2 structure function for the DIS process <strong>in</strong>volv<strong>in</strong>g the exchange of a vector<br />

20


gauge photon at virtuality Q 2 <strong>and</strong> momentum transfer x is<br />

F (γp)<br />

2 (x,Q 2 ) = ∑<br />

i=f,f,G<br />

∫ 1<br />

0<br />

dξ · ̂σ (γ) (<br />

i x/ξ,Q 2 /µ 2 ,µ 2 f /µ2 ,α s (µ 2 ) ) × φ p,i (ξ,µ f ,µ 2 ).<br />

(2.16)<br />

The summation i is summed over all flavours of quark f, anti-quark f, <strong>and</strong> gluon<br />

G. The new term, φ p,i , represents the quark, anti-quark, <strong>and</strong> gluon densities <strong>in</strong><br />

the proton <strong>and</strong> replaces q(x,Q 2 ) <strong>and</strong> q(x,Q 2 ). The <strong>in</strong>tegration over all fractional<br />

momenta, ξ, is from 0 to 1.<br />

e(k ′ )<br />

e(k)<br />

γ/Z 0<br />

Q<br />

Jet<br />

p(P)<br />

Hard Scatter<br />

g<br />

Q<br />

D ∗<br />

Proton Structure<br />

Fragmentation<br />

Figure 2.6: Photon-gluon fusion, PGF, (a specific case of the more general boson-gluon<br />

fusion, BGF) <strong>in</strong>volves the hard scatter of a photon <strong>and</strong> quark from a qq pair<br />

produced by a gluon <strong>in</strong> the proton. Indicated <strong>in</strong> the figure is the hard scatter, the<br />

proton structure, <strong>and</strong> fragmentation lead<strong>in</strong>g to the production of heavy charmed<br />

hadrons.<br />

Short distances are with<strong>in</strong> the regime where α s is small <strong>and</strong> allow for perturbation<br />

theory to be used. These effects are on the partonic level <strong>and</strong> are encompassed by the<br />

hard scatter<strong>in</strong>g function, ̂σ (γ)<br />

i<br />

, calculated with Feynman diagrams. For a specific DIS<br />

process (for example photon-gluon fusion, PGF, see Fig. 2.6) the hard scatter<strong>in</strong>g<br />

21


function, ̂σ (γ)<br />

i<br />

, <strong>in</strong>volv<strong>in</strong>g virtual photon γ <strong>and</strong> parton i is always the same! This<br />

means that <strong>in</strong> all lepton-hadron <strong>in</strong>teractions the PGF hard scatter<strong>in</strong>g function will<br />

be the same! In fact, even <strong>in</strong> hadron-hadron <strong>in</strong>teractions the hard scatter<strong>in</strong>g function<br />

from photon-gluon fusion is the same! The hard scatter<strong>in</strong>g function depends on the<br />

follow<strong>in</strong>g: the fractional momentum x, virtuality Q 2 , the renormalization scale µ,<br />

the factorization scale µ f , <strong>and</strong> the strong coupl<strong>in</strong>g constant α s (at Q 2 = µ 2 ).<br />

The long distance contribution to the DIS cross section can not be treated perturbatively<br />

due to the large coupl<strong>in</strong>g constant between partons. This contribution is<br />

encompassed by the parton density function φ p,i . The long distance contribution<br />

depends on: ξ, µ f , <strong>and</strong> µ 2 <strong>and</strong> is <strong>in</strong>dependent of Q 2 ! The long distance contribution<br />

φ p,i to the DIS cross section is <strong>in</strong>dependent of the hard scatter<strong>in</strong>g process <strong>and</strong> is universal.<br />

Once φ p,i is measured then it is known <strong>and</strong> is the same for all protons. The<br />

φ p,i are not directly calculable but are determ<strong>in</strong>ed by compar<strong>in</strong>g the cross section<br />

from Eq. 2.13 (with the F 2 structure function Eq. 2.16) for a specific hard scatter<br />

̂σ (γp) to experiment.<br />

2.4.2 DGLAP Evolution<br />

The measurement of the parton distribution function (PDF) at one energy scale<br />

Q 2 = µ 2 allows for its distribution to be predicted at other energy scales Q 2 = µ 2 0<br />

provided that both coupl<strong>in</strong>g constants α s (µ 2 ) <strong>and</strong> α s (µ 2 0 ) are small. The ability<br />

to predict the PDF at a new energy scale is known as the evolution of the parton<br />

density functions, <strong>and</strong> when the renormalization scale is set to µ 2 R = Q2 the PDF<br />

evolves accord<strong>in</strong>g to<br />

Q 2 d<br />

dQ 2φ p,i(x,µ,Q 2 ) = ∑<br />

j=f,f,G<br />

∫ 1<br />

x<br />

(<br />

dξ x<br />

ξ P ij<br />

ξ ;α s(Q ))<br />

2 φ p,i (ξ,µ,Q 2 ). (2.17)<br />

22


This important equation is called the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi<br />

(DGLAP) evolution equation [7, 8]. The DGLAP evolution equation <strong>in</strong>troduces<br />

the splitt<strong>in</strong>g functions P ij . The splitt<strong>in</strong>g function P ij (z) is proportional to the probability<br />

of parton j to emit i carry<strong>in</strong>g fraction z of parton j’s momentum (from Fig.<br />

2.7 where z = x/ξ).<br />

k ′<br />

k<br />

q<br />

(q − xP)<br />

P<br />

xP<br />

ξP<br />

(ξ − x)P<br />

(1 − ξ)P<br />

Figure 2.7: Momentum transfers <strong>in</strong> BGF.<br />

The splitt<strong>in</strong>g functions are perturbative expansions about α s :<br />

P ij (z) = P (1)<br />

ij (z) + α s<br />

2π P (2)<br />

ij (z) + α2 s<br />

4π<br />

(3)<br />

2P ij<br />

(z) + · · · , (2.18)<br />

with the higher order terms <strong>in</strong>volv<strong>in</strong>g an additional split. The parton <strong>in</strong>volved <strong>in</strong><br />

the hard scatter<strong>in</strong>g <strong>in</strong>teraction may have been radiated from a valence parton or<br />

radiated from a parton that was radiated from a valence parton, etc. The splitt<strong>in</strong>g<br />

functions encompass these parton radiation possibilities <strong>in</strong>to the evolution of the<br />

PDF. The effect of the splitt<strong>in</strong>g functions is to <strong>in</strong>crease the density of low x partons<br />

<strong>in</strong> the proton. The first-order splitt<strong>in</strong>g functions are seen <strong>in</strong> Fig. 2.8 <strong>and</strong> evaluated<br />

below:<br />

P (1)<br />

qq (z) = 4 3<br />

( ) 1 + z<br />

2<br />

1 − z<br />

(2.19)<br />

23


q<br />

q(z)<br />

q<br />

g(z)<br />

g<br />

q(z)<br />

g<br />

g(z)<br />

g(1-z)<br />

P qq (z)<br />

q(1-z)<br />

P gq (z)<br />

q(1-z)<br />

P qg (z)<br />

g(1-z)<br />

P gg (z)<br />

Figure 2.8: Feynman representation of the Altarelli-Parisi splitt<strong>in</strong>g functions.<br />

P (1)<br />

gq (z) = 4 3<br />

P (1)<br />

qg (z) = 1 2<br />

P (1)<br />

gg (z) = 6<br />

( (1 − z) 2 )<br />

+ 1<br />

z<br />

(2.20)<br />

(<br />

(1 − z) 2 + z 2) (2.21)<br />

( z<br />

1 − z + 1 − z ) ( 11<br />

+ z(1 − z) +<br />

z<br />

2 − n )<br />

f<br />

δ(1 − z).<br />

3<br />

(2.22)<br />

The specific quark-to-quark splitt<strong>in</strong>g function P (1)<br />

qq (z) can be <strong>in</strong>terpreted <strong>in</strong> two<br />

equivalent ways: the splitt<strong>in</strong>g of a quark <strong>in</strong>to a quark-gluon (qg) pair, or the emission<br />

of a gluon by a quark. In both cases the quark ends up with fraction z of the <strong>in</strong>itial<br />

quark’s momentum.<br />

Higher order splitt<strong>in</strong>g functions account for additional emissions between parton j<br />

splitt<strong>in</strong>g to parton i. Fig. 2.9 depicts the two possible contributions to the secondorder<br />

splitt<strong>in</strong>g function <strong>in</strong> the quark to quark case P (2)<br />

qq (z).<br />

The ability of the DGLAP equation to predict the quark <strong>and</strong> gluon distributions <strong>in</strong><br />

hadrons at new energy scales from a measurement at Q 2 0<br />

makes it one of the most<br />

powerful tools <strong>in</strong> pQCD.<br />

2.4.3 Parton Density Function<br />

Parton density functions are not calculable but are determ<strong>in</strong>ed from experiment<br />

at a value Q 2 0 , <strong>and</strong> evolved us<strong>in</strong>g DGLAP to extrapolate the parton densities at<br />

other values of Q 2 . Two common schemes for the treatment of the heavy quark<br />

24


q(z)<br />

q(z)<br />

q<br />

q<br />

a) b)<br />

P (2)<br />

qq (z)<br />

Figure 2.9: The higher order P (2)<br />

qq (z) splitt<strong>in</strong>g function. a) Quark splits to a qg pair followed<br />

by the gluon splitt<strong>in</strong>g to a qq pair with one quark with fraction z of the<br />

<strong>in</strong>itial quark’s momentum b) Quark emits two successive gluons reduc<strong>in</strong>g its<br />

momentum to fraction z.<br />

distributions <strong>in</strong> the PDFs are as follows: a Fixed Flavour Number scheme, FFN,<br />

<strong>and</strong> a Zero Mass Variable Flavour Number scheme, ZMVFN [9].<br />

FFN schemes treat the quarks <strong>in</strong> the proton as massive, however the heavy quarks<br />

c, b, <strong>and</strong> t are not active flavours <strong>in</strong> the proton PDF. Heavy flavours are produced<br />

<strong>in</strong> the hard scatter, i.e., from γg → QQ. FFN schemes provide a useful description<br />

of the proton PDF at low Q 2 when p T ∼ m Q .<br />

In ZMVFN schemes all quark flavours are massless <strong>and</strong> active <strong>in</strong> the proton PDF.<br />

Heavy quark Q beg<strong>in</strong>s to populate the PDF when Q 2 ≥ 4m 2 Q<br />

. Heavy quark production<br />

occurs through the hard scatter <strong>and</strong> additionally is produced via gq → gq<br />

processes <strong>in</strong> the proton. This approach is valid when Q 2 ≫ m Q .<br />

The analyses presented use the ZEUS-S PDF, a fixed flavour number scheme populated<br />

with light quarks u, d, <strong>and</strong> s. The ZEUS-S PDF is obta<strong>in</strong>ed through a fit to<br />

ZEUS data. Some other choices <strong>in</strong> PDFs <strong>in</strong>clude CTEQ6 [10], TRVFN [11, 12], <strong>and</strong><br />

MRST2001 [13].<br />

The parton distributions shown <strong>in</strong> Fig. 2.10 are a result of fits to ZEUS data.<br />

Indicated <strong>in</strong> the figure are the sea, gluon, <strong>and</strong> valence quark densities at fractional<br />

25


momenta x.<br />

Care must be given when us<strong>in</strong>g PDFs such that the order of the splitt<strong>in</strong>g functions<br />

used is consistent with the order <strong>in</strong> perturbation theory of the hard scatter<strong>in</strong>g process<br />

<strong>in</strong>volved. Thus higher order processes must use higher order PDFs.<br />

xf<br />

0.8<br />

0.7<br />

0.6<br />

(a)<br />

ZEUS<br />

ZEUS NLO QCD fit<br />

α s<br />

(M 2 Z<br />

) = 0.118<br />

Q 2 =10 GeV 2<br />

xu v<br />

tot. error<br />

0.5<br />

uncorr. error<br />

0.4<br />

xg(× 0.05)<br />

xd v<br />

0.3<br />

0.2<br />

xS(× 0.05)<br />

0.1<br />

0<br />

10 -3 10 -2 10 -1 1<br />

x<br />

Figure 2.10: The gluon, sea, <strong>and</strong> u <strong>and</strong> d valence distributions extracted from the ZEUS-S<br />

fit at Q 2 = 10 GeV 2 [14]. Notice at a fractional momentum x ≈ 0.3 the up<br />

valence quark density is twice that of the down quarks, <strong>in</strong>dicat<strong>in</strong>g the proton<br />

is made up of 2 u <strong>and</strong> 1 d quark. At low x the gluons <strong>and</strong> the sea dom<strong>in</strong>ate<br />

the fractional momentum of the proton.<br />

2.5 <strong>Charm</strong> Contribution F cc<br />

2 to the Proton Structure<br />

Functions F 2<br />

The charm content <strong>in</strong> the proton arises from the virtual quarks <strong>in</strong> the proton sea.<br />

The sea produces quarks of all flavours. This thesis specifically measures the charm<br />

26


contribution F cc<br />

2 to the proton structure function F 2. The hard scatter of a charmed<br />

sea quark, shown <strong>in</strong> the BGF diagram Fig 2.6, knocks the charm quark out of the<br />

proton. This quark hadronizes, creat<strong>in</strong>g a charmed hadron. The double differential<br />

cross section for charm production is<br />

dσ cc (x,Q 2 )<br />

dxdQ 2<br />

= 2πα2<br />

xQ 4 (<br />

1 + (1 + y)<br />

2 ) F cc<br />

2 (x,Q 2 ). (2.23)<br />

Measur<strong>in</strong>g charmed hadron production <strong>in</strong> DIS events at HERA allows one to determ<strong>in</strong>e<br />

the charm contribution to the proton, with the underly<strong>in</strong>g assumption that the<br />

charm <strong>in</strong> the measured charmed hadron has orig<strong>in</strong>s <strong>in</strong> the proton sea. <strong>Measurements</strong><br />

of the charmed meson D ∗ are used to determ<strong>in</strong>e F cc<br />

2 .<br />

Three regions of <strong>in</strong>terest are <strong>in</strong>dicated <strong>in</strong> the boson-gluon fusion diagram of Fig. 2.6:<br />

the hard scatter, the proton structure, <strong>and</strong> f<strong>in</strong>ally fragmentation, which <strong>in</strong>volves<br />

charm quarks hadroniz<strong>in</strong>g to D ∗ mesons.<br />

Dur<strong>in</strong>g the ep collision, Lorentz contractions <strong>and</strong> time dilation allow the electron to<br />

see essentially a static distribution of partons <strong>in</strong> the proton. The hard scatter occurs<br />

quickly <strong>and</strong> is unaffected by the <strong>in</strong>teractions between partons. Hadronization follows<br />

the hard scatter <strong>and</strong> is the process of quarks <strong>and</strong> gluons coalesc<strong>in</strong>g <strong>in</strong>to colourless<br />

particles. The three regions <strong>in</strong>volved <strong>in</strong> a DIS event are assumed to be <strong>in</strong>dependent,<br />

thus not <strong>in</strong>fluenc<strong>in</strong>g one another. The exclusive case of f<strong>in</strong>d<strong>in</strong>g a D ∗ with momentum<br />

h is<br />

dσ D ∗(h) ∝ ∑ i<br />

∫ 1<br />

0<br />

dz · ̂σ i (h/z) ⊗ φ p,i (z) ⊗ f D ∗ ,i(z), (2.24)<br />

where f D ∗ ,i(z) is the fragmentation function that describes the probability of parton<br />

i with momentum h/z to produce a D ∗ with momentum h.<br />

27


2.6 Fragmentation Functions<br />

Fragmentation Functions are used to model soft processes that are not perturbatively<br />

calculable. Specifically, fragmentation functions model the process of quarks<br />

becom<strong>in</strong>g hadrons. The models used to describe fragmentation are phenomenological,<br />

<strong>and</strong> the model’s parameters are tuned, i.e., set to ideal values, to describe the<br />

data. Monte Carlo generators (see §3.1.1) use fragmentation functions to hadronize<br />

partons to colourless objects. Two models, the Lund Str<strong>in</strong>g <strong>and</strong> Peterson Fragmentation<br />

functions, are discussed.<br />

2.6.1 Lund Str<strong>in</strong>g Fragmentation<br />

The Lund Str<strong>in</strong>g Fragmentation model [15] has the form<br />

f(z) ∝<br />

(1 − z)a<br />

z<br />

exp<br />

(− bm2<br />

z<br />

)<br />

, (2.25)<br />

where z is the fractional longitud<strong>in</strong>al momentum carried by the hadron relative to<br />

its parent parton. The parameters a <strong>and</strong> b are obta<strong>in</strong>ed from fits to data with values<br />

of 0.11 <strong>and</strong> 0.52 GeV −2 , respectively, <strong>and</strong> m is the mass of qq system. Much like<br />

<strong>in</strong> the QED case where opposite EM charged particles form dipoles, the QCD case<br />

has an equivalent colour dipole amongst oppositely coloured qq pairs. L<strong>in</strong>ear colour<br />

fields, represented by str<strong>in</strong>gs, connect the qq pairs, as seen <strong>in</strong> Fig. 2.11. As the<br />

qq pair separates the colour str<strong>in</strong>g stretches to the po<strong>in</strong>t where the energy stored<br />

with<strong>in</strong> the str<strong>in</strong>g is sufficient to produce a new qq pair. At this po<strong>in</strong>t the str<strong>in</strong>g will<br />

snap. The process cont<strong>in</strong>ues until the energy with<strong>in</strong> the str<strong>in</strong>gs is too low to form<br />

additional qq pairs. The Lund str<strong>in</strong>g fragmentation function comb<strong>in</strong>es the str<strong>in</strong>g<br />

fragments to form hadrons.<br />

28


Seperation<br />

q<br />

q<br />

Mesons<br />

Time<br />

Figure 2.11: The separation of a quark <strong>and</strong> anti-quark with time. As qq pairs separate the<br />

energy with<strong>in</strong> the colour str<strong>in</strong>g <strong>in</strong>creases. Eventually the energy is sufficient to<br />

produce new qq pairs.<br />

2.6.2 Peterson Fragmentation<br />

An alternate model, the Peterson Fragmentation Function [16], describes the fragmentation<br />

of heavy quarks to heavy hadrons. The analyses presented <strong>in</strong>volve the<br />

charm quark fragment<strong>in</strong>g to a D ∗± meson, i.e., c → cd. Peterson fragmentation has<br />

the form<br />

f Q (z) = 1 z<br />

(<br />

1 − 1 z − ǫ ) −2<br />

Q<br />

, (2.26)<br />

1 − z<br />

where ǫ Q is the Peterson fragmentation parameter <strong>and</strong> is determ<strong>in</strong>ed from experiment.<br />

The value of ǫ C = 0.035 for the charm fragmentation parameter is used at<br />

ZEUS. In a fashion analogous to the DGLAP evolution of the parton density functions<br />

(see Eq. 2.17), the fragmentation functions also evolve with Q 2 . The evolution<br />

of the fragmentation function f Q (z) with Q 2 is<br />

df q (x,Q 2 )<br />

d ln Q 2 /Λ 2 = α ∫ 1<br />

s dξ [<br />

fq (ξ,Q 2 )P qq (x/ξ) + f g (ξ,Q 2 )P gq (x/ξ) ] , (2.27)<br />

2π x ξ<br />

29


df g (x,Q 2 )<br />

d lnQ 2 /Λ 2 = α ∫ 1<br />

s dξ<br />

[∑<br />

fq (ξ,Q 2 )P qg (x/ξ) + f g (ξ,Q 2 )P gg (x/ξ)]<br />

. (2.28)<br />

2π x ξ<br />

2.7 Summary<br />

The theoretical framework to underst<strong>and</strong> charm production from ep <strong>in</strong>teractions is<br />

now developed. This thesis exam<strong>in</strong>es charm production at HERA by specifically<br />

select<strong>in</strong>g events that <strong>in</strong>clude D ∗± mesons. These mesons are measured us<strong>in</strong>g the<br />

ZEUS detector. Cross sections, the probability of an <strong>in</strong>teraction occurr<strong>in</strong>g, are determ<strong>in</strong>ed<br />

<strong>and</strong> used to calculate the charm contribution F cc<br />

2 to the proton structure<br />

function F 2 .<br />

30


Chapter 3<br />

Monte Carlo Simulation<br />

3.1 Introduction<br />

Simulations are used to predict <strong>and</strong> underst<strong>and</strong> many aspects of a high energy<br />

physics experiment. At ZEUS simulations are used to model the physics processes<br />

<strong>in</strong>volved dur<strong>in</strong>g an ep <strong>in</strong>teraction <strong>and</strong> <strong>in</strong> the ZEUS detector’s response. Simulations<br />

utilize Monte Carlo <strong>in</strong>tegration [17]. Monte Carlo <strong>in</strong>tegration uses r<strong>and</strong>om numbers<br />

to evaluate numerical solutions to <strong>in</strong>tegrals. R<strong>and</strong>om numbers are used at high<br />

energy physics experiments because both ep events <strong>and</strong> particle <strong>in</strong>teractions with<br />

matter are expla<strong>in</strong>ed by probabilities. Us<strong>in</strong>g r<strong>and</strong>om number <strong>in</strong>tegration for simulations<br />

at high energy physics experiments falls under the umbrella term Monte<br />

Carlo (MC).<br />

For a process of <strong>in</strong>terest two methods to predict cross sections are used: cross-section<br />

generators <strong>and</strong> cross-section <strong>in</strong>tegrators [18].<br />

3.1.1 Parton Shower<br />

A MC generator will simulate the hard scatter<strong>in</strong>g process us<strong>in</strong>g <strong>in</strong>formation from the<br />

proton’s parton distribution function <strong>and</strong> the k<strong>in</strong>ematics of the event. The outgo<strong>in</strong>g<br />

partons pull quark anti-quark pairs from the vacuum, which <strong>in</strong> turn can pull more<br />

31


particles from the vacuum <strong>in</strong> a process known as parton shower<strong>in</strong>g. Different MC<br />

generators have differ<strong>in</strong>g treatments of how the partons shower. MC generators<br />

typically <strong>in</strong>volve the follow<strong>in</strong>g: an evolution variable t, for example, the Q 2 of the<br />

event, a cut-off term t 0 under which shower<strong>in</strong>g halts, a momentum fraction z carried<br />

by the emitted parton relative to its parent, <strong>and</strong> the DGLAP splitt<strong>in</strong>g functions (see<br />

§2.4.2) govern<strong>in</strong>g the creation of quarks <strong>and</strong> gluons dur<strong>in</strong>g the shower<strong>in</strong>g process.<br />

3.2 Cross-Section Generators<br />

Consider a cross section of the form σ = ∫ f(θ,φ)dcos θdφ. To sample the phase<br />

space 1 of this cross section means to r<strong>and</strong>omly generate the variables θ ∈ [−π,π]<br />

<strong>and</strong> φ ∈ [0,2π] uniformly. The generated variables, <strong>in</strong> this case {θ,φ}, form what is<br />

called a c<strong>and</strong>idate event. The differential cross section, dσ, for a specific c<strong>and</strong>idate<br />

event {θ 0 ,φ 0 } is called an event weight <strong>and</strong> is related to the probability for this<br />

particular event to occur. The average of many event weights is an approximation<br />

of ∫ dσ <strong>and</strong> eventually converges to the theoretical cross section.<br />

The parameters of an event are generated with a frequency correspond<strong>in</strong>g to a<br />

theoretical prediction. Ideally, the generated event is <strong>in</strong>dist<strong>in</strong>guishable from what<br />

the actual detector might observe, i.e., the number, charge, <strong>and</strong> 4-momentum of<br />

particles created dur<strong>in</strong>g the <strong>in</strong>teraction. Cross-section generators have a structure<br />

depicted <strong>in</strong> Fig. 3.1. Five key aspects to generat<strong>in</strong>g an event are <strong>in</strong>dicated.<br />

Two MC Cross-Section generators, RAPGAP <strong>and</strong> HERWIG, are used <strong>in</strong> this thesis<br />

<strong>and</strong> are discussed below.<br />

1 The phase space is the multi-dimensional hypercube spann<strong>in</strong>g all the degrees of freedom of an<br />

<strong>in</strong>teraction.<br />

32


Decay<br />

Hadronization<br />

Parton<br />

Shower<br />

Hard Scatter<br />

e ′<br />

Time<br />

Parton<br />

Distribution<br />

φ(x, Q 2 )<br />

p<br />

e<br />

Figure 3.1: The basic structure of an event generator.<br />

1) the parton distribution function of the proton<br />

2) the specific hard scatter<strong>in</strong>g process <strong>in</strong>volved<br />

3) the parton shower<strong>in</strong>g after the hard scatter<br />

4) hadronization of the partons after shower<strong>in</strong>g<br />

5) decay of the unstable hadrons to daughter particles<br />

3.2.1 RAPGAP<br />

RAPGAP, a lead<strong>in</strong>g order (LO) MC event generator, is used to determ<strong>in</strong>e resolutions,<br />

acceptances, efficiencies, <strong>and</strong> purities <strong>in</strong> the analyses presented <strong>in</strong> this thesis.<br />

Key aspects to RAPGAP are as follows [17]:<br />

• ma<strong>in</strong> source of charm production: BGF<br />

• fragmentation: LUND str<strong>in</strong>g model implemented through PYTHIA, an event<br />

generator [19]<br />

• proton PDF: GRV94, a low x proton PDF [20]<br />

• parton shower<strong>in</strong>g: <strong>in</strong>terface to PYTHIA us<strong>in</strong>g colour dipole<br />

33


The RAPGAP sample that is used is a DIS charm-enriched sample. Specifically,<br />

each event has Q 2 > 1.5 GeV 2 <strong>and</strong> a charmed hadron with a specific decay mode.<br />

Eight charmed hadron decay modes are populated <strong>in</strong> RAPGAP allow<strong>in</strong>g for a robust<br />

study of charm production to be performed at ZEUS.<br />

1) D ∗ → D 0 (→ Kπ)π s 2) D ∗ → D 0 (→ K s ππ)π s<br />

3) D ∗ → D 0 (→ Kπππ)π s 4) D 0 → Kπ<br />

5) D s → φ(→ KK)π 6) D + → φ(→ KK)π<br />

7) D + → Kππ 8) Λ c → Kpπ<br />

Table 3.1: The eight charmed hadron decay modes populated <strong>in</strong> both the RAPGAP <strong>and</strong><br />

HERWIG MC samples.<br />

Each decay mode occurs approximately once <strong>in</strong> every eight events. The background<br />

<strong>in</strong> the sample <strong>in</strong>cludes alternate decay modes for the charmed hadrons. <strong>Charm</strong><br />

tagg<strong>in</strong>g, i.e., techniques to measure charmed hadrons, are performed with this MC<br />

sample.<br />

3.2.2 HERWIG<br />

HERWIG [18] is another LO MC event generator with the follow<strong>in</strong>g features:<br />

• 2 → 2 (gγ → qq) scatter<strong>in</strong>g for heavy flavours (via BGF)<br />

• fragmentation: Peterson fragmentation<br />

• proton PDF: GRV94<br />

• parton shower<strong>in</strong>g: angular order<strong>in</strong>g algorithm<br />

• hadronization: cluster hadronization<br />

34


3.3 Cross-Section Integrators<br />

Cross-section <strong>in</strong>tegrators are used to create theoretical distributions of variables, for<br />

example, the Q 2 distribution of ep collisions. The event weights, dσ, described above,<br />

are used to create these distributions from a large number of c<strong>and</strong>idate events. In<br />

the limit of an <strong>in</strong>f<strong>in</strong>ite number of c<strong>and</strong>idate events, the distributions, obta<strong>in</strong>ed from<br />

cross-section <strong>in</strong>tegrators, approximate the theoretical predictions. The HVQDIS<br />

program is a cross-section <strong>in</strong>tegrator <strong>and</strong> is discussed.<br />

3.3.1 HVQDIS<br />

HVQDIS [21] is a Heavy Quark DIS next-to-lead<strong>in</strong>g-order (NLO) cross-section <strong>in</strong>tegrator.<br />

HVQDIS is used as the theoretical prediction for heavy quark production<br />

for the e + p → Q + Q + X <strong>in</strong>teractions at HERA. For this thesis, the PDFs used<br />

by HVQDIS is a FFN scheme <strong>and</strong> is populated by the light quarks. The Peterson<br />

fragmentation function transforms the heavy quarks <strong>in</strong>to heavy hadrons. Many<br />

parameters can be set when runn<strong>in</strong>g the HVQDIS program <strong>in</strong>clud<strong>in</strong>g<br />

• the fragmentation parameter ǫ Q ,<br />

• the heavy quark mass,<br />

• the proton PDF,<br />

• the renormalization <strong>and</strong> factorization scales.<br />

HVQDIS creates cross sections for specific heavy flavour hadrons. For the presented<br />

analyses, HVQDIS <strong>in</strong>tegrates cross sections for the D ∗ meson.<br />

35


3.4 Detector Simulation<br />

The ZEUS detector is simulated us<strong>in</strong>g the GEANT3 program [22]. GEANT3 creates<br />

a description of the detector components <strong>in</strong>clud<strong>in</strong>g dimensions, position, materials,<br />

etc. The result of an event generator is a list of particles created dur<strong>in</strong>g the <strong>in</strong>teraction<br />

of def<strong>in</strong>ed type <strong>and</strong> 4-momentum. The list of particles from the simulation<br />

should represent what might be produced dur<strong>in</strong>g a DIS ep <strong>in</strong>teraction. ZEUS developed<br />

a program called MOZART that takes as <strong>in</strong>put the generated particle list <strong>and</strong><br />

simulates the follow<strong>in</strong>g:<br />

• the detector’s response to particle <strong>in</strong>teractions with its components<br />

• the response of the triggers (see §7.2)<br />

• probabilities that particles go undetected<br />

• dead times of components, i.e., the time after an <strong>in</strong>teraction where the components<br />

cannot make further measurements.<br />

The output from MOZART has the same form as the raw data collected from the<br />

detector. MOZART allows an identical analysis to be done on MC data <strong>in</strong> the same<br />

way that is done for real data.<br />

The detector simulations determ<strong>in</strong>e the acceptances (§8.2), purities <strong>and</strong> efficiencies<br />

(§8.4), <strong>and</strong> track<strong>in</strong>g/energy resolutions. These four quantities are def<strong>in</strong>ed later but<br />

are all related to how well the detector (<strong>and</strong> relevant software) reconstructs generated<br />

quantities.<br />

36


Chapter 4<br />

HERA II <strong>and</strong> the ZEUS Detector<br />

4.1 Introduction<br />

ZEUS is a multi-component detector at one of the ep <strong>in</strong>teraction po<strong>in</strong>ts on the HERA<br />

r<strong>in</strong>g. The ZEUS detector measures the energies <strong>and</strong> momentum of particles created<br />

dur<strong>in</strong>g the collisions of the electron <strong>and</strong> proton beams. In 2000-01, HERA shut<br />

down <strong>and</strong> underwent upgrades to better focus the ep beams <strong>and</strong> to <strong>in</strong>crease the<br />

delivered lum<strong>in</strong>osity [23]. The upgraded HERA mach<strong>in</strong>e is referred to as HERA<br />

II. The HERA II run period is divided <strong>in</strong>to two energy configurations: high energy<br />

runs (HER), which are relevant to this thesis, <strong>and</strong> a set of low (<strong>and</strong> medium) energy<br />

runs (LER).<br />

This chapter will briefly discuss HERA <strong>and</strong> the components of the ZEUS detector<br />

relevant to this thesis.<br />

4.2 HERA II<br />

The Hadron Elektron R<strong>in</strong>g Anlage (HERA) was constructed <strong>in</strong> Hamburg, Germany<br />

from May 1984 until November 1990 <strong>and</strong> commissioned <strong>in</strong> 1991. (HERA <strong>and</strong> the<br />

beam energies are described <strong>in</strong> detail <strong>in</strong> [24].) HERA is a lepton-hadron collider.<br />

37


Figure 4.1: Overhead photograph of the HERA <strong>and</strong> PETRA accelerator r<strong>in</strong>gs. The location<br />

of the ZEUS detector is <strong>in</strong>dicated by the number 1 on the photo.<br />

Specifically, it collides an electron beam of 27.5 GeV with a proton beam of 920 GeV.<br />

The HERA tunnel is 6.3 km <strong>in</strong> circumference <strong>and</strong> lies 10 to 25 m below ground level<br />

(see Fig. 4.2). The tunnel conta<strong>in</strong>s two <strong>in</strong>dependent storage r<strong>in</strong>gs, one accelerat<strong>in</strong>g<br />

electrons the other protons.<br />

The electrons are first pre-accelerated <strong>in</strong> the l<strong>in</strong>ear accelerator, LINAC II, to 450<br />

MeV, then passed to the synchrotron, DESY II, where they are accelerated to 7.5<br />

GeV. They are then transferred to <strong>and</strong> accelerated <strong>in</strong> the PETRA storage r<strong>in</strong>g to an<br />

energy of 14 GeV <strong>and</strong> f<strong>in</strong>ally <strong>in</strong>jected <strong>in</strong>to HERA where they achieve a f<strong>in</strong>al energy<br />

of 27.5 GeV.<br />

The protons start off as negative hydrogen ions, H − , accelerated by the proton<br />

38


Figure 4.2: The HERA r<strong>in</strong>g <strong>and</strong> the location of the different experiments that lie on it. The<br />

directions of the electron <strong>and</strong> proton beams are <strong>in</strong>dicated. The ZEUS detector<br />

is located <strong>in</strong> the southern hall.<br />

LINAC to 50 MeV. They are passed to the proton synchrotron DESY III where<br />

they are stripped of their electrons <strong>and</strong> accelerated to 7.5 GeV. From there the<br />

protons are transferred to PETRA where they are <strong>in</strong>jected <strong>in</strong>to the HERA storage<br />

r<strong>in</strong>g after reach<strong>in</strong>g an energy of 40 GeV. In the HERA r<strong>in</strong>g the protons are f<strong>in</strong>ally<br />

accelerated to an energy of 920 GeV.<br />

Four experiments lie along the HERA r<strong>in</strong>g. ZEUS is one them <strong>and</strong> has a multipurpose<br />

detector at one of the ep <strong>in</strong>teraction po<strong>in</strong>ts. H1 is an experiment at another<br />

<strong>in</strong>teraction po<strong>in</strong>t along the HERA r<strong>in</strong>g mak<strong>in</strong>g similar measurements. HERMES <strong>and</strong><br />

39


HERA B are the other two experiments on HERA. As of 2007 HERA shutdown.<br />

4.2.1 HERA II Beam Parameters <strong>and</strong> Lum<strong>in</strong>osity<br />

With<strong>in</strong> their respective storage r<strong>in</strong>gs, the electron <strong>and</strong> proton beams are not cont<strong>in</strong>uous<br />

streams but rather collected <strong>in</strong>to bunches that cross once every 96 ns. The<br />

HERA mach<strong>in</strong>e collides these beams onto each other at a center of mass energy of<br />

√ s = 318 GeV. Tab. 4.1 summarizes <strong>in</strong>formation on the HERA II mach<strong>in</strong>e.<br />

HERA II Beam Parameters Proton Electron<br />

Beam Current [mA] 58 140<br />

Beam Energy [GeV] 920 27.5<br />

Center of Mass Energy [GeV] 318<br />

Number of Bunches 200<br />

Collid<strong>in</strong>g Bunches 174<br />

Number per bunch (n) 4.0 · 10 10 10.3 · 10 10<br />

Lum<strong>in</strong>osity [cm 2 s −1 ] 1.82 · 10 30<br />

Time between Cross<strong>in</strong>gs [ns] 96<br />

Size of proton Beam at Cross<strong>in</strong>g σ x [µm] 112 112<br />

Size of proton Beam at Cross<strong>in</strong>g σ y [µm] 30 30<br />

Size of proton Beam at Cross<strong>in</strong>g σ z [mm] 191 10.3<br />

Circumference [m] 6336<br />

Table 4.1: HERA II beam <strong>in</strong>formation after the 2000-01 upgrade [25].<br />

The (specific) lum<strong>in</strong>osity delivered by the HERA mach<strong>in</strong>e is calculated from Eq.<br />

4.1 [26]:<br />

L = f n en p<br />

4πσ x σ y<br />

, (4.1)<br />

where f is the frequency of beam cross<strong>in</strong>gs. The lum<strong>in</strong>osity delivered by HERA<br />

is not the same as the lum<strong>in</strong>osity gated by ZEUS. Downtime for detector repairs,<br />

calibrations, trigger dead-times, <strong>and</strong> poor beam conditions are a few of the reasons<br />

why the delivered <strong>and</strong> gated lum<strong>in</strong>osities differ. Fig. 4.3 shows the <strong>in</strong>tegrated<br />

lum<strong>in</strong>osities delivered <strong>and</strong> gated over days runn<strong>in</strong>g. The different years <strong>and</strong> lepton<br />

40


Integrated Lum<strong>in</strong>osity (pb -1 )<br />

225<br />

200<br />

175<br />

150<br />

125<br />

100<br />

75<br />

HERA Lum<strong>in</strong>osity 2002 - 2007<br />

Integrated Lum<strong>in</strong>osity (pb -1 )<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

ZEUS Lum<strong>in</strong>osity 2002 - 2007<br />

50<br />

40<br />

25<br />

20<br />

0<br />

0 50 100 150 200 250 300 350<br />

Days of runn<strong>in</strong>g<br />

0<br />

0 50 100 150 200 250 300 350<br />

Days of runn<strong>in</strong>g<br />

Figure 4.3: HERA delivered <strong>in</strong>tegrated lum<strong>in</strong>osity (left), <strong>and</strong> ZEUS gated <strong>in</strong>tegrated lum<strong>in</strong>osity<br />

(right) dur<strong>in</strong>g HERA II run period. Different colours <strong>in</strong>dicate different<br />

years <strong>and</strong> types of lepton beams.<br />

beam types are <strong>in</strong>dicated. Dur<strong>in</strong>g the HERA II HER ZEUS gated an <strong>in</strong>tegrated<br />

lum<strong>in</strong>osity of 370.5 pb −1 .<br />

4.3 The ZEUS Detector<br />

The ZEUS detector shown schematically <strong>in</strong> Fig. 4.4, is built of many components<br />

used to record track<strong>in</strong>g <strong>and</strong> energy <strong>in</strong>formation from an ep <strong>in</strong>teraction.<br />

41


FCAL<br />

BCAL<br />

SOLENOID<br />

RCAL<br />

Beam Pipe<br />

← p<br />

e →<br />

CTD<br />

MVD<br />

STT<br />

Figure 4.4: Schematic of the ZEUS detector. Some of the ma<strong>in</strong> components are labeled.<br />

The ZEUS detector is designed such that the components responsible for track<strong>in</strong>g<br />

<strong>and</strong> vertex<strong>in</strong>g <strong>in</strong>formation are closest to the <strong>in</strong>teraction po<strong>in</strong>t. The solenoid creates<br />

a magnetic field of 1.43 T that aids <strong>in</strong> track<strong>in</strong>g <strong>and</strong> charge identification of particles.<br />

All the track<strong>in</strong>g components except for the STT (see §4.8) lie with<strong>in</strong> the solenoid.<br />

The CAL completely surrounds the solenoid <strong>and</strong> the track<strong>in</strong>g detectors (see §4.4),<br />

<strong>and</strong> measures the angle <strong>and</strong> energy deposited by charged <strong>and</strong> neutral particles.<br />

4.3.1 ZEUS Co-ord<strong>in</strong>ate System<br />

The ZEUS co-ord<strong>in</strong>ate system def<strong>in</strong>es the orig<strong>in</strong> as the nom<strong>in</strong>al po<strong>in</strong>t of <strong>in</strong>teraction<br />

between the electron/proton beams. The detector is ‘centered’ on this position. By<br />

convention the positive z-axis is def<strong>in</strong>ed <strong>in</strong> the direction of the proton beam, the<br />

42


positive x-axis po<strong>in</strong>ts towards the center of the HERA r<strong>in</strong>g, <strong>and</strong> the positive y−axis<br />

is def<strong>in</strong>ed such that ŷ = ẑ × ˆx (thus po<strong>in</strong>ts upwards). The typical spherical polar<br />

co-ord<strong>in</strong>ate system is also used at ZEUS, with radius r, polar angle θ, <strong>and</strong> azimuthal<br />

angle φ (see Fig. 4.5). The rapidity has the form y = 1 2 ln (<br />

E+PL<br />

E−P L<br />

), where E <strong>and</strong><br />

P L are the energy <strong>and</strong> the longitud<strong>in</strong>al momentum, respectively, of a particle. The<br />

rapidity is a Lorentz-additive, mean<strong>in</strong>g that for two successive Lorentz boosts along<br />

the same axis the rapidities add. Frequently the pseudorapidity, η, is used <strong>in</strong> place<br />

of the polar angle θ. Def<strong>in</strong>ed as<br />

(<br />

η = − ln tan θ )<br />

, (4.2)<br />

2<br />

the pseudorapidity approximates the rapidity y when particles are massless. The<br />

forward direction, def<strong>in</strong>ed as η > 0, has a maximum value of η = +∞, correspond<strong>in</strong>g<br />

to the proton beam direction. The rear direction, η < 0, has a maximum of η = −∞<br />

<strong>in</strong> the electron beam direction.<br />

43


y<br />

r<br />

p<br />

η<br />

θ<br />

φ<br />

z<br />

x<br />

e<br />

Figure 4.5: The ZEUS co-ord<strong>in</strong>ate system centered at the <strong>in</strong>teraction po<strong>in</strong>t of ep collisions.<br />

Euclidean <strong>and</strong> spherical polar co-ord<strong>in</strong>ates are <strong>in</strong>dicated. The x-axis po<strong>in</strong>ts to<br />

the center of the HERA r<strong>in</strong>g.<br />

4.4 Calorimeter (CAL)<br />

4.4.1 Calorimetry<br />

The calorimeter <strong>in</strong> a high energy physics experiment measures energy deposits from<br />

the outgo<strong>in</strong>g particles created <strong>in</strong> the <strong>in</strong>teraction. Ideally, a calorimeter stops all<br />

particles travers<strong>in</strong>g it <strong>and</strong> measures the total energy deposited by each particle.<br />

One radiation length, X o , is the distance at which the probability that a high energy<br />

electron has lost all but 1/e of its energy (note that <strong>in</strong> this case e is the base of the<br />

natural logarithm). A related quantity, the absorption length, λ, is the distance<br />

<strong>in</strong> a medium at which the probability a particle has been absorbed is 1 − e −1 .<br />

Calorimeters are designed to be multiple radiation lengths (absorption lengths) <strong>in</strong><br />

depth to ensure that most of the energy of a particle travers<strong>in</strong>g it is absorbed. Some<br />

particles are not measured by calorimeters for a variety of reasons. Some particles<br />

44


go undetected due to the geometry of the experiment (particles go<strong>in</strong>g down the<br />

beam pipe). Others, like neutr<strong>in</strong>os, <strong>in</strong>teract very weakly <strong>and</strong> thus travel through<br />

calorimeters unaffected. Fig. 4.6 shows how electrons, hadrons, <strong>and</strong> muons traverse<br />

<strong>and</strong> deposit energy <strong>in</strong> a sampl<strong>in</strong>g calorimeter. These are called shower profiles.<br />

hadron electron muon<br />

Figure 4.6: The different <strong>in</strong>com<strong>in</strong>g particles shower differently <strong>in</strong> the CAL.<br />

Electrons of energies greater than 100 MeV lose almost all their energy <strong>in</strong> Bremsstrahlung<br />

radiation [26] (radiation created from accelerat<strong>in</strong>g charges). Photons of<br />

comparable energies <strong>in</strong>teract with matter mostly via pair production. Each subsequent<br />

photon or electron-positron pair has less energy than its parent. Thus a<br />

high energy electron travers<strong>in</strong>g a calorimeter will create an electromagnetic shower<br />

of electrons, positrons, <strong>and</strong> photons.<br />

High energy hadrons shower differently from electrons. Secondaries, are the particles<br />

created by the <strong>in</strong>itial (primary) hadron, tend to have high transverse momenta with<br />

respect to the primary. Showers from hadrons tend to be broad <strong>and</strong> spread out<br />

45


laterally more so than electron showers. About half of the hadron’s energy is passed<br />

on to high energy secondaries. The rema<strong>in</strong>der of the energy is used <strong>in</strong> multi-particle<br />

creation of particles such as pions. Many particles created <strong>in</strong> hadron showers are<br />

neutral pions, π 0 . These pions decay immediately <strong>in</strong>to two photons, which shower<br />

electromagnetically, thus a hadronic shower can have an electromagnetic component.<br />

Muons tend to go largely undetected by the CAL. Muon like electrons, both Bremsstrahlung<br />

radiate, however, the larger mass of the muon strongly suppresses this<br />

process.<br />

To provide spatial <strong>in</strong>formation a calorimeter is segmented <strong>in</strong>to smaller units. Each<br />

unit measures a fraction of the deposited energy <strong>and</strong> is provided with its own readout.<br />

Read-out systems usually consist of sc<strong>in</strong>tillators <strong>and</strong> photomultiplier tubes<br />

(PMTs). A fraction of the energy lost by a charged particle excites atoms of the<br />

sc<strong>in</strong>tillator, which de-excite, produc<strong>in</strong>g light at a specific wavelength. PMTs are<br />

built from photoelectric cathodes, mean<strong>in</strong>g electrons are ejected when light imp<strong>in</strong>ges<br />

upon the cathode. This feature allows electrical signals to be produced <strong>and</strong> amplifies<br />

them. Calorimeters made from layers of absorber <strong>and</strong> detector are called sampl<strong>in</strong>g<br />

calorimeters because only a fraction (sample) of the deposited energy is converted<br />

<strong>in</strong>to a signal. A compensat<strong>in</strong>g calorimeter is a sampl<strong>in</strong>g calorimeter designed to<br />

have an equal response for electrons <strong>and</strong> hadrons of the same energies.<br />

4.4.2 CAL Overview<br />

The ZEUS calorimeter was designed to meet the follow<strong>in</strong>g criteria:<br />

• hermetic<br />

• jet energy measurements with resolutions of σ(E)/E = 35%/ √ E ⊕ 2% (E <strong>in</strong><br />

46


[GeV])<br />

• calibration of energy scale to 1%<br />

• angular resolution of jets better than 10 mrad <strong>and</strong> good jet separation<br />

• hadron-electron separation for both isolated electrons <strong>and</strong> electrons <strong>in</strong> jets<br />

ZEUS uses a Uranium Calorimeter (CAL) to achieve these aims. The CAL is divided<br />

