26.10.2014 Views

No. 1, 1998 - Tribology in Industry

No. 1, 1998 - Tribology in Industry

No. 1, 1998 - Tribology in Industry

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

YU ISSN 0354 - 8996<br />

lll<br />

I<br />

I<br />

voLUME'2o<br />

<strong>No</strong>1<br />

MARCH 1ee8.<br />

tribology <strong>in</strong> <strong>in</strong>dustry<br />

contents<br />

INTRODUCTION<br />

RESEARCH<br />

e. WfOVIe: Tiibology <strong>in</strong> <strong>in</strong>dustry - 20 Years With You 3<br />

C. GHEORGHIES, O. GHEORGHIES: Predicrion of Case-harden<strong>in</strong>g<br />

Steel Behaviour <strong>in</strong> Roll<strong>in</strong>g Tiibosystem 5<br />

D. AIv[AF!{I{DEI, M. COZMINCA, D. SEMENCIUC: Research and<br />

Method Concern<strong>in</strong>g the Experimental Values of the Average Friction<br />

Coefficient on the Tool's Fl<strong>in</strong>k <strong>in</strong> Mach<strong>in</strong><strong>in</strong>s of Carbon Ste-els with<br />

Speedsuptol000m'm<strong>in</strong>-l ...:... 10<br />

E FLORIAN, D. L ALEXANDRU: Synthetic <strong>No</strong>n-newtonian Fluids<br />

Based on Polymer Gels II. Rheology of Polymer Gels for Determ<strong>in</strong>e<br />

Their Flow <strong>in</strong> Pipe-l<strong>in</strong>e 16<br />

V. F. BEZAIZICHNY, V V. NEPOMILUEV: Calculation of The<br />

Cutt<strong>in</strong>g Conditions Tak<strong>in</strong>g <strong>in</strong>to Account The Criteria of The Cost<br />

and Productivity 27<br />

T F. KALMYKOVA T M. MOISEEV,\ O.V KHOLODILOV:<br />

On Statistical Description of Solids Friction 24<br />

M. OGNJANOVIC, P. OBRADOWC: Modell<strong>in</strong>gof High-pressure<br />

Dynamic Seal<strong>in</strong>g Jo<strong>in</strong>ts 27<br />

NEWS<br />

JJ<br />

BOOKS AND JOURNAIS<br />

SCIENTIFIC MEENNGS<br />

35


B.IVKOWC<br />

<strong>Tribology</strong> <strong>in</strong> <strong>in</strong>dustry - Z}Years With You<br />

In already distant 1978, The Council<br />

of Faculty of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g<br />

<strong>in</strong> Kragujevac had brought a decision,<br />

at the proposal of the Scientific-Educational<br />

Board, on beg<strong>in</strong>n<strong>in</strong>g<br />

with publication of a scientific journal<br />

entitled "TRIBOLOGY IN IN-<br />

DUSTRY'',<br />

The orig<strong>in</strong>s of the entitled "TRIBO-<br />

LOGYIN INDUSTRY" journal lie <strong>in</strong><br />

Publications of Laboratory for Metal<br />

mach<strong>in</strong><strong>in</strong>g and Tiibolory, that were<br />

published occasionally, as edition.s of<br />

Faculty of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g,<br />

s<strong>in</strong>ce I974. Dur<strong>in</strong>g that period, from<br />

1974. till 1978., 10 issues were published,<br />

<strong>in</strong> which the results were presented<br />

of the scientific-research<br />

work, realized through projects,<br />

ma<strong>in</strong>ly form the area of the tribologr<br />

of metal cutt<strong>in</strong>g.<br />

Members of the First Joumal's Council<br />

were: S. Spasojevii, from The<br />

Chamber of Commerce of Serbia;<br />

Mr. V. Kaliian<strong>in</strong> and Z. Prokii -<br />

ZCZ;Prof. Dr S. Savar - Faculty of<br />

Mach<strong>in</strong>ery and Shipbuild<strong>in</strong>g, Zagreb;Prof.<br />

Dr D. Zelenovii - Faculry<br />

of Technical Sciences, <strong>No</strong>vi Sad; Prof.<br />

Dr Branko Ivkovii - Faculty of Mechanical<br />

Eng<strong>in</strong>eer<strong>in</strong>g, Kragujevac;<br />

M. Voljevica - Faculty of Mechanical<br />

Eng<strong>in</strong>eer<strong>in</strong>g. Mostar; Z. Milut<strong>in</strong>ovii<br />

- The Chamber of Commerce of Kragujevac;<br />

and M. Lt.zic - Faculry of<br />

Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Kragujevac.<br />

The Council rvas rvork<strong>in</strong>g, mii<strong>in</strong>ly<br />

with these members and small changes,<br />

until 1992., when ceased the need<br />

for its eistence.<br />

The First Editorial Board of the Journal<br />

consisted of: Prof. Dr B. Ivkovii -<br />

Faculty of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Kragujevac - Editor <strong>in</strong> Chief;Prof. Dr<br />

R. Zgaga - Faculty of Mach<strong>in</strong>ery and<br />

Shipbuild<strong>in</strong>g,Zagreb; prof. Dr S. Sekulii<br />

- - Faculty ofTechnical Sciences,<br />

<strong>No</strong>vi Sad; Prof. Dr M. Radovanovii -<br />

Faculty of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Belgrade; Mr. Z Palundii - Faculty of<br />

Mechanical Eng<strong>in</strong>ee r<strong>in</strong>g, Kragujevac<br />

- Secretary; F. Pavlovii - Faculty of<br />

Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Mostar; R,<br />

Nikolii - FAM, Km(evac; and M. Simovii,<br />

Editor.<br />

S<strong>in</strong>ce 1986. till 1992. mernbers of Editorial<br />

Boarcl were also: Prof. Dr A.<br />

Rac, - Faculty of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Belgrade; Prof. Dr J. Vite-<br />

Zan<strong>in</strong> - Faculty of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Ljubljana; Prof. Dr M.Lazil<br />

- F:rculty of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Kragujevac.<br />

S<strong>in</strong>ce 1991. until present time, the<br />

Journal is edited by an <strong>in</strong>ternational<br />

Editorial Board rvhose members are<br />

famous scientists from several countries<br />

(Belarus, Poland, England,<br />

IJSA, \'ugoslavia, N{acedonia). The<br />

core of the Boirrd consists of scientific<br />

workers fiom Faculties of Mechzrnical<br />

Engirteer<strong>in</strong>g flom Kragujevac<br />

and tselgrade, and Faculty of Technical<br />

Sciences from <strong>No</strong>vi Sad. With<br />

translation of texts for years are engaged<br />

Prof. Dr RuZica Nikolii (English)<br />

and Mr, A. Milenkovi6 (Russian).<br />

The structure of the Journal did not<br />

vary sirnificantly <strong>in</strong> past years. Constant<br />

sections, until today, were IN-<br />

TRODUCTION, RESEARCH,<br />

BOOKS AND JOURNALS, and<br />

SCIENTIFIC MEETINGS. Occasionally,<br />

there were sections like<br />

TRIBOLOGICAL DICTIONERY,<br />

FOR DIRECT PRACTICE, and<br />

NEWS, thert existed <strong>in</strong> several issues,<br />

but except for the NEWS, they did<br />

nt-lt get the permanent character.<br />

Abstracts of all the papers were published,<br />

until 1992., both <strong>in</strong> English<br />

and <strong>in</strong> Russian, on the last pages of<br />

Journal, <strong>in</strong> fcrm of cards, as it is frequently<br />

done <strong>in</strong> scientific and expert<br />

journals. S<strong>in</strong>ce 1992., however, the<br />

structure of the Journal has changed<br />

somewhat. Abstracts of each paper<br />

are pr<strong>in</strong>ted, <strong>in</strong> English and Russian,<br />

at the end of each paper, what seems<br />

to be more convenient for the readers,<br />

1o have complete papers and<br />

abstracts at one place, and abstract irr<br />

Serbian is pr<strong>in</strong>ted at the beg<strong>in</strong>n<strong>in</strong>g of<br />

each paper, below the title.<br />

Besides publish<strong>in</strong>g the Journal <strong>in</strong><br />

Serbian, with abstracts of papers <strong>in</strong><br />

English and Russian, s<strong>in</strong>ce 1996. as<br />

separate issue is published the English<br />

version of the Journal, with separate<br />

ISSN number, entitled TRI-<br />

BOLOGY IN INDUSTRY. In the<br />

first years of publish<strong>in</strong>g the Journal<br />

l'rad covered mostly the are of tribo-<br />

Iogy of cutt<strong>in</strong>g, and tribometry,<br />

Tibolog, itt itttlustry,, Volume 20, <strong>No</strong>. 1, <strong>1998</strong>.<br />

3


though there were also published articles<br />

from other areas of tribologry.<br />

In last several years, however, <strong>in</strong> both<br />

issues (<strong>in</strong> Serbian and English) are<br />

present papers from almost all areas<br />

of tribology. In the Journal are present<br />

papers from Tiibology o[ manufactur<strong>in</strong>g<br />

processes (cutt<strong>in</strong>g and metal<br />

form<strong>in</strong>g), Tiibology of mach<strong>in</strong>e<br />

elements, Tiibomaterials, Application<br />

of lubricants and lubrjcation systems,<br />

Diagnostics and ma<strong>in</strong>tenance<br />

of the tribosystems, Tiibometry, and<br />

Terotechnologv.<br />

In past n<strong>in</strong>eteen years, the largest<br />

number of papers were published by<br />

authors that were employed at Yugoslav<br />

Universities, scientific <strong>in</strong>stitutions<br />

and research departments <strong>in</strong><br />

lead<strong>in</strong>g <strong>in</strong>dustrial systems. However,<br />

<strong>in</strong> last years, are present more and<br />

more papers of domestic authors that<br />

are work<strong>in</strong>g <strong>in</strong> <strong>in</strong>clustrial systems on<br />

jobs of ploclucts clevelopment, technology<br />

or rna<strong>in</strong>tenunce of the production<br />

and other equipnrcnt.<br />

The significant number of paperswas<br />

published <strong>in</strong> the Journal by authors<br />

from Slovenia, Croatia and Bosnia,<br />

until 1991.<br />

The Journal TRIBOLOGY IN IN-<br />

DUSTRY rvas all these years, and still<br />

is, the only Journal of scientifi character,<br />

frorn the area clf Ti'ibcrlogy, on<br />

wider former Yugoslavian spaces,<br />

from Ljubljana to Skopic.<br />

About one third of all papers was<br />

published by foreign authors. Among<br />

them there were papers written by<br />

authors from Russia, Belerrus, England,<br />

United States, Polancl, Greece,<br />

Bulgaria, Ronrani a, Japan, Germany<br />

and Slovakia.<br />

The users of the TRItsOLOGY IN<br />

INDUSTR Journal rvere. until 1991..<br />

all the libraries of all tlniversities,<br />

Faculties of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g,<br />

and Scientific <strong>in</strong>stitutes <strong>in</strong> Republics<br />

of former Yugoslavia, as well as all<br />

the larger and medium size <strong>in</strong>dustrial<br />

systems of metal work<strong>in</strong>g <strong>in</strong>dustry on<br />

those spaces. The number of users<br />

had decreased s<strong>in</strong>ce 1991., from<br />

known reasons, so todzry the Journal<br />

is sent to about 220 users <strong>in</strong> Yugoslavia<br />

and 60 <strong>in</strong> other countries.<br />

Until 1991. the greater part of puhlislrirrg<br />

costs wus crtveretl from the scll<strong>in</strong>g<br />

of the Journal, through subscription.<br />

Last several years, the Journal is<br />

be<strong>in</strong>g published ma<strong>in</strong>ly due to f<strong>in</strong>ancial<br />

support of M<strong>in</strong>istry for Science<br />

and Technologry of Republic of Serbia<br />

and Federal M<strong>in</strong>istry for development,<br />

science and environment, s<strong>in</strong>ce<br />

due to exist<strong>in</strong>g state of the domestic<br />

<strong>in</strong>dustry, it was not possible to prov'ide<br />

for enough f<strong>in</strong>anc<strong>in</strong>g from subscriptions.<br />

In this year, <strong>in</strong> which the Journal<br />

TRIBOLOGY IN INDUSTRY comes<br />

twentieth time before domestic<br />

and foreign scientific and expert public,<br />

with both issues <strong>in</strong> Serbian and<br />

English, the special efforts will be<br />

done for Journal to enter iill the environnents<br />

where jobs are done, of<br />

both scientific ancl e.rpert character,<br />

that are concerned with rnak<strong>in</strong>g the<br />

greater gross product through decreas<strong>in</strong>g<br />

the production costs and <strong>in</strong>creas<strong>in</strong>g<br />

the work produ,-'tiviry.<br />

The productivity Ievel <strong>in</strong> our <strong>in</strong>dustrial<br />

systems and the low cross national<br />

product per capita, are consequences,<br />

to the great extent, of <strong>in</strong>sufficiently<br />

organized constant fight for<br />

reduc<strong>in</strong>g the iriction and wear, <strong>in</strong> numerous<br />

tribo-mechanical systems<br />

both <strong>in</strong> <strong>in</strong>dustry and transport. The<br />

effort is go<strong>in</strong>g to be done, througlr<br />

Journal TRIBOLOGY IN INDU-<br />

STRY, to po<strong>in</strong>t out to a large number<br />

of people to the fact, known <strong>in</strong> all the<br />

developed countries, that, by application<br />

of exist<strong>in</strong>g. and creation of the<br />

new tribological knowleclge, the conditions<br />

arc clcirted for <strong>in</strong>creas<strong>in</strong>g significantly,<br />

both gross national product<br />

and productivity of exit<strong>in</strong>g<br />

<strong>in</strong>dustrial and transportation systems,<br />

even without expensive <strong>in</strong>vestments<br />

ancl <strong>in</strong>troduc<strong>in</strong>g the new technoli.rgies.<br />

Erpelience frorn the developed<br />

worlcl po<strong>in</strong>t that by application<br />

of tribological k-nowledge and solutions,<br />

even 40 times larger profit can<br />

be realized rvith respecl to <strong>in</strong>vestments.<br />

In some <strong>in</strong>dustrial systems<br />

energy consurnption decrease, through<br />

application of tribological knowledge,<br />

lvas as much as 10 %. It is<br />

useful, on this occasion too, to rem<strong>in</strong>d<br />

ourselves that by application of<br />

trilrrrlor-lictrl soltttiorts, sirv<strong>in</strong>gs irre<br />

also realized by lower<strong>in</strong>g the ma<strong>in</strong>tenance<br />

costs, lower<strong>in</strong>g the production<br />

costs, that are appear<strong>in</strong>g due to<br />

breaks <strong>in</strong> production processes caused<br />

by rvear of elements and production<br />

and other equiprnent, by lower<strong>in</strong>g<br />

the <strong>in</strong>vestnrents <strong>in</strong>to the new<br />

eqr-riprnent (the work<strong>in</strong>g life is <strong>in</strong>creasecl<br />

fclr the exist<strong>in</strong>g equipnrent), by<br />

lo"ver<strong>in</strong>g the consunrption of lubricants<br />

arrtd by lowenng t.he latror costs.<br />

In Jubilee vear, an issue is go<strong>in</strong>g to be<br />

reserved forpublish<strong>in</strong>g the review papers<br />

from different areas of tribology,<br />

<strong>in</strong> order to provide for the readers the<br />

useful <strong>in</strong>sight <strong>in</strong>to the exst<strong>in</strong>g level of<br />

our knowledge, and to create conditions<br />

for fbnn<strong>in</strong>g the new research<br />

progriilxs and new approaches to application<br />

of exist<strong>in</strong>g knowledge from<br />

the area of tribology <strong>in</strong> <strong>in</strong>dustrial and<br />

Iransportlrt ion systems.<br />

'fribologt itt itultLrtty, Volurne 20, <strong>No</strong>. 1, <strong>1998</strong>.


