27.10.2014 Views

Genetic variation

Genetic variation

Genetic variation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Conservation genetics of plants with<br />

special regard to gene flow within and<br />

among populations<br />

Walter Durka


Outline<br />

• Introduction<br />

• Population structure of Stipa pulcherrima<br />

• Pollen dispersal in Euphorbia palustris<br />

• Inbreeding depression in Juncus atratus<br />

• Landscape genetics of Geum urbanum<br />

• Conclusions<br />

Page 2


Objectives of molecular ecology<br />

„Molecular markers are routinely used in the measurement of<br />

• seed and pollen dispersal<br />

• the study of breeding systems<br />

• the assessment of genetic diversity between and within plant populations<br />

• the identification of species (viz. DNA barcoding)<br />

• the elucidation of phylogenetic relationships between plant species<br />

• the study of kinship<br />

• and the survey of phylogeographical patterns.“(Ouborg & Vriezen 2007)<br />

Page 3


Objectives of conservation genetics<br />

Conservation genetics<br />

What to protect ? <strong>Genetic</strong> issues<br />

Aim: conservation of total phylogenetic diversity in circumscribed conservation units<br />

• Species identification, delimitation, hybridisation: phylogeny<br />

• Conservation units, ESU: phylogeography<br />

• Local adaptation, e.g. use of local seed material<br />

How to protect ?<br />

Target: genetic <strong>variation</strong> is sufficient to maintain λ > 1<br />

• dispersal: gene flow, population structure, landscape context<br />

• Population level: level of genetic <strong>variation</strong>,<br />

• Individual level: breeding systems, inbreeding depression?<br />

• Ex situ conservation, captive breeding<br />

Page 4


Challenges for conservation remain<br />

• Land use<br />

• competition for space for energy crops -> habitat loss, fragmentation<br />

• intensification<br />

• Climate change<br />

• adapation<br />

• range contraction, range extension<br />

• Invasive species<br />

• competition<br />

• hybridisation<br />

Page 5


<strong>Genetic</strong> <strong>variation</strong><br />

Land use<br />

Landscape structure<br />

Census size<br />

Habitat<br />

quality<br />

Habitat<br />

connectivity<br />

Inbreeding<br />

depression<br />

Effective<br />

population size<br />

Outcrossing rate<br />

Fitness<br />

Inbreeding<br />

Drift<br />

Pollinators<br />

Seed<br />

dispersers<br />

Evolutionary<br />

potential<br />

<strong>Genetic</strong> <strong>variation</strong><br />

Selection<br />

Pollen<br />

dispersal<br />

Seed<br />

dispersal<br />

Local<br />

adaptation<br />

<strong>Genetic</strong><br />

differentiation<br />

Gene flow<br />

Migration<br />

Positive correlation<br />

Outbreeding<br />

depression<br />

Negative correlation<br />

Page 6<br />

Evolutionary<br />

units<br />

cf. Obourg et al. 2006


<strong>Genetic</strong> <strong>variation</strong><br />

Land use<br />

Landscape structure<br />

Census size<br />

Habitat<br />

quality<br />

Habitat<br />

connectivity<br />

Inbreeding<br />

depression<br />

Effective<br />

population size<br />

Outcrossing rate<br />

Fitness<br />

Inbreeding<br />

Drift<br />

Pollinators<br />

Seed<br />

dispersers<br />

Evolutionary<br />

potential<br />

<strong>Genetic</strong> <strong>variation</strong><br />

Selection<br />

Pollen<br />

dispersal<br />

Seed<br />

dispersal<br />

Local<br />

adaptation<br />

<strong>Genetic</strong><br />

differentiation<br />

Gene flow<br />

Migration<br />

Positive correlation<br />

Outbreeding<br />

depression<br />

Negative correlation<br />

Evolutionary<br />

units<br />

Page 7


Being a relict …<br />

Xerothermic dry grassland species are relicts of warmer postglacial periods<br />

• Fragmented and isolated<br />

• <strong>Genetic</strong> <strong>variation</strong> reduced due to bottlenecks?<br />

• Gene flow among populations ?<br />

Stipa pulcherrima<br />

• 20 populations á 10 indiv.<br />

• 148 AFLP loci<br />

• 75 polymorphic loci<br />

Page 8<br />

Nossol 2007 diploma thesis


<strong>Genetic</strong> <strong>variation</strong> in long-term fragmented<br />

isolated populations<br />

‣ extreme genetic uniformity within many<br />

populations<br />

‣ Mean % polymoprhic loci = 4.6<br />

‣ H j<br />

= 0.016<br />

Pop 1<br />

Pop 2<br />

AFLP-phenotypes<br />

Pop 3<br />

Pop 4<br />

Pop 5<br />

Pop 6<br />

Page 9<br />

Nossol 2007


<strong>Genetic</strong> <strong>variation</strong> in long-term fragmented<br />