<strong>in</strong>to three sections: the forward (FCAL), the barrel (BCAL), <strong>and</strong> the rear (RCAL)<br />

calorimeter, cover<strong>in</strong>g 99.8% of the solid angle <strong>in</strong> the forward hemisphere <strong>and</strong> 99.5%<br />

<strong>in</strong> the rear hemisphere. The smallest unit of the CAL is called a cell or section.<br />

Cells are organized <strong>in</strong>to two groups, electromagnetic (EMC) <strong>and</strong> hadronic (HAC),<br />

<strong>and</strong> when put together form a tower. Each cell is readout via channels. This gives<br />

position <strong>in</strong>formation for energy deposits. Towers are aligned <strong>in</strong> columns form<strong>in</strong>g<br />

modules (see Fig. 4.8). The radioactive nature of the uranium calorimeter is used<br />

as a stable long-term calibration signal.<br />

4.4.3 CAL Cells<br />

The cells of the CAL are made from a s<strong>and</strong>wich of alternat<strong>in</strong>g depleted uranium<br />

( 238 U) plates for absorbers <strong>and</strong> polystyrene sc<strong>in</strong>tillator plates [27]. The thickness<br />

of the plates, 3.3 mm of uranium <strong>and</strong> 2.6 mm of sc<strong>in</strong>tillator, is chosen such that<br />

electrons <strong>and</strong> hadrons have an equal response for the same energies <strong>in</strong> the CAL.<br />

The absorber thickness of 3.3 mm corresponds to one radiation length.<br />

The <strong>in</strong>nermost cells of the CAL (i.e., cells closest to the <strong>in</strong>teraction po<strong>in</strong>t) are EMC<br />

cells. The CAL energy resolution for electrons scales as 18%/ √ E GeV.<br />

HAC cells lie outside EMC cells <strong>and</strong> measure the hadronic showers. The energy<br />

resolution for hadrons scales as 35%/ √ E GeV. The depth <strong>in</strong> radiation lengths of<br />

47


the CAL, specifically, of the HAC cells, was designed to conta<strong>in</strong> more than 95% of<br />

the energy for 90% of the jets <strong>in</strong> all parts of the CAL. Two photomultiplier tubes<br />

are attached to each cell <strong>and</strong> are responsible for calculat<strong>in</strong>g the amount of energy<br />

deposited <strong>in</strong> the cell.<br />

4.4.4 CAL Towers<br />

At HERA the ep system is boosted <strong>in</strong> the positive z direction. So more particles are<br />

expected to be found <strong>in</strong> the forward direction. For this reason the ZEUS detector,<br />

<strong>in</strong>clud<strong>in</strong>g the CAL, is asymmetric. The proton, which has an <strong>in</strong>itial energy of 920<br />

GeV, or its remnant also move <strong>in</strong> the forward direction after the ep <strong>in</strong>teraction. For<br />

the proton’s energy to be absorbed, larger cells are needed <strong>in</strong> the FCAL with respect<br />

to the RCAL. For these two reasons, each tower of the FCAL <strong>and</strong> BCAL have four<br />

EMC cells <strong>and</strong> two HAC cells, thus can absorb higher energies <strong>and</strong> with improved<br />

EMC (angular) resolution.<br />

Beyond the electron, not too many particles are expected <strong>in</strong> the RCAL. For this<br />

reason the angular energy resolution <strong>in</strong> the RCAL was not designed to be as high<br />

as the FCAL <strong>and</strong> BCAL, thus the RCAL has only two EMC cells. In addition the<br />

depth of the HAC cells <strong>in</strong> the RCAL is less than those of the BCAL, which <strong>in</strong> turn<br />

is less than those of the FCAL (recall the <strong>in</strong>itial electron energy is 27.5 GeV).<br />

The towers of the BCAL are radially projective (wedge-shaped), thus not orthorectangular<br />

like the towers of the FCAL <strong>and</strong> RCAL (Fig. 4.7). This arrangement<br />

allows for a uniform angular energy resolution for the BCAL <strong>in</strong> the φ direction. The<br />

<strong>in</strong>ner radius of the BCAL is r I = 122 cm <strong>and</strong> outer r O = 290 cm, thus hav<strong>in</strong>g a<br />

depth of ∆r = 168 cm.<br />

48


φ<br />

r<br />

patricle from IP<br />

EMC<br />

HAC1<br />

HAC2<br />

1λ<br />

25X o<br />

21 cm<br />

2λ<br />

2λ<br />

Figure 4.7: Diagram of a BCAL tower with four EMC cells, <strong>and</strong> two HAC cells. Towers of<br />

the BCAL are radially projective from the IP.<br />

4.4.5 CAL Modules<br />

Towers are grouped together <strong>in</strong> modules as seen <strong>in</strong> Fig. 4.8. A summary of the<br />

FCAL, BCAL, <strong>and</strong> RCAL is provided <strong>in</strong> Tab. 4.2.<br />

49


ZEUS FCAL MODULE<br />

EMC HAC 1 HAC 2<br />

4.6 m<br />

PARTICLES<br />

PMT<br />

SCI PLATE<br />

U PLATE<br />

TOWER<br />

2 m<br />

Figure 4.8: An FCAL module composed of cells, <strong>and</strong> towers. The FCAL has one EMC cell<br />

<strong>and</strong> two HAC cells.<br />

50


CAL Info. FCAL BCAL RCAL<br />

Polar Angle θ 2.2 → 39.9 ◦ 36.7 → 129.1 ◦ 128.1 → 176.5 ◦<br />

Pseudorapidity η 3.95 → 1.01 1.10 → −0.74 −0.72 → −3.49<br />

Number of Cells 2172 2592 1154<br />

Towers per Module 11-23 14 11-23<br />

Number of Modules 24 32 24<br />

Total Radiation Length X o 194.3 127.6 108.5<br />

Total Absorption Length λ 7.14 4.92 3.99<br />

Face EMC Cell Dim. [cm 2 ] 5 × 20 5 × 20 20 × 20<br />

Face HAC Cell Dim. [cm 2 ] 20 × 20 20 × 20 20 × 20<br />

Position along z [cm] 452 > z > 222 205 > z > −125 −148 > z > −309<br />

Total Mass [t] 240.3 310 156.6<br />

Table 4.2: Parameters for the FCAL, BCAL, <strong>and</strong> RCAL.<br />

4.5 Small angle Rear Track<strong>in</strong>g Detector (SRTD)<br />

The Small angle Rear Track<strong>in</strong>g Detector (SRTD) is designed to measure the energy<br />

<strong>and</strong> position of electrons scattered at small angles, <strong>and</strong> therefore is useful <strong>in</strong> DIS<br />

analyses. Small angle refers to small deflections with respect to the electron beam.<br />

These are <strong>in</strong> fact large polar angles (see §4.3.1). The SRTD lies on the <strong>in</strong>ner face<br />

of the RCAL, <strong>and</strong> consists of two layers of sc<strong>in</strong>tillator silicon strips (see Fig. 4.9).<br />

One layer of 68 by 68 cm 2 silicon strips is aligned vertically, the other horizontally.<br />

51


68<br />

45<br />

44<br />

Plane 1 − Horizontal strips<br />

2<br />

1<br />

68<br />

Plane 2 − Vertical strips<br />

3<br />

4<br />

25<br />

24<br />

01<br />

2203<br />

01<br />

01<br />

1044<br />

24 25<br />

68<br />

Figure 4.9: Layout of the SRTD. The SRTD is made up of two layers of silicon strips aligned<br />

orthogonally to each other.<br />

The position resolution of the SRTD is 3 mm, which is better than that of the CAL<br />

(1 cm). In addition to track<strong>in</strong>g <strong>and</strong> energy <strong>in</strong>formation, the SRTD also aids <strong>in</strong><br />

trigger<strong>in</strong>g, see §7.2.<br />

4.6 Central Track<strong>in</strong>g Detector (CTD)<br />

4.6.1 Drift Chambers<br />

In order to operate, a drift chamber must have the follow<strong>in</strong>g: a gas medium capable<br />

of ionization, an electric field followed by electrons <strong>and</strong> positive ions (<strong>in</strong> opposite directions),<br />

<strong>and</strong> a read-out system, usually wires kept at a positive potential (anode).<br />

Unlike calorimeters, which are designed to stop <strong>in</strong>com<strong>in</strong>g particles, drift chambers<br />

make position measurements while negligibly affect<strong>in</strong>g the ioniz<strong>in</strong>g particle’s momentum.<br />

Conceptually, a charged particle travers<strong>in</strong>g the drift chamber ionizes the<br />

gas medium along its path. The positive ions migrate to the cathodes while the<br />

52


electrons drift at a much greater speed towards the nearest anodes, thus creat<strong>in</strong>g a<br />

measurable signal. Neutral particles traverse drift chambers undetected. With<strong>in</strong> a<br />

(preferably uniform) magnetic field, drift chambers can determ<strong>in</strong>e the charge <strong>and</strong><br />

momentum of the ioniz<strong>in</strong>g agent travers<strong>in</strong>g it. Charged particles mov<strong>in</strong>g through<br />

a magnetic field experience the Lorentz force. The direction of the Lorentz force<br />

experienced by a particle depends upon its charge ±q. Positively <strong>and</strong> negatively<br />

charged particles bend <strong>in</strong> opposite directions with<strong>in</strong> a magnetic field, allow<strong>in</strong>g the<br />

sign of a charged particle to be identified.<br />

4.6.2 CTD Overview<br />

The Central Track<strong>in</strong>g Detector (CTD) is a large s<strong>in</strong>gle cyl<strong>in</strong>drical drift chamber<br />

situated about the ep <strong>in</strong>teraction po<strong>in</strong>t. The CTD performs high precision track<strong>in</strong>g/momentum<br />

measurements, <strong>and</strong> dist<strong>in</strong>guishes charge ambiguity, with the help of<br />

the 1.43 T solenoid with<strong>in</strong> which it lies.<br />

The active length of the CTD spans along the z-axis from z = −100 to z = +105<br />

cm, with (active) <strong>in</strong>ner <strong>and</strong> outer radii r I = 18.2 cm <strong>and</strong> r O = 79.4 cm, respectively.<br />

The CTD is made up of 576 cells, 4608 sense wires (anodes), 19 584 field wires<br />

(cathodes) for a total of 24 192 wires.<br />

The smallest unit of the CTD is the cell. The layout of a cell is shown <strong>in</strong> Fig. 4.10.<br />

Each cell is an identical pattern. This pattern is rotated <strong>in</strong> φ <strong>and</strong> repeated, creat<strong>in</strong>g<br />

a superlayer. The cells for all superlayers are identical <strong>in</strong> design. The CTD is made<br />

up of n<strong>in</strong>e numbered superlayers with superlayer one be<strong>in</strong>g the <strong>in</strong>nermost, <strong>and</strong> n<strong>in</strong>e<br />

the outermost. The CTD end plate is shown <strong>in</strong> Fig. 4.12 <strong>and</strong> is divided <strong>in</strong>to 16<br />

sectors, which are primarily identified for read-out <strong>and</strong> high-voltage purposes.<br />

The gas medium of the CTD is a mixture of argon, carbon dioxide, <strong>and</strong> ethane at<br />

53


a ratio of Ar/CO 2 /C 2 H 6 : 85/13/2. The ga<strong>in</strong>, drift velocity, <strong>and</strong> ability to quench<br />

spark<strong>in</strong>g are among some of the reasons this mixture is chosen.<br />

4.6.3 CTD Cell<br />

The CTD cell shown <strong>in</strong> Fig. 4.10 has eight sense wires per cell, each <strong>in</strong>dividually<br />

sensitive to electrons created by an ioniz<strong>in</strong>g particle. All the sense wires of one<br />

superlayer are kept at the same potential (approximately +1.5 kV).<br />

ko<br />

field wire<br />

shaper wire<br />

guard wire<br />

ground wire ko<br />

sense wire<br />

Figure 4.10: X − Y layout of a CTD cell. The l<strong>in</strong>e jo<strong>in</strong><strong>in</strong>g the first <strong>and</strong> last sense wire of<br />

each cell is tilted by 45 ◦ with respect to the radial axis r. The blue (red) arrow<br />

<strong>in</strong>dicates the path of a positively (negatively) charged ioniz<strong>in</strong>g agent travers<strong>in</strong>g<br />

the cell creat<strong>in</strong>g positive ions <strong>and</strong> free electrons <strong>in</strong> its path. The green arrows<br />

<strong>in</strong>dicate the path the free electrons follow on the way to the sense wire. The<br />

green circles are sense wires with electrons collected.<br />

Field wires are ma<strong>in</strong>ta<strong>in</strong>ed at potentials vary<strong>in</strong>g from superlayer to superlayer, but<br />

kept <strong>in</strong> a range of -2.4 to -3.8 kV. The field wires are oriented to create a potential<br />

such that the electron’s drift is radially transverse to the r − φ plane (see field l<strong>in</strong>es<br />

<strong>in</strong> Fig. 4.10). To achieve this drift direction, the electric field of the CTD cells is<br />

54


oriented at a 45 ◦ angle with respect to r, the radial axis.<br />

The ground wires (kept at 0 V), guard wires, <strong>and</strong> shaper wires are used to ma<strong>in</strong>ta<strong>in</strong><br />

the desired electric field (<strong>and</strong> uniformity) <strong>in</strong> <strong>and</strong> on the outer ends of a cell.<br />

Due to the geometry of the cell, polarity of the potentials, <strong>and</strong> the direction of the<br />

magnetic field, positively charged ioniz<strong>in</strong>g agents, which bend counter clockwise with<br />

respect to the magnetic field, are reconstructed better than negatively charged ioniz<strong>in</strong>g<br />

agents, which bend clockwise. Roughly the same number of free electrons are<br />

created with<strong>in</strong> the gas medium by positively <strong>and</strong> negatively charged ioniz<strong>in</strong>g agents<br />

travers<strong>in</strong>g the CTD cell, however these electrons are collected by fewer sense wires<br />

for positively charged ioniz<strong>in</strong>g agents; as illustrated <strong>in</strong> Fig. 4.10. A particle creat<strong>in</strong>g<br />

free electrons collected over many sense wires can result <strong>in</strong> a lost signal. However,<br />

if these free electrons are collected over only a few sense wires then the signal may<br />

be detected. For this reason positively charged tracks are better reconstructed than<br />

negatively charged tracks.<br />

4.6.4 CTD Superlayer<br />

The CTD is made up of n<strong>in</strong>e superlayers organized <strong>in</strong>to two groups: axial <strong>and</strong> stereo<br />

layers. The odd layers (1, 3, 5, 7 <strong>and</strong> 9), have wires parallel to the chamber axis,<br />

i.e., along the z-axis, are called the axial layers. The wires of the even layers are<br />

stereo wires with an angle of ∼ 5 ◦ with respect to the chamber axis. Some CTD<br />

parameters are listed <strong>in</strong> Tab. 4.3.<br />

55


1 2<br />

Superlayer<br />

4 5 6 7 8 9<br />

0.00<br />

+4.98<br />

0.00<br />

−5.31<br />

0.00<br />

y<br />

Stereo Angle<br />

−5.51<br />

0.00<br />

x<br />

z Out of Page<br />

+5.62 0.00<br />

Figure 4.11: Track travers<strong>in</strong>g a CTD octant. Ghost hits for the track are shown <strong>in</strong> red.<br />

The stereo angle is chosen such that the angular resolutions <strong>in</strong> θ <strong>and</strong> φ are approximately<br />

equal. The axial layers are used to give the z − by − tim<strong>in</strong>g coord<strong>in</strong>ate of<br />

the tracks. This is done by us<strong>in</strong>g the time difference between the signals reach<strong>in</strong>g<br />

the two ends of the wire. The z position can be determ<strong>in</strong>ed by the stereo layers<br />

(z −by −stereo) from a method of parallax. The stereo superlayers break the track<strong>in</strong>g<br />

symmetry of the axial superlayers, which helps to identify ghost tracks (see Fig.<br />

4.11).<br />

56


Figure 4.12: End view of the CTD from x − y plane. The n<strong>in</strong>e superlayers are shown, with<br />

their sectors <strong>and</strong> cells numbered.<br />

Superlayer No. of Cells Stereo Angle [ ◦ ] Center Radius [cm] θ Range [ ◦ ]<br />

1 32 0 20.97 11.3 → 168.2<br />

2 40 4.98 27.23 14.3 → 164.8<br />

3 48 0 35.00 18.4 → 160.7<br />

4 56 -5.31 41.30 21.5 → 157.3<br />

5 64 0 48.73 24.9 → 154.0<br />

6 72 -5.51 55.52 27.9 → 151.0<br />

7 80 0 62.74 30.9 → 147.9<br />

8 88 5.62 69.46 33.5 → 145.2<br />

9 96 0 76.54 36.1 → 142.6<br />

Table 4.3: Parameters for the CTD: the number of cells per superlayer, the mean stereo<br />

angle, the center radius of the superlayer, <strong>and</strong> the polar angle θ range.<br />

The CTD track<strong>in</strong>g resolution with respect to the transverse momentum is quoted<br />

57


as [28]<br />

σ(P T )/P T = 0.0058P T ⊕ 0.0065 ⊕ 0.0014/P T , (4.3)<br />

where P T is measured <strong>in</strong> GeV. However this value was determ<strong>in</strong>ed before the MVD<br />

was <strong>in</strong>troduced. In Ch. 5 a new value for the P T resolution that <strong>in</strong>cludes the effect<br />

of the MVD is presented.<br />

4.7 Micro Vertex Detector (MVD)<br />

4.7.1 Silicon Detectors<br />

The chemical element silicon is a semiconductor that has four valence electrons.<br />

Silicon can be negatively doped (n-type), i.e., impurities added with more that four<br />

valence electrons, or positively doped (p-type), i.e., impurities added with fewer valence<br />

electrons than Si. Pure Si has a high resistance, but becomes more conductive<br />

when its temperature is <strong>in</strong>creased. Doped Si is much more conductive than pure<br />

Si <strong>and</strong> its conductivity mildly improves with temperature <strong>in</strong>creases. Electrons are<br />

responsible for conduction <strong>in</strong> n-type, <strong>and</strong> holes, the lack of an electron, <strong>in</strong> p-type.<br />

When brought <strong>in</strong>to physical contact, the n <strong>and</strong> p type semiconductors form a pn<br />

junction, commonly used <strong>in</strong> diodes.<br />

58


Charged particle<br />

External amplifier<br />

Alum<strong>in</strong>um strips<br />

Silicon dioxide layer<br />

20 µm<br />

300 µm<br />

electron<br />

p-type implanted strips<br />

hole<br />

n-type silicon<br />

N +<br />

Alum<strong>in</strong>um<br />

Figure 4.13: Schematic view of a silicon detector. An <strong>in</strong>com<strong>in</strong>g particle traverses the silicon<br />

<strong>and</strong> <strong>in</strong> the process creates electron-hole pairs.<br />

Silicon detectors are built up of many pn junctions, typically with one side of the<br />

diode segmented <strong>in</strong>to strips <strong>and</strong> implanted <strong>in</strong>to the other side (see Fig. 4.13). These<br />

segmented diodes are usually paired such that their strips are perpendicular to each<br />

other, creat<strong>in</strong>g an x − y grid. Silicon detectors act like solid drift chambers. A<br />

charged particle travers<strong>in</strong>g it dislodges electrons along its path, creat<strong>in</strong>g electronhole<br />

pairs that eventually recomb<strong>in</strong>e. When placed with<strong>in</strong> an electric field these<br />

electron-hole pairs migrate (<strong>in</strong> the process, creat<strong>in</strong>g more electron-hole pairs), <strong>and</strong><br />

collect at electrodes, produc<strong>in</strong>g a measurable signal when amplified. Per unit length<br />

traversed, <strong>in</strong>com<strong>in</strong>g particles create much more charge carriers <strong>in</strong> Si than produced<br />

<strong>in</strong> drift chambers. Electron hole pairs created <strong>in</strong> the silicon move much faster <strong>in</strong><br />

the electric field than electrons <strong>and</strong> ions <strong>in</strong> drift chambers. These two features give<br />

silicon detectors a few advantages over drift chambers: th<strong>in</strong>ner detectors can be<br />

59


used, larger signals for <strong>in</strong>com<strong>in</strong>g particles are obta<strong>in</strong>ed <strong>and</strong> much shorter collection<br />

times are needed, lead<strong>in</strong>g to fast signals of ∼ 10 ns. Thus silicon detectors can be<br />

designed to measure very small spatial resolutions.<br />

4.7.2 MVD Overview<br />

The Micro Vertex Detector (MVD) is the ZEUS silicon detector responsible for<br />

vertex<strong>in</strong>g <strong>and</strong> aids <strong>in</strong> track<strong>in</strong>g. The MVD was <strong>in</strong>stalled dur<strong>in</strong>g the HERA II upgrade<br />

<strong>and</strong> lies between the CTD <strong>and</strong> the beampipe. Before the <strong>in</strong>troduction of the MVD,<br />

the CTD required primary <strong>and</strong> secondary vertices to be separated by at least 0.5<br />

-1.0 cm to be dist<strong>in</strong>guishable [29]. The decay lengths of charmed hadrons are of the<br />

order ∼ 100−300 µm. This means the separation of primary <strong>and</strong> secondary vertices<br />

is too small to measure us<strong>in</strong>g the CTD. The MVD was built to meet the follow<strong>in</strong>g<br />

specifications:<br />

• two track separation of 200 µm<br />

• polar angle coverage of 10 → 170 ◦ (η of 2.44 → −2.44)<br />

• three space po<strong>in</strong>ts along each track<br />

• impact parameter resolution of 100 µm for tracks with θ = 90 ◦ .<br />

The addition of the MVD allows heavy flavour tagg<strong>in</strong>g methods to be used that<br />

were previously not possible with the CTD alone, improves some track reconstruction<br />

by add<strong>in</strong>g MVD <strong>in</strong>formation to the CTD <strong>in</strong>formation, <strong>and</strong> provides vertex<strong>in</strong>g<br />

<strong>in</strong>formation.<br />

The MVD sensors are made up of p-type silicon strips segmented as seen <strong>in</strong> Fig.<br />

4.13. These p-type strips are embedded <strong>in</strong> an n-type substrate form<strong>in</strong>g multiple pn<br />

60


junctions. The width of a strip is 12 µm with a separation between adjacent strips<br />

of 20 µm [30]. After every fifth strip (i.e., every 120 µm) there is a read-out strip.<br />

The MVD is organized <strong>in</strong>to two parts: the barrel (BMVD) seen <strong>in</strong> Fig. 4.14 <strong>and</strong><br />

4.15, <strong>and</strong> the forward (FMVD) seen <strong>in</strong> Fig. 4.15. The barrel MVD is made up of<br />

three cyl<strong>in</strong>ders <strong>and</strong> the forward MVD is organized <strong>in</strong> four wheels.<br />

Figure 4.14: X − Y view of the BMVD. Ladders, composed of many sensors, make up the<br />

three cyl<strong>in</strong>ders.<br />

61


Figure 4.15: Side view of the four wheels <strong>and</strong> three cyl<strong>in</strong>ders of the MVD.<br />

BMVD<br />

Sensors are paired perpendicular to each other form<strong>in</strong>g half modules seen <strong>in</strong> Fig.<br />

4.16a). Half modules mirrored onto each other form a module. Five modules are<br />

glued to a ladder. There are a total of thirty ladders that form the three cyl<strong>in</strong>ders<br />

mak<strong>in</strong>g up the BMVD, with four ladders mak<strong>in</strong>g up the first cyl<strong>in</strong>der, ten mak<strong>in</strong>g up<br />

the second, <strong>and</strong> 16 mak<strong>in</strong>g up the third. The ladders are not completely symmetric<br />

about the beampipe because the MVD is not exactly centered on the beam pipe <strong>and</strong><br />

the x − y cross section of the beampipe is an ellipse. For this reason, the <strong>in</strong>nermost<br />

cyl<strong>in</strong>der of the MVD is left <strong>in</strong>complete; see Fig. 4.14. BMVD sensors provide z <strong>and</strong><br />

r − φ co-ord<strong>in</strong>ates of tracks.<br />

62


a) b)<br />

Figure 4.16: a) Diagram of two half modules form<strong>in</strong>g a barrel module. b) An MVD wheel<br />

compris<strong>in</strong>g severed sectors.<br />

FMVD<br />

The sensors are organized differently <strong>in</strong> the FMVD than <strong>in</strong> the barrel. Forward<br />

sensors are paired back-to-back, creat<strong>in</strong>g the <strong>in</strong>ner <strong>and</strong> outer sensor, called a sector;<br />

seen <strong>in</strong> Fig. 4.16b). Each wheel is made up of 14 sectors that are rotated with<br />

respect to one another. In total there are four wheels made up of a total 56 sectors.<br />

Table 4.4 summarizes some of the MVD parameters.<br />

MVD Info Barrel Wheel<br />

Num. Of Strips Per Sensor 512 480<br />

Strip Width [µm] 12 12<br />

Strip Separation [µm] 20 20<br />

Num. Of Sensors 600 112<br />

Strip Length [mm] 62.2 5.6 → 73.3<br />

Sensor Area [cm 2 ] 41.2 34.9 (25.7)<br />

Total Num. Of Strips 307k 54k<br />

Table 4.4: MVD parameters.<br />

63


4.8 Straw Tube Tracker (STT)<br />

In addition to the <strong>in</strong>stallation of the MVD dur<strong>in</strong>g the HERA II shutdown, ZEUS<br />

added the Straw Tube Tracker (STT). The STT is located <strong>in</strong> the forward region<br />

of the detector, <strong>and</strong> was designed to measure the most forward tracks missed by<br />

the CTD. The STT ranges <strong>in</strong> polar angle from 5 < θ < 25 ◦ , (3.13 < η < 1.51).<br />

Conceptually the STT is a drift chamber, or better stated, many drift chambers.<br />

Each straw of the STT is its own drift chamber. A sensor wire thread<strong>in</strong>g the straw is<br />

kept at a potential of 1850 V. In total there are 10 944 sensor wires [31]. Similar to<br />

the CTD, electrons created by the <strong>in</strong>com<strong>in</strong>g particle drift to the sensor wire, while<br />

the ions migrate to the outer straw.<br />

Straw Ground<br />

Anode 1850 V<br />

Figure 4.17: Straws mak<strong>in</strong>g up an STT sector. The anode wires are kept at 1850 V, while<br />

the straw itself is ma<strong>in</strong>ta<strong>in</strong>ed at ground.<br />

STT straws are organized <strong>in</strong>to layers, each successive straw <strong>in</strong> a layer longer than<br />

the one before; as seen <strong>in</strong> Fig. 4.17. Three layers of straws are stacked on one<br />

another, form<strong>in</strong>g wedges (also called sectors). In total there are 48 wedges. There<br />

64


are two types of wedges, STT1 <strong>and</strong> STT2, the difference between the two be<strong>in</strong>g the<br />

number of straws. Six STT wedges are rotated with respect to one another form<strong>in</strong>g<br />

the eight superlayers (seen <strong>in</strong> Fig. 4.18). A module is formed when two superlayers<br />

are comb<strong>in</strong>ed. In total there are four modules. A well-measured track will traverse<br />

24 layers of STT straws.<br />

Figure 4.18: Overview of the STT. The STT comprises four modules, two of which are made<br />

up of STT1 wedges <strong>and</strong> two of STT2 wedges.<br />

Tab. 4.5 summarizes some STT <strong>in</strong>formation.<br />

65


STT Info STT1 STT2<br />

Num. Of Straws 11040 65 + 64 + 65 89 + 88 + 89<br />

Radius from Beampipe [cm] 14.402 → 63.938 14.488 → 82.213<br />

Straw Length [cm] 20.0 → 80.1 20.7 → 101.9<br />

Straw Diameter [mm] 7.495<br />

Straw Tube Thickness [mm] 0.123<br />

Separation Between Straws [mm] 7.740<br />

Table 4.5: STT parameters [32].<br />

4.9 An Event<br />

Dur<strong>in</strong>g the reconstruction phase of an event, ZEUS utilizes a program ZEVIS (ZEUS<br />

Event VISualisation) that highlights, us<strong>in</strong>g a graphical program, the different ZEUS<br />

components <strong>in</strong>volved <strong>in</strong> reconstruct<strong>in</strong>g the event. The event displayed <strong>in</strong> Fig. 4.9<br />

θ = 36, 7 ◦ θ = 90 ◦<br />

θ = 129.1 ◦<br />

η = 1.1<br />

η = 0 η = −0.743<br />

π<br />

K<br />

π<br />

K<br />

πs<br />

θ = 0 ◦<br />

η → ∞<br />

πs<br />

θ = 180 ◦<br />

η → −∞<br />

a) xy View<br />

b) zr View<br />

Figure 4.19: The ZEUS detector us<strong>in</strong>g the ZEVIS display program shows the result of an<br />

ep collision. The detector is shown from xy <strong>and</strong> zr planes. This event has a<br />

potential D ∗ c<strong>and</strong>idate. Notice that two tracks <strong>in</strong> the xy plane bend <strong>in</strong> the<br />

same direction <strong>in</strong>dicat<strong>in</strong>g they have the same charge, while a third charge bends<br />

<strong>in</strong> the opposite direction. These 3 tracks are the potential K, π, π s daughters<br />

of the D ∗ .<br />

66


may be a D ∗ event <strong>and</strong> <strong>in</strong>dicates the follow<strong>in</strong>g:<br />

• tracks travers<strong>in</strong>g both the MVD <strong>and</strong> CTD<br />

• very forward tracks travers<strong>in</strong>g the STT<br />

• energy deposits <strong>in</strong> the forward <strong>and</strong> barrel regions of the CAL.<br />

67


Chapter 5<br />

Charged Particle Track<strong>in</strong>g at ZEUS<br />

5.1 Introduction<br />

Only the charged particles travers<strong>in</strong>g the ZEUS detector have their tracks reconstructed.<br />

At ZEUS a particle’s track is its trajectory as it traverses the detector.<br />

The most relevant aspect of a track is its momentum reconstructed at the <strong>in</strong>teraction<br />

po<strong>in</strong>t (or vertex at which it was created). Track<strong>in</strong>g is done primarily through<br />

the CTD with the aid of the MVD, STT <strong>and</strong> SRTD (described <strong>in</strong> sections §4.6, §4.7,<br />

§4.8, §4.5, respectively). The MVD <strong>and</strong> STT were <strong>in</strong>troduced dur<strong>in</strong>g the HERA II<br />

shutdown to improve forward track<strong>in</strong>g <strong>and</strong> vertex reconstruction. Depend<strong>in</strong>g on the<br />

<strong>in</strong>formation available different components are used to reconstruct tracks.<br />

The ZEUS track<strong>in</strong>g detectors attempt to convert hits/measurements from the track<strong>in</strong>g<br />

components <strong>in</strong>to tracks us<strong>in</strong>g reconstruction algorithms. This chapter provides<br />

a brief <strong>in</strong>troduction to ZEUS track<strong>in</strong>g, highlight two different ZEUS track<strong>in</strong>g modes<br />

<strong>and</strong> exam<strong>in</strong>es the D ∗ track<strong>in</strong>g resolutions along with the D ∗ track loss probabilities.<br />

68


5.2 Track Reconstruction<br />

The reconstruction of tracks at ZEUS is a two phase process described <strong>in</strong> detail <strong>in</strong><br />

[33]:<br />

1. Pattern Recognition Phase: hit positions <strong>in</strong> the detector components are used<br />

to create a five parameter helix that creates a rough representation of the path<br />

the charged particle travels with<strong>in</strong> the magnetic field<br />

2. Trajectory Fit Phase: this ref<strong>in</strong><strong>in</strong>g phase takes as <strong>in</strong>put the five parameter<br />

helix <strong>and</strong> makes improvements to the trajectory on a step-by-step basis.<br />

The output is a set of parameters for each track organised <strong>in</strong> a table (named VC-<br />

TRHL). Information on charged particle track<strong>in</strong>g by detectors is found <strong>in</strong> [34, 35].<br />

The trajectory of a charged particle with<strong>in</strong> a constant magnetic field can be described<br />

by a helix parametrization a i , <strong>and</strong> covariance matrix c ij . Each element<br />

<strong>in</strong> the covariance matrix, for example c 23 , loosely speak<strong>in</strong>g provides a measure of<br />

the strength of the correlation between parameters a 2 <strong>and</strong> a 3 . For a particle with<br />

charge Q, helix radius R <strong>in</strong> the x − y plane, <strong>and</strong> reference po<strong>in</strong>t (X 0 ,Y 0 ,Z 0 ) on the<br />

trajectory, ZEUS uses the five parameters:<br />

1. a 1 = φ 0 (angle tangent to the helix <strong>in</strong> the x − y plane)<br />

2. a 2 = Q/R<br />

3. a 3 = QD 0 (vector to reference po<strong>in</strong>t on helix from orig<strong>in</strong>)<br />

4. a 4 = Z 0<br />

5. a 5 = cot θ (= tan λ) where λ = π/2 − θ (dip with respect to the x − y plane)<br />

69


Fig. 5.1 shows the trajectory of a particle <strong>in</strong> both the x − y <strong>and</strong> y − z planes, the<br />

five parameters are <strong>in</strong>dicated. The function s(φ) is used to describe any po<strong>in</strong>t on<br />

the helix as a function of the trajectory’s outbound path length <strong>in</strong> the x − y plane:<br />

s(φ) = −QR(φ − φ 0 ). (5.1)<br />

s<br />

φ 1<br />

y<br />

s<br />

y<br />

φ 0<br />

Q<br />

R<br />

D 0<br />

z = Z 0<br />

θ<br />

s = 0<br />

θ 0<br />

z<br />

(0,0)<br />

D 0<br />

x<br />

s = 0<br />

Figure 5.1: The trajectory of a particle viewed from the x − y <strong>and</strong> y − z planes.<br />

Rearranged, the parameters give the coord<strong>in</strong>ates <strong>and</strong> momentum of a particle at<br />

s = 0:<br />

X = X 0 + QR(− s<strong>in</strong> φ + s<strong>in</strong> φ 0 ) (5.2)<br />

Y = Y 0 + QR(+ cos φ − cos φ 0 ) (5.3)<br />

Z = Z 0 + s(φ)cot θ (5.4)<br />

p = QBR (5.5)<br />

(p x ,p y ,p z ) = (p cos φs<strong>in</strong> θ,ps<strong>in</strong>φs<strong>in</strong> θ,pcos θ). (5.6)<br />

70


5.2.1 Fit Formalism<br />

Fits are made by m<strong>in</strong>imiz<strong>in</strong>g a Chi Squared, χ 2 ; the general form for the χ 2 is<br />

χ 2 (a + δa) =<br />

N∑<br />

m<br />

(<br />

Fm − f(m;a + δa)<br />

σ m<br />

) 2<br />

. (5.7)<br />

F m is the m th measurement of N with an associated error σ m , modeled by the<br />

function f(m;a). An expansion about a leads to<br />

f(m;a + δa) = f(m;a) +<br />

n∑<br />

i=1<br />

δa i<br />

d<br />

da i<br />

f(m;a). (5.8)<br />

The χ 2 is m<strong>in</strong>imized with respect to δa by differentiat<strong>in</strong>g <strong>and</strong> sett<strong>in</strong>g to zero<br />

dχ 2 /da i = 0 for i = 1,n, yield<strong>in</strong>g the m<strong>in</strong>imum δa i . The m<strong>in</strong>imum δa <strong>and</strong> m<strong>in</strong>imized<br />

χ 2 <strong>in</strong> terms of fit sums, are given by<br />

δa = U −1 B, (5.9)<br />

χ 2 (a + δa) = S − δaB. (5.10)<br />

The fit sums: U, an n × n matrix, B, an n dimensional array, <strong>and</strong> S, a scalar, have<br />

the form<br />

U ij =<br />

B i =<br />

S =<br />

N∑<br />

m<br />

N∑<br />

m<br />

d<br />

da i<br />

f(m;a) d<br />

da j<br />

f(m;a)/σ 2 m , (5.11)<br />

d<br />

da i<br />

f(m;a)(F m − f(m;a))/σ 2 m , (5.12)<br />

N∑<br />

(F m − f(m;a)) 2 /σm 2 . (5.13)<br />

m<br />

Thus, to m<strong>in</strong>imize χ 2 the fits sums are determ<strong>in</strong>ed, then δa is solved (Eq. 5.9), <strong>and</strong><br />

substituted <strong>in</strong>to Eq. 5.10.<br />

The problem of fitt<strong>in</strong>g data to a pattern now amounts to def<strong>in</strong><strong>in</strong>g<br />

71


• the measurement F m <strong>and</strong> its error σ m<br />

• the fitt<strong>in</strong>g function f(m;a)<br />

• the parameters a ν (ν = 1,n).<br />

5.2.2 Pattern Recognition Fit<br />

The full 3D pattern recognition is a two fit process us<strong>in</strong>g least-squares fitt<strong>in</strong>g. The<br />

first fit pattern is a circle <strong>in</strong> the x − y plane, that determ<strong>in</strong>es a 1 <strong>and</strong> a 2 of the helix<br />

parameters. The second fit pattern is a l<strong>in</strong>e <strong>in</strong> the s − Z plane, z = a 4 + sa 5 .<br />

Plane Fit X − Y<br />

The pattern that the measurements are fit to <strong>in</strong> the X − Y plane is a circle. For<br />

the 2D plane fit, the trajectory is p<strong>in</strong>ned to the reference po<strong>in</strong>t, thus sett<strong>in</strong>g a 3 = 0,<br />

forc<strong>in</strong>g the reference po<strong>in</strong>t (X 0 ,Y 0 ,Z 0 ) to lie on the circle. The objective at this<br />

stage is to m<strong>in</strong>imize the χ 2 of the form<br />

χ 2 = ∑ m<br />

( QDm<br />

σ m<br />

) 2<br />

. (5.14)<br />

The term QD m is the signed perpendicular distance, where D m is the distance from<br />

the m th measurement to the circle, measured along the axis connect<strong>in</strong>g the m th<br />

measurement <strong>and</strong> the circle’s center, as seen <strong>in</strong> Fig. 5.2. The error on the m th<br />

measurement is σ m .<br />

72


(x m , y m )<br />

a 1 = φ 0<br />

D m (x 0 , y 0 )<br />

Q = +1<br />

y<br />

x<br />

R<br />

(x c , y c )<br />

a 2 = Q/R<br />

Figure 5.2: X − Y plane pattern recognition fit. <strong>Measurements</strong> are fit to a circle of radius<br />

R by m<strong>in</strong>imiz<strong>in</strong>g D m .<br />

At the end of this fit the parameters a 1 <strong>and</strong> a 2 are determ<strong>in</strong>ed.<br />

Plane Fit s − Z<br />

The s − Z plane fit requires the a 1 <strong>and</strong> a 2 parameters obta<strong>in</strong>ed from the X − Y<br />

plane fit. The Z value of the m th measurement is z m . The plane fit m<strong>in</strong>imizes the<br />

χ 2 <strong>in</strong> the s − Z plane that is the distance between z m <strong>and</strong> the l<strong>in</strong>e<br />

g m = q 1 + s m q 2 . (5.15)<br />

The parameter q 1 is the Z value at the reference po<strong>in</strong>t q 1 = a 4 = Z 0 , <strong>and</strong> q 2 is the<br />

tangent of the helix dip q 2 = a 5 = cot θ. The term s m is the 2D path length (recall<br />

Eq. 5.1) <strong>and</strong> is measured from the reference po<strong>in</strong>t s 0 :<br />

s m = s(φ m ) = −(φ m − a 1 )/a 2 + s 0 . (5.16)<br />

The χ 2 of the form<br />

χ 2 = ∑ m<br />

(<br />

zm − ∑ 2<br />

ν=1 q ν dgm<br />

dq ν<br />

σ m<br />

) 2<br />

(5.17)<br />

73


is m<strong>in</strong>imized us<strong>in</strong>g fit sums obta<strong>in</strong><strong>in</strong>g the rema<strong>in</strong>der of the helix parameters.<br />

Different track seeds are used depend<strong>in</strong>g upon which components obta<strong>in</strong>ed <strong>in</strong>formation<br />

dur<strong>in</strong>g the event. The CTD <strong>and</strong> MVD <strong>in</strong>formation is used for the X − Y<br />

pattern fit. The s − Z fit uses <strong>in</strong>formation from the CTD with additional <strong>in</strong>formation<br />

com<strong>in</strong>g from the SRTD <strong>and</strong> STT. Not all hits are necessarily added to the fit<br />

sums some quality filters must be passed.<br />

5.2.3 Trajectory Fit<br />

The axial helix from the pattern recognition phase does not have the accuracy<br />

required for ZEUS track<strong>in</strong>g. Corrections, due to the <strong>in</strong>homogeneous magnetic field<br />

<strong>and</strong> from k<strong>in</strong>ks aris<strong>in</strong>g from particles enter<strong>in</strong>g different detector components, are<br />

made dur<strong>in</strong>g the trajectory fit. K<strong>in</strong>ks are the changes <strong>in</strong> the trajectory’s outbound<br />

slope: a 2D k<strong>in</strong>k <strong>in</strong> the X − Y plane arises from the CTD-MVD junction, <strong>and</strong> a 3D<br />

k<strong>in</strong>k comes from the CTD-SRTD <strong>and</strong> CTD-STT junctions.<br />

The trajectory fit models an outgo<strong>in</strong>g particle’s path by a series of l<strong>in</strong>ked local<br />

trajectories. Two types of local trajectories are used:<br />

• local helix parameters: a local<br />

ν<br />

<strong>in</strong> the vic<strong>in</strong>ity of the CTD <strong>and</strong> MVD,<br />

• z-reference coord<strong>in</strong>ates: q ν = (x,y,dx/dz,dy/dz,Q/|p|) <strong>in</strong> the vic<strong>in</strong>ity of the<br />

SRTD <strong>and</strong> STT (at the z value of the component) .<br />

Only one of the l<strong>in</strong>ked local trajectories is treated as <strong>in</strong>dependent, usually the <strong>in</strong>nermost<br />

a I µ . The rema<strong>in</strong><strong>in</strong>g local trajectories aj µ are dependent upon it. Each local<br />

trajectory is swum out, while account<strong>in</strong>g for the magnetic field <strong>and</strong> k<strong>in</strong>ks, to the<br />

next measurement.<br />

74


The trajectory fit estimates the changes δa i with respect to the <strong>in</strong>itial estimates a i<br />

found <strong>in</strong> the pattern recognition phase. A new χ 2 test is performed:<br />

χ 2 =<br />

N∑<br />

m<br />

(<br />

dm − d(m;a)<br />

σ m<br />

) 2<br />

, (5.18)<br />

where d m is the m th measurement <strong>in</strong> the CTD (or MVD) <strong>and</strong> d(m;a) is the helixparametrised<br />

trajectory.<br />

Dur<strong>in</strong>g the trajectory fit, vertex<strong>in</strong>g can be performed. Vertex<strong>in</strong>g is the process of<br />

determ<strong>in</strong><strong>in</strong>g a common position from which more than one track orig<strong>in</strong>ates. The<br />

primary vertex is the <strong>in</strong>teraction po<strong>in</strong>t of the ep beams. Particles created <strong>in</strong> the<br />

<strong>in</strong>teraction orig<strong>in</strong>ate here. Some of these decay <strong>in</strong>to daughter particles creat<strong>in</strong>g<br />

secondary vertices.<br />

5.3 Track<strong>in</strong>g Modes<br />

ZEUS employs a variety of track<strong>in</strong>g modes differ<strong>in</strong>g <strong>in</strong> which components are used<br />

<strong>and</strong> on how tracks are reconstructed. The previous track reconstruction section §5.2<br />

describes the regular (REG) track<strong>in</strong>g mode, which unless otherwise <strong>in</strong>dicated is the<br />

track<strong>in</strong>g mode used <strong>in</strong> the analyses presented. REG was developed dur<strong>in</strong>g HERA<br />

I <strong>and</strong> was modified <strong>in</strong> HERA II, replac<strong>in</strong>g the vertex<strong>in</strong>g detector 1 with the MVD,<br />

<strong>and</strong> the forward detectors with the STT. In REG track<strong>in</strong>g the CTD is the ma<strong>in</strong><br />

component responsible for track<strong>in</strong>g; the SRTD, STT, <strong>and</strong> MVD can aid <strong>in</strong> track<strong>in</strong>g<br />

but are not solely used.<br />

Dur<strong>in</strong>g HERA II another track<strong>in</strong>g mode ZTT was developed. Details on ZTT<br />

track<strong>in</strong>g can be found <strong>in</strong> [29, 31]. The ZTT track<strong>in</strong>g mode uses a Kalman filter [36]<br />

to reconstruct tracks. The Kalman filter estimates the state of a dynamic system<br />

1 The vertex<strong>in</strong>g detector VXD was removed dur<strong>in</strong>g the HERA I run period.<br />

75


(trajectory) distorted by noise sources (errors on hit positions). The extension of<br />

the Kalman filter for use <strong>in</strong> reconstruct<strong>in</strong>g tracks is expla<strong>in</strong>ed <strong>in</strong> [37].<br />

Kalman Filter<br />

The Kalman filter requires some start<strong>in</strong>g <strong>in</strong>formation about the track. At ZEUS the<br />

start<strong>in</strong>g <strong>in</strong>formation is the output from REG track<strong>in</strong>g. The track fit is a three step<br />

process:<br />

1. A prediction step that uses the present state k (hits already used to determ<strong>in</strong>e<br />

the present trajectory) to predict the position of the next k + 1 hit on the<br />

next measurement plane. (The plane may be the next wire for the CTD or<br />

the next silicon sensor for the MVD.)<br />

2. A filter step that estimates the state us<strong>in</strong>g the predicted k + 1 position from<br />

step one <strong>and</strong> the k + 1 measurement <strong>and</strong> covariance obta<strong>in</strong>ed from the next<br />

measurement plane.<br />

3. A smooth<strong>in</strong>g step that updates the previous k−1 step us<strong>in</strong>g the current filtered<br />

state k.<br />

The Kalman filter evaluates the measurements (hits) separately while the leastsquares<br />

fit estimates all hits simultaneously. As the number of hits <strong>in</strong>crease, the<br />

fit sum matrices become large, result<strong>in</strong>g <strong>in</strong> an <strong>in</strong>crease <strong>in</strong> the computation time for<br />

least-squares fitt<strong>in</strong>g. Remov<strong>in</strong>g wrong hits from the least-squares fitt<strong>in</strong>g requires<br />

all fits to be recalculated from the start. The effect of multiple scatter<strong>in</strong>g on the<br />

trajectory is easier to <strong>in</strong>corporate <strong>in</strong>to the fit when us<strong>in</strong>g a Kalman filter.<br />

Tab. 5.1 provides <strong>in</strong>formation on REG <strong>and</strong> ZTT track<strong>in</strong>g.<br />

