27.10.2014 Views

a limit theorem for the hurwitz zeta-function in the space of analytic ...

a limit theorem for the hurwitz zeta-function in the space of analytic ...

a limit theorem for the hurwitz zeta-function in the space of analytic ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

80 A <strong>limit</strong> <strong><strong>the</strong>orem</strong> <strong>for</strong> <strong>the</strong> Hurwitz <strong>zeta</strong>-<strong>function</strong>...<br />

Lemma 5. Let T → ∞ and 1 2<br />

< σ < 1. Then<br />

∫ T<br />

0<br />

|ζ(σ + it, ω, α)| 2 dt = BT<br />

<strong>for</strong> almost all ω ∈ Ω.<br />

Pro<strong>of</strong>. Let<br />

Then<br />

Denote<br />

ζ m (σ, ω, α) =<br />

ζ(σ, ω, α) =<br />

ω(m)<br />

(m + α) σ , m ∈ N 0.<br />

∞∑<br />

ζ m (σ, ω, α).<br />

m=0<br />

ˆζ(σ, ω, α) = |ζ(σ, ω, α)| 2 .<br />

S<strong>in</strong>ce<br />

E|ζ m (σ, ω, α)| 2 =<br />

1<br />

(m + α) 2σ ,<br />

and <strong>the</strong> random variables ζ m (σ, ω, α) are pairwise ortogonal, we f<strong>in</strong>d that<br />

It is obvious that<br />

E|ˆζ(σ, ω, α)| =<br />

∞∑<br />

E|ζ m (σ, ω, α)| 2 =<br />

m=0<br />

∞∑<br />

m=1<br />

1<br />

< ∞. (4)<br />

(m + α)<br />

2σ<br />

ˆζ(σ, ϕ τ (ω), α) = |ζ(σ, a τ ω, α)| 2 = |ζ(σ + iτ, ω, α)| 2 . (5)<br />

S<strong>in</strong>ce <strong>the</strong> Haar measure is <strong>in</strong>variant, <strong>the</strong> equality m H (ϕ τ (A)) = m H (A) is valid<br />

<strong>for</strong> each A ∈ B(Ω) and every τ ∈ R. There<strong>for</strong>e |ζ(σ + iτ, ω, α)| 2 is a strongly<br />

stationary process. It is also an ergodic process. In fact, let A be an <strong>in</strong>variant set<br />

<strong>of</strong> |ζ(σ + iτ, ω, α)| 2 , i. e.<br />

Q(A∆A u ) = 0. (6)<br />

We have that<br />

A ′<br />

A ′ u<br />

def<br />

= {ω ∈ Ω : |ζ(σ + iτ, ω, α)| 2 ∈ A} = {ω ∈ Ω : |ζ(σ, a τ ω, α)| 2 ∈ A},<br />

def<br />

= {ω ∈ Ω : |ζ(σ + iτ, ω, α)| 2 ∈ A u } = {ω ∈ Ω : |ζ(σ + iτ + iu, ω, α)| 2 ∈ A}<br />

= {ω ∈ Ω : |ζ(σ + iτ, a u ω, α)| 2 ∈ A}.<br />

There<strong>for</strong>e A ′ u = ϕ u (A ′ ) and (A∆A u ) ′ = A ′ ∆A ′ u. From this and from (6) we deduce<br />

that m H (A ′ ∆A ′ u) = m H ((A∆A u ) ′ ) = Q(A∆A u ), that is A ′ is an <strong>in</strong>variant set with<br />

respect to ϕ τ . But, by Lemma 3, <strong>the</strong> group {ϕ τ : τ ∈ R} is ergodic. There<strong>for</strong>e

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!