Universität Karlsruhe (TH) - am Institut für Baustatik

Universität Karlsruhe (TH) - am Institut für Baustatik Universität Karlsruhe (TH) - am Institut für Baustatik

28.10.2014 Views

References [1] Koiter WT. On the nonlinear theory of thin elastic shells. Proc. Kon. Ned. Ak. Wet. B69 1966; 1-54. 1 [2] Green AE, Naghdi PM. On the derivation of shell theories by direct approach. J. Appl. Mech. 1974; 41: 173–176. 1 [3] Ahmad S, Irons BM, Zienkiewicz OC. Analysis of thick and thin shell structures by curved finite elements. Int. J. Num. Meth. Engng. 1970; 2: 419–451. 1 [4] Büchter N, Ramm E. Shell theory versus degeneration–A comparison in large rotation finite element analysis. Int. J. Num. Meth. Engng. 1992; 34: 39–59. 1 [5] Reissner E. The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 1945; 12: 69–76. 1 [6] Mindlin RD. Influence of rotatory inertia and shear flexural motions of isotropic elastic plates. J. Appl. Mech. 1951; 18: 31–38. 1 [7] Liu WK, Law SE, Lam D , Belytschko T. Resultant–stress degenerated shell element. Comp. Meth. Appl. Mech. Engng. 1986; 55: 261–300. 1 [8] Stanley GM, Park KC, Hughes TJR. Continuum–Based Resultant Shell Elements. in: Finite Element Methods for Plate and Shell Structures 1: Element Technology. eds.TJR Hughes and E Hinton, Pineridge Press: Swansea, 1986. 1 [9] Simo JC, Rifai MS, Fox DD. On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory. Comp. Meth. Appl. Mech. Engng. 1990; 79: 21–70. 1, 4.3, 3 [10] Zienkiewicz OC, Taylor RL, Too J. Reduced integration techniques in general analysis of plates and shells. Int. J. Num. Meth. Engng. 1971; 3: 275–290. 1 [11] Belytschko T, Tsay C-S. A stabilization procedure for the quadrilateral plate element with one–point quadrature. Int. J. Num. Meth. Engng. 1983; 19: 405–419. 1 [12] Belytschko T, Lin JI, Tsay CS. Explicit algorithms for the nonlinear dynamics of shells. Comp. Meth. Appl. Mech. Engrg. 1984; 42: 225–251. 1 [13] Vu-Quoc L, Mora JA. A Class of Simple and Efficient Degenerated Shell Elements– Analysis of Global Spurious-Mode Filtering. Comp. Meth. Appl. Mech. Engng. 1989; 74: 117–175. 1 [14] Belytschko T, Leviathan I. Physical stabilization of the 4–node shell element with one point quadrature. Comp. Meth. Appl. Mech. Engrg. 1994; 113: 321–350. 1 [15] Simo JC, Rifai MS. A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Num. Meth. Eng. 1990; 29: 1595–1638. 1 30

[16] Betsch P, Gruttmann F, Stein, E. A 4–Node Finite Shell Element for the Implementation of General Hyperelastic 3D–Elasticity at Finite Strains. Comp. Meth. Appl. Mech. Eng. 1996; 130: 57–79. 1 [17] Sauer R: Eine einheitliche Finite–Element–Formulierung für Stab– und Schalentragwerke mit endlichen Rotationen. Bericht 4 (1998), Institut für Baustatik, Universität Karlsruhe (TH). 1, 1, 2, 4.3, 4.3, 4.4, 3, 4.4, 4.5, 4 [18] Klinkel S, Gruttmann F, Wagner W. A continuum based three-dimensional shell element for laminated structures. Comput. & Struct. 1999; 71: 43–62. 1 [19] Vu-Quoc L, Tan XG. Optimal solid shells for non-linear analyses of multilayer composites. I. Statics. Comp. Meth. Appl. Mech. Engng. 2003; 192: 975–1016. 1, 4.1 [20] Piltner R, Taylor RL. A systematic construction of B-bar functions for linear and nonlinear mixed-enhanced finite elements for plane elasticity problems. Int. J. Num. Meth. Eng. 1999; 44: 615–639. 1 [21] MacNeal RH. A simple quadrilateral shell element. Comput. Struct. 1978; 8: 175–183. 1 [22] Hughes TJR, Tezduyar TE. Finite elements based upon Mindlin plate theory, with particular reference to the 4–node bilinear isoparametric element. J. Appl. Mech. 1981; 48: 587–595. 1 [23] Dvorkin E, Bathe KJ. A continuum mechanics based four node shell element for general nonlinear analysis. Engineering Computations 1984; 1: 77–88. 1, 3.2 [24] Bathe KJ, Dvorkin E. A 4–Node Plate bending element based on Mindlin/Reissner theory and a mixed interpolation. Int. J. Num. Meth. Engng. 1985; 21 367–383. 1 [25] Gruttmann F, Wagner W, Wriggers P. A Nonlinear Quadrilateral Shell Element with Drilling Degrees of Freedom. Arch. Appl. Mech. 1992; 62: 474–486. 1 [26] Hughes TJR. The Finite Element Method, Linear static and Dynamic Finite Element Analysis. Prentice–Hall, Inc., Englewood Cliffs: New Jersey, 1987. 3.1 [27] Taylor RL, Simo JC, Zienkiewicz OC, Chan ACH. The patch test - A condition for assessing FEM convergence. Int. J. Num. Meth. Engng. 1986; 22: 39–62. 3.2 [28] Hughes TJR, Liu WK. Nonlinear finite element analysis of shells: Part I. Threedimensional shells. Comp. Meth. Appl. Mech. Engrg. 1981; 26: 331–362. 3.2 [29] Simo JC. On a stress resultant geometrically exact shell model. Part VII: Shell intersections with 5/6-DOF finite element formulations. Comp. Meth. Appl. Mech. Engrg. 1993; 108 319–339. 3.2 [30] Gruttmann F, Sauer R, Wagner W. Theory and Numerics of Three–Dimensional Beams with Elastoplastic Material Behaviour. Int. J. Num. Meth. Engng. 2000; 48: 1675–1702. 3.2, 3.3, 4.5, 5 31

