28.10.2014 Views

Universität Karlsruhe (TH) - am Institut für Baustatik

Universität Karlsruhe (TH) - am Institut für Baustatik

Universität Karlsruhe (TH) - am Institut für Baustatik

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

with b Iα = T T I x, α , b M = T T I x M , ξ<br />

to the corner nodes is given by<br />

and b L = T T I x L , η . The allocation of the midside nodes<br />

(I,M,L) ∈{(1,B,A); (2,B,C); (3,D,C); (4,D,A)} . (30)<br />

To alleviate the notation the subscript h is omitted in the matrix.<br />

3.3 Second variation of the functional<br />

Assuming conservative external loads ¯p and ¯t the second variation of the functional yields<br />

∫<br />

Dg · Δθ h = [δε hT (C Δε h − Δσ h )+δσ hT (Δε h G − Δε h )+δε hT<br />

G Δσ h +Δδε hT<br />

G σ h ] dA (31)<br />

(Ω)<br />

with C := ∂ 2 εW . The linearized strains Δε h G are defined with (22) replacing the operator δ<br />

by Δ whereas the linearized virtual shell strains are given with<br />

⎡<br />

Δδε h ⎤ ⎡<br />

11<br />

δx h , 1 ·Δx h ⎤<br />

, 1<br />

Δδε h 22<br />

δx h , 2 ·Δx h , 2<br />

2Δδε h 12<br />

δx h , 1 ·Δx h , 2 +δx h , 2 ·Δx h , 1<br />

Δδκ h Δδε h 11<br />

δx h , 1 ·Δd h , 1 +δd h , 1 ·Δx h , 1 +x h , 1 ·Δδd h , 1<br />

G =<br />

Δδκ h =<br />

22<br />

δx h , 2 ·Δd h , 2 +δd h , 2 ·Δx h , 2 +x h , 2 ·Δδd h , 2<br />

(32)<br />

2Δδκ h δx h ,<br />

12<br />

1 ·Δd h , 2 +δx h , 2 ·Δd h , 1 +δd h , 1 ·Δx h , 2 +δd h , 2 ·Δx h , 1<br />

+x h , 1 ·Δδd h , 2 +x h , 2 ·Δδd h , 1<br />

⎧ ⎢ Δδγ1<br />

h ⎥ ⎢ ⎨ 1<br />

⎣ ⎦ ⎣ J [(1 − ⎫<br />

−1 2 η)ΔδγB ξ +(1+η)Δδγξ<br />

D ⎬<br />

⎥<br />

⎦<br />

Δδγ2<br />

h ⎩ 1<br />

[(1 − 2 ξ)ΔδγA η +(1+ξ)Δδγη C ] ⎭<br />

with<br />

Δδγξ M = [δx, ξ ·Δd +Δx, ξ ·δd + x, ξ ·Δδd] M M = B,D<br />

Δδγη L = [δx, η ·Δd +Δx, η ·δd + x, η ·Δδd] L (33)<br />

L = A, C<br />

The second variation of the current orthogonal base system has been derived in [30], see<br />

appendix A. In the following representation the constants c i introduced in [30] are simplified<br />

and the Taylor series expansion is given. With an arbitrary vector h I ∈ R 3 and b I = d I × h I<br />

we obtain<br />

h I · Δδd I = δw I · M I Δw I<br />

M I (h I ) = 1 2 (d I ⊗ h I + h I ⊗ d I )+ 1 2 (t I ⊗ ω I + ω I ⊗ t I )+c 10 1<br />

t I = −c 3 b I + c 11 (b I · ω I ) ω I c 10 = ¯c 10 (b I · ω I ) − (d I · h I )<br />

c 3 = ω I sin ω I +2(cosω I − 1)<br />

ω 2 I (cos ω I − 1)<br />

¯c 10 =<br />

sin ω I − ω I<br />

2ω I (cos ω I − 1)<br />

c 11 = 4(cosω I − 1) + ω 2 I + ω I sin ω I<br />

2 ω 4 I (cos ω I − 1)<br />

10<br />

= 1 6 (1 + 1 60 ω2 I)+O(ω 4 I)<br />

= 1 6 (1 + 1 30 ω2 I)+O(ω 4 I)<br />

= − 1<br />

360 (1 + 1 21 ω2 I)+O(ω 4 I)<br />

(34)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!