UDK 62i.9.025.?.003<br />

C. GHEORCHTES, O. GHEORGHIES<br />

Prediction of Case-harden<strong>in</strong>g Steel<br />

Behaviour <strong>in</strong> Roll<strong>in</strong>g Tribosystem<br />

I<br />

O cf<br />

|'rl<br />

U)<br />

tlJ<br />

cc<br />

Irt order to follow the tribol


COMMANDING PARAMETERS<br />

constructlve<br />

(s.)<br />

INPUT<br />

€t<br />

Superficial<br />

iayer<br />

parameters<br />

(x1,X2,...,x0)<br />

'liibosystem<br />

param(: [ers<br />

(dr, dz)<br />

fu'=f {t.s..c- }<br />

dt<br />

JL<br />

i=l-6<br />

!; = r1',t,,cr \<br />

I<br />

Wear<br />

r<br />

Supcrficial<br />

1!)<br />

parcmcters<br />

'Ii'ibosvstcnr<br />

z-\<br />

paranietcrs (C'1)<br />

(dr, dz) \--'l<br />

OUTPUT<br />

Fig. 1. Cybernetic tnodeL for tribosyslurr<br />

ditions; the selection of the quantit;rtive and qualitative<br />

parameters show<strong>in</strong>g damage degree; the f<strong>in</strong>d<strong>in</strong>g of the<br />

mathematical models <strong>in</strong> order to establish the dependence<br />

between the damage choice parameters and tribophysicai<br />

ones.<br />

3. CYBERNETIC MODELLING OF<br />

TRIBOSYSTEMS<br />

ln order to establish and to control the action of the ma<strong>in</strong><br />

factors that determ<strong>in</strong>e the damage process by pitt<strong>in</strong>g, for<br />

the tribosystem, the concept of structural cybernetic model<br />

[10, 11] has been used. For the same purpose, Czichos<br />

[3] -<strong>in</strong> some rvorks -has used the concept of the energetically<br />

wbernetic model. Us<strong>in</strong>g of the structural cybernetic<br />

model enabled to characterue the surface layer frorn<br />

the physical po<strong>in</strong>t of view and not energetic.<br />

In frame of the structural cybernetic model, the tribosystem<br />

is presented as a black-box where are designed<br />

<strong>in</strong>put parameters (.1, Cr); command<strong>in</strong>g parameters (U);<br />

output parameters (S,l C,') and the paraneters which<br />

assess the darnage degree of the surface layer, as e. g.<br />

wear. This model, rvhich allows to follow -<strong>in</strong> a systematic<br />

manner-tire changes of the <strong>in</strong>put parameters of the surface<br />

layer subjected to pitt<strong>in</strong>g process, is presented <strong>in</strong><br />

figure 1.<br />

The <strong>in</strong>put-output pararneters can be grouped as: geometrical<br />

(macro and microgeometry -q);mechanical (hardnes.s<br />

- rJ, tension state r3); physicometallurgical (chernical<br />

compositionr;, structure -;r5, purity -.16) parameters.<br />

Ones from mentioned parameters, for e. g., hardness -<br />

rr, tension state --r.i and structure -xj, ciur be changed <strong>in</strong><br />

a convenient nturner. In this rvay, the durability of the<br />

tribosystenr can be contrcrllecl, with<strong>in</strong> certa<strong>in</strong> lirnits, at<br />

one's choice.<br />

Parameters (C1) of the tribosystem can be: level of noise,<br />

shape and dimension of contact area, d1, clearance between<br />

triboelements, d2.<br />

Command<strong>in</strong>g parameters ([.f, called external factors,<br />

are the parameters which can modiff ones from the<br />

parameters of the surface layer. These parameters can<br />

be grouped <strong>in</strong>: constructive (shape of triboelement-U1,<br />

dimension of triboelement - U2); work<strong>in</strong>g parameters<br />

(k<strong>in</strong>ematics- U3, energetics - Ua, work<strong>in</strong>g medium- U-5).<br />

In the bfack-box, the <strong>in</strong>pui paranreters X; (i=1-6) are<br />

subjected to changes -<strong>in</strong> relation with time, t, or depth, h<br />

(as <strong>in</strong> this paper) under action of command<strong>in</strong>g parameters,<br />

Ur; (i=l-5). The knowledge of function 'f' or "9"<br />

allow to describe the evolution of ,\-parameters and,<br />

f<strong>in</strong>ally, the estimate both the history ancl prediction surface<br />

layer behavior <strong>in</strong> various stress conditions (e. g.<br />

pitt<strong>in</strong>g process).<br />

4. USED MATERIALS, PITTING TESTING<br />

MACHINE.<br />

In order of follou' the tribological behavior of case-harden<strong>in</strong>g<br />

steel l2MoMnCr12XS, the roll<strong>in</strong>g pure frictfon<br />

test on a tribomoclel have been used. The tribomodelrvas<br />

mounted on an orig<strong>in</strong>al four-ball mach<strong>in</strong>e. In figure 2 it<br />

is presented this tribomoclel where: 1-test<strong>in</strong>g roller; 2-<br />

press<strong>in</strong>g roller: 3-lever for transmission of press<strong>in</strong>g forces,<br />

F. The test<strong>in</strong>g triboelement (test<strong>in</strong>g roller) was melnutactured<br />

of case-harden<strong>in</strong>g steel. This roller had the<br />

d<strong>in</strong>rensions: Qoutsi,le = 30 tnnt, Qi,tsila : 20 mm; width,<br />

l=12 mm.It was subjected to el thermal harden<strong>in</strong>g treatment<br />

(heat<strong>in</strong>g <strong>in</strong> rnelhane gas at 850-B60<br />

oC and ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

a periocl of two hours, be<strong>in</strong>g followed by a quench<strong>in</strong>g<br />

<strong>in</strong> oil ancl anrrezrl<strong>in</strong>{). The thickness of the<br />

hardcned layer rvas of 0.6-0.8 rrtm and the hardness of<br />

62 i- 3 I-IRC. The pressure of contact, P, has been chosen<br />

6<br />

I|iboiogt itt itultrstry, Voltrnre 20, <strong>No</strong>. 1, <strong>1998</strong>.


at ciepth /r;<br />

b) the width 8211 of (2,/1) diffraction l<strong>in</strong>e correspond<strong>in</strong>g<br />

to lrirrtensits phase from case-ltarden<strong>in</strong>g steel (8211 is a<br />

size proporl ioirill to tetragonality degree, cia, of martensite<br />

phase;<br />

c) the rvidth 8220 of (220) diffrtrction l<strong>in</strong>e of ferrito-perlitic<br />

phase from steel (8226 is a size proportional to <strong>in</strong>ner<br />

second order tension, .t11 from crystall<strong>in</strong>e lattice);<br />

d) the ratio (l,,,<strong>in</strong>ll,rn) which is proportional to dislocation<br />

density,p, from crystall<strong>in</strong>e lattice (1,r,;, and I,nor) are<br />

respectively m<strong>in</strong>imum and maximumot Q20) diffraction<br />

l<strong>in</strong>e.<br />

Fig.2. Used tibonndel<br />

<strong>in</strong> accordance rvith SKF standarcl and it had the value<br />

1900 MPa, 3300 MPa, 4700 MPa. Dur<strong>in</strong>g the pitt<strong>in</strong>g test<br />

of up to 106 cvcles the l<strong>in</strong>ear-contact benveen triboelements<br />

were cont<strong>in</strong>uously lubricated with a special oil,<br />

ensur<strong>in</strong>g a thermostatic control ii c\0't- lnC.<br />

5. EVALUATION OF THE STR.UCTUITAL<br />

CHANGES, EXPERIMENTAL RESULTS.<br />

From all parameters of the surface layer, x;, i=1-6, only<br />

tension state, -rJ, and structure, -r5, have been studied.<br />

Thus, their distribLrtions (as value) over the depth, /r, of<br />

the surface laYer after pitt<strong>in</strong>g lcst were <strong>in</strong>vestigatecl. In<br />

this aim, the tested rollers u,ere electrochemically polished<br />

us<strong>in</strong>g a spccialii.' nranutactured <strong>in</strong>stallation.<br />

The chemical composition of the electrolyte was: II jPOa<br />

- 750 cnts; H2SCa-t8A on]; Croj-100g; H2O-280 rnl.<br />

Density of electric:tl cr.lrrent of electrolytic cell rvas l=0.7<br />

Alcrn2.Dur<strong>in</strong>g polish<strong>in</strong>g the sample (anocle) by means of<br />

an eng<strong>in</strong>e wris rotat<strong>in</strong>g rvith frec;rrency of 6.25 Hz. T'his<br />

motion assures lr homogeneity of both cclncentration and<br />

temperature of electrolytic bath. Also, a cool<strong>in</strong>g coil did<br />

not allow heat<strong>in</strong>g of the solution. By apply<strong>in</strong>g an electrolytic<br />

polish<strong>in</strong>g technique, lal,ers of 50tr<strong>in</strong>r thickness',vere<br />

successively rernoved from the tested triboelement.<br />

Alier eacl: polish<strong>in</strong>g, the tested roller was mounted on a<br />

X-ray diffraction equipment, type DP.ON-3 (XMoKe,<br />

tl=38kV, I:22 rrt4, .91=l mnt, Sz.=0.1p74). From the13<br />

andx5 parameters, have been evaiuated:<br />

a) relative percentage of residual austenite, YR(o/o),<br />

us<strong>in</strong>g the relation: VR(%) = ftul(a/o)]n*s [R4(%)]1,=0<br />

is the percentage of resiCual austenite at sample surface.<br />

IRA(%)]n*o is the si'rme size <strong>in</strong>sicle of the surface layer<br />

In figure -3 it is presented the depen


30,0<br />

FcL<br />

25,0<br />

t25<br />

A. P= 01,/Po<br />

_,1 -e- P= 1900 MPc]<br />

_EF p- 3300l4pci<br />

_o,. p= 4700 t1p0<br />

0,2 0,3 0,1,<br />

_* h (mnr)<br />

Fig.4. Depetdence of 8211 ott lr<br />

as relative residual austenite; this fact can expla<strong>in</strong>ed by<br />

appearance of high temperatures <strong>in</strong>ner surface layer<br />

which have various values at different depths; the correlation<br />

between the two sizes displays transformations of<br />

type Fea(TBC) - Fca(BCC) and Fey - Fea(BCC) or<br />

Fea(TBC);<br />

c) the size .8277 strongly varies up to 200 prre <strong>in</strong>side the<br />

surface Iayer and it follows a stabilization.<br />

In figure 5 is displayed the dependence of size<br />

8226-oflh). From presented data results: the <strong>in</strong>ner second<br />

order tensions have a peak between 100-200 pm<br />

depth, while the cuwes IJ2ao = Bzzo&) are alternately<br />

placed for the three values of the pressure P. This can be<br />

accounted for by changes of the prevail<strong>in</strong>g mechanical<br />

and thermal effects at variorrs depths dur<strong>in</strong>g pitt<strong>in</strong>g tests.<br />

Fig. 5. Dependcnce of B2x1 ort h<br />

In figure 6 it is presentecl the evolution on surface layer<br />

depth of the size (l,,rirlt,or)22a. The shapes of designed<br />

cun'es are similar for the three pressures. At P=0 MPa<br />

maximum of dislocations density is located at a depth of<br />

3001.un<br />

<strong>in</strong>side the surtace layer. At pressure of 1900 MPa<br />

8<br />

ll, a<br />

l?i,,<br />

oq<br />

nfl<br />

0,7<br />

0,rl<br />

I<br />

f<br />

z\- p=rl j,4po<br />

C) '.f',.'1900 lt,lPa<br />

{.t P- 3300 I'll"ci<br />

l- P =1, i 0C lv1 Ptt<br />

|<br />

0,1<br />

|<br />

0,2<br />

- i--<br />

0,3<br />

Fig" 6. Dt:ptndrnce af (l,rullrnut)220 ort lt<br />

is found a decrease of the general dislocations density<br />

level. The maximuln of this cun'e is situated near sut{ace<br />

of the sur{ace lrryer. For 1' = ,}300 tr[Pa zrnd I'>:4700 MPa<br />

the maxima of curyes remove <strong>in</strong>ner of the surface layer,<br />

hav<strong>in</strong>g the same values ancl are located <strong>in</strong> the sarne area<br />

approximately. This fact shorvs that the anneal<strong>in</strong>g thermal<br />

treatment is not enough or should be performed by<br />

an another diagram <strong>in</strong> orcler to reduce the level of the<br />

dislocations density.<br />

6. CONCLUSIONS<br />

1+-- _<br />

J).,1:iii<br />

l. lr<br />

() /, al r,<br />

-t<br />

> Us<strong>in</strong>g the concepts of the tribosystem, tribomodel,<br />

triboelement and surface layer it was possible to prepare<br />

a pitt<strong>in</strong>g test<strong>in</strong>g program <strong>in</strong> order to establish the<br />

tribological behavior of case-harden<strong>in</strong>g steel 21<br />

MoMnCrl2XS recommended for replac<strong>in</strong>g the bear<strong>in</strong>g-roll<strong>in</strong>g<br />

steel RUL-1,<br />

> From the clistribution on the surfac:e layer depth of the<br />

structural changes IXS=XS&) andX5:y511't)] - dist<strong>in</strong>guished<br />

by X-ray diffraction nrethod-the follorv<strong>in</strong>g<br />

conclusions can be drawn:<br />

a) the existence - <strong>in</strong> <strong>in</strong>ner of the surface layer of the<br />

case-harden<strong>in</strong>g steel - of the diference behveen mechanical<br />

and therrral effects which develop clur<strong>in</strong>g<br />

pitt<strong>in</strong>g test; this fact is consiclered as a negative factor<br />

on the structural and d<strong>in</strong>rensionul .stabilities<br />

b) the existence on surflce layer depth of a nonhomogeneity<br />

fol <strong>in</strong>ner secontl order tensious which, at<br />

ctepth of 100-2001trn, has a naximum value; this fact<br />

shows that it is possible that sorne microcracks appear<br />

<strong>in</strong> this area<br />

c) the existenc:e of a contact pressure limit which the<br />

case-harden<strong>in</strong>g steel can be stressed; a higher pressure<br />

(over the nrentioned iimit) can Iead to appearance of<br />

-some phase transformations (e. g. Fea*Fey) which<br />

are not recr.rmrnencleci for case-hurden<strong>in</strong>u steel.<br />

Ii'ibologt irt itultts'try, \blume 20, <strong>No</strong>. 1, <strong>1998</strong>.<br />