References<br />

[1] Koiter WT. On the nonlinear theory of thin elastic shells. Proc. Kon. Ned. Ak. Wet. B69<br />

1966; 1-54. 1<br />

[2] Green AE, Naghdi PM. On the derivation of shell theories by direct approach. J. Appl.<br />

Mech. 1974; 41: 173–176. 1<br />

[3] Ahmad S, Irons BM, Zienkiewicz OC. Analysis of thick and thin shell structures by<br />

curved finite elements. Int. J. Num. Meth. Engng. 1970; 2: 419–451. 1<br />

[4] Büchter N, R<strong>am</strong>m E. Shell theory versus degeneration–A comparison in large rotation<br />

finite element analysis. Int. J. Num. Meth. Engng. 1992; 34: 39–59. 1<br />

[5] Reissner E. The effect of transverse shear deformation on the bending of elastic plates.<br />

J. Appl. Mech. 1945; 12: 69–76. 1<br />

[6] Mindlin RD. Influence of rotatory inertia and shear flexural motions of isotropic elastic<br />

plates. J. Appl. Mech. 1951; 18: 31–38. 1<br />

[7] Liu WK, Law SE, L<strong>am</strong> D , Belytschko T. Resultant–stress degenerated shell element.<br />

Comp. Meth. Appl. Mech. Engng. 1986; 55: 261–300. 1<br />

[8] Stanley GM, Park KC, Hughes TJR. Continuum–Based Resultant Shell Elements. in:<br />

Finite Element Methods for Plate and Shell Structures 1: Element Technology. eds.TJR<br />

Hughes and E Hinton, Pineridge Press: Swansea, 1986. 1<br />

[9] Simo JC, Rifai MS, Fox DD. On a stress resultant geometrically exact shell model. Part<br />

III: Computational aspects of the nonlinear theory. Comp. Meth. Appl. Mech. Engng.<br />

1990; 79: 21–70. 1, 4.3, 3<br />

[10] Zienkiewicz OC, Taylor RL, Too J. Reduced integration techniques in general analysis<br />

of plates and shells. Int. J. Num. Meth. Engng. 1971; 3: 275–290. 1<br />

[11] Belytschko T, Tsay C-S. A stabilization procedure for the quadrilateral plate element<br />

with one–point quadrature. Int. J. Num. Meth. Engng. 1983; 19: 405–419. 1<br />

[12] Belytschko T, Lin JI, Tsay CS. Explicit algorithms for the nonlinear dyn<strong>am</strong>ics of shells.<br />

Comp. Meth. Appl. Mech. Engrg. 1984; 42: 225–251. 1<br />

[13] Vu-Quoc L, Mora JA. A Class of Simple and Efficient Degenerated Shell Elements–<br />

Analysis of Global Spurious-Mode Filtering. Comp. Meth. Appl. Mech. Engng. 1989; 74:<br />

117–175. 1<br />

[14] Belytschko T, Leviathan I. Physical stabilization of the 4–node shell element with one<br />

point quadrature. Comp. Meth. Appl. Mech. Engrg. 1994; 113: 321–350. 1<br />

[15] Simo JC, Rifai MS. A class of mixed assumed strain methods and the method of incompatible<br />

modes. Int. J. Num. Meth. Eng. 1990; 29: 1595–1638. 1<br />

30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!