76


REG<br />

uses least-squares fitt<strong>in</strong>g<br />

always uses CTD <strong>in</strong>formation<br />

ZTT<br />

uses Kalman filter<br />

<strong>in</strong>put uses output from REG tracks<br />

uses a comb<strong>in</strong>ed track pattern<br />

recognition of MVD <strong>and</strong> CTD not merely<br />

an extension of CTD tracks <strong>in</strong>to the MVD<br />

<strong>in</strong>corporates multiple scatter<strong>in</strong>g<br />

<strong>and</strong> ionization loss<br />

Table 5.1: Properties of REG <strong>and</strong> ZTT track<strong>in</strong>g.<br />

77


5.4 D ∗ Track<strong>in</strong>g <strong>and</strong> Resolutions<br />

5.4.1 Track<strong>in</strong>g Resolution Parameters<br />

The track<strong>in</strong>g resolution with respect to the transverse momentum P T is parametrized<br />

as follows:<br />

σ(P T )/P T = a 1 P T ⊕ a 2 ⊕ a 3 /P T . (5.19)<br />

The first term a 1 P T arises from the error on the track radius of curvature R. The<br />

follow<strong>in</strong>g equations show the relationship between the momentum, transverse momentum,<br />

<strong>and</strong> radius.<br />

P T = |P| · s<strong>in</strong> θ (5.20)<br />

m|v| 2<br />

R<br />

= |qv × B| (5.21)<br />

|P | = |qB|R (5.22)<br />

∴ P T ∝ R. (5.23)<br />

The error on the curvature k = 1/R due to measurement errors is [38]<br />

σ(k) = ǫC LN . (5.24)<br />

ZEUS quotes the RMS 2 measurement error ǫ as 200 µm [33]. The coefficient C LN<br />

is dependent on both the number of hits N <strong>and</strong> the projected track length L. The<br />

relationship between the uncerta<strong>in</strong>ties <strong>in</strong> both R <strong>and</strong> k is σ(k) = 1 R 2 σ(R). Therefore<br />

σ(P T ) ∝ σ(R) ∝ ǫR 2 ∝ ǫP 2 T . (5.25)<br />

Thus the first term is<br />

σ(P T )/P T = a 1 P T . (5.26)<br />

q<br />

2 P<br />

1<br />

The Root Mean Square, RMS, error has the form ǫ RMS = n<br />

n i=1 ǫ2 i .<br />

78


The next two terms are of decreas<strong>in</strong>g powers of P T <strong>and</strong> account for the multiple<br />

scatter<strong>in</strong>g that occurs with<strong>in</strong> the CTD, a 2 , <strong>and</strong> before enter<strong>in</strong>g the CTD, a 3 . The<br />

track<strong>in</strong>g resolution assumes that multiple scatter<strong>in</strong>g affects the momentum only by<br />

alter<strong>in</strong>g the track’s direction, leav<strong>in</strong>g the magnitude of the momentum unaffected.<br />

The uncerta<strong>in</strong>ty of the transverse momentum is thus obta<strong>in</strong>ed from Eq. 5.20:<br />

σ(P T ) = |P|cos θσ(θ) (5.27)<br />

(the m<strong>in</strong>us sign <strong>in</strong> front is dropped). The a 2 term arises because with<strong>in</strong> the CTD<br />

the uncerta<strong>in</strong>ty <strong>in</strong> P T due to the smear<strong>in</strong>g effect of multiple scatter<strong>in</strong>g is expected<br />

to have a component that is l<strong>in</strong>ear with P [39], i.e., σ(P T ) ∝ P T . Therefore,<br />

σ(P T )/P T = a 2 . (5.28)<br />

The third term <strong>in</strong> the track<strong>in</strong>g resolution arises from the dead material a particle<br />

traverses before reach<strong>in</strong>g the CTD. This dead material <strong>in</strong>cludes the beampipe, the<br />

MVD <strong>and</strong> the CTD <strong>in</strong>ner wall. In Fig. 5.3 a particle from the vertex traverses<br />

the dead material with a thickness <strong>in</strong> radiation lengths of L 0 at polar angle θ. The<br />

amount of material that the particle actually traverses is L 0 /s<strong>in</strong> θ.<br />

79


σ(θ)<br />

L 0<br />

θ<br />

x = L /<br />

0<br />

s<strong>in</strong> θ<br />

Figure 5.3: A particle from the <strong>in</strong>teraction vertex traverses L 0 / s<strong>in</strong> θ radiation lengths of<br />

dead material before enter<strong>in</strong>g the CTD. The particle’s polar angle is altered by<br />

σ(θ).<br />

The smear<strong>in</strong>g of θ is given by [1]<br />

σ(θ) = 0.0136<br />

|P|<br />

Us<strong>in</strong>g Eq. 5.27 the track<strong>in</strong>g resolution is<br />

[GeV] √<br />

L0 /s<strong>in</strong> θ(1 + 0.038ln √ L 0 /s<strong>in</strong> θ). (5.29)<br />

[GeV]<br />

σ(P T )<br />

P T<br />

= 0.0136<br />

P T<br />

cos θ √ L 0<br />

√<br />

s<strong>in</strong> θ<br />

(1 + 0.038ln √ L 0 /s<strong>in</strong> θ) = a 3<br />

P T<br />

. (5.30)<br />

Smaller parameters mean a better track<strong>in</strong>g resolution. The three terms are expected<br />

to be uncorrelated so they are added <strong>in</strong> quadrature.<br />

Dur<strong>in</strong>g the HERA I operat<strong>in</strong>g period the D ∗ transverse momentum track<strong>in</strong>g resolution<br />

was measured to be [28] 3<br />

σ(P T )/P T = 0.0058P T ⊕ 0.0065 ⊕ 0.0014/P T , (5.31)<br />

with P T measured <strong>in</strong> units of GeV. Track<strong>in</strong>g resolutions have yet to be determ<strong>in</strong>ed<br />

s<strong>in</strong>ce the addition of the micro vertex detector dur<strong>in</strong>g the HERA II shutdown. The<br />

MVD should aid <strong>in</strong> vertex<strong>in</strong>g <strong>and</strong> <strong>in</strong> track<strong>in</strong>g but also acts as dead material, thereby<br />

3 The symbol ⊕ <strong>in</strong>dicates the terms are added <strong>in</strong> quadrature. The uncerta<strong>in</strong>ty on P T is σ(P T).<br />

80


worsen<strong>in</strong>g the track<strong>in</strong>g resolution due to multiple scatter<strong>in</strong>g. A new D ∗ track<strong>in</strong>g<br />

resolution is obta<strong>in</strong>ed follow<strong>in</strong>g <strong>and</strong> improv<strong>in</strong>g on the method used for HERA I. The<br />

follow<strong>in</strong>g sections discuss the orig<strong>in</strong> of the track<strong>in</strong>g resolution terms, the method<br />

used to calculate the track<strong>in</strong>g resolution, <strong>and</strong> f<strong>in</strong>ally the results for the new track<strong>in</strong>g<br />

resolution.<br />

5.4.2 Track<strong>in</strong>g Resolution Method<br />

Resolutions <strong>and</strong> residuals of quantities are determ<strong>in</strong>ed by compar<strong>in</strong>g the value of<br />

that quantity generated (also called true or hadronic level) to its reconstructed value<br />

(also called detector level) <strong>in</strong> the Monte Carlo. A charm-enriched RAPGAP sample<br />

of 632 pb −1 is used for this study. The k<strong>in</strong>ematic region <strong>and</strong> selection criteria are<br />

as follows:<br />

• P T (Dgen ∗ ) > 1.5 GeV<br />

• |η(Dgen ∗ )| < 1.5<br />

• P T (π s,gen ) > 0.150 GeV<br />

• P T (π gen ,K gen ) > 0.400<br />

GeV<br />

• REG tracks<br />

• primary vertexed tracks<br />

• tracks travers<strong>in</strong>g CTD superlayer 1 <strong>and</strong> superlayer<br />

3 (or greater)<br />

(The subscript gen refers to generator level.) Four quantities are exam<strong>in</strong>ed: the<br />

transverse momentum P T , the absolute value of the momentum |P|, the pseudorapidity<br />

η (measured from [-1.5, 1.5]), <strong>and</strong> the azimuthal angle φ (from [−π, π]). The<br />

resolution is def<strong>in</strong>ed as (for example, P T )<br />

∆P T = P T,gen − P T,rec<br />

P T,gen<br />

. (5.32)<br />

A subtle dist<strong>in</strong>ction is made between track<strong>in</strong>g resolution <strong>and</strong> resolution: the latter<br />

refers to Eq. 5.32, <strong>and</strong> the former to Eq. 5.19, describ<strong>in</strong>g a distribution made from<br />

81


esolutions. The residual is def<strong>in</strong>ed as (for example, η)<br />

δη = η gen − η rec . (5.33)<br />

(The residual is used for η <strong>and</strong> φ whose values conta<strong>in</strong> zero, thus the residual avoids<br />

division by zero.) The track<strong>in</strong>g resolution <strong>in</strong> terms of one of the variables is obta<strong>in</strong>ed<br />

by plott<strong>in</strong>g its resolution (or residual) <strong>in</strong> different b<strong>in</strong>s of one of the variables. For<br />

example, the resolution ∆P T can be determ<strong>in</strong>ed for many different b<strong>in</strong>s of η <strong>and</strong><br />

plotted, thereby giv<strong>in</strong>g the P T track<strong>in</strong>g resolution with respect to η.<br />

The purpose of this approach is to underst<strong>and</strong> the D ∗ track<strong>in</strong>g resolution us<strong>in</strong>g<br />

the ZEUS detector. In this thesis the number of D ∗ c<strong>and</strong>idates is obta<strong>in</strong>ed with<br />

the wrong charge subtraction method (see §8.1.3). The approach <strong>in</strong>volves match<strong>in</strong>g<br />

reconstructed tracks to their generated tracks us<strong>in</strong>g the ZEUS rout<strong>in</strong>e VMCU [40].<br />

Care is taken to make sure the reconstructed kaons <strong>and</strong> pions from the primary<br />

vertex are matched to a generated kaon <strong>and</strong> pion of the same charge, <strong>and</strong> the<br />

generated parent is a D ∗ .<br />

Once the resolution (or residual) is obta<strong>in</strong>ed, it is fit to a three parameter Gaussian<br />

of the form<br />

G(x) = N exp<br />

(− (x − x 0) 2 )<br />

2σ 2 , (5.34)<br />

where the N parameter is the height of the Gaussian, <strong>and</strong> the Gaussian is centered<br />

on x 0 with a width of σ. The width of the Gaussian <strong>in</strong> a k<strong>in</strong>ematic region is that<br />

region’s track<strong>in</strong>g resolution. The distribution of Gaussian widths is fit to Eq. 5.19:<br />

√<br />

( )<br />

σ(P T )<br />

2 a3<br />

= (a 1 P T )<br />

P 2 + (a 2 ) 2 + , (5.35)<br />

T P T<br />

giv<strong>in</strong>g the P T track<strong>in</strong>g resolution. The track<strong>in</strong>g resolutions of the kaon, pion, <strong>and</strong><br />

the slow pion from D ∗ c<strong>and</strong>idates are presented.<br />

82


5.4.3 Resolution Results<br />

The P T distribution of the π, K, <strong>and</strong> π s <strong>in</strong> b<strong>in</strong>s of P T are shown <strong>in</strong> Figs. 5.4, 5.5,<br />

<strong>and</strong> 5.6.<br />

1800<br />

1600<br />

1400<br />

Entries<br />

1200<br />

1000<br />

800<br />

600<br />

N = 1568.3<br />

Mean = 0.0039<br />

σ = 0.0140<br />

400<br />

200<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [0.40, 1.00]<br />

T T<br />

∈<br />

2500<br />

Entries<br />

2000<br />

1500<br />

1000<br />

500<br />

N = 2252.3<br />

Mean = 0.0005<br />

σ = 0.0145<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [1.00, 2.00]<br />

T T<br />

∈<br />

Entries<br />

900 N = 930.9<br />

800<br />

Mean = −0.0001<br />

700<br />

σ = 0.0159<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [2.00, 3.00]<br />

T T<br />

∈<br />

Entries<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

N = 268.4<br />

Mean = −0.0020<br />

σ = 0.0184<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [3.00, 4.00]<br />

T T<br />

∈<br />

Entries<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

N = 80.2<br />

Mean = −0.0009<br />

σ = 0.0229<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [4.00, 5.00]<br />

T T<br />

∈<br />

Entries<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

N = 32.4<br />

Mean = −0.0011<br />

σ = 0.0230<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [5.00, 6.00]<br />

T T<br />

∈<br />

Entries<br />

14 N = 11.4<br />

12<br />

Mean = 0.0045<br />

10<br />

σ = 0.0316<br />

8<br />

6<br />

4<br />

2<br />

Entries<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

N = 4.8<br />

Mean = −0.0101<br />

σ = 0.0331<br />

Entries<br />

5<br />

4<br />

3<br />

2<br />

1<br />

N = 3.4<br />

Mean = 0.0002<br />

σ = 0.0300<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [6.00, 7.00]<br />

T T<br />

∈<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [7.00, 8.00]<br />

T T<br />

∈<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [8.00, 9.00]<br />

T T<br />

∈<br />

Entries<br />

2<br />

N = 1.2<br />

1.8<br />

Mean = 0.0227<br />

1.6<br />

1.4<br />

σ = 0.0461<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P ∈ [9.00, 10.00]<br />

T T<br />

Figure 5.4: ∆P T distributions <strong>in</strong> regions of P T for π with Gaussian fit superimposed.<br />

83


Entries<br />

1000 N = 1031.4<br />

Mean = 0.0058<br />

800<br />

σ = 0.0177<br />

600<br />

400<br />

200<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [0.40, 1.00]<br />

T T<br />

∈<br />

Entries<br />

2200 N = 2120.2<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

Mean = 0.0004<br />

σ = 0.0155<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [1.00, 2.00]<br />

T T<br />

∈<br />

Entries<br />

1000 N = 1015.1<br />

800<br />

Mean = −0.0004<br />

σ = 0.0167<br />

600<br />

400<br />

200<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [2.00, 3.00]<br />

T T<br />

∈<br />

Entries<br />

300 N = 302.8<br />

250<br />

Mean = −0.0011<br />

200<br />

σ = 0.0190<br />

150<br />

100<br />

50<br />

Entries<br />

100<br />

80<br />

60<br />

40<br />

20<br />

N = 91.8<br />

Mean = 0.0005<br />

σ = 0.0226<br />

Entries<br />

50 N = 39.4<br />

40<br />

Mean = −0.0014<br />

σ = 0.0216<br />

30<br />

20<br />

10<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [3.00, 4.00]<br />

T T<br />

∈<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [4.00, 5.00]<br />

T T<br />

∈<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [5.00, 6.00]<br />

T T<br />

∈<br />

Entries<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

N = 17.3<br />

Mean = −0.0001<br />

σ = 0.0261<br />

8<br />

6<br />

4<br />

2<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [6.00, 7.00]<br />

T T<br />

∈<br />

Entries<br />

10<br />

8<br />

6<br />

4<br />

2<br />

N = 7.1<br />

Mean = −0.0022<br />

σ = 0.0303<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [7.00, 8.00]<br />

T T<br />

∈<br />

Entries<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

N = 3.5<br />

Mean = −0.0018<br />

σ = 0.0352<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [8.00, 9.00]<br />

T T<br />

∈<br />

Entries<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

N = 4.1<br />

Mean = −0.0085<br />

σ = 0.0159<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P ∈ [9.00, 10.00]<br />

T T<br />

Figure 5.5: ∆P T distributions <strong>in</strong> regions of P T for K with Gaussian fits superimposed.<br />

84


Entries<br />

900 N = 876.3<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

Mean = 0.0187<br />

σ = 0.0313<br />

100<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [0.15, 0.20]<br />

T T<br />

∈<br />

Entries<br />

1000 N = 1041.7<br />

Mean = 0.0172<br />

800<br />

σ = 0.0212<br />

600<br />

400<br />

200<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [0.20, 0.25]<br />

T T<br />

∈<br />

Entries<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

N = 789.6<br />

Mean = 0.0127<br />

σ = 0.0170<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [0.25, 0.30]<br />

T T<br />

∈<br />

Entries<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

N = 557.2<br />

Mean = 0.0102<br />

σ = 0.0146<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [0.30, 0.35]<br />

T T<br />

∈<br />

Entries<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

N = 375.9<br />

Mean = 0.0081<br />

σ = 0.0136<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [0.35, 0.40]<br />

T T<br />

∈<br />

Entries<br />

250<br />

200<br />

150<br />

100<br />

50<br />

N = 227.3<br />

Mean = 0.0058<br />

σ = 0.0140<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [0.40, 0.45]<br />

T T<br />

∈<br />

Entries<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

N = 148.8<br />

Mean = 0.0061<br />

σ = 0.0141<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [0.45, 0.50]<br />

T T<br />

∈<br />

Entries<br />

90 N = 92.1<br />

80<br />

70<br />

60<br />

50<br />

Mean = 0.0037<br />

σ = 0.0151<br />

40<br />

30<br />

20<br />

10<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [0.50, 0.55]<br />

T T<br />

∈<br />

Entries<br />

70 N = 65.9<br />

60<br />

Mean = 0.0023<br />

50<br />

σ = 0.0129<br />

40<br />

30<br />

20<br />

10<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

∆P ; P [0.55, 0.60]<br />

T T<br />

∈<br />

Entries<br />

45 N = 39.0<br />

40<br />

Mean = 0.0031<br />

35<br />

σ = 0.0153<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

−0.3 −0.2 −0.1 0 0.1 0.2 0.3<br />

P [0.60, 0.65]<br />

∆P ; ∈<br />

T T<br />

Figure 5.6: ∆P T distributions <strong>in</strong> regions of P T for π s with Gaussian fits superimposed.<br />

The P T track<strong>in</strong>g resolution, seen <strong>in</strong> Fig. 5.7, is fit to the three parameter track<strong>in</strong>g<br />

resolution of Eq. 5.19 [41]. S<strong>in</strong>ce three distributions are present <strong>in</strong> the plot, two of<br />

which cover the same region (the kaon <strong>and</strong> pion), it was chosen that the pion <strong>and</strong><br />

the slow pion will be used for the fit (thus exclud<strong>in</strong>g the kaon from the fit whose<br />

distribution is similar to that of the pions). From the fit the three parameters<br />

<strong>in</strong>clud<strong>in</strong>g their errors are found to be<br />

a 1 = 0.00395 ± 0.00001,<br />

a 2 = 0.01387 ± 0.00001,<br />

a 3 = 0.003866 ± 0.000003. (5.36)<br />

85


Thus, the P T track<strong>in</strong>g resolution is fit to the π s <strong>and</strong> π distributions (see Fig. 5.7):<br />

σ(P T )/P T = 0.00395P T ⊕ 0.0139 ⊕ 0.00387/P T . (5.37)<br />

T<br />

)/P<br />

T<br />

σ(P<br />

0.1<br />

0.09<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

σ (P )/P = 0.00395P T<br />

⊕ 0.01387 ⊕ 0.00387/P<br />

T T<br />

T<br />

1 10<br />

[GeV/c]<br />

P T<br />

π S<br />

K<br />

π<br />

Figure 5.7: The σ(P T ) track<strong>in</strong>g resolution of the D ∗ as a function of P T with fit superimposed.<br />

The quality of the P T fit will be discussed shortly but first the transverse momentum<br />

track<strong>in</strong>g resolution is shown (see Fig. 5.8). This uses an identical fit as <strong>in</strong> Eq. 5.19,<br />

except <strong>in</strong>stead of P T the magnitude of the momentum, |P|, is used. In HERA I the<br />

absolute momentum track<strong>in</strong>g resolution was [28]:<br />

σ(|P|)/|P| = 0.0056|P| ⊕ 0.0074 ⊕ 0.00/|P|. (5.38)<br />

The fit yields<br />

σ(|P|)/|P| = 0.00398|P| ⊕ 0.013 ⊕ 0.00464/|P|. (5.39)<br />

86


σ(|P|)/|P|<br />

0.1<br />

0.09<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

σ (|P|)/|P| = 0.00398|P| ⊕ 0.01300 ⊕ 0.00464/|P|<br />

π S<br />

K<br />

π<br />

1 10<br />

|P| [GeV/c]<br />

Figure 5.8: The σ(|P|) track<strong>in</strong>g resolution of the D ∗ as a function of |P| with fit superimposed.<br />

The first term, a 1 |P|, <strong>in</strong> the D ∗ |P| track<strong>in</strong>g resolution is less than previously quoted.<br />

The ZEUS track<strong>in</strong>g is an evolv<strong>in</strong>g system with improvements constantly be<strong>in</strong>g made.<br />

A possible reason for the improvement is that the RMS measurement error has<br />

decreased.<br />

The second term, a 2 , aris<strong>in</strong>g from multiple scatter<strong>in</strong>g occurr<strong>in</strong>g with<strong>in</strong> the CTD<br />

has <strong>in</strong>creased. The CTD is constantly monitored <strong>and</strong> repaired, <strong>and</strong> on occasions<br />

wires have been lost. Over time these have contributed to the deterioration of the<br />

resolution. In addition the potential on the CTD wires has been reduced to decrease<br />

the number of wires burn<strong>in</strong>g out. The effect of this reduced potential is to decrease<br />

the sensitivity of the CTD.<br />

The last term, a 3 /|P|, accounts for multiple scatter<strong>in</strong>g occurr<strong>in</strong>g before the CTD,<br />

<strong>and</strong> has <strong>in</strong>creased from HERA I as expected. This <strong>in</strong>crease is due to the addition<br />

87


of the MVD, which acts as dead material.<br />

5.4.4 Delv<strong>in</strong>g <strong>Deep</strong>er <strong>in</strong>to Resolutions<br />

The track<strong>in</strong>g resolutions are obta<strong>in</strong>ed from tracks orig<strong>in</strong>at<strong>in</strong>g from the primary vertex.<br />

Select<strong>in</strong>g only primary vertexed tracks creates a cleaner D ∗ signal by remov<strong>in</strong>g<br />

the tracks of particles with long-lived parents. Requir<strong>in</strong>g the slow pion to orig<strong>in</strong>ate<br />

from the primary vertex is a safe approximation because the D ∗ decays quickly, thus<br />

near to the primary vertex. However, requir<strong>in</strong>g the other pion <strong>and</strong> kaon to orig<strong>in</strong>ate<br />

from the primary vertex artificially dim<strong>in</strong>ishes their track<strong>in</strong>g resolutions. Fig. 5.9<br />

illustrates a D ∗ decay<strong>in</strong>g at the primary vertex to a D 0 <strong>and</strong> slow pion. The D 0 with<br />

its longer lifetime travels some distance before decay<strong>in</strong>g to a kaon <strong>and</strong> pion.<br />

K +<br />

φ g,K<br />

π −<br />

D ∗− D 0<br />

z-axis<br />

Out of Page<br />

φ r,πs<br />

πs<br />

−<br />

x-axis<br />

Figure 5.9: Requir<strong>in</strong>g the tracks mak<strong>in</strong>g up a D ∗ to be from the primary vertex has the<br />

effect of dim<strong>in</strong>ish<strong>in</strong>g the φ <strong>and</strong> η track<strong>in</strong>g resolution of the K <strong>and</strong> the π. The r<br />

<strong>and</strong> g subscripts <strong>in</strong>dicated reconstructed <strong>and</strong> generated quantities respectively.<br />

The momenta p = (p x ,p y ,p z ) of the three tracks are determ<strong>in</strong>ed by the bend of<br />

their trajectories <strong>in</strong> the magnetic field. The azimuthal angle φ <strong>and</strong> η for each track<br />

is calculated from its momentum p:<br />

p = |p| =<br />

√<br />

p 2 x + p2 y + p2 z , (5.40)<br />

88


( )<br />

θ = cos −1 pz<br />

, (5.41)<br />

p<br />

(<br />

η = − ln tan θ )<br />

, (5.42)<br />

2<br />

( )<br />

φ = tan −1 py<br />

, (5.43)<br />

p x<br />

where tan −1 is def<strong>in</strong>ed to take the correct quadrant of (p x ,p y ) <strong>in</strong>to account. The<br />

azimuthal angle φ of the slow pion is well reconstructed, however the other pion <strong>and</strong><br />

the kaon azimuthal angles are not. The reconstructed φ of the kaon does not reflect<br />

its true φ at its po<strong>in</strong>t of creation, because the kaon is (<strong>in</strong>correctly) reconstructed<br />

back at the primary vertex! In fact, for particles not orig<strong>in</strong>at<strong>in</strong>g from the primary<br />

vertex, the def<strong>in</strong>ition of φ <strong>and</strong> η is somewhat ambiguous because these quantities<br />

are described from the ep <strong>in</strong>teraction po<strong>in</strong>t.<br />

The φ <strong>and</strong> η Track<strong>in</strong>g Resolutions with respect to P T<br />

The σ(φ) <strong>and</strong> σ(η) distributions with respect to P T are seen <strong>in</strong> Figs. 5.10 <strong>and</strong><br />

5.11 <strong>and</strong> display the expected discont<strong>in</strong>uity. The track<strong>in</strong>g resolution of the primary<br />

vertexed π s does not overlap with the track<strong>in</strong>g resolution of the secondary vertexed<br />

π <strong>and</strong> K at a common P T .<br />

The σ(η) <strong>and</strong> σ(φ) resolutions with respect to P T are fit to Eq. 5.44:<br />

σ(X) = a 1 ⊕ a 2 /P T , (5.44)<br />

where X = η or φ. The fit only spans the P T region of the slow pion because of the<br />

discont<strong>in</strong>uity of the track<strong>in</strong>g resolution.<br />

89


σ(η)<br />

0.01<br />

0.009<br />

0.008<br />

0.007<br />

0.006<br />

0.005<br />

0.004<br />

0.003<br />

0.002<br />

0.001<br />

0<br />

σ (η ) = 0.00067 ⊕ 0.00089/P<br />

T<br />

π S<br />

K<br />

π<br />

1 10<br />

P T<br />

[GeV/c]<br />

Figure 5.10: The σ(η) track<strong>in</strong>g resolution of the D ∗ as a function of P T with fit superimposed.<br />

σ(φ)<br />

0.01<br />

0.009<br />

0.008<br />

0.007<br />

0.006<br />

0.005<br />

0.004<br />

0.003<br />

0.002<br />

0.001<br />

0<br />

σ (φ ) = 0.00000 ⊕ 0.00101/P<br />

T<br />

1 10<br />

[GeV/c]<br />

P T<br />

π S<br />

K<br />

π<br />

Figure 5.11: The σ(φ) track<strong>in</strong>g resolution of the D ∗ as a function of P T with fit superimposed.<br />

90


The previous σ(η) <strong>and</strong> σ(φ) resolutions at ZEUS are quoted as [28]<br />

σ(η) = 0.0015 ⊕ 0.0017/P T , (5.45)<br />

σ(φ) = 0.0006 ⊕ 0.002/P T . (5.46)<br />

The same resolutions s<strong>in</strong>ce the addition of the MVD <strong>in</strong> HERA II are<br />

σ(η) = 0.00067 ⊕ 0.00089/P T , (5.47)<br />

σ(φ) = 0.000 ⊕ 0.001/P T . (5.48)<br />

The η <strong>and</strong> φ track<strong>in</strong>g resolutions with respect to P T have improved for primary<br />

vertexed tracks. The rema<strong>in</strong><strong>in</strong>g distributions are found <strong>in</strong> App. C.<br />

P T Track<strong>in</strong>g Resolution<br />

The P T track<strong>in</strong>g resolution is clearly not as good as the |P| track<strong>in</strong>g resolution (see<br />

Fig. 5.7 <strong>and</strong> 5.8, respectively). Both are better than the η <strong>and</strong> φ distributions. The<br />

discont<strong>in</strong>uity apparent <strong>in</strong> η <strong>and</strong> φ is also seen <strong>in</strong> the P T track<strong>in</strong>g resolution, but to a<br />

much smaller degree. This is because the P T resolution <strong>in</strong>corporates both a |P| <strong>and</strong><br />

θ component s<strong>in</strong>ce P T = |P|s<strong>in</strong> θ. The θ component is the reason for the poor fit<br />

of the P T distribution <strong>and</strong> causes the observable discont<strong>in</strong>uity where the slow pion<br />

distribution stops <strong>and</strong> the other pion distribution beg<strong>in</strong>s.<br />

91


5.5 D ∗ Track Loss Probability<br />

The method used to determ<strong>in</strong>e the number of D ∗ c<strong>and</strong>idates requires all three tracks<br />

of the D ∗ ’s daughters to be reconstructed. The slow pion typically has a smaller<br />

momentum (<strong>and</strong> thus transverse momentum) than the kaon <strong>and</strong> other pion. Some<br />

slow pions fail to reach the CTD <strong>and</strong> <strong>in</strong>stead spiral down the beampipe undetected.<br />

This is because of their small P T . The addition of the MVD for HERA II, which<br />

also acts as dead material, causes the π s to lose energy whilst travers<strong>in</strong>g it.<br />

The D ∗ track loss probability is a study that is used <strong>in</strong> systematics to quantify the<br />

rate that D ∗ ’s are lost due to non-reconstructed π s . The study was done for the<br />

HERA I ZEUS detector simulation <strong>in</strong> [42] <strong>and</strong> is reproduced here for the HERA II<br />

detector simulation. The D ∗ track-f<strong>in</strong>d<strong>in</strong>g efficiency is def<strong>in</strong>ed as a “ratio of the<br />

number of D ∗± mesons with all three daughter tracks reconstructed to the number<br />

of D ∗± mesons with at least both D 0 daughter tracks reconstructed”. In more<br />

general terms, the ratio when all three D ∗ tracks are found to when at least two<br />

tracks are found is the track-f<strong>in</strong>d<strong>in</strong>g efficiency. The procedure <strong>in</strong>volves match<strong>in</strong>g<br />

generator level tracks (gen) to reconstructed tracks (rec) <strong>in</strong> Monte Carlo. This allows<br />

the three D ∗ daughter tracks to be clearly identified as a π, K, or π s , when<br />

reconstructed, or, if not, <strong>in</strong>dicates which tracks were lost. Two P T distributions<br />

are made for the generated slow pion, one where the K <strong>and</strong> π are found regardless<br />

of whether the π s is found, the other distribution made when the K, π <strong>and</strong> π s are<br />

found. The track-f<strong>in</strong>d<strong>in</strong>g efficiency is the ratio of the two distributions. As an extension<br />

to when the slow pion is lost, the track<strong>in</strong>g efficiency of the kaon <strong>and</strong> other pion<br />

are also determ<strong>in</strong>ed. The study uses the same charm-enriched RAPGAP MC sample<br />

of 632 pb −1 . The k<strong>in</strong>ematic region of <strong>in</strong>terest <strong>and</strong> selection criteria are as follows:<br />

92


• 5 < Q 2 < 1000 GeV 2<br />

• 0.02 < y < 0.70<br />

• tracks traverse CTD superlayers 1<br />

<strong>and</strong> 3 or greater<br />

• primary vertexed tracks<br />

• 1.5 < P T (D ∗ ) < 15.0 GeV<br />

• |η(D ∗ )| < 1.5<br />

• P T (π,K) > 0.400 GeV<br />

The results of the D ∗ track loss probability study are shown <strong>in</strong> Figs. 5.12 to 5.17.<br />

P T<br />

(π s ) Efficiency<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

π s<br />

0<br />

0.2 0.4 0.6 0.8 1<br />

P T<br />

[GeV]<br />

Figure 5.12: The track<strong>in</strong>g efficiency <strong>in</strong> MC of the slow pion as a function of P T .<br />

93


) Efficiency<br />

s<br />

η(π<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

π s<br />

0<br />

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2<br />

η<br />

Figure 5.13: The track<strong>in</strong>g efficiency <strong>in</strong> MC of the slow pion as a function of η.<br />

P T<br />

(π) Efficiency<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

π<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

P T<br />

[GeV]<br />

Figure 5.14: The track<strong>in</strong>g efficiency <strong>in</strong> MC of the pion as a function of P T .<br />

94


η(π) Efficiency<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

π<br />

0.1<br />

0<br />

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2<br />

η<br />

Figure 5.15: The track<strong>in</strong>g efficiency <strong>in</strong> MC of the pion as a function of η.<br />

P T<br />

(K) Efficiency<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

K<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

P T<br />

[GeV]<br />

Figure 5.16: The track<strong>in</strong>g efficiency <strong>in</strong> MC of the kaon as a function of P T .<br />

95


η(K) Efficiency<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

K<br />

0.1<br />

0<br />

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2<br />

η<br />

Figure 5.17: The track<strong>in</strong>g efficiency <strong>in</strong> MC of the kaon as a function of η.<br />

The figures show that the slow pion is the particle that limits the reconstruction of<br />

the D ∗ . With efficiencies peak<strong>in</strong>g at approximately 80% <strong>in</strong> P T <strong>and</strong> 70% <strong>in</strong> η, the<br />

slow pion’s reconstruction rate is the lowest of the D ∗ daughters. The efficiency is<br />

low at small transverse momentum <strong>and</strong> <strong>in</strong>creases with P T <strong>and</strong> somewhat plateaus.<br />

The efficiency drops significantly at low <strong>and</strong> high values for the pseudorapidity.<br />

These efficiencies are significantly less than found <strong>in</strong> HERA I. In HERA I the P T<br />

<strong>and</strong> η efficiencies were ≈ 98% <strong>and</strong> 96%, respectively. A potential source for this loss<br />

<strong>in</strong> efficiency is due to the presence of the MVD, which for low momentum particles<br />

acts as dead material. The general shapes of the π s distributions are the same as <strong>in</strong><br />

HERA I, however the dip occurr<strong>in</strong>g around η ∼ 0 is somewhat more pronounced <strong>in</strong><br />

HERA II.<br />

The other pion <strong>and</strong> kaon have similar P T <strong>and</strong> η distributions to one another. These<br />

P T <strong>and</strong> η distributions peak at about 90%.<br />

96


The total number of D ∗ s generated <strong>in</strong> the specified k<strong>in</strong>ematic region decay<strong>in</strong>g via<br />

D ∗ → (D 0 )π s → (Kπ)π s is 64 086. From these, all daughters are reconstructed 44%<br />

of the time (28 361). Tab. 5.2 summarizes some of the f<strong>in</strong>d<strong>in</strong>gs.<br />

π s K π<br />

Other trks. found (particle irrelevant) 43 261 67.5% 33 573 52.4% 32 742 51.1%<br />

Only trk. found 1259 2% 3125 4.9% 3830 6%<br />

Trk. found, regardless of other trks. 39 213 61.2% 50 767 79.2% 52 303 81.6%<br />

Table 5.2: Reconstruction statistics from the RAPGAP MC sample studied. (Trk. refers to<br />

the track of a pion or kaon).<br />

97


Chapter 6<br />

Reconstruction of Event Variables<br />

6.1 Reconstructed Variables<br />

This chapter will discuss the reconstruction of some key components <strong>and</strong> variables,<br />

<strong>in</strong>clud<strong>in</strong>g the CAL, scattered electrons, some hadronic variables, <strong>and</strong> methods to<br />

measure the k<strong>in</strong>ematic variables Q, y, <strong>and</strong> x, relevant to presented analysis.<br />

6.2 CAL Reconstruction<br />

The CAL is segmented, allow<strong>in</strong>g both position <strong>and</strong> energy <strong>in</strong>formation to be gathered.<br />

As mentioned <strong>in</strong> §4.4.2, electrons <strong>and</strong> hadrons shower differently with<strong>in</strong> the<br />

CAL, thus allow<strong>in</strong>g a level of hadron-electron dist<strong>in</strong>ction. CAL <strong>in</strong>formation is reconstructed<br />

from the outside <strong>in</strong>wards, i.e., HAC2 cells to HAC1 cells to EMC cells;<br />

see Fig. 4.7. Cluster<strong>in</strong>g beg<strong>in</strong>s by merg<strong>in</strong>g HAC2 cells with other HAC2 cells,<br />

HAC1 cells with other HAC1 cells, <strong>and</strong> EMC cells with other EMC cells. Merg<strong>in</strong>g<br />

cont<strong>in</strong>ues by connect<strong>in</strong>g cells with their highest energy neighbors. A cone isl<strong>and</strong> is<br />

formed when CAL cells from HAC2 to HAC1 to the EMC are connected.<br />

Dur<strong>in</strong>g energy reconstruction the natural radioactivity of the CAL cells are used for<br />

calibration. Noisy cells are identified <strong>and</strong> removed from the energy reconstruction<br />

98


step.<br />

The MC simulation of the electron energy measured <strong>in</strong> the CAL differs from the<br />

energy <strong>in</strong> the real CAL. To correct for this the reconstructed MC electron energy<br />

is adjusted by -2% <strong>and</strong> smeared by 3%; see [43] for details. Specifically, the reconstructed<br />

electron energies are multiplied by 0.98, <strong>and</strong> smeared by multiply<strong>in</strong>g this<br />

energy by a Gaussian r<strong>and</strong>om number generator centered on 1 of width (σ) 0.03.<br />

6.3 Electron F<strong>in</strong>ders <strong>and</strong> Reconstruction<br />

The identification of an electron is one of the key signals used to determ<strong>in</strong>e a neutral<br />

current DIS event. ZEUS has developed a variety of electron f<strong>in</strong>ders dur<strong>in</strong>g the<br />

operation period [44]. The analyses presented use SINISTRA, which is a neuralnetwork<br />

based f<strong>in</strong>der [45].<br />

The objective of the electron f<strong>in</strong>der is to identify the scattered electron <strong>in</strong> an event.<br />

This is a three step process:<br />

1. Identify the electron c<strong>and</strong>idates us<strong>in</strong>g typical signatures.<br />

2. Assign a value, rang<strong>in</strong>g from zero to one, to the quality of each c<strong>and</strong>idate,<br />

E prob . A value of E prob = 0 is not an electron c<strong>and</strong>idate while a value of<br />

E prob = 1 is the scattered electron.<br />

3. The best amongst all electron c<strong>and</strong>idates is identified, <strong>and</strong> the c<strong>and</strong>idate is<br />

accepted or rejected as the scattered electron depend<strong>in</strong>g upon the value of<br />

E prob .<br />

The electron f<strong>in</strong>ders use CAL <strong>and</strong> track<strong>in</strong>g <strong>in</strong>formation to identify electrons. The<br />

scattered electron should deposit most of its energy <strong>in</strong> the EMC cells of the CAL.<br />

99


These energy deposits are grouped <strong>in</strong>to energy isl<strong>and</strong>s, where each isl<strong>and</strong> is an<br />

electron c<strong>and</strong>idate. Tracks are matched to isl<strong>and</strong>s if P T > 0.1 GeV, the angular<br />

distance between the track <strong>and</strong> isl<strong>and</strong> <strong>in</strong> the θ − φ plane is less than 45 ◦ , <strong>and</strong> the<br />

distance of closest approach is less than 50 cm. When more than one track exists<br />

the best match<strong>in</strong>g track is chosen. The neural network assigns a quality for each<br />

isl<strong>and</strong> between zero for hadron-like <strong>and</strong> one for electron-like. Some of the criteria<br />

used to determ<strong>in</strong>e the electron quality are the c<strong>and</strong>idate with the highest energy,<br />

<strong>and</strong> the c<strong>and</strong>idate with the highest P T .<br />

6.4 Hadronic Variables<br />

The hadronic variables are primarily determ<strong>in</strong>ed by summ<strong>in</strong>g energy deposits with<strong>in</strong><br />

the CAL. The energy of the scattered electron is omitted from the summ<strong>in</strong>g process.<br />

Two hadronic variables, ‘E − P z ’, δ h , <strong>and</strong> the hadronic angle, γ h , are used for the<br />

reconstruction of the event k<strong>in</strong>ematics <strong>and</strong> are described below.<br />

6.4.1 E − P z<br />

The ‘E − P z ’ or the δ h variable is useful <strong>in</strong> select<strong>in</strong>g neutral current DIS events. In<br />

DIS events δ h should be a conserved quantity, mean<strong>in</strong>g δ h,i = δ h,f . This is because<br />

<strong>in</strong> DIS events the proton <strong>in</strong>itially has all of its momentum longitud<strong>in</strong>al along the<br />

+z direction (note P L = P z ). After collid<strong>in</strong>g with the electron, the proton remnant<br />

has very little transverse momentum, thus most of the remnant goes down the beam<br />

pipe. The quantity δ h has the form<br />

δ h ≡ E − P z = ∑ j (E j − P z,j ) = ∑ j E j(1 − cos θ j )<br />

≈ ∑ √<br />

j<br />

PT,j 2 + P z,j 2 − ∑ j P z,j, (6.1)<br />

100


where j is summed over all f<strong>in</strong>al state particles (rest masses are neglected). This<br />

is easily calculated by summ<strong>in</strong>g over all energy deposits <strong>in</strong> the calorimeter (care is<br />

taken to avoid the scattered electron). So δ h,i has a value<br />

E − P z = (E p + E e ) − (P zp + P ze )<br />

≈ (E p + E e ) − (E p −E e ) = 2E e = 55 GeV. (6.2)<br />

Many particles j that go undetected by the CAL are lost down the beam pipe <strong>and</strong><br />

therefore must have a small P T,j . A charged current DIS event, where the scattered<br />

electron is not found, will typically have δ h less than 30 GeV [46]. A nice feature of<br />

δ h is that when one requires an event’s ‘E − P z ’ to be tightly centered 1 on 55 GeV,<br />

then NCDIS events are selected.<br />

6.4.2 Hadronic Angle γ h<br />

The deflection angle of the struck quark is the hadronic angle, γ h , <strong>and</strong> is determ<strong>in</strong>ed<br />

through<br />

cos γ h = P2 T − δ2 h<br />

PT 2 + . (6.3)<br />

δ2 h<br />

The variable, P T , is the total hadronic transverse momentum of the event measured<br />

by summ<strong>in</strong>g over CAL cells:<br />

P 2 T = ∑ i<br />

(<br />

P<br />

2<br />

x,i + Py,i<br />

2 )<br />

. (6.4)<br />

P T is measured poorly when the event is not fully conta<strong>in</strong>ed, i.e., when particles<br />

enter the beampipe.<br />

1 The δ h resolution is σ(δ h ) = 3.00 GeV see §8.6.<br />

101


6.5 Energy Flow Object (EFO) Reconstruction<br />

Track<strong>in</strong>g, us<strong>in</strong>g the track<strong>in</strong>g detectors, <strong>and</strong> energy, us<strong>in</strong>g the CAL, <strong>in</strong>formation can<br />

be comb<strong>in</strong>ed to give a particle’s trajectory <strong>and</strong> energy. Energy Flow Objects, EFO,<br />

is the name ZEUS uses for the 4-momentum vectors represent<strong>in</strong>g these particles [47].<br />

EMC<br />

HAC<br />

1<br />

Charged<br />

Particle<br />

4<br />

5<br />

2<br />

Neutral<br />

Particle<br />

3<br />

Unmatched<br />

Track<br />

Figure 6.1: Energy flow objects can be made up solely of tracks, or energy deposits <strong>in</strong> CAL,<br />

or a comb<strong>in</strong>ation of both.<br />

EFOs can be made from tracks, energy deposits, or both. EFOs <strong>in</strong>clude lowmomentum<br />

particles fail<strong>in</strong>g to reach the CAL, neutral particles undetected by the<br />

track<strong>in</strong>g detectors, <strong>and</strong> charged particles with tracks <strong>and</strong> energy deposits. In total<br />

there are four types of EFOs:<br />

1. one-to-one track-to-isl<strong>and</strong>,<br />

2. isl<strong>and</strong> with no match<strong>in</strong>g track,<br />

3. a track unmatched to an isl<strong>and</strong>,<br />

4. multiple track to multiple isl<strong>and</strong> matches.<br />

102


For one to one track to isl<strong>and</strong> EFOs the 4-momentum will be based on track<strong>in</strong>g<br />

<strong>in</strong>formation <strong>in</strong>stead of the CAL <strong>in</strong>formation when<br />

σ(P)<br />

P<br />

E CAL<br />

P<br />

< σ(E CAL)<br />

E CAL<br />

<strong>and</strong><br />

< 1.0 + 1.2 · σ<br />

(<br />

ECAL<br />

P<br />

)<br />

, (6.5)<br />

where σ represents the uncerta<strong>in</strong>ty of the bracketed variable. In addition, track<strong>in</strong>g<br />

<strong>in</strong>formation was favored when<br />

E CAL < 5 GeV<br />

or<br />

E CAL<br />

P < 0.25 or P T < 30 GeV. (6.6)<br />

Otherwise CAL <strong>in</strong>formation was used.<br />

Tracks unassociated with any isl<strong>and</strong>s were counted as charged energy. The energy<br />

was determ<strong>in</strong>ed from the track momentum where the mass is set to the pion mass.<br />

Isl<strong>and</strong>s unassociated with any tracks are counted as neutral energy, <strong>and</strong> CAL <strong>in</strong>formation<br />

was used. The magnitude of the 3 momentum is set to the CAL energy.<br />

Multiple tracks to multiple isl<strong>and</strong>s are treated <strong>in</strong> a similar fashion as one to one<br />

tracks to isl<strong>and</strong>s. The follow<strong>in</strong>g replacements are made:<br />

• E CAL → ∑ i E i,CAL,<br />

• P → ∑ i P i,<br />

• σ(E CAL ) → √∑ i (σ(E i,CAL)) 2 ,<br />

• σ(P) → √∑ i (σ(P i)) 2 ,<br />

with the same logic used to determ<strong>in</strong>e whether track<strong>in</strong>g or CAL <strong>in</strong>formation is used<br />

to construct the EFO.<br />

103


6.6 Event K<strong>in</strong>ematics<br />

Depend<strong>in</strong>g on a variety of reasons <strong>in</strong>clud<strong>in</strong>g the k<strong>in</strong>ematic region, <strong>and</strong> the <strong>in</strong>formation<br />

available, different approaches are used to extract the k<strong>in</strong>ematic variables<br />

Q 2 , x <strong>and</strong> y. When any two are known then the third can be determ<strong>in</strong>ed us<strong>in</strong>g<br />

the equality Q 2 = sxy, where s, the center of mass energy of the electron-proton<br />

system squared, is s = (k + p) 2 ≈ 4E e E p . Some of the variables of <strong>in</strong>terest: the<br />

