Dr. Edward Garvey, Louis Berger Group

Dr. Edward Garvey, Louis Berger Group Dr. Edward Garvey, Louis Berger Group

27.10.2014 Views

Using Sediment Tracers to Identify Release Events, Differentiate Sources, and Assess Monitored Natural Recovery Edward A. Garvey, PhD, PG The Louis Berger Group, Inc. Morristown, NJ EBC Seminar Series Part I: Advances in Sediment Site Characterization September 23, 2011 The Louis Berger Group, Inc. L B G

Using Sediment Tracers to Identify Release<br />

Events, Differentiate Sources, and Assess<br />

Monitored Natural Recovery<br />

<strong>Edward</strong> A. <strong>Garvey</strong>, PhD, PG<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

Morristown, NJ<br />

EBC Seminar Series<br />

Part I: Advances in Sediment Site Characterization<br />

September 23, 2011<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


Session Outline<br />

• Background on Sediments and Dating<br />

• Time Clocks and Horizon Markers<br />

• Tracer Examples<br />

• Applications<br />

• Current Conditions<br />

• Historical Conditions<br />

• Estimating Natural Recovery<br />

• Conclusions<br />

2<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


Background on Sediments and Dating<br />

3<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


Nature of Sediment and Contamination<br />

• Sediment is NOT wet dirt…<br />

• It moves!<br />

• Energy changes everything<br />

• ocean vs. lake vs. estuary vs. river<br />

Increasing energy<br />

• deep water vs. shoreline<br />

• Influence of water<br />

• Solids transport<br />

• Dissolved phase transport<br />

• Partitioning and K D<br />

• Diagenesis<br />

• Understanding time of deposition<br />

deconvolves impacts of energy<br />

4<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


Begin with a Good Core!<br />

5<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


How Do We Establish Time of Deposition?<br />

(1)<br />

• Established principals for geological dating can be<br />

applied to recent deposition as well.<br />

• Geologist’s Time Keepers (Clocks)<br />

• Radioisotope Clocks (Isotope , half-life)<br />

• Age of the universe (Th232, 10 10 yrs)<br />

• Age of the earth (U-238, 10 9 yrs)<br />

• Age of the dinosaurs (U/Pb, 10 8 yrs)<br />

• Age of the ice ages (U-234, 10 5 yrs, Th-230, 10 4 yrs)<br />

• Age of the Egyptians (C-14, 10 3 yrs)<br />

6<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


How Do We Establish Time of Deposition?<br />

(2)<br />

• Geological Marker Horizons<br />

• Banded Iron Formations<br />

Appearance<br />

Disappearance<br />

3,800 My<br />

1,700 My<br />

• Fossils (trilobites) (530-250 My)<br />

Appearance<br />

530 My<br />

Disappearance<br />

250 My<br />

• Iridium maximum<br />

End of the dinosaurs<br />

65 My<br />

7<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


How Do We Establish Time of Deposition?<br />

Environmental Geochemist’s Tools<br />

• Radioisotope Time Clocks<br />

• Be-7 (53 days)<br />

• Pb-210 (Excess) (22 yrs)<br />

• Horizon Markers<br />

• Appearance of DDT (~1940)<br />

• Bomb Radiocesium (Cs-137)<br />

Appearance 1954<br />

Maximum 1963<br />

• Soda Can Tabs (1960-1975)<br />

• Appearance of PBDEs (1970s)<br />

• Appearance of Fluorinated Surfactants (PFOA/PFOS) -appearance 1950s,<br />

max ~2000<br />

• Appearance of Quaternary Ammonium Surfactant (ATMAC-22) ~1990<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G<br />

8


Beryllium-7 as a Radiotracer<br />

• Half life of 53 days<br />

• Highly particle reactive<br />

• Effective Partition Coefficient >10 4<br />

• Tags recently deposited sediment<br />

• Typically limited to upper 2 to 3 centimeters in<br />

sediment<br />

• Sediments containing Be-7 are considered very<br />

recently deposited,


Atmospheric Production<br />

Be-7<br />

Tidal Transport<br />

and Redeposition<br />

Deposition<br />

Particle Reactive<br />

Be-7<br />

Water Column<br />

Upland Sources<br />

Sediment<br />

Resuspension<br />

and new solids<br />

entering the<br />

system<br />

Sediment Bed<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


Radiocesium (Cs-137) as a Marker Horizon<br />

11<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


Depth<br />

CESIUM-137 CORE DATING<br />

Three Deposition Rate Formulas:<br />

Cesium-137 (pCi/g)<br />

Rate 1 = Depth of Cs137 Appearance<br />

(Time of core collection – 1954)<br />

2005, year of<br />

collection<br />

2<br />

Ideally the<br />

same rate<br />

1963 Peak<br />

1<br />

Rate 2 = Depth of Cs137 Peak<br />

(Time of core collection – 1963)<br />

Ideally the<br />

same rate<br />

1954 Appearance<br />

3<br />

Rate 3 = Depth of Appearance –Depth of Peak<br />

(1963– 1954)<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


Cs-137 Dated Sediment Cores from the<br />

Hudson River<br />

13<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


Chemical Marker Examples<br />

• DDT first appearance circa 1940<br />

• Fluorinated Surfactants (PFOA/PFOS)-appearance<br />

1950s, max ~2000<br />

• PBDE first appearance circa 1978, max 2000 to<br />

present<br />

• PBB first appearance circa 1970, max 1980, decline<br />

to present<br />

• Appearance of Quaternary Ammonium Surfactant<br />

22 (ATMAC-22) ~1990<br />

14<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


Chemical Marker Examples<br />

Poly Brominated Diphenyl Ethers<br />

Poly Brominated Biphenyls<br />

PBB-153<br />

From Zhu, et al., 2005<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G<br />