)


The presenied nrethodoJr:gy ztlrr,l obta<strong>in</strong>ecl cl:rta cart L,'c<br />

used <strong>in</strong> eng<strong>in</strong>eer<strong>in</strong>g design <strong>in</strong> order tL) repiace some<br />

expensive mat erials with other cheaper but with sirniiar<br />

performances.<br />

7. REFERENCES<br />

11.) Col<strong>in</strong>s, L ,,1, Failure of Materials <strong>in</strong> N{echanical Design,<br />

Ltd. John Wiley. New York, 1981<br />

[2.) Grudu. L, Palaghian, L., Ghectrghies;'C., Structural<br />

Modifications <strong>in</strong> the Superficial Layer of Metallic<br />

Materials <strong>in</strong> Wear and Fatigue Processes, Proceed<strong>in</strong>gs<br />

of International Tribologry Conference, Nitgoya<br />

1990, Japan. vol. I, pp. 2M-214<br />

13.) Czi c h o s,.I/., Systernanalyse und Physi k tribologische<br />

Vorgange, Teill, Grundlzrten, Schmirtechnik Tribologie,<br />

32, 6.le1(t<br />

14.) Djatnhmedov, A.11. F iziko stohasticeskoe tribomodelirovanie,<br />

Izd. Elm. Baku, 1988<br />

15.) Ishlirurkii, A. 1., K'agelski, L V. c/. a/., Problenri iznashivanija<br />

tverdih tel i aspctirnehaniki, Trenie i iznos.4.<br />

1986<br />

[5.) Stcfntrcsctt, L, Gheorglties, C., 'l'he irrflrrence of 'I'hermornagnetic<br />

Treatment Applied to Roll<strong>in</strong>g-tsear<strong>in</strong>g<br />

Steel, Acta Tribologica, ),2,1994, pp. 13'l-146<br />

17.] Ilabic, M", Jerenic, I]., Miiit:, iv".,<br />

'frillological ['roperties<br />

of Cra<strong>in</strong> Surfaces, Proceed<strong>in</strong>gs of BAI-KAN-<br />

-fRiB'96, Thessaloniki, Greece pp. 151-i58<br />

18.)Gkeorylies, C., Structur:al Changes Dur<strong>in</strong>g Friction,<br />

Wear and Fatigue Procceses (<strong>in</strong> r


-l<br />

[- rf- iitlrll<br />

llili<br />

llll-l<br />

L _lL_ il _,,<br />

I<br />

O cc<br />

ill<br />

o<br />

LU<br />

E<br />

r--l<br />

tl<br />

L__l<br />

li<br />

li<br />

i_i<br />

UDK 621 .9 r q.2.001.^12<br />

D. A\'IARANDEI, M. COZMINCA, D" SEL'IENCIUC<br />

Research and Method Concern<strong>in</strong>g<br />

the Experimental Values of the<br />

Average Friction Coefficient on the<br />

Tool's Flank <strong>in</strong> Mach<strong>in</strong><strong>in</strong>g of Carbo4<br />

Steels with Speeds up tc 1600 m.m<strong>in</strong>-l<br />

This paper refers to tl'te frictiort phetnmetton ott the too[s Jlat* itt tunittg. A tnetlttxl t*cr! Io delerntirte tlrc<br />

at,erage coefficient of fictiotrott tlte tool's flank is presetiled. Thi.s rnetlrctl is.suslaitrcLl by erlteimuttal rc.re arclt<br />

obta<strong>in</strong>ul <strong>in</strong> high speul turuirry of carbon steels (v',itlt spculs u1t to 1000 nt'ntiti' )<br />

1. THEORETICAL CONSIDERATIONS<br />

Know<strong>in</strong>g the value, the distribution for the physical cornponents<br />

(the friction force and the plastic deformation<br />

force) and the ratio between them is very important <strong>in</strong><br />

theory as <strong>in</strong> practice because all these <strong>in</strong>fluence the<br />

wear's growth irnd its evoluticln speed. As the costs needed<br />

to restore the cutt<strong>in</strong>g properties of the tool and to<br />

replace it are go<strong>in</strong>g to <strong>in</strong>crease the fabrication costs, it is<br />

very important to manage the friction and wear phenomenons<br />

<strong>in</strong> metal cutt<strong>in</strong>g.<br />

A lot of scientific papers were publishecl, regard<strong>in</strong>g the<br />

external friction phenomenon, the friction coefficient<br />

and the factors of <strong>in</strong>fluence, but the results are sometime<br />

different and mosf conrrnonly they have gotten different<br />

<strong>in</strong>terpretations. Ar e.rplarnzrtion for all these is the fact<br />

that all these as1-.sc1s \\'erc lrezrtetl us<strong>in</strong>g yarious simplify<strong>in</strong>g<br />

hypotheses.<br />

Sorne authors consicler that between the tool and the<br />

chip, or befween the piece and the chip, or between the<br />

tool and the piece, is a dry adhesive or abrasive friction,<br />

and some other authors solve the same problems for<br />

humide friction (consrder<strong>in</strong>r the cutt<strong>in</strong>g fluid <strong>in</strong>volved)<br />

or they consider that on the contact surface is a rnLxed<br />

friction, figure 1, [8. 19]. The bibliography relative to that<br />

subject shows that <strong>in</strong> order to detenl<strong>in</strong>e the fl.ictiun<br />

Reader Dr. Etry. DtLrnitnt,4ntarutttlei,<br />

"Stefarr ccl Marc" Uttit,crsity of Succat,a,<br />

Professor Dr. Ette. lllircca cotnitu'a,<br />

"Glrcorghe AscLclti" Urtiversitlt of J,1t1,<br />

Lcctttrcr Eng. Datt,Setrtcttcitu',<br />

"Stefatt cel Mara" Unitl:rsi4, oJ'Srtceot,n<br />

WORKPIECE<br />

adhesion tvelditrg =!-<br />

adhesion r:ones<br />

Fig. I. TIte,eat coutact s,.l,,j!,!rc|jJt,ntetaI cuttitts usutS<br />

components and the friction coefficient both analytic and<br />

experimental rnethods itre used.<br />

The real extern friction forces <strong>in</strong> metal cutt<strong>in</strong>g depend<br />

on the real ccntact srlrfaces betrveen the tool and the<br />

piece [4, 9]. For tiie tools with preset edge (figurc 2), the<br />

friction surfaces fbr a section given by the plane made by<br />

the cutt<strong>in</strong>g speed. y, irnd the flow<strong>in</strong>g speed of the chip,<br />

\)t,^re given by the relations (1) and (2):<br />

Ay= l' lrr'cosr7 Q)<br />

^-<br />

Ao-'7' ,r;,i,, "^try<br />

(2)<br />

it is also shou,n that the frictiorr force on that sulface<br />

clepends on the cornplex phenomenlr connectecl to fliction<br />

and on the nriclo-topography of the surfaces <strong>in</strong><br />

contact (figure 2). fhis force has three contponents: the<br />

tear<strong>in</strong>g force fbr the acihesions and bridges (Forr), the<br />

force neeclcd for thc elasto-plastic deformations (F,4,0<br />

relatecl to the chip flow<strong>in</strong>s and the tear<strong>in</strong>g fbrce for the<br />

micro-roughness, relation (3) [17].<br />

10<br />

7i'iltr>logv <strong>in</strong> ittdLtstry, \blume 20, <strong>No</strong>. 1, <strong>1998</strong>.


2. METHOI} FOR DETERMINING THE<br />

FRICTION FOITCE ON FI-ANK<br />

SUR.FACE<br />

Fig 2. The rea! area of cotltlct<br />

F,F' = Fo, + F,p1+ F-1,n 6)<br />

The specialty literature [1...12] underi<strong>in</strong>es that <strong>in</strong> order<br />

to determ<strong>in</strong>e <strong>in</strong> practice the friction force, the most used<br />

relations rema<strong>in</strong> those based on Coulomb's dry friction<br />

laws (relations 4 and 5), or those written as functiotrs of<br />

the force distribution on the contact surface (relations 6<br />

and / l.<br />

tl<br />

P = Hr. oy.f. acdot C11 (4)<br />

F' trto' F''; (5)<br />

F = ,r,or' l' lr',' cos r1 6)<br />

Ac<br />

F' = r,,. l. iL . cr,t n (7)<br />

'^<br />

.slnu<br />

So, the calculation of the friction forces, us<strong>in</strong>g the relations<br />

mentionecl abcrve aild based on the value of the<br />

friction coefficient, the plastic deibrmation force and the<br />

area of the contact surface, is difficult and imprecise, and<br />

that's why it is preferable to cleterm<strong>in</strong>e these fbrces by<br />

experiments. There are viirious constructions of devices<br />

used for experiment.rl cleterrn<strong>in</strong>ations of the forces and<br />

of the friction coefficient <strong>in</strong> crttt<strong>in</strong>g. The analysis of these<br />

devices sl.lowed that the dynarrrometric constrttctitlns<br />

used are very complicated, and sometimes they have not<br />

the reliability and the rigiclity necessary for the researcher'scope.<br />

That's rvh,v they are used onlv for nclrmal<br />

cutt<strong>in</strong>g sPeeds.<br />

This paper presents a me thocl for deteim<strong>in</strong><strong>in</strong>g the ftlrce<br />

and the friction coefficient betrveen tire tool and the<br />

mach<strong>in</strong>ed piece. and the experimental results obta<strong>in</strong>ed<br />

<strong>in</strong> semi-orthoqonal turtiug, nodeled as accord<strong>in</strong>g to [5]<br />

Tlibologt itt <strong>in</strong>d*stry, Volume 20, <strong>No</strong>' 1, <strong>1998</strong>.<br />

Determ<strong>in</strong><strong>in</strong>g the friction force on tlie flank surface <strong>in</strong><br />

that case was macle with an observation: the chip's fornr<strong>in</strong>g<br />

clisrippears witen the clepth (l) of metai's layer <strong>in</strong><br />

contact with the tool is equal to the elastic deformation<br />

(Ar), (c:A*) [3, a]. In that moment. on the curves obta<strong>in</strong>ed<br />

bv experiments (figure 3), for the conrponents Foo<br />

I;o\; I;,,2 of the cutt<strong>in</strong>g foi'ce, a correspond<strong>in</strong>g threshtlld<br />

appeiirs.<br />

It is obvious tliet *'hen the feed is suddenly cut off' the<br />

folce decreases rtntil a certa<strong>in</strong> value is reacl-red and then<br />

the variatiorr is illoirg the arc c-tl or a land<strong>in</strong>g g-h' The<br />

length of the ilrc tlr lancl<strong>in</strong>g clepends on the paper's feed,<br />

but the nromeilt of the appearance (po<strong>in</strong>ts I and g)<br />

correspontis trl feed's siop (figure 4).<br />

Admitt<strong>in</strong>g that the cutt<strong>in</strong>g does tiot take place at a deptlt<br />

tt=Lr, it results that the friction force on ihe contact<br />

surface with the mach<strong>in</strong>ed piece czln tle considered as<br />

be<strong>in</strong>g the force correspond<strong>in</strong>g to po<strong>in</strong>ts d and g on the<br />

experimental curves. The correspond<strong>in</strong>g value is the friction<br />

force ttn tire flank sur-face' correspond<strong>in</strong>g to the filst<br />

rotatir-rn after the feecl's stop. We can see that the arc<br />

(lanct<strong>in</strong>g) appears to all curyes, so it means that the<br />

friction force t-.n the flank surface is consists of three<br />

cor.nponents {,, 1r, ir nC -F, and t}re resultant force can be<br />

obta<strong>in</strong>ed by relation (8).<br />

I:' .- ^ii-a rj: i F,'<br />

3. PHYSICAL-GEONIETRICAL MODBL<br />

}-OIT DETERMINING THE NORMAL<br />

FORCE (F'x) T0 THE FLANK SURFACE<br />

The phi;sic:rl atlcl <strong>in</strong>athetlaticirl model proposed for deterui<strong>in</strong><strong>in</strong>g<br />

the nt-rrrriirl forcii to the flank surface 11ry; is<br />

clescribccl <strong>in</strong> Ii,.s], for high speed cutt<strong>in</strong>g' For a crttt<strong>in</strong>g<br />

tooth with a seneral shape eclge, relative to the MXYZ<br />

system, figure 5, thcre were established (based on analytical<br />

and m;rtrlx geonetry technics) the relations (9)<br />

between the compr;ncnts of the friction force (F), the<br />

plastic defonnation force (I7g) or.r the rake surfztce, the<br />

conlponents iI'') ancl (I',y) on the flank sur{ace, the<br />

<strong>in</strong>ertial co<strong>in</strong>pi)llent (/i) and the experirnentally measurairle<br />

cttmponents 1.,,o I'-ou I'-ur.<br />

Ar ltt C1 r N1l<br />

At ll' - C' r ,\' l'<br />

.'tt s, C.3 't'1l<br />

This systenr {9) can be solved itl trvo situations. <strong>in</strong> tirese<br />

CASCS;<br />

(6)<br />

'il-l:ll (e,<br />

;^'] L.4i<br />

1l


{rtcrial prclucral : l5 Cr08<br />

K-70"<br />

For; i div. - ?0 N<br />

Avnrrry:0.3 nrnr.rot-l<br />

l, -' -6" v ( h.0rtit ) * 50 nnn . m<strong>in</strong>-l<br />

|'tattritl sorla: SiAION gri<br />

Y--6"<br />

F*: t div. - 20 N<br />

Vittz-r: 30,1 m. nr<strong>in</strong>-l<br />

cr. - 60<br />

For';1div.-4ON<br />

,Lrirlru:irru: L5 nrnr<br />

r-0.Jmm<br />

-<br />

Expr'ii.rrtn lI E)pgicrd! I<br />

b<br />

Fig. 3. Erper<strong>in</strong>tental cuwes obta<strong>in</strong>ed <strong>in</strong> stalic measuretnents <strong>in</strong> obliquc tun<strong>in</strong>g of steels<br />