<strong>in</strong>itial electron energy E e , its f<strong>in</strong>al energy E e, ′ the scatter<strong>in</strong>g angle θ e , <strong>and</strong> the <strong>in</strong>itial<br />

proton energy E p are shown <strong>in</strong> Fig. 6.2.<br />

e<br />

E e<br />

E ′ e e ′<br />

θ e<br />

q<br />

p<br />

E p<br />

γ h<br />

Figure 6.2: Neutral current DIS k<strong>in</strong>ematics. The quantities such as the angle of the scattered<br />

electron, its <strong>in</strong>itial <strong>and</strong> f<strong>in</strong>al 4-momentum <strong>and</strong> energy, γ h , protons <strong>in</strong>itial 4-<br />

momentum <strong>and</strong> energy are <strong>in</strong>dicated.<br />

6.6.1 Electron Method<br />

The electron method [48] primarily uses the electron <strong>in</strong>formation to reconstruct Q 2<br />

, x, <strong>and</strong> y. The scattered electron’s f<strong>in</strong>al energy E ′ e <strong>and</strong> angle θ e are required as<br />

104


<strong>in</strong>dicated <strong>in</strong> the follow<strong>in</strong>g:<br />

x e<br />

y e<br />

= E e E ′ e<br />

(<br />

)<br />

1 − cos θ e<br />

2E p E e − E p E e ′(1 − cos θ , (6.7)<br />

e)<br />

= 1 − E′ e<br />

2E e<br />

(1 − cos θ e ), (6.8)<br />

Q 2 e = 2E e E ′ e(1 + cos θ e ). (6.9)<br />

6.6.2 Jacquet-Blondel Method<br />

The Jacquet-Blondel [49] method uses the hadronic <strong>in</strong>formation of the event, measured<br />

us<strong>in</strong>g the CAL. Both δ h <strong>and</strong> P T are required. This method provides a good<br />

measure of low y. However, Q 2 JB (<strong>and</strong> as a result x JB) is not measured very well<br />

because the transverse hadronic energy is reconstructed poorly when particles are<br />

lost down the beampipe. The relevant equations are<br />

x JB =<br />

Q 2<br />

s · y JB<br />

, (6.10)<br />

y JB = δ h<br />

2E e<br />

, (6.11)<br />

Q 2 JB =<br />

P 2 T<br />

1 − y JB<br />

. (6.12)<br />

6.6.3 Double Angle Method<br />

The double angle method [50] uses the angles θ e <strong>and</strong> γ h to reconstruct the event, as<br />

follows:<br />

x DA = E e s<strong>in</strong> γ h + s<strong>in</strong> θ e + s<strong>in</strong>(θ e + γ h )<br />

E e s<strong>in</strong> γ h + s<strong>in</strong> θ e − s<strong>in</strong>(θ e + γ h ) , (6.13)<br />

y DA =<br />

s<strong>in</strong> θ e (1 − cos γ h )<br />

s<strong>in</strong> γ h + s<strong>in</strong>θ e − s<strong>in</strong>(θ e + γ h ) , (6.14)<br />

Q 2 DA = 4E 2 e s<strong>in</strong> γ h (1 + cos γ h )<br />

s<strong>in</strong> γ h + s<strong>in</strong>θ e − s<strong>in</strong>(θ e + γ h ) . (6.15)<br />

The nature of an analysis will determ<strong>in</strong>e which of the above methods are used to<br />

determ<strong>in</strong>e the event k<strong>in</strong>ematics. At very high Q 2 , Q 2 1000 GeV 2 , the electron<br />

105


method is expected to outperform the other methods. At low y, Jacquet-Blondel<br />

should be the best. The double-angle method is expected to be the best <strong>in</strong> the<br />

k<strong>in</strong>ematic region of the analyses presented <strong>in</strong> this thesis.<br />

106


Chapter 7<br />

Event Selection <strong>and</strong> Trigger<strong>in</strong>g<br />

7.1 Introduction<br />

As mentioned <strong>in</strong> §4.2, the HERA mach<strong>in</strong>e collides an electron <strong>and</strong> proton beam<br />

every 96 ns, thus beam cross<strong>in</strong>gs occur at a frequency of ∼ 10 MHz. Of these beam<br />

cross<strong>in</strong>gs ZEUS selects the <strong>in</strong>terest<strong>in</strong>g events from the background, record<strong>in</strong>g both<br />

charged- <strong>and</strong> neutral-current processes. The words trigger, filter <strong>and</strong> cut are used to<br />

describe the choice of select<strong>in</strong>g or reject<strong>in</strong>g an event based on some criteria. Triggers<br />

reduce the overall data to a subset of itself. Some examples of cuts <strong>in</strong>clude requir<strong>in</strong>g<br />

a scattered electron to be found, or Q 2 of an event to be greater than some value<br />

Q 2 0 . The aim of the ZEUS trigger is to limit the good events written to tape to a few<br />

Hz. These analyses look at neutral current deep <strong>in</strong>elastic scatter<strong>in</strong>g events, which<br />

are identified as Q 2 > 1 GeV events where the scattered electron is found.<br />

7.2 Triggers<br />

ZEUS employs a three level trigger system to reduce the trigger rate from 10 MHz to<br />

a few Hz. The first level trigger (FLT) reduces the trigger rate to ∼ 1 kHz. The FLT<br />

comprises local processors that are comb<strong>in</strong>ed <strong>in</strong>to a global first level trigger (GFLT).<br />

107


The second level trigger (SLT) analyzes the data of the components, comb<strong>in</strong><strong>in</strong>g the<br />

results <strong>in</strong>to a global second level trigger (GSLT). If the event is kept then all the<br />

data is sent to a third level trigger (TLT), which aga<strong>in</strong> reduces the trigger rate. The<br />

flow of data through the ZEUS trigger system that is ultimately written to tape is<br />

shown <strong>in</strong> Fig. 7.1.<br />

ZEUS triggers 1 on charged <strong>and</strong> neutral current events of <strong>in</strong>terest, photoproduction<br />

events of <strong>in</strong>terest, <strong>and</strong> events that may produce new particles. The analyses <strong>in</strong> this<br />

thesis focus on deep <strong>in</strong>elastic scatter<strong>in</strong>g events, which <strong>in</strong>clude<br />

• high Q 2 events: threshold cuts on energy or E T ,<br />

• NC events: high energy isolated electrons (E < 30 GeV), found <strong>in</strong> the RCAL<br />

or BCAL, balanced <strong>in</strong> P T by a jet,<br />

• low-x NC events: lower energy isolated electron at large angle, P T balance.<br />

1 The word trigger is used as both an noun <strong>and</strong> as a verb.<br />

108


Rate<br />

10 7 Hz<br />

CTD<br />

Front End<br />

CAL<br />

Front End<br />

CTD<br />

FLT<br />

Other<br />

Components<br />

CAL<br />

FLT<br />

200 Hz<br />

5 µs Pipel<strong>in</strong>e<br />

Global First<br />

Level Trigger<br />

Fast<br />

Clear<br />

Accept/Abort<br />

Accept/Reject<br />

5 µs Pipel<strong>in</strong>e<br />

Event Builder<br />

CTD<br />

SLT<br />

Other<br />

Components<br />

Global Second<br />

Level Trigger<br />

CAL<br />

SLT<br />

Event Builder<br />

35 Hz<br />

Accept/Reject<br />

CTD ... CAL ...<br />

Event Builder<br />

Third Level Trigger<br />

cpu<br />

cpu<br />

cpu<br />

cpu<br />

cpu<br />

cpu<br />

5 Hz<br />

Offl<strong>in</strong>e Tape<br />

Figure 7.1: Data flow through the ZEUS trigger.<br />

109


7.2.1 FLT<br />

The goal of the FLT is to reduce the amount data stored by elim<strong>in</strong>at<strong>in</strong>g most of<br />

the background events while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a high acceptance of the “<strong>in</strong>terest<strong>in</strong>g”<br />

physics events. Two common background processes are beam-gas <strong>and</strong> beam-halo<br />

events. Events when the electron or proton beams <strong>in</strong>teract with residual gas <strong>in</strong><br />

the beampipe or with the actual beampipe are called beam-gas events. Beam-gas<br />

<strong>in</strong>teractions create pions that subsequently decay to muons. These muons follow the<br />

proton beam <strong>and</strong> will <strong>in</strong>teract with the detector, caus<strong>in</strong>g false signals to measured.<br />

These are referred to as beam-halo processes.<br />

Every 96 ns there is a beam cross<strong>in</strong>g <strong>and</strong> all the data is stored <strong>in</strong> a pipel<strong>in</strong>e for 5 µs<br />

while the FLT <strong>in</strong>formation is be<strong>in</strong>g processed. Each detector component has its own<br />

local processor that computes trigger <strong>in</strong>formation <strong>and</strong> passes this to the GFLT ∼<br />

2.5 µs after the bunch cross<strong>in</strong>g, with GFLT calculations tak<strong>in</strong>g an additional ∼ 1.9<br />

µs (20 bunch cross<strong>in</strong>gs). The GFLT makes a decision ∼ 4.4 µs (46 bunch cross<strong>in</strong>gs)<br />

after the orig<strong>in</strong>al event. If the GFLT decision is to not proceed for the event, then<br />

the data from the components is discarded.<br />

7.2.2 SLT<br />

If an event passes the GFLT then all the component data is transferred to buffers for<br />

process<strong>in</strong>g by the SLT. The SLT processors function as a series of parallel processors,<br />

with decisions made <strong>in</strong> the order of events received. The SLT has access to a large<br />

fraction of the <strong>in</strong>formation from the event allow<strong>in</strong>g for more complicated calculations<br />

to be completed. The SLT primarily reduces beam-gas events us<strong>in</strong>g a variety of<br />

signals. A typical signal of a beam-gas event is that these events are out of time<br />

110


with respect to the ep collision. So, tim<strong>in</strong>g <strong>in</strong>formation <strong>in</strong> addition to the CAL FLT<br />

is used to reject beam-gas events. The angle at which energy is deposited <strong>in</strong> the<br />

CAL cells with respect to the beam axis can be used to further reject beam-gas<br />

events because beam-gas events tend to have small angles (150 mrad). Events when<br />

the beam-gas <strong>in</strong>teracts with the walls of the beampipe are rejected us<strong>in</strong>g vertex<br />

<strong>in</strong>formation. The aim of the SLT is to reduce the trigger rate from 1 kHz to 100 Hz.<br />

Event Builder<br />

Data from each component pass<strong>in</strong>g the GSLT are sent to the EVent Builder (EVB).<br />

The EVB stores completed events, <strong>in</strong>clud<strong>in</strong>g FLT <strong>and</strong> SLT <strong>in</strong>formation until the<br />

TLT is ready to process them.<br />

7.2.3 TLT<br />

The data pass<strong>in</strong>g the GSLT is sent to the TLT, which is composed of a farm of<br />

computers. The TLT algorithms <strong>in</strong>clude more elaborate vertex fitt<strong>in</strong>g <strong>and</strong> track<br />

f<strong>in</strong>d<strong>in</strong>g than is possible at the SLT. In addition the k<strong>in</strong>ematic variables E T , Q 2 , x,<br />

<strong>and</strong> y are calculated <strong>and</strong> used <strong>in</strong> the decision process. The TLT runs a reduced<br />

version of the offl<strong>in</strong>e analysis code on the component’s data with an output rate of<br />

3-5 Hz.<br />

Trigger Access us<strong>in</strong>g Words<br />

For each event the three levels of trigger <strong>in</strong>formation are stored <strong>in</strong> words built up of<br />

unsigned <strong>in</strong>tegers. An <strong>in</strong>teger is made of four bytes (32 bits). An example of a third<br />

level trigger word is TLTW(15) [51] made of 15 <strong>in</strong>tegers. This one word conta<strong>in</strong>s all<br />

the different values for the many TLT triggers. A specific trigger with<strong>in</strong> the word is<br />

either off or on. This means the bit correspond<strong>in</strong>g to that trigger has a value of 0<br />

111


or 1, respectively. As an example the TLT trigger HFL02 <strong>in</strong>formation is stored at<br />

“TLTW(10), 2”, mean<strong>in</strong>g at the 2 nd bit of the 10 th word.<br />

7.2.4 Global Track<strong>in</strong>g Trigger<br />

Dur<strong>in</strong>g the HERA II upgrade the MVD was added to the ZEUS detector. The MVD<br />

allows for improved vertex<strong>in</strong>g <strong>and</strong> track<strong>in</strong>g <strong>in</strong>formation when used <strong>in</strong> addition to<br />

the CTD <strong>and</strong> STT. For these reasons a new Global Track<strong>in</strong>g Trigger (GTT) was<br />

<strong>in</strong>troduced to be used at the SLT level. The GTT can calculate the <strong>in</strong>variant mass<br />

of tracks <strong>and</strong> can use this <strong>in</strong>formation to select D mesons while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a low<br />

trigger rate.<br />

7.2.5 DST bits<br />

Follow<strong>in</strong>g the TLT, data is processed with offl<strong>in</strong>e reconstruction software that reconstructs<br />

the k<strong>in</strong>ematics of an event, implements calibration constants, etc. The<br />

events are passed through an additional filter that sorts events accord<strong>in</strong>g to physics<br />

criteria. The events sorted by this filter are given a code called a Data Storage Tape<br />

(DST) bit. DST bits provide easy access to specific physics events.<br />

7.3 Trigger Logic<br />

This section briefly discusses the triggers <strong>and</strong> the DST bits used <strong>in</strong> these analyses.<br />

The logical <strong>and</strong> group operators<br />

• A ∩ B for a logical AND of A <strong>and</strong> B,<br />

• A ∪ B for a logical OR of A <strong>and</strong> B,<br />

• A ⊂ B for A is a SUBSET of B,<br />

112


are used throughout the description.<br />

7.3.1 FLT Triggers<br />

The follow<strong>in</strong>g first level trigger cha<strong>in</strong> is used: FLT30 ∪FLT34 ∪FLT36 ∪FLT44 ∪<br />

FLT46. To underst<strong>and</strong> the trigger logic the follow<strong>in</strong>g explanations are needed:<br />

TRACK means a good CTD track was found; SRTD means a good SRTD track was<br />

found; ISOE means an isolated electron was found; EMC, REMC, BEMC,FEMC,<br />

is the EMC energy <strong>in</strong> the total, rear, barrel, <strong>and</strong> forward calorimeter; CAL, RCAL,<br />

BCAL, FCAL, is the complete energy found <strong>in</strong> the total, rear, barrel, <strong>and</strong> forward<br />

calorimeter.<br />

The specific criteria for each trigger term are given below.<br />

FLT30<br />

FLT34<br />

(RCAL ISOE ) ∩ ((RCAL + EMC ≥ 4.0 GeV) ∪ (REMC ≥ 15 GeV)) (7.1)<br />

FLT36<br />

(RCAL ISOE ) ∩ (RCAL + EMC ≥ 4.0 GeV) ∪<br />

(REMC ≥ 5 GeV)) ∩ (TRACK) ∩ (CAL ≥ 0.01 GeV) (7.2)<br />

FLT44<br />

(RCAL ISOE ) ∩ ((RCAL + EMC ≥ 4.0 GeV) ∪ (REMC ≥ 5.0 GeV)) (7.3)<br />

((BCAL ≥ 4.8 GeV) ∪ (RCAL + EMC ≥ 3.4 GeV)) (7.4)<br />

113


FLT46<br />

(RCAL ISOE ) ∩<br />

((RCAL + EMC ≥ 2.0 GeV) ∪ (REMC ≥ 3.8 GeV)) ∩<br />

(TRACK) (7.5)<br />

7.3.2 TLT Triggers<br />

The TLT trigger cha<strong>in</strong> SPP02∪SPP09∪DIS03∪HFL02 is used <strong>in</strong> these analyses.<br />

The specific criteria for each trigger term are given below.<br />

SPP02<br />

Inclusive Low Q2 DIS<br />

SLT SPP01 ∩<br />

30 < E − P z < 100 GeV ∩<br />

Box Cut |x|, |y| > 12 cm ∩<br />

E e > 4 GeV (7.6)<br />

SPP09<br />

Inclusive (a bit less) Low Q2 DIS<br />

SLT SPP01 ∩<br />

30 < E − P z < 100 GeV ∩<br />

Box Cut |x|, |y| > 15 cm ∩<br />

E e > 4 GeV (7.7)<br />

114


DIS03<br />

Inclusive medium Q2 DIS<br />

30 < E − P z < 100 GeV ∩ (7.8)<br />

Box Cut |x|, |y| > 35 cm ∩ (7.9)<br />

E e > 4 GeV (7.10)<br />

7.3.3 DST Selection<br />

The DST cha<strong>in</strong> DST9 ∪ DST10 ∪ DST11 is used.<br />

DST9<br />

Diffractive low x:<br />

DST10<br />

((E e > 4) ∪ (Zvtx)) ∩<br />

(electron found with one of 4 electron f<strong>in</strong>ders). (7.11)<br />

Vertex found:<br />

V C ∪ TC vertex (7.12)<br />

two rout<strong>in</strong>es to f<strong>in</strong>d vertices.<br />

DST11<br />

Diffractive low x, Nom<strong>in</strong>al neutral current:<br />

NC − TLT ∩ (E − P z + 2E γ ) ∪ (Z > 30 GeV) (7.13)<br />

E γ is the energy of a radiated photon detected.<br />

115


7.4 Electron Selection<br />

The electron selection uses the SINISTRA c<strong>and</strong>idate (see §6.3) with the highest<br />

probability as the scattered electron:<br />

7.5 Box Cut<br />

(Prob e > 0.9) ∩ (E e > 10 GeV). (7.14)<br />

The x − y position of the scattered electron measured us<strong>in</strong>g the SRTD (see §4.5)<br />

is used to select events. To remove events <strong>in</strong> which the electron passed through a<br />

poorly described region of the RCAL (§4.4.2), i.e., strik<strong>in</strong>g the RCAL from under<br />

the beampipe a box cut is used:<br />

7.6 E − P z Cut<br />

(x e > 15cm) ∪ (y e > 15cm). (7.15)<br />

The δ h cut is useful to select NCDIS events. For these analyses<br />

7.7 Z Vertex<br />

40 < δ h < 60 GeV. (7.16)<br />

The Z vert is used to select events whose <strong>in</strong>teraction po<strong>in</strong>t lies well with<strong>in</strong> the MVD<br />

<strong>and</strong> CTD. Both the scattered electron angle, θ e , <strong>and</strong> the hadronic angle, γ h , use the<br />

Z vert :<br />

30 < Z vert < 30 cm. (7.17)<br />

116


7.8 y Clean<strong>in</strong>g Cuts<br />

Two clean<strong>in</strong>g cuts <strong>in</strong>volv<strong>in</strong>g y JB <strong>and</strong> y e are used to select events:<br />

y JB > 0.02,<br />

y e < 0.95. (7.18)<br />

117


Chapter 8<br />

D ∗ <strong>Production</strong> at HERA II<br />

8.1 D ∗ Reconstruction<br />

The method used to measure D ∗± production at HERA II with the ZEUS detector<br />

is discussed <strong>in</strong> this section. (Another approach to measure D ∗± is exam<strong>in</strong>ed <strong>in</strong> App.<br />

A.) The specific decay cha<strong>in</strong> that is used to reconstruct a D ∗± meson is 1 :<br />

D ∗+ → (D 0 )π + s → (K− π + )π + s<br />

D ∗− → (D 0 )π − s → (K + π − )π − s . (8.1)<br />

This is <strong>in</strong> fact two decays with their own branch<strong>in</strong>g fractions [1]:<br />

Γ D ∗ →D 0 π s<br />

/Γ = (67.7 ± 0.5)% (8.2)<br />

Γ D 0 →Kπ/Γ = (3.80 ± 0.07)%. (8.3)<br />

The D ∗ decays along three major modes. Eq. 8.2 is the mode with the largest<br />

branch<strong>in</strong>g fraction <strong>and</strong> produces a well-def<strong>in</strong>ed signal that will be discussed shortly.<br />

The D 0 decay mode <strong>in</strong> Eq. 8.3 produces two charged daughters. Charged particles<br />

are important because the ZEUS detector is better at reconstruct<strong>in</strong>g them compared<br />

1 For clarity Eq. 8.1 was written explicitly for both D ∗ charges, <strong>in</strong> future the charges will be<br />

omitted unless relevant thus D ∗ → (D 0 π)π s → (Kπ)π s.<br />

118


to neutral particles. The comb<strong>in</strong>ed branch<strong>in</strong>g fraction of D ∗ → (D 0 π)π s → (Kπ)π s<br />

is (2.57 ± 0.02)%.<br />

One nice feature of the decay mode <strong>in</strong> Eq. 8.1 is that the comb<strong>in</strong>ed mass of the<br />

daughter particles is almost equal to the mass of the D ∗ :<br />

M(D ∗ ) = 2010.0 MeV<br />

M(D 0 ) = 1864.5 MeV<br />

M(π s ) = 139.57 MeV<br />

M(D ∗ ) − M(D 0 ) − M(π s ) = 5.93 MeV. (8.4)<br />

The mass of daughters subtracted from the mass of the parent is referred to as the<br />

Q value. Eq. 8.4 is the Q value for the D ∗ decay. With very little energy left over,<br />

the D 0 <strong>and</strong> the π s daughters have very little momentum with respect to the parent<br />

D ∗ . This is the reason for the subscript s on one of the pions. This pion is mov<strong>in</strong>g<br />

relatively slowly. The distribution<br />

∆M = M Kππs − M Kπ (8.5)<br />

is expected to have a sharp peak at 145 MeV because the small Q value of the decay<br />

strongly limits the energy of the daughters.<br />

8.1.1 ∆M Distribution<br />

After select<strong>in</strong>g events that pass the trigger <strong>and</strong> event cuts described <strong>in</strong> Ch. 7,<br />

particle 4-momenta are used to calculate an <strong>in</strong>variant mass. The <strong>in</strong>variant 2-mass<br />

of two particles is determ<strong>in</strong>ed from:<br />

m 2 12 = E 2 12 − P 2 12<br />

119


= (E 1 + E 2 ) 2 − (P 1 + P 2 ) 2 = · · ·<br />

)<br />

= m 2 1 + m2 2<br />

(√m + 2 2 1 + P2 1<br />

√m 2 2 + P2 2 − P 1 · P 2 . (8.6)<br />

The track<strong>in</strong>g detectors do not measure particle masses <strong>and</strong> for this reason each<br />

track is assigned a kaon or pion mass when determ<strong>in</strong><strong>in</strong>g the <strong>in</strong>variant mass. A<br />

similar calculation yields the <strong>in</strong>variant 3-mass:<br />

m 2 123 = m2 1 + m2 2 + m2 3 − 2(P 1 · P 2 + P 2 · P 3 + P 3 · P 1 )<br />

+2(√<br />

(m<br />

2<br />

1 + P 2 1 )(m2 2 + P2 2 )<br />

+ √ (m 2 2 + P2 2 )(m2 3 + P2 3 ) + √ (m 2 3 + P2 3 )(m2 1 + P2 1 ) )<br />

. (8.7)<br />

The procedure to make a ∆M distribution <strong>in</strong>volves loop<strong>in</strong>g over all tracks <strong>in</strong> an<br />

event. For every comb<strong>in</strong>ation of three tracks, ABC, the <strong>in</strong>variant 3-mass m ABC<br />

is determ<strong>in</strong>ed <strong>and</strong> subtracted by the <strong>in</strong>variant 2-mass three times, once for each<br />

2-mass possibility, i.e., m ABC −m AB , m ABC −m BC , <strong>and</strong> m ABC −m AC . (In fact the<br />

subtraction only occurs twice for charge conservation reasons discussed shortly).<br />

This creates a high comb<strong>in</strong>atorial distribution. Charge <strong>in</strong>formation reduces the<br />

comb<strong>in</strong>ations <strong>in</strong> the ∆M distribution by requir<strong>in</strong>g that the <strong>in</strong>variant masses are<br />

determ<strong>in</strong>ed us<strong>in</strong>g possible charge comb<strong>in</strong>ations. Thus the <strong>in</strong>variant 3-mass that<br />

represents the D ∗ cannot have all three particles with the same charge (the D ∗ has<br />

charge ±1 not ±3). Similar logic dictates that the particles <strong>in</strong> the <strong>in</strong>variant 2-mass<br />

represent<strong>in</strong>g the D 0 must have opposite charges. A typical ∆M signal measured<br />

with the ZEUS detector is seen <strong>in</strong> Fig. 8.1.<br />

120


Comb<strong>in</strong>ations per 0.0005 GeV<br />

2000<br />

-1<br />

1800<br />

HERA II Data, L = 175.4 pb<br />

Wrong Charge Distribution<br />

1600<br />

Fit<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0.135 0<br />

0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Figure 8.1: The ∆M signal obta<strong>in</strong>ed at HERA us<strong>in</strong>g the ZEUS detector, with a lum<strong>in</strong>osity<br />

of L = 175.4 pb −1 . The data, normalized wrong charge, <strong>and</strong> fit are <strong>in</strong>dicated.<br />

8.1.2 Selection Criteria<br />

The follow<strong>in</strong>g D ∗ cuts are made on the c<strong>and</strong>idates <strong>in</strong>cluded <strong>in</strong> the ∆M distribution:<br />

121


K<strong>in</strong>ematic Region:<br />

• 5 < Q 2 < 1000 GeV 2<br />

• 0.02 < y < 0.70<br />

Trigger <strong>and</strong> DST selection:<br />

D ∗ K<strong>in</strong>ematics:<br />

• 1.5 < P T (D ∗ ) < 15.0 GeV<br />

• |η(D ∗ )| < 1.5<br />

D ∗ Selection:<br />

• FLT: FLT30 ∪ FLT34 ∪ FLT36 ∪<br />

FLT44 ∪ FLT46<br />

• TLT: SPP02 ∪ SPP09 ∪ DIS03 ∪<br />

HFL02<br />

• DST: DST9 ∪ DST10 ∪ DST11<br />

Data Selection:<br />

• 5 < Q 2 DA<br />

< 1000<br />

• |η(D ∗ )| < 1.5<br />

GeV2<br />

• y DA < 0.70 ∩ y JB > 0.02 ∩ y e < 0.95<br />

D ∗ Track Cuts:<br />

• 40 < δ h < 60 GeV<br />

• |Z vtx | < 30 cm<br />

• E corr > 10 GeV<br />

• P T (K,π) > 0.400 GeV<br />

• P T (π s ) > 0.120 GeV<br />

• 1.80 < M D 0 < 1.92 GeV<br />

• 0.143 < ∆M < 0.148 GeV<br />

• 1.5 < P T (D ∗ ) < 15.0 GeV<br />

• REG track<strong>in</strong>g used unless otherwise<br />

<strong>in</strong>dicated<br />

• tracks traverse superlayers 1 to at<br />

least 3<br />

• box cut: x ele > 15 cm∪y ele > 15 cm<br />

• tracks are primary vertexed<br />

8.1.3 Wrong Charge Subtraction Method<br />

The wrong charge subtraction method is an approach used to measure the number of<br />

D ∗ c<strong>and</strong>idates. This <strong>in</strong>volves mak<strong>in</strong>g two ∆M distributions, one of which is identical<br />

to the distribution described <strong>in</strong> §8.1.1 <strong>and</strong> is called the right charge comb<strong>in</strong>ation<br />

(RC). The other ∆M distribution is made with particle charge comb<strong>in</strong>ations that<br />

are impossible to be a D ∗ , i.e., (K,π,π s ) = (+,+,-) or (-,-,+), because the two pions<br />

must be of like charge. (Aga<strong>in</strong> subtracted from the <strong>in</strong>variant 3-mass of this D ∗ is the<br />

<strong>in</strong>variant 2-mass of the two like-charged tracks that make up the D 0 , aga<strong>in</strong> charge<br />

impossible.) This is called the wrong-charge comb<strong>in</strong>ation (WC). Fig. 8.2 shows the<br />

RC <strong>and</strong> WC ∆M distributions <strong>and</strong> <strong>in</strong>dicates four regions of <strong>in</strong>terest.<br />

122


Number of Events<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

A<br />

B<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165 0.17<br />

∆ M<br />

Number of Events<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

C<br />

D<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165 0.17<br />

∆ M<br />

Figure 8.2: The right charge <strong>and</strong> wrong charge ∆M distributions are shown. Key regions<br />

of <strong>in</strong>terest are highlighted.<br />

• Region A: the entries <strong>in</strong> the RC distribution ly<strong>in</strong>g between 0.143 < ∆M <<br />

0.148 GeV. This is where the D ∗ signal is visible.<br />

• Region B: the entries <strong>in</strong> the RC distribution between 0.150 < ∆M < 0.165<br />

GeV (the background).<br />

• Region C: the entries <strong>in</strong> the WC distribution between 0.143 < ∆M < 0.148<br />

GeV.<br />

• Region D: the entries <strong>in</strong> the WC distribution between 0.150 < ∆M < 0.165<br />

GeV.<br />

123


The purpose of the WC distribution is to estimate the shape of the background<br />

such that the background can be removed from the signal. Ideally the number of D ∗<br />

c<strong>and</strong>idates N D ∗ would be A−C. However, to be conservative the WC distribution is<br />

normalized before it is subtracted from the RC distribution. The WC is normalized<br />

by multiply<strong>in</strong>g the distribution by a weight such that B = D.<br />

Once this is done the number of D ∗ c<strong>and</strong>idates is<br />

N D ∗ = A − B C. (8.8)<br />

D<br />

The error associated to a region of a histogram such as A, B, C <strong>and</strong> D has the form<br />

[52]<br />

δA = √ A. (8.9)<br />

Us<strong>in</strong>g st<strong>and</strong>ard error propagation the uncerta<strong>in</strong>ty <strong>in</strong> the number of D ∗ c<strong>and</strong>idates<br />

δN D ∗<br />

is<br />

δN D ∗ =<br />

√<br />

A + BC (BD + CD + CB). (8.10)<br />

D3 Thus, the number of D ∗ c<strong>and</strong>idates can be determ<strong>in</strong>ed us<strong>in</strong>g the wrong charge<br />

subtraction method.<br />

8.1.4 Fit Method<br />

An alternate method uses a fit to determ<strong>in</strong>e the number of D ∗ c<strong>and</strong>idates. The<br />

fit method requires the same right-charge ∆M distribution seen <strong>in</strong> Fig. 8.1. To<br />

obta<strong>in</strong> the number of D ∗ c<strong>and</strong>idates the distribution is fit to a two-part function: a<br />

modified Gaussian for the signal <strong>and</strong> a power term for the background. The modified<br />

Gaussian is a three parameter function of the form<br />

)<br />

˜G = p 0 · exp<br />

(−0.5 · x 1+ 1<br />

1+0.5·x , (8.11)<br />

124


where x is x = |∆M−p 1|<br />

p 2<br />

. The background has the form:<br />

B = p 3 · (∆M − m π ) p 4<br />

, (8.12)<br />

where m π is the pion mass. So, the RC ∆M distribution is fit to the function<br />

F = ˜G<br />

)<br />

+ B = p 0 · exp<br />

(−0.5 · x 1+ 1<br />

1+0.5·x + p 3 · (∆M − m π ) p 4<br />

(8.13)<br />

to determ<strong>in</strong>e the five parameters. The modified Gaussian is used <strong>in</strong>stead of the<br />

normal Gaussian because “it gave a better χ 2 value than a conventional Gaussian<br />

form” [53]. The five parameters of the fit can be <strong>in</strong>terpreted as follows:<br />

• p 0 is the height of the Gaussian<br />

• p 1 the energy difference M D ∗ − M D 0<br />

• p 2 width of the Gaussian<br />

• p 3 the height of the background<br />

• p 4 power of the background.<br />

The number of D ∗ c<strong>and</strong>idates is determ<strong>in</strong>ed by <strong>in</strong>tegrat<strong>in</strong>g ˜G(∆M;p 0 ,p 1 ,p 3 ) with<strong>in</strong><br />

the signal region:<br />

N D ∗ =<br />

=<br />

(∫ 0.148<br />

0.143<br />

(∫ 0.148<br />

0.143<br />

)<br />

˜G(∆M;p 0 ,p 1 ,p 3 )d(∆M) /∆X<br />

) )<br />

p 0 · exp<br />

(−0.5 · x 1+ 1<br />

1+0.5·x d(∆M) /∆X. (8.14)<br />

The ∆X term <strong>in</strong> Eq. 8.14 is the b<strong>in</strong> width of the entries <strong>in</strong> the RC distribution.<br />

The fit method is used as a consistency check for the D ∗ c<strong>and</strong>idates determ<strong>in</strong>ed<br />

us<strong>in</strong>g the wrong charge subtraction method.<br />

125


8.1.5 Number of D ∗ C<strong>and</strong>idates<br />

For differential cross sections (discussed <strong>in</strong> §8.3.2) the D ∗ c<strong>and</strong>idates are determ<strong>in</strong>ed<br />

<strong>in</strong> b<strong>in</strong>s of P T (D ∗ ), η(D ∗ ), Q 2 , <strong>and</strong> x. The b<strong>in</strong>n<strong>in</strong>g goes as follows:<br />

• P T (D ∗ ): 1.5 → 2.4 → 3.1 → 4.0 → 6.0 → 15 GeV (us<strong>in</strong>g REG track<strong>in</strong>g)<br />

• η(D ∗ ): −1.5 → −0.8 → −0.35 → 0.0 → 0.4 → 0.8 → 1.5 (us<strong>in</strong>g REG<br />

track<strong>in</strong>g)<br />

• Q 2 : 5 → 10 → 20 → 40 → 80 → 200 → 1000 GeV 2 (us<strong>in</strong>g Q 2 DA )<br />

• x: 0.00008 → 0.0004 → 0.0016 → 0.005 → 0.01 → 0.1 (us<strong>in</strong>g x DA )<br />

The ∆M right charge <strong>and</strong> wrong charge distributions for Q 2 , along with the fits are<br />

shown <strong>in</strong> Fig 8.3 for the Q 2 b<strong>in</strong>n<strong>in</strong>g range. The rema<strong>in</strong><strong>in</strong>g ∆M distributions can be<br />

found <strong>in</strong> App. D.<br />

126


Comb<strong>in</strong>ations per 0.0005 GeV<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

2<br />

5.0 < Q < 10.0<br />

100<br />

50<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Comb<strong>in</strong>ations per 0.0005 GeV<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

2<br />

10.0 < Q < 20.0<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Comb<strong>in</strong>ations per 0.0005 GeV<br />

450<br />

2<br />

400<br />

20.0 < Q < 40.0<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Comb<strong>in</strong>ations per 0.0005 GeV<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

2<br />

40.0 < Q < 80.0<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Comb<strong>in</strong>ations per 0.0005 GeV<br />

200<br />

180<br />

2<br />

80.0 < Q < 200.0<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Comb<strong>in</strong>ations per 0.0005 GeV<br />

100<br />

90<br />

2<br />

200.0 < Q < 1000.0<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

127<br />

Figure 8.3: ∆M distributions <strong>in</strong> Q 2 b<strong>in</strong>s, <strong>in</strong> red are the fits.


Us<strong>in</strong>g the wrong-charge subtraction method the number of D ∗ c<strong>and</strong>idates <strong>in</strong> P T , η,<br />

Q 2 , <strong>and</strong> x b<strong>in</strong>s is obta<strong>in</strong>ed.<br />

Num. of C<strong>and</strong>.<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

2 3 4 5 6 7 8 9 10*<br />

P T<br />

(D ) [GeV]<br />

Figure 8.4: The number of D ∗ c<strong>and</strong>idates with respect to P T (D ∗ ).<br />

At ZEUS fewer D ∗ c<strong>and</strong>idates are reconstructed at low <strong>and</strong> high P T than <strong>in</strong> the<br />

central P T region.<br />

128


Num. of C<strong>and</strong>.<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

-1.5<br />

0<br />

-1 -0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

Figure 8.5: The number of D ∗ c<strong>and</strong>idates with respect to η(D ∗ ).<br />

The number of D ∗ c<strong>and</strong>idates is relatively flat <strong>in</strong> the central η region.<br />

Num. of C<strong>and</strong>.<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

10<br />

2<br />

10<br />

2 2<br />

Q [GeV ]<br />

Figure 8.6: The number of D ∗ c<strong>and</strong>idates with respect to Q 2 .<br />

129


Except for the first b<strong>in</strong>, the number of D ∗ c<strong>and</strong>idates has a downwards trend with<br />

respect to Q 2 . In HERA II the lowest Q 2 b<strong>in</strong> does not have the most c<strong>and</strong>idates.<br />

This is different from the HERA I results. A possible reason is that Q 2 ∝ P T , <strong>and</strong><br />

s<strong>in</strong>ce the addition of the MVD the rate that low P T tracks are lost has <strong>in</strong>creased,<br />

therefore lead<strong>in</strong>g to fewer low Q 2 D ∗ c<strong>and</strong>idates.<br />

Num. of C<strong>and</strong>.<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

10<br />

-4<br />

-3<br />

10<br />

-2<br />

10<br />

10<br />

x<br />

-1<br />

Figure 8.7: The number of D ∗ c<strong>and</strong>idates with respect to x.<br />

The number of D ∗ c<strong>and</strong>idates decreases with x.<br />

The wrong charge subtraction method yields a total number of D ∗ c<strong>and</strong>idates of<br />

5789 ± 142, over the HERA II data of L = 175.4 pb −1 .<br />

8.1.6 Number of D ∗ C<strong>and</strong>idates Us<strong>in</strong>g Fit<br />

As a cross check the number of D ∗ c<strong>and</strong>idates us<strong>in</strong>g the fit method are compared<br />

to the wrong charge subtraction method, as shown <strong>in</strong> Fig. 8.8. The fit method<br />

consistently yields a greater number of D ∗ c<strong>and</strong>idates <strong>in</strong> both data <strong>and</strong> MC. This<br />

130


Num. of C<strong>and</strong>.<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Fit<br />

Wrong Charge Subtraction<br />

2 3 4 5 6 7 8 9 10*<br />

P T<br />

(D ) [GeV]<br />

Num. of C<strong>and</strong>.<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

Num. of C<strong>and</strong>.<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

Num. of C<strong>and</strong>.<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

10<br />

2<br />

10<br />

2 2<br />

Q [GeV ]<br />

0<br />

10<br />

-4<br />

-3<br />

10<br />

-2<br />

10<br />

-1<br />

10<br />

x<br />

Figure 8.8: The number of D ∗ c<strong>and</strong>idates us<strong>in</strong>g fit <strong>in</strong> black, <strong>and</strong> wrong charge subtraction<br />

<strong>in</strong> red.<br />

is not a source of large systematic uncerta<strong>in</strong>ties as long as the same method is used<br />

consistently <strong>in</strong> both data <strong>and</strong> <strong>in</strong> MC.<br />

8.2 Acceptances<br />

The acceptance is a measure of how well the generated variables are reconstructed.<br />

Two pieces of <strong>in</strong>formation are required to measure the D ∗ acceptance: the number<br />

of D ∗ c<strong>and</strong>idates <strong>in</strong> MC (ND MC ∗ ), determ<strong>in</strong>ed with exactly the same method as was<br />

done for the data, <strong>and</strong> the number of generated D ∗ ’s (ND GEN ∗ ). Not all generated<br />

D ∗ ’s are counted; N GEN<br />

D ∗<br />

is the number of generated D∗ ’s that decay along the mode<br />

D ∗ → (D 0 )π s → (Kπ)π s . Another requirement is that the D ∗ ’s are generated <strong>in</strong> the<br />

k<strong>in</strong>ematic region of <strong>in</strong>terest, i.e., the Q 2 , x, η(D ∗ ), <strong>and</strong> P T (D ∗ ) regions are the same<br />

131


for data, reconstructed MC, <strong>and</strong> generator level. Even if the reconstruction method<br />

was 100% efficient, only 2.57% of the D ∗ ’s created dur<strong>in</strong>g ep <strong>in</strong>teractions would be<br />

reconstructed because of the branch<strong>in</strong>g fractions <strong>in</strong>volved <strong>in</strong> the decay cha<strong>in</strong>. The<br />

acceptance for the number of D ∗ c<strong>and</strong>idates is determ<strong>in</strong>ed us<strong>in</strong>g a charm enriched<br />

RAPGAP Monte Carlo sample of L = 632 pb −1 ; see §3.2.1. The acceptance is<br />

def<strong>in</strong>ed as<br />

δA = A ·<br />

A = NMC D ∗<br />

ND GEN . (8.15)<br />

∗<br />

Us<strong>in</strong>g st<strong>and</strong>ard error propagation the error on the acceptance is<br />

√ (δN<br />

MC<br />

D ∗<br />

= A ·<br />

N MC<br />

D ∗ ) 2<br />

+<br />

√ (δN<br />

MC<br />

) 2<br />

D ∗<br />

ND MC + 1<br />

∗<br />

( δN<br />

GEN<br />

) 2<br />

D ∗<br />

ND GEN ∗<br />

N GEN<br />

D ∗ . (8.16)<br />

This is not the whole story as N MC<br />

D ∗<br />

is a subset of NGEN; Eq. 8.16 is conservative<br />

D ∗<br />

<strong>and</strong> ignores these correlations.<br />

The acceptances are seen below.<br />

132


Acceptance<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

2 3 4 5 6 7 8 9 10*<br />

P T<br />

(D ) [GeV]<br />

Figure 8.9: The P T (D ∗ ) acceptance. The acceptance rises with P T <strong>and</strong> peaks at 45%.<br />

Acceptance<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

-1.5<br />

0<br />

-1 -0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

Figure 8.10: The η(D ∗ ) acceptance. The acceptance is best <strong>in</strong> the central part of the detector<br />

peak<strong>in</strong>g at 30%, the acceptance <strong>in</strong> the forward <strong>and</strong> rear parts of the<br />

detector drops off.<br />

133


Acceptance<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

10<br />

2<br />

10<br />

2 2<br />

Q [GeV ]<br />

Figure 8.11: The Q 2 acceptance. The acceptance rises with Q 2 <strong>and</strong> peaks at 37%.<br />

Acceptance<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

10<br />

-4<br />

-3<br />

10<br />

-2<br />

10<br />

10<br />

x<br />

-1<br />

Figure 8.12: The x acceptance. Peaks at 35%.<br />

134


8.3 Cross Sections<br />

A Cross Section is the rate at which a process of <strong>in</strong>terest occurs, for <strong>in</strong>stance the<br />

creation of a D ∗ . Cross sections are useful because they can be directly compared to<br />

<strong>and</strong> understood by other experiments, whereas the number of D ∗ c<strong>and</strong>idates will be<br />

different because different experiments will have differ<strong>in</strong>g lum<strong>in</strong>osities, acceptances,<br />

etc. This allows predictions to be compared to data.<br />

The cross section for D ∗ production at HERA II is the rate at which D ∗ mesons are<br />

created by ep collisions at a center of mass energy of √ s = 318 GeV, per pb −1 of<br />

lum<strong>in</strong>osity <strong>in</strong> the k<strong>in</strong>ematic region of <strong>in</strong>terest:<br />

σ(D ∗ ) =<br />

N D ∗ →(Kπ)π s<br />

A · Br D ∗ →(Kπ)π s · L . (8.17)<br />

Here Br = Γ D ∗ →(D 0 )π s<br />

× Γ D 0 →Kπ is the branch<strong>in</strong>g ratio equal to 2.57%. The error<br />

on the cross section is:<br />

δσ(D ∗ ) = σ(D ∗ ) ·<br />

√ (δND<br />

∗<br />

N D ∗<br />

) 2 ( ) δA 2<br />

+ . (8.18)<br />

A<br />

The errors on the cross section due to lum<strong>in</strong>osity <strong>and</strong> branch<strong>in</strong>g ratios are quoted<br />

separately. The errors thus far encountered are all statistical <strong>in</strong> nature. The other<br />

form of uncerta<strong>in</strong>ty on the cross section are the systematic errors.<br />

8.3.1 Systematic Errors<br />

Systematic uncerta<strong>in</strong>ties arise from the sensitivity of a cross section to a cut, or to a<br />

reconstruction method, or even to the choice of MC. Ideally, this choice should have<br />

little impact on the cross section, however <strong>in</strong> practice this is not always the case.<br />

Typically uncerta<strong>in</strong>ties are estimated by vary<strong>in</strong>g cuts <strong>and</strong> measur<strong>in</strong>g the effect on<br />

the cross section. For example, the variation may be to alter a cut by ±1σ of its<br />

135


esolution. Determ<strong>in</strong><strong>in</strong>g the overall uncerta<strong>in</strong>ty <strong>in</strong>volves measur<strong>in</strong>g the change <strong>in</strong><br />

the cross section for each variation.<br />

Let’s assume that there is a default cross section σ that is made with the best<br />

choice of cuts, MC, <strong>and</strong> reconstruction techniques. Let’s also assume that there<br />

are N checks that may lead to systematic uncerta<strong>in</strong>ties, <strong>and</strong> let’s exam<strong>in</strong>e the i th<br />

check, for example, tighten<strong>in</strong>g of the signal region 0.143 < ∆M < 0.148 GeV. The<br />

difference between the cross sections ∆σ i = σ − σ i can be either positive ∆σ + i<br />

or<br />

negative ∆σ − i<br />

. To determ<strong>in</strong>e the total systematic uncerta<strong>in</strong>ty the positive differences<br />

are all summed <strong>in</strong> quadrature:<br />

∑<br />

∆σ + = √ N (∆σ<br />

i + )2 (8.19)<br />

i<br />

∑<br />

∆σ − = √ N (∆σi − )2 . (8.20)<br />

i<br />

The same is done with the negative difference allow<strong>in</strong>g them to be quoted separately<br />

as the systematic error on the cross section. When the effect of a systematic error<br />

such as tighten<strong>in</strong>g <strong>and</strong> loosen<strong>in</strong>g the signal region, which are related, causes the cross<br />

section to change <strong>in</strong> the same direction, then only the greater of the two effects is<br />

added to the overall systematic uncerta<strong>in</strong>ty.<br />

8.3.2 Differential Cross Sections<br />

It is useful to see how the D ∗ cross section changes with respect to some variable.<br />

This analysis exam<strong>in</strong>es the cross section with respect to P T (D ∗ ), η(D ∗ ), Q 2 , <strong>and</strong> x.<br />

When measur<strong>in</strong>g differential cross sections, the data is measured <strong>in</strong> b<strong>in</strong>s. The size<br />

of the b<strong>in</strong>s are chosen to be small such that they approximate <strong>in</strong>f<strong>in</strong>itesimal changes,<br />

yet are large enough to avoid b<strong>in</strong> migrations.<br />

136


Each b<strong>in</strong> of a differential cross section requires the number of D ∗ c<strong>and</strong>idates to be<br />

obta<strong>in</strong>ed us<strong>in</strong>g the wrong-charge subtraction method.<br />