isolated populations<br />

‣ No clear geographic trend of genetic<br />

<strong>variation</strong><br />

10 % polymorphic loci<br />

Page 10<br />

Nossol 2007


<strong>Genetic</strong> <strong>variation</strong> in long-term fragmented<br />

isolated populations<br />

‣ Extreme population differentiation<br />

‣ Overall F ST<br />

= 0.915<br />

AMOVA<br />

Source of <strong>variation</strong> df Sum of sq Var. comp Perc. Var.<br />

Among populations 19 1273.9 6.676 91.47<br />

Within populations 179 111.4 0.622 8.53<br />

Total 198 1385.3 7.298<br />

F ST = 0.9147<br />

Page 11<br />

Nossol 2007


<strong>Genetic</strong> <strong>variation</strong> in long-term fragmented<br />

isolated populations<br />

‣ extreme population differentiation<br />

‣ Pairwise F ST<br />

no appropriate measure of<br />

genetic divergence<br />

‣ Isolation by distance over large<br />

distances<br />

‣ Result of …<br />

+ single seed colonisation<br />

+ demographic bottlenecks<br />

+ cleistogamy<br />

+ lack of current/recent gene flow<br />

F ST<br />

Nei´s distance<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0.1 1 10 100 1000<br />

geographic distance (km)<br />

Page 12<br />

Nossol 2007


<strong>Genetic</strong> <strong>variation</strong><br />

Land use<br />

Landscape structure<br />

Census size<br />

Habitat<br />

quality<br />

Habitat<br />

connectivity<br />

Inbreeding<br />

depression<br />

Effective<br />

population size<br />

Outcrossing rate<br />

Fitness<br />

Inbreeding<br />

Drift<br />

Pollinators<br />

Seed<br />

dispersers<br />

Evolutionary<br />

potential<br />

<strong>Genetic</strong> <strong>variation</strong><br />

Selection<br />

Pollen<br />

dispersal<br />

Seed<br />

dispersal<br />

Local<br />

adaptation<br />

<strong>Genetic</strong><br />

differentiation<br />

Gene flow<br />

Migration<br />

Positive correlation<br />

Outbreeding<br />

depression<br />

Negative correlation<br />

Evolutionary<br />

units<br />

Page 13


Pollen dispersal in Euphorbia palustris<br />

1 2 3 4 km<br />

Page 14<br />

Fothe 2007 diploma thesis


Pollen dispersal in Euphorbia palustris<br />

0.25<br />

0.20<br />

F ST<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

100 1000 10000<br />

geographic distance (m)<br />

r 2 =0.162<br />

Mantel p = 0.013<br />

► Do generalist pollinators contribute to gene flow among populations?<br />

Page 15


Pollen dispersal in Euphorbia palustris<br />

► Does pollen dispersal contribute to maintenance of genetic<br />

<strong>variation</strong>?<br />

• paternity analysis (96 seeds(embryos); 106 potential fathers)<br />

• 7 microsatellite loci<br />

• CERVUS-analysis<br />

• spatial genetic autocorrelation analysis: SPAGEDI<br />

m<br />

0<br />

-5<br />

x1<br />

x3<br />

x4x5<br />

x8<br />

x10<br />

x11<br />

x16<br />

-10<br />

-15<br />

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85<br />

Page 16<br />

Durka & Fothe in prep.


Pollen dispersal in Euphorbia palustris<br />

► mean pollination distance<br />

18.5m; 47% < 10m<br />

► max poll. distance 150 m<br />

► unassigned genotypes =<br />

common alleles<br />

frequency (%)<br />

frequency (%)<br />

50 real fathers<br />

40<br />

30<br />

20<br />

10<br />

0<br />

50 potential fathers<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Morans I<br />

0.10<br />

0.05<br />

0.00<br />

-0.05<br />

-0.10<br />

0 20 40 60 80 100 120 140 160 180<br />

distance (m)<br />

► No evidence for foreign pollen<br />

► Gene flow between populations unlikely<br />

Page 17<br />

Durka & Fothe in prep.