Avanco 0.2 nrfty'tr<br />

:FK:sB*38!iEi€rEF:FE<br />

Temps (0.001 s)<br />

Fig 4. Etptritrrcnta! curt'es oLtta<strong>in</strong>ed<br />

dyuntic<br />

nlea^\urotrcnLr <strong>in</strong> oblique tunrittg of steels<br />

1. - the friction coefficient on the flank sudace is assumed<br />

as known, it is approximately constant, with values<br />

behveen 0.1...1.9 [i3l;<br />

2. - the values of the component (l7) on the flank surfa-<br />

.p LU sl arc<br />

r<br />

Fvncri U mentellrr rlot erm<strong>in</strong>erl<br />

PL<br />

r rrrrLrrr(lrrj ur LUr lrrrrluu,<br />

/'<br />

"grvj r<br />

h.q<br />

€AY<br />

d /o-<br />

'-F-.<br />

'f')<br />

.i't' /<br />

U<br />

Know<strong>in</strong>g the coefficientsA;, B;, C; and Nr1 (i=1, 2,3/, the<br />

friction force (F ) on the t-lank sur{ace or the friction<br />

coefficient p', and the components -Fo,,, Fr), Fo, experimentally<br />

obta<strong>in</strong>ecl, after solv<strong>in</strong>g the systenr for one of twcr<br />

situations the components { F61 1 and F,y and the ratio<br />

between thern cun be calculated.<br />

sl'."-<br />

€r'd<br />

s-/."-<br />

\0,<br />

Iig 5. I'hysical-geotnalrical nrcdal for a cutlittg tool<br />

t2<br />

TiiboktSyt irt iruhutry, Volunrc 20, <strong>No</strong>. l, <strong>1998</strong>.


li<br />

Tool<br />

Charge<br />

amplifier<br />

typ€ 5001<br />

(KArG)<br />

. ,1 *<br />

r x,'',F<br />

Fig. 6. Mcasurenrctrl, rccord<strong>in</strong>g and stalistical Ircottltctlt oJ'ilala clmitt<br />

4. EXPERIMENTAL RESUI,TS.<br />

4.1. Mach<strong>in</strong><strong>in</strong>g conditions<br />

In order to determ<strong>in</strong>e the friction force and the friction<br />

coefficient on the flank surface, tests were carried out <strong>in</strong><br />

cyl<strong>in</strong>drical external oblique turn<strong>in</strong>g, us<strong>in</strong>g different cutt<strong>in</strong>g<br />

speeds [3, 4]. The exper<strong>in</strong>rents were made on tt<br />

modified lathe, with a 16 KW eng<strong>in</strong>e and an electronic<br />

variator for the rotation. The workpiece had a disk shape,<br />

mounted between chuck and dead centle, made fronl<br />

OLC 15 steel. Ttie tool used was a m<strong>in</strong>eral-ceramic one<br />

(SiAlON CC 680 E), type SNUN, rvith the geometry<br />

k=70, y=6, 7:6, a:6.The measurement cha<strong>in</strong> used was<br />

composed of a piezo-electrical clynamometer type 9527 A<br />

(I{istler), a charge amplifier, a record<strong>in</strong>g apparatus and<br />

the PC computer.<br />

4.2. Experimental results and <strong>in</strong>terpretation<br />

=10<br />

I<br />

a<br />

i<br />

I<br />

-r.-l<br />

i,l-<br />

\a<br />

r --,!<br />

-!-l<br />

l-a-F.v-loljm/tu<br />

|<br />

@<br />

]-^-F.e-re5.aEi l'<br />

I wdsidorcli I<br />

-t<br />

-..ti<br />

t<br />

!--''<br />

i2<br />

i<br />

.<br />

]<br />

) . I I I,<br />

-a-F.r.otns,/rer i<br />

-^- ts. r- 0.r nn' r tu' I<br />

wid sElol-c {51<br />

IIIl<br />

+. -'-]_'<br />

-^*i--^<br />

=z:<br />

--t'<br />

The experimental values obta<strong>in</strong>ed for the friction tbrce<br />

and friction coefficient on the flank surface as function<br />

of the cutt<strong>in</strong>g parameters allow to design the variation<br />

cuweslto=f(t,), ,u,.:f(f) ancl p,,--f(a) <strong>in</strong> figures 7,8,9.<br />

Analysis of these value-shows that force and the friction<br />

coefficient on the flank surface depend on the cutt<strong>in</strong>g<br />

parameters (rl .f c). For speeds vp to 250 rnlmirt, tlte<br />

temperature rises to 4()ffC, the mechanical characteristics<br />

r,,f the work-material are less affectecl.<br />

-40<br />

I<br />

i=-;:,;;ii";.-l<br />

I-^-t.'1e1.r$/.MI<br />

*'61srel ol! 4J I<br />

I<br />

,l)-/<br />

I -_'--l-<br />

,.'/'t'<br />

-za<br />

L-<br />

CulurS dcp{h. mm<br />

c<br />

l-ig. 7. Variatiatt oJ tlrc fiictiott Jor


a<br />

I<br />

;T_r -ra _<br />

_l-.-rx.,'0!.$/d i_<br />

l-^-lt.r-0.rnD/d i<br />

| \dw(nca1 !<br />

-- t--<br />

f<br />

-o-<br />

I<br />

-l-<br />

. :.; _,;--- -;2-! - -<br />

| --t/,---z<br />

i ,--'<br />

,----i<br />

-t/.--'<br />

,''-/''i<br />

0.1<br />

1l<br />

r I. I -<br />

-a-t1 r-10a56/l|u1<br />

.;;'<br />

'a''<br />

*d\doa.t<br />

I<br />

a:<br />

l<br />

1i<br />

a- I<br />

f-"*<br />

l-^-u<br />

'<br />

lllf<br />

Fig. 8. lhr<strong>in</strong>tion of irc nonnal force to the flnnk<br />

suiace as a functiott of cutl<strong>in</strong>g paranrctet:<br />

a - speed; b - feed; c - depth ofcuu<strong>in</strong>g<br />

rioration of the physical cornponents is much weaker. As<br />

a result, the fnction force J? <strong>in</strong>creases for 337o,while the<br />

normal force F17 is approximately constant ancj so their<br />

ratio is situated between 0.15...0.21.<br />

The feed's <strong>in</strong>fluence on the friction force F (figure 7b),<br />

the normal force Fry (figure Bb) and the ratio between<br />

them (figure 9b) is expla<strong>in</strong>ed based on rhe fact that the<br />

tear<strong>in</strong>g angle ((p) irtcreases and the longitud<strong>in</strong>al coefficient<br />

of plastical cornpression (Cni) decreases as the feeci<br />

is higher. When the feed <strong>in</strong>creases frorn 0.1 to 0.-i mn/rot,<br />

the friction force,tr and the normal one,l.y <strong>in</strong>crease fronl<br />

25.7 N to 62.1/y' and fron 103.1 N to 351.2 { respecrively.<br />

The decreas<strong>in</strong>g tendency of the friction coefficient<br />

as the feed <strong>in</strong>creases can be expla<strong>in</strong>ed because of the<br />

slower <strong>in</strong>crease of the tangential friction stress on that<br />

surface, ascrib<strong>in</strong>q to the normal stress due to thermal<br />

effect.<br />

The <strong>in</strong>fluence of the cutt<strong>in</strong>g depth on the friction force<br />

I (figure 7c), the normal force -[,y (figure 8c) and the<br />

ratio betu,een thern (figure 9c) <strong>in</strong> oblique turn<strong>in</strong>g of OLC<br />

45 steel, shows that the values of these components<br />

<strong>in</strong>crease clue to thernlal stress, as a result oflclrver snecific<br />

prcssitlns on c()ntirct srrrftrcc ,4.<br />

Fig. 9. Variation of tltc cutt<strong>in</strong>g specd and the ftictiort<br />

coefJicicnt as jitnctiott of cutt<strong>in</strong>g paranrcters:<br />

a - spced: l> - fced: c - tleptlt of cuuitrg<br />

5. CONCI,USION<br />

The results obta<strong>in</strong>ed us<strong>in</strong>g the methodology proposed<br />

above are close enough to those obta<strong>in</strong>ed by other authors<br />

<strong>in</strong> their exper<strong>in</strong>rents [4]. The friction force and the<br />

friction coefficient on the flank surface of the tool depend<br />

on the cutt<strong>in</strong>g pzrrameters. and their values decrease<br />

with an average of 251)b for 100-800 rnlrnitt cuttiug<br />

speeds, as a result of a rnuch lnore ilttense therntal effect,<br />

<strong>in</strong>fluenc<strong>in</strong>g the mechanical chiiracter-istic.s of the material.<br />

NOTATIONS:<br />

l) - cutt<strong>in</strong>g speed;<br />

f ,, n<br />

Fa<br />

lty<br />

Ty, oy<br />

Tn, o,z<br />

Tt,r,r,<br />

(Pd<br />

- ship's section;<br />

- friction coefficient on the flank surface;<br />

- fricrtion coefficient on the rake surface;<br />

- tangential, notrr. al stress to the flank surface;<br />

- tangeritial. nolllal stress to the rake surface;<br />

- maximum tangential stress to rake sur{ace;<br />

- base plune;<br />

1A<br />

t+<br />

Ii'ibolog, itt itftlustty, \blunre 20, <strong>No</strong>. l, 199g.


(A")<br />

- tangent plane to the flank surface, <strong>in</strong> Nl;<br />

(,\) - tangent plane to the rake surface, <strong>in</strong> M;<br />

(P) - pressure p)ane (normal to the effect. speed)<br />

vector i. - the resriltant speed, <strong>in</strong> M;<br />

T - tool angles: cutt<strong>in</strong>g edge angle, rake angle,<br />

tlank angle, cutt<strong>in</strong>g edge <strong>in</strong>cl<strong>in</strong>ation angle;<br />

K,f ,G,,1 - tool angles: cutt<strong>in</strong>g edge angle, rake angle,<br />

tlank angle, cutt<strong>in</strong>g edge <strong>in</strong>cl<strong>in</strong>ation angle;<br />

Ke,Te, ee,,l.. - work<strong>in</strong>g angles: i,r'ork<strong>in</strong>g cutt<strong>in</strong>g edge<br />

angle, rvork<strong>in</strong>g m<strong>in</strong>or cutt<strong>in</strong>g edge<br />

<strong>in</strong>cl<strong>in</strong>ation angle;<br />

rl - angle bchveen the chip's flow<strong>in</strong>g direction<br />

and the vector N, measured <strong>in</strong> (Ay) plane;<br />

fu<br />

- cutt<strong>in</strong>g force;<br />

FD Fv Fz - conponents r.lf the cutt<strong>in</strong>g force along<br />

lhe axes of the lvl.ryz si/stem:<br />

Fy - plastic deformation force;<br />

f,f -tnctr()nforce;<br />

Cat - plastic c.leformation coefficient.<br />

BIBLIOGRAPHY<br />

IT.llrnaratttlei D., ]llodel priv<strong>in</strong>d structura lizica a fotelor<br />

dc aschiere la prelucrarea cu viteza mare cu<br />

scula cu tais, Analele Univ. 1-fi, Suceavir, 1993,<br />

pl.i2-75.<br />

12.)Arnarandei, D., Cozrnittca, N(., Mirotrcasa, C., Relatie<br />

de calcul a coeficientului de frecare la aschiere,<br />

Analele Universitatii, nr. I-6, Suceava, Sectiunea<br />

Mecanica, 1993, p.50-,52.<br />

13.) Amarandei, D., Methodes exper<strong>in</strong>tentales appliquees<br />

a la modelisation de I' us<strong>in</strong>age par outil coupant<br />

dans le but de la determ<strong>in</strong>ation des forces de<br />

deformation plastique et de frottement pendant la<br />

coupe a grande viesse, Diplome d'Etudes Approf. de<br />

N{ecaniquer, INSA Lyon, Franta, 1993.<br />

14.)Amaratdcr, 1)., Cecetari priv<strong>in</strong>d nrarimea fbtelor de<br />

deformare plastica si de fiecare la aschierea cu viteze<br />

mari a otelurilor carbon, Teza de doctorat, Universitatea<br />

Tehnica "Gh. Asachi" Iasi, mai 1996.<br />

[5.] Amartuulei, D..Iixirec<strong>in</strong>rental nrethod applied for<br />

modell<strong>in</strong>g edge tool cutt<strong>in</strong>g n'ith aim of evaluation<br />

the plastic deformation forces and friction forces at<br />

high speed mach<strong>in</strong><strong>in</strong>g, 4-TH Yugoslav Conference<br />

of Tribolog, .2i -29 sept. i995, Belgrad.<br />

[6.)Andt, G. Ultra - High - Speed I\{ach<strong>in</strong><strong>in</strong>g: A Review<br />

and an Analysis of Cutt<strong>in</strong>g F-orces, Proc. Inst.<br />

Mech., Eng., 1973, vol. 187, 44173,pa9.625-634.<br />

[7.lAndt, d., Ultra-I{igh-Speed l\{ach<strong>in</strong><strong>in</strong>g, Annals of<br />

the CIRP, v ol. 2I l l, 19'72.<br />

[8.)tltana.riu, N.,l'r'ibologr <strong>in</strong> Fornr<strong>in</strong>g Processes of the<br />

rnetallic materials, Tril-.otehnica 87, The-5-th Conferense<br />

on friction LLrbrification and Wear, Bucuieti,<br />

septenrlriie 1987, p.5-12.<br />

19.) Belous, Z, S<strong>in</strong>teza sculeor aschietoare, Eitura Junimea.Iasi.1980.<br />

[10.] Coan<strong>in</strong>ca, M .,llazelc generarii suprafetelor pe mas<strong>in</strong>i<br />

unlte, Universitatea Tehnica "Gh: Asachi" Iasi,<br />

1992, p.155-197.<br />

lI\.)Desrnortd, F., M., Pr<strong>in</strong>ciples and applications of Tribolog,,,<br />

Copyrrght, 197 5, p.254-258.<br />

[12.] Elcpitt,l..P. - Scorostnoe rezanie i ego effectihnosti<br />

;rri obrabotke vleakik nraterialov, Sb. Nauki, TR<br />

/Gorki, Intlnj.vod Transp., 198B, 233, pag.55-62.<br />

113.1 Erdal, Ii., Elijah, K., A,sibu, - "Ir'. Acoustic emission<br />

and Force sensor Fusion fbr monitor<strong>in</strong>g the Cutt<strong>in</strong>g<br />

Proces, Int. J. Mech. Voi. 31, <strong>No</strong>. 11/12, pag. 795-<br />

809, 1989.<br />

[14.] I<strong>in</strong>ust, Il., trferchortt, NI.Ii., Cltip Forrnation Friction<br />

and Higlt Quality l{ach<strong>in</strong><strong>in</strong>g, Surface Treatment of<br />

N{etnls, Prepr<strong>in</strong>ts, -53, ASME, 1941.<br />

115,1 Ippolito, R., I-ontittcasa, 5., Elqtitt,.L., Mecanica del<br />

taglio ad alta velocita, Ustensil, 3/1985. p.45-51.<br />

lI6.)Kravccttko, G.A., O vleanii llararnetrov obrabotki na<br />

sili deisvuiosie na zadnei poverhnosti <strong>in</strong>strumenta,<br />

Vestnik Mas<strong>in</strong>ostr., fi, 1989, p..11-43.<br />

[\7.)Krotrcnberg, M., Machirr<strong>in</strong>g Science, London, 1966<br />

78.) lrlerclmttl, M., Meclranics of the Metal Cutt<strong>in</strong>g I'rocess,<br />

Journal of Appliecl Physics, vol. 16, no. 5, 1946,<br />

pag.267 -575.<br />

[19.] lvblitnt'i, A., Dtulziuki, D. - Stationary shear band<br />

<strong>in</strong> high-speed nrach<strong>in</strong><strong>in</strong>g, C.R. Acad. Sci., Paris,<br />