Before show<strong>in</strong>g the results, the purities, efficiencies, control plots, <strong>and</strong> resolutions<br />

are shown.<br />

8.4 Purities <strong>and</strong> Efficiencies<br />

The purities P <strong>and</strong> efficiency E <strong>in</strong> a b<strong>in</strong> i are quantities closely related to the<br />

acceptance<br />

A i = E i<br />

P i<br />

. (8.21)<br />

The D ∗ purity can be understood as the probability that the D ∗ that was reconstructed<br />

<strong>in</strong> b<strong>in</strong> i <strong>and</strong> also generated <strong>in</strong> b<strong>in</strong> i. A sample with a poor purity would<br />

mean that massive b<strong>in</strong> migrations occur <strong>in</strong> the reconstruction phase. The fact that<br />

a D ∗ was reconstructed <strong>in</strong> b<strong>in</strong> i would not mean with high certa<strong>in</strong>ty that it was<br />

actually created <strong>in</strong> b<strong>in</strong> i. The purity <strong>in</strong> b<strong>in</strong> i is def<strong>in</strong>ed as<br />

P i = NGEN i<br />

∩ N REC<br />

i<br />

Ni<br />

REC<br />

. (8.22)<br />

The numerator <strong>in</strong> Eq. 8.22 uses the logical AND mean<strong>in</strong>g that each D ∗ must be<br />

both generated <strong>and</strong> reconstructed <strong>in</strong> b<strong>in</strong> i for it to be counted. The efficiency is<br />

similar to an acceptance except that it requires that the D ∗ was generated AND<br />

reconstructed <strong>in</strong> the same b<strong>in</strong>, therefore hav<strong>in</strong>g no b<strong>in</strong> migrations. The efficiency <strong>in</strong><br />

b<strong>in</strong> i is:<br />

E i = NGEN i<br />

∩ N REC<br />

i<br />

Ni<br />

GEN<br />

. (8.23)<br />

The conservative uncorrelated uncerta<strong>in</strong>ty on the purities <strong>and</strong> efficiencies are<br />

√<br />

1<br />

δP i = P i<br />

Ni<br />

GEN ∩ Ni<br />

REC + 1<br />

Ni<br />

REC ,<br />

137


δE i = E i<br />

√<br />

N GEN<br />

i<br />

1<br />

∩ Ni<br />

REC<br />

+ 1<br />

Ni<br />

GEN . (8.24)<br />

The follow<strong>in</strong>g plots show the purities <strong>and</strong> efficiencies for P T (D ∗ ), η(D ∗ ), Q 2 , <strong>and</strong> x.<br />

Purity<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

2 3 4 5 6 7 8 9 10*<br />

P T<br />

(D ) [GeV]<br />

Figure 8.13: The D ∗ purity as a function of P T (D ∗ ).<br />

138


Purity<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

-1.5<br />

0<br />

-1 -0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

Figure 8.14: The D ∗ purity as a function of η(D ∗ ).<br />

Purity<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

10<br />

2<br />

10<br />

2 2<br />

Q [GeV ]<br />

Figure 8.15: The D ∗ purity as a function of Q 2 .<br />

139


Purity<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

10<br />

-4<br />

-3<br />

10<br />

-2<br />

10<br />

x<br />

Figure 8.16: The D ∗ purity as a function of x.<br />

The RAPGAP MC sample is a very pure D ∗ sample. Purities peak at ≈ 100% <strong>and</strong><br />

fall as low as 73%. The efficiencies are now shown.<br />

140


Efficiency<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

2 3 4 5 6 7 8 9 10*<br />

P T<br />

(D ) [GeV]<br />

Figure 8.17: The D ∗ efficiency as a function of P T (D ∗ ).<br />

Efficiency<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

-1.5<br />

0<br />

-1 -0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

Figure 8.18: The D ∗ efficiency as a function of η(D ∗ ).<br />

141


Efficiency<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

10<br />

2<br />

10<br />

2 2<br />

Q [GeV ]<br />

Figure 8.19: The D ∗ efficiency as a function of Q 2 .<br />

Efficiency<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

10<br />

-4<br />

-3<br />

10<br />

-2<br />

10<br />

x<br />

Figure 8.20: The D ∗ efficiency as a function of x.<br />

The efficiencies very much mirror the acceptances shown earlier (see Figs. 8.9 to<br />

142


8.12). This is due to the high purity, that is A = E/P ≈ E as P → 1.<br />

8.5 Control Plots<br />

Control plots compare reconstructed variables <strong>in</strong> data to their reconstructed value<br />

<strong>in</strong> MC. The reconstructed MC distributions are area normalized such that they are<br />

equal <strong>in</strong> area to the data distributions. Discrepancies <strong>in</strong> control plots can <strong>in</strong>dicate<br />

a variety of problems. Generator level problems could <strong>in</strong>dicate that the underly<strong>in</strong>g<br />

physics of an event are not well described. MC reconstruction problems could<br />

<strong>in</strong>dicate that the detector is not well described dur<strong>in</strong>g the FUNNEL stage (see §3.4).<br />

The follow<strong>in</strong>g are DIS event control plots of variables shown or cut on for these<br />

analyses. The green histograms are the MC while the po<strong>in</strong>ts are the data. The MC<br />

uses the already discussed charm-enriched RAPGAP sample correspond<strong>in</strong>g to 632<br />

pb −1 . The data is 175.4 pb −1 from the HERA II run time.<br />

143


dN/dZ<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

dN/dY DA<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

-40<br />

0<br />

-30 -20 -10 0 10 20 30 40<br />

Z Vertex [cm]<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Y DA<br />

dN/dY JB<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

dN/dY e<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Y JB<br />

Y e<br />

Figure 8.21: DIS control plots. The Z vtx , Y DA , Y JB , <strong>and</strong> Y e are shown.<br />

144


dN/dX DA<br />

3<br />

10<br />

2<br />

10<br />

dN/dX e<br />

3<br />

10<br />

2<br />

10<br />

10<br />

10<br />

1<br />

1<br />

-1<br />

10 0 0.0020.0040.0060.008 0.01 0.0120.0140.0160.018 0.02<br />

-1<br />

10 0 0.0020.0040.0060.008 0.01 0.0120.0140.0160.018 0.02<br />

X DA<br />

X e<br />

dN/dE prob<br />

4<br />

10<br />

3<br />

10<br />

2<br />

10<br />

dN/dE e,corr<br />

350<br />

300<br />

250<br />

200<br />

10<br />

1<br />

150<br />

100<br />

50<br />

-1<br />

10<br />

0.9 0.92 0.94 0.96 0.98 1<br />

E prob<br />

0<br />

5 10 15 20 25 30 35 40<br />

E e,corr [GeV]<br />

Figure 8.22: DIS control plots. The X DA , X e , E prob , <strong>and</strong> E corr the corrected electron energy<br />

are shown.<br />

145


dN/dδ h<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

30 35 40 45 50 55 60 65 70<br />

δ h<br />

[GeV]<br />

dN/dθ e<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

1 1.5 2 2.5 3<br />

θ e<br />

[°]<br />

2<br />

DA<br />

dN/dQ<br />

3<br />

10<br />

2<br />

10<br />

2<br />

e<br />

dN/dQ<br />

3<br />

10<br />

2<br />

10<br />

10<br />

10<br />

1<br />

1<br />

-1<br />

10 0 50 100 150 200 250 300 350 400 450 500<br />

2 2<br />

Q [GeV ]<br />

DA<br />

-1<br />

10 0 50 100 150 200 250 300 350 400 450 500<br />

2 2<br />

Q [GeV ]<br />

e<br />

Figure 8.23: DIS control plots. The δ h , θ e , Q 2 DA , <strong>and</strong> Q2 e<br />

are shown.<br />

Some D ∗ control plots with respect to P T , η, Q 2 , <strong>and</strong> x are shown below.<br />

146


dN/dP T<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

P T<br />

(π)[GeV]<br />

dN/dP T<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

P T<br />

(K)[GeV]<br />

dN/dP T<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

P T<br />

(π S<br />

)[GeV]<br />

dN/dP T<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

*<br />

P T<br />

(D )[GeV]<br />

Figure 8.24: P T control plots of the pion, kaon, slow pion, <strong>and</strong> D ∗ .<br />

147


dN/dη<br />

1200<br />

1000<br />

dN/dη<br />

1200<br />

1000<br />

800<br />

800<br />

600<br />

600<br />

400<br />

400<br />

200<br />

200<br />

-1.5<br />

0<br />

-1 -0.5 0 0.5 1 1.5<br />

η(π)<br />

-1.5<br />

0<br />

-1 -0.5 0 0.5 1 1.5<br />

η(K)<br />

dN/dη<br />

1200<br />

1000<br />

dN/dη<br />

1200<br />

1000<br />

800<br />

800<br />

600<br />

600<br />

400<br />

400<br />

200<br />

200<br />

-1.5<br />

0<br />

-1 -0.5 0 0.5 1 1.5<br />

η(π )<br />

S<br />

-1.5<br />

0<br />

-1 -0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

Figure 8.25: η control plots of the pion, kaon, slow pion, <strong>and</strong> D ∗ .<br />

148


dN/dφ<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 1 2 3 4 5 6<br />

φ(π)<br />

dN/dφ<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 1 2 3 4 5 6<br />

φ(K)<br />

dN/dφ<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 1 2 3 4 5 6<br />

φ(π_s)<br />

dN/dφ<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 1 2 3 4 5 6<br />

*<br />

φ(D )<br />

Figure 8.26: φ control plots of the pion, kaon, slow pion, <strong>and</strong> D ∗ .<br />

The most alarm<strong>in</strong>g discrepancy is for the P T of the slow pion <strong>and</strong> hence of the<br />

D ∗ . As a result the P T distribution of the slow pion of the MC was re-weighted<br />

such that it matched that of the data. The result<strong>in</strong>g P T of the D ∗ control plot is<br />

shown. For one of the systematic checks on the cross section the unweighted slow<br />

pion distribution is used.<br />

8.6 Resolutions<br />

The resolution <strong>in</strong>dicates how well a reconstructed variable, X REC , matches its generated<br />

variable, X GEN . The distribution of ∆X = X GEN − X REC is made <strong>in</strong> MC<br />

<strong>and</strong> fit to a Gaussian of the form shown <strong>in</strong> Eq. 5.34. The width of the Gaussian,<br />

σ(X), is the resolution of the variable X. The resolutions presented below show<br />

149


that with<strong>in</strong> the regions of <strong>in</strong>terest σ is less than the b<strong>in</strong> widths. This is an important<br />

consideration when choos<strong>in</strong>g the size of the b<strong>in</strong>s. The b<strong>in</strong> width should<br />

always be larger than the resolution with<strong>in</strong> the b<strong>in</strong>, otherwise large migrations can<br />

be expected.<br />

Entries<br />

2000 N = 1838.076<br />

1800<br />

Mean = −0.00042<br />

1600<br />

σ = 0.010130<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

−0.04 −0.02 0 0.02 0.04<br />

∆Z VTX<br />

[cm]<br />

Entries<br />

3500 N = 3429.055<br />

Mean = 0.66604<br />

3000<br />

σ = 1.158573<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

−10 −5 0 5 10<br />

∆E corr<br />

[GeV]<br />

Entries<br />

2400<br />

2200<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

N = 2252.505<br />

Mean = 1.51076<br />

σ = 2.730390<br />

−10 0 10<br />

∆δ h<br />

[GeV]<br />

Entries<br />

4500 N = 4727.663<br />

Mean = −0.00045<br />

4000<br />

σ = 0.002506<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

−0.02 0 0.02<br />

∆θ e<br />

[°]<br />

Figure 8.27: DIS resolutions. The Z vtx , E corr , δ h , <strong>and</strong> θ e are shown.<br />

The event variables <strong>in</strong> Fig. 8.27 are cut on dur<strong>in</strong>g the analyses.<br />

150


Entries<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

N = 646.812<br />

Mean = 0.01143<br />

σ = 0.024891<br />

−0.2 −0.1 0 0.1 0.2<br />

∆P T<br />

[GeV]; P ∈ [1.5, 2.4]<br />

T<br />

Entries<br />

600 N = 575.047<br />

Mean = 0.01302<br />

500<br />

σ = 0.029667<br />

400<br />

300<br />

200<br />

100<br />

0<br />

−0.2 −0.1 0 0.1 0.2<br />

∆P T<br />

[GeV]; P ∈ [2.4, 3.1]<br />

T<br />

Entries<br />

900<br />

800<br />

700<br />

N = 828.084<br />

Mean = 0.01043<br />

σ = 0.044752<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

−0.4 −0.2 0 0.2 0.4<br />

∆P T<br />

[GeV]; P ∈[3.1, 4.0]<br />

T<br />

Entries<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

N = 713.174<br />

Mean = 0.01100<br />

σ = 0.066807<br />

−0.4 −0.2 0 0.2 0.4<br />

∆P T<br />

[GeV]; P ∈ [4.0, 6.0]<br />

T<br />

400 N = 362.302<br />

350<br />

Mean = 0.01649<br />

300<br />

σ = 0.110587<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

−1 −0.5 0 0.5 1<br />

∆P T<br />

[GeV]; P ∈[6.0, 15.0]<br />

T<br />

Entries<br />

Figure 8.28: The P T resolution of the D ∗ with<strong>in</strong> the b<strong>in</strong>s used <strong>in</strong> this analysis are shown.<br />

The resolution gets worse, i.e., σ <strong>in</strong>creases, with P T .<br />

Entries<br />

400<br />

300<br />

200<br />

100<br />

0<br />

N = 394.332<br />

Mean = 0.00020<br />

σ = 0.003419<br />

−0.02 −0.01 0 0.01 0.02<br />

∆η; η ∈ [−1.5, −0.8]<br />

Entries<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

N = 600.902<br />

Mean = 0.00025<br />

σ = 0.002753<br />

−0.02 −0.01 0 0.01 0.02<br />

∆η; η ∈ [−0.8, −0.35]<br />

Entries<br />

600 N = 559.500<br />

Mean = 0.00022<br />

500<br />

σ = 0.002360<br />

400<br />

300<br />

200<br />

100<br />

0<br />

−0.02 −0.01 0 0.01 0.02<br />

∆η; η ∈ [−0.35, 0.0]<br />

Entries<br />

600 N = 569.608<br />

Mean = −0.00012<br />

500<br />

σ = 0.002891<br />

400<br />

300<br />

200<br />

100<br />

0<br />

−0.02 −0.01 0 0.01 0.02<br />

∆η; η ∈ [0.0, 0.4]<br />

Entries<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

N = 533.564<br />

Mean = −0.00027<br />

σ = 0.002791<br />

−100<br />

−0.02 −0.01 0 0.01 0.02<br />

∆η; η ∈ [0.4, 0.8]<br />

Entries<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

N = 512.851<br />

Mean = −0.00004<br />

σ = 0.002737<br />

−0.02 −0.01 0 0.01 0.02<br />

∆η; η ∈[0.8, 1.5]<br />

Figure 8.29: η of the D ∗ resolution.<br />

151


The P T <strong>and</strong> η resolutions seen <strong>in</strong> Fig. 8.28 <strong>and</strong> 8.29 are clearly smaller than the b<strong>in</strong><br />

widths.<br />

Entries<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

−10 −5 0 5 10<br />

2 2 2<br />

∆Q [GeV ]; Q ∈ [5.0, 10.0]<br />

DA<br />

DA<br />

N = 705.797<br />

Mean = −0.22861<br />

σ = 0.930797<br />

Entries<br />

1400 N = 1418.710<br />

1200<br />

Mean = −0.16521<br />

σ = 1.147582<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

−10 0 10<br />

2 2 2<br />

∆Q [GeV ]; Q ∈ [10.0, 20.0]<br />

DA<br />

DA<br />

Entries<br />

800 N = 834.236<br />

Mean = −0.03862<br />

700<br />

σ = 1.493250<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

−10 0 10<br />

2<br />

∆Q<br />

2 2<br />

[GeV ]; Q ∈ [20.0, 40.0]<br />

DA<br />

DA<br />

Entries<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

−20 0 20<br />

2 2 2<br />

∆Q [GeV ]; Q ∈[40.0, 80.0]<br />

DA<br />

DA<br />

N = 630.206<br />

Mean = 0.17392<br />

σ = 2.542478<br />

Entries<br />

300 N = 294.527<br />

Mean = 0.13858<br />

250<br />

σ = 4.084231<br />

200<br />

150<br />

100<br />

50<br />

−40<br />

0<br />

−20 0 20 40<br />

2 2 2<br />

∆Q [GeV ]; Q ∈ [80.0, 200.0]<br />

DA<br />

DA<br />

Entries<br />

80<br />

60<br />

40<br />

20<br />

0<br />

2<br />

∆QDA<br />

−50 0 50<br />

2 2<br />

[GeV ]; Q ∈ [200.0, 1000.0]<br />

DA<br />

N = 75.815<br />

Mean = 0.79299<br />

σ = 9.259882<br />

Figure 8.30: The Q 2 resolution us<strong>in</strong>g the double-angle method.<br />

152


Entries<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

−4 −2 0 2 4<br />

2 2 2<br />

∆Q [GeV ]; Q ∈ [5.0, 10.0]<br />

e<br />

e<br />

N = 506.899<br />

Mean = 0.11225<br />

σ = 0.562316<br />

Entries<br />

1400 N = 1373.284<br />

Mean = 0.23429<br />

1200<br />

σ = 0.823872<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

−10 −5 0 5 10<br />

2 2 2<br />

∆Q [GeV ]; Q ∈ [10.0, 20.0]<br />

e<br />

e<br />

Entries<br />

700 N = 668.029<br />

600<br />

Mean = 0.46727<br />

σ = 1.366814<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

−10 −5 0 5 10<br />

2 2 2<br />

∆Q [GeV ]; Q ∈ [20.0, 40.0]<br />

e<br />

e<br />

Entries<br />

450 N = 445.877<br />

Mean = 0.59769<br />

400<br />

σ = 2.653348<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

−20<br />

0<br />

−10 0 10 20<br />

2 2 2<br />

∆Q [GeV ]; Q ∈[40.0, 80.0]<br />

e<br />

e<br />

Entries<br />

220 N = 203.251<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

−20 0 20<br />

2 2 2<br />

∆Q [GeV ]; Q ∈ [80.0, 200.0]<br />

e<br />

e<br />

Mean = 1.93373<br />

σ = 5.021936<br />

Entries<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

−50 0 50<br />

2 2 2<br />

∆Q [GeV ]; Q ∈ [200.0, 1000.0]<br />

e<br />

e<br />

N = 46.215<br />

Mean = 11.44380<br />

σ = 17.136636<br />

Figure 8.31: The Q 2 resolution us<strong>in</strong>g the electron-method.<br />

240<br />

220<br />

N = 214.672<br />

Mean = 1.24268<br />

200<br />

σ = 3.659087<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

−20 −10 0 10 20 30<br />

2 2 2<br />

∆Q [GeV ]; Q ∈ [5.0, 10.0]<br />

Entries<br />

JB<br />

JB<br />

Entries<br />

400 N = 386.593<br />

Mean = −2.96553<br />

350<br />

σ = 5.742598<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

−20 0 20<br />

2<br />

∆Q<br />

2 2<br />

[GeV ]; Q ∈ [10.0, 20.0]<br />

JB<br />

JB<br />

Entries<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

−40 −20 0 20<br />

2 2 2<br />

∆Q [GeV ]; Q ∈ [20.0, 40.0]<br />

JB<br />

JB<br />

N = 367.511<br />

Mean = −11.76775<br />

σ = 8.765013<br />

Entries<br />

300 N = 257.548<br />

Mean = −21.05368<br />

250<br />

σ = 18.739691<br />

200<br />

150<br />

100<br />

50<br />

0<br />

−50 0<br />

2 2 2<br />

∆Q [GeV ]; Q ∈[40.0, 80.0]<br />

JB<br />

JB<br />

200 N = 167.902<br />

180<br />

Mean = −33.96515<br />

160<br />

σ = 37.431271<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

−150<br />

0<br />

−100 −50 0 50<br />

2<br />

∆Q<br />

2 2<br />

[GeV ]; Q ∈ [80.0, 200.0]<br />

Entries<br />

JB<br />

JB<br />

Entries<br />

45 N = 34.634<br />

40<br />

Mean = −61.68425<br />

35<br />

σ = 79.945416<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

−200<br />

0<br />

−100 0 100<br />

2<br />

∆Q<br />

2 2<br />

[GeV ]; Q ∈ [200.0, 1000.0]<br />

JB<br />

JB<br />

Figure 8.32: Q 2 JB resolution. The Jacquet-Blondel method to reconstruct Q2 has resolution<br />

whose mean becomes more negative with Q 2 .<br />

153


The analyses presented use the double-angle method to reconstruct Q 2 , however<br />

the three Figs. 8.30, 8.31, <strong>and</strong> 8.32, show the resolution us<strong>in</strong>g the double-angle,<br />

electron, <strong>and</strong> Jacquet-Blondel method. The double-angle <strong>and</strong> electron methods<br />

have comparable resolutions, however the double-angle method out performs the<br />

electron method when it comes to the mean. The mean on the double-angle method<br />

is centered closer to zero than that of the electron method. The Jacquet-Blondel<br />

method clearly is the worst <strong>in</strong> the b<strong>in</strong>n<strong>in</strong>g used <strong>in</strong> the analyses presented; not only<br />

the mean but the resolution is poor.<br />

Entries<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

N = 289.919<br />

Mean = −0.00001<br />

σ = 0.000115<br />

−3<br />

×10<br />

−0.5 0 0.5<br />

∆X DA<br />

; X ∈ [0.00008, 0.0004]<br />

DA<br />

Entries<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

N = 1328.267<br />

Mean = −0.00009<br />

σ = 0.000262<br />

0<br />

−0.002 −0.001 0 0.001 0.002<br />

∆X DA<br />

; X ∈ [0.0004, 0.0016]<br />

DA<br />

Entries<br />

1000 N = 985.671<br />

Mean = −0.00013<br />

σ = 0.000579<br />

800<br />

600<br />

400<br />

200<br />

0<br />

−0.004−0.002 0 0.002 0.004<br />

∆X DA<br />

; X ∈ [0.0016, 0.005]<br />

DA<br />

Entries<br />

300 N = 280.509<br />

Mean = −0.00009<br />

250<br />

σ = 0.001084<br />

200<br />

150<br />

100<br />

50<br />

−0.01<br />

0<br />

−0.005 0 0.005 0.01<br />

∆X DA<br />

; X ∈ [0.005, 0.01]<br />

DA<br />

Entries<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

N = 105.509<br />

Mean = −0.00005<br />

σ = 0.001291<br />

−0.01 0 0.01<br />

∆X DA<br />

; X ∈[0.01, 0.1]<br />

DA<br />

Figure 8.33: X DA resolution with<strong>in</strong> b<strong>in</strong>s presented <strong>in</strong> these analyses.<br />

The x resolution seen <strong>in</strong> Fig. 8.33 <strong>in</strong>creases with x, but rema<strong>in</strong>s smaller than the<br />

b<strong>in</strong> width <strong>in</strong> the chosen b<strong>in</strong>n<strong>in</strong>g range.<br />

154


8.7 Cross Section Results<br />

Before the differential cross sections are determ<strong>in</strong>ed, corrections to the MC are made,<br />

systematic uncerta<strong>in</strong>ties are measured, <strong>and</strong> theoretical uncerta<strong>in</strong>ties are calculated.<br />

8.7.1 Corrections to MC<br />

Four corrections, two of which affect the electron energy <strong>and</strong> two corrections due to<br />

the description of the slow pion, are implemented on the MC.<br />

Electron Energy Scaled<br />

A discrepancy exists between the reconstruction of the electron energy <strong>in</strong> MC <strong>and</strong><br />

data. As a result, the electron energy <strong>in</strong> MC is scaled down by 2% [53]. Terms<br />

dependent on the electron energy are scaled accord<strong>in</strong>gly. As a systematic check on<br />

the differential cross sections, the unscaled electron energy is used.<br />

Electron Energy Smeared<br />

In addition to the scal<strong>in</strong>g of the electron energy, the electron energy is also smeared<br />

<strong>in</strong> MC by 3%. The smear<strong>in</strong>g procedure multiplies the electron energy by a r<strong>and</strong>om<br />

Gaussian, G, centered on zero with a width of one. The electron energy is smeared<br />

by<br />

E e ′ = E e × (1 + 0.03 · G). (8.25)<br />

Re-weight<strong>in</strong>g of the Transverse Momentum of the Slow Pion<br />

The P T of the π s <strong>in</strong> data <strong>and</strong> MC are different, as seen <strong>in</strong> the π s control plot <strong>in</strong> Fig.<br />

8.24. As a result, the MC P T distribution was multiplied by a weight W(P T (π s ))<br />

such that b<strong>in</strong> by b<strong>in</strong> the P T distribution of the π s <strong>in</strong> data <strong>and</strong> MC are be equal:<br />

P ′ T(π s ) = W(P T (π s )) ∗ P T (π s ). (8.26)<br />

155


The effect on the P T (D ∗ ) distribution is seen <strong>in</strong> Fig. 8.34; the MC now describes<br />

the distribution better.<br />

dN/dP T<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

*<br />

P T<br />

(D )[GeV]<br />

a)<br />

dN/dP T<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

*<br />

P T<br />

(D )[GeV]<br />

b)<br />

Figure 8.34: P T (D ∗ ) control plot before a) <strong>and</strong> after b) P T (π s ) re-weight<strong>in</strong>g <strong>in</strong> MC.<br />

The unweighted distribution is another of the systematic checks.<br />

156


Re-weight Events due to Slow Pion Track Loss Probability<br />

The track loss probability of the slow pion discussed <strong>in</strong> §5.5 is used as one of the<br />

systematic checks. The efficiency as a function of P T for the kaon, pion, <strong>and</strong> slow<br />

pion are ǫ K , ǫ π , <strong>and</strong> ǫ πs , respectively. The overall efficiency of f<strong>in</strong>d<strong>in</strong>g a D ∗ is the<br />

product of the three; ǫ = ǫ K · ǫ π · ǫ πs . The <strong>in</strong>efficiency is then ξ = 1 − ǫ. Events are<br />

weighted accord<strong>in</strong>g to the track loss <strong>in</strong>efficiency:<br />

W =<br />

1 − ξ × (1.0 ± 0.20)<br />

. (8.27)<br />

1 − ξ<br />

The affect of reweight<strong>in</strong>g the event by a -20% (+20%) W is to <strong>in</strong>crease (decrease)<br />

the acceptance, this reduces (<strong>in</strong>creases) the cross section because σ ∝ 1/A.<br />

8.7.2 Systematic Checks<br />

The follow<strong>in</strong>g systematic checks are made:<br />

157


ID<br />

Description<br />

1. E e NOT smeared<br />

2. Scaled E e by ±1% <strong>in</strong> MC<br />

3. Scaled E Had by ±3% <strong>in</strong> MC<br />

4. E e cut <strong>in</strong>creased to 11 GeV<br />

5. Box cut <strong>in</strong>crease by 1.0 cm<br />

6. Z vtx cut decreased by 3 cm<br />

7. Y e clean<strong>in</strong>g cut reduced to 0.90<br />

8. Y JB clean<strong>in</strong>g cut <strong>in</strong>creased to 0.03<br />

9. δ h w<strong>in</strong>dow to 42 < E − P z < 57 GeV<br />

10. M(D 0 ) widened <strong>and</strong> narrowed by ±0.01 GeV<br />

11. ∆M widened <strong>and</strong> narrowed by ±0.001 GeV<br />

12. P T (π s ) distribution NOT re-weighted<br />

∗13. Track loss probability changed by ±20 %<br />

14. Changed P T (K,π,π s ) cut by ±0.02 GeV<br />

15. Doubled beauty content <strong>in</strong> MC<br />

∗16. Fit <strong>in</strong>stead of wrong charge subtraction<br />

∗17. HERWIG <strong>in</strong>stead of RAPGAP <strong>in</strong> MC<br />

Table 8.1: The systematic checks. The IDs with stars <strong>in</strong>dicate consistency checks <strong>and</strong> are<br />

not used when determ<strong>in</strong><strong>in</strong>g the systematic uncerta<strong>in</strong>ty.<br />

The first two systematic checks account for the uncerta<strong>in</strong>ty <strong>in</strong> the energy reconstruction<br />

<strong>in</strong> the CAL of the electron <strong>in</strong> MC. Check #3 accounts for the uncerta<strong>in</strong>ty<br />

of the hadronic energy reconstruction <strong>in</strong> the CAL <strong>in</strong> MC. Systematic checks #4 to<br />

11 check how sensitive the cross sections are to choice of the values that are cut on.<br />

Check #12 shows the effect of the re-weight<strong>in</strong>g of the π s distribution <strong>in</strong> MC. Check<br />

#13 accounts for the track loss <strong>in</strong>efficiency, but is not used when determ<strong>in</strong><strong>in</strong>g the<br />

systematic uncerta<strong>in</strong>ty. The uncerta<strong>in</strong>ty <strong>in</strong> the reconstruction of the momentum by<br />

the track<strong>in</strong>g detectors is accounted for by the 14 th systematic. Beauty is produced<br />

at HERA <strong>and</strong> a large fraction decay to D ∗ . To account for this, a beauty enriched<br />

MC is used <strong>in</strong> the analysis. The effect of doubl<strong>in</strong>g this beauty contribution is the<br />

15 th systematic. The f<strong>in</strong>al two, checks #16 <strong>and</strong> 17, are consistency checks <strong>and</strong> are<br />

158


not used as systematic checks.<br />

The fractional systematic uncerta<strong>in</strong>ties of not smear<strong>in</strong>g the electron energy is shown<br />

for the η, P T , Q 2 , <strong>and</strong> x distributions <strong>in</strong> Fig. 8.35. The green l<strong>in</strong>e, mirrored <strong>in</strong> the<br />

x−axis is the fractional statistical error for the distribution. The po<strong>in</strong>ts are the<br />

fractional systematic uncerta<strong>in</strong>ty of the check.<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

No Smear<strong>in</strong>g of the Electron Energy<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T<br />

(D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure 8.35: Systematic Check: No Electron Smear<strong>in</strong>g. The green l<strong>in</strong>e is mirrored on the<br />

negative y axis <strong>and</strong> <strong>in</strong>dicates the fractional statistical error, the po<strong>in</strong>ts are the<br />

systematic errors.<br />

The rema<strong>in</strong><strong>in</strong>g checks are <strong>in</strong> App. D.1.2. Most of the systematic checks have effects<br />

less that 3%. The exceptions are the three checks that <strong>in</strong>volve the description of the<br />

transverse momentum of the slow pion.<br />

159


Track Loss Probability<br />

The effect of decreas<strong>in</strong>g the track loss efficiency is as high as 35%. The fractional<br />

difference decreases as P T (D ∗ ) <strong>in</strong>creases, <strong>and</strong> decreases with Q 2 because Q 2 is proportional<br />

to P T . In fact, the fractional difference decreases with x as well; recall<br />

Q 2 = sxy.<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

MC EVT RWT w/(K, π, π s<br />

) Trk Loss Prb. −20%<br />

0<br />

0<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

−0.1<br />

−0.1<br />

−0.2<br />

MC EVT RWT w/(K, π, π s<br />

) Trk Loss Prb. +20%<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T (D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure 8.36: Track loss probability systematic check.<br />

No P T Re-Weight<br />

The result of not re-weight<strong>in</strong>g the slow pion’s P T distribution <strong>in</strong> MC is the next<br />

largest effect, which is as high as 35% <strong>in</strong> some b<strong>in</strong>s. Aga<strong>in</strong> it is noticed that the<br />

effect decreases as P T <strong>and</strong> as a result Q 2 (<strong>and</strong> x) <strong>in</strong>creases.<br />

160


Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

No Reweight<strong>in</strong>g of P (π s ) Distribution<br />

T<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T (D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure 8.37: No P T re-weight systematic check.<br />

P T (π s ) Cut<br />

Tighten<strong>in</strong>g <strong>and</strong> loosen<strong>in</strong>g the m<strong>in</strong>imum P T cut on the slow pion is the last large<br />

systematic effect exam<strong>in</strong>ed. The tighten<strong>in</strong>g <strong>and</strong> loosen<strong>in</strong>g effects appear to mirror<br />

each other, where the largest effect of 60% is noticed is <strong>in</strong> the lowest P T (D ∗ ) b<strong>in</strong>.<br />

Outside of that b<strong>in</strong>, the effect’s maximum is under 20%.<br />

161


Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Loosen Cut On Mimimum P T<br />

(π s )<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

Tighten Cut On Mimimum P (π s )<br />

T<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T (D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure 8.38: P T (π s ) cut systematic check.<br />

The trend of the fractional difference lessen<strong>in</strong>g as P T , Q 2 , <strong>and</strong> x <strong>in</strong>crease is observed<br />

<strong>in</strong> all three of these systematic checks. This is a further <strong>in</strong>dication that the cross<br />

sections are most sensitive to the P T description of the π s .<br />

Us<strong>in</strong>g a modified Gaussian for a fit to obta<strong>in</strong> the number of D ∗ c<strong>and</strong>idates, <strong>and</strong><br />

us<strong>in</strong>g HERWIG as the MC to determ<strong>in</strong>e the acceptances, both represent consistency<br />

checks <strong>and</strong> yield similar cross sections. These are shown <strong>in</strong> App. D.1.3, <strong>and</strong> are <strong>in</strong><br />

good agreement with theory.<br />

8.7.3 HVQDIS Prediction<br />

The next-to-lead<strong>in</strong>g-order neutral current DIS MC program HVQDIS is used to<br />

predict the theoretical differential D ∗ cross sections. HVQDIS was discussed <strong>in</strong><br />

§3.3.1. In addition to the differential cross sections, HVQDIS is used to predict the<br />

theoretical uncerta<strong>in</strong>ties, by vary<strong>in</strong>g the <strong>in</strong>put parameters. The default parameters<br />

162


for the HVQDIS program are<br />

• the PDF ZEUS-S [54],<br />

• charm quark mass m c = 1.5 GeV,<br />

• Peterson charm fragmentation parameter ǫ c = 0.035,<br />

• renormalization <strong>and</strong> factorization scale µ 2 R,F = √ Q 2 + 4m 2 c .<br />

The theoretical uncerta<strong>in</strong>ty <strong>in</strong> the cross section was obta<strong>in</strong>ed by vary<strong>in</strong>g the follow<strong>in</strong>g:<br />

• charm quark mass ∆m c ± 0.15 GeV,<br />

• Peterson fragmentation parameter ∆ǫ c ± 0.015,<br />

• chang<strong>in</strong>g renormalization <strong>and</strong> factorization scales used:<br />

– doubled default scale µ 2 R,F = 4√ Q 2 + 4m 2 c ,<br />

– halved default scale µ 2 R,F = 1/4√ Q 2 + 4m 2 c,<br />

– used µ 2 R,F = 2m c as scale,<br />

– used µ 2 R,F = MAX(√ Q 2 /4 + m 2 c,2m c ) as scale,<br />

Note that the appropriate ZEUS PDFs must be used when the renormalization <strong>and</strong><br />

factorization scales are charged.<br />

163


Frac. Diff.<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

Decreased m c<br />

Frac. Diff.<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

Increased m c<br />

Frac. Diff.<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

Decreased Peterson ∈<br />

0.05<br />

0.05<br />

0.05<br />

0<br />

0<br />

0<br />

-0.05<br />

-0.05<br />

-0.05<br />

-0.1<br />

P 10<br />

T [GeV]<br />

-0.1<br />

P 10<br />

T<br />

[GeV]<br />

-0.1<br />

P 10<br />

T<br />

[GeV]<br />

Frac. Diff.<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

Increased Peterson ∈<br />

Frac. Diff.<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

µ = 2m c<br />

R,F<br />

Frac. Diff.<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

Doubled µ<br />

R,F<br />

0.05<br />

0<br />

0.05<br />

0<br />

0.05<br />

0<br />

-0.05<br />

-0.05<br />

-0.05<br />

-0.1<br />

P 10<br />

T<br />

[GeV]<br />

-0.1<br />

P 10<br />

T<br />

[GeV]<br />

-0.1<br />

P 10<br />

T<br />

[GeV]<br />

Frac. Diff.<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

Halved µ<br />

R,F<br />

Frac. Diff.<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

2 2<br />

µ = MAX( Q /4 + m , 2m )<br />

R,F<br />

c c<br />

0.05<br />

0.05<br />

0<br />

0<br />

-0.05<br />

-0.05<br />

-0.1<br />

P 10<br />

T<br />

[GeV]<br />

-0.1<br />

P 10<br />

T<br />

[GeV]<br />

Figure 8.39: The fractional difference between the default HVQDIS prediction of the P T<br />

of the D ∗ cross section, the theoretical uncerta<strong>in</strong>ties are shown <strong>in</strong> blue. The<br />

theoretical uncerta<strong>in</strong>ties are <strong>in</strong>dicated.<br />

The theoretical uncerta<strong>in</strong>ty is determ<strong>in</strong>ed <strong>in</strong> the same manner as the systematic<br />

uncerta<strong>in</strong>ty of the cross section <strong>in</strong> §8.3.1. The difference <strong>in</strong> the theory value from<br />

each variation is summed <strong>in</strong> quadrature.<br />

The fractional difference between the default <strong>and</strong> the theoretical uncerta<strong>in</strong>ty <strong>in</strong> the<br />

HVQDIS prediction of the transverse momentum of the D ∗ is shown <strong>in</strong> Fig. 8.39.<br />

164


The rema<strong>in</strong><strong>in</strong>g uncerta<strong>in</strong>ties for η, Q 2 , <strong>and</strong> x are seen <strong>in</strong> Appendix D.1.4.<br />

8.8 D ∗ Results<br />

The differential cross sections <strong>in</strong>clud<strong>in</strong>g the HVQDIS NLO predictions are shown <strong>in</strong><br />

Fig. 8.40 to 8.43. The po<strong>in</strong>ts represent the data, the central value of the theory is the<br />

blue l<strong>in</strong>e, <strong>and</strong> the theoretical uncerta<strong>in</strong>ty is the solid yellow b<strong>and</strong>. The symmetric<br />

error bars on the data po<strong>in</strong>ts show the statistical error, the extension of the error<br />

bars are the systematic errors.<br />

The Differential D ∗ Cross Section with respect to P T<br />

[nb/GeV]<br />

dσ/dP T<br />

10<br />

1<br />

−1<br />

−1<br />

HERA II Data, L = 175.4 pb<br />

HVQDIS Central Value<br />

Theoretical Uncerta<strong>in</strong>ty<br />

10<br />

−2<br />

2 3 4 5 6 7 8 9 10<br />

*<br />

P T (D<br />

) [GeV]<br />

Figure 8.40: The differential D ∗ cross section with respect to P T .<br />

The D ∗ meson is produced at a higher rate at the lower P T region <strong>in</strong> Fig. 8.40. As<br />

P T <strong>in</strong>creases the rate of D ∗ production decreases. The theory is <strong>in</strong> agreement with<br />

165


the HERA II data.<br />

The Differential D ∗ Cross Section with respect to η<br />

dσ/dη [nb]<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D<br />

)<br />

Figure 8.41: The differential D ∗ cross section with respect to η.<br />

The production rate of D ∗ mesons <strong>in</strong> the η region exam<strong>in</strong>ed <strong>in</strong> Fig. 8.41 is relatively<br />

flat. The theory is <strong>in</strong> agreement with the HERA II data.<br />

166


10<br />

2<br />

10<br />

The Differential D ∗ Cross Section with respect to Q 2 ]<br />

[nb/GeV<br />

2<br />

2<br />

]<br />

dσ/dQ<br />

10<br />

10<br />

10<br />

−1<br />

−2<br />

−3<br />

10<br />

−4<br />

10<br />

−5<br />

Q<br />

2<br />

3<br />

10<br />

2<br />

[GeV ]<br />

Figure 8.42: The differential D ∗ cross section with respect to Q 2 .<br />

The production rate of D ∗ mesons <strong>in</strong> the Q 2 region exam<strong>in</strong>ed <strong>in</strong> Fig. 8.42 falls off<br />

with Q 2 . The theory is <strong>in</strong> agreement with the HERA II data.<br />

167


The Differential D ∗ Cross Section with respect to x<br />

dσ/dx [nb]<br />

4<br />

10<br />

3<br />

10<br />

2<br />

10<br />

10<br />

1<br />

10<br />

−1<br />

10<br />

−4<br />

10<br />

−3<br />

10<br />

−2<br />

10<br />

x<br />

−1<br />

Figure 8.43: The differential D ∗ cross section with respect to x.<br />

The production rate of D ∗ mesons <strong>in</strong> the x region exam<strong>in</strong>ed <strong>in</strong> Fig. 8.42 falls off<br />

with x, similar to both the P T <strong>and</strong> Q 2 cross sections. The theory is <strong>in</strong> agreement<br />

with the HERA II data.<br />

8.9 Extend<strong>in</strong>g Forward <strong>in</strong> η<br />

The addition of the STT <strong>and</strong> track<strong>in</strong>g improvements have allowed for tracks that<br />

are more forward <strong>in</strong> η to be used. The follow<strong>in</strong>g differential cross section is obta<strong>in</strong>ed<br />

us<strong>in</strong>g ZTT track<strong>in</strong>g (§5.3), <strong>and</strong> extends the range from η(D ∗ ) ∈ [−1.5,1.5]<br />

to η(D ∗ ) ∈ [−1.5,1.8]. The follow<strong>in</strong>g plots show the number of D ∗ c<strong>and</strong>idates, the<br />

acceptance us<strong>in</strong>g ZTT track<strong>in</strong>g, <strong>and</strong> f<strong>in</strong>ally the cross section <strong>in</strong>clud<strong>in</strong>g the NLO<br />

168


prediction <strong>in</strong> the most forward η b<strong>in</strong>.<br />

Num. of C<strong>and</strong>.<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

Figure 8.44: The number of D ∗ c<strong>and</strong>idates <strong>in</strong> the extended η region.<br />

169


Acceptance<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

-1.5<br />

0<br />

-1 -0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

Figure 8.45: The D ∗ acceptance <strong>in</strong> the extended η region us<strong>in</strong>g ZTT track<strong>in</strong>g. The acceptance<br />

of the most forward η po<strong>in</strong>t is low ≈ 5%.<br />

170


dσ/dη [nb]<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D<br />

)<br />

Figure 8.46: The D ∗ differential cross section with respect to η <strong>in</strong> the extended η region.<br />

The statistical significance of the extended η po<strong>in</strong>t is limited, however this serves as<br />

a test of us<strong>in</strong>g the ZTT track<strong>in</strong>g package. The statistical error on the last po<strong>in</strong>t is<br />

large. However, add<strong>in</strong>g data from the HERA II run period of 2006 to 2007 should<br />

improve this measurement.<br />

8.10 Numbers Dur<strong>in</strong>g 2006 <strong>and</strong> 2007<br />

Thus far D ∗ results from the HERA II data-tak<strong>in</strong>g period of 2003 to 2005, us<strong>in</strong>g an<br />

<strong>in</strong>tegrated lum<strong>in</strong>osity of 175.4 pb −1 , have been shown. However, the high energy<br />

runs (see §4.1) data-tak<strong>in</strong>g period ended <strong>in</strong> 2007, with a HERA II shutdown at<br />

the end of 2005. Dur<strong>in</strong>g this shutdown ZEUS made repairs to <strong>and</strong> moved detector<br />

components. The Monte Carlo used to describe the ZEUS detector <strong>and</strong> determ<strong>in</strong>e<br />

171


acceptances for the D ∗ data has yet to be updated 2 , pos<strong>in</strong>g a problem due to altered<br />

detector conditions. The data-tak<strong>in</strong>g period of 2006 <strong>and</strong> 2007 has an <strong>in</strong>tegrated<br />

lum<strong>in</strong>osity of 195.0 pb −1 . When comb<strong>in</strong>ed with the rema<strong>in</strong>der of the HERA II data<br />

this could potentially more than double the number of D ∗ c<strong>and</strong>idates, <strong>and</strong> reduce<br />

the statistical errors by 1/ √ 2.<br />

8.11 Summary<br />

The number of D ∗ c<strong>and</strong>idates is determ<strong>in</strong>ed us<strong>in</strong>g the wrong charge subtraction<br />

method. The acceptances are found us<strong>in</strong>g a charm enriched RAPGAP sample, <strong>and</strong><br />

range from 15 to 45%. The MC sample very D ∗ pure, with efficiencies of 15 to<br />

45%. The control plots <strong>in</strong>dicate that the MC describes the data reasonably well<br />

except for the P T description of the slow pion. The b<strong>in</strong> size of the differential cross<br />

sections is acceptable <strong>and</strong> can <strong>in</strong> fact be safely reduced because it falls well short<br />

of the resolution <strong>in</strong> the b<strong>in</strong>s. The size of the b<strong>in</strong>s are chosen such that the results<br />

are directly comparable to the HERA I data. The theoretical cross sections with<strong>in</strong><br />

errors are <strong>in</strong> good agreement with the HERA II data.<br />

2 At this time there is potentially a MC sample that may accurately describe the ZEUS detector<br />

<strong>and</strong> the D ∗ data for the HER of 2006 <strong>and</strong> 2007, further <strong>in</strong>vestigation is required.<br />

172


Chapter 9<br />

F cc<br />

2 at HERA II<br />

9.1 Introduction<br />

This chapter explores the extraction of the charm contribution F cc<br />

2 (x,Q2 ) to the<br />

proton structure function F 2 (x,Q 2 ) us<strong>in</strong>g DIS charm cross sections made <strong>in</strong> Q 2 − y<br />

b<strong>in</strong>s. Many of the tools used <strong>in</strong> the extraction of F cc<br />

2<br />

chapter <strong>and</strong> the results are presented here.<br />

were developed <strong>in</strong> the previous<br />

The b<strong>in</strong>n<strong>in</strong>g to measure F cc<br />

2 <strong>in</strong> the HERA II data is shown <strong>in</strong> Tab. 9.1, <strong>and</strong> was<br />

chosen such that it closely matches the b<strong>in</strong>n<strong>in</strong>g of the HERA I data [53]. Each y<br />

b<strong>in</strong> is represented by a s<strong>in</strong>gle y value. The center of gravity of the b<strong>in</strong>, i.e., the<br />

value at which there are an equal number of entries above <strong>and</strong> below <strong>in</strong> that b<strong>in</strong>, is<br />

used as the value for the y po<strong>in</strong>t. The y value is converted to a value of x us<strong>in</strong>g the<br />

relation Q 2 = sxy or x = Q 2 /sy where √ s = 318 GeV 2 . Similarly, each Q 2 region<br />

is represented by a Q 2 value equal to the center of gravity of the b<strong>in</strong>.<br />