Pollen dispersal distances<br />

•Leptocurtic pollen dispersal curve<br />

•Thin tail or thick tail ?<br />

•Long distance dispersal (ldd) is a rare event<br />

•Methodological constraints to identify ldd<br />

•Fragmented populations are no rape field<br />

Page 18


<strong>Genetic</strong> <strong>variation</strong><br />

Land use<br />

Landscape structure<br />

Census size<br />

Habitat<br />

quality<br />

Habitat<br />

connectivity<br />

Inbreeding<br />

depression<br />

Effective<br />

population size<br />

Outcrossing rate<br />

Fitness<br />

Inbreeding<br />

Drift<br />

Pollinators<br />

Seed<br />

dispersers<br />

Evolutionary<br />

potential<br />

<strong>Genetic</strong> <strong>variation</strong><br />

Selection<br />

Pollen<br />

dispersal<br />

Seed<br />

dispersal<br />

Local<br />

adaptation<br />

<strong>Genetic</strong><br />

differentiation<br />

Gene flow<br />

Migration<br />

Positive correlation<br />

Outbreeding<br />

depression<br />

Negative correlation<br />

Evolutionary<br />

units<br />

Page 19


Inbreeding depression<br />

selfing<br />

▼<br />

homozygosity<br />

▼<br />

deleterious alleles are<br />

expressed and purged<br />

▼<br />

genetic load can not<br />

accumulate<br />

▼<br />

inbreeding does not lead to<br />

inbreeding depression<br />

outcrossing<br />

▼<br />

heterozygosity<br />

▼<br />

deleterious alleles are<br />

masked in heterozygous<br />

state<br />

▼<br />

genetic load can<br />

accumulate<br />

▼<br />

inbreeding leads to<br />

inbreeding depression<br />

outcrossing rate t<br />

(Igic & Kohn 2006)<br />

Page 20


Inbreeding depression in Juncus atratus<br />

Page 21<br />

Michalski et al. 2005, Cons. Gen. 7: 149-151<br />

Michalski & Durka, Mol. Ecol, in press<br />

Michalski & Durka, Ann. Bot, in press


Inbreeding depression in Juncus atratus<br />

Breeding system<br />

• self-fertilisation is ‘very frequent and successful’ (Buchenau<br />

1890, 1892)<br />

• low P/O ratios indicate self-fertilisation (Proctor et al. 1996)<br />

• experimental evidence: t = 0.056 (98 families, 2265 seeds)<br />

J. atratus is highly selfing<br />

Expectations<br />

• low genetic variability<br />

• strong differentiation<br />

• no inbreeding depression<br />

Experimental analysis of inbreeding depression<br />

• Equilibrium inbreeding depression: δ = 1 – [ 2tF/ (1–t)(1–F)]<br />

• Stage specific ibd: δ = 1 – 2tF i<br />

/ (1-t)(1+F i-1<br />

–2F i<br />

)<br />

Page 22


Inbreeding depression in Juncus atratus<br />

survival (%)<br />

F IS<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

δ, inbreeding<br />

depression<br />

1.0<br />

0.8<br />

0.6<br />

maternal<br />

plants<br />

seeds seedlings<br />

6 months<br />

seedlings<br />

12 months<br />

Page 23


Inbreeding depression in Juncus atratus<br />

Strong inbreeding depression<br />

• Mortality of homozygous seeds<br />

• Adult generation nearly at HW-equilibrium (F IS<br />

= 0.166; SD<br />

0.11)<br />

... maintains high level of genetic <strong>variation</strong><br />

Inbreeding coefficient F IS<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

r = -0.489, P = 0.05<br />

-0.1<br />

1 10 100 1000 10000<br />

Estimated population size<br />

Page 24


Inbreeding depression in Juncus atratus<br />

Inbreeding depression<br />

• maintains high levels of genetic <strong>variation</strong><br />

Evolutionary questions<br />

• Why is genetic load not purged ?<br />

• Why are so many seeds produced ?<br />

Page 25


<strong>Genetic</strong> <strong>variation</strong><br />

Land use<br />

Landscape structure<br />

Census size<br />

Habitat<br />

quality<br />

Habitat<br />

connectivity<br />

Inbreeding<br />

depression<br />

Effective<br />

population size<br />

Outcrossing rate<br />

Fitness<br />

Inbreeding<br />

Drift<br />

Pollinators<br />

Seed<br />

dispersers<br />

Evolutionary<br />

potential<br />

<strong>Genetic</strong> <strong>variation</strong><br />

Selection<br />

Pollen<br />

dispersal<br />

Seed<br />

dispersal<br />

Local<br />

adaptation<br />

<strong>Genetic</strong><br />

differentiation<br />

Gene flow<br />

Migration<br />

Positive correlation<br />

Outbreeding<br />

depression<br />

Negative correlation<br />

Evolutionary<br />

units<br />

Page 26


Landscape genetics of Geum urbanum<br />

#S<br />

#S<br />

#S<br />

#S<br />

#S#S<br />

#S #S<br />

#S<br />

#S<br />

#S<br />

#S #S #S<br />

#S<br />

#S #S<br />

#S #S #S<br />

#S<br />

#S<br />

#S #S<br />

#S<br />

#S<br />

#S #S<br />

#S<br />

#S<br />

#S<br />

Page 27<br />

Baessler & Durka in prep.