315, Seria II, plg.399-40.5,1992.<br />

120.] Ilt.cht, R..rr., A l)ynrarnic Analysis of High - Speed<br />

N{ach<strong>in</strong><strong>in</strong>g. Journal of Eng<strong>in</strong>eer<strong>in</strong>g for <strong>Industry</strong>,<br />

<strong>No</strong>vember, I 985, voI.107, pag.309-315.<br />

l2l.f Zoret, N..A/., Despre <strong>in</strong>terclepenclenta proceselor d<strong>in</strong><br />

zona fbrnrirrii aschiei si d<strong>in</strong> zona de contact a I'etei<br />

de degajare a sulei, Bulet<strong>in</strong>Lrl Construciei de lvlasir-ri,<br />

nr. 12, 1963, p.198-207 .<br />

[22.] Zorev, NN., .r.a., Razvitie nauki o rezanii rnetallov,<br />

Moskva, 1967.<br />

Tiibologt, irt itrcltuytni, Volurne 20, <strong>No</strong>. I, <strong>1998</strong>. i.5


-<br />

t--lr-lillli<br />

i<br />

I lL--iL --]<br />

r<br />

E<br />

trj<br />

a r.!<br />

rf<br />

I_-<br />

I<br />

L_,1<br />

i<br />

I<br />

F. FLORIAN, D. I. AI.EXAJVDITU<br />

LIDK (r21.9.0 1.003. 1:621.892<br />

Synthetic <strong>No</strong>n-newtonian Fluids<br />

Based on Polvmer Gells<br />

II. Rheology of Polymer Gels for<br />

Determ<strong>in</strong>e Their F'low <strong>in</strong> Pipe-l<strong>in</strong>e<br />

The papt'r presetil lhe research dct,eloperl Jbr e morc aact class'iJit:ation oJ tlra .rynthctic fluitls based ott a<br />

polyrner gels <strong>in</strong>to a runt-Newtottiatt.flow model, irt the.ftLnn: t =To*k'Snwherc ( is lhc she:ar stt'ess, T6 the yiekl<br />

.slrer.r, S the shear rale, k artil rt tnalerijnl coe.fficietils.<br />

Irorn the erpcimental resuh.:s uul adopted flov+' model werc calculatu! Ihe rnau:r<strong>in</strong>l coeflicit:rtts values k and<br />

n, ftutctit>rt o.{ the yield slress atrcl shear rate.<br />

Keyvords.' Syrthetic .fluid, Gt:1, Rht:ology, <strong>No</strong>rt-Newtrttian Jlotv rnoilal.<br />

r. RHEOLOGY OF GELS<br />

Rheological model<strong>in</strong>g of gels for pipel<strong>in</strong>es technology<br />

is usually descdbecl by the B<strong>in</strong>gham plastic model<br />

(equation 1). But, they do not simuliite fluid behavior',<br />

particularly <strong>in</strong> the lo*'shear rate range (fig.l).<br />

t\<br />

;.u<br />

q<br />

P<br />

--t--<br />

sqd:: -<br />

-l I<br />

t__<br />

t_ -_s*l -.1_-T-<br />

Us<strong>in</strong>g the B<strong>in</strong>gham plastic model results <strong>in</strong> the pressure<br />

losess larger than observed <strong>in</strong> the field. The yieldpower<br />

lzrw mociel, developecl bv Herschel and Brrlkley<br />

N uJ<br />

U<br />

a,<br />

-\<br />

f)<br />

r<br />

*<br />

L 101 k1,, 's<br />

(1)l<br />

w<br />

se 1w fl00<br />

Shear rate, s<br />

r - ro rk'S"<br />

(2)<br />

Fi1;. 2. Ylcld-ponar lav,nrcdel<strong>in</strong>g<br />

\<br />

\ ..i<br />

4<br />

qi<br />

'1:<br />

U<br />

Meq,sureJ<br />

vct/ues<br />

ln these equations:<br />

t = shear stress (the ibrce per unit area required<br />

to move the fluicl at a given shear rate);<br />

t0 = vield stress (the shear stress required to<br />

<strong>in</strong>itiate florv or. the shear stress at zero<br />

slterrr:rte):<br />

,S: shear rate (fluicl velociry clivided by the radius<br />

o{'the pipe through which fluid is mov<strong>in</strong>g);<br />

k , = coefficient of plastic viscosity;<br />

k : consistenr:y <strong>in</strong>dex;<br />

rr : llrrirl fiow <strong>in</strong>dex.<br />

t)<br />

2. THEORETICAI, ASPI'CTS<br />

Fig. L B<strong>in</strong>glnnt plastic ntodclittg (.t - c.rper<strong>in</strong>rtttalt'alucs)<br />

Rased on tile mirtcriirl constitrrtive relation, equation<br />

(2), and the follrlv<strong>in</strong>s eqrrality, ibr a viscomerric movenlent<br />

(neeleci<strong>in</strong>u the nrlrss forces):<br />

Floreo Floriott, Dragr>rnire.rcu I.,4lexnrtilnt<br />

Iccrp S.rl., Pkirsil. RotttariLt<br />

2. n- r' L.r -. ;r. 12 . AIt<br />

(3)<br />

16<br />

Tiibolo,g, <strong>in</strong> itttitLstrv, \blume 20, <strong>No</strong>. 1, <strong>1998</strong>.


---<br />

ro ^'<br />

K- rh:tt -, J (6)<br />

i)<br />

wlrere r* : (Lp.R)(2.1,f1 is the wall shear srress,<br />

Wrr=Q'(n'R2;-1 is the average velocity (e:flow rate),<br />

ro=2'L'to'(Lp)-/ and:<br />

A - t.2n .(3n t 1)-1 .tt -'ff *<br />

- 2n.(2n + i)-r .,o. R 1.11 , "\<br />

(7)<br />

Fig 3. Gel flotu <strong>in</strong> pipe velocity distibution<br />

With relations i5), (6) and (7), k and n paramerers can<br />

be determ<strong>in</strong>ed. But, is necessary to have the values for<br />

R, r, T, A,p, L, W,r, etnd tr,r.<br />

given the velocity distnbution <strong>in</strong> the form:<br />

!1<br />

| ,._lln r \ .<br />

4y' = lAtt.(2.k.L)<br />

'<br />

l' (/" ,o), ,tr G)<br />

In relations (3) and @): Lp is the pressure, L the length,<br />

r the radius and ro=).1.1o.(Lp[] is the radius of central<br />

zone which has a constant velocify, w, (fig.3).<br />

In (3) are presented ihe equations for shear rate and k<br />

parameter, <strong>in</strong> the fcrllow<strong>in</strong>g form:<br />

J-(rr+ I).n I.(.ll_rrr)-t.14/,,,.A-,<br />

Table L Erpeimettal<br />

R,<br />

m<br />

x1 O-3<br />

values<br />

(s)<br />

3. EXPERIMENTAL RESULTS<br />

The capillary tube viscometer with a poiseuille flow<br />

(ASTM D 1092) rvere used for measurements. For test,<br />

there were used two gels with characteristics presented<br />

(table 1) <strong>in</strong> the secrion I of this paper. The results of tests,<br />

at 300K are shown <strong>in</strong> talrle 1.<br />

The yield stress is calculated us<strong>in</strong>g the equation:<br />

r,,= (&.R).(2.L) I 6)<br />

The pressure (&r) <strong>in</strong> the reservoir of the capillary tube<br />

vrscorneter was lncreased very slowly and the start_up<br />

Ap, MPa I r*, kpa ro, m.10-3<br />

Sampie no.<br />

1.890 8go, r5r.z 151.2 iLo.o044<br />

i<br />

94 i 6.84 i 2.00<br />

1l8s __9_18 oo113 i 38 , _r!__l*<br />

O e4s ,<br />

2.eo<br />

-1_+ I<br />

75.6 I o.or zs i ts I rz.oo i +.oo<br />

s6B7 I<br />

0600 i _!!_c_ i opye<br />

OSjs ) 41.2 0.0600<br />

1 .890 t 5t .2 r O.OO71<br />

ires-- e+s -oi1Bl<br />

0 945 75.6 ; 0.0285 1500 I<br />

500 j _rjilt<br />

312s i 0.302<br />

0760 1 608 | o.oaqt zJl<br />

0 600 48.0 o<br />

-<br />

}ZOT 472<br />

- L-<br />

o 51s I at .z i o.oe6o 746<br />

1980 1s:r .2 i o.Or a<br />

94.8 I o.ozso<br />

u. t zv 0.0ggg<br />

41.2 0.1540<br />

4/ .0U 16.90 29375 10562 '"Y<br />

, _'u' " L<br />

z4oo I astso i laoool;*A_<br />

'<br />

I<br />

n ,<br />

I 0.0613<br />

tv.vvrv i 0.05'1<br />

Tiibologt itr <strong>in</strong>drctry,, Volume 20, <strong>No</strong>. l, 199g.<br />

t7


yield stress of a gel rvas determ<strong>in</strong>ed when the gel hegan<br />

to flow.<br />

The parameters k and n can be calculated us<strong>in</strong>g the<br />

relations (5), (6) and (7) and the experimental results<br />

presented <strong>in</strong> table 1. by the follow<strong>in</strong>g method:<br />

a) Shear rafes, for various values of rr (table 2) are calculated<br />

us<strong>in</strong>g relation (5) and (7) and the erperimental<br />

results {tabie 1);<br />

b) The shear rates thus determ<strong>in</strong>ed are used, together<br />

with relation (6) and the results of table 1, to calculate<br />

the values of k tactor and it's average site for various<br />

values of rr (table 3);<br />

Table 2<br />

,iib"i ,-';^ i,fi'l "<br />

3l_<br />

0.86 I 0.87<br />

L qo g l, ?o!,_! ?9,7 | qq-,6 ] 2o:g_L?g es<br />

6.s-i *iijo*-l<br />

_t-<br />

i"" i *u I zs;s-l-zss<br />

43.4 | +e.z j as I 42.7s \ 42.s I az.zs I +z I at.t<br />

6."is i- 6.;-l uo* T *f -i;g-oi[ igif sg i--t *<br />

- -f--- ---- - -j-<br />

1---<br />

86 i as.o I as,z 1 e+.e I sa.+ I uo j as.o<br />

Gi;l 1277s]1 u;7,,ro tzt.z irzo.os oi- i , rzo.t rol ilirr I rzs.s l j ris--T res tzqt<br />

,r"-J 'o{ i'*l;i.1<br />

-rlg--@-r:q<br />

153 152.4 15i.75<br />

l- *' l19o<br />

I r50.4<br />

i-[.ealr1qlJ-r11r<br />

11a9.75 i 149.1 I 148<br />

'102.9 I 102.4 I 101.9 I 101.4 i 101 1100.55 I 100.1 I 99.6<br />

I 151.1<br />

-<br />

^^;;- i ^^^- l-^^. - -- .. , -:^ ^^- I *<br />

?337P_ 2326 , ?31 I 23oe 22ee 22e -_228_ l 4!<br />

415.6 | 414.1<br />

Table 3<br />

t-t,<br />

m'10-3<br />

1.890<br />

[o,<br />

1 -rolR Tw<br />

n 0.81 0.82<br />

n oe<br />

0.84 0.85 0.86 0.87 O.BB<br />

m.10-3<br />

Nm-2<br />

'1.326 0.2984127 4275 108.332105.495102.745 100.08 97.693 95.182 92946 90.582<br />

1 B9o I 1.28 ) Os42s2B1 4.562 98.150 95.239 92.425 89.705 87.199 84.775 oz.J to 79.938<br />

1.890; 1134 04 5000<br />

I at


N<br />

-<br />

'r'c<br />

<<br />

q<br />

.'I<br />

(D<br />

l9<br />

z<br />

€<br />

'table 4<br />

I ro+<br />

i u..o<br />

t'<br />

4199.5<br />

To+<br />

, ^0.83<br />

K5<br />

1.77 | 4174.4<br />

4ffi2.3 -___-'-.--''-.-.-<br />

1.54 I 4603.9<br />

5191 .7 383 I 5159.7<br />

-;o* 5687 | sezs i s oo 5940.9 i q.a6 sso7.7 3.BB<br />

I ,tnrtl l '-l-68s33 j-15;-[-*ou<br />

asoo l-a+o: il ,- -'|J*t r91<br />

__;ioo<br />

tT;;, rr* 1.50<br />

l;tJI- o 1-t**<br />

-<br />

-<br />

"u<br />

1:-'---<br />

[- ort I ?4ss2 o.2o I z+or.s<br />

T<br />

1.42 'l szsl .z<br />

o/o I naouu<br />

2.n I 6814.6 2.65 6789.6 i 3.00 67ffi.2 1 3.34<br />

1.67 i 8344.5 I 1.83 e3sd Le5 G23<br />

qi1__iJ443.6_J_o zs 1.05 7402,8<br />

i;t-]lm5.-T-l<br />

,tr1,ir4ol r"<br />

9375 9253.3 1.30 9247.9 i 1 .35 147 i 9235.1 1 tr,A<br />

i 1.49 9232.3 | 1.52 9230.7<br />

10.44 | 39951<br />

4574.5<br />

| 11940 i 2.71<br />

T*-.-_-t . ^.<br />

1.74 | rcras i r.as<br />

i rsres I t.zz<br />

5100.7<br />

5810.9<br />

s.sz I 4098.7<br />

*t-T_*.'rs<br />

rer. ]-ll-d-i?qrrf=--<br />

10r92 | r.gz I rozos i<br />

13344 i 1.67 | 13405 i<br />

Eolls _l_3 9q _l_ru:n,<br />

'r5s1o<br />

5072.4 i 1.45<br />

2.03<br />

2!s6 l J qq __r _?_l!P!_j_J]8<br />

1.52 | 29379 I 0.01 2qnj1 1 5q<br />

l<br />

ao297 | 314<br />

6.87 iatstsl a.ot 4241s<br />

T<br />

_L _s_ql_ _f3286 _1.06<br />

2.082 i<br />

2.055 2.270 2.524<br />

z.tJ<br />

I s.+o i rsoro I, q.oz<br />

aLrgulg;e -,--&_ilr-G<br />

6739.2 3.72<br />

-<br />

1r044-I- 3s1<br />

zt7z2 I<br />

__gt_,<br />

0.95


c) The average percent:rge error related to u, values<br />

determ<strong>in</strong>ed experimentally, is calculated with relation<br />

(2) us<strong>in</strong>g the average value of k (talrle 4).<br />

For the sample no 1 should be selected those values of<br />

the parameters. ft and n, for which the lowest error have<br />

been obta<strong>in</strong>ed. Thus, based of data presented <strong>in</strong> table 4,<br />

it results that the constitutive relation which expresses <strong>in</strong><br />

the best way the behetviour of this gel, is:<br />

r = r\t + g7 9l5- 50'85<br />

(g)<br />

In the same way are obta<strong>in</strong>ed the constitutive relaticln tbr<br />

the sample no 2:<br />

r == roz t 23 352' Soq (10)<br />

The experimental values of yield stress for the gels are<br />

tot : 3 000<br />

t02 = 900<br />

REFERENCES<br />

-)<br />

Nnt-<br />

Nnt-<br />

ll.l Scott, P.R.,Zijlstra, Kor N., FLAGS Gas-l<strong>in</strong>e Sediment<br />