For each y b<strong>in</strong> a ∆M distribution is made for both the right <strong>and</strong> wrong charge<br />

comb<strong>in</strong>ations. The number of D ∗ c<strong>and</strong>idates <strong>and</strong> the acceptance are determ<strong>in</strong>ed<br />

us<strong>in</strong>g the wrong charge subtraction method described <strong>in</strong> §8.1.3 <strong>and</strong> §8.2.<br />

173


Q 2 GeV 2 ID y B<strong>in</strong>s Value of x<br />

5.0 → 6.5 1) 0.02 → 0.08 0.00100<br />

2) 0.08 → 0.18 0.00035<br />

3) 0.18 → 0.33 0.00018<br />

Q 2 ≃ 5.5 GeV 2 4) 0.33 → 0.70 0.00007<br />

6.5 → 9.0 5) 0.02 → 0.08 0.00150<br />

6) 0.08 → 0.25 0.00060<br />

Q 2 ≃ 6.8 GeV 2 7) 0.25 → 0.70 0.00018<br />

9.0 → 14.0 8) 0.02 → 0.08 0.00300<br />

9) 0.08 → 0.20 0.00100<br />

10) 0.20 → 0.35 0.00035<br />

Q 2 ≃ 11 GeV 2 11) 0.35 → 0.70 0.00018<br />

14.0 → 22.0 12) 0.02 → 0.08 0.00300<br />

13) 0.08 → 0.20 0.00150<br />

14) 0.20 → 0.35 0.00060<br />

Q 2 ≃ 19 GeV 2 15) 0.37 → 0.70 0.00035<br />

22.0 → 44.0 16) 0.02 → 0.08 0.00600<br />

17) 0.08 → 0.22 0.00150<br />

18) 0.22 → 0.35 0.00100<br />

Q 2 ≃ 31 GeV 2 19) 0.35 → 0.70 0.00060<br />

44.0 → 90.0 20) 0.02 → 0.14 0.01200<br />

21) 0.14 → 0.28 0.00300<br />

Q 2 ≃ 61 GeV 2 22) 0.28 → 0.70 0.00150<br />

90.0 → 200.0 23) 0.02 → 0.14 0.03000<br />

24) 0.14 → 0.28 0.00600<br />

Q 2 ≃ 133 GeV 2 25) 0.28 → 0.70 0.00300<br />

200.0 → 1000.0 26) 0.02 → 0.23 0.03000<br />

Q 2 ≃ 510 GeV 2 27) 0.23 → 0.70 0.01200<br />

Table 9.1: Shown <strong>in</strong> this table are Q 2 regions divided <strong>in</strong>to b<strong>in</strong>s of y. An ID number is<br />

<strong>in</strong>dicated for further reference. The x value correspond<strong>in</strong>g to the y b<strong>in</strong> is shown.<br />

The selection criteria are identical to the selection used for the previous D ∗ crosssection<br />

measurements (see §8.1.2) with the added requirement that y is determ<strong>in</strong>ed<br />

us<strong>in</strong>g the double-angle method y DA . The y resolutions, acceptances, purities <strong>and</strong><br />

efficiencies are calculated us<strong>in</strong>g the same 632 pb −1 charm-enriched RAPGAP MC<br />

sample that was used to determ<strong>in</strong>e the previous differential D ∗ cross sections.<br />

174


9.1.1 y Resolution<br />

The y resolution us<strong>in</strong>g three different reconstruction techniques is shown for each<br />

y b<strong>in</strong> <strong>in</strong> Fig. 9.1 to 9.3. All three reconstruction methods; double-angle, electron,<br />

<strong>and</strong> Jacquet-Blondel, have resolutions σ(y) smaller than the width of the b<strong>in</strong>s ∆y.<br />

Entries<br />

300 N = 285.024<br />

Mean = 0.00262<br />

250<br />

σ = 0.014396<br />

200<br />

150<br />

100<br />

50<br />

Entries<br />

1000 N = 958.046<br />

Mean = −0.00013<br />

σ = 0.030356<br />

800<br />

600<br />

400<br />

200<br />

0<br />

−0.1 −0.05 0 0.05 0.1<br />

∆Y DA ;Y ∈ [0.02, 0.08]<br />

DA<br />

0<br />

−0.2 −0.1 0 0.1 0.2<br />

∆Y DA ;Y ∈ [0.08, 0.20]<br />

DA<br />

Entries<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

N = 779.318<br />

Mean = 0.00105<br />

σ = 0.057048<br />

−0.4 −0.2 0 0.2 0.4<br />

∆Y DA ;Y ∈ [0.20, 0.35]<br />

DA<br />

Entries<br />

800 N = 757.008<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Mean = −0.00948<br />

σ = 0.084551<br />

−0.5 0 0.5<br />

∆Y DA ;Y ∈ [0.35, 0.70]<br />

DA<br />

Figure 9.1: Y DA resolutions <strong>in</strong> regions of y <strong>in</strong>dicated <strong>in</strong> the figure. The resolutions, σ, are<br />

less than the b<strong>in</strong> widths.<br />

175


Entries<br />

160 N = 130.265<br />

140<br />

Mean = 0.00904<br />

σ = 0.023921<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

−0.1 −0.05 0 0.05 0.1<br />

∆Y e ;Y ∈ [0.02, 0.08]<br />

e<br />

Entries<br />

900 N = 840.323<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Mean = −0.01360<br />

σ = 0.031965<br />

−0.2 −0.1 0 0.1 0.2<br />

∆Y e ;Y ∈ [0.08, 0.20]<br />

e<br />

Entries<br />

1200 N = 1224.870<br />

Mean = −0.01949<br />

1000<br />

σ = 0.034080<br />

800<br />

600<br />

400<br />

Entries<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

N = 1238.257<br />

Mean = −0.01510<br />

σ = 0.031508<br />

200<br />

200<br />

−0.4<br />

0<br />

−0.2 0 0.2<br />

∆Y e ;Y e ∈ [0.20, 0.35]<br />

−0.4<br />

0<br />

−0.2 0 0.2 0.4<br />

∆Y e ;Y e ∈ [0.35, 0.70]<br />

Figure 9.2: Y e resolutions <strong>in</strong> regions of y <strong>in</strong>dicated <strong>in</strong> the figure. The resolutions, σ, are less<br />

than the b<strong>in</strong> widths.<br />

Entries<br />

350 N = 311.078<br />

300<br />

Mean = −0.00506<br />

σ = 0.010283<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

−0.1 −0.05 0 0.05 0.1<br />

∆Y JB ;Y ∈ [0.02, 0.08]<br />

JB<br />

Entries<br />

1200 N = 1173.317<br />

Mean = −0.01123<br />

1000<br />

σ = 0.019459<br />

800<br />

600<br />

400<br />

200<br />

0<br />

−0.1 0 0.1<br />

JB<br />

∆Y JB ;Y ∈ [0.08, 0.20]<br />

Entries<br />

1200 N = 1151.979<br />

Mean = −0.01346<br />

1000<br />

σ = 0.032108<br />

Entries<br />

1000<br />

800<br />

N = 941.977<br />

Mean = −0.01819<br />

σ = 0.049944<br />

800<br />

600<br />

400<br />

200<br />

600<br />

400<br />

200<br />

0<br />

−0.2 0 0.2<br />

JB<br />

∆Y JB ;Y ∈ [0.20, 0.35]<br />

0<br />

−0.4 −0.2 0 0.2 0.4<br />

∆Y JB ;Y ∈ [0.35, 0.70]<br />

JB<br />

Figure 9.3: Y JB resolutions <strong>in</strong> regions of y <strong>in</strong>dicated <strong>in</strong> the figure. The resolutions, σ, are<br />

less than the b<strong>in</strong> widths.<br />

176


The electron method has the worst resolution <strong>in</strong> the lowest y b<strong>in</strong>, however, it improves<br />

as y <strong>in</strong>creases. The double-angle <strong>and</strong> Jacquet-Blondel methods are comparable<br />

for each b<strong>in</strong> of y, but recall Figs. 8.32 <strong>and</strong> 8.30, which show their Q 2 resolutions;<br />

the Jacquet-Blondel method poorly reconstructs high Q 2 events relative to<br />

the double-angle method as Q 2 <strong>in</strong>creases.<br />

9.1.2 Acceptances, Purities, <strong>and</strong> Efficiencies<br />

As shown <strong>in</strong> the follow<strong>in</strong>g figures, the y acceptance for each Q 2 region peaks at ≈<br />

47%. The sample is quite pure, however, some b<strong>in</strong>s dip as low as 45%. The efficiency<br />

mirrors the acceptances rang<strong>in</strong>g from 5 to 40%.<br />

177


Acceptance<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

2<br />

2<br />

5 < Q < 6.5 GeV<br />

DA<br />

Acceptance<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

2<br />

2<br />

6.5 < Q < 9 GeV<br />

DA<br />

0<br />

-2<br />

2×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

Y DA<br />

0<br />

-2<br />

2×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

Y DA<br />

Acceptance<br />

0.3<br />

0.25<br />

Acceptance<br />

0.35<br />

0.3<br />

0.2<br />

0.25<br />

0.15<br />

0.2<br />

0.1<br />

0.05<br />

2<br />

2<br />

9 < Q < 14 GeV<br />

DA<br />

0.15<br />

0.1<br />

0.05<br />

2<br />

2<br />

14 < Q < 22 GeV<br />

DA<br />

0<br />

-2<br />

2×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

Y DA<br />

0<br />

-2<br />

2×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

Y DA<br />

Acceptance<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

2<br />

2<br />

22 < Q < 44 GeV<br />

DA<br />

Acceptance<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

2<br />

2<br />

44 < Q < 90 GeV<br />

DA<br />

0<br />

-2<br />

2×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

Y DA<br />

0<br />

-2<br />

2×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

Y DA<br />

Acceptance<br />

0.5<br />

0.4<br />

Acceptance<br />

0.5<br />

0.4<br />

0.3<br />

0.3<br />

0.2<br />

0.2<br />

0.1<br />

2<br />

2<br />

90 < Q < 200 GeV<br />

DA<br />

0.1<br />

2<br />

2<br />

200 < Q < 1000 GeV<br />

DA<br />

0<br />

-2<br />

2×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

Y DA<br />

0<br />

-2<br />

2×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

Y DA<br />

178<br />

Figure 9.4: Y DA acceptance <strong>in</strong> regions of Q 2 .


Purity<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

Purity<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.3<br />

0.2<br />

0.1<br />

2<br />

5 < Q<br />

DA<br />

2<br />

< 6.5 GeV<br />

0.2<br />

0.1<br />

2<br />

6.5 < Q<br />

DA<br />

2<br />

< 9 GeV<br />

0 -2<br />

2×10<br />

-2<br />

3×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

-1<br />

3×10<br />

Y DA<br />

0 -2<br />

2×10<br />

-2<br />

3×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

-1<br />

3×10<br />

Y DA<br />

Purity<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

2<br />

9 < Q<br />

DA<br />

2<br />

< 14 GeV<br />

Purity<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

2<br />

14 < Q<br />

DA<br />

2<br />

< 22 GeV<br />

0<br />

-2<br />

2×10<br />

-2<br />

3×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

-1<br />

3×10<br />

Y DA<br />

0<br />

-2<br />

2×10<br />

-2<br />

3×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

-1<br />

3×10<br />

Y DA<br />

Purity<br />

1<br />

0.9<br />

Purity<br />

1<br />

0.8<br />

0.7<br />

0.8<br />

0.6<br />

0.5<br />

0.6<br />

0.4<br />

0.3<br />

0.4<br />

0.2<br />

0.1<br />

2<br />

22 < Q<br />

DA<br />

2<br />

< 44 GeV<br />

0.2<br />

2<br />

44 < Q<br />

DA<br />

2<br />

< 90 GeV<br />

0 -2<br />

2×10<br />

-2<br />

3×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

-1<br />

3×10<br />

Y DA<br />

0 -2<br />

2×10<br />

-2<br />

3×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

-1<br />

3×10<br />

Y DA<br />

Purity<br />

1<br />

0.8<br />

0.6<br />

Purity<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.4<br />

0.2<br />

2<br />

90 < Q<br />

DA<br />

2<br />

< 200 GeV<br />

0.2<br />

200 < Q<br />

2<br />

DA<br />

2<br />

< 1000 GeV<br />

0<br />

-2<br />

2×10<br />

-2<br />

3×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

-1<br />

3×10<br />

Y DA<br />

0<br />

-2<br />

2×10<br />

-2<br />

3×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

-1<br />

3×10<br />

Y DA<br />

Figure 9.5: Y DA purity <strong>in</strong> regions of Q 2 .<br />

179


Efficiency<br />

0.09<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

2<br />

5 < Q<br />

DA<br />

2<br />

< 6.5 GeV<br />

Efficiency<br />

0.2<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

2<br />

6.5 < Q<br />

DA<br />

2<br />

< 9 GeV<br />

0 -2<br />

2×10<br />

-2<br />

3×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

-1<br />

3×10<br />

Y DA<br />

0 -2<br />

2×10<br />

-2<br />

3×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

-1<br />

3×10<br />

Y DA<br />

Efficiency<br />

0.25<br />

0.2<br />

Efficiency<br />

0.35<br />

0.3<br />

0.25<br />

0.15<br />

0.2<br />

0.1<br />

0.15<br />

0.1<br />

0.05<br />

2<br />

9 < Q<br />

DA<br />

2<br />

< 14 GeV<br />

0.05<br />

2<br />

14 < Q<br />

DA<br />

2<br />

< 22 GeV<br />

0<br />

-2<br />

2×10<br />

-2<br />

3×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

-1<br />

3×10<br />

Y DA<br />

0<br />

-2<br />

2×10<br />

-2<br />

3×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

-1<br />

3×10<br />

Y DA<br />

Efficiency<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

Efficiency<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.2<br />

0.25<br />

0.15<br />

0.1<br />

0.05<br />

2<br />

22 < Q<br />

DA<br />

2<br />

< 44 GeV<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

2<br />

44 < Q<br />

DA<br />

2<br />

< 90 GeV<br />

0 -2<br />

2×10<br />

-2<br />

3×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

-1<br />

3×10<br />

Y DA<br />

0 -2<br />

2×10<br />

-2<br />

3×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

-1<br />

3×10<br />

Y DA<br />

Efficiency<br />

0.5<br />

0.45<br />

0.4<br />

Efficiency<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

0.35<br />

0.3<br />

0.3<br />

0.25<br />

0.25<br />

0.2<br />

0.2<br />

0.15<br />

0.15<br />

0.1<br />

0.05<br />

2<br />

90 < Q<br />

DA<br />

2<br />

< 200 GeV<br />

0.1<br />

0.05<br />

200 < Q<br />

2<br />

DA<br />

2<br />

< 1000 GeV<br />

0<br />

-2<br />

2×10<br />

-2<br />

3×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

-1<br />

3×10<br />

Y DA<br />

0<br />

-2<br />

2×10<br />

-2<br />

3×10<br />

-1<br />

10<br />

-1<br />

2×10<br />

-1<br />

3×10<br />

Y DA<br />

Figure 9.6: Y DA efficiency <strong>in</strong> regions of Q 2 .<br />

180


9.1.3 Number of D ∗ C<strong>and</strong>idates<br />

The number of D ∗ c<strong>and</strong>idates <strong>in</strong> each Q 2 region divided <strong>in</strong> b<strong>in</strong>s of y is shown <strong>in</strong> Fig.<br />

9.7.<br />

Num. Of C<strong>and</strong>.<br />

160<br />

140<br />

120<br />

100<br />

Num. Of C<strong>and</strong>.<br />

400<br />

350<br />

300<br />

250<br />

80<br />

200<br />

60<br />

150<br />

40<br />

20<br />

2<br />

5 < Q<br />

DA<br />

2<br />

< 6.5 GeV<br />

100<br />

50<br />

2<br />

6.5 < Q<br />

DA<br />

2<br />

< 9 GeV<br />

0<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

Y DA<br />

0<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

Y DA<br />

Num. Of C<strong>and</strong>.<br />

600<br />

500<br />

400<br />

Num. Of C<strong>and</strong>.<br />

500<br />

400<br />

300<br />

300<br />

200<br />

200<br />

100<br />

2<br />

9 < Q<br />

DA<br />

2<br />

< 14 GeV<br />

100<br />

2<br />

14 < Q<br />

DA<br />

2<br />

< 22 GeV<br />

0<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

Y DA<br />

0<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

Y DA<br />

Num. Of C<strong>and</strong>.<br />

700<br />

600<br />

500<br />

400<br />

Num. Of C<strong>and</strong>.<br />

400<br />

350<br />

300<br />

250<br />

200<br />

300<br />

150<br />

200<br />

100<br />

2<br />

22 < Q<br />

DA<br />

2<br />

< 44 GeV<br />

100<br />

50<br />

2<br />

44 < Q<br />

DA<br />

2<br />

< 90 GeV<br />

0<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

Y DA<br />

0<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

Y DA<br />

Num. Of C<strong>and</strong>.<br />

200<br />

180<br />

160<br />

140<br />

120<br />

Num. Of C<strong>and</strong>.<br />

120<br />

100<br />

80<br />

100<br />

60<br />

80<br />

60<br />

40<br />

40<br />

20<br />

2<br />

90 < Q<br />

DA<br />

2<br />

< 200 GeV<br />

20<br />

2<br />

200 < Q<br />

DA<br />

2<br />

< 1000 GeV<br />

0<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

Y DA<br />

0<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

Y DA<br />

Figure 9.7: Number of D ∗ c<strong>and</strong>idates <strong>in</strong> regions of Q 2 . The ∆M distribution used to obta<strong>in</strong><br />

these numbers are shown <strong>in</strong> App. D.2.<br />

181


9.2 Results<br />

9.2.1 Cross Sections<br />

The cross sections <strong>in</strong> regions of Q 2 divided <strong>in</strong> b<strong>in</strong>s of y are shown.<br />

[nb]<br />

σ<br />

0.7<br />

0.6<br />

0.5<br />

2<br />

2<br />

Q = 5.5 GeV<br />

−1<br />

HERA II Data, L = 175.4 pb<br />

[nb]<br />

σ<br />

0.7<br />

0.6<br />

0.5<br />

2<br />

2<br />

Q = 6.8 GeV<br />

0.4<br />

HVQDIS NLO Central Value<br />

Theoretical Uncerta<strong>in</strong>ty<br />

0.4<br />

0.3<br />

0.3<br />

0.2<br />

0.2<br />

0.1<br />

0.1<br />

0<br />

−2<br />

2×10<br />

−1<br />

10<br />

−1<br />

2×10<br />

0<br />

−2<br />

2×10<br />

−1<br />

10<br />

−1<br />

2×10<br />

Y DA<br />

Y DA<br />

σ [nb]<br />

0.7<br />

0.6<br />

0.5<br />

2<br />

2<br />

Q = 11 GeV<br />

σ [nb]<br />

0.7<br />

0.6<br />

0.5<br />

2<br />

2<br />

Q = 19 GeV<br />

0.4<br />

0.4<br />

0.3<br />

0.3<br />

0.2<br />

0.2<br />

0.1<br />

0.1<br />

0<br />

−2<br />

2×10<br />

−1<br />

10<br />

−1<br />

2×10<br />

0<br />

−2<br />

2×10<br />

−1<br />

10<br />

−1<br />

2×10<br />

Y DA<br />

Y DA<br />

[nb]<br />

σ<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

−2<br />

2×10<br />

2<br />

2<br />

Q = 31 GeV<br />

−1<br />

10<br />

−1<br />

2×10<br />

[nb]<br />

σ<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

−2<br />

2×10<br />

2<br />

2<br />

Q = 61 GeV<br />

−1<br />

10<br />

−1<br />

2×10<br />

Y DA<br />

Y DA<br />

[nb]<br />

σ<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

−2<br />

2×10<br />

2<br />

2<br />

Q = 133 GeV<br />

−1<br />

10<br />

−1<br />

2×10<br />

[nb]<br />

σ<br />

0.1<br />

0.09<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

−2<br />

2×10<br />

2<br />

2<br />

Q = 510 GeV<br />

−1<br />

10<br />

−1<br />

2×10<br />

Y DA<br />

Y DA<br />

Figure 9.8: The HERA II data po<strong>in</strong>ts have both statistical <strong>and</strong> systematic uncerta<strong>in</strong>ties.<br />

The blue histogram is the theoretical prediction. The theoretical uncerta<strong>in</strong>ty is<br />

the yellow b<strong>and</strong>. The theoretical predictions are <strong>in</strong> agreement with the HERA<br />

II data.<br />

182


9.3 F cc<br />

2 Extraction<br />

The double differential charm cross section has the form (recall Eq. 2.23)<br />

dσ cc (x,Q 2 )<br />

dxdQ 2<br />

= 2πα2<br />

xQ 4 [(<br />

1 + (1 + y)<br />

2 ) F cc<br />

2 (x,Q 2 ) ] . (9.1)<br />

A ratio of the cross section <strong>in</strong> data relative to the theoretical value is used to extract<br />

F2 cc:<br />

F2,DATA(x,Q cc 2 ) = σcc DATA (x,Q2 )<br />

σTHEO cc (x,Q2 ) F 2,THEO(x,Q cc 2 ). (9.2)<br />

Thus, the ratios of the measured to theory cross sections (from Fig. 9.8) at their<br />

correspond<strong>in</strong>g x values (found <strong>in</strong> Tab. 9.1) are multiplied by the theory value of<br />

F cc<br />

2 ,THEO(x,Q 2 ) to obta<strong>in</strong> F cc<br />

2 ,DATA(x,Q 2 ).<br />

Both the theory cross sections, obta<strong>in</strong>ed us<strong>in</strong>g HVQDIS, <strong>and</strong> the charmed structure<br />

function F cc<br />

2 are determ<strong>in</strong>ed with a NLO FFN scheme PDF (see §3.3.1).<br />

The F cc<br />

2 results along with the theory curves with respect to x for <strong>in</strong>creas<strong>in</strong>g Q 2 ’s<br />

are shown <strong>in</strong> Fig. 9.9.<br />

The data <strong>and</strong> theory curves are reorganised to show F cc<br />

2 vs. Q2 for b<strong>and</strong>s of common<br />

x <strong>in</strong> Fig. 9.10. For clarity the data <strong>and</strong> theory curves are multiplied by a constant<br />

<strong>in</strong>dicated <strong>in</strong> the plot.<br />

The f<strong>in</strong>al plot, Fig. 9.11, shows the ration of the charm contribution F cc<br />

2<br />

F 2 proton structure function.<br />

to the total<br />

183


c c<br />

F 2<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−5<br />

10 2×10<br />

−5<br />

−4<br />

10 2×10<br />

−4<br />

2<br />

2<br />

Q = 5.5 GeV<br />

−3<br />

10 2×10<br />

−3<br />

−2<br />

10 2×10<br />

−2<br />

10<br />

x<br />

−1<br />

c c<br />

F 2<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−5<br />

10 2×10<br />

−5<br />

−4<br />

10 2×10<br />

−4<br />

2<br />

2<br />

Q = 6.8 GeV<br />

−3<br />

10 2×10<br />

−3<br />

−2<br />

10 2×10<br />

−2<br />

10<br />

x<br />

−1<br />

c c<br />

F 2<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−5<br />

10 2×10<br />

−5<br />

−4<br />

10 2×10<br />

−4<br />

2<br />

2<br />

Q = 11 GeV<br />

−3<br />

10 2×10<br />

−3<br />

−2<br />

10 2×10<br />

−2<br />

10<br />

x<br />

−1<br />

c c<br />

F 2<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−5<br />

10 2×10<br />

−5<br />

−4<br />

10 2×10<br />

−4<br />

2<br />

2<br />

Q = 19 GeV<br />

−3<br />

10 2×10<br />

−3<br />

−2<br />

10 2×10<br />

−2<br />

10<br />

x<br />

−1<br />

c c<br />

F 2<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−5<br />

10 2×10<br />

−5<br />

−4<br />

10 2×10<br />

−4<br />

2<br />

2<br />

Q = 31 GeV<br />

−3<br />

10 2×10<br />

−3<br />

−2<br />

10 2×10<br />

−2<br />

10<br />

x<br />

−1<br />

c c<br />

F 2<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−5<br />

10 2×10<br />

−5<br />

−4<br />

10 2×10<br />

−4<br />

2<br />

2<br />

Q = 61 GeV<br />

−3<br />

10 2×10<br />

−3<br />

−2<br />

10 2×10<br />

−2<br />

10<br />

x<br />

−1<br />

c c<br />

F 2<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−5<br />

10 2×10<br />

−5<br />

−4<br />

10 2×10<br />

−4<br />

2<br />

2<br />

Q = 133 GeV<br />

−3<br />

10 2×10<br />

−3<br />

−2<br />

10 2×10<br />

−2<br />

10<br />

x<br />

−1<br />

c c<br />

F 2<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−5<br />

10 2×10<br />

−5<br />

−4<br />

10 2×10<br />

−4<br />

2<br />

2<br />

Q = 510 GeV<br />

−3<br />

10 2×10<br />

−3<br />

−2<br />

10 2×10<br />

−2<br />

10<br />

x<br />

−1<br />

Figure 9.9: F2 cc vs. x at different Q 2 . The po<strong>in</strong>ts are the F2 cc data, while the blue curve<br />

represents the theoretical upper <strong>and</strong> lower bounds for F cc<br />

2 .<br />

184


)<br />

2<br />

(x, Q<br />

cc<br />

2<br />

F<br />

10<br />

5<br />

9<br />

x = 0.00008 (× 4 )<br />

8<br />

x = 0.00018 (× 4 )<br />

4<br />

10<br />

7<br />

x = 0.00035 (× 4 )<br />

6<br />

x = 0.00060 (× 4 )<br />

3<br />

10<br />

2<br />

10<br />

5<br />

x = 0.00100 (× 4 )<br />

4<br />

x = 0.00150 (× 4 )<br />

3<br />

x = 0.00300 (× 4 )<br />

10<br />

1<br />

2<br />

x = 0.00600 (× 4 )<br />

1<br />

x = 0.01300 (× 4 )<br />

−1<br />

10<br />

0<br />

x = 0.03000 (× 4 )<br />

−2<br />

10<br />

10<br />

2<br />

10<br />

3<br />

10<br />

2 2<br />

Q [GeV ]<br />

Figure 9.10: F2 cc vs. Q 2 at different x. The blue curve is the HVQDIS NLO prediction, the<br />

po<strong>in</strong>ts are the HERA II data. The theory curves <strong>and</strong> HERA II F2 cc values are<br />

multiplied by a constant <strong>in</strong>dicated <strong>in</strong> the plot.<br />

185


2<br />

/F<br />

cc<br />

F 2<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

10<br />

−5<br />

−4<br />

10<br />

−3<br />

10<br />

2<br />

2<br />

Q = 5.5 GeV<br />

−2<br />

10<br />

10<br />

x<br />

−1<br />

2<br />

/F<br />

cc<br />

F 2<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

10<br />

−5<br />

−4<br />

10<br />

−3<br />

10<br />

2<br />

2<br />

Q = 6.8 GeV<br />

−2<br />

10<br />

10<br />

x<br />

−1<br />

2<br />

/F<br />

cc<br />

F 2<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

10<br />

−5<br />

−4<br />

10<br />

−3<br />

10<br />

2<br />

2<br />

Q = 11 GeV<br />

−2<br />

10<br />

10<br />

x<br />

−1<br />

2<br />

/F<br />

cc<br />

F 2<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

10<br />

−5<br />

−4<br />

10<br />

−3<br />

10<br />

2<br />

2<br />

Q = 19 GeV<br />

−2<br />

10<br />

10<br />

x<br />

−1<br />

2<br />

/F<br />

cc<br />

F 2<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

10<br />

−5<br />

−4<br />

10<br />

−3<br />

10<br />

2<br />

2<br />

Q = 31 GeV<br />

−2<br />

10<br />

10<br />

x<br />

−1<br />

2<br />

/F<br />

cc<br />

F 2<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

10<br />

−5<br />

−4<br />

10<br />

−3<br />

10<br />

2<br />

2<br />

Q = 61 GeV<br />

−2<br />

10<br />

10<br />

x<br />

−1<br />

2<br />

/F<br />

cc<br />

F 2<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

10<br />

−5<br />

−4<br />

10<br />

−3<br />

10<br />

2<br />

2<br />

Q = 133 GeV<br />

−2<br />

10<br />

10<br />

x<br />

−1<br />

2<br />

/F<br />

cc<br />

F 2<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

10<br />

−5<br />

−4<br />

10<br />

−3<br />

10<br />

2<br />

2<br />

Q = 510 GeV<br />

−2<br />

10<br />

10<br />

x<br />

−1<br />

Figure 9.11: The ratio of the charm contribution F2 cc to total F 2 proton structure function<br />

is shown for <strong>in</strong>creas<strong>in</strong>g values of Q 2 . F2 cc is measured while F 2 is the theoretical<br />

prediction [53]. The charm contribution falls with <strong>in</strong>creas<strong>in</strong>g x <strong>and</strong> rises with<br />

<strong>in</strong>creas<strong>in</strong>g Q 2 . The charm contribution to the proton is as high as 40% at the<br />

smaller values of x.<br />

186


9.4 Summary<br />

The charm contribution to the proton structure function, F 2 , falls of with <strong>in</strong>creas<strong>in</strong>g<br />

x <strong>in</strong> all regions of Q 2 ; see Fig. 9.9. At low fractional momenta the charm density<br />

<strong>in</strong> the proton <strong>in</strong>creases. This is expected <strong>in</strong> this region because the proton’s parton<br />

distribution function (PDF) is dom<strong>in</strong>ated by the sea quarks. At higher fractional<br />

momenta the charm contribution falls off <strong>and</strong> the valence quarks beg<strong>in</strong> to dom<strong>in</strong>ate<br />

the PDF.<br />

The charm contribution to the photon PDF <strong>in</strong>creases with Q 2 , as seen <strong>in</strong> Fig. 9.10.<br />

At higher virtualities the proton probe has an <strong>in</strong>creas<strong>in</strong>g probability of strik<strong>in</strong>g<br />

a sea quark. The F cc<br />

2 contribution to the proton structure function appears to<br />

<strong>in</strong>creases without level<strong>in</strong>g off. In the simple quark parton model, scal<strong>in</strong>g is expected<br />

to show that at high Q 2 the structure functions no longer depend on Q 2 , i.e., become<br />

flat. Thus scal<strong>in</strong>g violations are observed <strong>and</strong> <strong>in</strong>dicate that the proton is more<br />

complicated than only the three valence quarks.<br />

187


Chapter 10<br />

Conclusions<br />

An overview of the HERA accelerator <strong>and</strong> the ZEUS detector is presented. Attention<br />

to the track<strong>in</strong>g <strong>and</strong> the energy reconstruction components is given.<br />

The simulation of the physics processes at HERA <strong>and</strong> of the ZEUS detector is discussed<br />

<strong>in</strong> the Monte Carlo chapter. The specific MC generators <strong>and</strong> cross section<br />

predictors, used <strong>in</strong> the thesis, are described.<br />

The track<strong>in</strong>g of charged particles us<strong>in</strong>g the ZEUS detector, specifically the daughters<br />

of the D ∗ meson, is discussed. The D ∗ track<strong>in</strong>g resolution <strong>and</strong> its track loss probability<br />

are made for the first time s<strong>in</strong>ce the addition of the micro vertex detector <strong>in</strong><br />

this thesis.<br />

This thesis describes how events are reconstructed <strong>and</strong> selected. Some quantities <strong>in</strong><br />

an event can be reconstructed <strong>in</strong> more than one way. Specifically, the reconstruction<br />

of the Lorentz <strong>in</strong>variant quantities Q 2 , x, <strong>and</strong> y are described. Triggers <strong>and</strong> cuts are<br />

used to select charmed events out of the many events at HERA.<br />

The theoretical framework used to underst<strong>and</strong> charm production at HERA is developed.<br />

The development describes that the DIS charm production cross sections can<br />

be factorized <strong>in</strong>to three <strong>in</strong>dependent parts, the hard scatter<strong>in</strong>g process, the proton<br />

188


structure, <strong>and</strong> fragmentation. For charm production, the dom<strong>in</strong>ant hard scatter<strong>in</strong>g<br />

process is photon gluon fusion. The proton structure is described by parton distribution<br />

functions, which are evolved us<strong>in</strong>g the DGLAP equations. The hadronization<br />

of charm quarks is modeled by the Peterson fragmentation function.<br />

How charm production is measured at HERA is described. The wrong charge subtraction<br />

method is used to determ<strong>in</strong>e the number of D ∗ c<strong>and</strong>idates. Differential<br />

cross sections of the P T , η, Q 2 , <strong>and</strong> x of the D ∗ are made <strong>and</strong> compared to theory.<br />

By add<strong>in</strong>g <strong>in</strong>formation from the straw tube tracker component, more forward tracks<br />

<strong>in</strong> η are <strong>in</strong>cluded <strong>in</strong>to the data. New differential cross sections with η extended, are<br />

made <strong>and</strong> presented.<br />

F<strong>in</strong>ally the charm contribution to the proton structure function is measured. <strong>Charm</strong><br />

<strong>in</strong> the proton is seen to <strong>in</strong>crease with Q 2 <strong>and</strong> with decreas<strong>in</strong>g x.<br />

189


Appendix A<br />

<strong>Charm</strong> Tagg<strong>in</strong>g via P 2,Rel<br />

T<br />

of Jets<br />

An alternate approach to tag charmed events <strong>in</strong>spired by [55, 56] is to exam<strong>in</strong>e the<br />

squared relative transverse momentum, P 2,Rel<br />

T<br />

, distribution of all objects <strong>in</strong> a jet<br />

relative to the jet axis. The two underly<strong>in</strong>g concepts to this approach are that the<br />

jet axis approximates the direction of the charm quark <strong>in</strong> the hard scatter <strong>and</strong> that<br />

charm quark hadronizes to a D ∗ decay<strong>in</strong>g along the mode D ∗ → D 0 π s ; see Fig.<br />

A.1. This D ∗ decay mode is significant because the daughters are produced very<br />

PT<br />

Rel<br />

PT<br />

Rel<br />

PT<br />

Rel<br />

Jet Axis<br />

D 0<br />

p D 0, m D 0<br />

P, M D<br />

D ∗ ∗<br />

p πs<br />

, m πs<br />

Hadronization<br />

π s<br />

a)<br />

c<br />

b)<br />

Figure A.1: a) In the hard scatter the charm quark hadronizes <strong>in</strong> the process creat<strong>in</strong>g a jet<br />

whose axis closely approximates its <strong>in</strong>itial direction. The transverse momentum<br />

of the particles with the jet are measure with respect to the jet axis. b) The<br />

two body decay of the D ∗ to a D 0 <strong>and</strong> π s .<br />

190


close to the k<strong>in</strong>ematic limit (M D ∗ ≈ M D 0 +M 1 πs ). As a result they have very little<br />

momentum relative to the parent D ∗ .<br />

The energies of the daughters <strong>in</strong> the D ∗ rest frame are found <strong>in</strong> Eq. A.1 <strong>and</strong> A.2.<br />

This is a two body decay, therefore, the daughters must have the same absolute<br />

momentum <strong>in</strong> the parent’s rest frame (see Eq. A.3). Thus, the maximum possible<br />

transverse momentum squared relative to the D ∗ is given by Eq. A.4. This occurs<br />

when the slow pion <strong>and</strong> D 0 decay <strong>in</strong> a direction perpendicular to the D ∗ axis.<br />

E D 0 = M2 D ∗ − m2 π s<br />

+ m 2 D 0<br />

2M D ∗<br />

(A.1)<br />

The P 2,Rel<br />

T<br />

P 2,Rel<br />

T<br />

E πs = M2 D ∗ − m2 D 0 + m 2 π s<br />

2M D ∗<br />

|p D 0| = |p πs |<br />

[(<br />

M<br />

2<br />

D ∗ − (m D 0 + m πs ) 2) ( MD 2 ∗ − (m D 0 − m π s<br />

) 2)] 1/2<br />

=<br />

2M D ∗<br />

(A.2)<br />

(A.3)<br />

P 2,Rel<br />

T<br />

≤ |p D 0| 2 ≈ 0.001568 GeV 2 (A.4)<br />

distribution of particles with<strong>in</strong> a jet should have an observable signal at<br />

< 0.0016 GeV 2 for D ∗ events relative to events without D ∗ mesons.<br />

An advantage of us<strong>in</strong>g this approach to tag D ∗ c<strong>and</strong>idates over the wrong charge<br />

subtraction method is that the subsequent D 0 → Kπ decay does not need to be<br />

reconstructed. The D 0 reconstruction mode has a branch<strong>in</strong>g fraction of Γ D 0 →Kπ =<br />

(3.80 ± 0.07) %. Requir<strong>in</strong>g the specific D 0 decay reduces the potential number of<br />

tagged D ∗ events by 96% 2 . For this reason the P 2,Rel<br />

T<br />

approach can have a large<br />

ga<strong>in</strong> <strong>in</strong> statistics over the wrong-charge subtraction method.<br />

The follow<strong>in</strong>g sections will discuss jets <strong>and</strong> how they are reconstructed, <strong>and</strong> show<br />

1 The masses are M D ∗ = 2.0100 ± 0.0004 GeV, M D 0 = 1.8645 ± 0.0004 GeV, <strong>and</strong> M πs =<br />

0.13957018 ± 0.00000035 GeV [1].<br />

2 Includ<strong>in</strong>g reconstruction <strong>in</strong>efficiencies further reduces the number of tagged D ∗ .<br />

191


Monte Carlo results for a charm-enriched RAPGAP sample.<br />

A.1 Jet Reconstruction<br />

A jet can be def<strong>in</strong>ed as “a large amount of hadronic energy <strong>in</strong> a small angular<br />

region” [57]. Dur<strong>in</strong>g the hard scatter quarks, while hadroniz<strong>in</strong>g, can <strong>in</strong>itiate jet<br />

production. Reasons to use jets to measure heavy quark production are that the<br />

effects from fragmentation are reduced, <strong>and</strong> jets are a good approximation of the<br />

outgo<strong>in</strong>g partons from the hard scatter. Neutral hadrons created <strong>in</strong> the jet will go<br />

undetected by the track<strong>in</strong>g detectors but will deposit energy <strong>in</strong> the calorimeter. For<br />

this reason jets can reconstruct the total energy along with the direction of the hard<br />

scatter.<br />

Two commonly used jet reconstruction algorithms are a cone-type algorithm [58],<br />

which maximizes the amount of energy that can be covered by cones of a fixed size,<br />

<strong>and</strong> a cluster<strong>in</strong>g algorithm [59], which iteratively assigns particles to a jet when an<br />

energy angle variable y ij exceeds a resolution parameter y cut . ZEUS uses the k T -<br />

cluster<strong>in</strong>g algorithm for jet reconstruction because it h<strong>and</strong>les multi-jet events better<br />

[59].<br />

A.1.1 k T Cluster<strong>in</strong>g<br />

The k T -cluster<strong>in</strong>g algorithm typically runs over energy deposits <strong>in</strong> the calorimeter,<br />

however energy flow objects, called EFO (see §6.5), are used at ZEUS. EFOs <strong>in</strong>clude<br />

CAL <strong>in</strong>formation <strong>and</strong> tracks that may not correspond to energy deposits but also<br />

represent hadronic energy. Cluster<strong>in</strong>g EFOs <strong>in</strong>to a jet requires a test variable d kl<br />

that specifies whether hadrons h k <strong>and</strong> h l belong to the same cluster, <strong>and</strong> a recomb<strong>in</strong>ation<br />

procedure that relates cluster resolution variables to the hadrons belong<strong>in</strong>g<br />

192


to them. The cluster<strong>in</strong>g algorithm uses the ZEUS coord<strong>in</strong>ate system discussed <strong>in</strong><br />

§4.3.1, boosted <strong>in</strong>to the center-of-mass system of the ep collision. The follow<strong>in</strong>g<br />

def<strong>in</strong>itions are required for cluster<strong>in</strong>g:<br />

• energy of hadron h k , E k ,<br />

• angle between hadrons h k <strong>and</strong> h l , θ kl ,<br />

• angle between hadron h k <strong>and</strong> <strong>in</strong>com<strong>in</strong>g proton momentum, θ kB .<br />

The jet test variables are<br />

d kl = 2m<strong>in</strong>(E 2 k ,E2 l )(1 − cos θ kl), (A.5)<br />

d kB = 2E 2 k (1 − cos θ kB), (A.6)<br />

where “m<strong>in</strong>” refers to the lesser of the two hadron energies. The generalized radius<br />

R 2 kl is R 2 kl = (η k − η l ) 2 + (φ k − φ l ) 2 . (A.7)<br />

Cluster<strong>in</strong>g <strong>in</strong>to jets is a two step process: a pre-cluster<strong>in</strong>g stage, which separates<br />

beam jets (jets associated to the proton remnant) from hard f<strong>in</strong>al-state jets, <strong>and</strong><br />

resolv<strong>in</strong>g hard f<strong>in</strong>al-state jets <strong>in</strong>to sub-jets.<br />

Pre-Cluster<strong>in</strong>g of Hadrons<br />

Pre-cluster<strong>in</strong>g is a three step process:<br />

1. For every hadron h k the values d kl <strong>and</strong> d kB are determ<strong>in</strong>ed.<br />

2. If d kl is the smaller of {d kl ,d kB } then h k <strong>and</strong> h l are merged <strong>in</strong>to a pseudoparticle<br />

with momentum p (kl) accord<strong>in</strong>g to a recomb<strong>in</strong>ation scheme described<br />

shortly. If d kB is smaller then hadron h k is <strong>in</strong>cluded <strong>in</strong> the beam jet.<br />

193


3. The procedure is repeated for all particles <strong>and</strong> pseudoparticles until all objects<br />

have d kl or d kB larger than a cut-off value d cut .<br />

The stopp<strong>in</strong>g parameter d cut def<strong>in</strong>es the hard scale of the process, i.e., the boundary<br />

between the low transverse momentum k t scatter<strong>in</strong>g <strong>and</strong> the hard scatter<strong>in</strong>g<br />

subprocesses. Hadron c<strong>and</strong>idates are now factorized <strong>in</strong>to hard f<strong>in</strong>al-state (related<br />

to the hard scatter<strong>in</strong>g process) jets <strong>and</strong> beam jets (low k t ).<br />

Resolv<strong>in</strong>g Sub-Jets<br />

The beam jets determ<strong>in</strong>ed above are removed from the event. Sub-jets are resolved<br />

from f<strong>in</strong>al-state jets accord<strong>in</strong>g to the follow<strong>in</strong>g process:<br />

1. Def<strong>in</strong>e a resolution parameter y cut = Q 2 0 /d cut < 1, where Q 2 0 is the fragmentation<br />

scale of the jets. Soft hadrons, produced from the fragmentation of the<br />

hard partons (<strong>in</strong>volved <strong>in</strong> the hard scatter), are merged <strong>in</strong>to the hard parton<br />

jet accord<strong>in</strong>g to this scale.<br />

2. For any hadron <strong>in</strong> a hard f<strong>in</strong>al-state jet, determ<strong>in</strong>e the rescaled resolution<br />

variable y kl = d kl /d cut .<br />

3. For y ij , the smallest y kl <strong>in</strong> a hard f<strong>in</strong>al-state jet, if y ij < y cut then comb<strong>in</strong>e p i<br />

<strong>and</strong> p j <strong>in</strong>to a s<strong>in</strong>gle pseudoparticle p ij accord<strong>in</strong>g to recomb<strong>in</strong>ation scheme.<br />

4. Steps 2 <strong>and</strong> 3 are repeated for all pairs of particles <strong>and</strong> pseudoparticles with<br />

y kl < y cut . The rema<strong>in</strong><strong>in</strong>g objects <strong>in</strong> the hard f<strong>in</strong>al-state jet are the sub-jets.<br />

Recomb<strong>in</strong>ation Scheme<br />

When particles or pseudoparticles h i <strong>and</strong> h j pass y ij < y cut they are merged <strong>in</strong>to<br />

a s<strong>in</strong>gle pseudoparticle with 4-momentum, pseudorapidity, <strong>and</strong> azimuthal angle ac-<br />

194


cord<strong>in</strong>g to the p t weighted recomb<strong>in</strong>ation scheme:<br />

p t(ij) = p ti + p tj ,<br />

(A.8)<br />

η (ij) = p tiη i + p tj η j<br />

p t(ij)<br />

, (A.9)<br />

φ (ij) = p tiφ i + p tj φ j<br />

p t(ij)<br />

. (A.10)<br />

The result of the k t -cluster<strong>in</strong>g algorithm is to have jets whose momentum approximates<br />

the momentum of the partons <strong>in</strong>volved <strong>in</strong> the hard scatter<strong>in</strong>g process.<br />

A.2 Event Selection<br />

The charm-enriched RAPGAP sample of 343 pb −1 mentioned <strong>in</strong> §3.2.1 is used for<br />

this analysis. The follow<strong>in</strong>g are requirements that the events must pass:<br />

• Q 2 > 1.5 GeV 2 (<strong>in</strong>tr<strong>in</strong>sic to the MC sample),<br />

• an electron found,<br />

• E e > 10 GeV,<br />

• 40 < δ h < 60 GeV,<br />

• |Z vtx | < 30 cm,<br />

• y jb > 0.02 ∩ y e < 0.95,<br />

• a generated D ∗ decay<strong>in</strong>g along D ∗ → D 0 π s .<br />

A.3 P 2,Rel<br />

T<br />

Distribution <strong>in</strong> RAPGAP<br />

As a feasibility test the slow pion P 2,Rel<br />

T<br />

distribution <strong>in</strong> MC is made. The slow<br />

pion is identified by a rout<strong>in</strong>e that matches reconstructed tracks (R) to their generated<br />

tracks (G) with the requirement that the generated track is a pion, which is<br />

195


the daughter of a D ∗ decay<strong>in</strong>g along D ∗ → D 0 π s . The k T -cluster<strong>in</strong>g algorithm is<br />

run over both the generated f<strong>in</strong>al-state particles <strong>and</strong> the reconstructed particles to<br />

identify the jets <strong>in</strong> the event. In addition the algorithm can identify <strong>in</strong> which jet<br />

a particle ends up. With this <strong>in</strong>formation the slow pion is uniquely identified <strong>in</strong> a<br />

manner impossible to do <strong>in</strong> data. The P 2,Rel<br />

T<br />

distribution of the slow pion <strong>in</strong> MC<br />

should provide a signal much cleaner than can be accomplished <strong>in</strong> data.<br />