Landscape genetics of Geum urbanum<br />

Objectives<br />

• Does genetic <strong>variation</strong> of G. urbanum differ among agricultural<br />

landscapes?<br />

• Does present day landscape structure and spatial population structure<br />

affect genetic <strong>variation</strong>?<br />

• Which of the landscape genetic relationships are consistent across<br />

landscapes and which are landscape specific?<br />

Page 28


Landscape genetics of Geum urbanum<br />

WAN FB GH<br />

#S<br />

#S<br />

#S<br />

#S<br />

#S #S #S<br />

#S<br />

#S #S #S<br />

#S #S#S<br />

#S<br />

#S #S #S#S #S<br />

#S<br />

#S<br />

#S<br />

#S<br />

#S<br />

#S<br />

#S<br />

#S#S<br />

#S #S<br />

#S<br />

#S<br />

#S<br />

#S #S #S<br />

#S<br />

#S #S<br />

#S #S #S<br />

#S<br />

#S<br />

#S #S<br />

#S<br />

#S<br />

#S #S<br />

#S<br />

#S<br />

#S<br />

#S<br />

#S#S<br />

#S<br />

#S<br />

#S<br />

#S<br />

#S<br />

#S<br />

#S<br />

#S #S #S #S<br />

#S #S<br />

#S<br />

#S<br />

#S<br />

#S #S#S<br />

#S<br />

#S<br />

1 2 3 4 km<br />

•<strong>Genetic</strong> <strong>variation</strong> at 7 microsatellite loci<br />

•Population specific F ST<br />

-values (Foll & Gaggiotti 2006)<br />

•Circular areas around sampled populations<br />

• landscape metrics<br />

• Geum populations<br />

•Linear mixed models<br />

Page 29<br />

Baessler et al. in prep.


Landscape genetics of Geum urbanum<br />

Tukey HSD Test<br />

He<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

FST<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

a<br />

b<br />

c<br />

0.1<br />

0.0<br />

0.2<br />

0.1<br />

WAN FB GH<br />

WAN FB GH<br />

Landscape<br />

Landscape<br />

Page 30


Landscape genetics of Geum urbanum<br />

Dependent variable: population specific F ST<br />

values<br />

Fixed effects DF F-value p-value<br />

(Intercept) 1 1316.84


Landscape genetics of Geum urbanum<br />

FST<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

c<br />

d<br />

WAN<br />

FB<br />

GH<br />

0.2<br />

0.0<br />

1.0<br />

0.8<br />

0.5 1.0 1.5 2.0 2.5 3.0<br />

log Geum pop size<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

log No.Geum pop<br />

F ST<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-2 -1 0 1 2 3 4<br />

log DENS Woody<br />

0.0 0.5 1.0 1.5 2.0 2.5<br />

log ISOL Woody<br />

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0<br />

log Roads<br />

Page 32


Landscape genetics of Geum urbanum<br />

1.0<br />

0.8<br />

FST<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-0.4 -0.2 0.0 0.2 0.4<br />

log Patchsize<br />

0.3 0.4 0.5 0.6 0.7 0.8<br />

log No.Land-useTypes<br />

Page 33


Landscape genetics of Geum urbanum<br />

Geum urbanum<br />

• Low gene flow, strong genetic drift due to selfing<br />

• Major influence of ...<br />

• Geum population structure<br />

• Forest habitat density, isolation<br />

• General factors<br />

• Landscape diversity<br />

• Geum population density<br />

• landscape specific factors<br />

• Patchsize<br />

• Woody density<br />

Page 34


<strong>Genetic</strong> <strong>variation</strong><br />

Land use<br />

Landscape structure<br />

Census size<br />

Habitat<br />

quality<br />

Habitat<br />

connectivity<br />

Inbreeding<br />

depression<br />

Effective<br />

population size<br />

Outcrossing rate<br />

Fitness<br />

Inbreeding<br />

Drift<br />

Pollinators<br />

Seed<br />

dispersers<br />

Evolutionary<br />

potential<br />

<strong>Genetic</strong> <strong>variation</strong><br />

Selection<br />

Pollen<br />

dispersal<br />

Seed<br />

dispersal<br />

Local<br />

adaptation<br />

<strong>Genetic</strong><br />

differentiation<br />

Gene flow<br />

Migration<br />

Positive correlation<br />

Outbreeding<br />

depression<br />

Negative correlation<br />

Evolutionary<br />

units<br />

Page 35


Take home ...<br />

‣Molecular markers are powerful tools to study the biology<br />

‣.. and demography<br />

‣.. and evolutionary history<br />

‣That hopefully will guide future conservation action<br />

Page 36


Thanks<br />

Constanze Nossol<br />

Isabell Hensen<br />

Stefan Michalski<br />

Michel Burkhard<br />

DFG<br />

Anja Fothe<br />

Conny Baeßler<br />

Paul Arens, Rene Smulders<br />

EU project Greenveins<br />

Page 37

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!