Removed Us<strong>in</strong>g Gel-plug Technologr, Oil and<br />

Gas Journal, Oct. 2(t., 1981, p.97-109.<br />

[2.] Hemphill, f., Cnmpos, W.,Pilcln,an, l, Yieldpower<br />

I-aw Mo


V. F. BEZAIZICHI,{Y,l/. V. NEPOMILUEV<br />

u DK 621.9.025.7<br />

.42.403<br />

Calculation of The Cutt<strong>in</strong>g<br />

Conditions Tak<strong>in</strong>g <strong>in</strong>to Account<br />

The Criteria of The Cost and<br />

Productivitv<br />

[--r[--]L-l<br />

L,l<br />

I<br />

I<br />

E<br />

uJ<br />

a<br />

TU E<br />

Ii is kttowrt that the. cost ar(l pro(ltrctiviry of mt:chotica! mach<strong>in</strong><strong>in</strong>g greatly tlepetttl ort the uutirtg corulitiotts.<br />

Cuttittg cortditiorrs itt it's tunt arc detcrmitrcd by the degree oJ'thc adtirtg tool vve arability du'ittg tlte machitirtg<br />

proccss. 7'lrcrtfore Io calctLktte thc: oJttitruun tnachittittg cottrlilioru tukitry hto accotLntlrc crilcria of taclutological<br />

cost or procluctivitl,, it is ttecessary lo krtow tlrc t!cpctulettce of the iricttsit,v of tltc ctttlittg lool waar ott<br />

the a dti ttg c orul it i ott s.<br />

Applicatiort of the rnethod of tlrc similaity lheory, sll6rr'rd to get ratlter nccurate ond univer,sal dependencv of<br />

Ihe ailtirtg lool vt:s47' 6t17 the pamrnelerc d the uillirtg process, Jtlry,sics-rnecitattical and heot-physical properties<br />

of tlte treatc(l tuil tool mateials. Tlrc recei,ed delscndcncy i.s ttscil to deterrnitte opt<strong>in</strong>uun <strong>in</strong> lhe cost and<br />

produc tit'i N c ttt Ii tt g crnrl i ti ott s.<br />

Keyword: adt<strong>in</strong>1i tool wcar, cost, ltrocluctivity<br />

Research of different processes is connected with gett<strong>in</strong>g<br />

adequate nrathernatical relaticlns. Such relations allow to<br />

manage the process :rnd calculate it's results. Hor.vevcr,<br />

the obta<strong>in</strong>ed reiaticlns shoulcl be accurate enough ancl<br />

have a wide sphele of application. It is known that the<br />

technological cost of the carry<strong>in</strong>g out the operation depend<strong>in</strong>g<br />

on the cutt<strong>in</strong>g cclnditions, can be deternr<strong>in</strong>ed by<br />

the follow<strong>in</strong>g formula Il]:<br />

crFHN= cu'ttt+ Cy',r*''! * z,' .1"!- g1<br />

I itfi,<br />

1 A,[P<br />

where C51 is the full cosi of clne m<strong>in</strong>ute nrach<strong>in</strong>e rrnrl<br />

worker operation without the time spent fcrl the cutt<strong>in</strong>g<br />

tool; l.a1 is the nrach<strong>in</strong>e u'ork<strong>in</strong>g t<strong>in</strong>-re; lgly is tlie time for<br />

'f,11p<br />

the tool change; is the pe riod of the clr<strong>in</strong>e nsional tool<br />

hfe; Z1- erpentiitures cause ci lry the cutt<strong>in</strong>g tool rna<strong>in</strong>tenance<br />

dLrrirrg tlie pci'ioC of it,r life bet,"veen resharpenlngs.<br />

The technological pnicluciti'if,i of tlie operation can be<br />

determ<strong>in</strong>ed by the follow<strong>in</strong>g:<br />

.- 6A<br />

Q rctrru- " (:)<br />

r j1 , tstr. l.l!<br />

I I,lP<br />

Mach<strong>in</strong>e time crrn be deterrn<strong>in</strong>ed b1.' the forrnula<br />

r.d.l ,<br />

tnt = -ii. u'herc r/ airtl i ale thc ciiiLureicl and the length<br />

Vi n t c I r e s I a v c I ; e o k. ! i.s r o t' i t c I r I J e z a i z i c h r t y-,<br />

Va lery Va s i lit:r' i t c I t'\r


perature;4 VEarethecriteriaof similarityof thecutt<strong>in</strong>c<br />

process determ<strong>in</strong>ed by the formulas [2-]:<br />

o-Il'nl.<br />

a<br />

r/-<br />

r.f d-<br />

G''(l sittylu "<br />

r-P=J<br />

01<br />

Dt - isthe radius of the rounct<strong>in</strong>g of rhe curt<strong>in</strong>g edge of<br />

t!<br />

the tool;a is the temperature conductivify coefficient of<br />

themach<strong>in</strong>ed material; o=Bi, G=i'p'e arethe<br />

criteria of similarity of the cutt<strong>in</strong>g process; a1 and b1 are<br />

the thickness and *'iclth of the shear; y, f) and e are the<br />

angle of cutt<strong>in</strong>g eclge,<br />

Qt<br />

^,-<br />

The value ofrT for the first fourgroups of the mach<strong>in</strong>ed<br />

materialsisequal zero.Thisconfirmsthewell-knownfact<br />

that abrasive and adhesive k<strong>in</strong>ds of the tool wear <strong>in</strong><br />

cutt<strong>in</strong>gofthesematerialsarenottypical.<br />

z - Student's criterion and F - the Fisher's criterion<br />

::it:i:.:Tl':<br />

jiTl:1.::efficients are mean<strong>in</strong>gful and<br />

teste, dependence.<br />

Represent<strong>in</strong>gtheobta<strong>in</strong>eddependence<strong>in</strong>toformula(1)<br />

after some transformations we have the follow<strong>in</strong>g:<br />

the angle of taper and the vertex Crrrr*-. Cn, !# o,I!L cr.(-)''<br />

anglerespectively;irand.l.aretheheatconditioneffi-<br />

"' SV. S4u'<br />

\q )<br />

ciencies of the treated and tool materials respectively; c.<br />

x, ),, z ate the values depended on the properties of the<br />

mach<strong>in</strong>ed and tool materials.<br />

The criterion ot'^<br />

oI<br />

,uk", <strong>in</strong>to account the <strong>in</strong>uuence of<br />

the abrasive and adhesive phenomena on the process of<br />

the cutt<strong>in</strong>g tool wear. The B V and E criteria show the<br />

<strong>in</strong>fluence of the ditfusive and oxidiz<strong>in</strong>g ones.<br />

N{arirnum value of the technological productivity accor-<br />

tl<strong>in</strong>g to formula (2) will be <strong>in</strong> the case .f<br />

Durable exper<strong>in</strong>rents were made and experimental derta<br />

of other authors given <strong>in</strong> the papers [3, 4, 5, 6, 7, 8] were<br />

used to determ<strong>in</strong>e the values of the coeffic ien'ts t'1,'x1, y 1,<br />

zl <strong>in</strong>lhe obta<strong>in</strong>ed criterion equation (3).<br />

The values of the coefficients c, .r; 1i z obta<strong>in</strong>ed after the<br />

mathematical process<strong>in</strong>g of the experimental results are<br />

given <strong>in</strong> table 1'<br />

I c-u. arzu la;i''',-r<br />

v,nirtc=t-- -l (5)<br />

i,-.", j.i") ,/) |<br />

ft' lu"iJ | -${ttr'^-) 'EZt €tr 'I1-t1+21) u*o "J<br />

Tablc l. Vnlttts o.[ t/u cot'JJit'itnt.s itt fonruiln (3)<br />

Atier some transformations we obta<strong>in</strong> the formula (5).<br />

rtv<br />

tg1+ t6y . - ;' rnirt (6)<br />

I tttt'<br />

This conclition will be right <strong>in</strong> the case if the cutt<strong>in</strong>g speed<br />

derivative, cleterm<strong>in</strong>ecl from the expression (fi), is equal<br />

k=.1 for monocarbicre ru'gsren-cobart<br />

',il.];,,|[T<br />

harcr aloys;k=1.8 :[:'J:il[:illji;#'{:,1iXi::ffi'jfil<br />

for bicarbide titaniurn-tungsten-cobalt alloys; k:1.5 for<br />

high-speed steel;/ is the ratio of heat condr.rction efficiencies<br />

of the trtol zrncl nrat:h<strong>in</strong>ecl materilrls.<br />

Groups of tne materials I c<br />

After transformation of the obta<strong>in</strong>ed expression (7) we<br />

get the lormula for geft<strong>in</strong>g the cutt<strong>in</strong>g speed which cor-<br />

22 TiiboloSSt itt irulustry, Volunre 20, <strong>No</strong>. 1, <strong>1998</strong>.


G--<br />

tud.l<br />

^.<br />

J<br />

I<br />

W<br />

(I+x).yyc1<br />

Atzx<br />

.,t<br />

(o^\^'<br />

tar I<br />

a;) t<br />

i<br />

.I;Zt 'rt'-""'l I )<br />

= 0(7)<br />

a t:zu<br />

responds to the maximum treatment productivity (formula<br />

B).<br />

So. we can drnw the follow<strong>in</strong>g conclusion: the use of<br />

method of similarity theory allowed to get the universal<br />

dependence of the cr.rtt<strong>in</strong>g tool wear <strong>in</strong>tensity on the<br />

parameters of the cutt<strong>in</strong>g process and the physical-mechanical<br />

and heat-physical properties of the mach<strong>in</strong>ed<br />

and tool materiarls.<br />

The obta<strong>in</strong>ed dependence can be used to determ<strong>in</strong>e<br />

optimum of cost and treatment productivity cutt<strong>in</strong>g conditions;<br />

it can also be used to calculate mach<strong>in</strong><strong>in</strong>g error<br />

caused by the cutt<strong>in</strong>g tool wear; to choose the tool material<br />

grade for rrure and semipure turl<strong>in</strong>g and to control<br />

the cutt<strong>in</strong>g process <strong>in</strong>clud<strong>in</strong>g adap rive one.<br />

LITERATURE<br />

l<br />

lc;Dr;<br />

I<br />

l<br />

(8)<br />

[1.) Malchanov G.I. Increas<strong>in</strong>g of treatment efficiency<br />

on the lathe with program control. - Soscow: Mach<strong>in</strong>ebuild<strong>in</strong><br />

g, 1979.-240 p.<br />

[2.] Optimization of technological conditions of the mechanical<br />

work<strong>in</strong>g of the aircraft eng<strong>in</strong>e parts lV.F.<br />

Ileziazichrry, T.D. Kozlirn, A.V. Kortsto,,,1117s1t, V.V.<br />

Nepornilua,, A.N. Scmyotrs1,, T.V. Sharova, Y.P. Chiryakov"<br />

- Moscow: MAl, 1993. - 184 p.<br />

13.) Loladze ZN. Strength and wear resistance of the<br />

cutt<strong>in</strong>g tool. - Mos.Jorv: Mach<strong>in</strong>ebuild<strong>in</strong>g, 1982.-320<br />

p.<br />

l4.l Mokarot, A"D.\Year and strength of the cutt<strong>in</strong>g toof<br />

s. - Moscorv: Mach<strong>in</strong>ebuild<strong>in</strong>g, 7966. - 263 p.<br />

15.l Makarov A.D. Optimization of cutt<strong>in</strong>g process. -<br />

Moscow: Mach<strong>in</strong>ebuild<strong>in</strong>g, 1976. -278 p.<br />

[6.) I]obov I{F. Fundamentals of metal cutt<strong>in</strong>g theory. -<br />

Moscow: Machrnebuild<strong>in</strong>g, 1975. - 344 p.<br />

[7.] Directory of the technologist mach<strong>in</strong>e-builder..In<br />

hvo v. V. 2 I editors A.G. Kosilot,a attd R.K. Mescheriakov.<br />

- Moscow: Mach<strong>in</strong>ebuild<strong>in</strong>g, 1986, -496 p.<br />

[8.) Poduraet, ZN, Cutt<strong>in</strong>g of the hard treated rnate'ials.<br />

- Moscow: Macir<strong>in</strong>ebuild<strong>in</strong>e, 1974. -590 p<br />

Tiibologt irt ittdLstry, Volume 20, <strong>No</strong>. 1, <strong>1998</strong>.<br />

L--)


f--r<br />

t1<br />

tl<br />

tl<br />

I<br />

C)<br />

E.<br />

LU<br />

a<br />

trJ<br />

E<br />

[-t<br />

LrL__l<br />

L-_]<br />

T<br />

UDK 62r.179.6.891.22<br />

T. F. KALfuM{OYA, T. M. MOISEEVA, O.Y. KHOLODILOY<br />

On Statistical Description<br />

of Solids Friction<br />

A method is propo'setl of es-t<strong>in</strong>tal<strong>in</strong>g the poranteters of a .rpecial class conclation Jiurctiott. II i,s based ott<br />

meQsurements of statistic of the sndied phenomenon or FSFC. The only conrlitiort o.f apply<strong>in</strong>g lhe statistics<br />

is the reqrdrement that the protluct 9f freQuency range of the recordad railiatiott b), tirie irJ i"rirAi"g is vastly<br />

laryer than utity. A contb<strong>in</strong>erl arutlysis of acorctic tlata antl those oJ' F'SFC (roighness, size ctistibtttion of<br />

wear debris, etc.) hat,e showtt that the statislics a.rc rcsponsive to p<strong>in</strong>ctically'oll lihenomerrn ,rrorrpn,rr-urg<br />

frictiort antl wear. The depenrlenc-ie.s obta<strong>in</strong>ed of the staiistics r:niat^iort with evenialfacton hat,e enable; trcw<br />

citeia to estirnate durability of frictitn jo<strong>in</strong>ts to be formrilated.<br />