15


Quaternary Ammonium Surfactants<br />

• ATMAC 22 provides an indicator of post 1990<br />

deposition<br />

16<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


Depth<br />

Year of collection<br />

1 Year prior<br />

1990<br />

Concentration<br />

Excess<br />

Pb-210<br />

Idealized<br />

Dated Core<br />

1978<br />

1963<br />

Cs-137<br />

1954<br />

17<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


Limitations of Sediment Dating<br />

18<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


Use of Beryllium-7 to Identify Current Spatial Trends<br />

Tidal Estuary Example<br />

Dam<br />

Tidal Currents<br />

Major Tidal<br />

Exchange<br />

RM 0<br />

17-mile long<br />

RM 17<br />

estuary<br />

Inflow<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


Use of Beryllium-7 to Identify Current Spatial Trends<br />

Tidal Estuary Example<br />

• Four studies of 2,3,7,8-TCDD and 4,4-DDE.<br />

1995 0-6 inch sample<br />

2008 0-6 inch sample<br />

2009 0-6 inch sample<br />

2008 0-1 inch sample<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


2,3,7,8-TCDD Concentration (ng/kg)<br />

2,3,7,8-TCDD vs. Distance along Estuary<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0<br />

River Mile<br />

To the Sea<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


4,4'-DDE Concentration (ug/kg)<br />

4,4’-DDE vs. Distance along Estuary<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0<br />

River Mile<br />

To the Sea<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


4l<br />

Cesium-137 Core Dating<br />

Hudson River Example<br />

Inflow<br />

Tidal<br />

Exchange<br />

Tidal Currents<br />

One directional<br />

freshwater flow<br />

Inflow<br />

Approximately 200-mile long river<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


Similar Recovery Rates Post 1980<br />

Circa 1970 Peak Identified all the way to RM 0<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G<br />

24


Cesium-137 Core Dating<br />

Tidal Estuary Example<br />

Dam<br />

Major Tidal<br />

Exchange<br />

Tidal Currents<br />

RM 0<br />

17-mile long<br />

RM 17<br />

estuary<br />

Inflow<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


Cs-137 Profiles Permit Comparisons<br />

across the Entire Length of the Estuary<br />

Depth to Cs-137 Maximum<br />

3 ft 7 ft 13 ft 2 ft 4 ft<br />

26<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


Approximate Year of Deposition<br />

Approximate Year of Deposition<br />

Approximate Year of Deposition<br />

0.1 1 10<br />

Historical Dioxin Levels were Extremely High<br />

2007<br />

. . . but Recent Levels are Declining Slowly at Best<br />

2,3,7,8 - TCDD (ug/kg)<br />

2005<br />

0.001 0.01 0.1 1 10<br />

2005<br />

2000<br />

1995<br />

2000<br />

1990<br />

1985<br />

2,3,7,8 - TCDD (ug/kg)<br />

0.1 1 10<br />

2005<br />

2000<br />

1995<br />

RM 1.4<br />

RM 2.2<br />

RM 1.4<br />

RM 7.8<br />

RM 2.2<br />

RM 7.8<br />

RM 11<br />

RM 11<br />

RM 12.6<br />

RM 12.6<br />

Non-contiguous<br />

core segment<br />

1980<br />

1975<br />

1995<br />

1990<br />

1970<br />

1985<br />

1965<br />

1960<br />

1990<br />

1980<br />

1955<br />

27<br />

1950<br />

1975<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


Depth (Represented by Year)<br />

Approximate Year of Deposition<br />

Dated Sediment Cores Permit Forensic Analysis<br />

of Historical Deposition and Sources<br />

2005<br />

1995<br />

1985<br />

1975<br />

1965<br />

Ratio 2,3,7,8 - TCDD to Total TCDD<br />

0.00 0.20 0.40 0.60 0.80 1.00 1.20<br />

RM 1.4<br />

RM 2.2<br />

RM 7.8<br />

RM 11<br />

RM 12.6<br />

But…Recent<br />

release has<br />

identifiably<br />

different<br />

signature..<br />

Ratio<br />

of ~0.7<br />

1955<br />

1945<br />

1935<br />

Dioxin ratios have changed<br />

only marginally over time.<br />

Original source material is<br />

largely unchanged.<br />

28<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


Depth (represented by years)<br />

Establishing The Current Rate of Recovery<br />

Cesium-137 Core Dating<br />

Total PCB Concentration (ug/kg))<br />

4i<br />

Decline in Total PCB Load<br />

1970s-Present<br />

Peak Total PCB<br />

Load 1960s<br />

Rate of recovery is<br />

equivalent to a 25<br />

year half life.<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G


Conclusions<br />

• Sediments are a complex media in an energetic<br />

environment.<br />

• Sufficient tracers are available to establish time of<br />

deposition for the last 50 to 100 years, with a resolution of<br />

10 years or less.<br />

• Establishing time of deposition permits comparisons across<br />

large spatial scales and avoids natural “noise.”<br />

• Particle-bound contaminant histories are recorded in the<br />

sediment and can be readily established.<br />

• Current conditions can be easily and inexpensively<br />

established using the right tracers and sampling techniques.<br />

• The contaminant record provides a basis for forensic<br />

analysis and can be used to establish the current rates of<br />

recovery.<br />

The <strong>Louis</strong> <strong>Berger</strong> <strong>Group</strong>, Inc.<br />

L<br />

B<br />

G<br />

30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!