The P 2,Rel<br />

T<br />

’s of the generated π s with respect to the generated D ∗ axis <strong>and</strong> the<br />

generated D ∗ jet axis are shown below.<br />

196


Entries<br />

250<br />

200<br />

a) P<br />

2,Rel<br />

T<br />

*<br />

wrt D of π s<br />

Axis<br />

150<br />

100<br />

50<br />

0<br />

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01<br />

2,Rel<br />

2<br />

(π s,G<br />

) [GeV ]<br />

P T<br />

Entries<br />

50<br />

40<br />

b) P<br />

2,Rel<br />

T<br />

*<br />

wrt D of π s<br />

Jet Axis<br />

30<br />

20<br />

10<br />

0<br />

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01<br />

2,Rel<br />

2<br />

(π s,G<br />

) [GeV ]<br />

P T<br />

Figure A.2: a) P 2,Rel<br />

T<br />

b) P 2,Rel<br />

T<br />

of π s with respect to the D ∗ axis.<br />

of π s with respect to the D ∗ jet axis.<br />

The D ∗ jet is the jet to which the slow pion is associated.<br />

The k<strong>in</strong>ematic limit of P 2,Rel<br />

T<br />

< 0.0016 GeV 2 is clearly seen as expected <strong>in</strong> Fig.<br />

A.2a). The same distribution is made <strong>in</strong> Fig. A.2b) with the P 2,Rel<br />

T<br />

197<br />

of the π s with


espect to the D ∗ jet axis. However, no observable signal is present. This is alarm<strong>in</strong>g<br />

consider<strong>in</strong>g the P 2,Rel<br />

T<br />

particles <strong>in</strong> the D ∗ jet.<br />

distribution is of only the slow pion <strong>in</strong> the D ∗ jet <strong>and</strong> not all<br />

To check if particles are identified correctly a correlation of the generated P T of the<br />

slow pion <strong>and</strong> the generated P T of the D ∗ is made Fig. A.3.<br />

P T<br />

(π s,G<br />

) [GeV]<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20<br />

*<br />

P T<br />

(D ) [GeV]<br />

G<br />

Figure A.3: The P T correlation between the generated π s <strong>and</strong> D ∗ .<br />

K<strong>in</strong>ematic constra<strong>in</strong>ts limit the P T of the π s relative to its parent D ∗ . A clear<br />

boundary is seen, which <strong>in</strong>dicates particles are identified correctly.<br />

To check if the generated D ∗ approximates the D ∗ jet axis <strong>and</strong> <strong>in</strong> fact to test if the<br />

D ∗ is correctly placed <strong>in</strong>to a jet, the correlation between the generated D ∗ <strong>and</strong> the<br />

198


*<br />

*<br />

*<br />

generated D ∗ jet is made for P T , η, <strong>and</strong> φ <strong>in</strong> the follow<strong>in</strong>g Fig. A.4.<br />

Jet)<br />

P T<br />

(D<br />

G<br />

30<br />

25<br />

Jet)<br />

η(D<br />

G<br />

2.5<br />

2<br />

1.5<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25 30 *<br />

P T<br />

(D )<br />

G<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

-2.5<br />

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 *<br />

η(D )<br />

G<br />

Jet)<br />

φ(D<br />

G<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-3 -2 -1 0 1 2 3 *<br />

φ(D )<br />

G<br />

Figure A.4: The P T , η, <strong>and</strong> φ correlation between the generated D ∗ <strong>and</strong> D ∗ jet.<br />

The generated D ∗ <strong>and</strong> D ∗ jet axis appear to be correlated as is seen <strong>in</strong> the three<br />

figures. However, the correlation <strong>in</strong> P T looks the weakest. It appears that this level<br />

of correlation between the D ∗ <strong>and</strong> the D ∗ jet is not strong enough for this study to<br />

work at ZEUS.<br />

An additional potential problem occurs when look<strong>in</strong>g at the P T correlation between<br />

199


the highest generated <strong>and</strong> reconstructed P T jets, as seen <strong>in</strong> Fig. A.5.<br />

) [GeV]<br />

P T<br />

(Jet<br />

R<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

P T<br />

(Jet ) [GeV]<br />

G<br />

Figure A.5: The P T correlation between the reconstructed D ∗ jet <strong>and</strong> generated D ∗ jet.<br />

From this plot a generated jet can be reconstructed with a transverse momentum<br />

difference of as much as 5 GeV. Consider<strong>in</strong>g that the bulk of the jets have P T that<br />

lie with<strong>in</strong> 2 to 15 GeV, this 5 GeV variation is significant.<br />

A.4 Summary<br />

The P 2,Rel<br />

T<br />

approach was done on a charm-enriched RAPGAP sample <strong>and</strong> showed<br />

no observable signal at the generator level. The likelihood of observ<strong>in</strong>g the signal <strong>in</strong><br />

data is small. This version of RAPGAP produces a D ∗ decay<strong>in</strong>g via D ∗ → D 0 π s once<br />

<strong>in</strong> every 8 events, far higher than at HERA. The slow pion <strong>and</strong> D ∗ at the generator<br />

level can be uniquely identified. This means the jet the π s w<strong>in</strong>ds up <strong>in</strong> is known<br />

200


<strong>and</strong> yet on a generator level no signal is observed. In data the π s is impossible to<br />

uniquely identify. In addition many slow pions are lost <strong>in</strong> the reconstruction phase.<br />

The feasibility of such a study over the data seems small.<br />

201


Appendix B<br />

D ∗+ <strong>and</strong> D ∗− <strong>Production</strong> Rates<br />

B.1 Introduction<br />

The D ∗+ <strong>and</strong> D ∗− production rates are explored <strong>in</strong> this appendix. These rates<br />

should be the same at HERA consider<strong>in</strong>g that the ma<strong>in</strong> source of D ∗ production<br />

is via boson gluon fusion. The actual reconstruction rate is not symmetric; D ∗+<br />

are better reconstructed than D ∗− because positively charged tracks are better reconstructed<br />

by the CTD than the negatively charged tracks; see §4.6.3. The D ∗+ ,<br />

which decays via D ∗+ → (D 0 )π s + → (K − π + )π s + , has three charged tracks, two of<br />

which are positive, compared to the D ∗− , D ∗− → (D 0 )πs − → (K + π − )πs − with only<br />

one of its three tracks positively charged.<br />

B.1.1 Wrong Charge Subtraction Revisited<br />

The number of D ∗ c<strong>and</strong>idates is determ<strong>in</strong>ed us<strong>in</strong>g the wrong-charge subtraction<br />

method described <strong>in</strong> §8.1.3. For the D ∗+ the ∆M right charge distribution is made<br />

up of three charged tracks two of which are positive with the requirement that the<br />

two like charged tracks are assigned the pion mass, while the oppositely charged<br />

track is assigned the kaon mass (the reverse is true for the D ∗− ). The wrong-charge<br />

∆M distribution for the D ∗+ is made up of three tracks: the tracks associated<br />

202


to the D 0 daughters, the kaon <strong>and</strong> pion, are (<strong>in</strong>correctly) both positively charged,<br />

<strong>and</strong> the track assigned the slow pion mass is (<strong>in</strong>correctly) negatively charged, i.e.,<br />

(K,π,π s ) = (+,+, −). Similarly, the wrong-charge ∆M distribution for the D ∗−<br />

has (K,π,π s ) = (−, −,+). Once the RC <strong>and</strong> WC distributions are obta<strong>in</strong>ed the<br />

number of D ∗+ <strong>and</strong> D ∗− c<strong>and</strong>idates is determ<strong>in</strong>ed <strong>in</strong> the same fashion as before.<br />

B.2 D ∗± Results<br />

The tools to obta<strong>in</strong> the number of D ∗ c<strong>and</strong>idates are developed already <strong>and</strong> the<br />

results are shown below.<br />

B.2.1 D ∗± Number Of C<strong>and</strong>idates<br />

C<strong>and</strong>.<br />

*±<br />

Num. Of D<br />

700<br />

600<br />

500<br />

400<br />

C<strong>and</strong>.<br />

*±<br />

Num. Of D<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

300<br />

200<br />

100<br />

*+<br />

D<br />

*-<br />

D<br />

200<br />

100<br />

0<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

0<br />

2 3 4 5 6 7 8 9 10 *<br />

P T (D ) [GeV]<br />

C<strong>and</strong>.<br />

1000<br />

C<strong>and</strong>.<br />

1400<br />

*±<br />

Num. Of D<br />

800<br />

*±<br />

Num. Of D<br />

1200<br />

1000<br />

600<br />

800<br />

400<br />

600<br />

200<br />

400<br />

200<br />

0<br />

10<br />

2<br />

10<br />

3<br />

10<br />

2 2<br />

Q [GeV ]<br />

0<br />

-4<br />

10<br />

-3<br />

10<br />

-2<br />

10<br />

-1<br />

10<br />

x<br />

Figure B.1: Number of D ∗± c<strong>and</strong>idates.<br />

203


B.2.2 D ∗± Difference <strong>in</strong> D ∗+ - D ∗−<br />

)<br />

*-<br />

) - Num(D<br />

*+<br />

Num(D<br />

200<br />

150<br />

100<br />

)<br />

*-<br />

) - Num(D<br />

*+<br />

Num(D<br />

500<br />

400<br />

300<br />

200<br />

50<br />

100<br />

0<br />

0<br />

-100<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

2 3 4 5 6 7 8 9 10 *<br />

P T (D ) [GeV]<br />

)<br />

*-<br />

) - Num(D<br />

*+<br />

300<br />

250<br />

)<br />

*-<br />

) - Num(D<br />

*+<br />

500<br />

400<br />

Num(D<br />

200<br />

Num(D<br />

300<br />

150<br />

200<br />

100<br />

50<br />

100<br />

0<br />

0<br />

-50<br />

10<br />

2<br />

10<br />

3<br />

10<br />

2 2<br />

Q [GeV ]<br />

-100<br />

-4<br />

10<br />

-3<br />

10<br />

-2<br />

10<br />

-1<br />

10<br />

x<br />

Figure B.2: Difference <strong>in</strong> the number of D ∗+ - D ∗− c<strong>and</strong>idates.<br />

204


B.2.3 D ∗± Acceptances<br />

Acceptance<br />

*±<br />

D<br />

0.3<br />

0.25<br />

Acceptance<br />

*±<br />

D<br />

0.45<br />

0.4<br />

0.35<br />

0.2<br />

0.3<br />

0.15<br />

0.25<br />

0.2<br />

0.1<br />

0.05<br />

*+<br />

D<br />

*-<br />

D<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

0<br />

2 3 4 5 6 7 8 9 10 *<br />

P T (D ) [GeV]<br />

Acceptance<br />

*±<br />

D<br />

0.4<br />

0.35<br />

0.3<br />

Acceptance<br />

*±<br />

D<br />

0.35<br />

0.3<br />

0.25<br />

0.25<br />

0.2<br />

0.2<br />

0.15<br />

0.15<br />

0.1<br />

0.1<br />

0.05<br />

0.05<br />

0<br />

10<br />

2<br />

10<br />

3<br />

10<br />

2 2<br />

Q [GeV ]<br />

0<br />

-4<br />

10<br />

-3<br />

10<br />

-2<br />

10<br />

-1<br />

10<br />

x<br />

Figure B.3: Acceptances of D ∗± c<strong>and</strong>idates.<br />

205


2<br />

2<br />

]<br />

B.2.4 D ∗± Differential Cross Sections<br />

dσ/dη [nb]<br />

*+<br />

D<br />

1.2<br />

1<br />

0.8<br />

dσ/dP T<br />

[nb/GeV]<br />

*+<br />

D<br />

1<br />

0.6<br />

-1<br />

10<br />

0.4<br />

0.2<br />

-2<br />

10<br />

0<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

*<br />

η(D<br />

)<br />

2 3 4 5 6 7 8 9 10<br />

*<br />

P T (D<br />

) [GeV]<br />

[nb/GeV<br />

-1<br />

10<br />

dσ/dx[nb]<br />

3<br />

10<br />

*+<br />

dσ/dQ<br />

*+<br />

D<br />

-2<br />

10<br />

D<br />

2<br />

10<br />

-3<br />

10<br />

10<br />

-4<br />

10<br />

1<br />

-5<br />

10<br />

10<br />

2<br />

10<br />

3<br />

10<br />

2<br />

2<br />

Q<br />

[GeV<br />

]<br />

-1<br />

10<br />

-4<br />

10<br />

-3<br />

10<br />

-2<br />

10<br />

-1<br />

10<br />

x<br />

Figure B.4: D ∗+ differential cross sections. The blue po<strong>in</strong>ts are data, blue histogram is the<br />

HVQDIS prediction, yellow b<strong>and</strong> is the theoretical uncerta<strong>in</strong>ties.<br />

206


dσ/dη [nb]<br />

*-<br />

D<br />

1<br />

0.8<br />

dσ/dP T<br />

[nb/GeV]<br />

*-<br />

1<br />

D<br />

2<br />

2<br />

]<br />

0.6<br />

-1<br />

10<br />

0.4<br />

0.2<br />

-2<br />

10<br />

0<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

*<br />

η(D<br />

)<br />

*<br />

P 10<br />

(D<br />

T ) [GeV]<br />

[nb/GeV<br />

-1<br />

10<br />

dσ/dx[nb]<br />

dσ/dQ<br />

*-<br />

D<br />

-2<br />

10<br />

*-<br />

3<br />

10<br />

D<br />

2<br />

10<br />

-3<br />

10<br />

10<br />

-4<br />

10<br />

1<br />

-5<br />

10<br />

10<br />

2<br />

10<br />

3<br />

10<br />

2<br />

2<br />

Q<br />

[GeV<br />

]<br />

-1<br />

10<br />

-4<br />

10<br />

-3<br />

10<br />

-2<br />

10<br />

-1<br />

10<br />

x<br />

Figure B.5: D ∗− differential cross sections. The red po<strong>in</strong>ts are data, green histogram is the<br />

HVQDIS prediction, yellow b<strong>and</strong> is the theoretical uncerta<strong>in</strong>ties.<br />

B.2.5 D ∗+ to D ∗− Asymmetry<br />

Us<strong>in</strong>g the differential cross sections an asymmetry <strong>in</strong> the production rate is determ<strong>in</strong>ed:<br />

A i = σ i(D ∗+ ) − σ i (D ∗− )<br />

σ i (D ∗+ ) + σ i (D ∗− ) .<br />

(B.1)<br />

The errors associated with the asymmetry have the form<br />

δA i = A i<br />

( δσi (D ∗+ ) + δσ i (D ∗− )<br />

σ i (D ∗+ ) − σ i (D ∗− )<br />

The asymmetries are calculated <strong>and</strong> shown <strong>in</strong> Fig. B.6.<br />

+ δσ i(D ∗± )<br />

)<br />

σ i (D ∗± . (B.2)<br />

)<br />

207


Asymmetry<br />

1<br />

0.8<br />

0.6<br />

Asymmetry<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.5<br />

-1<br />

-1 -0.5 0 0.5 1 1.5<br />

η<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

2 3 4 5 6 7 8 9 10<br />

P_T [GeV]<br />

Asymmetry<br />

1<br />

0.8<br />

0.6<br />

Asymmetry<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

10<br />

2<br />

10<br />

3<br />

10<br />

2 2<br />

Q [GeV ]<br />

-1<br />

-4<br />

10<br />

-3<br />

10<br />

-2<br />

10<br />

-1<br />

10<br />

X<br />

Figure B.6: D ∗± asymmetry with respect to η, P T , Q 2 , <strong>and</strong> x.<br />

B.3 Summary<br />

The results <strong>in</strong>dicate no evidence of an asymmetry between the D ∗+ <strong>and</strong> D ∗− production<br />

rates dur<strong>in</strong>g the HERA II runn<strong>in</strong>g period.<br />

208


Appendix C<br />

Track<strong>in</strong>g Resolutions<br />

The rema<strong>in</strong>der of the track<strong>in</strong>g resolutions developed <strong>in</strong> §5.4 are shown here.<br />

σ(η) with respect to P T<br />

σ(η)<br />

0.006<br />

0.005<br />

0.004<br />

0.003<br />

π S<br />

K<br />

π<br />

0.002<br />

0.001<br />

0<br />

1 10<br />

[GeV]<br />

P T<br />

Figure C.1: σ(η) with respect to P T track<strong>in</strong>g resolution.<br />

209


σ(φ) with respect to P T<br />

σ(φ)<br />

0.007<br />

0.006<br />

0.005<br />

0.004<br />

0.003<br />

0.002<br />

0.001<br />

0<br />

1 10<br />

[GeV]<br />

P T<br />

Figure C.2: σ(φ) with respect to P T track<strong>in</strong>g resolution.<br />

σ(|P|) with respect to P T<br />

σ(|P|)/|P|<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

1 10<br />

[GeV]<br />

P T<br />

Figure C.3: σ(|P|) with respect to P T track<strong>in</strong>g resolution.<br />

210


σ(P T ) with respect to η<br />

T<br />

)/P<br />

T<br />

σ(P<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

η<br />

Figure C.4: σ(P T ) with respect to η track<strong>in</strong>g resolution.<br />

σ(η) with respect to η<br />

σ(η)<br />

0.006<br />

0.005<br />

0.004<br />

0.003<br />

0.002<br />

0.001<br />

0<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

η<br />

Figure C.5: σ(η) with respect to η track<strong>in</strong>g resolution.<br />

211


σ(φ) with respect to η<br />

σ(φ)<br />

0.008<br />

0.007<br />

0.006<br />

0.005<br />

0.004<br />

0.003<br />

0.002<br />

0.001<br />

0<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

η<br />

Figure C.6: σ(φ) with respect to η track<strong>in</strong>g resolution.<br />

σ(|P|) with respect to η<br />

σ(|P|)/|P|<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

η<br />

Figure C.7: σ(|P|) with respect to η track<strong>in</strong>g resolution.<br />

212


σ(P T ) with respect to φ<br />

T<br />

)/P<br />

T<br />

σ(P<br />

0.045<br />

0.04<br />

0.035<br />

0.03<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

−3 −2 −1 0 1 2 3<br />

φ<br />

Figure C.8: σ(P T ) with respect to φ track<strong>in</strong>g resolution.<br />

σ(η) with respect to φ<br />

σ(η)<br />

0.0045<br />

0.004<br />

0.0035<br />

0.003<br />

0.0025<br />

0.002<br />

0.0015<br />

0.001<br />

0.0005<br />

0<br />

−3 −2 −1 0 1 2 3<br />

φ<br />

Figure C.9: σ(η) with respect to φ track<strong>in</strong>g resolution.<br />

213


σ(φ) with respect to φ<br />

σ(φ)<br />

0.005<br />

0.0045<br />

0.004<br />

0.0035<br />

0.003<br />

0.0025<br />

0.002<br />

0.0015<br />

0.001<br />

0.0005<br />

0<br />

−3 −2 −1 0 1 2 3<br />

φ<br />

Figure C.10: σ(φ) with respect to φ track<strong>in</strong>g resolution.<br />

σ(|P|) with respect to φ<br />

σ(|P|)/|P|<br />

0.04<br />

0.035<br />

0.03<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

−3 −2 −1 0 1 2 3<br />

φ<br />

Figure C.11: σ(|P|) with respect to φ track<strong>in</strong>g resolution.<br />

214


σ(P T ) with respect to |P|<br />

T<br />

)/P<br />

T<br />

σ(P<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

1 10<br />

|P| [GeV]<br />

Figure C.12: σ(P T ) with respect to |P| track<strong>in</strong>g resolution.<br />

σ(η) with respect to |P|<br />

σ(η)<br />

0.006<br />

0.005<br />

0.004<br />

0.003<br />

0.002<br />

0.001<br />

0<br />

1 10<br />

|P| [GeV]<br />

Figure C.13: σ(η) with respect to |P| track<strong>in</strong>g resolution.<br />

215


σ(φ) with respect to |P|<br />

σ(φ)<br />

0.007<br />

0.006<br />

0.005<br />

0.004<br />

0.003<br />

0.002<br />

0.001<br />

0<br />

1 10<br />

|P| [GeV]<br />

Figure C.14: σ(φ) with respect to |P| track<strong>in</strong>g resolution.<br />

σ(|P|) with respect to |P|<br />

σ(|P|)/|P|<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

1 10<br />

|P| [GeV]<br />

Figure C.15: σ(|P|) with respect to |P| track<strong>in</strong>g resolution.<br />

216


Appendix D<br />

Supplementary D ∗ Plots<br />

D.1 S<strong>in</strong>gle Differential Related Plots<br />

The follow<strong>in</strong>g plots are from Ch. 8.<br />

217


D.1.1 ∆M Distributions<br />

Comb<strong>in</strong>ations per 0.0005 GeV<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

HERA II Data<br />

Wrong Charge Distribution<br />

Fit<br />

1.5 < P T<br />

< 2.4<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Comb<strong>in</strong>ations per 0.0005 GeV<br />

450<br />

400<br />

2.4 < P T<br />

< 3.1<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Comb<strong>in</strong>ations per 0.0005 GeV<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

< 4.0<br />

3.1 < P T<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Comb<strong>in</strong>ations per 0.0005 GeV<br />

450<br />

400<br />

4.0 < P T<br />

< 6.0<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Comb<strong>in</strong>ations per 0.0005 GeV<br />

180<br />

160<br />

6.0 < P T<br />

< 15.0<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Figure D.1: ∆M distributions <strong>in</strong> P T b<strong>in</strong>s with fits.<br />

218


Comb<strong>in</strong>ations per 0.0005 GeV<br />

250<br />

-1.5 < η < -0.8<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Comb<strong>in</strong>ations per 0.0005 GeV<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

-0.8 < η < -0.35<br />

50<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Comb<strong>in</strong>ations per 0.0005 GeV<br />

300<br />

-0.35 < η < 0.0<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Comb<strong>in</strong>ations per 0.0005 GeV<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

0.0 < η < 0.4<br />

50<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Comb<strong>in</strong>ations per 0.0005 GeV<br />

400<br />

350<br />

0.4 < η < 0.8<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Comb<strong>in</strong>ations per 0.0005 GeV<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

0.8 < η < 1.5<br />

50<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Figure D.2: ∆M distributions <strong>in</strong> η b<strong>in</strong>s with fits.<br />

219


Comb<strong>in</strong>ations per 0.0005 GeV<br />

700<br />

600<br />

0.00008 < X < 0.0004<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Comb<strong>in</strong>ations per 0.0005 GeV<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0.0004 < X < 0.0016<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Comb<strong>in</strong>ations per 0.0005 GeV<br />

1000<br />

0.0016 < X < 0.005<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Comb<strong>in</strong>ations per 0.0005 GeV<br />

300<br />

250<br />

200<br />

150<br />

100<br />

0.005 < X < 0.01<br />

50<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Comb<strong>in</strong>ations per 0.0005 GeV<br />

140<br />

120<br />

100<br />

80<br />

60<br />

0.01 < X < 0.1<br />

40<br />

20<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

Figure D.3: ∆M distributions <strong>in</strong> x b<strong>in</strong>s with fits.<br />

220


D.1.2 Systematic Uncerta<strong>in</strong>ties of Differential Cross Sections<br />

The fractional change, discussed <strong>in</strong> §8.7.2, due to the systematic checks <strong>in</strong> η, P T ,<br />

Q 2 , <strong>and</strong> x are shown.<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

No Smear<strong>in</strong>g of the Electron Energy<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T<br />

(D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure D.4: Systematic Check 1: No Electron Smear<strong>in</strong>g. The green l<strong>in</strong>e is mirrored on the<br />

negative y axis <strong>and</strong> <strong>in</strong>dicates the statistical error, the po<strong>in</strong>ts are the systematic<br />

errors.<br />

221


Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Scale Electron Energy by −1%<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

Scale Electron Energy by +1%<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T<br />

(D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure D.5: Systematic Check 2: E e Scaled ±1% <strong>in</strong> MC.<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Scale Hadron Energy <strong>in</strong> CAL by −3%<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

Scale Hadron Energy <strong>in</strong> CAL by +3%<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T<br />

(D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure D.6: Systematic Check 3: E HAD Scaled ±3% <strong>in</strong> MC.<br />

222


Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

Increase Electron Energy Cut<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T<br />

(D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure D.7: Systematic Check 4: E e Cut Increased to 11 GeV <strong>in</strong> MC.<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

Tighten Box Cut<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T<br />

(D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure D.8: Systematic Check 5: Box Cut <strong>in</strong>creased by 1 cm.<br />

223


Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

Tighten Z Cut<br />

vertex<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T<br />

(D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure D.9: Systematic Check 6: Z vtx Decreased by 3 cm.<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

Loosen Y E<br />

Clean<strong>in</strong>g Cut<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T<br />

(D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure D.10: Systematic Check 7: Y e Clean<strong>in</strong>g Cut.<br />

224


Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

Tighten Y<br />

Clean<strong>in</strong>g Cut<br />

JB<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T<br />

(D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure D.11: Systematic Check 8: Y JB Clean<strong>in</strong>g Cut.<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

Decrease δ (E − p z<br />

) W<strong>in</strong>dow<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T<br />

(D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure D.12: Systematic Check 9: δ h W<strong>in</strong>dow Widened.<br />

225


Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Decrease D Mass W<strong>in</strong>dow<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

0<br />

Increase D Mass W<strong>in</strong>dow<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T<br />

(D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure D.13: Systematic Check 10: M(D 0 ) W<strong>in</strong>dow Widened <strong>and</strong> Narrowed.<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Decrease ∆M W<strong>in</strong>dow<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

Increase ∆M W<strong>in</strong>dow<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T<br />

(D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure D.14: Systematic Check 11: ∆M W<strong>in</strong>dow Widened <strong>and</strong> Narrowed.<br />

226


Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

No Reweight<strong>in</strong>g of P (π s ) Distribution<br />

T<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T<br />

(D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure D.15: Systematic Check 12: No P T (π s ) Re-weight<strong>in</strong>g.<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

MC EVT RWT w/(K, π, π s<br />

) Trk Loss Prb. −20%<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

0<br />

−0.1<br />

−0.2<br />

MC EVT RWT w/(K, π, π s<br />

) Trk Loss Prb. +20%<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T<br />

(D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure D.16: Systematic Check 13: Track Loss Probability ±20%.<br />

227


Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Loosen Cut On Mimimum P T<br />

(K, π)<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

Tighten Cut On Mimimum P (K, π)<br />

T<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T<br />

(D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure D.17: Systematic Check 14a: P T (K, π) Cut changed ±0.02 GeV.<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Loosen Cut On Mimimum P T<br />

(π s )<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

Tighten Cut On Mimimum P (π s )<br />

T<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T<br />

(D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure D.18: Systematic Check 14b: P T (π s ) Cut changed ±0.02 GeV.<br />

228


Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

Doubl<strong>in</strong>g Beauty Contribution<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T<br />

(D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure D.19: Systematic Check 15: Doubled Beauty.<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

Numbers Obta<strong>in</strong>ed via Fit<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T<br />

(D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure D.20: Consistency Check 16: Fit.<br />

229


Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

Use HERWIG MC. <strong>in</strong>stead of RAPGAP<br />

−0.3<br />

−1.5 −1 −0.5 0 0.5 1 1.5<br />

*<br />

η(D )<br />

−0.2<br />

−0.3<br />

2 4 6 8 10 12 14<br />

*<br />

P T<br />

(D ) [GeV]<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

Frac. Diff.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

100 200 300 400 500 600 700 800 900 1000<br />

2 2<br />

Q [GeV ]<br />

−0.3<br />

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

x<br />

Figure D.21: Consistency Check 17: HERWIG.<br />

230


2<br />

]<br />

T<br />

D.1.3 Consistency Check Differential Cross Sections<br />

The follow<strong>in</strong>g two differential cross sections are shown as consistency checks: us<strong>in</strong>g<br />

fits <strong>in</strong>stead of the wrong charge subtraction method to obta<strong>in</strong> the number of D ∗<br />

c<strong>and</strong>idates, <strong>and</strong> us<strong>in</strong>g HERWIG <strong>in</strong>stead of RAPGAP as the MC that determ<strong>in</strong>es<br />

the acceptances.<br />

[nb/GeV]<br />

dσ/dP<br />

1<br />

dσ/dη [nb]<br />

3<br />

2.5<br />

2<br />

-1<br />

10<br />

1.5<br />

1<br />

0.5<br />

-2<br />

10<br />

2 3 4 5 6 7 8 9 10<br />

*<br />

P T (D<br />

) [GeV]<br />

-1.5 0<br />

-1 -0.5 0 0.5 1 1.5<br />

*<br />

η(D<br />

)<br />

-2<br />

[nb/GeV<br />

1<br />

-1<br />

10<br />

dσ/dX [nb]<br />

3<br />

10<br />

dσ/dQ<br />

-2<br />

10<br />

2<br />

10<br />

-3<br />

10<br />

10<br />

-4<br />

10<br />

1<br />

-5<br />

10<br />

10<br />

2<br />

10<br />

2<br />

2<br />

Q<br />

[GeV<br />

]<br />

-4<br />

10<br />

-3<br />

10<br />

-2<br />

10<br />

-1<br />

10<br />

X<br />

Figure D.22: Cross sections obta<strong>in</strong>ed us<strong>in</strong>g a fit for the number of D ∗ c<strong>and</strong>idates.<br />

231


2<br />

]<br />

[nb/GeV]<br />

T<br />

dσ/dP<br />

1<br />

dσ/dη [nb]<br />

3<br />

2.5<br />

2<br />

-1<br />

10<br />

1.5<br />

1<br />

0.5<br />

-2<br />

10<br />

2 3 4 5 6 7 8 9 10<br />

*<br />

P T (D<br />

) [GeV]<br />

-1.5 0<br />

-1 -0.5 0 0.5 1 1.5<br />

*<br />

η(D<br />

)<br />

-2<br />

[nb/GeV<br />

1<br />

-1<br />

10<br />

dσ/dX [nb]<br />

3<br />

10<br />

dσ/dQ<br />

-2<br />

10<br />

2<br />

10<br />

-3<br />

10<br />

10<br />

-4<br />

10<br />

1<br />

-5<br />

10<br />

10<br />

2<br />

10<br />

2<br />

2<br />

Q<br />

[GeV<br />

]<br />

-4<br />

10<br />

-3<br />

10<br />

-2<br />

10<br />

-1<br />

10<br />

X<br />

Figure D.23: Cross sections obta<strong>in</strong>ed us<strong>in</strong>g HERWIG for the MC.<br />

232


D.1.4 HVQDIS Theoretical Uncerta<strong>in</strong>ties<br />

The HVQDIS theoretical uncerta<strong>in</strong>ties.<br />

0.25<br />

0.2 Decreased m c<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

-0.15<br />

-0.2<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

η<br />

Frac. Diff.<br />

0.25<br />

0.2 Increased m c<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

-0.15<br />

-0.2<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

η<br />

Frac. Diff.<br />

0.25<br />

0.2 Decreased Peterson ∈<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

-0.15<br />

-0.2<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

η<br />

Frac. Diff.<br />

Frac. Diff.<br />

0.25<br />

0.2<br />

0.15<br />

Increased Peterson ∈<br />

0.1<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

-0.15<br />

-0.2<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

η<br />

Frac. Diff.<br />

0.25<br />

0.2<br />

0.15<br />

µ = 2m c<br />

R,F<br />

0.1<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

-0.15<br />

-0.2<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

η<br />

Frac. Diff.<br />

0.25<br />

0.2<br />

0.15<br />

Doubled µ<br />

R,F<br />

0.1<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

-0.15<br />

-0.2<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

η<br />

0.25<br />

0.2 Halved µ<br />

R,F<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

-0.15<br />

-0.2<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

η<br />

Frac. Diff.<br />

0.25<br />

2 2<br />

0.2 µ = MAX( Q /4 + m , 2m )<br />

R,F<br />

c c<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

-0.15<br />

-0.2<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

η<br />

Frac. Diff.<br />

Figure D.24: The fractional difference between the default HVQDIS prediction of the η of<br />

the D ∗ cross section, the theoretical uncerta<strong>in</strong>ties are shown <strong>in</strong> blue. The<br />

theoretical uncerta<strong>in</strong>ties are <strong>in</strong>dicated.<br />

233


Frac. Diff.<br />

0.2<br />

0.15<br />

0.1<br />

Decreased m c<br />

Frac. Diff.<br />

0.2<br />

0.15<br />

0.1<br />

Increased m c<br />

Frac. Diff.<br />

0.2<br />

0.15<br />

0.1<br />

Decreased Peterson ∈<br />

0.05<br />

0.05<br />

0.05<br />

0<br />

0<br />

0<br />

-0.05<br />

-0.05<br />

-0.05<br />

-0.1<br />

10<br />

2<br />

10<br />

2<br />

Q [GeV]<br />

-0.1<br />

10<br />

2<br />

10<br />

2<br />

Q [GeV]<br />

-0.1<br />

10<br />

2<br />

10<br />

2<br />

Q [GeV]<br />

Frac. Diff.<br />

0.2<br />

0.15<br />

0.1<br />

Increased Peterson ∈<br />

Frac. Diff.<br />

0.2<br />

0.15<br />

0.1<br />

µ = 2m c<br />

R,F<br />

Frac. Diff.<br />

0.2<br />

0.15<br />

0.1<br />

Doubled µ<br />

R,F<br />

0.05<br />

0.05<br />

0.05<br />

0<br />

0<br />

0<br />

-0.05<br />

-0.05<br />

-0.05<br />

-0.1<br />

10<br />

2<br />

10<br />

2<br />

Q [GeV]<br />

-0.1<br />

10<br />

2<br />

10<br />

2<br />

Q [GeV]<br />

-0.1<br />

10<br />

2<br />

10<br />

2<br />

Q [GeV]<br />

Frac. Diff.<br />

0.2<br />

0.15<br />

0.1<br />

Halved µ<br />

R,F<br />

Frac. Diff.<br />

0.2<br />

0.15<br />

0.1<br />

2 2<br />

µ = MAX( Q /4 + m , 2m )<br />

R,F<br />

c c<br />

0.05<br />

0.05<br />

0<br />

0<br />

-0.05<br />

-0.05<br />

-0.1<br />

10<br />

2<br />

10<br />

2<br />

Q [GeV]<br />

-0.1<br />

10<br />

2<br />

10<br />

2<br />

Q [GeV]<br />

Figure D.25: The fractional difference between the default HVQDIS prediction of the Q 2<br />

cross section.<br />

234


Frac. Diff.<br />

0.15<br />

0.1<br />

0.05<br />

Decreased m c<br />

Frac. Diff.<br />

0.15<br />

0.1<br />

0.05<br />

Increased m c<br />

Frac. Diff.<br />

0.15<br />

0.1<br />

0.05<br />

Decreased Peterson ∈<br />

0<br />

0<br />

0<br />

-0.05<br />

-0.05<br />

-0.05<br />

-0.1<br />

10<br />

-4<br />

-3<br />

10<br />

-2<br />

10<br />

X<br />

-0.1<br />

10<br />

-4<br />

-3<br />

10<br />

-2<br />

10<br />

X<br />

-0.1<br />

10<br />

-4<br />

-3<br />

10<br />

-2<br />

10<br />

X<br />

Frac. Diff.<br />

0.15<br />

0.1<br />

0.05<br />

Increased Peterson ∈<br />

Frac. Diff.<br />

0.15<br />

0.1<br />

0.05<br />

µ = 2m c<br />

R,F<br />

Frac. Diff.<br />

0.15<br />

0.1<br />

0.05<br />

Doubled µ<br />

R,F<br />

0<br />

0<br />

0<br />

-0.05<br />

-0.05<br />

-0.05<br />

-0.1<br />

10<br />

-4<br />

-3<br />

10<br />

-2<br />

10<br />

X<br />

-0.1<br />

10<br />

-4<br />

-3<br />

10<br />

-2<br />

10<br />

X<br />

-0.1<br />

10<br />

-4<br />

-3<br />

10<br />

-2<br />

10<br />

X<br />

Frac. Diff.<br />

0.15<br />

0.1<br />

0.05<br />

Halved µ<br />

R,F<br />

Frac. Diff.<br />

0.15<br />

0.1<br />

0.05<br />

2 2<br />

µ = MAX( Q /4 + m , 2m )<br />

R,F<br />

c c<br />

0<br />

0<br />

-0.05<br />

-0.05<br />

-0.1<br />

10<br />

-4<br />

-3<br />

10<br />

-2<br />

10<br />

X<br />

-0.1<br />

10<br />

-4<br />

-3<br />

10<br />

-2<br />

10<br />

X<br />

Figure D.26: The fractional difference between the default HVQDIS prediction of the X<br />

cross section.<br />

235


D.2 F cc<br />

2 Related Plots<br />

D.2.1 Q 2 − y ∆M Distributions<br />

The follow<strong>in</strong>g plot shows the ∆M distribution for the Q 2 − y b<strong>in</strong>s, see Tab. 9.1 for<br />

the key.<br />

Comb. per 0.001 GeV<br />

18<br />

16<br />

1)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

Comb. per 0.001 GeV<br />

40<br />

35<br />

30<br />

25<br />

2)<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

Comb. per 0.001 GeV<br />

70<br />

60<br />

50<br />

3)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

Comb. per 0.001 GeV<br />

90<br />

80<br />

4)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

∆M [GeV]<br />

∆M [GeV]<br />

∆M [GeV]<br />

Comb. per 0.001 GeV<br />

60<br />

50<br />

40<br />

5)<br />

30<br />

20<br />

10<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

Comb. per 0.001 GeV<br />

240<br />

220<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

6)<br />

20<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

Comb. per 0.001 GeV<br />

180<br />

160<br />

7)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

∆M [GeV]<br />

∆M [GeV]<br />

Comb. per 0.001 GeV<br />

140<br />

120<br />

100<br />

8)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

Comb. per 0.001 GeV<br />

250<br />

200<br />

9)<br />

150<br />

100<br />

50<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

Comb. per 0.001 GeV<br />

250<br />

200<br />

10)<br />

150<br />

100<br />

50<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

Comb. per 0.001 GeV<br />

140<br />

120<br />

100<br />

11)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

∆M [GeV]<br />

∆M [GeV]<br />

∆M [GeV]<br />

Comb. per 0.001 GeV<br />

120<br />

100<br />

80<br />

12)<br />

60<br />

40<br />

20<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

Comb. per 0.001 GeV<br />

250<br />

200<br />

13)<br />

150<br />

100<br />

50<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

Comb. per 0.001 GeV<br />

200<br />

180<br />

14)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

Comb. per 0.001 GeV<br />

120<br />

100<br />

80<br />

15)<br />

60<br />

40<br />

20<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

∆M [GeV]<br />

∆M [GeV]<br />

∆M [GeV]<br />

Comb. per 0.001 GeV<br />

100<br />

90<br />

16)<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

Comb. per 0.001 GeV<br />

350<br />

300<br />

250<br />

17)<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

Comb. per 0.001 GeV<br />

200<br />

180<br />

18)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

Comb. per 0.001 GeV<br />

180<br />

160<br />

19)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

∆M [GeV]<br />

∆M [GeV]<br />

∆M [GeV]<br />

Comb. per 0.001 GeV<br />

140<br />

120<br />

100<br />

20)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

Comb. per 0.001 GeV<br />

250<br />

200<br />

21)<br />

150<br />

100<br />

50<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

Comb. per 0.001 GeV<br />

200<br />

180<br />

22)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

∆M [GeV]<br />

∆M [GeV]<br />

Comb. per 0.001 GeV<br />

80<br />

70<br />

60<br />

50<br />

23)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

Comb. per 0.001 GeV<br />

120<br />

100<br />

80<br />

24)<br />

60<br />

40<br />

20<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

Comb. per 0.001 GeV<br />

140<br />

120<br />

100<br />

25)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

∆M [GeV]<br />

∆M [GeV]<br />

Comb. per 0.001 GeV<br />

100<br />

90<br />

26)<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

Comb. per 0.001 GeV<br />

120<br />

100<br />

80<br />

27)<br />

60<br />

40<br />

20<br />

0<br />

0.135 0.14 0.145 0.15 0.155 0.16 0.165<br />

∆M [GeV]<br />

∆M [GeV]<br />

Figure D.27: ∆M distributions used for F cc<br />

2 , see Tab. 9.1. The po<strong>in</strong>ts are the right charge<br />

comb<strong>in</strong>ations, the green histogram is the wrong charge comb<strong>in</strong>ation, <strong>and</strong> the<br />

red l<strong>in</strong>e is wrong charge subtracted distribution.<br />

236


2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

D.2.2 F cc<br />

2 Systematics<br />

The systematic checks for each Q 2 region are shown <strong>in</strong> the follow<strong>in</strong>g plots.<br />

c c<br />

Frac. Diff. on F<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.8<br />

0<br />

Increase D<br />

Mass W<strong>in</strong>dow<br />

2<br />

2<br />

Q = 5.5 GeV<br />

−0.2<br />

−0.4<br />

0<br />

Decrease D Mass W<strong>in</strong>dow<br />

−0.6<br />

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

Decrease δ (E − p) W<strong>in</strong>dow<br />

z<br />

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.8<br />

0.6 Increase ∆M W<strong>in</strong>dow<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

Decrease ∆M W<strong>in</strong>dow<br />

−0.6<br />

−0.8<br />

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.8<br />

0.6 Increase Electron Energy Cut<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.8<br />

0.6 Use HERWIG MC. <strong>in</strong>stead of RAPGAP<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.8<br />

0.6 Tighten Cut On Mimimum P (K, π)<br />

T<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

Loosen Cut On Mimimum P<br />

−0.6<br />

T (K, π)<br />

−0.8<br />

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

Tighten Cut On Mimimum P (π s )<br />

T<br />

−0.4<br />

Loosen Cut On Mimimum P<br />

−0.6<br />

T (π s )<br />

−0.8<br />

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.8<br />

0.6 Loosen Y E Clean<strong>in</strong>g Cut<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

Tighten Y<br />

JB<br />

Clean<strong>in</strong>g Cut<br />

−0.6<br />

−0.8<br />

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.8<br />

0.6 Scale Electron Energy by +1%<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

Scale Electron Energy by −1%<br />

−0.6<br />

−0.8<br />

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.8<br />

0.6 Scale Hadron Energy <strong>in</strong> CAL by +3%<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

Scale Hadron Energy <strong>in</strong> CAL by −3%<br />

−0.6<br />

−0.8<br />

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.8<br />

0.6 No Reweight<strong>in</strong>g of P (π s ) Distribution<br />

T<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

MC EVT RWT w/(K, π, π<br />

) Trk Loss Prb. +20%<br />

s<br />

MC EVT RWT w/(K, π, π ) Trk Loss Prb. −20%<br />

s<br />

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.8<br />

0.6 Tighten Box Cut<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.8<br />

0.6 Tighten Z Cut<br />

vertex<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.8<br />

0.6 Numbers Obta<strong>in</strong>ed via Fit<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.8<br />

0.6 Doubl<strong>in</strong>g Beauty Contribution<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.8<br />

0.6 No Smear<strong>in</strong>g of the Electron Energy<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014<br />

x<br />

Figure D.28: Q 2 = 5.5 GeV 2 systematics.<br />

237


2<br />

c c<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

Frac. Diff. on F<br />

2<br />

2<br />

2<br />

2<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

0<br />

Increase D<br />

0<br />

Decrease D<br />

Mass W<strong>in</strong>dow<br />

2<br />

2<br />

Q = 6.8 GeV<br />

Mass W<strong>in</strong>dow<br />

0.00020.00040.00060.0008 0.0010.00120.00140.00160.00180.002<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

Decrease δ (E − p) W<strong>in</strong>dow<br />

z<br />

0.00020.00040.00060.00080.0010.00120.00140.00160.0018 0.002<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 Increase ∆M W<strong>in</strong>dow<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3 Decrease ∆M W<strong>in</strong>dow<br />

−0.4<br />

−0.5<br />

0.00020.00040.00060.0008 0.0010.00120.00140.00160.00180.002<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 Increase Electron Energy Cut<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

0.00020.00040.00060.0008 0.0010.00120.00140.00160.00180.002<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 Use HERWIG MC. <strong>in</strong>stead of RAPGAP<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

0.00020.00040.00060.00080.0010.00120.00140.00160.0018 0.002<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

Tighten Cut On Mimimum P (K, π)<br />

T<br />

Loosen Cut On Mimimum P T (K, π)<br />

0.00020.00040.00060.0008 0.0010.00120.00140.00160.00180.002<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

Tighten Cut On Mimimum P (π s )<br />

T<br />

Loosen Cut On Mimimum P T (π s )<br />

0.00020.00040.00060.0008 0.0010.00120.00140.00160.00180.002<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 Loosen Y E Clean<strong>in</strong>g Cut<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

0.00020.00040.00060.00080.0010.00120.00140.00160.0018 0.002<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

Tighten Y<br />

JB<br />

Clean<strong>in</strong>g Cut<br />

0.00020.00040.00060.0008 0.0010.00120.00140.00160.00180.002<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 Scale Electron Energy by +1%<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3 Scale Electron Energy by −1%<br />

−0.4<br />

−0.5<br />

0.00020.00040.00060.0008 0.0010.00120.00140.00160.00180.002<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 Scale Hadron Energy <strong>in</strong> CAL by +3%<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3 Scale Hadron Energy <strong>in</strong> CAL by −3%<br />

−0.4<br />

−0.5<br />

0.00020.00040.00060.00080.0010.00120.00140.00160.0018 0.002<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

No Reweight<strong>in</strong>g of P (π s ) Distribution<br />

T<br />

0.00020.00040.00060.0008 0.0010.00120.00140.00160.00180.002<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

MC EVT RWT w/(K, π, π<br />

) Trk Loss Prb. +20%<br />

s<br />

MC EVT RWT w/(K, π, π ) Trk Loss Prb. −20%<br />

s<br />

0.00020.00040.00060.0008 0.0010.00120.00140.00160.00180.002<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 Tighten Box Cut<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

0.00020.00040.00060.00080.0010.00120.00140.00160.0018 0.002<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

Tighten Z<br />

vertex<br />

Cut<br />

0.00020.00040.00060.0008 0.0010.00120.00140.00160.00180.002<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 Numbers Obta<strong>in</strong>ed via Fit<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

0.00020.00040.00060.0008 0.0010.00120.00140.00160.00180.002<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 Doubl<strong>in</strong>g Beauty Contribution<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

0.00020.00040.00060.00080.0010.00120.00140.00160.0018 0.002<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 No Smear<strong>in</strong>g of the Electron Energy<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