Keywords: frictiort, wear, su(ace roughness, tvear rrebris, acowtic <strong>in</strong>adiation<br />

l.INTRODUCTION<br />

A number of tribological problems rvhose solutions are<br />

important for understand<strong>in</strong>g solids friction require <strong>in</strong>vestigation<br />

of both statistical properties accompany<strong>in</strong>g friction<br />

and wear (acoustic irradiation, heat generation,<br />

etc.), and study of fixed states of a friction conracr<br />

(FSFC) <strong>in</strong>volv<strong>in</strong>g surface rolrghness, '"vear debris ancl so<br />

on. It turns so, that separate parameters of these pheno_<br />

mena (<strong>in</strong>tensity of acoustic irradiation, contact temper:r_<br />

ture) and FSFC realization (rough surface profile, wear<br />

debris size) are <strong>in</strong>sufficient for unambiguous identifica_<br />

tion of a tribosystem state.<br />

2. PROBLEI\{ FORN{ULATION<br />

Friction to proceed from the fact that the majority of the<br />

phenomena and FSFC can be presented as reiilization of<br />

a random field (r, y/, so a number of the tribological<br />

characteristics would depencl on its correlation function<br />

behavior about zero. In this connectictn the problem of<br />

estrmation and sirnulation of the function secrns quitc<br />

actual. A nrethod has been proposecl earlier to est<strong>in</strong>ratc<br />

correlation function pararneters of a certa<strong>in</strong> class random<br />

fields. The method is based on the use of functionals<br />

(statistics) belong<strong>in</strong>g to the studied phenomena or FSFC<br />

[7,2):<br />

T. F. Kolm.v-kot,n,7-. M. Moiseu,a, O. tr/. Kholodilov<br />

Mctal- Polyrner Resaarclt lrrstitLttc tnned o,ftcr V.A. Bctvi<br />

of Ilehntssiatt Acaclcmy of Scicttct:s,<br />

Gorncl, Rcpublic o.[ I]clorus<br />

24<br />

2<br />

n - - ---..-.----. ----- --<br />

'tA<br />

(A.T\--ln(!\ ')<br />

"0<br />

n )<br />

't:<br />

(.47)-r<br />

E I t,,l€ (, pn't 41)<br />

* € (xk,y r)l<br />

t,AD_l<br />

b<br />

" ta' f ifiltfrrf5 t]1*1'l7*1) - E txr'rI<br />

l<br />

.;- r-[,,r,. r, \- ts/r- ..'t2<br />

A<br />

. rr . t<br />

wherc:<br />

I) dt.drt --'^':<br />

14(n) JJsitt- sitt'r.-<br />

; ^<br />

,0j<br />

-r l{F ,.,,:S:',,1"<br />

- is the<br />

tabulated function; A - transmi'Ssion band; 1; - frecluency<br />

range of the recorded field; I - time of record<strong>in</strong>g; T _<br />

sampl<strong>in</strong>g length. The only condition for their application<br />

is Al>1.<br />

Obiects of the present <strong>in</strong>vestigation are the foilorv<strong>in</strong>g:<br />

1 - to substantiate <strong>in</strong>variance of proposed functionals for<br />

any nature randorn fields; 2 - to prove their stabiliry for<br />

stationary fields and substantial sensitivity to variations<br />

<strong>in</strong> stability.<br />

These problems can be traced on the exanrple of the<br />

studied <strong>in</strong> friction contact acoustic fields ancl <strong>in</strong> case with<br />

mechanically <strong>in</strong>duced random states of the friction con_<br />

tact (aspelities of contact surfaces, stl-ucture of actulrl<br />

conterct spots, fields of wear debr-is distributiou).<br />

l,et us dwell on acoustic frictional phenomena and show<br />

the probability of the suggested functionals use to estirnlrte<br />

the mechanisrn of frictional contact rvear<strong>in</strong>g by<br />

characteri.stic parameter r(a, b) <strong>in</strong> the space o[ statistics<br />

(a, b).<br />

triboloSy <strong>in</strong> i nrhrrry Votumc 20, <strong>No</strong>. l, lggg.


3. OBJECTTVES AND METHODS<br />

Friction <strong>in</strong>vestigations used the shaft-on-partial <strong>in</strong>sert<br />

geometry (shaft - steel 45, <strong>in</strong>sert - organic fiber re<strong>in</strong>forced<br />

thermoplastic). The composite choice was conditioned<br />

by diversity of acoustic irradiation sources and probability<br />

of direct effect on some of them, for e.g., by<br />

vary<strong>in</strong>g phase <strong>in</strong>teraction <strong>in</strong> the polyrner-fiber system or<br />

alternat<strong>in</strong>g the polymer matrix deformation properties.<br />

The regime (loads. slid<strong>in</strong>g velocity. etc) were selected so<br />

as to reaiize different wear mechanisms.<br />

cide and behave <strong>in</strong>irdequatellrlvill., chang<strong>in</strong>g friction conditions<br />

(for e.g., due to cliangecl contact rigidity). Characteristic<br />

pariimeter of acoustic field r(a, b) correlates<br />

more closely with the character of damage <strong>in</strong> the friction<br />

contact. Particularly, when different wear mechanisms<br />

are realized <strong>in</strong> the contact, characteristic parameter<br />

r(a, b) preserves its stability (fig. l).<br />

The acoustic signal receiver was fixed on the <strong>in</strong>sert and<br />

cont<strong>in</strong>uous record<strong>in</strong>g of acoustic irradiation (AJ) was<br />

performed followed by,' statistic process<strong>in</strong>g. S<strong>in</strong>-rultaneously<br />

with acoustic <strong>in</strong>formation tribological parameters<br />

of the system were registered <strong>in</strong>clud<strong>in</strong>g friction coefficient,<br />

wear rate and temperature. Morphcllogical analysis<br />

of wear debris was carriecl out us<strong>in</strong>s REM-PC complex.<br />

4. RESULTS AND DISCUSSION<br />

Experimental <strong>in</strong>vestigations have sholvn that dur<strong>in</strong>g run<strong>in</strong><br />

the <strong>in</strong>tensity of acoustic irradiation, its amplitucle<br />

distribution and statistics a, b and r(a, b) are comparativelv<br />

sensitive <strong>in</strong>dicators of wear<strong>in</strong>g. In particular, ow<strong>in</strong>g<br />

to plastic displacement and microcutt<strong>in</strong>g the actual contact<br />

spots of <strong>in</strong>teract<strong>in</strong>g surface shorv the rise of both the<br />

acoustic field <strong>in</strong>tensity and its characteristic parameter.<br />

Further comb<strong>in</strong>ed stabilization of the friction surface<br />

geometrical parameters and physico-mechanical properties<br />

results <strong>in</strong> stability of the studied functionals raclirition<br />

<strong>in</strong>tensity. Scl, the suggestecl functionals are <strong>in</strong>dicators of<br />

friction <strong>in</strong>ciuced variations rlf acoustic field. <strong>No</strong>te that<br />

characteristic parameter(a, l>) is l conrpanrtivelv sensitive<br />

probe fclr such variations.<br />

It has been establishe,i that <strong>in</strong>crease <strong>in</strong> the polymer<br />

composite relative rigidiry (EflErn, where I!f, Enr - modules<br />

of fiber and miitrix elasticify, correspond<strong>in</strong>gly) leads<br />

to growth of characteristic par;rmeter r(a, b). F'or<br />

example, polyarylate-ttased composites filled by polyamide<br />

fiber with E/ = 18.5 GPa and lif = I35 GPa display<br />

the growth of characteristic parameler r(a, b/ by about<br />

27Va. This can be attributed to high plasticity of the<br />

composite due to *'hich a _great number of acoustic radiation<br />

sollrces activate <strong>in</strong> the friction contaci lead<strong>in</strong>t to<br />

change <strong>in</strong> emission <strong>in</strong>tensity.<br />

Interest<strong>in</strong>g results rl'ere clbta<strong>in</strong>ed rvhen compar<strong>in</strong>g statistic<br />

pararneters of acoustic irradiation arnplitude distribution<br />

and those of debris distribution by size [3]. Both<br />

distributions are of unimodular character rvith I prom<strong>in</strong>ent<br />

asymmetry.<br />

It has been founcl out thiit the concelned clistributions<br />

statistic parame ter:i (asyr.nmetiy and exccss) do not ct-rirr-<br />

Figure 1 . Werv of a polyt."rcr frictiort surface and<br />

near debis distribution by size:<br />

a - abrasive n'ear; lr(a, b) | =6.2 rcL. un.: b - fatigue, 4.8;<br />

c - a! st:izure, 9.8: tlrcrnutplast-stael 45 ft'iction pair<br />

'fhe suggested statistics and decluced characteristic paranreter<br />

Ir(n, b)l tve sufficiently sensitive <strong>in</strong>dicators of<br />

frictional <strong>in</strong>tertrction and correlate with changes <strong>in</strong> friction<br />

conditions. As f


l, (.i, r.)1,<br />

Ilrl. llD-<br />

1 45<br />

1 _4n<br />

t.t3<br />

1.00<br />

Figure 2. Relativ'e rlariaticttt of clrcractetistic<br />

paranleter(a, h) t'crsu slid<strong>in</strong>g velocity,:<br />

1 - pol.vcarbonatc * fiber;<br />

2 - polycarbottate + ntodificd fiber<br />

With <strong>in</strong>creas<strong>in</strong>g slid<strong>in</strong>g velocity the amplitude distribution<br />

expands <strong>in</strong>to the region of Iarge amplitudes. The<br />

studied statistics vary too. The presence of coarse wear<br />

particles (formed at high velocities) po<strong>in</strong>ts to the fact that<br />

plastic deformation processes localize <strong>in</strong> wide areas and<br />

fracture onsets <strong>in</strong> the near-surface layer with further<br />

microcrack penetration onto the friction surface and<br />

large fragments spall<strong>in</strong>g. This rises activity of emission<br />

sources conditioned by the growth of microcracks <strong>in</strong> the<br />

polymer contact layer and total <strong>in</strong>crease of the acoustic<br />

flow activity.<br />

Further <strong>in</strong>crease of velocify Ieads to ris<strong>in</strong>g surface temperature.<br />

The phenomenon of frictional heiit<strong>in</strong>gof engaged<br />

material surfarces reduces both arcoustic signal <strong>in</strong>tensity<br />

and the studied statistics. The actual contact area of<br />

friction surfaces expands, which causes <strong>in</strong>creased adhesive<br />

<strong>in</strong>teraction lead<strong>in</strong>g to stick<strong>in</strong>g. Stick<strong>in</strong>g is accompanied<br />

by abrupt augment of acoustic signal and its statistics.<br />

It is evident that heat<strong>in</strong>g would evoke abrupt<br />

<strong>in</strong>crease <strong>in</strong> the molecular constituent of the friction coefficient<br />

and result, <strong>in</strong> a number of cases, <strong>in</strong> seizure<br />

accompanied by spall<strong>in</strong>g of large lumps from the friction<br />

surface. At seizure characteristic parameterr(a, D) shows<br />

jerkry character.<br />

5. CONCLUSION<br />

The comb<strong>in</strong>ed analysis of acoustic ancl fixed state data<br />

of the fdction contact (debris distribution by size) has<br />

shown sensitivity of statistics to practically all phenornena<br />

occurr<strong>in</strong>g at friction and wear. The obta<strong>in</strong>ed dependences<br />

of these statistics ou external factors made it possible<br />

to forrnulate new criteria for determ<strong>in</strong><strong>in</strong>g friction<br />

jo<strong>in</strong>t durability.<br />

REFERENCES<br />

ft.1 Kabnykova 7'.F. and Kholodilot, O.V., On Statistical<br />

Description of Rough Surfaces, The Jo<strong>in</strong>t Soviet-<br />

American Conf, "New Materials and Technologie.s<br />

<strong>in</strong> <strong>Tribology</strong>", Abstracts, M<strong>in</strong>sk (1992), 207 -202.-<br />

[2.]<br />

Moiseeva T.ll{., O.strovslq 8.1., Kalmykova T.F. ard<br />

Kholodilov O.V., On statistical I)escription of<br />

Rough Surfaces, J. of Friction and Wear, 14 (7993),<br />

140-142.<br />

[3.) N[oiseo,a 7.M., Kalrnykova T.F. otul Kholodilot, O.V.,<br />

Multidimensional Statistical Anall,sis of the Problems<br />

of 'fribosystem State ldentification, Proc. Int.<br />

Conf. "Computer Methods ancl Inverse Problems <strong>in</strong><br />

<strong>No</strong>ndestructive Test<strong>in</strong>g and Diagnostics", CM<br />

NDT-95, M<strong>in</strong>sk, IJelarus (199-5),<br />

2I5 -227.<br />

26 Tlibologt itt irttlustry, Volurne 20, <strong>No</strong>. 1, <strong>1998</strong>.


--<br />

UDK (i21.83(r.004.tr<br />

M. OGNJANOWC, P. OBR" DOWC<br />

Modell<strong>in</strong>g of High-pressure<br />

Dynamic Seal<strong>in</strong>g Jo<strong>in</strong>ts<br />

I<br />

C)<br />

E<br />

LU<br />

LU<br />

E.<br />

Modell<strong>in</strong>g is a pro


Fig. 1. The basic groups of sealirry jo<strong>in</strong>ts of ntobile surfaccs<br />

step is the selection of type of seals. The cornplete rnethod<br />

is given <strong>in</strong> section 3. The parameters such as dimensions,<br />

material, resistance, heat etc., are computed next,<br />

for the selected type of seal.<br />

This activity is based on the use of a catalogue of standard<br />

parts, experimental results and analysis. If dimensions,<br />

or resistance, heat<strong>in</strong>g, orwear are unacceptable, the type<br />

of seal<strong>in</strong>g connection should be changed. The structure<br />

of construction elements, 3-D models of seal<strong>in</strong>g parts<br />

and their relationship are designed <strong>in</strong> the third phase. At<br />

this level some changes of selected parameters are still<br />

possible - even of the type of seal<strong>in</strong>g as shorvn schematicallv<br />

<strong>in</strong> Fic. 2.<br />

neated; some types overlap <strong>in</strong> certairr ranges of use. This<br />

fact clearly shows the uncertair.rties <strong>in</strong> selection process<br />

due to poorly def<strong>in</strong>ed limits of application. The theory of<br />

fuzzy reason<strong>in</strong>g can be used for solv<strong>in</strong>g problems of this<br />

k<strong>in</strong>d, This theory accepts poorly def<strong>in</strong>ed relationships<br />

between elements and it approaches the process of human<br />

reason<strong>in</strong>g. For any given case usually several seal<br />

types could be used. but none is obligatory.<br />

tsy the fuzzy reason<strong>in</strong>g theory an element,4 is the member<br />

of the set X if the value of membership function<br />

Itaft)= I , and is not the member of the set if pt.a@.) :0 .<br />

The limits of any set are not flxed; cornmon regions may<br />

exist. The range of membership function is from 0 to l.<br />

of shape<br />

of seal<strong>in</strong>g<br />

f ig. 2 Tlrc basic activ'ities of selectiott and nndellittg<br />

o.[ sealittg joitrts<br />

3. THE SELECTION OF Tl?E OF<br />

DYNANIIC SEALING JOINTS<br />

The decision which type should be selected depends on<br />

fluid properties such as density, temperature, operat<strong>in</strong>g<br />

pressure, chemical aggressiveness as well as operat<strong>in</strong>g<br />

conditions like relative speed, friction losses, accuracy<br />

and roughness of surfaces <strong>in</strong> contact. All these parameters<br />

could be quantified by measurenents but the areas<br />

of application for <strong>in</strong>dividual types elre not clearly deli-<br />