0.00020.00040.00060.0008 0.0010.00120.00140.00160.00180.002<br />

x<br />

Figure D.29: Q 2 = 6.8 GeV 2 systematics.<br />

238


c c<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

Frac. Diff. on F<br />

2<br />

2<br />

2<br />

2<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

0<br />

Increase D Mass W<strong>in</strong>dow<br />

2<br />

2<br />

Q = 11 GeV<br />

0<br />

Decrease D<br />

Mass W<strong>in</strong>dow<br />

c c<br />

Frac. Diff. on F<br />

0.2 Decrease δ (E − p) W<strong>in</strong>dow<br />

z<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

c c<br />

Frac. Diff. on F<br />

0.2 Increase ∆M W<strong>in</strong>dow<br />

0.1<br />

0<br />

−0.1<br />

Decrease ∆M W<strong>in</strong>dow<br />

−0.2<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.2 Increase Electron Energy Cut<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

c c<br />

Frac. Diff. on F<br />

0.2 Use HERWIG MC. <strong>in</strong>stead of RAPGAP<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

c c<br />

Frac. Diff. on F<br />

0.2 Tighten Cut On Mimimum P (K, π)<br />

T<br />

0.1<br />

0<br />

−0.1<br />

Loosen Cut On Mimimum P −0.2<br />

T (K, π)<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.2 Tighten Cut On Mimimum P T<br />

(π s )<br />

0.1<br />

0<br />

−0.1<br />

−0.2 Loosen Cut On Mimimum P T (π s )<br />

c c<br />

Frac. Diff. on F<br />

0.2 Loosen Y E Clean<strong>in</strong>g Cut<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

c c<br />

Frac. Diff. on F<br />

0.2 Tighten Y Clean<strong>in</strong>g Cut<br />

JB<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.2 Scale Electron Energy by +1%<br />

0.1<br />

0<br />

−0.1<br />

Scale Electron Energy by −1%<br />

−0.2<br />

c c<br />

Frac. Diff. on F<br />

0.2 Scale Hadron Energy <strong>in</strong> CAL by +3%<br />

0.1<br />

0<br />

−0.1<br />

Scale Hadron Energy <strong>in</strong> CAL by −3%<br />

−0.2<br />

c c<br />

Frac. Diff. on F<br />

0.2 No Reweight<strong>in</strong>g of P T<br />

(π s ) Distribution<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.2 MC EVT RWT w/(K, π, π ) Trk Loss Prb. +20%<br />

s<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

MC EVT RWT w/(K, π, π ) Trk Loss Prb. −20%<br />

s<br />

c c<br />

Frac. Diff. on F<br />

0.2 Tighten Box Cut<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

c c<br />

Frac. Diff. on F<br />

0.2 Tighten Z Cut<br />

vertex<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.2 Numbers Obta<strong>in</strong>ed via Fit<br />

0.1<br />

0<br />

−0.1<br />

c c<br />

Frac. Diff. on F<br />

0.2 Doubl<strong>in</strong>g Beauty Contribution<br />

0.1<br />

0<br />

−0.1<br />

c c<br />

Frac. Diff. on F<br />

0.2 No Smear<strong>in</strong>g of the Electron Energy<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.2<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

Figure D.30: Q 2 = 11 GeV 2 systematics.<br />

239


c c<br />

Frac. Diff. on F<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

0<br />

Increase D Mass W<strong>in</strong>dow<br />

2<br />

2<br />

Q = 19 GeV<br />

0<br />

Decrease D<br />

Mass W<strong>in</strong>dow<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

Decrease δ (E − p) W<strong>in</strong>dow<br />

z<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

Increase ∆M W<strong>in</strong>dow<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2 Decrease ∆M W<strong>in</strong>dow<br />

−0.3<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

−0.3<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

−0.3<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

Increase Electron Energy Cut<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

Use HERWIG MC. <strong>in</strong>stead of RAPGAP<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Tighten Cut On Mimimum P (K, π)<br />

T<br />

−0.1<br />

−0.2 Loosen Cut On Mimimum P T (K, π)<br />

−0.3<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

−0.3<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

−0.3<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Tighten Cut On Mimimum P (π s )<br />

T<br />

−0.1<br />

−0.2 Loosen Cut On Mimimum P T (π s )<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

Loosen Y<br />

0.2<br />

E Clean<strong>in</strong>g Cut<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

Tighten Y<br />

JB<br />

Clean<strong>in</strong>g Cut<br />

−0.3<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

−0.3<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

−0.3<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

Scale Electron Energy by +1%<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2 Scale Electron Energy by −1%<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

Scale Hadron Energy <strong>in</strong> CAL by +3%<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2 Scale Hadron Energy <strong>in</strong> CAL by −3%<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

No Reweight<strong>in</strong>g of P (π s ) Distribution<br />

T<br />

−0.3<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

−0.3<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

−0.3<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

MC EVT RWT w/(K, π, π ) Trk Loss Prb. +20%<br />

0.2<br />

s<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

MC EVT RWT w/(K, π, π ) Trk Loss Prb. −20%<br />

s<br />

−0.3<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

Tighten Box Cut<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

Tighten Z<br />

vertex<br />

Cut<br />

−0.3<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

Numbers Obta<strong>in</strong>ed via Fit<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

Doubl<strong>in</strong>g Beauty Contribution<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

No Smear<strong>in</strong>g of the Electron Energy<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.2<br />

−0.3<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

−0.3<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

−0.3<br />

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004<br />

x<br />

Figure D.31: Q 2 = 19 GeV 2 systematics.<br />

240


2<br />

c c<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

Frac. Diff. on F<br />

2<br />

2<br />

2<br />

2<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

0<br />

Increase D<br />

0<br />

Decrease D<br />

Mass W<strong>in</strong>dow<br />

2<br />

2<br />

Q = 31 GeV<br />

Mass W<strong>in</strong>dow<br />

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

Decrease δ (E − p) W<strong>in</strong>dow<br />

z<br />

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 Increase ∆M W<strong>in</strong>dow<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3 Decrease ∆M W<strong>in</strong>dow<br />

−0.4<br />

−0.5<br />

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 Increase Electron Energy Cut<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 Use HERWIG MC. <strong>in</strong>stead of RAPGAP<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

Tighten Cut On Mimimum P (K, π)<br />

T<br />

Loosen Cut On Mimimum P T (K, π)<br />

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

Tighten Cut On Mimimum P (π s )<br />

T<br />

Loosen Cut On Mimimum P T (π s )<br />

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 Loosen Y E Clean<strong>in</strong>g Cut<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

Tighten Y<br />

JB<br />

Clean<strong>in</strong>g Cut<br />

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 Scale Electron Energy by +1%<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3 Scale Electron Energy by −1%<br />

−0.4<br />

−0.5<br />

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 Scale Hadron Energy <strong>in</strong> CAL by +3%<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3 Scale Hadron Energy <strong>in</strong> CAL by −3%<br />

−0.4<br />

−0.5<br />

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

No Reweight<strong>in</strong>g of P (π s ) Distribution<br />

T<br />

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

MC EVT RWT w/(K, π, π<br />

) Trk Loss Prb. +20%<br />

s<br />

MC EVT RWT w/(K, π, π ) Trk Loss Prb. −20%<br />

s<br />

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 Tighten Box Cut<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

Tighten Z<br />

vertex<br />

Cut<br />

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 Numbers Obta<strong>in</strong>ed via Fit<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 Doubl<strong>in</strong>g Beauty Contribution<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.5<br />

0.4 No Smear<strong>in</strong>g of the Electron Energy<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

x<br />

Figure D.32: Q 2 = 31 GeV 2 systematics.<br />

241


2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

c c<br />

Frac. Diff. on F<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

Increase D Mass W<strong>in</strong>dow<br />

2<br />

2<br />

Q = 61 GeV<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Decrease δ (E − p) W<strong>in</strong>dow<br />

z<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

Increase ∆M W<strong>in</strong>dow<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

0<br />

Decrease D<br />

Mass W<strong>in</strong>dow<br />

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016<br />

x<br />

−0.1<br />

−0.2<br />

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016<br />

x<br />

−0.1<br />

Decrease ∆M W<strong>in</strong>dow<br />

−0.2<br />

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Increase Electron Energy Cut<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Use HERWIG MC. <strong>in</strong>stead of RAPGAP<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Tighten Cut On Mimimum P (K, π)<br />

T<br />

−0.1<br />

−0.2<br />

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016<br />

x<br />

−0.1<br />

−0.2<br />

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016<br />

x<br />

−0.1<br />

Loosen Cut On Mimimum P T (K, π)<br />

−0.2<br />

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Tighten Cut On Mimimum P (π s )<br />

T<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Loosen Y E Clean<strong>in</strong>g Cut<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Tighten Y<br />

JB<br />

Clean<strong>in</strong>g Cut<br />

−0.1<br />

Loosen Cut On Mimimum P T (π s )<br />

−0.2<br />

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016<br />

x<br />

−0.1<br />

−0.2<br />

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016<br />

x<br />

−0.1<br />

−0.2<br />

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Scale Electron Energy by +1%<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Scale Hadron Energy <strong>in</strong> CAL by +3%<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

No Reweight<strong>in</strong>g of P (π s ) Distribution<br />

T<br />

−0.1<br />

Scale Electron Energy by −1%<br />

−0.2<br />

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016<br />

x<br />

−0.1<br />

Scale Hadron Energy <strong>in</strong> CAL by −3%<br />

−0.2<br />

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016<br />

x<br />

−0.1<br />

−0.2<br />

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

MC EVT RWT w/(K, π, π ) Trk Loss Prb. +20%<br />

0.2<br />

s<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

MC EVT RWT w/(K, π, π ) Trk Loss Prb. −20%<br />

s<br />

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

Tighten Box Cut<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

Tighten Z<br />

vertex<br />

Cut<br />

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016<br />

x<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Numbers Obta<strong>in</strong>ed via Fit<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Doubl<strong>in</strong>g Beauty Contribution<br />

c c<br />

Frac. Diff. on F<br />

0.3<br />

No Smear<strong>in</strong>g of the Electron Energy<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.1<br />

−0.1<br />

−0.2<br />

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016<br />

x<br />

−0.2<br />

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016<br />

x<br />

−0.2<br />

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016<br />

x<br />

Figure D.33: Q 2 = 61 GeV 2 systematics.<br />

242


2<br />

c c<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

Frac. Diff. on F<br />

2<br />

2<br />

2<br />

2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

−1<br />

0<br />

Increase D<br />

0<br />

Decrease D<br />

Mass W<strong>in</strong>dow<br />

2<br />

2<br />

Q = 133 GeV<br />

Mass W<strong>in</strong>dow<br />

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04<br />

x<br />

c c<br />

Frac. Diff. on F<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

−1<br />

Decrease δ (E − p) W<strong>in</strong>dow<br />

z<br />

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04<br />

x<br />

c c<br />

Frac. Diff. on F<br />

1<br />

0.8 Increase ∆M W<strong>in</strong>dow<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6 Decrease ∆M W<strong>in</strong>dow<br />

−0.8<br />

−1<br />

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04<br />

x<br />

c c<br />

Frac. Diff. on F<br />

1<br />

0.8 Increase Electron Energy Cut<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

−1<br />

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04<br />

x<br />

c c<br />

Frac. Diff. on F<br />

1<br />

0.8 Use HERWIG MC. <strong>in</strong>stead of RAPGAP<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

−1<br />

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04<br />

x<br />

c c<br />

Frac. Diff. on F<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

−1<br />

Tighten Cut On Mimimum P (K, π)<br />

T<br />

Loosen Cut On Mimimum P T (K, π)<br />

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04<br />

x<br />

c c<br />

Frac. Diff. on F<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

−1<br />

Tighten Cut On Mimimum P (π s )<br />

T<br />

Loosen Cut On Mimimum P T (π s )<br />

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04<br />

x<br />

c c<br />

Frac. Diff. on F<br />

1<br />

0.8<br />

0.6<br />

Loosen Y E Clean<strong>in</strong>g Cut<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

−1<br />

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04<br />

x<br />

c c<br />

Frac. Diff. on F<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

−1<br />

Tighten Y<br />

JB<br />

Clean<strong>in</strong>g Cut<br />

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04<br />

x<br />

c c<br />

Frac. Diff. on F<br />

1<br />

0.8 Scale Electron Energy by +1%<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6 Scale Electron Energy by −1%<br />

−0.8<br />

−1<br />

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04<br />

x<br />

c c<br />

Frac. Diff. on F<br />

1<br />

0.8 Scale Hadron Energy <strong>in</strong> CAL by +3%<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6 Scale Hadron Energy <strong>in</strong> CAL by −3%<br />

−0.8<br />

−1<br />

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04<br />

x<br />

c c<br />

Frac. Diff. on F<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

−1<br />

No Reweight<strong>in</strong>g of P (π s ) Distribution<br />

T<br />

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04<br />

x<br />

c c<br />

Frac. Diff. on F<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

−1<br />

MC EVT RWT w/(K, π, π<br />

) Trk Loss Prb. +20%<br />

s<br />

MC EVT RWT w/(K, π, π ) Trk Loss Prb. −20%<br />

s<br />

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04<br />

x<br />

c c<br />

Frac. Diff. on F<br />

1<br />

0.8 Tighten Box Cut<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

−1<br />

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04<br />

x<br />

c c<br />

Frac. Diff. on F<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

−1<br />

Tighten Z<br />

vertex<br />

Cut<br />

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04<br />

x<br />

c c<br />

Frac. Diff. on F<br />

1<br />

0.8 Numbers Obta<strong>in</strong>ed via Fit<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

−1<br />

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04<br />

x<br />

c c<br />

Frac. Diff. on F<br />

1<br />

0.8 Doubl<strong>in</strong>g Beauty Contribution<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

−1<br />

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04<br />

x<br />

c c<br />

Frac. Diff. on F<br />

1<br />

0.8 No Smear<strong>in</strong>g of the Electron Energy<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

−1<br />

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04<br />

x<br />

Figure D.34: Q 2 = 131 GeV 2 systematics.<br />

243


c c<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

Frac. Diff. on F<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0<br />

Increase D<br />

Mass W<strong>in</strong>dow<br />

2<br />

2<br />

Q = 510 GeV<br />

−0.5<br />

−1<br />

0<br />

Decrease D Mass W<strong>in</strong>dow<br />

−1.5<br />

−2<br />

0.01 0.015 0.02 0.025 0.03 0.035<br />

x<br />

c c<br />

Frac. Diff. on F<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

Decrease δ (E − p) W<strong>in</strong>dow<br />

z<br />

−2<br />

0.01 0.015 0.02 0.025 0.03 0.035<br />

x<br />

c c<br />

Frac. Diff. on F<br />

2<br />

1.5 Increase ∆M W<strong>in</strong>dow<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

Decrease ∆M W<strong>in</strong>dow<br />

−1.5<br />

−2<br />

0.01 0.015 0.02 0.025 0.03 0.035<br />

x<br />

c c<br />

Frac. Diff. on F<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

Increase Electron Energy Cut<br />

−2<br />

0.01 0.015 0.02 0.025 0.03 0.035<br />

x<br />

c c<br />

Frac. Diff. on F<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

Use HERWIG MC. <strong>in</strong>stead of RAPGAP<br />

−2<br />

0.01 0.015 0.02 0.025 0.03 0.035<br />

x<br />

c c<br />

Frac. Diff. on F<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

Tighten Cut On Mimimum P (K, π)<br />

T<br />

−1<br />

Loosen Cut On Mimimum P<br />

−1.5<br />

T (K, π)<br />

−2<br />

0.01 0.015 0.02 0.025 0.03 0.035<br />

x<br />

c c<br />

Frac. Diff. on F<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

Tighten Cut On Mimimum P (π s )<br />

T<br />

−1<br />

Loosen Cut On Mimimum P<br />

−1.5<br />

T (π s )<br />

−2<br />

0.01 0.015 0.02 0.025 0.03 0.035<br />

x<br />

c c<br />

Frac. Diff. on F<br />

2<br />

1.5 Loosen Y E Clean<strong>in</strong>g Cut<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

0.01 0.015 0.02 0.025 0.03 0.035<br />

x<br />

c c<br />

Frac. Diff. on F<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

Tighten Y<br />

JB<br />

Clean<strong>in</strong>g Cut<br />

−1.5<br />

−2<br />

0.01 0.015 0.02 0.025 0.03 0.035<br />

x<br />

c c<br />

Frac. Diff. on F<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Scale Electron Energy by +1%<br />

−0.5<br />

−1<br />

Scale Electron Energy by −1%<br />

−1.5<br />

−2<br />

0.01 0.015 0.02 0.025 0.03 0.035<br />

x<br />

c c<br />

Frac. Diff. on F<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Scale Hadron Energy <strong>in</strong> CAL by +3%<br />

−0.5<br />

−1<br />

Scale Hadron Energy <strong>in</strong> CAL by −3%<br />

−1.5<br />

−2<br />

0.01 0.015 0.02 0.025 0.03 0.035<br />

x<br />

c c<br />

Frac. Diff. on F<br />

2<br />

1.5 No Reweight<strong>in</strong>g of P (π s ) Distribution<br />

T<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

0.01 0.015 0.02 0.025 0.03 0.035<br />

x<br />

c c<br />

Frac. Diff. on F<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

MC EVT RWT w/(K, π, π<br />

) Trk Loss Prb. +20%<br />

s<br />

MC EVT RWT w/(K, π, π ) Trk Loss Prb. −20%<br />

s<br />

−2<br />

0.01 0.015 0.02 0.025 0.03 0.035<br />

x<br />

c c<br />

Frac. Diff. on F<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

Tighten Box Cut<br />

−2<br />

0.01 0.015 0.02 0.025 0.03 0.035<br />

x<br />

c c<br />

Frac. Diff. on F<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

Tighten Z<br />

vertex<br />

Cut<br />

−2<br />

0.01 0.015 0.02 0.025 0.03 0.035<br />

x<br />

c c<br />

Frac. Diff. on F<br />

2<br />

1.5 Numbers Obta<strong>in</strong>ed via Fit<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

0.01 0.015 0.02 0.025 0.03 0.035<br />

x<br />

c c<br />

Frac. Diff. on F<br />

2<br />

1.5 Doubl<strong>in</strong>g Beauty Contribution<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

0.01 0.015 0.02 0.025 0.03 0.035<br />

x<br />

c c<br />

Frac. Diff. on F<br />

2<br />

1.5 No Smear<strong>in</strong>g of the Electron Energy<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

0.01 0.015 0.02 0.025 0.03 0.035<br />

x<br />

Figure D.35: Q 2 = 510 GeV 2 systematics.<br />

244


D.2.3 F cc<br />

2 Theoretical Systematics<br />

Theoretical systematics <strong>in</strong> regions of Q 2 <strong>in</strong>dicated.<br />

0.3<br />

0.2<br />

Decreased m c<br />

0.3<br />

0.2<br />

Increased m c<br />

0.3<br />

0.2<br />

Decreased Peterson ∈<br />

0.1<br />

0.1<br />

0.1<br />

0<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

0.3<br />

0.2<br />

Increased Peterson ∈<br />

0.3<br />

0.2<br />

µ = 2m c<br />

R,F<br />

0.3<br />

0.2<br />

Doubled µ<br />

R,F<br />

0.1<br />

0.1<br />

0.1<br />

0<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

0.3<br />

0.2<br />

Halved µ<br />

R,F<br />

0.3<br />

0.2<br />

2 2<br />

µ = MAX( Q /4 + mc , 2m )<br />

R,F<br />

c<br />

0.1<br />

0.1<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

Figure D.36: F cc<br />

2 Theoretical Uncerta<strong>in</strong>ties Q 2 = 5.5 GeV 2<br />

245


0.3<br />

0.2<br />

Decreased m c<br />

0.3<br />

0.2<br />

Increased m c<br />

0.3<br />

0.2<br />

Decreased Peterson ∈<br />

0.1<br />

0.1<br />

0.1<br />

0<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

0.3<br />

0.2<br />

Increased Peterson ∈<br />

0.3<br />

0.2<br />

µ = 2m c<br />

R,F<br />

0.3<br />

0.2<br />

Doubled µ<br />

R,F<br />

0.1<br />

0.1<br />

0.1<br />

0<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

0.3<br />

0.2<br />

Halved µ<br />

R,F<br />

0.3<br />

0.2<br />

2 2<br />

µ = MAX( Q /4 + mc , 2m )<br />

R,F<br />

c<br />

0.1<br />

0.1<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

Figure D.37: F cc<br />

2 Theoretical Uncerta<strong>in</strong>ties Q 2 = 6.8 GeV 2<br />

246


0.3<br />

0.2<br />

Decreased m c<br />

0.3<br />

0.2<br />

Increased m c<br />

0.3<br />

0.2<br />

Decreased Peterson ∈<br />

0.1<br />

0.1<br />

0.1<br />

0<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

0.3<br />

0.2<br />

Increased Peterson ∈<br />

0.3<br />

0.2<br />

µ = 2m c<br />

R,F<br />

0.3<br />

0.2<br />

Doubled µ<br />

R,F<br />

0.1<br />

0.1<br />

0.1<br />

0<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

0.3<br />

0.2<br />

Halved µ<br />

R,F<br />

0.3<br />

0.2<br />

2 2<br />

µ = MAX( Q /4 + mc , 2m )<br />

R,F<br />

c<br />

0.1<br />

0.1<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

Figure D.38: F cc<br />

2 Theoretical Uncerta<strong>in</strong>ties Q 2 = 11 GeV 2<br />

247


0.3<br />

0.2<br />

Decreased m c<br />

0.3<br />

0.2<br />

Increased m c<br />

0.3<br />

0.2<br />

Decreased Peterson ∈<br />

0.1<br />

0.1<br />

0.1<br />

0<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

0.3<br />

0.2<br />

Increased Peterson ∈<br />

0.3<br />

0.2<br />

µ = 2m c<br />

R,F<br />

0.3<br />

0.2<br />

Doubled µ<br />

R,F<br />

0.1<br />

0.1<br />

0.1<br />

0<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

0.3<br />

0.2<br />

Halved µ<br />

R,F<br />

0.3<br />

0.2<br />

2 2<br />

µ = MAX( Q /4 + mc , 2m )<br />

R,F<br />

c<br />

0.1<br />

0.1<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

Figure D.39: F cc<br />

2 Theoretical Uncerta<strong>in</strong>ties Q 2 = 19 GeV 2<br />

248


0.3<br />

0.2<br />

Decreased m c<br />

0.3<br />

0.2<br />

Increased m c<br />

0.3<br />

0.2<br />

Decreased Peterson ∈<br />

0.1<br />

0.1<br />

0.1<br />

0<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

0.3<br />

0.2<br />

Increased Peterson ∈<br />

0.3<br />

0.2<br />

µ = 2m c<br />

R,F<br />

0.3<br />

0.2<br />

Doubled µ<br />

R,F<br />

0.1<br />

0.1<br />

0.1<br />

0<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

0.3<br />

0.2<br />

Halved µ<br />

R,F<br />

0.3<br />

0.2<br />

2 2<br />

µ = MAX( Q /4 + mc , 2m )<br />

R,F<br />

c<br />

0.1<br />

0.1<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

Figure D.40: F cc<br />

2 Theoretical Uncerta<strong>in</strong>ties Q 2 = 31 GeV 2<br />

249


0.3<br />

0.2<br />

Decreased m c<br />

0.3<br />

0.2<br />

Increased m c<br />

0.3<br />

0.2<br />

Decreased Peterson ∈<br />

0.1<br />

0.1<br />

0.1<br />

0<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

0.3<br />

0.2<br />

Increased Peterson ∈<br />

0.3<br />

0.2<br />

µ = 2m c<br />

R,F<br />

0.3<br />

0.2<br />

Doubled µ<br />

R,F<br />

0.1<br />

0.1<br />

0.1<br />

0<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

0.3<br />

0.2<br />

Halved µ<br />

R,F<br />

0.3<br />

0.2<br />

2 2<br />

µ = MAX( Q /4 + mc , 2m )<br />

R,F<br />

c<br />

0.1<br />

0.1<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

Figure D.41: F cc<br />

2 Theoretical Uncerta<strong>in</strong>ties Q 2 = 61 GeV 2<br />

250


0.3<br />

0.2<br />

Decreased m c<br />

0.3<br />

0.2<br />

Increased m c<br />

0.3<br />

0.2<br />

Decreased Peterson ∈<br />

0.1<br />

0.1<br />

0.1<br />

0<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

0.3<br />

0.2<br />

Increased Peterson ∈<br />

0.3<br />

0.2<br />

µ = 2m c<br />

R,F<br />

0.3<br />

0.2<br />

Doubled µ<br />

R,F<br />

0.1<br />

0.1<br />

0.1<br />

0<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

0.3<br />

0.2<br />

Halved µ<br />

R,F<br />

0.3<br />

0.2<br />

2 2<br />

µ = MAX( Q /4 + mc , 2m )<br />

R,F<br />

c<br />

0.1<br />

0.1<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

Figure D.42: F cc<br />

2 Theoretical Uncerta<strong>in</strong>ties Q 2 = 133 GeV 2<br />

251


0.3<br />

0.2<br />

Decreased m c<br />

0.3<br />

0.2<br />

Increased m c<br />

0.3<br />

0.2<br />

Decreased Peterson ∈<br />

0.1<br />

0.1<br />

0.1<br />

0<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

0.3<br />

0.2<br />

Increased Peterson ∈<br />

0.3<br />

0.2<br />

µ = 2m c<br />

R,F<br />

0.3<br />

0.2<br />

Doubled µ<br />

R,F<br />

0.1<br />

0.1<br />

0.1<br />

0<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

0.3<br />

0.2<br />

Halved µ<br />

R,F<br />

0.3<br />

0.2<br />

2 2<br />

µ = MAX( Q /4 + mc , 2m )<br />

R,F<br />

c<br />

0.1<br />

0.1<br />

0<br />

0<br />

-0.1<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-0.3<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

Figure D.43: F cc<br />

2 Theoretical Uncerta<strong>in</strong>ties Q 2 = 510 GeV 2<br />

252


Index<br />

δ h , 106<br />

γ h , 107<br />

absorption length, 53<br />

anti-screen<strong>in</strong>g, 19<br />

antiparticle, 15<br />

asymptotic freedom, 18<br />

baryon, 17<br />

BCAL<br />

barrel calorimeter, 56<br />

BGF, 31<br />

Bjorken variable, 26<br />

branch<strong>in</strong>g ratio, 138<br />

Bremsstrahlung radiation, 54<br />

CAL<br />

Calorimeter, 53<br />

cell, 56<br />

electron energy resolution, 56<br />

hadron energy resolution, 56<br />

tower, 56<br />

Callan-Gross relation, 27<br />

CCDIS<br />

charge current deep <strong>in</strong>elastic scatter<strong>in</strong>g,<br />

25<br />

Chi Squared, 78<br />

collid<strong>in</strong>g beam experiment, 14<br />

colour, 17<br />

cone isl<strong>and</strong>, 104<br />

conf<strong>in</strong>ement, 18<br />

covariance, 77<br />

covariance matrix, 77<br />

cross section generators, 41<br />

cross section <strong>in</strong>tegrators, 41<br />

CTD, 117<br />

cell, 63<br />

Central Track<strong>in</strong>g Detector, 61<br />

axial, 64<br />

module, 56<br />

stereo, 64<br />

superlayer, 64<br />

253


cut, 112<br />

de Broglie relation, 14<br />

Democritus, 13<br />

DESY<br />

Deutsches Elektronen-Synchrotron, 14<br />

DESY II, 48<br />

DESY III, 48<br />

DGLAP, 40<br />

Dokshitzer-Gribov-Lipatov-Altarelli-<br />

Parisi, 33<br />

diode, 67<br />

DIS, 25, 112<br />

<strong>Deep</strong> Inelastic Scatter<strong>in</strong>g, 23<br />

DST, 126<br />

data storage tape, 117<br />

DST10, 120<br />

DST11, 120<br />

DST9, 120<br />

selection, 120<br />

EFO, 187<br />

energy flow object, 107<br />

electron f<strong>in</strong>ders, 105<br />

Ernest Rutherford, 13<br />

event, 14<br />

event builder, 116<br />

factorization, 31<br />

factorization scale, 31<br />

FCAL<br />

forward calorimeter, 56<br />

fermions, 15<br />

FFN<br />

fixed flavour number, 35<br />

filter, 112<br />

fit sums, 79<br />

fixed target experiment, 14<br />

FLT, 115<br />

FLT30, 118<br />

FLT34, 118<br />

FLT36, 118<br />

FLT44, 118<br />

FLT46, 118<br />

triggers used, 117<br />

first level trigger, 112<br />

fragmentation, 38<br />

fragmentation functions, 38<br />

FUNNEL, 43, 145<br />

gauge bosons, 16<br />

GEANT, 43<br />

254


generalized radius, 188<br />

GFLT<br />

global first level trigger, 112<br />

gluon, 18<br />

Gold Foil Experiment, 13<br />

GSLT<br />

global second level trigger, 112<br />

GTT<br />

global track<strong>in</strong>g trigger, 117<br />

H1, 14<br />

hadron, 17<br />

hadronization, 38<br />

Hamburg Germany, 47<br />

hard process, 25<br />

HEP<br />

high energy physics, 53<br />

HER, 50<br />

high energy runs, 47<br />

HERA<br />

Hadron Elektron R<strong>in</strong>g Anlage, 14, 47<br />

HERA II, 47<br />

beam parameters, 49<br />

HVQDIS, 161<br />

Index, 246<br />

<strong>in</strong>elasticity, 26<br />

<strong>in</strong>variant mass, 123<br />

IP<br />

<strong>in</strong>teraction po<strong>in</strong>t, 52<br />

jet, 185<br />

cluster<strong>in</strong>g algorithm, 187<br />

cone algorithm, 187<br />

John Dalton, 13<br />

Joseph John Thomson, 13<br />

Kalman filter, 83<br />

least-squares fitt<strong>in</strong>g, 79<br />

LER<br />

low energy runs, 47<br />

Leucippus, 13<br />

LINAC, 48<br />

LINAC II, 48<br />

Lorentz Force, 62<br />

Lund Str<strong>in</strong>g Fragmentation, 39<br />

meson, 17<br />

m<strong>in</strong>imal subtraction, 21<br />

momentum subtraction, 21<br />

Monte Carlo, 38, 41<br />

MVD, 117<br />

255


Micro Vertex Detector, 67<br />

cyl<strong>in</strong>ders, 69<br />

ladder, 71<br />

sector, 71<br />

sensor, 69<br />

wheels, 69<br />

natural units, 14<br />

NCDIS<br />

neutral current deep <strong>in</strong>elastic scatter<strong>in</strong>g,<br />

24<br />

neural network, 105<br />

neutral current, 24<br />

pair production, 54<br />

parton density function, 26<br />

parton shower, 43<br />

partons, 14<br />

Pauli exclusion pr<strong>in</strong>ciple, 17<br />

Peterson Fragmentation, 40, 45<br />

PETRA, 48<br />

PGF<br />

photon-gluon fusion, 32<br />

photoelectric effect, 55<br />

PMT<br />

photomultiplier tube, 55<br />

pn junction, 67<br />

polystyrene, 56<br />

pQCD<br />

perturbative Quantum Chromodynamics,<br />

20<br />

pseudoparticle, 188<br />

pseudorapidity, 52<br />

Q value, 123<br />

QCD<br />

Quantum Chromodynamics, 17<br />

QCD Compton Scatter<strong>in</strong>g, 31<br />

QED<br />

Quantum Electrodynamics, 17<br />

QPM<br />

quark parton model, 26<br />

quarks, 14<br />

radiation length, 53, 56<br />

radiation lengths, 87<br />

RAPGAP, 87, 136, 186<br />

RCAL, 60<br />

rear calorimeter, 56<br />

regular track<strong>in</strong>g, 82<br />

renormalization scale, 21<br />

residual, 87<br />

256


esolution, 87<br />

right charge comb<strong>in</strong>ation<br />

RC, 126<br />

scal<strong>in</strong>g, 26, 27<br />

scal<strong>in</strong>g violation, 30<br />

sc<strong>in</strong>tillators, 55<br />

sea, 23, 29<br />

silicon detector, 67<br />

SLT, 115<br />

second level trigger, 112<br />

soft process, 25<br />

solenoid, 62<br />

spherical polar, 52<br />

splitt<strong>in</strong>g functions, 33<br />

SRTD<br />

Small angle Rear Track<strong>in</strong>g Detector,<br />

60<br />

St<strong>and</strong>ard Model, 15<br />

structure function, 1, 27<br />

STT, 117<br />

Straw Tube Tracker, 72<br />

sector, 73<br />

wedge, 73<br />

superlayer, 62<br />

tagg<strong>in</strong>g, 45<br />

TLT, 116<br />

DIS03, 119<br />

SPP02, 119<br />

SPP09, 119<br />

third level trigger, 113<br />

tower, 56<br />

tracks, 76<br />

trigger, 112, 126<br />

logic, 117<br />

TRVFN<br />

Thorne Roberts variable flavour number,<br />

36<br />

valence, 23, 29<br />

VCTRHL, 77<br />

VXD, 82<br />

words, 116<br />

wrong charge comb<strong>in</strong>ation<br />

WC, 126<br />

wrong charge subtraction, 88, 126<br />

ZEUS, 14<br />

co-ord<strong>in</strong>ates, 52<br />

Detector, 50<br />

257


ZMVFN<br />

zero mass variable flavour number,<br />

35<br />

ZTT, 83, 167<br />

258


Bibliography<br />

[1] [Particle Data Group Collaboration], W. M. Yao et. al., Review of particle<br />

physics, J. Phys. G33 (2006) 1–1232.<br />

[2] [CTEQ Collaboration], R. Brock et. al., H<strong>and</strong>book of perturbative QCD:<br />

Version 1.0, Rev. Mod. Phys. 67 (1995) 157–248.<br />

[3] R. P. Feynman, Very High-Energy Collisions of Hadrons, Phys. Rev. Lett. 23<br />

(Dec, 1969) 1415–1417.<br />

[4] J. D. Bjorken, Asymptotic Sum Rules at Inf<strong>in</strong>ite Momentum, Phys. Rev. 179<br />

(Mar, 1969) 1547–1553.<br />

[5] C. G. Callan <strong>and</strong> D. J. Gross, High-energy electroproduction <strong>and</strong> the<br />

constitution of the electric current, Phys. Rev. Lett. 22 (Jan, 1969) 156–159.<br />

[6] F. Halzen <strong>and</strong> A. D. Mart<strong>in</strong>, QUARKS AND LEPTONS: AN<br />

INTRODUCTORY COURSE IN MODERN PARTICLE PHYSICS, . New<br />

York, Usa: Wiley ( 1984) 396p.<br />

[7] V. N. Gribov <strong>and</strong> L. N. Lipatov, <strong>Deep</strong> <strong>in</strong>elastic e p scatter<strong>in</strong>g <strong>in</strong> perturbation<br />

theory, Sov. J. Nucl. Phys. 15 (1972) 438–450.<br />

259


[8] G. Altarelli <strong>and</strong> G. Parisi, Asymptotic Freedom <strong>in</strong> Parton Language, Nucl.<br />

Phys. B126 (1977) 298.<br />

[9] [ZEUS Collaboration], S. Chekanov et. al., A ZEUS next-to-lead<strong>in</strong>g-order<br />

QCD analysis of data on deep <strong>in</strong>elastic scatter<strong>in</strong>g, Phys. Rev. D67 (2003)<br />

012007 [hep-ex/0208023].<br />

[10] J. Pumpl<strong>in</strong> et. al., New generation of parton distributions with uncerta<strong>in</strong>ties<br />

from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195].<br />

[11] R. S. Thorne, Heavy quarks <strong>in</strong> DIS (theory), J. Phys. G25 (1999) 1307–1312<br />

[hep-ph/9902299].<br />

[12] R. S. Thorne <strong>and</strong> R. G. Roberts, A practical procedure for evolv<strong>in</strong>g heavy<br />

flavour structure functions, Phys. Lett. B421 (1998) 303–311<br />

[hep-ph/9711223].<br />

[13] A. D. Mart<strong>in</strong>, R. G. Roberts, W. J. Stirl<strong>in</strong>g <strong>and</strong> R. S. Thorne, MRST2001:<br />

Partons <strong>and</strong> alpha(s) from precise deep <strong>in</strong>elastic scatter<strong>in</strong>g <strong>and</strong> Tevatron jet<br />

data, Eur. Phys. J. C23 (2002) 73–87 [hep-ph/0110215].<br />

[14] [ZEUS Collaboration], S. Chekanov et. al., A ZEUS next-to-lead<strong>in</strong>g-order<br />

QCD analysis of data on deep <strong>in</strong>elastic scatter<strong>in</strong>g, Phys. Rev. D67 (2003)<br />

012007 [hep-ex/0208023].<br />

[15] B. Andersson, G. Gustafson <strong>and</strong> B. Soderberg, A General Model for Jet<br />

Fragmentation, Z. Phys. C20 (1983) 317.<br />

[16] C. Peterson, D. Schlatter, I. Schmitt <strong>and</strong> P. M. Zerwas, Scal<strong>in</strong>g Violations <strong>in</strong><br />

Inclusive e+ e- Annihilation Spectra, Phys. Rev. D27 (1983) 105.<br />

260


[17] H. Jung, The RAPGAP Monte Carlo for <strong>Deep</strong> Inelastic Scatter<strong>in</strong>g, Phys.<br />

Rev. (2006).<br />

[18] M. A. Dobbs et. al., Les Houches guidebook to Monte Carlo generators for<br />

hadron collider physics, hep-ph/0403045.<br />

[19] T. Sjostr<strong>and</strong> et. al., High-energy-physics event generation with PYTHIA 6.1,<br />

Comput. Phys. Commun. 135 (2001) 238–259 [hep-ph/0010017].<br />

[20] M. Gluck, E. Reya <strong>and</strong> A. Vogt, Dynamical parton distributions of the proton<br />

<strong>and</strong> small x physics, Z. Phys. C67 (1995) 433–448.<br />

[21] B. W. Harris <strong>and</strong> J. Smith, Heavy quark correlations <strong>in</strong> deep <strong>in</strong>elastic<br />

electroproduction, Nucl. Phys. B452 (1995) 109–160 [hep-ph/9503484].<br />

[22] R. Brun, F. Bruyant, M. Maire, A. C. McPherson <strong>and</strong> P. Zanar<strong>in</strong>i, GEANT3,<br />

. CERN-DD/EE/84-1.<br />

[23] F. Willeke, Summary of the HERA proton positron lum<strong>in</strong>osity run 2004, .<br />

DESY-HERA-04-01.<br />

[24] [ZEUS Collaboration], U. H. (ed.), “The ZEUS Detector. Status Report<br />

(unpublished).” http://www-zeus.desy.de/bluebook/bluebook.html, 1993.<br />

[25] M. M<strong>in</strong>ty, Recent beam-beam experiments at HERA-II after the lum<strong>in</strong>osity<br />

upgrade, . DESY-HERA-03-21.<br />

[26] R. Fernow, Introduction to experimental particle physics. Cambridge<br />

University Press, 1986.<br />

261


[27] A. Caldwell et. al., Design <strong>and</strong> implementation of a high precision readout<br />

system for the ZEUS calorimeter, Nucl. Instrum. Meth. A321 (1992) 356–364.<br />

[28] [ZEUS Collaboration], R. Hall-Wilton, N. McCubb<strong>in</strong>, P. Nyl<strong>and</strong>er,<br />

M. Sutton <strong>and</strong> M. W<strong>in</strong>g, The CTD Track<strong>in</strong>g Resolution, . ZEUS-Note-99-024.<br />

[29] E. Maddox, Study of heavy quark production at HERA us<strong>in</strong>g the ZEUS<br />

mircovertex detector. PhD thesis, NIKHEF, 2004.<br />

[30] D. Dannheim et. al., Design <strong>and</strong> tests of the silicon sensors for the ZEUS<br />

micro vertex detector, Nucl. Instrum. Meth. A505 (2003) 663–682<br />

[hep-ex/0212026].<br />

[31] F. Karstens, <strong>Charm</strong>-Produktion <strong>in</strong> Tief<strong>in</strong>elastischer Streuung am<br />

ZEUS-Experiment <strong>in</strong> der Datennahmeperiode von HERA-II. PhD thesis,<br />

Albert-Ludwigs-Universität <strong>in</strong> Freiburg, 2006.<br />

[32] [ZEUS Collaboration], “The STT Project (unpublished).”<br />

http://www-zeus.desy.de/ZEUS ONLY/components/fdet/stt/specs.php3,<br />

1999.<br />

[33] [ZEUS Collaboration], G. F. Hartner, VCTRAK Brief<strong>in</strong>g: Program <strong>and</strong><br />

Math, . ZEUS-Note-98-058.<br />

[34] P. Billoir, R. Frühwirth <strong>and</strong> M. Regler, TRACK ELEMENT MERGING<br />

STRATEGY AND VERTEX FITTING IN COMPLEX MODULAR<br />

DETECTORS, Nucl. Instr. Meth. A241 (1985) 115–131.<br />

[35] P. Billoir <strong>and</strong> S. Qian, Fast vertex fitt<strong>in</strong>g with a local parametrization of<br />

tracks, Nucl. Instr. Meth. A311 (1992) 139–150.<br />

262


[36] R. E. Kalman, A New Approach to L<strong>in</strong>ear Filter<strong>in</strong>g <strong>and</strong> Prediction Problems,<br />

ASME−Journal of Basic Eng<strong>in</strong>eer<strong>in</strong>g D82 (1960) 35–45.<br />

[37] R. Frühwirth, APPLICATION OF KALMAN FILTERING TO TRACK<br />

AND VERTEX FITTING, Nucl. Instr. Meth. A262 (1987) 444–450.<br />

[38] R. L. Gluckstern, Uncerta<strong>in</strong>ties <strong>in</strong> track momentum <strong>and</strong> direction, due to<br />

multiple scatter<strong>in</strong>g <strong>and</strong> measurement errors, Nucl. Instrum. Meth. 24 (1963)<br />

381–389.<br />

[39] R. J. Hall-Wilton, Diffractive <strong>and</strong> Non-Diffractive <strong>Charm</strong> <strong>Production</strong> <strong>in</strong> <strong>Deep</strong><br />

Inelastic Scatter<strong>in</strong>g at HERA. PhD thesis, University of Bristol, 1999.<br />

[40] [ZEUS Collaboration], G. Hartner, VCTRACK: MC/RC Match<strong>in</strong>g Tool<br />

(unpublished), .<br />

[41] [ZEUS Collaboration], J. H. Loizides, Resolution studies with MC<br />

(unpublished), Dec, 2005.<br />

[42] [ZEUS Collaboration], L. Gladil<strong>in</strong>, Measurement of charm framentation<br />

ratios <strong>and</strong> fractions <strong>in</strong> γp collisions at HERA, . ZEUS-050-NNN.<br />

[43] [ZEUS Collaboration], J. Breitweg et. al., Measurement of high-Q**2<br />

neutral-current e+ p deep <strong>in</strong>elastic scatter<strong>in</strong>g cross-sections at HERA, Eur.<br />

Phys. J. C11 (1999) 427–445 [hep-ex/9905032].<br />

[44] [ZEUS Collaboration], A. Kappes, Electron f<strong>in</strong>ders at ZEUS (unpublished),<br />

2002.<br />

263


[45] [ZEUS Collaboration], R. S<strong>in</strong>kus <strong>and</strong> H. Abramozicz, Electron Identification<br />

with Neural Networks Us<strong>in</strong>g a Rotational Invariant Moment Representation, .<br />

ZN-93-117.<br />

[46] S. D. Rob<strong>in</strong>s, <strong>Charm</strong> production <strong>in</strong> deep <strong>in</strong>elastic scatter<strong>in</strong>g at HERA. PhD<br />

thesis.<br />

[47] [ZEUS Collaboration], N. Tun<strong>in</strong>g, ZUFOs: Hadronic f<strong>in</strong>al state rec<strong>in</strong>struction<br />

with calorimeter, track<strong>in</strong>g <strong>and</strong> backsplash correction, . ZEUS-01-021.<br />

[48] N. Tun<strong>in</strong>g, Proton structure functions at HERA. PhD thesis, NIKHEF, 2001.<br />

[49] F. Jacquet <strong>and</strong> A. Blondel, Study of an e p facility for Europe: Proceed<strong>in</strong>gs,<br />

ECFA, Hamburg, Germany, April 2-3, 1979, . DESY-79-48.<br />

[50] J. Bentvelsen, Engelen <strong>and</strong> P. Kooihman, Proc. Workshop on Physics at<br />

HERA, 1992, p.23, .<br />

[51] [ZEUS Collaboration], ORANGE ntuple blocks (unpublished), . http://wwwzeus.desy.de/ZEUS<br />

ONLY/analysis/orange/release.notes/orange ntuple.v2007a.1.html.<br />

[52] J. R. Taylor, An Introduction to Error Analysis The Study of Uncerta<strong>in</strong>ties <strong>in</strong><br />

Physical Measuremnts. University Science Books, 1982.<br />

[53] [ZEUS Collaboration], S. Chekanov et. al., Measurement of D ∗± production<br />

<strong>in</strong> deep <strong>in</strong>elastic e ± p scatter<strong>in</strong>g at HERA, Phys. Rev. D69 (2004) 012004<br />

[hep-ex/0308068]. DESY 03-115.<br />

[54] [ZEUS Collaboration], S. Chekanov et. al., A ZEUS next-to-lead<strong>in</strong>g-order<br />

QCD analysis of data on deep <strong>in</strong>elastic scatter<strong>in</strong>g, Phys. Rev. D67 (2003)<br />

012007 [hep-ex/0208023].<br />

264


[55] [HRS Collaboration], S. Abachi et. al., MEASUREMENT OF THE D0 → K-<br />

pi+ BRANCHING FRACTION, Phys. Lett. B205 (1988) 411.<br />

[56] [ALEPH Collaboration], D. Decamp et. al., <strong>Production</strong> <strong>and</strong> decay of<br />

charmed mesons at the Z resonance, Phys. Lett. B266 (1991) 218–230.<br />

[57] S. Catani, Y. L. Dokshitzer <strong>and</strong> B. R. Webber, The K-perpendicular<br />

cluster<strong>in</strong>g algorithm for jets <strong>in</strong> deep <strong>in</strong>elastic scatter<strong>in</strong>g <strong>and</strong> hadron collisions,<br />

Phys. Lett. B285 (1992) 291–299.<br />

[58] [JADE Collaboration], S. Bethke et. al., Experimental Investigation of the<br />

Energy Dependence of the Strong Coupl<strong>in</strong>g Strength, Phys. Lett. B213 (1988)<br />

235.<br />

[59] S. Catani, Y. L. Dokshitzer, M. H. Seymour <strong>and</strong> B. R. Webber, Longitud<strong>in</strong>ally<br />

<strong>in</strong>variant K(t) cluster<strong>in</strong>g algorithms for hadron hadron collisions, Nucl. Phys.<br />

B406 (1993) 187–224.<br />

265

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!