/16(d)<br />

Fig. 3 'l-ltc eratnplas of ntenbcnhip funcrion <strong>in</strong> tha fir:1,<br />

set for contprcssion seals<br />

28<br />

Tiibolop irt <strong>in</strong>dustty, V


--.<br />

If tlre value of function ytl$) rs close to -1, this would<br />

mean that its membership is "beiter". In the range between<br />

0 to I the membersliip function is l<strong>in</strong>ear. For any<br />

type of seal<strong>in</strong>g it is possible tc form a set of r membership<br />

functions for n - operat<strong>in</strong>g conditions. Three functions<br />

for compression seals are shown <strong>in</strong> Fig.3. Ihe number rr<br />

for each one coulcl be different.<br />

The mean value of membership function is<br />

/1A<br />

=<br />

n<br />

Iun{ri)<br />

n<br />

All membership functions are not of the same importance<br />

for the decision rnak<strong>in</strong>g. To quanri$'their irnportance<br />

the weight<strong>in</strong>g coefficients k; are <strong>in</strong>troduced, Their value<br />

could be ki < I or ki > 1. The mean value of membership<br />

function will be detenn<strong>in</strong>ed bv the eouation:<br />

PA-<br />

n<br />

f-r<br />

) K;'lt z lX;l<br />

i-7<br />

ti<br />

\-r. / :<br />

7''<br />

The first step is tcl develop a procedure for calculat<strong>in</strong>g<br />

the mean value of membership function ltA, ltB,ltc, ...,<br />

for each type of seal<strong>in</strong>g jo<strong>in</strong>t shorvn <strong>in</strong> Fig. 1 (t"ypesA, I),<br />

C..).The seal<strong>in</strong>g element with a greater value of membership<br />

function will be rnore acceptable. The solutions<br />

where even one fuzz,v function is equal to zero are not<br />

acceptable.<br />

Table L Seal<strong>in</strong>g elernerts t+,ith ba.sic tibologic caractcrisrics<br />

4. THE COMPUTATIONAL I'ROCEDURE<br />

OF SEALING JOINT<br />

The computaiioit is a procr:dlrre to establish the correlation<br />

between dimensions, n)aterial. operat<strong>in</strong>g parameters<br />

and operat<strong>in</strong>g conditions. Atler selection of the type<br />

of seal, us<strong>in</strong>g the methocl dcscr:ibed <strong>in</strong> tire section 3, the<br />

cornputation of seai<strong>in</strong>g jo<strong>in</strong>is follows <strong>in</strong> such a rvay that<br />

clirnensions, materials, friction klsses, wear, leakage.of<br />

the fluid and heat<strong>in</strong>g are kept with<strong>in</strong> the acceptable<br />

values. The chosen characteristics of these paranteters<br />

irre given <strong>in</strong> Tabie l.<br />

The relationships are obta<strong>in</strong>ed ma<strong>in</strong>ly from the results of<br />

experimental <strong>in</strong>vestigations brrt some could be calculated.<br />

For example, the arial resistance <strong>in</strong> compression<br />

seals (1)- Thble 1, could be either nieasured or calculated<br />

if dimensiolis, pressure, material and roughness of surfacess<br />

are known. The stress <strong>in</strong> seai<strong>in</strong>g p:rrts, fluid leakage,<br />

and wear are <strong>in</strong> mutual correlation. In the case of sp<strong>in</strong>dle<br />

pack<strong>in</strong>g, (2) and seal<strong>in</strong>g r<strong>in</strong>gs (3), tlre relartions are based<br />

r:n other theories lrecause the tribologic processes are<br />

different. Axial seal<strong>in</strong>g jo<strong>in</strong>ts (4) are suitable for high slip<br />

velocities and hirve lower contact pressure and resjstance.<br />

<strong>No</strong>n-contact seal<strong>in</strong>g jo<strong>in</strong>ts (5) have the best caracteristics<br />

for these conclitior.rs. The seal<strong>in</strong>g pr<strong>in</strong>ciple there is<br />

quite different. It is based on the <strong>in</strong>creased hydraulic<br />

resistance of fluid flon, throuljh tl.: clearance gaps <strong>in</strong> the<br />

connection.<br />

The selected trilrok-rgic variables <strong>in</strong> Table 1 show that<br />

seal<strong>in</strong>g connections belong to the tribologic systems.<br />

The tribologic varilbles such as forces <strong>in</strong> the contacts,<br />

stress, resistances. weAr, heat<strong>in</strong>g etc. clepencl on the cle-<br />

lor.-<br />

L\-<br />

ta,E<br />

lf ____<br />

krn<br />

Tibolog', itt itulrctrv, Volume 20, <strong>No</strong>. l, <strong>1998</strong>.<br />

29


sign parameters. They represent the bounderry conditions<br />

which are basis for the computation of dimensions.<br />

As here are several conditions and the design parameters<br />

should satisfy all limitations <strong>in</strong> an opt<strong>in</strong>ral way. Thc<br />

optimisation model is developed for that purpose and its<br />

basic scherne is shown <strong>in</strong> Fig. 4. Design parametrs of<br />

seal<strong>in</strong>g connections such as diameters. thickness, lengths<br />

and material characteristics are narked as17, x2) xJ ... xn<br />

and they represent the vector of <strong>in</strong>dependent variables<br />

X( x1, xv x3, ...x;. Limitations such as resistance fclrces,<br />

stress, fluid leakage, wear, etc. depend on these parametersxT,<br />

x) x3, ... r1, and on operat<strong>in</strong>g conditions (pressure,<br />

temperature, velocity, etc.). These limitations are marked<br />

asg;(x7, x) x3, ...x,,,) and they def<strong>in</strong>e the optimisation<br />

range D(x7, .r3 J-1, ....r,,) from which the optimal set of<br />

parameters is selected. The oljective function/(x7, x) xJt<br />

...,r;,,)<br />

should be the marimum seruice life for that seal.<br />

The result of this optimisiition process is the vector of<br />

optrmal variables X(xb x2, x3,... ;,,) which belongs to the<br />

optimisation rarnge D(x7, xj x3, ... r,,) and which satisfies<br />

the objective function.f,<br />

5. MODEL OF THE DESIGN PROCESS<br />

OF SEALING CONNECTIONS<br />

The modell<strong>in</strong>g makes possible highlight those characteristics<br />

of objects which are important for the entire<br />

analysis, to make certa<strong>in</strong> transforn.rations and simulations<br />

and to drarv out the conclusions. Models are extensively<br />

used <strong>in</strong> the design process and they represent the<br />

language of designers. In Fig. 2 the basic operations <strong>in</strong><br />

the develop<strong>in</strong>g process of seal<strong>in</strong>g elements are shown<br />

ancl <strong>in</strong> Fig. 5 the corrplete model rvith all its modules and<br />

knowledge datahasc is given. The design process is performed<br />

through analvsis and svnthesis.<br />

Analysis is the proces.s *,hii:h proviCes data and knowledge<br />

necessary for the further development of the clesign<br />

process.'l'ire knowledge ciatahase represents the organised<br />

set of data. calculation ancl analytical procedures.<br />

The operations and activities that permit the transformation<br />

of data and knowleclge <strong>in</strong>to the basic design <strong>in</strong>formation<br />

nrake the <strong>in</strong>fomtation nodule. In the synthesis<br />

the digested <strong>in</strong>formation is userl for build<strong>in</strong>g the model<br />

of product. This process takes from the database <strong>in</strong>dividual<br />

general design elements of seal<strong>in</strong>g connections. The<br />

module for the selection of a seal, shown <strong>in</strong> Fig. 3, is used<br />

with<strong>in</strong> the genertrl jnformation module and synthesis<br />

procedure. It features iis a separate entity and the follow<strong>in</strong>c<br />

calculations are perfornred accord<strong>in</strong>g to the algorithms<br />

which are classified <strong>in</strong> the knowledue datal;ase.<br />

Gener;rl schenre of the opt<strong>in</strong>risation model for seal<strong>in</strong>g<br />

elernents is shorvn <strong>in</strong> Fig. 4. The design elements are<br />

those parts of seal<strong>in</strong>g elenents which are used <strong>in</strong> different<br />

arransements. They might be developed as parametric<br />

nrodels, so by change of parameters the elements<br />

could be adapted for the clifferent uses and conditions.<br />

The design elements could be also constructed <strong>in</strong> a mo-<br />

Cpl<strong>in</strong>risolion ronge<br />

D (*.,, *a, *3, ......rn)<br />

Resisionce<br />

seol<strong>in</strong>g io<strong>in</strong>ts<br />

t=rtx. . x... x- -<br />

l' 1' J'<br />

Obieclive function<br />

t (xt, X2, XJ, ......"n)<br />

Stress<br />

o =o(xr<br />

Leokoge of fluid<br />

Q=Q(x,, *2, rJ,......rn)<br />

Weo r<br />

Ah=Ah(x 1,<br />

Optimunr volue<br />

of secl<strong>in</strong>g paroixeiers<br />

X(r ., x _., x _, ......x )<br />

lzl Jn<br />

Fig. 4. T-ltc opt<strong>in</strong>titatiort :cltutrc of dcsign Tiaratttctars oJ'seulittg jo<strong>in</strong>ts<br />

30 fiibologt irt ittiluslry, Volunre 20, <strong>No</strong>. 1, <strong>1998</strong>.


Fvzzy rnodrrle for<br />

choice of seal typ.<br />

€-<br />

U<br />

An a lysi s<br />

lnforrnation<br />

lnodrrle<br />

'l'he Shape<br />

rnodell<strong>in</strong>g<br />

Design<br />

elern ents<br />

Algorithrn<br />

of seal<strong>in</strong>g<br />

f or corn putat.<br />

jo<strong>in</strong>ts<br />

Designs<br />

rb<br />

,%<br />

ffi:*<br />

2 4 ?5'mm<br />

nn--<br />

p,b ar<br />

F-ig. 5<br />

'[lrc Design process of dynarttic seai<strong>in</strong>g jo<strong>in</strong>ls<br />

dular fashion, rvhich might be <strong>in</strong>cludecl <strong>in</strong> larger constructions.<br />

6. CONCLUSION<br />

This exam<strong>in</strong>ation of problems <strong>in</strong> the development of<br />

design of seals for given operat<strong>in</strong>g conditions f<strong>in</strong>ally<br />

leads to the follow<strong>in</strong>g conclusions:<br />

The seal<strong>in</strong>g jo<strong>in</strong>ts are tribologic systems with <strong>in</strong>teract<strong>in</strong>g<br />

surfaces <strong>in</strong> relative motion. Design parameters are obta<strong>in</strong>ed<br />

as the result of optirnal adjustment of their tribologic<br />

parameters. The application of mathematical modell<strong>in</strong>g<br />

permits the simulation of operat<strong>in</strong>g conditions and the<br />

balance clf the pararneters could be achieved.<br />

The design process of seal<strong>in</strong>g jo<strong>in</strong>ts consists of three<br />

activities: the selection of seal<strong>in</strong>g method, the computation<br />

of design parameters and f<strong>in</strong>all,v the rnodell<strong>in</strong>g of<br />

seal<strong>in</strong>g parts shape.<br />

The fuzzy reason<strong>in</strong>g method is proposed for the selection<br />

of seal<strong>in</strong>g jo<strong>in</strong>ts type. This theory makes possible the<br />

decision rnak<strong>in</strong>g <strong>in</strong> the conciition of uncerta<strong>in</strong>ties. The<br />

design parameters, for the chosen seal<strong>in</strong>g type, result<br />

from the optimisation model based on the tribologic<br />

parameters of the system.<br />

Modell<strong>in</strong>g of shape of seal<strong>in</strong>g parts and the whole entity<br />

is based on the results of previous two activities. This is<br />

a part of the design process whose steps are presented<br />

here <strong>in</strong> some detail.<br />

REFERENCES<br />

[I.) Ogrjanovif M., Strengt and seal<strong>in</strong>g of hous<strong>in</strong>gs under<br />

pressure, - Faculry,'of Mechanical Engeneer<strong>in</strong>g,<br />

Belgrade 1997. (<strong>in</strong> Serbian)<br />

l2.l Starrycr N., Ilass ll/., Mrilcr II. K., (1994) Abdichten<br />

auf kle<strong>in</strong>em Bauraum, - Sp<strong>in</strong>ger - Verlag, Konstruktion<br />

46,2 - 8.<br />

[3.) Glit:nicl.;e .1., I-aLurcrt A., SchlLLm.s fl., (1994) Gasgeschmierte<br />

Axialgleitr<strong>in</strong>gdichtrrngen fiir hohe pv-<br />

Werte, -Spr<strong>in</strong>ger-Verlag, Konstruktion 46, 7l -23.<br />

[4.] Mrillcr II. K., Flnjt'jew S. lV. (1991) Gasgeschmierte<br />

Cleitr<strong>in</strong>sdichtung als Lagerabdichtung fiir Flugtriebwerke,<br />

- Spr<strong>in</strong>ger-Verla, konstruktion 43, 31-<br />

Tribolog itt irdLstry, Volume 20, <strong>No</strong>. 1, <strong>1998</strong>.<br />

a1<br />

Jt


[5.) Clilds D. I]t., <strong>No</strong>htt A.5., Kil,qorc J./.. (l 990)'l'est llesults<br />

for I'urbulent Annular Seals, Us<strong>in</strong>g Snrooth<br />

Rotors and Helically Grooved Stators, - ASME<br />

Journirl of <strong>Tribology</strong>, Vol. 112, 254"2.58.<br />

[6.) Hawk<strong>in</strong>s L., Chikls D.W., LIale KI., (1989) Experimental<br />

Results for Labyr<strong>in</strong>th Gas Seals With I{oneycomb<br />

Stators: Conrparisons to Smooth - Stator<br />

Seals and Theoretical Predictions, - ASME Journal<br />

of Technology, Vol. 171,161'\67.<br />

[7.) Haas II/., ]t4iillar II.K.. (1987) Beruhnrng.sfreie Wellendichtungen<br />

fur flussigkeitsbespritzte - Dichtstellen,<br />

- Konsrruktion,39, <strong>No</strong> 3, i07-113.<br />

[8.] Youttg L.A.. Leback A.O., (1982) Iixper<strong>in</strong>rental evaluation<br />

of a mixed friction hydrostatic mechanical<br />

face seal nrodel considcr<strong>in</strong>g radial taper, thermal<br />

taper and \vear,- ASME - Trausactions, Jorrrnal of<br />

Ltrbrication Techniq.. 104, <strong>No</strong> 4,439-448.<br />

f9.f Sugarntni 7., Mnsrttla 7., Oishi N., Slirnazu T.,<br />

(1982) A study on lhernral hehavior of large sealr<strong>in</strong>g,<br />

- ASME - Trans. Jouural of Lubrication Technology,<br />

104, <strong>No</strong> 4. 4'19-453.<br />

[10.] E.stitnt 1., (1982) I)ynarnic analysis of noncorrtact<strong>in</strong>g<br />

f:rce seals, - n SM.E - Transactions, Journal of Lubrication<br />

Technologies. 10.1. I.lo 4. 460-4(18.<br />

-)L<br />

'[ii h tt I og' i t t i r ul t r.t I ty, Vrrhrrrre 20, <strong>No</strong>. I, <strong>1998</strong>.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!